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Threshold expansion and dimensionally regularized NRQCD
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A Lagrangian and a set of Feynman rules are presented for non-relativistic QFT’s with manifest power
counting in the heavy particle velocity. A regime is identified in which energies and momenta are of order
Mvu. It is neither identical to the ultrasoft regime corresponding to radiative processes with energies and
momenta of ordeMv?, nor to the potential regime with on shell heavy particles and Coulomb binding. In this
soft regime, massless particles are on shell, and heavy particle propagators become static. Examples show that
it contributes to one- and two-loop corrections of scattering and production amplitudes near threshold. Hence,
NRQFT agrees with the results of threshold expansion. A simple example also demonstrates the power of
dimensional regularization in NRQFTS0556-282(98)01021-3

PACS numbg(s): 12.38.Bx, 12.39.Hg, 12.39.Jh

. INTRODUCTION L=(3,0p) (0" Dr)—M2D [ Dp

Velocity power counting in non-relativistic quantum field +3(9,A)(9*A)—2M gdLDdRA (2.2)
theories(NRQFT) [1,2], especially in NRQCD and NRQED,
and identification of the relevant energy and momentum reef a heavy, complex scalar fieflz with massM coupled to
gimes has proven more difficult than previously believed. Ina massless, real scalar The coupling constarg has been
a recent article, Beneke and Smirn@} pointed out that the chosen dimensionles® will be referred to as the “quark”
velocity rescaling rules proposed by Luke and Manohar forand A as the “gluon” in a slight but clarifying abuse of
Coulomb interaction4], and by Grinstein and Rothstein for |anguage. In NRQFT, excitations with four-momenta bigger
bremsstrahlung processis, as united by Luke and Savage thanM are integrated out, giving rise to four-point interac-

[6], and by Labelle’s power counting scheme in time orderedjons between quarks. The first terms of the non-
perturbation theory7], do not reproduce the correct behav- re|ativistically reduced Lagrangian read
ior of the two gluon exchange contribution to Coulomb scat-

tering between non-relativistic particles near threshold. This 52

has cast some doubt on whether NRQCD, especially in its ENRQFT=<DT i dg+ m—gclA [

dimensionally regularized versid6], can be formulated us-

ing a self-consistent low energy Lagrangian. The aim of this 4 %(Q#A)(MA)JFCZ((DT@)ZJF 22

paper is to demonstrate that a Lagrangian establishing ex-

Eg(;:a\r{\i:%Cr:t)r/ez?;\:jel;cggut?\gnrgeselj(lltsstsih ?:?gﬂ to show that thlsWhere the non-relativistic quark field i®=2MeM'dg

This article presents the ideas to resolve the puzzle, pos ind the coefficients;; are to be determined by matching
. P > P + POSEativistic and non-relativistic scattering amplitudes. To
poning some more formal arguments, calculations and deri-

— — _ a%/24m2M 2 3

vations to a future, longer publicatidi8] which will also 'Iowe_st_ t_)rder, ¢1=1 and c,=-—g'/24m"M" The non
. . : . relativistic propagators are

deal with gauge theories and exemplary calculations in

NRQCD. It is organized as follows: In Sec. Il, the relevant i i

regimes of NRQFT are identified. A simple example demon- d- _ LA , (2.3
strates the usefulness of dimensional regularization in en- p? K?+ie
abling explicit velocity power counting. Sec. Ill proposes the T- M tle

rescaling rules necessary for a Lagrangian with manifest ve-
locity power counting. The Feynman rules are given. SimpIth _ 72

. . . ereT=py—M=p“/2M+ ..
examples in Sec. IV establish further the necessity of th%]uark Po P
new, soft regime introduced in Sec. Il. A Summary and out- '
look conclude the paper, together with the Appendix on split, ,
dimensional regularizatioff)].

. is the kinetic energy of the

When a Coulombic bound state of two quarks exists, the

o typical energy and momentum scales in the non-
relativistic system are the bound state enekfiy’ and the
relative momentum of the two quarkguv (i.e., the inverse
size of the bound stat¢2]. Here,v = By<1 is the relativ-

For the sake of simplicity, let us—followin§3]—deal istic generalization of the relative particle velocity. Cuts and

with the Lagrangian poles in scattering amplitudes close to threshold stem from

bound states and on-shell propagation of particles in inter-

mediate states. They give rise to infrared divergences and in

*Email address: hgrie@phys.washington.edu general dominate contributions to scattering amplitudes.

