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The hadronicp1p2 atom is studied in the relativistic perturbative approach based on the Bethe-Salpeter
equation. The general expression for the atom lifetime is derived. Lowest-order corrections to the relativistic
Deser-type formula for the atom lifetime are evaluated within chiral perturbation theory. The lifetime of the
p1p2 atom in the two-loop order of chiral perturbation theory is predicted to bet15(3.0360.10)
310215 s. @S0556-2821~98!07919-3#

PACS number~s!: 12.39.Fe, 11.10.St, 13.40.Dk, 13.40.Ks
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I. INTRODUCTION

The pion-pion scattering amplitude at low energies for
one of the basic building blocks in the hierarchy of stro
interaction processes. It serves as a useful probe for the
vestigation of the effect of chiral symmetry breaking since
the chiral limit the pion interactions vanish at the thresho
According to common belief, low-energy interactions
pions are described within chiral perturbation theory~ChPT!
@1,2# which exploits the full content of global QCD symme
tries. Thepp→pp amplitude in ChPT is obtained as a
expansion in quark masses and external pion momenta.
predictions of ChPT are sensitive to the magnitude of

quark condensatê0uq̄qu0&. In the standard scheme@1# with
a ‘‘large’’ condensate, theS-wavepp scattering lengths are
predicted to bea0

050.217 anda0
02a0

250.258 in units of the
inverse charged pion mass@3#. Calculations within the gen
eralized ChPT with a small quark condensate which conta
more parameters lead to a most likely value ofa0

050.27 @2#.
Despite a significant difference between these numbers,
results for the scattering lengtha0

0 are compatible with the
experimental valuea0

050.2660.05@4#. Consequently, a pre
cise measurement ofpp scattering lengths will be an exce
lent test of ChPT. In particular, an experiment of that s
would provide important information about the behavior
the quark condensate in the chiral limit which in its turn
related to the properties of the QCD gluon vacuum.

An experimental study of thepp scattering process is
very difficult task mainly due to the absence of a pion targ
Indirect information extracted from the available data f
e.g., the processpN→ppN @5# produces large error bar
when extrapolated to the two-pion threshold. The study
0556-2821/98/58~9!/094024~22!/$15.00 58 0940
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Ke4 decay, which is preferable for determining of the para
eters ofpp interaction near threshold, is complicated b
cause of a very small branching ratio of this process@4# ~for
a review of the recent status ofpp experiments see, e.g
Ref. @6#!. In view of the above-mentioned experimental u
certainty in the determination of thepp data near threshold
the forthcoming high-precision measurement of thep1p2

atom lifetime by the DIRAC Collaboration at CERN~project
no. PS212! has attracted much attention since it will allo
direct determination of the differencea0

02a0
2 and thus will

provide an excellent probe for the predictions of ChPT. T
possibility of the observation of such atoms was argued
Ref. @7#. The first estimation of the lifetime of an atom
formed byp1 and p2 in the ground 1S statet152.922.1

1`

310215 s was given in Ref.@8#. The expected high-
precision experimental data from the DIRAC experiment c
for a refined theoretical treatment of this sort of bound s
tem.

Since the characteristic average momenta in hadronic
oms are of an order of a few MeV, these systems are hig
nonrelativistic. With the use of this fact the nonrelativist
Deser formula was derived in Refs.@9,10#. For the particular
case of thep1p2 atom the formula reads

tn
215

16p

9 S 2Dmp

mp
D 1/2

~a0
02a0

2!2uCn~0!u2, ~1!

which relates the lifetimetn of the atom in then-excited
state to the value of the Coulomb wave function~WF! of the
atom at the originCn(0) and the difference of theS-wave
pp scattering lengths with total isospinI 50 andI 52. Us-
ing the standard ChPT two-loop values of the scatter
lengths given above, for the pionium ground-state lifetim
©1998 The American Physical Society24-1
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from Eq. ~1! one obtainst153.20310215 s. Note that in
Eq. ~1! one assumes isospin symmetry when expressing
scattering length for the reactionp1p2→p0p0 in terms of
scattering lengths with a definite total isospin, though
factorDmp on the right-hand side~RHS! of Eq. ~1! indicates
the necessity of taking into account the isospin-breaking
fects in the theoretical description of the decay process. N
also that Deser-type formulas for the energy level displa
ment and lifetime are now widely used for the theoreti
analysis of the experimental data for other hydrogenl
bound systems, such as pionic hydrogen@11#, pionic deute-
rium @12#, etc.

It is well known that Deser-type formulas for hadron
atoms in nonrelativistic scattering theory are valid up to
electromagnetic corrections to hadron scattering process
the mass difference between the charged and neutral com
nents of the isotopic multiplet is assumed to be of a pur
electromagnetic origin. Put differently, the clear-cut fact
ization of strong and electromagnetic interactions in the h
ronic atom observables, which is explicit in Eq.~1!, is valid
up to ~small! electromagnetic effects. In Ref.@13# a regular
approach was constructed for the evaluation of these cor
tions. The ideas of this approach have been successfully
plied to the study of the properties of ap1p2 atom in Refs.
@14,15# where the coupled-channel scattering problem w
(p1p2) and (p0p0) free pairs in the asymptotic states h
been considered. Nonrelativistic scattering theory has b
used for the investigation of hadronic atoms also in Re
@16,17#. Note, however, that the very ‘‘narrow’’ and ‘‘deep’
phenomenologicalpp potentials used in Ref.@17# lead to
instability in the calculated observables of the bound s
with respect to a small variation of input parameters. T
strong enhancement of the potential in the vicinity of t
origin within the inverse scattering theory approach, used
the authors of Ref.@17#, stems mainly from the particula
parametrization of thepp scattering phase shift in the high
energy domain, where theoretical calculations of this qu
tity cannot be performed.

To summarize, the lowest-order Deser formula~1! and its
counterpart for the energy-level displacement of an atom
to strong interactions are valid irrespective of the concr
choice of the strong interaction potential between hadro
The magnitude and, even, the sign of corrections to it, ho
ever, strongly depend on this choice. For a theoretical an
sis of the high-precision experimental data expected from
DIRAC experiment, a model-independent evaluation of th
corrections is needed, based on the underlying~chiral! La-
grangian dynamics of hadrons, rather than the nonrelativ
potential picture of strong interactions.

The problem of a relativistic description of hadronic a
oms is much richer in content than the same problem in
nonrelativistic scattering theory formulation. Many new e
fects which were absent, or were mimicked in the poten
treatment, now arise naturally from the beginning~e.g., the
‘‘vacuum polarization’’ and ‘‘finite size’’ corrections which
are borrowed in the potential picture from field theory!.
Namely, the problem of the evaluation of the atom lifetim
on the basis of the underlying strong interaction dynam
was addressed in Refs.@18,19#. Reference@20# deals with the
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so-called retardation correction in the pionium lifetime.
Ref. @21# the radiative corrections topp scattering lengths
have been evaluated, which induce the correspondingO(a)
correction in the pionium lifetime. Recently, a paper by J
louli and Sazdjian appeared@22# which is aimed at a consis
tent description of the properties of thep1p2 atom on the
basis of the 3D bound-state equation obtained in the fra
work of constraint theory, with the underlying strongpp
interactions described by ChPT. The authors have calcul
corrections to the pionium lifetime coming from the ma
differencemp62mp0, as well as corrections from second
order perturbation theory and electromagnetic radiative c
rections. In Ref.@23# the correction due to vacuum polariza
tion to the pionium lifetime was calculated. Below we sh
present a detailed comparison of our results with those gi
in Refs.@22,23#.

Our previous papers@24,25# were aimed at a consisten
field-theoretical treatment ofp1p2 atom observables on th
basis of the Bethe-Salpeter~BS! equation. Namely, in Ref.
@24# we derived the relativistic analogue of the Deser fo
mula ~1! for the pionium lifetime and evaluated the corre
tion to it, coming from the displacement of the bound-sta
pole by strong interactions, referred to hereafter as
‘‘strong correction.’’ In Ref.@25# we presented a systemat
perturbative approach based on the BS equation for the
culation of hadronic atom observables. In this paper we g
a closed expression, containing all first-order corrections
the pionium lifetime, and evaluate part of them. Name
apart from the ‘‘strong correction,’’ which is reproduce
here, we calculate the correction due to the exchange of C
lomb photon ladders, corresponding to the ‘‘second-or
perturbation theory’’ correction from Ref.@22#, and the rela-
tivistic correction to the bound-state WF.

The purpose of the present paper is to give a deta
description of the systematic perturbative approach to
hadronic atom characteristics, based on the BS bound-s
equation. This approach is by construction free of a
double-counting problems. Within this approach we colle
together and calculate or give an estimate of all lowest-or
corrections to the Deser-type relativistic formula for the
onium lifetime. The underlying strongpp interactions
within our approach are described in ChPT. Consequen
the results of the present calculations of the lifetime of
p1p2 atom form a self-consistent basis for the verificati
of the predictions of ChPT in the DIRAC experiment. Fu
ther, in the present paper we discuss in detail the links
other approaches used for the description of thep1p2 atom
and, in particular, that from Refs.@22,23#.

The layout of the present paper is follows: In Sec. II, w
present a detailed description of the perturbative approac
the p1p2 atom characteristics. In this section, we give
closed expression for the first-order correction to the
onium lifetime. In Sec. III, we give an evaluation, term b
term, of various first-order corrections to the Deser form
~1!. Section IV contains our conclusions.

II. PERTURBATIVE BETHE-SALPETER APPROACH
TO THE p1p2 ATOM

The evaluation of corrections to the Deser-type formu
for hadronic atom observables cannot be confined solel
4-2
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p1p2 ATOM IN CHIRAL PERTURBATION THEORY PHYSICAL REVIEW D 58 094024
the evaluation of corrections to the pionium WF or to sc
tering lengths in Eq.~1!. One has to develop a consiste
perturbative scheme for the calculation of atom observab
which in the lowest-order approximation should yield t
Deser-type relations for these quantities. Our approac
based on the field-theoretical BS equation with the ker
constructed from the underlying Lagrangian of ChPT.

