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The hadronicr* 7~ atom is studied in the relativistic perturbative approach based on the Bethe-Salpeter
equation. The general expression for the atom lifetime is derived. Lowest-order corrections to the relativistic
Deser-type formula for the atom lifetime are evaluated within chiral perturbation theory. The lifetime of the
«*7~ atom in the two-loop order of chiral perturbation theory is predicted toripe (3.03+0.10)
X101 s.[S0556-282(98)07919-3

PACS numbe(s): 12.39.Fe, 11.10.St, 13.40.Dk, 13.40.Ks

I. INTRODUCTION Kea decay, which is preferable for determining of the param-
eters of r# interaction near threshold, is complicated be-
The pion-pion scattering amplitude at low energies formscause of a very small branching ratio of this prodegdfor
one of the basic building blocks in the hierarchy of stronga review of the recent status efw experiments see, e.g.,
interaction processes. It serves as a useful probe for the ifRef. [6]). In view of the above-mentioned experimental un-
vestigation of the effect of chiral symmetry breaking since incertainty in the determination of thew data near threshold,
the chiral limit the pion interactions vanish at the threshold.the forthcoming high-precision measurement of them -
According to common belief, low-energy interactions of &tom lifetime by the DIRAC Collaboration at CERNroject
pions are described within chiral perturbation the@@nPT) no. PS212 has attracted much attention gmce it will allow
[1,2] which exploits the full content of global QCD symme- direct determination of the differenm%—ao and thus will
tries. The mm— 7w amplitude in ChPT is obtained as an provi_de_an excellent probe; for the predictions of ChPT. Th_e
expansion in quark masses and external pion momenta. THRPSSiDility of the observation of such atoms was argued in
predictions of ChPT are sensitive to the magnitude of thétef- [7]. The first estimation of the lifetime of an atom

_ + - _oqgt®
quark condensat@|qq|0). In the standard schenj#] with formed by and in the ground B stater,=2.9,

a “large” condensate, th&wave 77 scattering lengths are X 10. _ S was given in Ref.[8]. The expecteq high
predicted to be®=0.217 anda®— a2=0.258 in units of the precision experimental data from the DIRAC experiment call
0~ Y 0 Q=Y.

: : . L for a refined theoretical treatment of this sort of bound sys-
inverse charged pion mag3]. Calculations within the gen- y

eralized ChPT with a small quark condensate which contains

more parameters Iead.to a most likely valuagf-0.27(2]. ms are of an order of a few MeV, these systems are highly
Despite a significant difference between these numbers, bo nrelativistic. With the use of this fact the nonrelativistic

results for the scattering Iengag are compatible with the peser formula was derived in Ref&,10]. For the particular
experimental valuad=0.26+ 0.05[4]. Consequently, a pre- case of ther ' #~ atom the formula reads
cise measurement efm scattering lengths will be an excel-
lent test of ChPT. In particular, an experiment of that sort _, 16w
would provide important information about the behavior of ™ TTg
the quark condensate in the chiral limit which in its turn is
related to the properties of the QCD gluon vacuum. which relates the lifetimer, of the atom in then-excited

An experimental study of therm scattering process is a state to the value of the Coulomb wave functigiF) of the
very difficult task mainly due to the absence of a pion targetatom at the origir,(0) and the difference of th&wave
Indirect information extracted from the available data for, = scattering lengths with total isosplr=0 andl=2. Us-
e.g., the processsN— 7w N [5] produces large error bars ing the standard ChPT two-loop values of the scattering
when extrapolated to the two-pion threshold. The study ofengths given above, for the pionium ground-state lifetime

Since the characteristic average momenta in hadronic at-
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from Eq. (1) one obtainsr;=3.20x10 ® s. Note that in so-called retardation correction in the pionium lifetime. In
Eq. (1) one assumes isospin symmetry when expressing thBef [21] the radiative corrections tam Scattering |engthS
scattering length for the reaction” 7~ — 770 in terms of ~have been evaluated, which induce the corresponGifg)
scattering lengths with a definite total isospin, though thefOrrection in the pionium lifetime. Recently, a paper by Jal-

; ; - li and Sazdjian appear¢@2] which is aimed at a consis-
factorAm_. on the right-hand sidéRHS) of Eq. (1) indicates ou " . o0
the necessity of taking into account the isospin-breaking eftent description of the properties of the' 7 atom on the

. . - asis of the 3D bound-state equation obtained in the frame-
fects in the theoretical description of the decay process. Not\%ork of constraint theory, with the underlying strongr

also tthat dDI_efs?r-type formulas_(;o: the ege;rgyﬂl]ev?rl] d'Sp![aCEil'nteractions described by ChPT. The authors have calculated
ment and fireime aré now widely used for the theorelicalyq  actions to the pionium lifetime coming from the mass

analysis of the experimental data for other hydrogenlik€yitterencem_.—m_o, as well as corrections from second-

bound systems, such as pionic hydrogf], pionic deute-  grqer perturbation theory and electromagnetic radiative cor-

fium .[12]’ etc. . rections. In Ref[23] the correction due to vacuum polariza-
It is well known that Deser-type formulas for hadronic tjon to the pionium lifetime was calculated. Below we shall

atoms in nonrelativistic scattering theory are valid up to thepresent a detailed comparison of our results with those given
electromagnetic corrections to hadron scattering processes,if Refs.[22,23.

the mass difference between the charged and neutral compo- Our previous paperf24,25 were aimed at a consistent
nents of the isotopic multiplet is assumed to be of a purelyield-theoretical treatment of " 7~ atom observables on the
electromagnetic origin. Put differently, the clear-cut factor-basis of the Bethe-SalpetéBS) equation. Namely, in Ref.
ization of strong and electromagnetic interactions in the hadr24] we derived the relativistic analogue of the Deser for-
ronic atom observables, which is explicit in EG), is valid  mula (1) for the pionium lifetime and evaluated the correc-
up to (smal) electromagnetic effects. In Rgfl3] a regular  tion to it, coming from the displacement of the bound-state
approach was constructed for the evaluation of these corre@ole by strong interactions, referred to hereafter as the
tions. The ideas of this approach have been successfully apstrong correction.” In Ref.[25] we presented a systematic
plied to the study of the properties of” =~ atom in Refs. ~ Perturbative approach based on the BS equation for the cal-
[14,15 where the coupled-channel scattering problem withculation of hadromc atom o_bs_ervable_s. In this paper we give
(w* ) and @°#°) free pairs in the asymptotic states has® clos_ed_ expression, containing all first-order corrections to
been considered. Nonrelativistic scattering theory has beef€ Pionium lifetime, and evaluate part of them. Namely,
used for the investigation of hadronic atoms also in Refsapart from the “strong correction, which is reproduced
[16,17). Note, however, that the very “narrow” and “deep” here, we calculate the correction dge to the exghange of Cou-
phenomenologicakr potentials used in Ref17] lead to lomb phqton Iadde”rs, Corre_:spondlng to the “second-order
instability in the calculated observables of the bound stat _e_rtgrbanon theory correction from Reff22], and the rela-
with respect to a small variation of input parameters. The'vistic correction to the bound-state WF.

strong enhancement of the potential in the vicinity of the Thg tpurpofs?hof thet pre.?ent p?pir {.S to give ar??ta'tlﬁd
origin within the inverse scattering theory approach, used b escription of the systematic perturbative approach to the

the authors of Ref[17], stems mainly from the particular adronic atom characteristics, based on the BS bound-state

parametrization of ther scattering phase shift in the high- ggﬂglt:ao-r;;)u-lr-:ilr? aeggg;z I\S/Vi?ﬁ/inct?]?sSt;UCt:ggc;re\};e %folflerg
energy domain, where theoretical calculations of this quanfo ether and cagIcFLJJIate or .ive an estimatgpof all lowest-order
tity cannot be performed. 9 9

To summarize, the lowest-order Deser form(fiaand its corrections to the Deser-type relativistic formula for the pi-

counterpart for the energy-level displacement of an atom du8r.]t'rl:.m lifetime. Thhe “”‘jje”y”?g (;st_rong;g_rméeractlons "
to strong interactions are valid irrespective of the concret Ithin our approach are described in - wonsequently,

choice of the strong interaction potential between hadrons.hf results of the present calculations of the lifetime of the

The magnitude and, even, the sign of corrections to it, how?” o~ atom form a self-consistent basis for the verification

ever, strongly depend on this choice. For a theoretical anal)ﬁf the_ predictions of ChPT in th? DIRA.C experiment. Fur-
sis of the high-precision experimental data expected from th@er' in the present paper we d|scu.ss. in detail t_he links to
DIRAC experiment, a model-independent evaluation of thesgther_appro_aches used for the description ofdfier~ atom
corrections is needed, based on the underlyiiyral) La- and, in particular, that from Ref§22,_23§|. )

grangian dynamics of hadrons, rather than the nonrelativistic The layout (?f the present paper Is follows: .In Sec. Il, we
potential picture of strong interactions. present a detailed description of the perturbative approach to

The problem of a relativistic description of hadronic at- the =" atom characterlst!cs. In this section, we give a
oms is much richer in content than the same problem in thglo_sed Expression for the f|rst-_order correction to the pi-
nonrelativistic scattering theory formulation. Many new ef- onium I|fet|me. In. Sec. lll, we give an evaluation, term by
fects which were absent, or were mimicked in the potentiaferm’ of various f|rst-.order corrections to the Deser formula
treatment, now arise naturally from the beginnifgg., the (1). Section IV contains our conclusions.