II. IDEA OF DIMENSIONALLY REGULARIZED NRQFT
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With the two scales at hand, and energies and momenta beensistent. The application of these ideas to NRQCD with
ing of either scale, three regimes are identified in which eithe inclusion of fermions and gauge particles is straightfor-

ther® or A in Eqg. (2.3) is on shell: ward and will be summarized in a future publicati@j. An
R ultrasoft quarkwhich would have a static propagatids not
soft regime: Ag:ky~|k|~Muv, relevant for this paper. It is hence not considered, as is a

fourth (“exceptional”) regime in which momenta are of the
potential regime: <I>p:T~Mu2, |5|~|v|v, (2.9 orderMv? and energies of the orddlv or any regime in
which one of the scales is set M. They do not derive from
ultrasoft regime: A,:ko~|K|~Mu?2. poles in propagators, and hence will be relevant only under
“exceptional” circumstances. A future publicati¢B] has to
Ultrasoft gluonsA, are emitted as bremsstrahlung or from prove that the particle content outlined is not only consistent
excited states in the bound system. Soft gludgsdo not  but complete.
describe bremsstrahlung: Because in- and outgoing quarks It is worth noticing that the particles of the soft regime
@, are close to their mass shell, they have an energy of ordéien neither be mimicked by potential gluon exchange, nor by
Muv?. Therefore, overall energy conservation forbids all pro-contact terms generated by integrating out the ultraviolet
cesses with outgoing soft gluons but without ingoing onesmodes: fields in the soft regime have momenta of the same
and vice versa, as their energy is of ordiép. order as the momenta of the potential regime, but much
The list of particles is not yet complete. In a bound sys-higher energies. Therefore, seen from the potential scale they
tem, one needs gluons which change the quark momenta b@escribe instantaneous but non-local interactions, as pointed

keep them close to their mass shell: out in [3]. Integrating out the scal®v, one arrives at soft
gluons and quarks as point-like multi-quark interactions in
Apiko~ Muv?2, ||Z|~ Muv. (2.5  the ultrasoft regime. The physics of potential quarks and glu-

ons will still have to be described by spatially local, but

So far, only potential gluons and quarks, and ultrasoft gluongsion-instantaneous interactions. The resulting theory—
had been identified in the literature of power counting inbaptized potential NRQCD by Pineda and Sdt6]—can be
NRQFT [4,5,7]. Because the soft regime was overlookedderived from NRQCD as presented here by integrating out
cast doubts on the completeness of NRQFT after Beneke arttle fields®, A; andA,. Therefore, there is no overlap be-
Smirnov[3] demonstrated its relevance near threshold in extween interactions and particles in different regimes.
plicit one- and two-loop calculations. In this article, the fields In order to clarify this point, and before investigating the
representing a non-relativistic quark or gluon came naturallynteractions of the various regimes further, the following ex-
by identifying all possible particle poles in the non- ample will demonstrate the power of dimensional regulariza-
relativistic propagators, given the two scales at hand. tion in NRQFT. It also highlights some points which sim-

When a soft gluorg couples to a potential quark,, the  plify the discussion of the following sections. The integral
outgoing quark is far off its mass shell and carries energyorresponding to a one-dimensional loop
and momentum of ordeMuv. Therefore, consistency re-
quires the existence of quarks in the soft regime as well,

1 1
- I a,b)zf dk
&g :T~|p|~Mu. (2.6) ( k?—a’+ie k?>—Db2+ie
As the potential quark has a much smaller energy than either _ K 2.7
of the soft particles, it cannot—by the uncertainty relation— ab(a+b) '

resolve the precise time at which the soft quark emits or

absorbs the soft gluon. So, we expect a “temporal” multi-is esily calculated using contour integration. Assumifg
pole expansion to be asso_mated wqh this vertex. In g_eneraL_= a%/h?<1, the dominating contributions come from the re-
the coupling between particles of different regimes will ”Otgions where|k| is close toa (“smaller regime’) or b

be point—like bgt will contain multipole expansi_ons for the (“larger regime”). Then, one can approximate the integral
particle belonging to the weaker kinematic regime. For th

coupling of potential quarks to ultrasoft gluons, this has been
observed in Refd.5, 7].

