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Threshold expansion and dimensionally regularized NRQCD
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A Lagrangian and a set of Feynman rules are presented for non-relativistic QFT’s with manifest power
counting in the heavy particle velocityv. A regime is identified in which energies and momenta are of order
Mv. It is neither identical to the ultrasoft regime corresponding to radiative processes with energies and
momenta of orderMv2, nor to the potential regime with on shell heavy particles and Coulomb binding. In this
soft regime, massless particles are on shell, and heavy particle propagators become static. Examples show that
it contributes to one- and two-loop corrections of scattering and production amplitudes near threshold. Hence,
NRQFT agrees with the results of threshold expansion. A simple example also demonstrates the power of
dimensional regularization in NRQFT.@S0556-2821~98!01021-2#

PACS number~s!: 12.38.Bx, 12.39.Hg, 12.39.Jh
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I. INTRODUCTION

Velocity power counting in non-relativistic quantum fie
theories~NRQFT! @1,2#, especially in NRQCD and NRQED
and identification of the relevant energy and momentum
gimes has proven more difficult than previously believed.
a recent article, Beneke and Smirnov@3# pointed out that the
velocity rescaling rules proposed by Luke and Manohar
Coulomb interactions@4#, and by Grinstein and Rothstein fo
bremsstrahlung processes@5#, as united by Luke and Savag
@6#, and by Labelle’s power counting scheme in time orde
perturbation theory@7#, do not reproduce the correct beha
ior of the two gluon exchange contribution to Coulomb sc
tering between non-relativistic particles near threshold. T
has cast some doubt on whether NRQCD, especially in
dimensionally regularized version@6#, can be formulated us
ing a self-consistent low energy Lagrangian. The aim of t
paper is to demonstrate that a Lagrangian establishing
plicit velocity power counting exists, and to show that th
Lagrangian reproduces the results in Ref.@3#.

This article presents the ideas to resolve the puzzle, p
poning some more formal arguments, calculations and d
vations to a future, longer publication@8# which will also
deal with gauge theories and exemplary calculations
NRQCD. It is organized as follows: In Sec. II, the releva
regimes of NRQFT are identified. A simple example demo
strates the usefulness of dimensional regularization in
abling explicit velocity power counting. Sec. III proposes t
rescaling rules necessary for a Lagrangian with manifest
locity power counting. The Feynman rules are given. Sim
examples in Sec. IV establish further the necessity of
new, soft regime introduced in Sec. II. A Summary and o
look conclude the paper, together with the Appendix on s
dimensional regularization@9#.

II. IDEA OF DIMENSIONALLY REGULARIZED NRQFT

For the sake of simplicity, let us—following@3#—deal
with the Lagrangian
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L5~]mFR!†~]mFR!2M2FR
†FR

1 1
2 ~]mA!~]mA!22MgFR

†FRA ~2.1!

of a heavy, complex scalar fieldFR with massM coupled to
a massless, real scalarA. The coupling constantg has been
chosen dimensionless.FR will be referred to as the ‘‘quark’’
and A as the ‘‘gluon’’ in a slight but clarifying abuse o
language. In NRQFT, excitations with four-momenta bigg
than M are integrated out, giving rise to four-point intera
tions between quarks. The first terms of the no
relativistically reduced Lagrangian read

LNRQFT5F†S i ]01
]W2

2M
2gc1ADF

1 1
2 ~]mA!~]mA!1c2~F†F!21 . . . , ~2.2!

where the non-relativistic quark field isF5A2MeiMtFR
and the coefficientsci are to be determined by matchin
relativistic and non-relativistic scattering amplitudes. T
lowest order, c151 and c252g4/24p2M2. The non-
relativistic propagators are

F:
i

T2
pW 2

2M
1 i e

, A:
i

k21 i e
, ~2.3!

whereT5p02M5pW 2/2M1 . . . is the kinetic energy of the
quark.

When a Coulombic bound state of two quarks exists,
two typical energy and momentum scales in the no
relativistic system are the bound state energyMv2 and the
relative momentum of the two quarksMv ~i.e., the inverse
size of the bound state! @2#. Here,v5bg!1 is the relativ-
istic generalization of the relative particle velocity. Cuts a
poles in scattering amplitudes close to threshold stem fr
bound states and on-shell propagation of particles in in
mediate states. They give rise to infrared divergences an
general dominate contributions to scattering amplitud
©1998 The American Physical Society27-1
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With the two scales at hand, and energies and momenta
ing of either scale, three regimes are identified in which
ther F or A in Eq. ~2.3! is on shell:

soft regime: As:k0;ukW u;Mv,

potential regime: Fp :T;Mv2, upW u;Mv, ~2.4!

ultrasoft regime: Au :k0;ukW u;Mv2.