Below we shall briefly discuss the basic ideas and
sumptions of the approach which employs the followi
physical picture. The formation of ap1p2 atom proceeds
mainly due to the static Coulomb potential whereas stro
interactions are responsible for its decay. The atom is
scribed by the exact WF which obeys the field-theoretical
equation. For our purposes we split this kernel into a C
lomb piece and the remainder, the latter considered in
scheme as a perturbation. Then, the exact BS WF is rel
to the relativistic Coulomb WF in the perturbation theor
The crucial point of our approach is that with the use of
above relation the observables of an atom~lifetime and bind-
ing energy! in every perturbative order are expressed
terms of the Coulomb WF. In the leading order of a pert
bative expansion we reproduce the Deser formulas for a
observables@9#. The next-to-leading term in the perturbativ
expansion produces all lowest-order corrections to the D
formulas.

Let us now pass to the description of the perturbative
approach top1p2 atom observables. The existence of
quasistablep1p2 atom (t;10215 s) corresponds to the
bound-state pole in the four-point Green function for t
transition p1p2→p1p2 at a complex value of the c.m
energyP25M̄25M22 iM G. Here M denotes the ‘‘mass’’
of an atom, andG stands for the decay width. Hereafter a
formulas are restricted to the c.m. system~c.m.s.! of an atom.

The BS WF of an atomxBS for P2→M̄2 obeys the exac
BS equation~Fig. 1a!

G2
21~P;p!xBS~P;p!5E d4q

~2p!4
VBS~P;p,q!xBS~P;q!.

~2!

Here G2(P;p)5D( 1
2 P1p)D( 1

2 P2p) is the two-pion
Green function whereD(k) stands for the dressed pio
propagator. Further,VBS denotes the BS equation kerne
which is a sum of all four-point one-particle-irreducible di
grams with amputated external legs.

It is appropriate to ‘‘transfer’’ the self-energy insertion
in the charged pion external legs to the RHS of the
equation. This can be easily achieved if one defin
x(P;p)5G0(P;p)G2

21(P;p)xBS(P;p) and V(P;p,q)
5VBS(P;p,q)G2(P;q)G0

21(P;q), where G0(P;p)5

i @( 1
2 P1p)22mp

2 #213 i @( 1
2 P2p)22mp

2 #21 is the free two-
particle Green function andmp5mp6 denotes the charge
pion mass. The diagrammatic expansion of the new kernV
is given in Fig. 1b. In addition to the diagrams included
the ‘‘true’’ kernel VBS, it contains the self-energy diagram
in outgoingexternal pion legs, i.e., onlyhalf of the possible
insertions in external legs. Note that this property of the n
09402
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kernel V is crucial for proving the gauge invariance o
bound-state characteristics, as well as for demonstrating
cancellation of infrared singularities in these characteris
~see below!. The BS equation for the new WFx depicted in
Fig. 1c is given by

G0
21~P;p!x~P;p!5E d4q

~2p!4
V~P;p,q!x~P;q!. ~3!

The kernelV contains the instantaneous Coulomb partVC
which, in a complete analogy with the positronium case
responsible for the formation of the bound state compose
p1 andp2. We are willing to develop the perturbative ex
pansion of the atom observables in the ‘‘remainder’’ of t
potential denoted byV85V2VC . For this purpose we give
first a complete solution of the ‘‘unperturbed’’ problem, wit
the kernel containing only the instantaneous Coulomb pa

We choose the instantaneous Coulomb part of the po
tial, according to the Barbieri-Remiddi prescription@26#, to
be @25#

VC~pW ,qW !5@w~pW !#1/2
4impe2

~pW 2qW !2
@w~qW !#1/2,

w~pW !5~mp
2 1pW 2!1/2. ~4!

Note that the particular choice of the Barbieri-Remiddi ke
nel ~4! is only the matter of convenience and the final resu
are not affected by this choice~below we shall demonstrat
this property of the perturbative expansion explicitly!. How-

FIG. 1. Diagrammatic representation of the Bethe-Salpe
equation for thep1p2 atom WF. Initial equation~a! through the
redefinition of the kernel~b! and the WF is transformed into equa
tion ~c!. The new kernelV contains the self-energy insertions in th
outgoingexternal lines only@see~b!#.
4-3
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ever, choosing Eq.~4! as an initial kernel, one can take a
vantage of the fact that the BS equation with a kernel of t
sort is exactly solvable, with the properly normalize
ground-state solution given by@25#

cC~p!5 iG0~M !;p!4@w~pW !#1/2
4pampf0

pW 21g2
,

c̄C~p!5cC~p!, ~5!

whereg5 1
2 mpa, pf0

25g3, and (M !)25mp
2 (42a2) is the

eigenvalue corresponding to the unperturbed ground-s
solution. The c.m.s. momentum in the free Green funct
G0 in Eq. ~5! has the components (M !,0W ).

The normalization condition for the Coulomb WF rea
as

^cCuN~M !!ucC&51,

N~M !;p,q!5~2p!4d~4!~p2q!
i

2M !

]

]M !
G0

21~M !;p!,

~6!

and the scalar product in momentum space is defined by
integral overd4q/(2p)4. We shall use this shorthand not
tion hereafter.

The exact solution for the Green function, correspond
to the nonrelativistic Coulomb problem, was given
Schwinger@27#: Using this result, one can obtain the solutio
for the 4D Coulomb Green function corresponding to t
kernel ~4! @25#:

GC~P!;p,q!5~2p!4d~4!~p2q!G0~P!;p!1G0~P!;p!

3@w~pW !w~qW !#1/2TC~E!;pW ,qW !G0~P!;q!, ~7!

where

TC~E!;pW ;qW !516ipmpaF 1

~pW 2qW !2
1E

0

1 ndrr2n

D~r;E!;pW ,qW !
G ,

D~r;E!;pW ,qW !

5~pW 2qW !22
mp

4E!
S E!2

pW 2

mp
D S E!2

qW 2

mp
D ~12r!2,

n5aS mp

24E!D 1/2

, E!5
~P!!224mp

2

4mp
. ~8!

The first and second terms on the RHS of Eq.~8! correspond
to the exchange of one and multiple Coulomb photons,
spectively. In the vicinity of the bound-state pole (P!)2

→(M !)2, n→1, and the integral on the RHS of Eq.~8!
diverges as*0

1dr/r. Extracting this divergent piece, whic
corresponds to the bound-state pole in the Green funct
one can write
09402
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GC~P!;p,q!5 i
cC~M !;p!c̄C~M !;q!

~P!!22~M !!21 i0
1GR~P!;p,q!,

~9!

where in the vicinity of the bound-state pole the regular p
of the Coulomb Green function takes the form

GR~M !;p,q!5~2p!4d~4!~p2q!G0~M !;p!

1 i @w~pW !w~qW !#1/2

3F F̃~pW ,qW !2S~pW !S~qW !
8

M !

]

]M !G
3G0~M !;p!G0~M !;q!,

F̃~pW ,qW !516pmpaF 1

~pW 2qW !2
1I R~pW ,qW !G

1
1

~mpa!2
S~pW !S~qW !R̃~pW ,qW !,

S~pW !5
4pmpaf0

pW 21g2
,

R̃~pW ,qW !5202S 8

pmpa D 1/2

@S~pW !1S~qW !#,

I R~pW ,qW !5E
0

1dr

r FD21S r;2
1

4
mpa2;pW ,qW D

2D21S 0;2
1

4
mpa2;pW ,qW D G . ~10!

The solutionx(P;p) of the exact BS equation~3! can be
expressed via the unperturbed solutioncC(M !;p) by the fol-
lowing limiting procedure@24,25#:

^xu5C^cCuGC
21~P!!G~P!, ~P!!2→~M !!2, P2→M̄2,

~11!

whereC denotes the normalization constant. Note that t
relation is the relativistic generalization of the well-know
nonrelativistic formula

^xu5 lim
h→0~1 !

ih^c0u
1

E2H1 ih
, ~12!

which connects eigenvectors of the total HamiltonianH with
the unperturbed eigenvectors~see, e.g.,@28#!.

The result in Eq.~11! depends on the details of the limi
ing procedure. This equation makes sense if the quant
(P!)22(M !)2 and P22M̄2 are assumed to be infinitesima
variables of equal strength. In Refs.@24,25# we have as-
sumed the prescription (P!)25(M !)21l, P25M̄21l,
l→0. Note that we can employ this prescription without lo
of generality, since the change of the direction in t
4-4
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„(P!)2,P2
… plane along which this limiting procedure is pe

formed affects only the normalization constantC. Further,
the validity of Eq.~11! can be trivially checked by extractin
the bound-state pole inG(P) and using the BS equation fo
^cCu.

Let us now introduce the relativistic generalization of t
projector operator onto the states orthogonal to the grou
state solution:

Q512N~M !!ucC&^cCu. ~13!

Then, with the use of the Hilbert identity it is easy to dem
onstrate that Eq.~11! can be rewritten as follows:

^xu5^xuN~M !!ucC&^cCu

3$11V8~P!@G0
21~P!!2VC2QV8~P!#21Q%

2^xuDG0
21@G0

21~P!!2VC2QV8~P!#21Q, ~14!

where DG0
215G0

21(P)2G0
21(P!) and the limiting proce-

dure is implicit. In the derivation of Eq.~14! we have used

^cCuGC
21~P!!@G0

21~P!!2VC2QV8~P!#2150, ~15!

which stems from the fact that the inverse operator on
LHS of this equation does not have a pole in this limit. W
the limiting prescription chosen above the normalizat
constant equals@24#

2C215^xuN~M !!ucC&. ~16!

Equation~14! can be solved with respect to^xu, resulting
in

^xu52C21^cCu@11V8~P!GVQ#@11DG0
21GVQ#21,

~17!

where the operatorGVQ obeys the equation

GVQ5GR~P!!Q1GR~P!!QV8~P!GVQ ~18!

and GR stands for the regular part of the Coulomb Gre
function. It can be easily demonstrated that Eq.~17! can be
rewritten as

^xu52C21^cCu$11@DG0
212V8~P!#GRQ%21. ~19!

Substituting this solution into the complete BS equation~3!
and using the BS equation for the functionucC&, we arrive at
the final relation

^cCu$11@DG0
212V8~P!#GRQ%21

3@DG0
212V8~P!#ucC&50, ~20!

which provides the basis for the perturbative expansion
bound-state observables~the energy of the atomic level an
decay width!. Namely, the only unknown quantity on th
LHS of Eq. ~20! is the bound-state total four-momentumP,
09402
d-

-

e

f

which enters parametrically into this expression. Expand
the LHS of Eq.~20! in perturbation theory up to a give
order, one can then the determine bound-state observa
with a required accuracy. Note also that Eq.~20! is a com-
plex equation, and in every perturbative order it provides t
real equations for determining the energy level shift and
cay width.