Propagators will also be different from regime to regime: l(ab)~ J’ +j dk 1 1
for soft quarks,p?/2M is negligible against the kinetic en- ’ lk~a Jik~b] k2—a?+ie k?—b%+ie
ergyT, so that the soft quark propagator may be expanded in (2.8
powers of52/2M, and &, is expected to become static to
lowest order. As the energy of potential gluons is muchin the first integral,k is small againsb, so that a Taylor

smaller than their momentum, ti#g-propagator is expected expansion irk/b~wv in that regime is applicable and yields
to become instantaneous.

With these five fields®g,®,,Aq,Ap A, representing 0 1 20
quarks and gluons in the three different non-relativistic re- _- f dK———— = 2.9
gimes, soft, potential and ultrasoft, NRQFT becomes self- b? n=0 JiK~a k2—a’+ie b?"
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If k? becomes comparable b3, the expansion breaks down, The momenturrk is represented in each of the kinematic
so that the approximated integral cannot be solved by corregimes by eitheK, or K,. The integrandsnustthen be
tour integration. In general, thi@rbitrary borders of the in- expanded in a formal wags if |K,|~a~vb and|K,|~b.
tegration regimegthe “cutoffs’) will enter in the result, and Otherwise, poles are double counted. If one wants to calcu-
lead to divergences as they are taken to infinity because d¢fte to a certain order im, the expansion in the different
contributions from regions whei| ~b>a. A cutoff regu-  variablesK,/b anda/K, is just terminated at the appropriate
larization may hence jeopardize power counting in order. Treated thus, no double counting of the poles can

Dimensional regularization overcomes this problem in aoccur. Coming back to the three different regimes of NRQFT
natural and elegant way: If one treat®.9 as a (2.4, there will therefore be no double counting between any
d-dimensional integral witld— 1 only at the end of the cal- pair of domains.
culation, the exact result will emerge as a power series in Finally, note that the limiea—0 is not smooth: foa=0,
v=alb. First, one extends the integration regime from thedimensional regularization of E¢R.9) is zero because of the
neighborhood ofa| to the wholed-dimensional space. Then, absence of a scal@.11). A pinch singularity encountered in
one calculates the integral order by order in the expansiorgontour integration ak= *ie behaves hence like a pole of
still treatingk?/b?~v? as formally small. Rewriting second order in dimensional regularization and is discarded,

see also the Appendix.
By induction, the arguments presented here can be ex-

a’M(k*—a?)"" ", (2.10  tended to prove that for any convergent one-dimensional in-
tegral containing several scales, Laurent expansion about
each saddle point and dimensional regularization gives the
same result as contour integration. A formal proof of the
C\/alidity of threshold expansion does not presently exist for
the case of multi-dimensional and divergent integrals, but
Beneke and Smirnoj3] could reproduce the correct struc-

n

k2N = E

m=0

m

only the (m=n)-term contributes thanks to the fact that di-
mensionally regularized integrals vanish when no intrinsi
scale is present:

d’k Ke=0 2.11) tures of known non-trivial two-loop integrals using threshold
(27)¢ ' ' expansion, which is highly suggestive that such a proof can
be given. This claim is supported by the observation that
The result threshold expansion is very similar to the asymptotic expan-
sion of dimensionally regularized integrals in the limit of
. © _an . loop momenta going to infinity, for which such a proof exists
I a im 1 111t
Rl 2 (=2 212 [11]
ab2 =0 b2n a b2_a2
is exactly the contribution one obtains in the contour integra- Ill. RESCALING RULES, LAGRANGIAN
tion from the pole atk|=a. Albeit the integral was ex- AND FEYNMAN RULES

panded over the whole space, dimensional regularization
missed the poles at b after expansion.

The integration aboyk|~b is treated likewise by expan-
sion and term-by-term dimensional regularization. Adding
this contribution