Ultrasoft gluonsAu are emitted as bremsstrahlung or fro
excited states in the bound system. Soft gluonsAs do not
describe bremsstrahlung: Because in- and outgoing qu
Fp are close to their mass shell, they have an energy of o
Mv2. Therefore, overall energy conservation forbids all p
cesses with outgoing soft gluons but without ingoing on
and vice versa, as their energy is of orderMv.

The list of particles is not yet complete. In a bound sy
tem, one needs gluons which change the quark momenta
keep them close to their mass shell:

Ap :k0;Mv2, ukW u;Mv. ~2.5!

So far, only potential gluons and quarks, and ultrasoft glu
had been identified in the literature of power counting
NRQFT @4,5,7#. Because the soft regime was overlook
cast doubts on the completeness of NRQFT after Beneke
Smirnov@3# demonstrated its relevance near threshold in
plicit one- and two-loop calculations. In this article, the fiel
representing a non-relativistic quark or gluon came natur
by identifying all possible particle poles in the no
relativistic propagators, given the two scales at hand.

When a soft gluonAs couples to a potential quarkFp , the
outgoing quark is far off its mass shell and carries ene
and momentum of orderMv. Therefore, consistency re
quires the existence of quarks in the soft regime as well

Fs:T;upW u;Mv. ~2.6!

As the potential quark has a much smaller energy than ei
of the soft particles, it cannot—by the uncertainty relation
resolve the precise time at which the soft quark emits
absorbs the soft gluon. So, we expect a ‘‘temporal’’ mu
pole expansion to be associated with this vertex. In gene
the coupling between particles of different regimes will n
be point-like but will contain multipole expansions for th
particle belonging to the weaker kinematic regime. For
coupling of potential quarks to ultrasoft gluons, this has be
observed in Refs.@5, 7#.

Propagators will also be different from regime to regim
for soft quarks,pW 2/2M is negligible against the kinetic en
ergyT, so that the soft quark propagator may be expande
powers ofpW 2/2M , and Fs is expected to become static
lowest order. As the energy of potential gluons is mu
smaller than their momentum, theAp-propagator is expecte
to become instantaneous.

With these five fieldsFs,Fp ,As,Ap ,Au representing
quarks and gluons in the three different non-relativistic
gimes, soft, potential and ultrasoft, NRQFT becomes s
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consistent. The application of these ideas to NRQCD w
the inclusion of fermions and gauge particles is straightf
ward and will be summarized in a future publication@8#. An
ultrasoft quark~which would have a static propagator! is not
relevant for this paper. It is hence not considered, as
fourth ~‘‘exceptional’’! regime in which momenta are of th
order Mv2 and energies of the orderMv or any regime in
which one of the scales is set byM . They do not derive from
poles in propagators, and hence will be relevant only un
‘‘exceptional’’ circumstances. A future publication@8# has to
prove that the particle content outlined is not only consist
but complete.

It is worth noticing that the particles of the soft regim
can neither be mimicked by potential gluon exchange, nor
contact terms generated by integrating out the ultravio
modes: fields in the soft regime have momenta of the sa
order as the momenta of the potential regime, but mu
higher energies. Therefore, seen from the potential scale
describe instantaneous but non-local interactions, as poi
out in @3#. Integrating out the scaleMv, one arrives at soft
gluons and quarks as point-like multi-quark interactions
the ultrasoft regime. The physics of potential quarks and g
ons will still have to be described by spatially local, b
non-instantaneous interactions. The resulting theor
baptized potential NRQCD by Pineda and Soto@10#—can be
derived from NRQCD as presented here by integrating
the fieldsFs, As andAp . Therefore, there is no overlap be
tween interactions and particles in different regimes.