“vacuum polarization” and “finite size” corrections which
are borrowed in the potential picture from field theory
Namely, the problem of the evaluation of the atom lifetime
on the basis of the underlying strong interaction dynamics The evaluation of corrections to the Deser-type formulas
was addressed in Refd.8,19. Referencg20] deals with the  for hadronic atom observables cannot be confined solely to

Il. PERTURBATIVE BETHE-SALPETER APPROACH
TO THE =t@#~ ATOM
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the evaluation of corrections to the pionium WF or to scat- -l

tering lengths in Eq(1). One has to develop a consistent O— o v
perturbative scheme for the calculation of atom observables, ): - " ;D:
which in the lowest-order approximation should yield the —O

Deser-type relations for these quantities. Our approach is

based on the field-theoretical BS equation with the kernel a

constructed from the underlying Lagrangian of ChPT.

Below we shall briefly discuss the basic ideas and as-
sumptions of the approach which employs the following -1
physical picture. The formation of a* 7~ atom proceeds
mainly due to the static Coulomb potential whereas strong
interactions are responsible for its decay. The atom is de- O—
scribed by the exact WF which obeys the field-theoretical BS
equation. For our purposes we split this kernel into a Cou- b
lomb piece and the remainder, the latter considered in our
scheme as a perturbation. Then, the exact BS WF is related
to the relativistic Coulomb WF in the perturbation theory. -1
The crucial point of our approach is that with the use of the :E B v
above relation the observables of an at@difetime and bind- - D
ing energy in every perturbative order are expressed in
terms of the Coulomb WF. In the leading order of a pertur-
bative expansion we reproduce the Deser formulas for atom <
observable$9]. The next-to-leading term in the perturbative FIG. 1. Diagrammatic representation of the Bethe-Salpeter
expansion produces all lowest-order corrections to the Des%rquation for ther* =~ atom WF. Initial equatior(a) through the

formulas. o _ redefinition of the kernefb) and the WF is transformed into equa-
Let us now pass to the description of the perturbative Bjon (c). The new kerneV contains the self-energy insertions in the
approach tor* 7~ atom observables. The existence of aoutgoingexternal lines onlysee(b)].

quasistabler™ 7~ atom (r~10 1° s) corresponds to the

bound-state pole in the four-point Green function for thekernel V is crucial for proving the gauge invariance of
transition " 7~ — a7~ at a complex value of the c.m. pound-state characteristics, as well as for demonstrating the
energyP?’=M?=M?—iMTI'. Here M denotes the “mass” cancellation of infrared singularities in these characteristics
of an atom, and” stands for the decay width. Hereafter all (see below. The BS equation for the new Wj depicted in
formulas are restricted to the c.m. systéaim.s) of an atom.  Fig. 1c is given by

The BS WF of an atonygg for P2 M?2 obeys the exact

Vv et Vas

BS equation(Fig. 1 - d*q
quatonFio. 1a Go 1(F’;|0))<(P;|0)=f 2V(Pip.a)x(Pa). (3
(2m)
1 d’q
G, (P;p)XBS(P;p):f?VBS(P;paQ)XBS(P;q)- The kernelV contains the instantaneous Coulomb pégt
(2m) which, in a complete analogy with the positronium case, is

2) responsible for the formation of the bound state composed of
7+ and7~. We are willing to develop the perturbative ex-
Here G,(P;p)=D(3P+p)D(3P—p) is the two-pion pansion of the atom observables in the “remainder” of the
Green function whereD(k) stands for the dressed pion potential denoted by’ =V—V. For this purpose we give
propagator. FurtherYgs denotes the BS equation kernel, first a complete solution of the “unperturbed” problem, with
which is a sum of all four-point one-patrticle-irreducible dia- the kernel containing only the instantaneous Coulomb part.
grams with amputated external legs. We choose the instantaneous Coulomb part of the poten-
It is appropriate to “transfer” the self-energy insertions tial, according to the Barbieri-Remiddi prescriptif@6], to

in the charged pion external legs to the RHS of the BShe[25]
equation. This can be easily achieved if one defines

X(P:p)=Gqo(P:p)G; '(P;p)xes(P;p) and V(P;p,q) - - pAime?
—VedP:p.0)Go(P:0)Go X(P;q),  where  Go(P:p)= Vel(p.@) =[w(P) = 5 w(@]™
i[(3P+p)2—m2] 1Xi[(3P—p)?—m2] ! is the free two- i i

particle Green function anth,=m_- denotes the charged w(p)=(m3+p?*2 (4)

pion mass. The diagrammatic expansion of the new kérnel

is given in Fig. 1b. In addition to the diagrams included in Note that the particular choice of the Barbieri-Remiddi ker-
the “true” kernel Vg, it contains the self-energy diagrams nel (4) is only the matter of convenience and the final results
in outgoingexternal pion legs, i.e., onligalf of the possible are not affected by this choidbelow we shall demonstrate
insertions in external legs. Note that this property of the newthis property of the perturbative expansion expligitiiow-
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ever, choosing Eq4) as an initial kernel, one can take ad- Je(M*:p) da(M*:q)

vantage of the fact that the BS equation with a kernel of this  G¢(P*;p,q)=i — +Gr(P*;p,q),
sort is exactly solvable, with the properly normalized (P*)?=(M*)?+i0

ground-state solution given H25] C)

dmam. ¢ where in the vicinity of the bound-state pole the regular part
H *. - 7%0 i
Ye(p)=iGo(M ,p)4[w(p)]1’2?, of the Coulomb Green function takes the form

Gr(M*;p,0)=(2m)*8(p—q)Go(M*; p)

= , 5 R R
hc(P)=c(p) (5 iW(EW(E) V2
wherey=3im_a, m¢3=7> and M*)2=m2(4— a?) is the
eigenvalue corresponding to the unperturbed ground-state % 3)(5,6)_5(6)5(6) 8
solution. The c.m.s. momentum in the free Green function M* gM*

G, in Eq. (5) has the componentsv(*,0).
The normalization condition for the Coulomb WF reads
as

X Go(M*;p)Go(M*;0),

(YcIN(M™)[ghe) =1,

*. — 49(4)(_ -1 *. + S R
N(M*ip.a)=(2m)* e (p-a) s —-Go {(Mip), (mwa)zs(p) (q)R(p,q)
(6)

- 4Amm_addg
and the scalar product in momentum space is defined by the S(p)= =5 5
integral overd*q/(2)*. We shall use this shorthand nota- Pty
tion hereafter. 12
The exact solution for the Green function, corresponding BA Y= 20 - -
to the nonrelativistic Coulomb problem, was given by R(p.q)=20 (mea) (St +S(a)l,
Schwinge{27]: Using this result, one can obtain the solution
for the 4D Coulomb Green function corresponding to the - . (ddp| ., 1 2.7 =
kernel (4) [25]: Ir(P.Q)= | —- P = zMza”P.q

Ge(P*;p,a)=(2m)*8(p—q)Go(P*;p) + Go(P*; p)

X[W(P)W(G)]Y?Tc(E*;p,q)Go(P*;q), (7)

. (10

1 N
—D‘1<O;—Zmﬁa2;p,q

The solutiony(P;p) of the exact BS equatiof8) can be
where expressed via the unperturbed solutigr(M*; p) by the fol-
lowing limiting procedurd 24,25

- - 1 1 wdpp™”
Tc(E5;p;q)=16mm a| —— +f S ] _ -1/ px *\2 *\2 2_ a2
(-2 JoD(p:E*p,0) U=CYelGeHPOGR).  (PT=(MT7 PRt
D(p;E*;p,q) where C denotes the normalization constant. Note that this
relation is the relativistic generalization of the well-known
. . .m p2 q2 nonrelativistic formula
=(p—q)2——| E*~ — || E*= —](1-p)?,
4E* mg m; 1
= |lim i -, 12
I , <X| 7]_!0(+)I7]<11[/0|E_H+|7] ( )
m, . (P")?—4m?
r=a) — T - am,, ' ®  which connects eigenvectors of the total Hamiltorfiawith

the unperturbed eigenvectaisee, e.g.[28]).

The first and second terms on the RHS of BBj.correspond _ 1he resultin Eq(11) depends on the details of the limit-
to the exchange of one and multiple Coulomb photons, re!n9 procedure. This equation makes sense if the quantities
spectively. In the vicinity of the bound-state pol®*)2  (P*)*—(M*)* andP?—M? are assumed to be infinitesimal
—(M*)?, v—1, and the integral on the RHS of E¢B) variables of equal strength. In Ref24,25 we have as-
diverges agf gdp/p. Extracting this divergent piece, which sumed the prescription P()?=(M*)?+\, P2=M?+\X,
corresponds to the bound-state pole in the Green functiorh— 0. Note that we can employ this prescription without loss
one can write of generality, since the change of the direction in the

094024-4



7"~ ATOM IN CHIRAL PERTURBATION THEORY PHYSICAL REVIEW D 58 094024

((P*)?,P?) plane along which this limiting procedure is per- Which enters parametrically into this expression. Expanding
formed affects only the normalization constait Further, the LHS of Eq.(20) in perturbation theory up to a given
the validity of Eq.(11) can be trivially checked by extracting order, one can then the determine bound-state observables
the bound-state pole i6(P) and using the BS equation for With a required accuracy. Note also that EBQ) is a com-
(¥l plex equation, and in every perturbative order it provides two
Let us now introduce the relativistic generalization of thereal equations for determining the energy level shift and de-

projector operator onto the states orthogonal to the groundsay width. _ .
state solution: Equation(20), however, still contains the BS kernel, and

does not contain therm scattering amplitudes. Below we
carry out first-order perturbative calculations and demon-
Q=1-N(M")| ) el (13 strate explicitly that only these amplitudes appear in the final
result. For this purpose let us note first that the quaiGifR
in Eq. (20) is given by formulas similar to Eq$10), with ®
andR replaced by® andR, respectively, and

Then, with the use of the Hilbert identity it is easy to dem-
onstrate that Eq(11) can be rewritten as follows:

(xI=(XINM™) [ghc)( | R(p,q)=R(p,q) + 5+ higher orders in (21)

X{1+V'(P)[Gy *(P*)~Vc—QV'(P)]'Q} [this can be demonstrated by straightforward calculations,

_ R N VI 1 using Egs(5), (6), (10), and(13)]. We isolate the free part in
<X|AGO [GO (P ) VC QV (P)] Q; (14) GRQ by Writing GRQ:GO(M*)‘FtSG.

whereAGglzegl(P)—Ggl(P*) and the limiting proce- Let us now turn to the perturbation kernél (P). This

dure is implicit. In the derivation of Eq14) we have used potential can be decomposed Into .th? foII0\_N|ng parts.
(1) A purely strong part, which is isotopically invariant.