—iwi a" _—im 1 1
b3 = pn | b p2_a? (213

In order to establish explicit velocity power counting in
the NRQFT Lagrangian, one rescales the space-time coordi-
nates such that typical momenta in either regime become
dimensionless, as first proposed[#] for the potential re-
gime, and in[5] for the ultrasoft regime:

soft: t=(Mv) Ts, x=(Mv) X,

to Eq.(2.12, one obtains term by term the Taylor expansion
of the exact resu|¢2.7) [n the small parameter= a/b._ Ea_ch potential: t=(Mp?)~1T,, x=(Muv)"X,, (3.1
of the two regularized integrals sees only the pole in either of
the regimegk|~a or |k|~b. Indeed, the overlap of the two
regimes is zero in dimensional regularization, even for arbi- - -
trary v. But then, the expansion in the two different regimes ~ ultrasoft:  t=(Mv?) 7T,  x=(Mv?)~'X,.
can be terminated only at the cost of low accuracy.
One could therefore have started with the definition of
two different integration variables, one formally living in the In order for the propagator terms in the NRQFT Lagrangian
smaller regime withK,|~a~uvb, the other formally living to be properly normalized, one has to set for the representa-
in the larger regimelK | ~b: tives of the gluons in the three regimes

f dk—>f ddKa+f d9K . (2.14

1l am indebted to M. Beneke for conversation on this point.
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soft: . : P =7 Tic Ve = —ig2m) (T + 1" + ko) 95 + 7 + ) = O(%)
k i
A VWMWY = k2 4 de § = —ig(2n) §(T + T’ + ko) [exp (- - 9 —) NG+ 5] = Oe)
NP+ 7')
tential: o, o = : ?:
potential: p L = T _ % —|— ie _ —ig(27r)4 6(T+T’+ku) 5(3)([3+ﬁr+z) _ O(v“)
Ap: g = : ="§" 2
p - T k4 = —ig(2m)[exp (T’ m) (T + k)| 8B + 7 + k) = Oe")
k i
ltrasoft: Ay : ~ms~~n~ = ——— - 2 N $O5 154 B) = Ofs
ultraso k2 + e E = 7Lg(27r)4[exp (k._. m) 5(T+T)} SPE P +E) = O(Vee)
FIG. 1. Feynman rules for propagators. =P=§'<= I 9 )
= —ig(2m) [exp (ko m) oT+T )} X
soft:  A(X,t)=(Mv) A(Xs, Ty, Lo (- s7) 76+ ] = o)
potential: Ap()'(’,t):(Mv3’2)Ap()ZS,TU), FIG. 3. Feynman rules for vertices.
(3.2
R R NRQFT: Antiparticle propagation has been eliminated by the
ultrasoft:  Ay(x,t)=(Mv?) A(X,, Ty, field transformation from the relativistic to the non-
) relativistic Lagrangian, and both propagators have maximal
and for the quark representatives support for on-shell particles, the Feynman propagator out-

side the light cone vanishing like M. Feynman’s perturba-

tion theory becomes more convenient than the time-ordered
. . (3.3 formalism, as less diagrams have to be calculated.
potential: - @ (X,t)=(Mv)¥2p,(Xs, Ty). Finally, the interaction part of the Lagrangian regds-

. . lecting for th he* in Eq.(2.2
The rescaled free Lagrangian in the three regions reads thgﬁectmg or the moment thé* vertex in £q.(2.2)]

soft:  d®Xs Ty —g)[(As+ VoA (Xs, 0Ty

soft: dx,t)=(Mv)¥2pyXs, T,

soft:  d®Xd TS[ Al

i 90+ % 52) bt 23, AN (" A |,
(3.9 +UAU(U)ZS,UTS))¢2¢S

il 3 tri 192
potential:  d°XdT [ pp(ido+329°) Py +(As¢;r¢p()zs,st)+H.c.)] 3.7

+ (AP A~ v2A LT3 AY], (3.9
potential: d3XdT,(—9g)

1 -
N Ap+,4u(vxs,Tu)] by
(3.9

ultrasoft:  d3X,dT,3(d,A,) (3" A,). (3.6)

Here, as in the following, the positions of the fields have

been left out whenever Fhey coincide with the variables of\ote that the scaling regime of the volume element is set by
the volume element. Derivatives are to be taken with respeg},q particle with the highest momentum and energy. Vertices

to the rescaled variables of _the v_qur_ne element. Ture like Asqsgqsp cannot occur as energy and momentum must be
rescalefl propagators are depicted in Fig. 1. As expected, th%onserved within each regime to the orderirone works.