In order to clarify this point, and before investigating th
interactions of the various regimes further, the following e
ample will demonstrate the power of dimensional regulari
tion in NRQFT. It also highlights some points which sim
plify the discussion of the following sections. The integr
corresponding to a one-dimensional loop

I ~a,b![E dk
1

k22a21 i e

1

k22b21 i e

5
ip

ab~a1b!
~2.7!

is easily calculated using contour integration. Assumingv2

[a2/b2 !1, the dominating contributions come from the r
gions whereuku is close to a ~‘‘smaller regime’’! or b
~‘‘larger regime’’!. Then, one can approximate the integr
by

I ~a,b!'F E
uku;a

1E
uku;b

Gdk
1

k22a21 i e

1

k22b21 i e
.

~2.8!

In the first integral,k is small againstb, so that a Taylor
expansion ink/b;v in that regime is applicable and yield

21

b2 (
n50

` E
uku;a

dk
1

k22a21 i e

k2n

b2n
. ~2.9!
7-2
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THRESHOLD EXPANSION AND DIMENSIONALLY . . . PHYSICAL REVIEW D 58 094027
If k2 becomes comparable tob2, the expansion breaks down
so that the approximated integral cannot be solved by c
tour integration. In general, the~arbitrary! borders of the in-
tegration regimes~the ‘‘cutoffs’’ ! will enter in the result, and
lead to divergences as they are taken to infinity becaus
contributions from regions whereuku;b@a. A cutoff regu-
larization may hence jeopardize power counting inv.

Dimensional regularization overcomes this problem in
natural and elegant way: If one treats~2.9! as a
d-dimensional integral withd→1 only at the end of the cal
culation, the exact result will emerge as a power series
v5a/b. First, one extends the integration regime from t
neighborhood ofuau to the wholed-dimensional space. Then
one calculates the integral order by order in the expans
still treatingk2/b2;v2 as formally small. Rewriting

k2n5 (
m50

n S n
mDa2m~k22a2!n2m, ~2.10!

only the (m5n)-term contributes thanks to the fact that d
mensionally regularized integrals vanish when no intrin
scale is present:

E ddk

~2p!d
ka50. ~2.11!

The result

ip

ab2 (
n50

`
a2n

b2n S 5
ip

a

1

b22a2D ~2.12!

is exactly the contribution one obtains in the contour integ
tion from the pole atuku5a. Albeit the integral was ex-
panded over the whole space, dimensional regulariza
missed the poles at6b after expansion.

The integration aboutuku;b is treated likewise by expan
sion and term-by-term dimensional regularization. Addi
this contribution

2 ip

b3 (
n50

`
a2n

b2n S 5
2 ip

b

1

b22a2D ~2.13!

to Eq.~2.12!, one obtains term by term the Taylor expansi
of the exact result~2.7! in the small parameterv5a/b. Each
of the two regularized integrals sees only the pole in eithe
the regimesuku;a or uku;b. Indeed, the overlap of the tw
regimes is zero in dimensional regularization, even for a
trary v. But then, the expansion in the two different regim
can be terminated only at the cost of low accuracy.

One could therefore have started with the definition
two different integration variables, one formally living in th
smaller regime withuKau;a;vb, the other formally living
in the larger regime,uKbu;b:

E dk→E ddKa1E ddKb. ~2.14!
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The momentumk is represented in each of the kinema
regimes by eitherKa or Kb . The integrandsmust then be
expanded in a formal wayas if uKau;a;vb and uKbu;b.
Otherwise, poles are double counted. If one wants to ca
late to a certain order inv, the expansion in the differen
variablesKa /b anda/Kb is just terminated at the appropria
order. Treated thus, no double counting of the poles
occur. Coming back to the three different regimes of NRQ
~2.4!, there will therefore be no double counting between a
pair of domains.

Finally, note that the limita→0 is not smooth: fora50,
dimensional regularization of Eq.~2.9! is zero because of the
absence of a scale~2.11!. A pinch singularity encountered in
contour integration atk56 i e behaves hence like a pole o
second order in dimensional regularization and is discard
see also the Appendix.