This part survives when electromagnetic interactions are
l// Gfl( P*)[Gfl( P*)—V —QV'(P)]il:O, (15) “turned off” the th_eory. .
(velGe 0 ¢ (2) The part which is responsible for tlme_-—m_o elec-
which stems from the fact that the inverse operator on théromagnetic mass difference.
LHS of this equation does not have a pole in this limit. With  (3) Remaining electromagnetic effects, including the ex-
the limiting prescription chosen above the normalizationchanges of virtual photons.

constant equalg24] Parts(1) and(2) are regarded to be more important for the
. . following reasons. The first term includes strong interactions
—C =(xIN(M")[9c). (16)  which govern the decay of a pionium. The second term

makes this decay kinematically allowed. Consequently, it
seems to be natural to consider them together, denoting the
corresponding potential a#;,=V;+V,. The T matrix cor-
—_ct 14+V'(P)G 1+AG-G,0Q] 1, responding to summation of the potentigl, in all orders is
(X (Well (PYGVQI 0 GvQl (177 given by T1o(P)=V1(P) +Vi(P)Go(P)T1o(P). The rest
of the potential is referred to ag;=V' -V, and is treated
where the operato,/ Q obeys the equation perturbatively.
We would like to emphasize once more that this splitting
GyQ=Ggr(P*)Q+Ggr(P")QV'(P)G\Q (18) s rather convention dependent and is dictated by conve-
nience considerations. In practice it is convenient to include
into parts(1) and(2), as much terms as possible. It is obvi-
ous, however, that the final results do not depend on the
prescription chosen for that splitting.
— -1 —1_\sr -1 We perform the perturbative expansion of the basic equa-
(xl==C Hcl{1+[AGy "= V'(P)]GRQ} ™ (19 tion (20) in V3 and 8G up to the first nontrivial order. Mean-

. 71 . . . .
Substituting this solution into the complete BS equatidn  While we expandAG, ~ in a Taylor series in the variable

and using the BS equation for the functiai:), we arrive at M =M —M* and substitute
the final relation

Equation(14) can be solved with respect {a|, resulting
in

and Gy stands for the regular part of the Coulomb Green
function. It can be easily demonstrated that Ey) can be
rewritten as

_ i i
- , - =M* (€N @__1W__1©
(Ycl{1+[AGy 1= V'(P)]GRQ} M=M"+AET+ AR - =3T
X[AGq *=V'(P)][¢c)=0, (20
. . . . : +——([W)2+.... (22
which provides the basis for the perturbative expansion of 8M*

bound-state observabléthe energy of the atomic level and
decay width. Namely, the only unknown quantity on the Expressing everywheié,,in terms ofT,, we finally arrive
LHS of Eq. (20) is the bound-state total four-momentd?n  at the identity

094024-5
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1
0=—2iM* oM — (| Tad ghc) + OM(ihcl (Go ) GoTaalthc) + 5 (OM) Xl (14 T18Go) (G )"+ (G 1) GoTrd )

(e (M (G 1) = T1)8G i he) — (el (1+ T1,Go) Va(1+GoT1o) [ ), (23

whereGy=Gy(M*) and the prime stands for the differentia-  Substituting Eq.(25) into Eq. (24), we reproduce the

tion with respect tav ™. lowest-order relativistic Deser-type formulas for the energy-
Equation (23) contains all first-order corrections to the level shift and lifetime of the pionium:

pionium lifetime. Below we examine this relation term by

term. Note that we employ the commonly accepted “local”

approximation; i.e., we assume that the quarifitydoes not

depend on relative momenta. The origin of this approxima- AE= 4_777— e R

tion can be traced to the “sharpness” of the Coulomb WF of m2 T T o

an atom which in momentum space has the characteristic

range y~1 MeV, much smaller than typical hadronic

scales.

167 (2Am_ \¥?  Am,\?

=— 1- | T 5t O 0|2¢2

Ill. RELATIVISTIC DESER-TYPE FORMULAS WITH m? m., 2m_ T 0-
w

LOWEST-ORDER CORRECTIONS (26)

In the lowest-order calculations only the first two terms
on the RHS of Eq(23) contribute. Further, one can assume
¥c(0)=[d*k/(2m) *he(M*;k)=m_2¢, in this approxi-

- ) § h A. Relativistic correction to the pionium WF
mation. Then, taking the real and imaginary parts of Eq.

(23), we arrive at The correction in the pionium lifetime coming from this
’ effect is contained in the second term of Eg3). Namely,
; : toO(«) terms
iTs, 1 iTy, up
AE“):Re(— 2], —TW=Im| ——¢3
2M*m_ %o 2 2M*m_ %o
= ¥c(0) f M= (1- o
clV)= c K= 5L~ L),
Further, we can write (2m)* m;?
. Cp=0.38L... 2
Re (iT1p) =167+ - p+ - (4m2;0,0), 0 @
m,, | 12 Am_ |2 (details can be found in Appendix)AThus, up to order
Im(iTqp) = —1677( m ) ( ~%m ) O(«) in the local approximation the second term in E2p)

reads asm_'T;,¢a(1—2Coa). The term proportional to

X| Tt e m0m0(4M2 ;5150)|2, (25)  Coa in this expression induces the corresponding correction

in the pionuim lifetime. Note that the value of this correction

is determined by the expression of the unperturbed solution
) . > ) ¥, Eq.(5), and hence depends on the particular choice of

tegmg amplitudes and, is the relzatlve_ momentum of the ¢ jnstantaneous Coulomb part of the poterifiad our case

7 pair at the threshold=4mz, with the magnitude  the Barbieri-Remiddi prescriptiotd)]. We shall see, how-

given by the relatiormi: mio+ qoz. ever, that in the full expression for the correction to the atom
We would like to emphasize that the second relation inlifetime the term proportional t€ya disappears, indicating

Eqg. (25 differs from an analogous relation given in Ref. that the final results do not depend on a particular choice of

[22], though the starting equatioii®4) in both papers coin- the zeroth-order kernel.

cide. In Ref[22] the magnitude of the three-momentum both

for m* 7~ and 7°#° pairs was set equal to 0. Consequently, i _

neutral pions in the final state turned out to be off shell, B- Correction due to the displacement of the bound-state pole

Contrary to Ref[22] we deduce from the Cutcoski's rule by strong interactions

that neutral pions in Eq(25) are on shell. Note that this This correction is induced by the third and fourth terms in

discrepancy with Refl22] leads todifferentpredictions for  Eq.(23). The calculation of this sort of integral is carried out

the corrections, e.g., due to the mass differange —m_o in in a straightforward waysee Ref[24]). Below we give the

one loop(see below. result of these calculations:

where7(s; ﬁﬁ) denote thddimensionlessS-wave 77 scat-
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d*p _ the nonrelativistic case the free inverse Green function is
(cl(Gg 1) GoT1d 1//C>=T12¢//C(0)f (2—)41,/;C(M*;p) linear in the bound-state energgf. Ref.[24])
T
X[Gal(M*;p)]’GO(M*; p) C. Correction due to the exchange of Coulomb photons
This correction stems from the fifth term of E@3). The
i iT08 calculation of the corresponding integrals is considered in
:; m2 T (28 Appendix A. Below we give the results:
(cl(Go Y 8GTud )

d*p d*q —

(2m)* (ZW)Alﬁc(M*;p)

X[Go H(M*;p)]' 6G(p,q)

—1\n d4p e *
(cl(Go Y |¢C>ZJW¢C(M 'p)

:lel//c(o)J'
X[GoH(M*;p)]"¢hc(M*;p)

10i+ (29 2
L -
a? :_I_ZI 122¢o+__., (31)
a® ms
d4
<¢C|T1260(G51)”|¢c>:lﬂc(o)lef ﬁGo(M*;p)
) (c|T126G T ¥oc)
X[Go (M*;p)]"¢bc(M*;p)
— (T <0>]2f 9 e ipa
2 iy 12 1¥c (2m)* (2m)* p.q
e e T .
K __@ Ina—2.694(T1)%p2+---, (32
— (4cl(G3 H"GoTudwe), (30 167m, (e~ 2694(T1) dot -,

and ellipses stand for higher-order termsvinFrom Eq.(24)

it is easy to see that the real and imaginary parts of integravhere the term nonanalytic in the fine structure constant
(30) are down by small factordAE®)/m_ andT’'™/m_ as  [containing Inx in Eq.(32)] comes from the infrared-singular
compared to integra(28). Therefore we shall neglect Eq. one-photon-exchange piece in the Coulomb Green function
(30) in our calculations. [Egs.(10), (2D)].