$Oft quark becomes static, resembling the qua_rk propagat(l{mong the fields introduced, these are the only interactions
in heavy quark effective theory, and the potential gluon be-

d N ; within and between different regimes allowed. One sees that
comes mstantangous. I order t(.) maintain velocity IOOWe‘Eechnically, the multipole expansion comes from the differ-
counting, corrections of order or higher must be treated as . - . . . .
insertions as in the example, E@.7). Insertions are repre- gnt scaling ofx andt m_the threg regimes. It is also interest-
sented by théun-rescaleiFeynman rules of Fig. 2. ing to note 'Fhat there is no ch0|qe but t(_) assign one and the

Except for the physical gluona, and A,, there is no same coupling strengttp to each interaction. Different cou-

distinction between Feynman and retarded propagators iglings for one vertex in different regimes are not allowed.
This is to be expected, as the exam(2el4) demonstrated

() 72 that the fields in the various regimes are representatives of
=== —i-— = Ov) one and the same non-relativistic particle, whose interactions
2M . L -
are fixed by the non-relativistic Lagrangi&?.2).
____>k<___ = +ik2 = O(v?) The interaction Feynman rules are depicted in Fig. 3. The
exponents representing the multipole expansion have to be
FIG. 2. Feynman rules for insertions. expanded to the desired orderdn Double counting is pre-
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vented by the fact that in addition to most of the propagatorsby an additional factor 1/ Couplings between soft quarks
all vertices are distinct because of different multipole expanand any gluons inside a blob take place in the soft regime
sions. and hence are counted according to the rules of that regime.
Using the equations of motion, the temporal multipole Because each soft blob contributes at least four ordegs of
expansion may be re-written such that energy becomes cobut only one inverse power af~g?, power counting is
served at the vertex. Now, both soft and potential or ultrasofpreserved. These velocity power counting rules in loops are
energies are present in the propagators, making it necessargrified in explicit calculations of the exemplary grapgkse
to expand it in ultrasoft and potential energies. An examplealso below, but a rigorous derivation is left for a future

would be to restate thé A, vertex as publication[8].
With rescaling, multipole expansion and loop counting,
—ig(2m)*S(T+T' +ky0 the velocity power counting rules are established, and one
By e can now proceed to check the validity of the proposed La-
x 8% (p+p’+k)=0(v), (3.9  grangian, matching NRQFT to the relativistic theory in the

o ) examples given by Beneke and Smirrf{&y.
and the soft propagator as containing insertiéig) for

potential energiek,:
IV. MODEL CALCULATIONS

[ - —kpo|" The first example is the lowest order correction to the two
T+ieiso\ T : (3.10 quark production graph. Without proof, it will be used that in
dimensional regularization, one can match NRQFT and the
The same holds of course for the momentum-non-conservingglativistic theory graph by graph, so that not the whole scat-
vertices. tering amplitude has to be consider&]. The collection of
In the renormalization group approach, there is therefor@raphs to be matched to the relativistic diagram is depicted
only one relevant coupling.e. only one which dominates at in Fig. 4. Here and in the following, hardiltravioley con-
zero velocity at tree level. As expected, it is the,d A, tributions will not be shown explicitly. They are taken care
coupling providing the binding. The ® DA, of by _the four-quark interaction of the non-relativistic La-
® D A -couplings and both insertiorEig. 2) are irrelevant. grangian(2.2) and renormalization of the external currents
The marginal coupling® ,®,A,, DA andd DA, are .
irrelevant in gauge theories in carefully chosen gauges like The energy and momentum routing has been chosen to be
the Coulomb gauge. This point will be elaborated upon in théh€ one of the non-relativistic center of mass system, with 2
future[8]. the total kinetic energy, angt=—(p)?x—uv? the relative
The velocity power counting is not yet complete. As onefour-momentum squared of the outgoing quarks as indicator
sees from the volume element used in E3}7), the vertex for the thresholdness of the process considered. Thanks again
rules for the soft regime count powers ofwith respect to  to dimensional regularization, any other assignment can be
the soft regime. One hence retrieves the velocity powechosen and reproduces the result.
counting of heavy quark effective thedr¥2,13 (HQET), in The vanishing of the ultrasoft gluon exchange diagram
which the interactions between one hedspd hence static  and the value of the potential gluon exchange diagram have
and one or several light quarks are described. Usuallyalready been calculated {i6]. The soft exchange diagram
HQET counts inverse powers of mass in the Lagrangian, butanishes, so that no new contribution is obtained. It is not
because in the soft regimdv ~ const, the two approaches even necessary to specify how soft quarks couple to external
are actually equivalent. HQET becomes a sub-set osources: If energy is conserved at the production vertex, the
NRQCD, complemented by interactions between softintegral to be calculated is
(HQET) and potential or ultrasoft particles.
In NRQCD with two potential quarks as initial and final d9 1 1
states, the soft regime can occur only inside loops, as noted f
above. Therefore, the power counting in the soft sub-graph
has to be transferred to the potential regime. Because soft
loop momenta scale likgd*ks~v*, while potential ones Because the gluon is soff<k,, and the quark propagators
like [d4kp]~v5, each largest sub-graph which contains onlymust be expanded ifVk,~wv, giving zero to any order as no
soft quarks and no potential ongs'soft blob™) is enhanced scale is present in the dimensionally regularized integral. If