By induction, the arguments presented here can be
tended to prove that for any convergent one-dimensional
tegral containing several scales, Laurent expansion ab
each saddle point and dimensional regularization gives
same result as contour integration. A formal proof of t
validity of threshold expansion does not presently exist
the case of multi-dimensional and divergent integrals,
Beneke and Smirnov@3# could reproduce the correct struc
tures of known non-trivial two-loop integrals using thresho
expansion, which is highly suggestive that such a proof
be given. This claim is supported by the observation t
threshold expansion is very similar to the asymptotic exp
sion of dimensionally regularized integrals in the limit
loop momenta going to infinity, for which such a proof exis
@11#.1

III. RESCALING RULES, LAGRANGIAN
AND FEYNMAN RULES

In order to establish explicit velocity power counting
the NRQFT Lagrangian, one rescales the space-time coo
nates such that typical momenta in either regime beco
dimensionless, as first proposed in@4# for the potential re-
gime, and in@5# for the ultrasoft regime:

soft: t5~Mv !21Ts, xW5~Mv !21XW s,

potential: t5~Mv2!21Tu , xW5~Mv !21XW s, ~3.1!

ultrasoft: t5~Mv2!21Tu , xW5~Mv2!21XW u .

In order for the propagator terms in the NRQFT Lagrang
to be properly normalized, one has to set for the represe
tives of the gluons in the three regimes

1I am indebted to M. Beneke for conversation on this point.
7-3
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HARALD W. GRIEßHAMMER PHYSICAL REVIEW D58 094027
soft: As~xW ,t !5~Mv !As~XW s,Ts!,

potential: Ap~xW ,t !5~Mv3/2!Ap~XW s,Tu!,
~3.2!

ultrasoft: Au~xW ,t !5~Mv2!Au~XW u ,Tu!,

and for the quark representatives

soft: Fs~xW ,t !5~Mv !3/2fs~XW s,Ts!,
~3.3!

potential: Fp~xW ,t !5~Mv !3/2fp~XW s,Tu!.

The rescaled free Lagrangian in the three regions reads

soft: d3XsdTsFfs
†S i ]01

v
2

]W2Dfs1
1
2 ~]mAs!~]mAs!G ,

~3.4!

potential: d3XsdTu@fp
†~ i ]01 1

2 ]W2!fp

1 1
2 ~A p]W2Ap2v2A p]0

2Ap!], ~3.5!

ultrasoft: d3XudTu
1
2 ~]mAu!~]mAu!. ~3.6!

Here, as in the following, the positions of the fields ha
been left out whenever they coincide with the variables
the volume element. Derivatives are to be taken with resp
to the rescaled variables of the volume element. The~un-
rescaled! propagators are depicted in Fig. 1. As expected,
soft quark becomes static, resembling the quark propag
in heavy quark effective theory, and the potential gluon
comes instantaneous. In order to maintain velocity pow
counting, corrections of orderv or higher must be treated a
insertions as in the example, Eq.~2.7!. Insertions are repre
sented by the~un-rescaled! Feynman rules of Fig. 2.

Except for the physical gluonsAs and Au , there is no
distinction between Feynman and retarded propagator

FIG. 1. Feynman rules for propagators.

FIG. 2. Feynman rules for insertions.
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NRQFT: Antiparticle propagation has been eliminated by
field transformation from the relativistic to the non
relativistic Lagrangian, and both propagators have maxim
support for on-shell particles, the Feynman propagator o
side the light cone vanishing likee2M. Feynman’s perturba-
tion theory becomes more convenient than the time-orde
formalism, as less diagrams have to be calculated.

Finally, the interaction part of the Lagrangian reads@ne-
glecting for the moment theF4 vertex in Eq.~2.2!#

soft: d3Xs dTs~2g!@„As1AvAp~XW s,vTs!

1vAu~vXW s,vTs!…fs
†fs

1„Asfs
†fp~XW s,vTs!1H.c.…] ~3.7!

potential: d3XsdTu~2g!F 1

Av
Ap1Au~vXW s,Tu!Gfp

†fp .

~3.8!

Note that the scaling regime of the volume element is set
the particle with the highest momentum and energy. Verti
like Asfp

†fp cannot occur as energy and momentum must
conserved within each regime to the order inv one works.
Among the fields introduced, these are the only interacti
within and between different regimes allowed. One sees
technically, the multipole expansion comes from the diffe
ent scaling ofxW andt in the three regimes. It is also interes
ing to note that there is no choice but to assign one and
same coupling strengthg to each interaction. Different cou
plings for one vertex in different regimes are not allowe
This is to be expected, as the example~2.14! demonstrated
that the fields in the various regimes are representative
one and the same non-relativistic particle, whose interacti
are fixed by the non-relativistic Lagrangian~2.2!.