Equation~20!, however, still contains the BS kernel, an
does not contain thepp scattering amplitudes. Below w
carry out first-order perturbative calculations and dem
strate explicitly that only these amplitudes appear in the fi
result. For this purpose let us note first that the quantityGRQ

in Eq. ~20! is given by formulas similar to Eqs.~10!, with F̃

and R̃ replaced byF andR, respectively, and

R~pW ,qW !5R̃~pW ,qW !151higher orders ina ~21!

@this can be demonstrated by straightforward calculatio
using Eqs.~5!, ~6!, ~10!, and~13!#. We isolate the free part in
GRQ by writing GRQ5G0(M !)1dG.

Let us now turn to the perturbation kernelV8(P). This
potential can be decomposed into the following parts.

~1! A purely strong part, which is isotopically invarian
This part survives when electromagnetic interactions
‘‘turned off’’ the theory.

~2! The part which is responsible for themp62mp0 elec-
tromagnetic mass difference.

~3! Remaining electromagnetic effects, including the e
changes of virtual photons.

Parts~1! and~2! are regarded to be more important for th
following reasons. The first term includes strong interactio
which govern the decay of a pionium. The second te
makes this decay kinematically allowed. Consequently
seems to be natural to consider them together, denoting
corresponding potential asV125V11V2 . The T matrix cor-
responding to summation of the potentialV12 in all orders is
given by T12(P)5V12(P)1V12(P)G0(P)T12(P). The rest
of the potential is referred to asV35V82V12 and is treated
perturbatively.

We would like to emphasize once more that this splitti
is rather convention dependent and is dictated by con
nience considerations. In practice it is convenient to inclu
into parts~1! and ~2!, as much terms as possible. It is obv
ous, however, that the final results do not depend on
prescription chosen for that splitting.

We perform the perturbative expansion of the basic eq
tion ~20! in V3 anddG up to the first nontrivial order. Mean
while we expandDG0

21 in a Taylor series in the variable

dM5M̄2M ! and substitute

M̄5M !1DE~1!1DE~2!2
i

2
G~1!2

i

2
G~2!

1
1

8M !
~G~1!!21•••. ~22!

Expressing everywhereV12 in terms ofT12, we finally arrive
at the identity
4-5
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0522iM !dM2^cCuT12ucC&1dM ^cCu~G0
21!8G0T12ucC&1

1

2
~dM !2^cCu~11T12G0!~G0

21!91~G0
21!9G0T12ucC&

1^cCu„dM ~G0
21!82T12…dGT12ucC&2^cCu~11T12G0!V3~11G0T12!ucC&, ~23!
a-

e
y
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q
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i
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th
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n

tion
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of
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ut
whereG05G0(M !) and the prime stands for the differenti
tion with respect toM !.

Equation ~23! contains all first-order corrections to th
pionium lifetime. Below we examine this relation term b
term. Note that we employ the commonly accepted ‘‘loca
approximation; i.e., we assume that the quantityT12 does not
depend on relative momenta. The origin of this approxim
tion can be traced to the ‘‘sharpness’’ of the Coulomb WF
an atom which in momentum space has the character
range g;1 MeV, much smaller than typical hadron
scales.

III. RELATIVISTIC DESER-TYPE FORMULAS WITH
LOWEST-ORDER CORRECTIONS

In the lowest-order calculations only the first two term
on the RHS of Eq.~23! contribute. Further, one can assum
cC(0)5*d4k/(2p)4cC(M !;k)5mp

21/2f0 in this approxi-
mation. Then, taking the real and imaginary parts of E
~23!, we arrive at

DE~1!5ReS iT12

2M !mp

f0
2D , 2

1

2
G~1!5ImS iT12

2M !mp

f0
2D .

~24!

Further, we can write

Re ~ iT12!516pT p1p2→p1p2~4mp
2 ;0W ,0W !,

Im~ iT12!5216pS Dmp

2mp
D 1/2S 12

Dmp

2mp
D 1/2

3uT p1p2→p0p0~4mp
2 ;0W ,qW 0!u2, ~25!

whereT(s;pW ,qW ) denote the~dimensionless! S-wavepp scat-

tering amplitudes andqW 0 is the relative momentum of th
p0p0 pair at the thresholds54mp

2 , with the magnitude

given by the relationmp
2 5mp0

2
1qW 0

2 .
We would like to emphasize that the second relation

Eq. ~25! differs from an analogous relation given in Re
@22#, though the starting equations~24! in both papers coin-
cide. In Ref.@22# the magnitude of the three-momentum bo
for p1p2 andp0p0 pairs was set equal to 0. Consequent
neutral pions in the final state turned out to be off sh
Contrary to Ref.@22# we deduce from the Cutcoski’s rul
that neutral pions in Eq.~25! are on shell. Note that this
discrepancy with Ref.@22# leads todifferentpredictions for
the corrections, e.g., due to the mass differencemp62mp0 in
one loop~see below!.
09402
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Substituting Eq.~25! into Eq. ~24!, we reproduce the
lowest-order relativistic Deser-type formulas for the energ
level shift and lifetime of the pionium:

DE5
4p

mp
2
T p1p2→p1p2f0

2 ,

G5
16p

mp
2 S 2Dmp

mp
D 1/2S 12

Dmp

2mp
D 1/2

uT p1p2→p0p0u2f0
2 .

~26!

A. Relativistic correction to the pionium WF

The correction in the pionium lifetime coming from th
effect is contained in the second term of Eq.~23!. Namely,
up to O(a) terms

cC~0!5E d4k

~2p!4
cC~M !;k!5

f0

mp
1/2~12C0a!,

C050.381 . . . ~27!

~details can be found in Appendix A!. Thus, up to order
O(a) in the local approximation the second term in Eq.~23!
reads asmp

21T12f0
2(122C0a). The term proportional to

C0a in this expression induces the corresponding correc
in the pionuim lifetime. Note that the value of this correctio
is determined by the expression of the unperturbed solu
cC , Eq. ~5!, and hence depends on the particular choice
the instantaneous Coulomb part of the potential@for our case
the Barbieri-Remiddi prescription~4!#. We shall see, how-
ever, that in the full expression for the correction to the at
lifetime the term proportional toC0a disappears, indicating
that the final results do not depend on a particular choice
the zeroth-order kernel.

B. Correction due to the displacement of the bound-state pole
by strong interactions

This correction is induced by the third and fourth terms
Eq. ~23!. The calculation of this sort of integral is carried o
in a straightforward way~see Ref.@24#!. Below we give the
result of these calculations:
4-6
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^cCu~G0
21!8G0T12ucC&5T12cC~0!E d4p

~2p!4
c̄C~M !;p!

3@G0
21~M !;p!#8G0~M !;p!

5
i

a2

iT12f0
2

mp
2

1•••, ~28!

^cCu~G0
21!9ucC&5E d4p

~2p!4
c̄C~M !;p!

3@G0
21~M !;p!#9cC~M !;p!

5
10i

a2
1•••, ~29!

^cCuT12G0~G0
21!9ucC&5cC~0!T12E d4p

~2p!4
G0~M !;p!

3@G0
21~M !;p!#9cC~M !;p!

52
2i

a2

iT12f0
2

mp
3

1•••

5^cCu~G0
21!9G0T12ucC&, ~30!

and ellipses stand for higher-order terms ina. From Eq.~24!
it is easy to see that the real and imaginary parts of inte
~30! are down by small factorsDE(1)/mp and G (1)/mp as
compared to integral~28!. Therefore we shall neglect Eq
~30! in our calculations.

Note that Eq.~28! contains the second derivative of th
inverse free Green functionG0 with respect to the bound
state mass. Hence this is a true relativistic correction aris
from the BS treatment of the bound-state problem since
nd

n
g

he
a
be

ia-

09402
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the nonrelativistic case the free inverse Green function
linear in the bound-state energy~cf. Ref. @24#!

C. Correction due to the exchange of Coulomb photons

This correction stems from the fifth term of Eq.~23!. The
calculation of the corresponding integrals is considered
Appendix A. Below we give the results:

^cCu~G0
21!8dGT12ucC&

5T12cC~0!E d4p

~2p!4

d4q

~2p!4
c̄C~M !;p!

3@G0
21~M !;p!#8dG~p,q!

52
i

a2

iT12f0
2

mp
2

1•••, ~31!

^cCuT12dGT12ucC&

5~T12!
2@cC~0!#2E d4p

~2p!4

d4q

~2p!4
dG~p,q!

5
ia

16pmp
~ lna22.694!~T12!

2f0
21•••, ~32!

where the term nonanalytic in the fine structure const
@containing lna in Eq. ~32!# comes from the infrared-singula
one-photon-exchange piece in the Coulomb Green func
@Eqs.~10!, ~21!#.

With the calculated integrals and the lowest-order re
tions ~24!, it is a simple algebraic task to derive, from Eq
~22! and~23!, the first-order correction to the pionium deca
width @25#:
~33!
e-
on
rded
eri-

de-
ua-
r a
int
whereE1 stands for the energy of the unperturbed grou
state levelE152mpa2/4.