Note that Eq.(28) contains the second derivative of the  With the calculated integrals and the lowest-order rela-
inverse free Green functio®, with respect to the bound- tions (24), it is a simple algebraic task to derive, from Egs.
state mass. Hence this is a true relativistic correction arising22) and(23), the first-order correction to the pionium decay
from the BS treatment of the bound-state problem since irwidth [25]:

9 AEM AEWM
r® = F“){(—— —) + (=2Coa) + (1/2 + 2.694 — Ina)
8 F —_—— 1
IR relativistic w.f.

strong Coulomb photon exchanges

— (M*F(l))_lRe < Pe|(1 + T12Go) V(1 + GoTh2) |Ye >}
(33

whereE; stands for the energy of the unperturbed ground-gram” in this term. This diagram cancels explicitly the one-
state levelE;=—m_a?/4. Coulomb-photon-exchange term, leaving only multiphoton
Comparing Eq.(33) with the corresponding expression exchanges. We have checked that, having merely discarded
given in Ref.[22] (referred to as the “second-order strong this term, after our calculations we come to a result numeri-
correction™), it is easy to see that our expression for thecally very close to that given in Ref22]. The true result,
contribution of Coulomb photon exchanges contains an adhowever, cannot depend on the formalism used for the de-
ditional Ine term. The origin for this disagreement can be scription of a bound state, either the BS equations or equa-
easily established. Namely, the authors of R22] include tions of the 3D constraint theory. So one can ask whether a
an additional contribution from the so-called “constraint dia- contribution regarded as the counterpart of the “constraint

094024-7
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()l P e

a b
FIG. 2. Matrix element describing the “residual” photon ex- b
change. The imaginary part of diagrai@ vanishes at the bound-
state energy. Diagraifd), which is of second order in the “strong”
amplitude T,,, is neglected in the present approximation. The
dashed line denotes the virtual photon propagator, and dots corre-
spond to the instantaneous virtual photon exchange.

+

*--o

FIG. 4. Vacuum polarization correction.

4Re Ahad
Im ac.=Im apql 1——— Ina
s
diagram” exists in the BS framework for bound states. The AE®
answer is yes; this diagram is contained in the “electromag- =Im apad 1— Ina), (35

netic kernel”V; in Eq. (33). The reason why we include this
diagram inV5 rather than in the “second-order correction”
is simple: this diagram is accompanied by the diagram o

virtual photon exchangesee Fig. 2gineglected in Ref[22]. the decay width is modified according tol
The latter diagram also produces the Iterm which exactly . T(1—AEMIna/Ey) [cf. Eq. (33)]

cancels the corresponding term from the “constraint dia- In addition, we would like to note that the logarithmic

gram” (below we shall discuss this in more dejaiThe re- term, which, just as in our approach, is of the second order in

mainder is regular in the fine structure constant. Consg-trong interaction§~ (T,)2], was found by Roig and Swift
quently, we find it more natural at the present stage to omi 29]. The authors of Ref29] have studied the electromag-
both these contributions on a equal footing, rather than t ' :

retain onlv one of them. namelv. the “constraint diacram.” etic radiative corrections to them scattering and discov-
y ’ Y, 9ram. . areqd the term proportional to pnin the amplitude. When

We would like to mention here that the sign and MagNs, hstituted into bound-state integrals, after rescaling, as
tude of the nonanalytic term appear to be exactly the same as

in the nonrelativistic treatment of the pionium, indicating 332:'5 tt:,]:|;]t?g:feté?ignmgrsnﬁ,n?q@ng) P, this term pro-

that, as one could expect from the beginning, the “electro- A .
magnetic kernel” produces the corrections which are ana: So far our treatment of the pionium decay width has been

lytic in « (at least in the lowest orderin the scattering incomplete. Now we turn to the calculation of corrections

theory, when the electromagnetic corrections are taken imbnduced by the last term in E423) containing the “electro-

account, the expression for the decay width corresponding tgnagnetlc kermnelVs.

the second relation from Ed24), ImiT,, is replaced by ) o _

ImiT.., where T, denotes the scattering amplitude of D. Mass shift and radiative corrections

charged particles at the threshold in the presence of the Cou- Into the kerneM; we include the following diagrams: the

lomb potentiall14,15. Accordingly, it leads to the replace- diagram with the “residual” photon exchandee. the vir-

ment of Im a4 by Im a.., whereay, 4 anda, denote the tual photon exchange minus Coulomb potentigig. 2, the

“hadronic” and exact scattering lengths of charged particlesself-energy corrections to outgoing pion legs, Fig. 3, the

However, assuming that the hadronic potential has a finitgacuum polarization diagram, Fig. 4, and the vertex correc-

range denoted bR, the following relation betweea,,gand  tions, Fig. 5. The contributions containing low-energy con-

a.. can be established 3,28 stants and tadpole terms are includedip. Thus, we take
here advantage of the arbitrariness in splitting the potential

2R G ) ) )
series in powers of—) Q + () + ¥ + +
) . . : :
a € d

(34)
b

here in the second relation we have used the Deser formula
or the atom energy-level displacement. Consequently,

1 1 2 (ZR) 1
_ ] —_ +_
s

8cc Apad s s

whererg is the Bohr radius of the pionium which is the
inverse proportional tae. So up to logarithmic terms,

MR NI Ry Sy SRE g e

FIG. 3. Matrix element corresponding to the self-energy correc-
tion in the external pion legeEq. (43)]. FIG. 5. Vertex correction.
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and include all terms ifT,, which area priori known to ~ Where the second _re_lation was derived with the use _of Eq.
have a smooth momentum dependence on the bound-stdf#- From Eq.(38) it is apparent that the kern#l,—Vc is
scaley. Only the potentially “dangerous” terms which con- responsible for the retardation correction in the pionium life-

tain the photon propagator with vanishing mass are to b@me_. ) ]
treated with the bound-state equation. Finally, the matrix element we are looking for can be

In this section we are concerned with the first two termgWritten in the following form:
in V5. They read as follows.

(1) Residual photon exchangEig. 2): M, = R{ch(O)TlZJ d4q4(Ay—Ac) ve(M*:q) |,
. 2
V,—Vc=ie*(P+p+q),(P—p—q),D*'(p—0q) (2m (39)
~Ve(p,a), (38 where

nv H . d4p
whereD#*” denotes the photon propagator. The calculations A= —|e2f Go(M*;p)(P+p+0),.(P—p—0),

are most easily carried in the Coulomb gauge with m)?
L XD#"(p—0q),
Dk)=~ =, DY(k)=D"(K)=0, dp
Ac:_f?Go(M*ip)Vc(p,Q)- (40)
o KK\ 1 (2m)
1) = — ) _
Do 0 k2 k2+io’ (37) (2) The kernel corresponding to the insertion of self-
energy graphs into the outgoing pion legsg. 3J):
The corresponding matrix element equals ~[P ~[P
11 E'f'q I1 E—q
Vs=e?V iy P; +
Re(¢c|(V,— Vo) + T1,Go(V,— Vo) +(V,—Ve)GoTiz 3=eVidPp.a) P+ 2 , [P )2 ., |
B q _m7T 5 _mTT
+T12Go(V,—Ve)GoT1d ¥c). 2 2

It is easy to observe that Rec|(V,—Vc)|#c)=0 at the where
bound-state energy. Consequently, the first term in the ma-

trix element vanishes. The following two terms are equal for [ d%k
symmetry considerations. Further, we completely neglect theH(I):I f (2m)* (I —k)2—m?
fourth term in this matrix elemeriFig. 2d. This term, as we ”
have mentioned before, contains the contribution of “con-
straint diagram” given by . However, it is obvious that
the D component in the expression éf, which has exactly ~
the same infrared singular behavior as the Coulomb potential Z(h= ) Z+(I)=Z(E + ) ) (42)
leads to the same dnnonanalytic term in the lifetime. In the 12—m2’ B 2

expression ol/5 these nonanalytic terms cancel and the re-

mainder is analytic i (at least in the lowest orderFor this ~ The corresponding matrix element can be rewritten as
reason we find it safer to neglect the combinatiop—V¢ _ )

rather thar\/,, alone, as in Ref[22]. Ms=(Pc|€T 1 Z, +Z_)(1+GoTio)|¢hc). (43

Th? remaining term in the expr?ssmn Of the matmg el,?'We neglect here the term which is of second order in the
ment is exactly of the form of the “retardation correction

discussed in Ref[20]. To demonstrate this, we note that ;t;onrlg rlggzrscf;lson amplitude. Then, the sum of matrix ele-
|8¢r,)=Go(V,—Vc)|¢c) gives the first-order perturbative

correction to the bound-state WF due to the retardation effect g4 q o2

(i.e., the difference betweevt, andVc). The correction in-  Af + M= Re{zwc(O)leJ’ —(A —Ac——=2.(q)
duced in the pionium lifetime due to this effect is given by 7 (2m)* 7 2

(21=k) (21 =k),D*"(k),

I()=I1(1)~I1(12=m2),

eZ
—5Z2-(9) wc(M*;q)]- (44
P=T| 1= RE20c(0)T1200,(0)]
We would like to emphasize here that the coefficiemthich
-rl1+ 26¢,(0) (39) emerges naturally in front of the self-energy term on the
Yec(0) )’ RHS of Eq.(44) ensures that the correction to the decay
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width calculated from Eq44) is gauge invariant. Moreover, ing function” tends to unity, one discovers the coefficignt

it is well known that in this particular combination of vertex which multiplies the contribution from the self-energy dia-
and self-energy diagrams the “photon mass” disappears igram (for a detailed discussion see e|®0]). Consequently,

the calculated width without inclusion of the “soft photon though the coefficien} emerges in the bound state and the
emission” terms, which seem to be rather awkward in thescattering problems from different sources, one ends up with
context of the bound-state problem. In its turn, the origin ofthe same expression in these two cases, being gauge invari-
the coefficients can be traced back to E(B), where, as was ant and infrared finite at threshold.