The interaction Feynman rules are depicted in Fig. 3. T
exponents representing the multipole expansion have to
expanded to the desired order inv. Double counting is pre-

FIG. 3. Feynman rules for vertices.
7-4
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THRESHOLD EXPANSION AND DIMENSIONALLY . . . PHYSICAL REVIEW D 58 094027
vented by the fact that in addition to most of the propagato
all vertices are distinct because of different multipole exp
sions.

Using the equations of motion, the temporal multipo
expansion may be re-written such that energy becomes
served at the vertex. Now, both soft and potential or ultras
energies are present in the propagators, making it neces
to expand it in ultrasoft and potential energies. An exam
would be to restate theFsApFs-vertex as

2 ig~2p!4d~T1T81kp,0!

3d~3!~pW 1pW 81kW !5O~Av !, ~3.9!

and the soft propagator as containing insertionsO(v) for
potential energieskp :

i

T1 i e (
n50

` S 2kp,0

T D n

. ~3.10!

The same holds of course for the momentum-non-conser
vertices.

In the renormalization group approach, there is theref
only one relevant coupling~i.e. only one which dominates a
zero velocity! at tree level. As expected, it is theFpFpAp
coupling providing the binding. The FsFsAp-,
FsFsAu-couplings and both insertions~Fig. 2! are irrelevant.
The marginal couplingsFpFpAu , FsFsAs andFsFpAs are
irrelevant in gauge theories in carefully chosen gauges
the Coulomb gauge. This point will be elaborated upon in
future @8#.

The velocity power counting is not yet complete. As o
sees from the volume element used in Eq.~3.7!, the vertex
rules for the soft regime count powers ofv with respect to
the soft regime. One hence retrieves the velocity pow
counting of heavy quark effective theory@12,13# ~HQET!, in
which the interactions between one heavy~and hence static!
and one or several light quarks are described. Usua
HQET counts inverse powers of mass in the Lagrangian,
because in the soft regimeMv;const, the two approache
are actually equivalent. HQET becomes a sub-set
NRQCD, complemented by interactions between s
~HQET! and potential or ultrasoft particles.

In NRQCD with two potential quarks as initial and fin
states, the soft regime can occur only inside loops, as n
above. Therefore, the power counting in the soft sub-gr
has to be transferred to the potential regime. Because
loop momenta scale like@d4ks#;v4, while potential ones
like @d4kp#;v5, each largest sub-graph which contains on
soft quarks and no potential ones~a ‘‘soft blob’’ ! is enhanced
09402
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by an additional factor 1/v. Couplings between soft quark
and any gluons inside a blob take place in the soft reg
and hence are counted according to the rules of that reg
Because each soft blob contributes at least four orders og,
but only one inverse power ofv;g2, power counting is
preserved. These velocity power counting rules in loops
verified in explicit calculations of the exemplary graphs~see
also below!, but a rigorous derivation is left for a futur
publication@8#.

With rescaling, multipole expansion and loop countin
the velocity power counting rules are established, and
can now proceed to check the validity of the proposed
grangian, matching NRQFT to the relativistic theory in t
examples given by Beneke and Smirnov@3#.

IV. MODEL CALCULATIONS

The first example is the lowest order correction to the t
quark production graph. Without proof, it will be used that
dimensional regularization, one can match NRQFT and
relativistic theory graph by graph, so that not the whole sc
tering amplitude has to be considered@3#. The collection of
graphs to be matched to the relativistic diagram is depic
in Fig. 4. Here and in the following, hard~ultraviolet! con-
tributions will not be shown explicitly. They are taken ca
of by the four-quark interaction of the non-relativistic La
grangian~2.2! and renormalization of the external curren
@6#.

The energy and momentum routing has been chosen t
the one of the non-relativistic center of mass system, withT

the total kinetic energy, andy52(pW )2}2v2 the relative
four-momentum squared of the outgoing quarks as indica
for the thresholdness of the process considered. Thanks a
to dimensional regularization, any other assignment can
chosen and reproduces the result.

The vanishing of the ultrasoft gluon exchange diagr
and the value of the potential gluon exchange diagram h
already been calculated in@6#. The soft exchange diagram
vanishes, so that no new contribution is obtained. It is
even necessary to specify how soft quarks couple to exte
sources: If energy is conserved at the production vertex,
integral to be calculated is

E ddk

~2p!d

1

T1k01 i e

1

T2k01 i e

1

k0
22kW2

. ~4.1!