Comparing Eq.~33! with the corresponding expressio
given in Ref.@22# ~referred to as the ‘‘second-order stron
correction’’!, it is easy to see that our expression for t
contribution of Coulomb photon exchanges contains an
ditional lna term. The origin for this disagreement can
easily established. Namely, the authors of Ref.@22# include
an additional contribution from the so-called ‘‘constraint d
-

d-

gram’’ in this term. This diagram cancels explicitly the on
Coulomb-photon-exchange term, leaving only multiphot
exchanges. We have checked that, having merely disca
this term, after our calculations we come to a result num
cally very close to that given in Ref.@22#. The true result,
however, cannot depend on the formalism used for the
scription of a bound state, either the BS equations or eq
tions of the 3D constraint theory. So one can ask whethe
contribution regarded as the counterpart of the ‘‘constra
4-7
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diagram’’ exists in the BS framework for bound states. T
answer is yes; this diagram is contained in the ‘‘electrom
netic kernel’’V3 in Eq. ~33!. The reason why we include thi
diagram inV3 rather than in the ‘‘second-order correction
is simple: this diagram is accompanied by the diagram
virtual photon exchange~see Fig. 2d! neglected in Ref.@22#.
The latter diagram also produces the lna term which exactly
cancels the corresponding term from the ‘‘constraint d
gram’’ ~below we shall discuss this in more detail!. The re-
mainder is regular in the fine structure constant. Con
quently, we find it more natural at the present stage to o
both these contributions on a equal footing, rather than
retain only one of them, namely, the ‘‘constraint diagram

We would like to mention here that the sign and mag
tude of the nonanalytic term appear to be exactly the sam
in the nonrelativistic treatment of the pionium, indicatin
that, as one could expect from the beginning, the ‘‘elect
magnetic kernel’’ produces the corrections which are a
lytic in a ~at least in the lowest order!. In the scattering
theory, when the electromagnetic corrections are taken
account, the expression for the decay width correspondin
the second relation from Eq.~24!, ImiT12, is replaced by
ImiTcc , where Tcc denotes the scattering amplitude
charged particles at the threshold in the presence of the C
lomb potential@14,15#. Accordingly, it leads to the replace
ment of Im ahad by Im acc , whereahad andacc denote the
‘‘hadronic’’ and exact scattering lengths of charged particl
However, assuming that the hadronic potential has a fi
range denoted byR, the following relation betweenahad and
acc can be established@13,28#:

1

acc
5

1

ahad
2

2

r B
lnS 2R

r B
D1

1

r B
S series in powers of

2R

r B
D ,

~34!

where r B is the Bohr radius of the pionium which is th
inverse proportional toa. So up to logarithmic terms,

FIG. 2. Matrix element describing the ‘‘residual’’ photon e
change. The imaginary part of diagram~a! vanishes at the bound
state energy. Diagram~d!, which is of second order in the ‘‘strong’
amplitude T12, is neglected in the present approximation. T
dashed line denotes the virtual photon propagator, and dots c
spond to the instantaneous virtual photon exchange.

FIG. 3. Matrix element corresponding to the self-energy corr
tion in the external pion legs@Eq. ~43!#.
09402
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Im acc5Im ahadS 12
4Re ahad

r B
lna D

5Im ahadS 12
DE~1!

E1
lna D , ~35!

where in the second relation we have used the Deser form
for the atom energy-level displacement. Consequen
the decay width is modified according toG
→G(12DE(1)lna/E1) @cf. Eq. ~33!#.

In addition, we would like to note that the logarithm
term, which, just as in our approach, is of the second orde
strong interactions@;(T12)

2#, was found by Roig and Swift
@29#. The authors of Ref.@29# have studied the electromag
netic radiative corrections to thepp scattering and discov
ered the term proportional to lnp in the amplitude. When
substituted into bound-state integrals, after rescaling,
usual, the integration momenta byp→gp, this term pro-
duces the lna correction, as in Eq.~33!.

So far our treatment of the pionium decay width has be
incomplete. Now we turn to the calculation of correctio
induced by the last term in Eq.~23! containing the ‘‘electro-
magnetic’’ kernelV3 .

D. Mass shift and radiative corrections

Into the kernelV3 we include the following diagrams: th
diagram with the ‘‘residual’’ photon exchange~i.e. the vir-
tual photon exchange minus Coulomb potential!, Fig. 2, the
self-energy corrections to outgoing pion legs, Fig. 3, t
vacuum polarization diagram, Fig. 4, and the vertex corr
tions, Fig. 5. The contributions containing low-energy co
stants and tadpole terms are included inT12. Thus, we take
here advantage of the arbitrariness in splitting the poten

re-

-

FIG. 4. Vacuum polarization correction.

FIG. 5. Vertex correction.
4-8
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and include all terms inT12 which area priori known to
have a smooth momentum dependence on the bound-
scaleg. Only the potentially ‘‘dangerous’’ terms which con
tain the photon propagator with vanishing mass are to
treated with the bound-state equation.

In this section we are concerned with the first two ter
in V3 . They read as follows.

~1! Residual photon exchange~Fig. 2!:

Vg2VC5 ie2~P1p1q!m~P2p2q!nDmn~p2q!

2VC~pW ,qW !, ~36!

whereDmn denotes the photon propagator. The calculatio
are most easily carried in the Coulomb gauge with

D00~kW !52
1

kW 2
, D0i~kW !5Di0~kW !50,

Di j ~kW !52S d i j 2
kikj

kW 2 D 1

k21 i0
. ~37!

The corresponding matrix element equals

Rê cCu~Vg2VC!1T12G0~Vg2VC!1~Vg2VC!G0T12

1T12G0~Vg2VC!G0T12ucC&.

It is easy to observe that Re^cCu(Vg2VC)ucC&50 at the
bound-state energy. Consequently, the first term in the
trix element vanishes. The following two terms are equal
symmetry considerations. Further, we completely neglect
fourth term in this matrix element~Fig. 2d!. This term, as we
have mentioned before, contains the contribution of ‘‘co
straint diagram’’ given byVC . However, it is obvious tha
theD00 component in the expression ofVg which has exactly
the same infrared singular behavior as the Coulomb pote
leads to the same lna nonanalytic term in the lifetime. In the
expression ofV3 these nonanalytic terms cancel and the
mainder is analytic ina ~at least in the lowest order!. For this
reason we find it safer to neglect the combinationVg2VC
rather thanVg alone, as in Ref.@22#.

The remaining term in the expression of the matrix e
ment is exactly of the form of the ‘‘retardation correction
discussed in Ref.@20#. To demonstrate this, we note th
udcg&5G0(Vg2VC)ucC& gives the first-order perturbativ
correction to the bound-state WF due to the retardation ef
~i.e., the difference betweenVg andVC). The correction in-
duced in the pionium lifetime due to this effect is given b

G→GS 12
1

M !G~1!
Re@2cC~0!T12dcg~0!# D

5GS 11
2dcg~0!

cC~0! D , ~38!
09402
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where the second relation was derived with the use of
~24!. From Eq.~38! it is apparent that the kernelVg2VC is
responsible for the retardation correction in the pionium li
time.

Finally, the matrix element we are looking for can b
written in the following form:

Mg5ReF2cC~0!T12E d4q

~2p!4
~Lg2LC!cC~M !;q!G ,

~39!

where

Lg52 ie2E d4p

~2p!4
G0~M !;p!~P1p1q!m~P2p2q!n

3Dmn~p2q!,

LC52E d4p

~2p!4
G0~M !;p!VC~pW ,qW !. ~40!

~2! The kernel corresponding to the insertion of se
energy graphs into the outgoing pion legs~Fig. 3!:

VS5e2V12~P;p,q!S P̃S P

2
1qD

S P

2
1qD 2

2mp
2

1

P̃S P

2
2qD

S P

2
2qD 2

2mp
2
D ,

~41!

where

P~ l !5 i E d4k

~2p!4

1

~ l 2k!22mp
2 ~2l 2k!m~2l 2k!nDmn~k!,

P̃~ l !5P~ l !2P~ l 25mp
2 !,

Z~ l !5
P̃~ l !

l 22mp
2

, Z6~ l !5ZS P

2
6 l D . ~42!

The corresponding matrix element can be rewritten as

MS5^cCue2T12~Z11Z2!~11G0T12!ucC&. ~43!

We neglect here the term which is of second order in
strong interaction amplitude. Then, the sum of matrix e
ments reads as

Mg1MS5ReF2cC~0!T12E d4q

~2p!4S Lg2LC2
e2

2
Z1~q!

2
e2

2
Z2~q! DcC~M !;q!G . ~44!

We would like to emphasize here that the coefficient1
2 which

emerges naturally in front of the self-energy term on t
RHS of Eq. ~44! ensures that the correction to the dec
4-9



,
x

s
n
th
o

eg
-
e
g
o
ac
-
ar

a-

he
ith

vari-

nal

in

ably

IVANOV, LYUBOVITSKIJ, LIPARTIA, AND RUSETSKY PHYSICAL REVIEW D 58 094024
width calculated from Eq.~44! is gauge invariant. Moreover
it is well known that in this particular combination of verte
and self-energy diagrams the ‘‘photon mass’’ disappear
the calculated width without inclusion of the ‘‘soft photo
emission’’ terms, which seem to be rather awkward in
context of the bound-state problem. In its turn, the origin
the coefficient12 can be traced back to Eq.~3!, where, as was
mentioned before, the kernelV contains only half of all pos-
sible self-energy graphs attached to the external pion l
Note also than in theS-matrix elements the origin of emerg
ing the coefficient12 is quite different. In the latter case on
takes into account all self-energy graphs in the external le
However, restricting these matrix elements on mass shell
encounters an expression of the type 0/0 which can be t
led, introducing an explicit ‘‘smearing function’’ in the ini
tial Lagrangian. Passing then to the limit when the ‘‘sme
09402
in

e
f

s.
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ne
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ing function’’ tends to unity, one discovers the coefficient1
2

which multiplies the contribution from the self-energy di
gram~for a detailed discussion see e.g.,@30#!. Consequently,
though the coefficient12 emerges in the bound state and t
scattering problems from different sources, one ends up w
the same expression in these two cases, being gauge in
ant and infrared finite at threshold.

The integral on the RHS of Eq.~44! can be easily evalu-
ated in the Coulomb gauge, bearing in mind that the fi
result is gauge invariant.

In the calculation of the contribution fromLg one can use
the fact that theDi j component of the photon propagator
the Coulomb gauge contributes only in orderO(a2lna) in
the decay width and thus can be neglected. This consider
simplifies the calculations. The result reads as~details can be
found in Appendix B!
en by
E d4q

~2p!4
LgcC~M !;q!5E d4p

~2p!4

d4q

~2p!4
G0~M !;p!

ie2@~M !!22~p01q0!2#

~pW 2qW !2
G0~M !;q!4i @w~qW !#1/2

4pampf0

qW 21g2

5
f0

mp
1/2S 11

a

4p
Ne2

3a

2p D1•••, ~45!

where the dimensional regularization was used to handle the ultraviolet divergences, and

Ne5
1

22n/2
1G8~1!1 ln4p2 lnS mp

2

m2 D ,

with n being the dimension of space andm the mass scale used in dimensional regularization.
The contribution containingLC can be trivially carried out:

E d4q

~2p!4
LCcC~M !;q!5E d4p

~2p!4

d4q

~2p!4
G0~M !;p!

4impe2@w~pW !w~qW !#1/2

~pW 2qW !2
G0~M !;q!4i @w~qW !#1/2

4pampf0

qW 21g2

5mpe2E d3pW

~2p!2

d3qW

~2p!2

1

w~pW !1/2

1

pW 21g2

1

~pW 2qW !2

4pampf0

~qW 21g2!2
5

f0

mp
1/2~12C0a!1•••. ~46!