mentioned before, the kernelcontains only half of all pos- The integral on the RHS of E¢44) can be easily evalu-
sible self-energy graphs attached to the external pion legsited in the Coulomb gauge, bearing in mind that the final
Note also than in th&matrix elements the origin of emerg- result is gauge invariant.

ing the coefficient; is quite different. In the latter case one  In the calculation of the contribution fromh, one can use
takes into account all self-energy graphs in the external legghe fact that theéD" component of the photon propagator in
However, restricting these matrix elements on mass shell ongae Coulomb gauge contributes only in ord®¢a?Ina) in
encounters an expression of the type 0/0 which can be tackhe decay width and thus can be neglected. This considerably
led, introducing an explicit “smearing function” in the ini- simplifies the calculations. The result read<details can be

tial Lagrangian. Passing then to the limit when the “smear-found in Appendix B

d* dp d* ie’[(M*)?~(po+do)® . Amam,
f q Ayl/fc(M*;q)zf p q GO(M*;p)le [(M™)*—(Po+ o ]GO(M*;q)4|[W(q)]1’2 mam, o

(2m)* (2m)* (2m)* (p—q)? q2+ 92
bo a 3a
_m_}F(1+EN€_z + .-, (45)

where the dimensional regularization was used to handle the ultraviolet divergences, and

L+ |m§7
Ne=5— s+ (1)+n4w—nF,

with n being the dimension of space apdthe mass scale used in dimensional regularization.
The contribution containing\ ¢ can be trivially carried out:

d*q J d*p d%q 4im_e¥w(p)w(q)]2 L Amam, g
——A M*:q)= ——Gy(M*; Uil Go(M*:q)4 Ve T~
| Gmyahereta = [ B oy T oMW P2
d3p d3q 1 1 1 4dmwam,py o
I 2f<2w>2<2w>2 WP 1 (B-) (2r 22 muEL o (49

The pion self-energy grapid2) calculated within the dimensional regularization scheme in the Coulomb gauge is given by

() 3m727N 7m, A( ! N ! + A ” A A (r2)2[|<r2A) 1(1%0)]
== =5 Net —A| —— N+ — —— L= ——"n| ——]|— A)— ; '
1672 1672 8m? ° 4m? 872  6m’ mit+A m?2 w2
(47)
|
whereA=12—m2+i0 and Note that the terms in square brackets on the RHS of Eq.

(47) are of higher order inf| and/orA as compared to the

w() [ w(i)— | f| R _ second term in the round brackets. Consequently, in the cal-
L=2+—In —— |, L=0(I? atsmalll], culations in the lowest order ia the term in square brackets
1] w(l)+[1] can be dropped, since it contributes only in ord€ina.
Then we immediately obtain
1(I2,A fld fld xuf
(1%4) o o L'x(l—uz)IQ2+xm,27—(1—x)A' Z+(I)=—LN S (49)

(48) 8w? © 4m?
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and seen, the contribution frorM ., alone is gauge dependent
and should be combined with the self-energy diagrams to
yield a gauge-invariant result. Moreover, in gauges other
than the Coulomb gauge, individual contributions frav,
(500 and.Ms contain a nonanalytic ka dependence which can-
cels in the sum. Referen¢@0] which mimicked the Feyn-
Putting things together, we finally obtain man gauge calculations, does not contain a nonanalytic term.
623 Let us now evaluate the contributions from local four-
_ Do 2 @ pion Lagrangians. As we have mentioned before, it is appro-
Myt Ms=2Re lemw 4wNE+C°a 277)’ (52) priate to include these terms, which are smooth functions of

o o o external momenta, into the definition @f,. According to
which induces the corresponding first-order correction in thepis convention, the transition amplitude,«_-__o_o from

Ms =R 2[ye(0)PTys ~ )| — —N,— —
) c 12 8r2 ¢ 472 |

7" @ atom decay width: Eq. (26) can be written ag .+ ,-_, 0,0=T,+7T,, whereT;
3a o denotes the isotopically symmetric “strongft s scattering
F—>F(—NE+ 2Coa— _)_ (52) amplitude with the mass of the isotriplet taken equal to the
2m ™ charged pion mass, and/, includes the effect of isospin

reaking as well as terms with low-energy constants from the

The above expression is of course ultraviolet divergent. | our-pion Lagrangians. From Eq&4) and (52) we come to
is well known that, along with the diagrams contributing to the e?(pressi%n 9 ' 4

this expression, one should consider the four-pion
Lagrangians containingdivergenj low-energy constants in
order to cure this ultraviolet divergence. This will be done [
below. We would like to mention here that the terrG 2y rw
from this expression cancels with a similar term coming
from the atom WF in Eq(33), and the final result for the which displays only the electromagnetic and mass shift cor-
decay width does not depend on the initial approximatiorrections.
chosen for the Coulomb WF of an atofas it should bg As we noted before, in Ref22] the amplitudeZ, was
Further, the term—a/x exactly coincides with the result evaluated at th@ff-mass-shelpoint for 7° mesons. How-
given in Ref.[22] obtained from the same set of diagrams inever, as we see from E(4), the amplitude emerging here is
an arbitrary covariant gauge. This provides an independenestricted to being on mass shell for all external particles, and
check of the gauge invariance of our result also for noncowe use this prescription hereafter. Moreover, an explicit ex-
variant gaugesand, in particular, for the Coulomb gayge pression for this amplitude calculated within ChPT has be-
Below we would like to discuss briefly the connection of come recently availablg31], and in the following we can
our result with the “retardation correction” given in Ref. use the expression given in REB1] as granted. All that we
[20]. As we have mentioned above, the matrix eleméfiy ~ have to do is to extract from the amplitude of Rgg1] the
gives exactly what is called the “retardation correction.” terms which we have already taken into account through the
Note, however, that our result differs somewhat from that ofbound-state equatidivertex and self-energy corrections, i.e.,
Ref.[20]. Namely, in this paper the virtual photon-exchangeonly the ones which are taken into account in the model of
diagram corresponds to the Wick-Cutcoski model, whereaRoig and Swift[29]).
we have used the pion-photon vertex which emerges in sca- The calculations in Ref31] were carried out in the Feyn-
lar electrodynamics. The ultraviolet divergence which occursman gauge. However, as we mentioned before, the combina-
in our result is a consequence of the choice of the piontion Ay—(e2/2)Z+—(e2/2)Z, we are concerned with is
photon vertex. Thus, strictly speaking, the present resultgjauge invariant, and we can safely use the results of Ref.
and the results of Ref20], refer to different physical mod- [31]. Thus, we can identifysee Eqs(4.9—(4.11) and(4.19
els, and cannot be directly compared. Further, as we havieom Ref.[31]]

re (3« a T
5—N+2Coa——+2

2
oy 7) (53

2e%(s—2m%)G T, (9=n,-Sz,-S7 2 S L
—2e(s—2m)Gy(8)— ey (S)=Aym 52— o SEET Lyl Sy Ry
where[31]
G. (s f dq 1 P,
_JAS)=—1I ’ pi:_—pl
M (2m)* (42— \?)(q?—29-p.)(a?+2q-p_) 2
Js9 =i | & ! Tup(8)=Jp(8) — J5(0) (54
@ =1 ’ ap(S)=Jyp(S)—J, ’
g m" (?-m2)[(q-H2-m2]" g g
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and we have introduced the photon “mass’to regularize the infrared-divergent integrals.
The amplitude7 .+ .- _, 0,0 can be easily found, subtracting, — (e2/2)Z, — (e?/2)Z_ defined by Eq(54) from the total
amplitude given in Ref[31]:

s—m?

w0
—327T e y0,0=— = —BRg(s,t,u) —Cg(s,t,u), (55)
with [31]
_qu.ro mio_ S — 1 2 f,. 2 )\(tymi,mio) 2 —
BR(s,t,u)—? TJOO(S)-F §+2A7, Ji_(s)|+ o 3 t—2mw+T +t—2(Aw+t(s—u)) J. o)
,  AZV2 numimly —
F4 3 u—2mw+T +T(AW+U(S_U) Jo(u), (56)
s—m’, 3 L
Crstw== 2;4(—?7—4AW—A—”(4mi—7miomfr+5mio)+e2F2(—6—6NE+ICf°)>
ar T
2 2 2
mvro {m’JT 10“770 L7T 2 2 27 224~ *0
— 32772F4\?— 9 —A—w(zmﬂ,—mﬂ_o)'i'mﬂ_ol:;'i‘e F ]Cz
+mf’ Lo A 1+12A 2m2om2L
2am2rd 3 ) ggmepal T T ) (Bt 2Mhomi L)
1 (1 L, 3
- 48772F4{€(1152—t2—u2)+A—77 (mi—imio)s% mZo(t2+u?) }
+ 487T2F4|_1(s—2mio)(s— 2m?2) + 48”2F4|_2[(t—2ﬁ)2+ (u—-3,)2]. (57)
|
Here s—m>, s— mio/l SaN (59
_ . N,
47\— 32 _ F2 F2 17 Aw
Ki°= 3+ 5 [ka+ —g Ko+ 3kg+4Zky— 6L,
o . . o The modification in ther ™ 7~ atom decay width is twice as
K5°%=8Zk,+3ky+4Zk,—2(1+8Z)kg— (1—8Z)kg, large, and this cancels the termd¢@m)N, in Eq.(52). Con-