Because the gluon is soft,T!k0 , and the quark propagator
must be expanded inT/k0;v, giving zero to any order as no
scale is present in the dimensionally regularized integra
FIG. 4. Matching of theO(g2) correction to two quark production off an external current to lowest order inv in each of the three
regimes.
7-5
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FIG. 5. PlanarO(g4) contributions to Coulomb scattering. The four-point interaction and insertion diagrams are not displayed
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energy is not conserved at the production vertex, the
quark propagator is 1/6k0 , and the contribution vanishe
again. Therefore, there is no coupling of soft subgraphs
external sources to any order inv. Soft quarks in externa
lines are far off their mass shell and hence violate the
sumptions underlying threshold expansion and NRQFT
general, we conclude that soft quarks are present onl
internal lines, and that the first non-vanishing contributi
from the soft regime for the production vertex occurs n
earlier than atO(g4).

The first soft non-zero contribution comes actually fro
the two gluon direct exchange diagram of Fig. 5 calcula
09402
ft

to

s-
n
in

t

by Beneke and Smirnov@3# using threshold expansion. Th

Mandelstam variablet52(pW 2pW 8)2 describes the momen
tum transfer in the center of mass system. The ultravio
behavior of this graph is mimicked in NRQFT by a fou
fermion exchange given by the vertexic252 ig4/24p2M2

5O(t0,y0) of the Lagrangian~2.2!, which using the rescal-
ing rules is seen to beO(v).

The Feynman rules in Fig. 3 show that theAuAu-diagram
is of orderev with a leading loop integral contribution~simi-
lar to Eq.~32! in @3#!
refore the

n.

,
-
The

or
o

E ddk

~2p!d

1

k0
22kW2

1

k0
22kW2

1

T1k02
pW 2

2M

1

T2k02
pW 2

2M

. ~4.2!

The diagram is expected to be zero to all orders since the ultrasoft gluons do not change the quark momenta and the
scattering takes place only in the forward direction,pW 5pW 8. Upon employing the on-shell condition for potential quarks,T

5pW 2/2M to leading order, it indeed vanishes as no scale is present. SinceT2pW 2/2M;Mv4!ukW u;Mv ~andk0;Mv2) in the
potential regime, this is a legitimate expansion. TheAuAp andApAu contributions (O@(1/v)ev#) are zero for the same reaso
The lowest order contribution to theApAp graph (O@(1/v2)#) is

E ddk

~2p!d

1

kW22 i e

1

~pW 2pW 81kW !22 i e

1

T1k02
~kW1pW !2

2M
1 i e

1

T2k02
~kW1pW !2

2M
1 i e

. ~4.3!

In light of the discussion at the end of Sec. II, it is most consistent to perform thek0 integration by dimensional regularization
using*@ddk/(2p)d#5*@dsk0 /(2p)s#@dd2skW /(2p)d2s#, s→1 ~@14#, Chap. 4.1!. Split dimensional regularization was intro
duced by Leibbrandt and Williams@9# to cure the problems arising from pinch singularities in non-covariant gauges.
Appendix shows that in the case at hand, it has the same effect as closing thek0-contour and picking the quark propagat
poles prior to using dimensional regularization ind21 Euclidean dimensions. To achieveO(v1) accuracy, one must als
consider one insertion~Fig. 2! at the potential gluon lines, giving rise to a contribution

E ddk

~2p!d

1

kW22 i e

1

~pW 2pW 81kW !22 i e
k0

2F 1

kW22 i e
1

1

~pW 2pW 81kW !22 i e
G 1

T1k02
~kW1pW !2

2M
1 i e

1

T2k02
~kW1pW !2

2M
1 i e

. ~4.4!
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The k0 integration is naively linearly divergent, and hence closing the contour is not straightforward. As the App
demonstrates, split dimensional regularization circumvents this problem. The sum of both contributions~4.3!, ~4.4!,

i

8pt

M1T

Ay
S 2

42d
2gE2 ln

2t

4pm2D , ~4.5!

agrees with Eq.~31! in @3#, when one keeps in mind that in that reference, heavy particle external lines were norm
relativistically, while a non-relativistic normalization was chosen here. Also, this article uses the minimal subtraction~MS!
rather than the modified~MS! scheme. Near threshold, the scale is set by the total threshold energy 4pm254(M1T)2.