The pion self-energy graph~42! calculated within the dimensional regularization scheme in the Coulomb gauge is giv

P~ l !52S 3mp
2

16p2
Ne1

7mp
2

16p2D 2DS 1

8p2
Ne1

1

4p2D 1F2
D

8p2
L2

lW2

6p2

D

mp
2 1D

lnS 2
D

mp
2 D 2

~ lW 2!2

3p2
@ I ~ lW 2;D!2I ~ lW 2;0!#G ,

~47!
Eq.

cal-
s

whereD5 l 22mp
2 1 i0 and

L521
w~ lW !

u lWu
lnS w~ lW !2u lWu

w~ lW !1u lWu
D , L5O~ lW 2! at smallu lWu,

I ~ lW 2,D!5E
0

1

dxE
0

1

du
xu4

x~12u2! lW 21xmp
2 2~12x!D

.

~48!
Note that the terms in square brackets on the RHS of
~47! are of higher order inu lWu and/orD as compared to the
second term in the round brackets. Consequently, in the
culations in the lowest order ina the term in square bracket
can be dropped, since it contributes only in ordera2lna.
Then we immediately obtain

Z6~ l !52
1

8p2
Ne2

1

4p2
1••• ~49!
4-10
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and

MS5ReF2@cC~0!#2T12~2e2!S 2
1

8p2
Ne2

1

4p2D G .

~50!

Putting things together, we finally obtain

Mg1MS52Re T12

f0
2

mp
S 3a

4p
Ne1C0a2

a

2p D , ~51!

which induces the corresponding first-order correction in
p1p2 atom decay width:

G→GS 3a

2p
Ne12C0a2

a

p D . ~52!

The above expression is of course ultraviolet divergen
is well known that, along with the diagrams contributing
this expression, one should consider the four-p
Lagrangians containing~divergent! low-energy constants in
order to cure this ultraviolet divergence. This will be do
below. We would like to mention here that the term 2C0a
from this expression cancels with a similar term comi
from the atom WF in Eq.~33!, and the final result for the
decay width does not depend on the initial approximat
chosen for the Coulomb WF of an atom~as it should be!.
Further, the term2a/p exactly coincides with the resu
given in Ref.@22# obtained from the same set of diagrams
an arbitrary covariant gauge. This provides an independ
check of the gauge invariance of our result also for non
variant gauges~and, in particular, for the Coulomb gauge!.

Below we would like to discuss briefly the connection
our result with the ‘‘retardation correction’’ given in Re
@20#. As we have mentioned above, the matrix elementMg
gives exactly what is called the ‘‘retardation correction
Note, however, that our result differs somewhat from that
Ref. @20#. Namely, in this paper the virtual photon-exchan
diagram corresponds to the Wick-Cutcoski model, wher
we have used the pion-photon vertex which emerges in
lar electrodynamics. The ultraviolet divergence which occ
in our result is a consequence of the choice of the pi
photon vertex. Thus, strictly speaking, the present resu
and the results of Ref.@20#, refer to different physical mod
els, and cannot be directly compared. Further, as we h
09402
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ve

seen, the contribution fromMg alone is gauge dependen
and should be combined with the self-energy diagrams
yield a gauge-invariant result. Moreover, in gauges ot
than the Coulomb gauge, individual contributions fromMg
andMS contain a nonanalytic lna dependence which can
cels in the sum. Reference@20# which mimicked the Feyn-
man gauge calculations, does not contain a nonanalytic te

Let us now evaluate the contributions from local fou
pion Lagrangians. As we have mentioned before, it is app
priate to include these terms, which are smooth functions
external momenta, into the definition ofT12. According to
this convention, the transition amplitudeT p1p2→p0p0 from
Eq. ~26! can be written asT p1p2→p0p05T11T2 , whereT1
denotes the isotopically symmetric ‘‘strong’’pp scattering
amplitude with the mass of the isotriplet taken equal to
charged pion mass, andT2 includes the effect of isospin
breaking as well as terms with low-energy constants from
four-pion Lagrangians. From Eqs.~24! and~52! we come to
the expression

G~2!

G~1!
5S 3a

2p
Ne12C0a2

a

p
12
T2

T1
D , ~53!

which displays only the electromagnetic and mass shift c
rections.

As we noted before, in Ref.@22# the amplitudeT2 was
evaluated at theoff-mass-shellpoint for p0 mesons. How-
ever, as we see from Eq.~24!, the amplitude emerging here i
restricted to being on mass shell for all external particles,
we use this prescription hereafter. Moreover, an explicit
pression for this amplitude calculated within ChPT has
come recently available@31#, and in the following we can
use the expression given in Ref.@31# as granted. All that we
have to do is to extract from the amplitude of Ref.@31# the
terms which we have already taken into account through
bound-state equation~vertex and self-energy corrections, i.e
only the ones which are taken into account in the mode
Roig and Swift@29#!.

The calculations in Ref.@31# were carried out in the Feyn
man gauge. However, as we mentioned before, the comb
tion Lg2(e2/2)Z12(e2/2)Z2 we are concerned with is
gauge invariant, and we can safely use the results of R
@31#. Thus, we can identify@see Eqs.~4.9!–~4.11! and~4.19!
from Ref. @31##
22e2~s22mp
2 !G12g~s!2e2J̄12~s!5Lg2

e2

2
Z12

e2

2
Z22

3e2

16p2
Ne2

e2

8p2
lnS mp

2

l2 D 2
e2

4p2
,

where@31#

G12g~s!52 i E d4q

~2p!4

1

~q22l2!~q222q•p1!~q212q•p2!
, p65

P

2
6p,

Jab~ l 2!52 i E dnq

~2p!n

1

~q22ma
2 !@~q2 l !22mb

2 #
, J̄ab~s!5Jab~s!2Jab~0!, ~54!
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and we have introduced the photon ‘‘mass’’l to regularize the infrared-divergent integrals.
The amplitudeT p1p2→p0p0 can be easily found, subtractingLg2(e2/2)Z12(e2/2)Z2 defined by Eq.~54! from the total

amplitude given in Ref.@31#:

232pT p1p2→p0p052
s2mp0

2

F2
2BR~s,t,u!2CR~s,t,u!, ~55!

with @31#

BR~s,t,u!5
s2mp0

2

F4
Fmp0

2

2
J̄00~s!1S s

2
12DpD J̄12~s!G1

1

12F4F3S t22mp
2 1

Dp
2

t D 2

1
l~ t,mp

2 ,mp0
2

!

t2
„Dp

2 1t~s2u!…G J̄10~ t !

1
1

12F4F3S u22mp
2 1

Dp
2

t D 2

1
l~u,mp

2 ,mp0
2

!

u2
~Dp

2 1u~s2t !!G J̄10~u!, ~56!

CR~s,t,u!55
s2mp0

2

32p2F4S 2
Sp

3
24Dp2

Lp

Dp
~4mp

4 27mp0
2 mp

2 15mp0
4

!1e2F2~2626Ne1K 1
60! D

2
mp0

2

32p2F4
S mp

2

3
2

10mp0
2

9
2

Lp

Dp
~2mp

2 2mp0
2

!1mp0
2 l̄ 31e2F2K 2

60D
1

mp
4

24p2F4S 1

3
1LpD2

Dp

96p4F4S 1

t
1

1

uD ~SpDp22mp0
2 mp

2 Lp!

2
1

48p2F4H 1

6
~11s22t22u2!1

Lp

Dp
F S mp

2 2
3

2
mp0

2 D s21mp0
2

~ t21u2!G J
1

1

48p2F4
l̄ 1~s22mp0

2
!~s22mp

2 !1
1

48p2F4
l̄ 2@~ t2Sp!21~u2Sp!2#. ~57!
e-

as

le
,
s

ent

rs
his

e-
Here

K 1
605S 31

4Z

9 D k̄11
32Z

9
k̄213k̄314Zk̄426Lp ,

K 2
6058Zk̄213k̄314Zk̄422~118Z!k̄62~128Z!k̄8 ,

Sp5mp
2 1mp0

2 , Dp5mp
2 2mp0

2 ,

Lp5 lnS mp
2

mp0
2 D , Z5

Dp

2e2F2
, ~58!

and l̄ i , k̄i denote the finite, renormalization-scal
independent low-energy constants@31#. Note that in the ex-
pression forCR the term containing the photon mass h
been explicitly cancelled~cf. Ref. @31#!. The term propor-
tional toNe in this expression exactly cancels the ultravio
divergence which appears in Eq.~52!. To demonstrate this
we note that in the presence of this term only the lowe
order scattering amplitude is modified as@see Eq.~57!#
09402
t

t-

2
s2mp0

2

F2
→2

s2mp0
2

F2 S 12
3a

4p
NeD . ~59!

The modification in thep1p2 atom decay width is twice as
large, and this cancels the term (3a/2p)Ne in Eq. ~52!. Con-
sequently, we can merely discard the ultraviolet-diverg
quantities simultaneously in Eqs.~52! and ~57!.

It is convenient to expand the rest of thepp scattering
amplitude, which is ultraviolet and infrared stable, in powe
of Dp near threshold. Below we present the result of t
expansion, retaining only the terms proportional toDp and
e2F2 which are sufficient up to the accuracy required. D
noting the corresponding amplitude byT p1p2→p0p0

(0) , we
find

232pT p1p2→p0p0
~0!

5F2
3mp

2

Fp
2

2
mp

4

32p2Fp
4 S 111

8

3
l̄ 11

16

3
l̄ 22 l̄ 3112l̄ 4D G
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1DpF2
1

Fp
2

2
mp

2

48p2Fp
4 ~114 l̄ 113 l̄ 3212l̄ 4!G

2
e2mp

2

32p2Fp
2 ~21813K 1

602K 2
60!1•••, ~60!

where the charged pion decay constantFp is related to the
parameterF entering into the Lagrangian through@31#

F5FpS 12
mp0

2

16p2Fp
2

l̄ 4D . ~61!

The low-energy constantsl̄ i and k̄i in this equation are
fixed on the renormalization scalem25mp0

2 according to
@31#

l i
r~m!5

h i

32p2F l̄ i1 lnS mp0
2

m2 D G ,

ki
r~m!5

s i

32p2F k̄i1 lnS mp0
2

m2 D G , ~62!

whereh i ands i are constants. However, to make a compa
son with the calculations carried out in the isotopically sy
metric case, it is necessary to bring the normalization sca
mp

2 . This induces a change in the second term of Eq.~60!:

mp
2

48p2Fp
4 ~114 l̄ 113 l̄ 3212l̄ 4!