— 2 2 _ .2 2
2,=mo+mo,,  Aj=mi—m,,

sequently, we can merely discard the ultraviolet-divergent

guantities simultaneously in Eq&2) and (57).
It is convenient to expand the rest of ther scattering

amplitude, which is ultraviolet and infrared stable, in powers
of A, near threshold. Below we present the result of this

w w

2
A
szln( —2) , Z= pycrry (58)  expansion, retaining only the terms proportionalAtg and

m_o
0)

e’F? which are sufficient up to the accuracy required. De-

noting the corresponding amplitude F

and |;, k; denote the finite, renormalization-scale- find
independent low-energy constaf&l]. Note that in the ex-

pression forCg the term containing the photon mass has

been explicitly cancelledcf. Ref.[31]). The term propor- — 32,70

. . . . . 700
tional toN, in this expression exactly cancels the ultraviolet T

divergence which appears in EG2). To demonstrate this, 3m? m?
we note that in the presence of this term only the lowest- =| - 2”— ; 2
order scattering amplitude is modified [a&e Eq(57)] Foz  32m°F7
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1 m?2 L long-range Coulomb interactions in the initial state. Thus, at
+A, | — E_ ﬁ(lﬂu 1+3l15,—121,) the threshold we can write31]
m T w
ami—mZ, e2 m
2,2 _ T T T _
M - . RA™ s tu)=— ———— — —"+ReA ...
— —— 5 (—18+3K1 - K50+, (60) (5L F2 16 ¢ "

where the charged pion decay constintis related to the

-2 P ; where g is the c.m.s. relative three-momentum of charged
parametef entering into the Lagrangian throug81]

pions.
2 Then, the following simple expression, valid in the
F=F |1 =0 T 61) lowest-order approximation, is obtained for thé 77~ atom
AT = T decay width:
The low-energy constants andk; in tgis equation are e 1 ZAm,,)l’z - Am,T)1’2(Reo\+_’00)2¢2
fixed on the renormalization scaLe2=mﬂo according to 6477me m, 2m, thr 0
[31] AED
r X —_ J—
, | mio 1+ 8 E, +(—2Cpa)+(+2ChHa)
()= L+l —= ||,
3272 w? gD
+(1/2+2.694-Ina) = + 6|, (67)
2 1
r __ 9\ o
Ki(n)= 3272 ki+In u? ) ] (62) where the electromagnetic and mass shift corrections, being
) excludedfrom &, are completely taken into account in
+—,00

wherez; andg; are constants. However, to make a compari-ReéAg,, . Thus, the correction factow displayed in Eq.
son with the calculations carried out in the isotopically sym-(67), includes contributions from other sources, e.g., vacuum
metric case, it is necessary to bring the normalization scale tpolarization, finite size corrections, etc. Further, E7)

me_ This induces a change in the second term of (B6): demonstrates explicitly the cancellation ofCgx terms

which depend on a particular choice of the initial approxi-
me _ _ mation for the relativistic Coulomb WF
m(1+4| 1+313—=121,) It is worth noting that the quantity 00 is not pro-
m portional to the conventionally definethr scattering lengths

m?2 L o 19m?2 which acquire an additional finite contribution due to the

— T (1+41,+313—12 ) +———. emission of real soft photorisee Eq.(5.17) of Ref. [31]].
2F4 3272F4 Thus Eq.(67) demonstrates that in the presence of long-

63) range Coulomb force the pole-removed real part of the scat-

tering amplitude rather than the scattering length enters into

After this rescaling the first term gives the isotopically the expression of the first-order corrected Deser-type formula
symmetric “strong” amplitudeZ; and the remaining part for the decay width.

Corresponds tdé Using then Eqs(53) and (60), itis easy Below we shall b”eﬂy discuss the Compal’ison of our re-
to “read off” the first-order mass shift and radiative correc- Sults with those obtained in Ref22,21]. As we have noted
tions in thew* =~ atom decay width: before, the main difference between our work and R2d],
where the corrections to the pionium decay width are also
ZAW[ m? - 19m2 evaluated in ChPT, consists in the fact that we argue the
om=——| 1+ Py (1+41,+313—121,)+ P necessity of a differerkinematicprescription in the calcula-
Smﬂ{ 48wk 327k tion of the w7 scattering amplitude entering into the Deser-

type formula. It is a completely on-mass-shell amplitude
(64) which naturally emerges in our calculations with neutral

pions having small, but nonzero relative momentﬁmiln the

final state. By contrast, in Ref22] both charged and neutral

pions have zero relative momenta, and, consequently, neutral

pions in the final state are slightly off shell. Different kine-

matic prescriptions lead to different predictions for the pi-
It is interesting to note that the Deser-type formula withonium decay rate in Ref22] and in the present work. Fur-

account of the first-order mass shift and radiative correctiongher, in Ref. [21] the radiative corrections to therw

can be rewritten in a simple and transparent way. Namely, iscattering amplitude were evaluated in the Roig-Swift

is well known that the scattering amplitude of charged parmodel, with an explicit cutoff. The cutoff parameter was

ticles develops a pole at threshold, which corresponds to thehosen to be equal to themeson mass. The author also

2
™

~ 96m2F2

3

8 16— — —
11+ _|1+ §|2_|3+ 12'4

3 a a +0 +0
Sem=2Coa— —+ 15— (~18+3K;°~K;°). (69
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presents calculations carried out in thaneson dominance E. Correction due to vacuum polarization

model where the integrals are ultraviolet convergent and the The vacuum polarization due to the virtual electron-

explicit cutoff is not needed. Thus, a direct comparison ofpositron pair contributes in order? to the pionium decay

the results of Ref[21] with the calculations carried out on width. However, this effect is amplified since a small elec-

the basis of ChPT is not possible. Note, however, that in Refiron masam, is present in the denominator.

[21] the contribution from real photon radiation is also in-  In the instantaneous approximation the photon propagator

cluded in the scattering amplitude. is modified by the vacuum polarization effect as follows
The mass shift and electromagnetic corrections have bedd8]:

evaluated in the framework of the nonrelativistic scattering

theory approaciil4,15. Strongwa interactions in this ap- iHiWLiI (—IZZ) (68)
proach are described by energy-independent local potentials. K2 k2 3 vac ’

It turns out that the effect of mass splitting on the pionium
lifetime is opposite in sign as compared to the case of fieldWhere
theoretical calculations. It is obvious that the sign and the

magnitude of the mass shift correction depend on the choice l,a(—K2)= foc p(s)ds
“ ” B vac 2 =0
of the “reference mass” corresponding to the case of an 4mZ s+Kk
isotopically symmetric world. In particular, if the reference 5 a1
mass is chosen equal to the charged pion riEss then this — 14 2mg 1- 4mg 69)
effect in the lifetime turns out to be negative - 7.4%). If p(s)= s s s :

one chooses the neutral pion mass to be the reference mass _ . . .

[14], then this effect changes its sign- ¢ 7.6%). We ob- The perturba_t|on. potentlall whlch is responsible for the
serve the different situation in our calculations based on th¥acuum polarization effect is given by

chiral Lagrangian. Thus one can conclude that the energy- ..

and mass-independent local potentials used in Réfs15 Vuac=?miazlvac[—(p—q)2], (70
might not provide an adequate description of ther~ sys-

tem in the nonrelativistic limit in dealing with the sophisti- and the corresponding matrix element from Ep) is equal
cated issue of the isospin-breaking effectsitr interactions. to

Myac=REYc|Vyact T15GoVyact ViacGoT12F T12GoVyacGoT1d ¥ )- (71)

The first term in this expression vanishes at the bound-state energy which is below the elastic threshold. As in the calculation
of electromagnetic radiative corrections, we neglect the fourth (&g 4d. Thus, the matrix element can be written as
follows:

d*p d“q

o -1 *. (N2 *.
(277_)4 (277_)4G0(M 1p)|vac[ (p q) ](//C(M ,Q) . (72)

32 2 2
Myac=R 3 Mza 'lel/fc(o)f
With the use of Eq(69) and after integrating over relative energy variables the integral ifB).takes the form

fm i (S)f dp d3q —imam, ¢, 73
a2 ) (2m)3 2R wip) W) YA p 2+ (G %+ YD) s+ (p— )]

In the calculation of the integral ove’q we can replace the smooth facfav(q)]¥2 by its value atg=0. Then

d3q 1 1 1 1
| (74

— — — — = — +.. ..
2m3 (W@ ]2 (g %+ y)Ys+(p—q)?] 8mym-? p2+(y+1s)?

The remaining integral oven‘3§ can be computed analytically. Rescaling the integration variabieEq. (73), we finally
arrive at

3,
Myac= 2

Ea ERelebo f (75)

where
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=ds(s—1)12 1 =ds(s—1)12 1
bozf L(l_{__ J' #(14__)
1 1 IS 2s

SZ 2s
7+ys N CARC N
M- (SR s
S vt NEARCA S fs)Z—Ei]”z)
[(y+9)2=m2]"2 |yt 5= [(y+5)?~mZ]¥2

7 (m2— )"

-1

fac(S) —0.6865 - -, (76)

w

fyac(S)= _2Me o(m,—y—/s)
7(2y+s) [

+0(s—m_+

. (77)

andm,=m_/(2my), y=y/(2m,). and the corresponding matrix element reads as
Using the relativistic Deser formula in the lowest-order

approximation(24), it is easy to observe that EZ5) leads Me= (| Ve+T1GoVe+VeGoT1oF T1:GoVeGoT1d ve).-
to the following modification in ther ™ =~ atom decay width

due to the vacuum polarization effect: (8D
o oMy gain, the first term in this matrix element vanishes at the
I=T1+ 16% Me bo)' (78 bound-state energy, and we neglect the fourth term. The re-

mainder is then given by
Note that in Ref[18] the vacuum polarization correction

to the pionium lifetime was calculated only with account of

discrete spectrum transitions. Thus, our result is a generali- d*p d“q .

zation of that from Ref[18]. Me=Re | 2¢c(0)T1, f 2m* WGO(M :P)
The nonrelativistic QEDINRQED) based calculation of

the vacuum _polarization effect in thg pionium lifetime _has 8ie2m375FV[—(5—ﬁ)2]

become available recently23]. We find that the analytic X — Yc(M*;q) |. (82

expression of the so-called 0-Coulomb term in R28] co- (p—q)?

incides with our result up to the relativistic kinematic factor
in the WF whose presence is due to the choice of Barbieri:l.