The soft gluon part is to lowest order@O(v21) because of one soft blob# given by

E ddk

~2p!d

1

k0
22kW21 i e

1

k0
22~pW 2pW 81kW !21 i e

1

k01 i e

1

2k01 i e
, ~4.6!

FIG. 6. The non-vanishing contributions to the planar fourth order correction to two quark production. Diagrams with insert
four-point interactions not displayed.
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rect
ab-
which corresponds to Eq.~33! in @3#. Now, split dimensional
regularization must be used if noad hocprescription for the
pinch singularity atk050 is to be invoked, see the Appen
dix. That the pinch is accounted for by potential gluon e
change and hence must be discarded, agrees with the i
tive argument that zero four-momentum scattering in QED
mediated by a potential only, and no retardation or radiat
effects occur. On the other hand, the model Lagrangian c
tains three marginal couplings as seen at the end of Sec
which may give finite contributions as energies and mome
of the scattered particles go to zero. Although the presc
tion and the result from split dimensional regularization c
incide in the present case as demonstrated at the end of
II and in the Appendix, this may not hold in general. T
result toO(v1) exhibits another collinear divergence.

2 i

4p2t
S 2

42d
2gE2 ln

2t

4pm2D
1

i

24p2M2 F11
2y

t S 2

42d
2gE2 ln

2t

4pm2D G , ~4.7!

and agrees with the one given by Beneke and Smirnov@3#,
following Eq. ~36!. The second term comes from insertio
and multipole expansions to achieveO(v) accuracy.

It is easy to see that the power counting proposed wo
As expected, the potential diagram isAy}v stronger that the
leading soft contribution, andtAy}v3 stronger than the four
fermion interaction.
09402
-
ui-
s
n
n-
III,
ta
-

-
ec.

s.

In conclusion, the proposed NRQFT Lagrangian rep
duces the result for the planar graph of the relativistic the
only if the soft gluon and the soft quark are accounted f
the four-fermion contact interaction produces just
1/M2-term, graphs containing ultrasoft gluons were abse
and the potential gluon~4.5! gave noO(y0) contribution.
This shows the necessity of soft quarks and gluons. The c
pling strength of theFsAsFp vertex is also seen to be iden
tical to the other vertex coupling strengths,g.

The planar fourth order correction to two quark produ
tion ~Fig. 6! was also compared to the result of@3#, and is
correctly accounted for when the Feynman rules propo
above are used toO(v1).

V. CONCLUSIONS AND OUTLOOK

The objective of this paper was a simple presentation
the ideas behind explicit velocity power counting in dime
sionally regularized NRQFT. It started with the identificatio
of three different regimes of scale for on-shell particles
NRQFT from the poles in the non-relativistic propagato
This leads in a natural way to the existence of a new qu
field and a new gluon field in the soft scaling regimeE

;upW u;Mv. In it, quarks are static and gluons on shell, a
HQET becomes a sub-set of NRQCD. Neither of the fi
fields in the three regimes should be thought of as ‘‘physi
particles.’’ Rather, they represent the ‘‘true’’ quark an
gluon in the respective regimes as the infrared-relevant
grees of freedom. None of the regimes overlap. An NRQ
Lagrangian has been proposed which leads to the cor
behavior of scattering and production amplitudes. It est
7-7
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lishes explicit velocity power counting which is preserved
all orders in perturbation theory. The reason for the existe
of such a Lagrangian, once dimensional regularization
chosen to complete the theory, was elaborated upon
simple example: the non-commutativity of the expansion
small parameters with dimensionally regularized integral

Due to the similarity between the calculation of the e
amples in the work presented here and in@3#, one may get
the impression that the Lagrangian presented is only a sim
re-formulation of the threshold expansion. Partially, this
true, and a future publication@8# will indeed show the
equivalence of the two approaches to all orders in the thre
old and coupling expansion. A list of other topics to be a
dressed there contains the straightforward generalizatio
NRQCD; a proof whether the particle content outlined abo
is not only consistent but complete, i.e. that no new fie
~e.g. an ultrasoft quark! or ‘‘exceptional’’ regimes arise; an
investigation of the influence of soft quarks and gluons
bound state calculations in NRQED and NRQCD; a full l
of the various couplings between the different regimes
an exploitation of their relevance for physical processes.
formal reason why double counting between different
gimes and especially between soft and ultrasoft gluons d
not occur, a derivation of the way soft quarks couple to
ternal sources, and the role of soft gluons in Compton s
tering deserve further attention, too.