. (41
(2m)? T+ko+ie T—kotie k2—k2 @9

() (T+ko,

(T—ko,
—(F+F)

(T—ko,
~7)
(T'=5)

FIG. 4. Matching of the®(g?) correction to two quark production off an external current to lowest order in each of the three
regimes.
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Lo = b

0000000000

(ko,B+F)

AAAAAAAAAA
Vyvvvyyvyvy

AAAAAAAAAA
\AMAAAAAA

(=ko,—P—F)

FIG. 5. Planar®(g*) contributions to Coulomb scattering. The four-point interaction and insertion diagrams are not displayed.

energy is not conserved at the production vertex, the softy Beneke and Smirnop3] using threshold expansion. The
quark propagator is #ky, and the contribution vanishes \jandelstam variablé=—(p—p’)? describes the momen-
again. Therefore, there is no coupling of soft subgraphs tg,m transfer in the center of mass system. The ultraviolet

gxternal sources to any order in Soft quarks i_n external  penavior of this graph is mimicked in NRQFT by a four-
lines are far off th_elr mass shell and hgnce violate the aSfarmion exchange given by the vertéx,= —ig%/24m2M?
sumptions underlying threshold expansion and NRQFT. In_ O(t%y%) of the Lagrangiar(2.2), which using the rescal-
general, we conclude that soft quarks are present only in 7 '
: . ' e .7 "ing rules is seen to b&(v).

internal lines, and that the first non-vanishing contribution The Feynman rules in Fig. 3 show that thgA,-diagram
from the soft regime for the production vertex occurs rlotis of ordere’ with a leadin Iolo integral contriblijtio(rsimi-
earlier than a®(g*). g loop Integ

The first soft non-zero contribution comes actually from'a" t0 EQ.(32)in [3))
the two gluon direct exchange diagram of Fig. 5 calculated

ddk 1 1 1 1
f 4.2

(2m)% 22 1 R? 52 2
A RO L
2M 2M

The diagram is expected to be zero to all orders since the ultrasoft gluons do not change the quark momenta and therefore the

scattering takes place only in the forward directiprs p’. Upon employing the on-shell condition for potential quarks,

=p?/2M to leading order, it indeed vanishes as no scale is present. Binpé/2M ~Muv*<|k|~Muv (andky~Muv?) in the
potential regime, this is a legitimate expansion. Ph@, andA A, contributions (O[(1/v)e”]) are zero for the same reason.
The lowest order contribution to th&,A, graph O[ (1] is

f d% 1 1 1 1 43
(2m* kK2—je (p—p'+K)2—ie (K+p)2 (k+p)? “3
T+k0_ 2M +|ET_kO_ +|E

2M

In light of the discussion at the end of Sec. I, it is most consistent to perforikithtegration by dimensional regularization,
using f[d%/(2m) 9= f[dko/(27)?][d9~ 7K/ (27) 9], o—1 ([14], Chap. 4.1 Split dimensional regularization was intro-
duced by Leibbrandt and Williami®] to cure the problems arising from pinch singularities in non-covariant gauges. The
Appendix shows that in the case at hand, it has the same effect as closikgdbetour and picking the quark propagator
poles prior to using dimensional regularizationdr-1 Euclidean dimensions. To achie®v?') accuracy, one must also
consider one insertiofFig. 2) at the potential gluon lines, giving rise to a contribution

1
(2m)° 2 e, ks T, I ——, - (44
)" k—ie (p—p'+k)?—ie [Kk®—i —p' +k)2-i k+ k+

e(p—p'+k)—ie € (p—p'+k)—ie T+k0—(2NT) +i€T_k0_( P)

fddk 1 1 1 1 1
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(T.9)

1
1
- - W =- : + -
27.,8) 1

1

(T,-7)

FIG. 6. The non-vanishing contributions to the planar fourth order correction to two quark production. Diagrams with insertions or
four-point interactions not displayed.