. 4 . . . . .
Remiddi kernel. Numerically the effect of this factor, which he integral oved'p diverges in the ultraviolet region. This

) S o stems from the fact that the diagram depicted in Fig. 6a is
contributes in higher orders in, is very small. In Ref[23] ultraviolet divergent as a whole, though the subdivergence in

the relsults_for 1'_|_ChOU|°mb atmg rtnultl-CorL:_lorr]nl]? cont”rlbutlonsfthe VPP vertex has already been removed by an appropriate
are aiso given. these contributions, which formafly are ofe, \nterterm depicted in Fig. flthis counterterm is implicit
higher order ina, would emerge in our calculations as

d-ord turbati i’ o the bioni lif in Egs. (79) and (82)]. Thus, a higher-order counterterm
Efnceon -order perturbative corrections 1o the plonium 1if€-gp,5yp in Fig. 6¢ is needed to cancel the overall divergence

in Fig. 6a[and, consequently, in E¢B2)]. It is obvious that
o _ this divergence is removed analogously to that from Sec.
F. Finite size correction Il D, and we shall not further dwell upon this question.
In the presence of a pion loop the pion electromagnetic To simplify the calculations in the relevant lowegion,
form factor given by the vector-pseudoscalar-pseudoscaldpstead of Eq(79) we use the well-known monopole param-
(VPP) vertex in ChPT is modified. According to RéfL], etrization

Fy(t)=1 ! 4m?)J, ! (T 1)
P D & 2 SIED
=1+ SF (1), (79 : :
a b c

In the instantaneous approximation the perturbation potential

is given by(see Fig. % FIG. 6. Cancellation of the divergences which are present in the
expression for the vertex correction. The divergence in the vertex
SF[— (5_ a)z] subdiagram is cancelled by the counterterm depictet)ivvhereas
VF=8ie2mi? (80 the remaining overall divergence in diagrdan is cancelled by the
(p—q)? counterterm given irfc).
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oF(t)=

t -2 1 2\ T
2 . Mv =6<r W (83
my—t

with the samédr?)7 as in Eq.(79). The integral in Eq(82) is

then convergent and can be easily evaluated, resulting in

_ 2e2m2f d35 d3C_i
") (2m)? (2m)®

v 47Tamﬂ.d>0
w(p)[w(a)1*(p 2+ ¥ (q2+ Y wi+ (p—a)?]
(84)

With the use of Eq(74) and the inequalitieg>m_> vy the
integration of Eq{84) gives

—2e2m? ﬁJ' dsﬁ 1

"m¥2) (2m)% w(p)(p 2+ ¥?)(p 2+ ud)
by €M% 4uf
= e, 2 25 T (85
m'n’ 2w My m’TT
and
2 2 2
da m_ 4u
Me=——2 ReTjp— —dn—r+4....  (86)
2 2
ms ™ My m'n'

The modification of ther™ 7~ atom decay width due to the

finite size effect is given by

4o m>  Aul
1“_>r(1—7—2 In -2 (87)
My m7r

IV. NUMERICAL RESULTS AND DISCUSSION

PHYSICAL REVIEW D 58 094024

9 AEW
ds=—g —g = —5.47X 10 3m_(2ad+a3). (89
1

Sc corresponds to the correction due to the Coulomb photon
exchange$Eg. (33)]

AE®
=

5c=(1/2+2.694- Ina) =3.95x10 ?m_(2a3+a3).

(90

Sy stands for the correction due to the,- —m_o mass dif-
ference[Eq. (64)], and &, corresponds to the electromag-
netic corrections without@ya term[Eq. (65)]. The quantity
d,ac denotes the correction due to the vacuum polarization
effect[Eq. (78)]:

3 m
- 2 7
Oyac 16“ me><0.6865. (91

S corresponds to the finite size correctideg. (87)]:

2 1
5F=§mi<r2)\7ln(ﬂmi<r2>\’}>. (92)

To make a numerical estimation of the above-listed cor-
rections, one has to substitute the values of the low-energy
constants into these expressions. For the constamis take
the numerical values from Refl]: 1,=-2.3+2.7,1,=6.0
+1.3,13=2.9-2.4,1,=4.3£0.9. The constantl; are more
difficult to estimate. In our paper we use the values from Ref.
[31] based on a rough estimate at the scale coinciding with
the p-meson masgki(m,)|< 1/(1672). This estimate yields
(e?F2/m?)K1°=1.8+0.9, €?F2/m?)K ;°=0.5+2.2[31].
Large error bars in the low-energy constakit§®, £5°, in
turn, do not allow one to calculate the electromagnetic radia-
tive correction to the atom decay width with high accuracy.
Other input parameters in our calculations are Swave
mr scattering lengtha=0.217n_*, a3=—0.041m_* cal-
culated in ChPT and the electromagnégo) charge radius

In this section we present the numerical results on they e pion,(r3)7=0.439 fm[1].

lowest-order corrections to the pionium decay width. To this Substituting the above values of the input parameters into

end we combine various corrections obtained in the previou e expressions for various corrections to the decay width we

section. As we have seen, the correction due to the relativigspain the results collected in Table I. The lifetime of the
tic modification of the Coulomb WF cancels with the Co”e'lPionium ground state is predicted to be

sponding piece in electromagnetic radiative corrections. |
the final result we cancel these corrections explicitly.

Below we give a list of analytic results on the lowest-
order corrections to the* 7~ atom decay width:

1/2 Am
( - 2m,

7,=(3.03+0.10 X 10" ° s, (93

For comparison, in Table | we give the results of theoret-
ical calculations of the corrections to the pionium lifetime
within different approaches. As we observe from Table I, the
largest correction in the decay width is caused by the mass
splitting effect in accordance with the result of Refs.
[14,15,22. Note that in Ref[22] the mass shift corrections
coming from direct quark-photon coupling¢) and electro-
where a8 and aé denote theww scattering lengths in the magnetic insertions in the internal pion propagaters) are
isospin-symmetric case, with the charged pion mass taken wiven separately. It is obvious that only the total effect of the
be the common mass of the pion isotriplet. mass shift and electromagnetic radiative corrections can be

dsis the correction due to the displacement of the boundeompared in different field-theoretical approaches whereas
state pole by strong interactiohsee Eq(33)]: individually these contributions are rather convention depen-

112
0 2
(ag— ao)z

167 2Am,
T 9l m

w

X p3(1+ 8g+ o+ O+ Semt O,act ), (89
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TABLE I. Corrections to ther™ 7~ atom decay width. In the right column the results of theoretical
calculations in other approaches are given.

Effect Value Correction(in %) Correction(in %)
Strong Os —-0.22
Coulomb photon exchange Sc +1.55 +0.4[22], +1.45[15]
Mass shift Swm +2.99+0.77 +6.4(qy) +0.3(em) [22], —7.4[15]
Electromagnetic radiative Sem +1.73+2.31 —0.1[22], —0.25[21]
Vacuum polarization Syac +0.19 +0.190-C), +0.31(tot) [23]
Finite size O —-0.16
Total ot +6.1+3.1

dent. Our result for the total effect has the same sign as the As was mentioned above, our result for the vacuum po-
result of Ref[22], but is different in magnitude. One reason larization effect completely agrees with the zero-Coulomb
for this difference is traced back to different kinematic pre-(0-C) piece of the result given in Ref23]. In this paper
scriptions used for ther7r scattering amplitude in the Deser additional contributions coming from one-Coulomb and
formula (see the discussion in the tgXtAnother reason is many-Coulomb pieces are given. In our approach these con-
that in Ref.[22] different numerical values of the low-energy tributions arise in second-order perturbation theory.

constantsk; are used. The sign of the mass splitting effect Our last remark concerns the effect of ting—m, mass
obtained in the nonrelativistic scattering theory approact$plitting on the pionium decay width. It is well known that in
[15] turns out to be opposite as compared to our result, and igne-loop order this leads only to a shift in the neutral pion
of the same order of magnitude. In our opinion, owing to themass[1]. Since in our calculations of the on-sheilr scat-
derivative character of pion couplings in the chiral Lagrang-tering amplitude we use the physical values of the pion
ian, a possible reason for this discrepancy might be an exnasses, with the mass difference caused botimgy m,
plicit energy independence of strong potentials used in cal# 0 and electromagnetic corrections, the resulting mass split-
culations in Ref[15], rather than the specific choice of the ting correction includes both these effetts.
shape of the potential. In the future we plan to investigate
this problem in more detail.' ACKNOWLEDGMENTS
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APPENDIX A

In this appendix, we present the calculation of various integrals which appear in the first-order correction terms. We start
from the evaluation of the relativistic Coulomb WF at the oriffiiy. (27)]. By carrying out they, integration with the use of
the Cauchy theorem, this quantity can be written as

_ d*p . %o d3p / m, \? 4mam_
wc<0>—f 2my e ’p)_mi’zf <2w>3\w<5>) (p 2+ 92)?
P { d35 52 d7am,
= 1— — —~ —~ — . Al
m2| f (2m)% [w(p) ¥4 mY2+ [w(p)]Y3[m,+w(p)] (p 2+ ¥?)? (A

In the lowest-order approximation i@ we replace the factorp(>+ )2 in the denominator byg(?)? and obtain

!In recent calculations by the same authors the discrepancy due to the different kinematic prescriptions is fidm®aedjian, private

communication
2We are indebted to Professor J. Gasser for clarifying discussions on this problem.
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wc<0>:r;if,2<1—coa>+~-, (A2)

w

where

2 (= dp
Co=— =0.381-- . A3
O o (14+p) M1+ (1+pA) Y1+ (1+p?) 2] (A3)

Next we turn to the calculation of the integral which is present in @4d). This integral contains the Green function
8G(p,q) which corresponds to the exchanged Coulomb photon ladders and, according {@GEgR1), is given by

8
M* oM*

8G(p,q)=i[w(p)w(q)1¥4 ®(p,q)—S(p)S(q) Go(M*;p)Go(M*;q),

®(p,q)=167m,a + S(p)S(A)R(p,q), (A%)

1 I
ﬁHR(P,Q)

(Mmga)?