→
mp

2

48p2Fp
4 ~114 l̄ 113 l̄ 3212l̄ 4!1

19mp
2

32p2Fp
4

.

~63!

After this rescaling the first term gives the isotopica
symmetric ‘‘strong’’ amplitudeT1 and the remaining par
corresponds toT2 . Using then Eqs.~53! and ~60!, it is easy
to ‘‘read off’’ the first-order mass shift and radiative corre
tions in thep1p2 atom decay width:

dM5
2Dp

3mp
2 F11

mp
2

48p2Fp
2 ~114 l̄ 113 l̄ 3212l̄ 4!1

19mp
2

32p2Fp
2

2
mp

2

96p2Fp
2 S 111

8

3
l̄ 11

16

3
l̄ 22 l̄ 3112l̄ 4D G , ~64!

d̄em52C0a2
a

p
1

a

12p
~21813K 1

602K 2
60!. ~65!

It is interesting to note that the Deser-type formula w
account of the first-order mass shift and radiative correcti
can be rewritten in a simple and transparent way. Namel
is well known that the scattering amplitude of charged p
ticles develops a pole at threshold, which corresponds to
09402
-
-
to

s
it

r-
he

long-range Coulomb interactions in the initial state. Thus
the threshold we can write@31#

ReA12,00~s,t,u!52
4mp

2 2mp0
2

Fp
2

e2

16

mp

q
1ReAthr

12,00
•••,

~66!

where q is the c.m.s. relative three-momentum of charg
pions.

Then, the following simple expression, valid in th
lowest-order approximation, is obtained for thep1p2 atom
decay width:

G5
1

64pmp
2 S 2Dmp

mp
D 1/2S 12

Dmp

2mp
D 1/2

~ReAthr
12,00!2f0

2

3F11S 2
9

8

DE~1!

E1
D 1~22C0a!1~12C0a!

1~1/212.6942 lna!
DE~1!

E1
1dG , ~67!

where the electromagnetic and mass shift corrections, b
excluded from d, are completely taken into account i
ReAthr

12,00. Thus, the correction factor,d displayed in Eq.
~67!, includes contributions from other sources, e.g., vacu
polarization, finite size corrections, etc. Further, Eq.~67!
demonstrates explicitly the cancellation of 2C0a terms
which depend on a particular choice of the initial appro
mation for the relativistic Coulomb WF

It is worth noting that the quantity ReAthr
12,00 is not pro-

portional to the conventionally definedpp scattering lengths
which acquire an additional finite contribution due to t
emission of real soft photons@see Eq.~5.17! of Ref. @31##.
Thus Eq. ~67! demonstrates that in the presence of lon
range Coulomb force the pole-removed real part of the s
tering amplitude rather than the scattering length enters
the expression of the first-order corrected Deser-type form
for the decay width.

Below we shall briefly discuss the comparison of our
sults with those obtained in Refs.@22,21#. As we have noted
before, the main difference between our work and Ref.@22#,
where the corrections to the pionium decay width are a
evaluated in ChPT, consists in the fact that we argue
necessity of a differentkinematicprescription in the calcula-
tion of thepp scattering amplitude entering into the Dese
type formula. It is a completely on-mass-shell amplitu
which naturally emerges in our calculations with neut

pions having small, but nonzero relative momentumqW 0 in the
final state. By contrast, in Ref.@22# both charged and neutra
pions have zero relative momenta, and, consequently, ne
pions in the final state are slightly off shell. Different kine
matic prescriptions lead to different predictions for the
onium decay rate in Ref.@22# and in the present work. Fur
ther, in Ref. @21# the radiative corrections to thepp
scattering amplitude were evaluated in the Roig-Sw
model, with an explicit cutoff. The cutoff parameter wa
chosen to be equal to ther-meson mass. The author als
4-13
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presents calculations carried out in ther-meson dominance
model where the integrals are ultraviolet convergent and
explicit cutoff is not needed. Thus, a direct comparison
the results of Ref.@21# with the calculations carried out o
the basis of ChPT is not possible. Note, however, that in R
@21# the contribution from real photon radiation is also i
cluded in the scattering amplitude.

The mass shift and electromagnetic corrections have b
evaluated in the framework of the nonrelativistic scatter
theory approach@14,15#. Strongpp interactions in this ap-
proach are described by energy-independent local poten
It turns out that the effect of mass splitting on the pioniu
lifetime is opposite in sign as compared to the case of fie
theoretical calculations. It is obvious that the sign and
magnitude of the mass shift correction depend on the ch
of the ‘‘reference mass’’ corresponding to the case of
isotopically symmetric world. In particular, if the referenc
mass is chosen equal to the charged pion mass@15#, then this
effect in the lifetime turns out to be negative (;27.4%). If
one chooses the neutral pion mass to be the reference
@14#, then this effect changes its sign (;17.6%). We ob-
serve the different situation in our calculations based on
chiral Lagrangian. Thus one can conclude that the ene
and mass-independent local potentials used in Refs.@14,15#
might not provide an adequate description of thep1p2 sys-
tem in the nonrelativistic limit in dealing with the sophist
cated issue of the isospin-breaking effect inpp interactions.
09402
e
f
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E. Correction due to vacuum polarization

The vacuum polarization due to the virtual electro
positron pair contributes in ordera2 to the pionium decay
width. However, this effect is amplified since a small ele
tron massme is present in the denominator.

In the instantaneous approximation the photon propag
is modified by the vacuum polarization effect as follow
@18#:

1

kW 2
→

1

kW 2
1

a

3p
I vac~2kW 2!, ~68!

where

I vac~2kW 2!5E
4me

2

` r~s!ds

s1kW 2
,

r~s!5
1

sS 11
2me

2

s D S 12
4me

2

s D 1/2

. ~69!

The perturbation potential which is responsible for t
vacuum polarization effect is given by

Vvac5
16i

3
mp

2 a2I vac@2~pW 2qW !2#, ~70!

and the corresponding matrix element from Eq.~33! is equal
to
lculation
as
Mvac5Rê cCuVvac1T12G0Vvac1VvacG0T121T12G0VvacG0T12ucC &. ~71!

The first term in this expression vanishes at the bound-state energy which is below the elastic threshold. As in the ca
of electromagnetic radiative corrections, we neglect the fourth term~Fig. 4d!. Thus, the matrix element can be written
follows:

Mvac5ReF32

3
mp

2 a2iT12cC~0!E d4p

~2p!4

d4q

~2p!4
G0~M !;p!I vac@2~pW 2qW !2#cC~M !;q!G . ~72!

With the use of Eq.~69! and after integrating over relative energy variables the integral in Eq.~72! takes the form

E
4me

2

`

dsr~s!E d3pW

~2p!3

d3qW

~2p!3

2 ipampf0

w~pW !@w~qW !#1/2~pW 21g2!~qW 21g2!2@s1~pW 2qW !2#
. ~73!

In the calculation of the integral overd3qW we can replace the smooth factor@w(qW )#1/2 by its value atqW 50. Then

E d3qW

~2p!3

1

@w~qW !#1/2

1

~qW 21g2!2@s1~pW 2qW !2#
5

1

8pgmp
1/2

1

pW 21~g1As!2
1•••. ~74!

The remaining integral overd3pW can be computed analytically. Rescaling the integration variables in Eq. ~73!, we finally
arrive at

Mvac5
3

16
a2

f0
2

me
ReT12b0 , ~75!

where
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b05E
1

`ds~s21!1/2

s2 S 11
1

2sD f vac~s!F E
1

`ds~s21!1/2

s2 S 11
1

2sD G21

50.6865•••, ~76!

f vac~s!5
2m̄p

p~2ḡ1As!
F u~m̄p2ḡ2As!

ḡ1As

@m̄p
2 2~ ḡ1As!2#1/2

arctg
@m̄p

2 2~ ḡ1As!2#1/2

ḡ1As

1u~As2m̄p1ḡ !
ḡ1As

@~ ḡ1As!22m̄p
2 #1/2

lnS ḡ1As1@~ ḡ1As!22m̄p
2 #1/2

ḡ1As2@~ ḡ1As!22m̄p
2 #1/2D

2
ḡ

~m̄p
2 2ḡ2!1/2

arctg
~m̄p

2 2ḡ2!1/2

ḡ
G , ~77!
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andm̄p5mp /(2me), ḡ5g/(2me).
Using the relativistic Deser formula in the lowest-ord

approximation~24!, it is easy to observe that Eq.~75! leads
to the following modification in thep1p2 atom decay width
due to the vacuum polarization effect:

G→GS 11
3

16
a2

mp

me
b0D . ~78!

Note that in Ref.@18# the vacuum polarization correctio
to the pionium lifetime was calculated only with account
discrete spectrum transitions. Thus, our result is a gene
zation of that from Ref.@18#.

The nonrelativistic QED~NRQED! based calculation o
the vacuum polarization effect in the pionium lifetime h
become available recently@23#. We find that the analytic
expression of the so-called 0-Coulomb term in Ref.@23# co-
incides with our result up to the relativistic kinematic fact
in the WF whose presence is due to the choice of Barbi
Remiddi kernel. Numerically the effect of this factor, whic
contributes in higher orders ina, is very small. In Ref.@23#
the results for 1-Coulomb and multi-Coulomb contributio
are also given. These contributions, which formally are
higher order ina, would emerge in our calculations a
second-order perturbative corrections to the pionium l
time.

F. Finite size correction

In the presence of a pion loop the pion electromagn
form factor given by the vector-pseudoscalar-pseudosc
~VPP! vertex in ChPT is modified. According to Ref.@1#,

FV~ t !511
1

6Fp
2 ~ t24mp

2 !J̄12~ t !1
t

96p2Fp
2 S l̄ 62

1

3D
511dFV~ t !. ~79!

In the instantaneous approximation the perturbation poten
is given by~see Fig. 5!

VF58ie2mp
2 dFV@2~pW 2qW !2#

~pW 2qW !2
~80!
09402
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and the corresponding matrix element reads as

MF5^cCuVF1T12G0VF1VFG0T121T12G0VFG0T12ucC&.
~81!

Again, the first term in this matrix element vanishes at t
bound-state energy, and we neglect the fourth term. The
mainder is then given by

MF5Re F2cC~0!T12E d4p

~2p!4

d4q

~2p!4
G0~M !;p!