The k, integration is naively linearly divergent, and hence closing the contour is not straightforward. As the Appendix
demonstrates, split dimensional regularization circumvents this problem. The sum of both contribuBgrg.4),

i M+T 2 | —t 4
gnt Jy \4-d Y& Mg 2) “9

agrees with Eq(31) in [3], when one keeps in mind that in that reference, heavy particle external lines were normalized
relativistically, while a non-relativistic normalization was chosen here. Also, this article uses the minimal subid&)on
rather than the modifie@MS) scheme. Near threshold, the scale is set by the total threshold eneyg$=4 (M + T)2.

The soft gluon part is to lowest ordpO(v ~!) because of one soft bldlgiven by

d% 1 1 1 1
L s
(2m)° K3—K?+ie k3—(p—p'+K)?+ie kotie —kotie
|
which corresponds to E¢33) in [3]. Now, split dimensional In conclusion, the proposed NRQFT Lagrangian repro-

regularization must be used if raml hocprescription for the  duces the result for the planar graph of the relativistic theory
pinch singularity akk,=0 is to be invoked, see the Appen- only if the soft gluon and the soft quark are accounted for:
dix. That the pinch is accounted for by potential gluon ex-the four-fermion contact interaction produces just a
change and hence must be discarded, agrees with the intui/M?-term, graphs containing ultrasoft gluons were absent,
tive argument that zero four-momentum scattering in QED isand the potential gluoit4.5) gave noO(y°) contribution.
mediated by a potential only, and no retardation or radiatiorThis shows the necessity of soft quarks and gluons. The cou-
effects occur. On the other hand, the model Lagrangian corpling strength of theb A, vertex is also seen to be iden-
tains three marginal couplings as seen at the end of Sec. Ilfical to the other vertex coupling strengtlugs,

which may give finite contributions as energies and momenta The planar fourth order correction to two quark produc-
of the scattered particles go to zero. Although the prescription (Fig. 6) was also compared to the result[&], and is
tion and the result from split dimensional regularization co-correctly accounted for when the Feynman rules proposed
incide in the present case as demonstrated at the end of Setbove are used t®(v?).

Il and in the Appendix, this may not hold in general. The

result toO(v?!) exhibits another collinear divergence. V. CONCLUSIONS AND OUTLOOK

The objective of this paper was a simple presentation of
—i 2 —t the ideas behind explicit velocity power counting in dimen-
4t \4—d ve~In A sionally regularized NRQFT. It started with the identification
of three different regimes of scale for on-shell particles in
NRQFT from the poles in the non-relativistic propagators.
(4.7 This leads in a natural way to the existence of a new quark
field and a new gluon field in the soft scaling regirke

~|p|~Mu. In it, quarks are static and gluons on shell, and

and agrees with the one given by Beneke and Smif8dv HQET becomes a sub-set of NRQCD. Neither of the five
following Eq. (36). The second term comes from insertions fields in the three regimes should be thought of as “physical

and multipole expansions to achie¢¥v) accuracy. particles.” Rather, they represent the “true” quark and
It is easy to see that the power counting proposed worksgluon in the respective regimes as the infrared-relevant de-
As expected, the potential diagramyig=v stronger that the grees of freedom. None of the regimes overlap. An NRQFT
leading soft contribution, antl/ycv? stronger than the four- Lagrangian has been proposed which leads to the correct
fermion interaction. behavior of scattering and production amplitudes. It estab-

2 —t
Lo y
24°M?

+— | —=— e
t(4—d Ve n47-,,“‘2
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lishes explicit velocity power counting which is preserved toof the integration into two separate integrals:

all orders in perturbation theory. The reason for the existence

of such a Lagrangian, once dimensional regularization is g " de ot

chosen to complete the theory, was elaborated upon in a f dk =j d%ko d" 7k (A1)
simple example: the non-commutativity of the expansion in (2m)9 (2m)° (2m)9- 7

small parameters with dimensionally regularized integrals.