1/2
R<6,6>=25—( )[s<5>+s<a>]+--.,

T o

w

where ellipses stand for higher-order termsain
Substituting this expression in the integral from E8{l) and carrying oupg,, qg integrations, we obtain

'_J I 4 epGs M ip)] 6G(p.a)
1= (277)4 (277)4‘//C 1p 0 vp pvq
d°p d%q 4memgp .. . .| 6 4 -M* 1
= - d(p,q)— S(q)| = + = ~ - , A5
f<27)3<27)3<p2+y2>31 (PO=SPIND| " T2 2 w2 G2+ 2 (A9
where we have used
f%[G(M*'p)]’[G‘l(M*'p)]’G(M*'p)= 3(M° +--- (AB)
e O e 2
In the calculation of 3D integrals containing the functi@rﬁﬁ,ﬁ), we use
dp 1 1 1 1 1 1
f S = _ + _ (A7)
(2m)% (p—q)2 (p?+9?)°® 4ma’mi (q2+y?) 8maM; (q2+4?)2
and
d®p  1r(p.q) fldp . -
= = | —[J(p;a)—Ti(p: D], A8
f(zw)g(szryZ)g Op[ 1psa)—Ji(p:a)] (A8)
where
Tupidr= | o 1 ! (A9)
BT 2m (57 7% (- @)Pp+ mo2a 2(p 24 G2+ ) (1-p)

The integration oved3|5 can be carried out with the use of Feynman parametrization. We obtain

. 3 1 1dx(1—x)?2 3 1 1dx(1—x)?2
Ji(p;q)= f 1= f 1=

+
87Ta3m?7 ((iz-i- 3 Jo dsfzdilz 32ram, (a2+ y2)2Jo d5_/2di/2 '
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X 2
d.=1-x+7(1=p)?, (A10)
and
J(p;q)= f o1 . -— - (A11)
HUT ] 2m (524 9P M2 A2t (A% 4D 2mamR (G2 9D

Substituting Eqs(Al11) and (A10) into Eq.(A8) and carrying out the integration ovdx anddp, we finally obtain

= =- = + = . Al12
(2m)° (p?+9)°  4wa®m] (qP+y?) BTaM: (q%+y7)? 2

f d®p  Ix(p,q) 1 1 1 1

With the use of Eqs(A4), (A7), and(Al12) the integration in Eq(A5) is trivially carried out, resulting in

¢ 1

=2
mY2 o’m?2

(A13)

Substituting this result back in E31), we readily obtain the final result given in this equation.
Next we turn to the calculation of the integral which is present in (88)

| —f d'p _d' 5G(p,q)=15+14 (A14)
27 ) 2wt 2mp o PP
wherel ; andlj correspond to the “nonderivative” and “derivative” terms in E@4). Carrying out the integration over the
relative energies with the use of the Cauchy theorgntan be written as
1 [ ®p & ! ! ®(p,q) (A15)
2T T 1R s = = = p.q)-
(2m)® (2m)® [w(p)w(a) ¥ (p?+ ¥*)(q *+¥?)

I, receives a contribution frorta) one-photon exchangéy) multiphoton exchanges concentrated rjg(u;ﬁ) and(c) the rest,
proportional to the functiofR [see Eq.A4)]. Below we shall evaluate these contributions separately.
(a) One-Coulomb-photon exchange:

d3|5 —imam,_ 1 1 iam, ~2(r)
| 5= — = = ——=- dr : (A16)
? f(277)3[W(p)W(q)]1’2(p2+72)(q2+72)(p—q)2 4 f r
where
dp - 1
_ —ipr Al7
#r) f(2w>3e W(p)](p 2+ ) ALD

Using exponential parametrization, the integration cnlr’%ﬁ in Eqg. (A17) can be carried out, resulting in

e(r)=

P2
f duu” 5""[ dxx e ;{——u u(1—x)y2—uxnt|. (A18)
8T )

Substituting Eq(A18) into Eqg. (A16) and integrating, we obtain

7 1/4( 1— 7_) - 1/4X* 3/4X7 3/4
1= — ( )f dff dxlf dx, S . (A19)

3073212 {¥2+ (M2 = yA)[ X1+ (1— )%, ]} 12

Note that one cannot directly assume hereO in the denominator, since the integral over the Feynman parameters diverges
in this limit. In order to overcome this difficulty, we split the integration area into two domains according to
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1 1 1 1 2 1p
f dxlf dXzf(Xl,X2)=f pdpf dtf(pt,p(l—t))-i—f pdpf dtf(pt,p(1-1)). (A20)
0 0 0 0 1 1-1lp

Performing explicitly the integration ovetp in the first domain, we obtain

iam 1(1 o VAL— ) A )3
152(1)=— 1 = f dtf dr =
16w3’2|‘2<—)(m2_72)1/2 o Jo [rt+(1—7)(1—1)]
4 ™

XIn [y H(m2— )M rt+ (1= D(1-)]+{¥*+(mi— ) [t +(1- 1) (1-1)]}*)]

B ialnae i« 212 C1 A2l
T 16m 1670 2y ym| A2y
where ellipses stand for the higher order termsiand
1 1 T_1/4(1_T)_1/4t_3/4(1_t)_3/4
clzf dtf dr In[7t+(1—7)(1-1t)]=—403%4 ... . (A22)
o Jo [rt+(1-7)(1-1)]"?

The second integral converges wher>0 in the denominator, resulting in

iaCz

12a(2) == ———31 (A23)
4W3/2rz(z)
where
11 2
Cz:zfodfflm(l—ﬂ*”“fl dp Inp(p—1) 3 7+(1-7)(p—1)] ¥?=028... . (A24)

(b) Multiphoton exchanges: In this contribution we can safely replace the smooth factor in the denominator
[w(p)w(q)]*2—m, . Then

d*p dg I1x(P.Q) 1dp
lop=—i f = = =—i f—j’ , A25
=T G @ A e A29
where, according to Eq10),
dp  d%q 1
‘ﬂb(p):J 3 3024 22)(g 24 ~2
(2m)* (2m)° (p“+ y)(q“+¥°)
X ! ! (A26)
(p=@)?p+m_ 2 2(p%+y)(q %+ ¥)(1-p)? m %a 2(p+y*)(q%+ 7]
Introducing Feynman parameters and carrying out the momentum integration, we obtain
PR [1{1 dx . e
Zb(p)_lﬁﬂi o d_d¥2(d¥2+dY?) s
and
, i
IZbZ_E' (A28)

(c) Factorizing integrals: The integral containing the functi®is evaluated in the straightforward manner, resulting in
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, 17 o
IZCZ_E_‘_“'. (A29)

The “derivative” term 17 can be easily calculated. The integration in the variaplesdq again factorizes, and we have

5= a A30
2= 16s (A30)
Putting all together, we finally arrive at the result

PRI DL YRP A ac. 1 na—2.694, (A31)

»=—Ina ——2In2— - Na—

16 16| 8 0 A2 E _apa l " 167
4 4
which is substituted in Eq.32).
APPENDIX B

In this appendix we shall present the calculation of the integrals appearing in the electromagnetic radiative cdiections

(45)]:

d4 d4 ie?[(M*)2—(po+0o)? m, -~ o~
[ eamnpy Pt g e g i@ Ty e =TT, ®1)
(2m)* (2m)* (p—q)? q +y2
Integrating over the relative energy variables, the first term is rewritten in the form
5 eZ(M*)zf d3p 1 f d3q 1 Amam_dy
1= > EES >
4 2m)3 w(p)(p?+9A) ) (2m)% [w(a)1¥Ap—a)? (4%+ 9?2
e2¢o(M*)2 [ d3p 1
$ol )f p _ . (82)
am? ) (2m)® w(p)(p?+ )2
Using the same trick as in EgeA1)—(A3), we can write
~ & e? fw dp ¢>0( 2a
l1=—%| 1-— +o | =— - —|+ - B3
! m}r’z( 2m2Jo (1+p?) Y1+ (1+p?)'? mY/2 ™ E3)

In the calculations of , the term containing @,q, vanishes since it is odd ip, and q,. Thus one can writ52=lé
+ I’2’ wherel} andT} containp? andq3, respectively.
I2 is ultraviolet divergent. Introducing dimensional regularization, we can write

2

‘ P5 d" p
J’ ﬁGO(M*?D)(»_—O»)Z—’_(,U«Z 27n/2J’ 2 F;n = 2 PO 2 -
i P=a " 5+p) —miH(g—p) —mi}(p—q)z

= 2(N5+4+ wa) nVM) (84)
16m lal ~ w(a)+]al
and
=—(N +2) ¢1‘jz (B5)

~I’2’ does not contain the ultraviolet divergence. Integrating over relative energy variables, we obtain
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dp d3%q 1 1 4mam,
__f p Tam o (86)

4] 2m)® 2m)® wip) W) T2 (p-9Ap2+y?) (q2+9)

It is easy to see thanz’ leads to a modification of the* 7~ decay width in the orde®Ina and thus can be safely neglected.
The final result readgcf. with Eq. (45)]

.~~~ a 3a
I=11+1,= 1/2(1+ENE—Z). (B7)
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