3
8ie2mp

2 dFV@2~pW 2qW !2#

~pW 2qW !2
cC~M !;q!G . ~82!

The integral overd4p diverges in the ultraviolet region. Thi
stems from the fact that the diagram depicted in Fig. 6a
ultraviolet divergent as a whole, though the subdivergenc
the VPP vertex has already been removed by an approp
counterterm depicted in Fig. 6b@this counterterm is implicit
in Eqs. ~79! and ~82!#. Thus, a higher-order counterterm
shown in Fig. 6c is needed to cancel the overall diverge
in Fig. 6a@and, consequently, in Eq.~82!#. It is obvious that
this divergence is removed analogously to that from S
III D, and we shall not further dwell upon this question.

To simplify the calculations in the relevant low-t region,
instead of Eq.~79! we use the well-known monopole param
etrization

FIG. 6. Cancellation of the divergences which are present in
expression for the vertex correction. The divergence in the ve
subdiagram is cancelled by the counterterm depicted in~b! whereas
the remaining overall divergence in diagram~a! is cancelled by the
counterterm given in~c!.
4-15
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dFV~ t !5
t

mV
22t

, mV
225

1

6
^r 2&V

p , ~83!

with the samê r 2&V
p as in Eq.~79!. The integral in Eq.~82! is

then convergent and can be easily evaluated, resulting i

22e2mp
2 E d3pW

~2p!3

d3qW

~2p!3

3
4pampf0

w~pW !@w~qW !#1/2~pW 21g2!~qW 21g2!2@mV
21~pW 2qW !2#

.

~84!

With the use of Eq.~74! and the inequalitiesmV@mp@g the
integration of Eq.~84! gives

22e2mp
2 f0

mp
1/2E d3pW

~2p!3

1

w~pW !~pW 21g2!~pW 21mV
2 !

5
f0

mp
1/2

e2mp
2

2p2mV
2
ln

4mV
2

mp
2

1••• ~85!

and

MF52
f0

2

mp
ReT12

4a

p

mp
2

mV
2
ln

4mV
2

mp
2

1•••. ~86!

The modification of thep1p2 atom decay width due to th
finite size effect is given by

G→GS 12
4a

p

mp
2

mV
2

ln
4mV

2

mp
2 D . ~87!

IV. NUMERICAL RESULTS AND DISCUSSION

In this section we present the numerical results on
lowest-order corrections to the pionium decay width. To t
end we combine various corrections obtained in the previ
section. As we have seen, the correction due to the relat
tic modification of the Coulomb WF cancels with the corr
sponding piece in electromagnetic radiative corrections
the final result we cancel these corrections explicitly.

Below we give a list of analytic results on the lowes
order corrections to thep1p2 atom decay width:

G5
16p

9 S 2Dmp

mp
D 1/2S 12

Dmp

2mp
D 1/2

~a0
02a0

2!2

3f0
2~11dS1dC1dM1dem1dvac1dF!, ~88!

where a0
0 and a0

2 denote thepp scattering lengths in the
isospin-symmetric case, with the charged pion mass take
be the common mass of the pion isotriplet.

dS is the correction due to the displacement of the bou
state pole by strong interactions@see Eq.~33!#:
09402
e
s
s

s-

n

to

-

dS52
9

8

DE~1!

E1
525.4731023mp~2a0

01a0
2!. ~89!

dC corresponds to the correction due to the Coulomb pho
exchanges@Eq. ~33!#

dC5~1/212.6942 lna!
DE~1!

E1
53.9531022mp~2a0

01a0
2!.

~90!

dM stands for the correction due to themp62mp0 mass dif-
ference@Eq. ~64!#, and dem corresponds to the electromag
netic corrections without 2C0a term@Eq. ~65!#. The quantity
dvac denotes the correction due to the vacuum polarizat
effect @Eq. ~78!#:

dvac5
3

16
a2

mp

me
30.6865. ~91!

dF corresponds to the finite size correction@Eq. ~87!#:

dF5
2a

3p
mp

2 ^r 2&V
plnS 1

24
mp

2 ^r 2&V
pD . ~92!

To make a numerical estimation of the above-listed c
rections, one has to substitute the values of the low-ene
constants into these expressions. For the constantsl̄ i we take
the numerical values from Ref.@1#: l̄ 1522.362.7, l̄ 256.0
61.3, l̄ 352.962.4, l̄ 454.360.9. The constantsk̄i are more
difficult to estimate. In our paper we use the values from R
@31# based on a rough estimate at the scale coinciding w
ther-meson mass,uki

r(mr)u<1/(16p2). This estimate yields
(e2Fp

2 /mp
2 )K 1

6051.860.9, (e2Fp
2 /mp

2 )K 2
6050.562.2 @31#.

Large error bars in the low-energy constantsK 1
60 , K 2

60 , in
turn, do not allow one to calculate the electromagnetic rad
tive correction to the atom decay width with high accurac
Other input parameters in our calculations are theS-wave
pp scattering lengthsa0

050.217mp
21 , a0

2520.041mp
21 cal-

culated in ChPT and the electromagnetic~em! charge radius
of the pion,^r 2&V

p50.439 fm@1#.
Substituting the above values of the input parameters

the expressions for various corrections to the decay width
obtain the results collected in Table I. The lifetime of th
pionium ground state is predicted to be

t15~3.0360.10!310215 s. ~93!

For comparison, in Table I we give the results of theor
ical calculations of the corrections to the pionium lifetim
within different approaches. As we observe from Table I,
largest correction in the decay width is caused by the m
splitting effect in accordance with the result of Ref
@14,15,22#. Note that in Ref.@22# the mass shift correction
coming from direct quark-photon coupling (qg) and electro-
magnetic insertions in the internal pion propagators~em! are
given separately. It is obvious that only the total effect of t
mass shift and electromagnetic radiative corrections can
compared in different field-theoretical approaches wher
individually these contributions are rather convention dep
4-16
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TABLE I. Corrections to thep1p2 atom decay width. In the right column the results of theoreti
calculations in other approaches are given.

Effect Value Correction~in %! Correction~in %!

Strong dS 20.22
Coulomb photon exchange dC 11.55 10.4 @22#, 11.45 @15#

Mass shift dM 12.9960.77 16.4(qg)10.3~em! @22#, 27.4 @15#

Electromagnetic radiative dem 11.7362.31 20.1 @22#, 20.25 @21#

Vacuum polarization dvac 10.19 10.19~0-C!, 10.31~tot! @23#

Finite size dF 20.16
Total d tot 16.163.1
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dent. Our result for the total effect has the same sign as
result of Ref.@22#, but is different in magnitude. One reaso
for this difference is traced back to different kinematic p
scriptions used for thepp scattering amplitude in the Dese
formula ~see the discussion in the text!.1 Another reason is
that in Ref.@22# different numerical values of the low-energ
constantsk̄i are used. The sign of the mass splitting effe
obtained in the nonrelativistic scattering theory approa
@15# turns out to be opposite as compared to our result, an
of the same order of magnitude. In our opinion, owing to
derivative character of pion couplings in the chiral Lagran
ian, a possible reason for this discrepancy might be an
plicit energy independence of strong potentials used in
culations in Ref.@15#, rather than the specific choice of th
shape of the potential. In the future we plan to investig
this problem in more detail.

Our result for the correction due to the exchange of C
lomb photons agrees with the result obtained in poten
scattering theory@15# ~pure Coulomb correction to the sca
tering lengths! and disagrees with the result from Ref.@22#
~second-order strong correction!. Numerically the largest
part in this effect comes from the nonanalytic lna piece
which is exactly the same in our approach and in the po
tial theory, and is absent in Ref.@22#.
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As was mentioned above, our result for the vacuum
larization effect completely agrees with the zero-Coulom
~0-C! piece of the result given in Ref.@23#. In this paper
additional contributions coming from one-Coulomb a
many-Coulomb pieces are given. In our approach these c
tributions arise in second-order perturbation theory.

Our last remark concerns the effect of themd2mu mass
splitting on the pionium decay width. It is well known that i
one-loop order this leads only to a shift in the neutral pi
mass@1#. Since in our calculations of the on-shellpp scat-
tering amplitude we use the physical values of the p
masses, with the mass difference caused both bymd2mu
Þ0 and electromagnetic corrections, the resulting mass s
ting correction includes both these effects.2
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APPENDIX A

In this appendix, we present the calculation of various integrals which appear in the first-order correction terms. W
from the evaluation of the relativistic Coulomb WF at the origin@Eq. ~27!#. By carrying out thep0 integration with the use of
the Cauchy theorem, this quantity can be written as

cC~0!5E d4p

~2p!4
cC~M !;p!5

f0

mp
1/2E d3pW

~2p!3S mp

w~pW !
D 1/2 4pamp

~pW 21g2!2

5
f0

mp
1/2S 12E d3pW

~2p!3

pW 2

@w~pW !#1/2$mp
1/21@w~pW !#1/2%@mp1w~pW !#

4pamp

~pW 21g2!2D . ~A1!

In the lowest-order approximation ina we replace the factor (pW 21g2)2 in the denominator by (pW 2)2 and obtain

1In recent calculations by the same authors the discrepancy due to the different kinematic prescriptions is removed~H. Sazdjian, private
communication!.

2We are indebted to Professor J. Gasser for clarifying discussions on this problem.
4-17



n

IVANOV, LYUBOVITSKIJ, LIPARTIA, AND RUSETSKY PHYSICAL REVIEW D 58 094024
cC~0!5
f0

mp
1/2~12C0a!1•••, ~A2!

where

C05
2

pE0

` dp

~11p2!1/4@11~11p2!1/4#@11~11p2!1/2#
50.381••• . ~A3!

Next we turn to the calculation of the integral which is present in Eq.~31!. This integral contains the Green functio
dG(p,q) which corresponds to the exchanged Coulomb photon ladders and, according to Eqs.~10!, ~21!, is given by

dG~p,q!5 i @w~pW !w~qW !#1/2FF~pW ,qW !2S~pW !S~qW !
8

M !

]

]M !GG0~M !;p!G0~M !;q!,

F~pW ,qW !516pmpaF 1

~pW 2qW !2
1I R~pW ,qW !G1

1

~mpa!2
S~pW !S~qW !R~pW ,qW !, ~A4!

R~pW ,qW !5252S 8

pmpa D 1/2

@S~pW !1S~qW !#1•••,

where ellipses stand for higher-order terms ina.
Substituting this expression in the integral from Eq.~31! and carrying outp0 , q0 integrations, we obtain

I 15E d4p

~2p!4

d4q

~2p!4
c̄C~M !;p!@G0

21~M !;p!#8dG~p,q!