Due to the similarity between the calculation of the ex-Both integrations can be performed consecutively, and the
amples in the work presented here and3if one may get |imit o—1 can—if finite—be taken immediately, because
the impression that the Lagrangian presented is only a simplge integration over the spatial components of the loop mo-
re-formulation of the threshold expansion. Partially, this ismentum in Eq(A1) is still regularized ind—1 dimensions.
true, and a future publicatiof8] will indeed show the Finally, the limitd—4 is taken at the end of the calculation.

equivalence of the two approaches to all orders in the thresh- Equation(4.3) contains the simplest, sub-integral:
old and coupling expansion. A list of other topics to be ad-

dressed there contains the straightforward generalization to
NRQCD; a proof whether the particle content outlined above

is not only consistent but complete, i.e. that no new fields f ko 1 !
(e.g. an ultrasoft quajkor “exceptional” regimes arise; an (2m)° (k+p)2 (K+p)?
investigation of the influence of soft quarks and gluons on ot T— oM tie —kot+T— tle

bound state calculations in NRQED and NRQCD; a full list
of the various couplings between the different regimes and
an exploitation of their relevance for physical processes. The . . . T
formal reason why double counting between different re-Using standard formulae for .d|men5|onal reg.ulanz.atmn in
gimes and especially between soft and ultrasoft gluons doégucllc.iean spac¢[16], Appendix B, the result is finite as
not occur, a derivation of the way soft quarks couple to ex-?
ternal sources, and the role of soft gluons in Compton scat-
tering deserve further attention, too.

| would like to stress that the diagrammatic threshold ex- d?Kq 1
pansion derived here allows for a more automatic and intui- f (2m)° | K+ 5)2
tive approach and makes it easier to determine the order in T— (k+p)
J=yev to which a certain graph contributes. On the other I 2M
hand, the NRQFT Lagrangian can easily be applied to bound
state problems. As the threshold expansion of Beneke and
Smirnov starts in a relativistic setting, it may formally be ri—-— - 2\ ol2-1
harder to treat bound states there. Indeed, | believe that even __ L 2 T (k+p) tie
if one may not be able to prove the conjectures of the one (44)7"[1] 2M
starting from the other, both approaches will profit from each
other in the wedlock of NRQFT and threshold expansion. (

(A2)

(k+p)2
2M

|
- —

2

+i e) as o—1. (A3)
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APPENDIX: SOME DETAILS ON SPLIT DIMENSIONAL The pot'ential quo_n d_iagrarr_1 with_one insertipn ata gluon
REGULARIZATION leg (4.4 yields a split dimensional integral which diverges

linearly in kg, so that naive contour integration is not legiti-
This appendix presents the part of the calculations in thenate.
examples of Sec. IV which makes use of split dimensional
regularization as introduced by Leibbrandt and Willigrak
In its results, split dimensional regularization agrees with f d%kg k3
other methods to compute loop integrals in non-covariant (2m)° {T (IZ+ 5)2

gauges, such as the non-principal value prescrigti®f but
two features make it especially attractive: It treats the tem- 2M
poral and spatial components of the loop integrations on an

2
+ie] —K3

equal footing, and no recipes are necessary. Rather, it uses i (R+ )2
the fact that, like in ordinary integration, the axioms of di- | T= P as o—1. (A4)
mensional regularizatiot14], Chap. 4.1 allow the splitting 2 2M
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To arrive at this result, the numerator was re-writtef ks~ wherea?=k2—ie andb?=(p—p’ +k)2—ie. After combin-
—(T—(K+p)22M)2]+[T— (k+p)22M12. Its first term ing denominators, the resulting integral is simple:
cancels the denominator, yielding an integral without scale

which therefore vanishes in dimensional regularization. The o

second term has been calculated in E§3). The integral I'l3- > L

over the spatial components of the loop momentum provides _p__— - f dx dy x—a?(1—x)—b?xy)*’2-3

again no complications, leading to Ed¢.5). (4m)°r[3] Jo

Finally, it was already shown at the end of Sec. Il that

dimensional regularization discards pinch singularities en- i1 1 1

countered in contour integrations. This is validated again by — = ﬁ(_s_ —| aso—1. (AB6)

looking at the split dimensional integral fde, in the soft 2a’-b%ia” b

gluon contribution(4.6), This agrees with the result of Beneke and Smirg@i, Eq.

(34)) who use contour integration and drop the contribution

dk, 1 1 1 from the pinch singularity. The integral over the spatial com-
5V 7 2 2 > (A5) ponents of the loop momentum provides again no unfamiliar
(2m)7 K~ a® ki—b* —kj complications, leading to Eq4.7).
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