I would like to stress that the diagrammatic threshold
pansion derived here allows for a more automatic and in
tive approach and makes it easier to determine the orde
A2y}v to which a certain graph contributes. On the oth
hand, the NRQFT Lagrangian can easily be applied to bo
state problems. As the threshold expansion of Beneke
Smirnov starts in a relativistic setting, it may formally b
harder to treat bound states there. Indeed, I believe that
if one may not be able to prove the conjectures of the
starting from the other, both approaches will profit from ea
other in the wedlock of NRQFT and threshold expansion
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APPENDIX: SOME DETAILS ON SPLIT DIMENSIONAL
REGULARIZATION

This appendix presents the part of the calculations in
examples of Sec. IV which makes use of split dimensio
regularization as introduced by Leibbrandt and Williams@9#.
In its results, split dimensional regularization agrees w
other methods to compute loop integrals in non-covari
gauges, such as the non-principal value prescription@15#, but
two features make it especially attractive: It treats the te
poral and spatial components of the loop integrations on
equal footing, and no recipes are necessary. Rather, it
the fact that, like in ordinary integration, the axioms of d
mensional regularization~@14#, Chap. 4.1! allow the splitting
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of the integration into two separate integrals:

E ddk

~2p!d
5E dsk0

~2p!s

dd2skW

~2p!d2s
. ~A1!

Both integrations can be performed consecutively, and
limit s→1 can—if finite—be taken immediately, becau
the integration over the spatial components of the loop m
mentum in Eq.~A1! is still regularized ind21 dimensions.
Finally, the limit d→4 is taken at the end of the calculatio

Equation~4.3! contains the simplestk0 sub-integral:

E dsk0

~2p!s

1

k01T2
~kW1pW !2

2M
1 i e

1

2k01T2
~kW1pW !2

2M
1 i e

.

~A2!

Using standard formulae for dimensional regularization
Euclidean space~@16#, Appendix B!, the result is finite as
s→1:

E dsk0

~2p!s

1

FT2
~kW1pW !2

2M
1 i eG 2

2k0
2

52

GF12
s

2
G

~4p!s/2G@1#
S 2FT2

~kW1pW !2

2M
1 i eG 2D s/2 21

→2
i

2
S T2

~kW1pW !2

2M
1 i e D 21

as s→1 . ~A3!

It is no surprise that closing the contour produces the sa
result, because for any finite integral, the answer of all re
larization methods have to coincide. The integral over
spatial components of the loop momentum is now straig
forward.

The potential gluon diagram with one insertion at a glu
leg ~4.4! yields a split dimensional integral which diverge
linearly in k0 , so that naive contour integration is not legit
mate.

E dsk0

~2p!s

k0
2

FT2
~kW1pW !2

2M
1 i eG 2

2k0
2

→2
i

2
FT2

~kW1pW !2

2M
G as s→1 . ~A4!
7-8
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To arrive at this result, the numerator was re-written as@k0
2

2(T2(kW1pW )2/2M )2#1@T2(kW1pW )2/2M #2. Its first term
cancels the denominator, yielding an integral without sc
which therefore vanishes in dimensional regularization. T
second term has been calculated in Eq.~A3!. The integral
over the spatial components of the loop momentum provi
again no complications, leading to Eq.~4.5!.

Finally, it was already shown at the end of Sec. II th
dimensional regularization discards pinch singularities
countered in contour integrations. This is validated again
looking at the split dimensional integral fork0 in the soft
gluon contribution~4.6!,

E dsk0

~2p!s

1

k0
22a2

1

k0
22b2

1

2k0
2

, ~A5!
o
an

09402
le
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t
-
y

wherea2[kW22 i e andb2[(pW 2pW 81kW )22 i e. After combin-
ing denominators, the resulting integral is simple:

22

GF32
s

2G
~4p!s/2G@3#

E
0

1

dx dy x„2a2~12x!2b2xy…s/223

→
i

2

1

a22b2 S 1

a3 2
1

b3D as s→1. ~A6!

This agrees with the result of Beneke and Smirnov„@3#, Eq.
~34!… who use contour integration and drop the contributi
from the pinch singularity. The integral over the spatial co
ponents of the loop momentum provides again no unfami
complications, leading to Eq.~4.7!.
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