5E d3pW

~2p!3

d3qW

~2p!3

4pampf0

~pW 21g2!3FF~pW ,qW !2S~pW !S~qW !S 6

pW 21g2
1

4

qW 21g2D G 2M !

8@w~qW !#1/2

1

qW 21g2
, ~A5!

where we have used

E dp0

2p i
@G0~M !;p!#8@G0

21~M !;p!#8G0~M !;p!5
3~M !!2

32w~pW !~pW 21g2!3
1•••. ~A6!

In the calculation of 3D integrals containing the functionF(pW ,qW ), we use

E d3pW

~2p!3

1

~pW 2qW !2

1

~pW 21g2!3
5

1

4pa3mp
3

1

~qW 21g2!
1

1

8pamp

1

~qW 21g2!2
~A7!

and

E d3pW

~2p!3

I R~pW ,qW !

~pW 21g2!3
5E

0

1dr

r
@J18~r;qW !2J19~r;qW !#, ~A8!

where

J18~r;qW !5E d3pW

~2p!3

1

~pW 21g2!3

1

~pW 2qW !2r1mp
22a22~pW 21g2!~qW 21g2!~12r!2

. ~A9!

The integration overd3pW can be carried out with the use of Feynman parametrization. We obtain

J18~r;qW !5
3

8pa3mp
3

1

~qW 21g2!
E

0

1dx~12x!2

d2
3/2d1

5/2
1

3

32pamp

1

~qW 21g2!2E0

1dx~12x!2

d2
5/2d1

5/2
,
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d6512x1
x

4
~16r!2, ~A10!

and

J19~r;qW !5E d3pW

~2p!3

1

~pW 21g2!3

1

mp
22a22~pW 21g2!~qW 21g2!

5
1

2pa3mp
3

1

~qW 21g2!
. ~A11!

Substituting Eqs.~A11! and ~A10! into Eq. ~A8! and carrying out the integration overdx anddr, we finally obtain

E d3pW

~2p!3

I R~pW ,qW !

~pW 21g2!3
52

1

4pa3mp
3

1

~qW 21g2!
1

1

8pamp

1

~qW 21g2!2
. ~A12!

With the use of Eqs.~A4!, ~A7!, and~A12! the integration in Eq.~A5! is trivially carried out, resulting in

I 15
f0

mp
1/2

1

a2mp
2

1•••. ~A13!

Substituting this result back in Eq.~31!, we readily obtain the final result given in this equation.
Next we turn to the calculation of the integral which is present in Eq.~32!

I 25E d4p

~2p!4

d4q

~2p!4
dG~p,q!5I 281I 29 , ~A14!

whereI 28 andI 29 correspond to the ‘‘nonderivative’’ and ‘‘derivative’’ terms in Eq.~A4!. Carrying out the integration over th
relative energies with the use of the Cauchy theorem,I 28 can be written as

I 2852
i

16E d3pW

~2p!3

d3qW

~2p!3

1

@w~pW !w~qW !#1/2

1

~pW 21g2!~qW 21g2!
F~pW ,qW !. ~A15!

I 28 receives a contribution from~a! one-photon exchange,~b! multiphoton exchanges concentrated inI R(pW ,qW ), and~c! the rest,
proportional to the functionR @see Eq.~A4!#. Below we shall evaluate these contributions separately.

~a! One-Coulomb-photon exchange:

I 2a8 5E d3pW

~2p!3

2 ipamp

@w~pW !w~qW !#1/2

1

~pW 21g2!~qW 21g2!

1

~pW 2qW !2
52

iamp

4 E d3rW
w2~r !

r
, ~A16!

where

w~r !5E d3pW

~2p!3
e2 ipW rW

1

@w~pW !#1/2~pW 21g2!
. ~A17!

Using exponential parametrization, the integration overd3pW in Eq. ~A17! can be carried out, resulting in

w~r !5
1

8p3/2GS 1

4D E0

`

duu25/4E
0

1

dxx23/4expF2
rW 2

4u
2u~12x!g22uxmp

2 G . ~A18!

Substituting Eq.~A18! into Eq. ~A16! and integrating, we obtain

I 2a8 52
iamp

32p3/2G2S 1

4D E0

1

dtE
0

1

dx1E
0

1

dx2

t21/4~12t!21/4x1
23/4x2

23/4

$g21~mp
2 2g2!@tx11~12t!x2#%1/2

. ~A19!

Note that one cannot directly assume hereg50 in the denominator, since the integral over the Feynman parameters div
in this limit. In order to overcome this difficulty, we split the integration area into two domains according to
094024-19
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E
0

1

dx1E
0

1

dx2f ~x1 ,x2!5E
0

1

rdrE
0

1

dt f„rt,r~12t !…1E
1

2

rdrE
121/r

1/r

dt f„rt,r~12t !…. ~A20!

Performing explicitly the integration overdr in the first domain, we obtain

I 2a8 ~1!52
iamp

16p3/2G2S 1

4D ~mp
2 2g2!1/2

E
0

1

dtE
0

1

dt
t21/4~12t!21/4t23/4~12t !23/4

@tt1~12t!~12t !#1/2

3 ln †g21
„~mp

2 2g2!1/2@tt1~12t!~12t !#1/21$g21~mp
2 2g2!@tt1~12t!~12t !#%1/2

…‡

5
ia lna

16p
2

ia

16pF2ln21
c1

2p1/2G2~1/4!
G1•••, ~A21!

where ellipses stand for the higher order terms ina and

c15E
0

1

dtE
0

1

dt
t21/4~12t!21/4t23/4~12t !23/4

@tt1~12t!~12t !#1/2
ln@tt1~12t!~12t !#5240.374 . . . . ~A22!

The second integral converges wheng→0 in the denominator, resulting in

I 2a8 ~2!52
iac2

4p3/2G2S 1

4D , ~A23!

where

c25
1

4E0

1

dtt21/4~12t!21/4E
1

2

dr lnr~r21!23/4@t1~12t!~r21!#21/250.288 . . . . ~A24!

~b! Multiphoton exchanges: In this contribution we can safely replace the smooth factor in the denom

@w(pW )w(qW )#1/2→mp . Then

I 2b52 ipaE d3pW

~2p!3

d3qW

~2p!3

I R~pW ,qW !

~pW 21g2!~qW 21g2!
52 ipaE

0

1dr

r
J2b8 ~r!, ~A25!

where, according to Eq.~10!,

J2b8 ~r!5E d3pW

~2p!3

d3qW

~2p!3

1

~pW 21g2!~qW 21g2!

3F 1

~pW 2qW !2r1mp
22a22~pW 21g2!~qW 21g2!~12r!2

2
1

mp
22a22~pW 21g2!~qW 21g2!

G . ~A26!

Introducing Feynman parameters and carrying out the momentum integration, we obtain

J2b8 ~r!5
1

16p2F1

2E0

1 dx

d2d1
1/2~d2

1/21d1
1/2!

21G ~A27!

and

I 2b8 52
ia

16p
. ~A28!

~c! Factorizing integrals: The integral containing the functionR is evaluated in the straightforward manner, resulting in
094024-20
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I 2c8 52
17ia

128p
1•••. ~A29!

The ‘‘derivative’’ term I 29 can be easily calculated. The integration in the variablesp andq again factorizes, and we hav

I 295
ia

16p
1•••. ~A30!

Putting all together, we finally arrive at the result

I 25
ia

16p
lna1

ia

16pF 2
17

8
22ln22

c1

2p1/2G2S 1

4D 2
4c2

p1/2G2S 1

4D G5
ia

16p
~ lna22.694!, ~A31!

which is substituted in Eq.~32!.

APPENDIX B

In this appendix we shall present the calculation of the integrals appearing in the electromagnetic radiative correcti@Eq.
~45!#:

E d4p

~2p!4

d4q

~2p!4
G0~M !;p!

ie2@~M !!22~p01q0!2#

~pW 2qW !2
G0~M !;q!4i @w~qW !#1/2

4pampf0

qW 21g2
5 Ĩ 11 Ĩ 2 . ~B1!

Integrating over the relative energy variables, the first term is rewritten in the form

Ĩ 15
e2~M !!2

4 E d3pW

~2p!3

1

w~pW !~pW 21g2!
E d3qW

~2p!3

1

@w~qW !#1/2~pW 2qW !2

4pampf0

~qW 21g2!2

5
e2f0~M !!2

4mp
1/2 E d3pW

~2p!3

1

w~pW !~pW 21g2!2
1•••. ~B2!

Using the same trick as in Eqs.~A1!–~A3!, we can write

Ĩ 15
f0

mp
1/2S 12

e2

2p2E0

` dp

~11p2!1/2@11~11p2!1/2#
1••• D 5

f0

mp
1/2S 12

2a

p D1•••. ~B3!

In the calculations ofĨ 2 the term containing 2p0q0 vanishes since it is odd inp0 and q0 . Thus one can writeĨ 25 Ĩ 28

1 Ĩ 29 where Ĩ 28 and Ĩ 29 containp0
2 andq0

2 , respectively.

Ĩ 28 is ultraviolet divergent. Introducing dimensional regularization, we can write

E d4p

~2p!4
G0~M !;p!

p0
2

~pW 2qW !2
→2~m2!22n/2E dnp

~2p!n

p0
2

F S P

2
1pD 2

2mp
2 GF S P

2
2pD 2

2mp
2 G~pW 2qW !2

5
i

16p2S Ne141
w~qW !

uqW u
ln

w~qW !2uqW u

w~qW !1uqW u
D ~B4!

and

Ĩ 285
a

4p
~Ne12!

f0

mp
1/2

. ~B5!

Ĩ 29 does not contain the ultraviolet divergence. Integrating over relative energy variables, we obtain
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Ĩ 295
e2

4 E d3pW

~2p!3

d3qW

~2p!3

1

w~pW !@w~qW !#1/2

1

~pW 2qW !2~pW 21g2!

4pampf0

~qW 21g2!
. ~B6!

It is easy to see thatĨ 29 leads to a modification of thep1p2 decay width in the ordera2lna and thus can be safely neglecte
The final result reads@cf. with Eq. ~45!#

Ĩ 5 Ĩ 11 Ĩ 25
f0

mp
1/2S 11

a

4p
Ne2

3a

2p D . ~B7!
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