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We present calculations of next-to-leading order QCD splitting functions, employing the light-cone gauge
method of Curci, Furmanski, and Petronz@FP. In contrast with the “principal-value” prescription used in
the original CFP paper for dealing with the poles of the light-cone gauge gluon propagator, we adopt the
Mandelstam-Leibbrandt prescription which is known to have a solid field-theoretical foundation. We find that
indeed the calculation using this prescription is conceptually clear and avoids the somewhat dubious manipu-
lations of the spurious poles required when the principal-value method is applied. We reproduce the well-
known results for the flavor nonsinglet splitting function and Ktfepart of the gluon-to-gluon singlet splitting
function, which are the most complicated ones, and which provide an exhaustive test of the ML prescription.
We also discuss in some detail the=1 end point contributions to the splitting functions.
[S0556-282(98)03219-9

PACS numbd(s): 12.38.Bx

[. INTRODUCTION The key feature of the ML prescription is that the spurious
poles in the compleX, plane are placed in the second and
The advantages of working in axial gauges when performfourth quadrants, i.e., with the same pattern as one encoun-
ing perturbative QCD calculations have been known for aers for the usual covariant denominators such a$21/(
long time[1]. Those gauges enable us to retain, in higher+ie). One can therefore perform a proper Wick rotation to
order calculations, a natural “partonic” interpretation for the Euclidean momenta, and a suitable power counting criterion
vector field, typical to a leading logarithmic approximation. in the Euclidean integrals will give information on the ultra-
Among axial gauges, the one which enjoys a privilegedviolet (UV) divergencies of the corresponding Minkowskian
status is the light-cone axi@L.CA) gauge, characterized by integrals. This is in contrast to the Cauchy principal-value
the condition n*A,=0,n* being a lightlike vector 1> (PV) prescription, which, under a Wick rotation, entails fur-
=0). At variance with temporalr®>0) and spaceliker® ther contributions and therefrom a violation of power count-
<0) axial gauges, which do have problems already at théng.
free level[2], and with the spacelike “planar” gaudé] in A crucial property of the ML distribution is the occur-
which the behavior of the theory to higher loop orders is stillrence of two contributions with opposite signs in the absorp-
unsettled[2], the LCA gauge can be canonically quantizedtive part of the vector propagatfr]:
[3] and renormalizedl4] at all orders in the loop expansion
following a well-established procedure. To reach this goal it disqD,,,(1)]
is crucial to treat the “spurious” singularity occurring in the
1 *
tensorial part of the vector propagator, 2ms(12)6(1y) gt 2n*l n,l,+n,l,

n*n 12
Drr(]) = v n“l”+n”l# !
W= 9 ) @ - 2n*1 n,l,+n,l,
—2775“ +|L)(|O)WI—2 (4)
1

according to a prescription independently suggested by Man-
delstam[5] and Leibbrand{6] (ML) and derived in Ref[3]

in the context of equal-time canonical quantization: Here the second, ghostlike, contributigmhich is not

present in the PV prescriptipiis responsible for the milder
1 1 1 n* infrared(IR) behavior of the ML propagator. The presence of
-, i —=— — (2) this axial ghost was stressed[8l; its properties are exhaus-
(nl) [nl] nl+ie sgnn*l) n*Inl+is tively discussed inf2]. Clearly, if one has a cut diagram
with, say, m final-state gluons, there is a discontinuity like

the two expressions being equal in the sense of the theory @fg () for each of the gluons: i.e., the phase space will split
distributions. The vecton* is lightlike, and such thabh*n up into 2" pieces.

=1. Denoting byl, the transverse part of the vecty, One of the most interesting and nontrivial applications of
orthogonal to botm,, andny,, one has the LCA gauge is the computation of thepin-independeit
splitting functions for the two-loop Altarelli-Pari$AP) evo-

2(nh(n*NH=1%+12 . (3 Iution of parton densities, following a method proposed and
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used by Curci, Furmanski, and PetronZiOFP in Refs. In the above referencg9,10], the “spurious” singularity
[9,10]. This method is based on the observatitf] that in ~ 1/nl of the gluon propagator was handled according to the
axial gauges the two-particle-irreducible kernels of the ladPV prescription. The method ¢®,10] has been very suc-
der diagrams are finite, so that the collinear singularities thatessful in providing the first correct result for the next-to-
give rise to parton evolution only originate from the lines leading order(NLO) gluon-to-gluon splitting function. The
connecting the kernels. Therefrom, using renormalizationresult previously obtained in the operator product expansion
group techniques, the splitting functions are obtained byOPE method[14] was not correct due to a subtle concep-
some suitable projection of the ladder diagrams, exploitingual problem which was recently clarifigd5,16. The new

the factorization theorem of mass singulariji@d]. We re-  Feynman gauge OPE calculations confirmed the old CFP
frain from giving further details of the CFP method, sinceresult. Despite this success, the LCA calculation with the PV
these can be found if9,12]. We just mention at this point prescription is considered dubious because of the difficulties

that one projects on the quantity;, given by with power counting and the Wick rotation mentioned above.
In particular it is not clear whether its “calculational rules”

1 d9 remain valid in higher orders. We note that the precise de-

Fij(XaQSv;) =Zj| 8(1-x) 6 +x pr Y, scription of some of the new high precision collider data call

(2m) for the extension of the NLO QCD analysis tiextto-next-

nk to-leading ordefNNLO). Therefore a deeper understanding

X 8| x )U K—— (5  of the formal field-theoretical basis of the CFP method is
pn 1- PK strongly motivated. The use of PV is by ho means mandatory

) o ) in the CFP method; it can also be applied when handling the
where %= (4—d) andK is a two-particle-irreduciblé2P) 1/ singularities with the theoretically more sound ML pre-
kernel, which is finite in the light-cone gaugel1,9. The  scription.
labelsi,j run over quarks and gluons; in the flavor non- A first attempt using the ML prescription in connection
singlet case one has jusf } ={qq}. Furthermore, in Eq5),  with the CFP method has been performed in R&f. where
PP denotes the pole part, and the projectdrdl; are given  the one-loop AP splitting functior|d 3] have been correctly
by reproduced, both for the flavor nonsinglet and flavor singlet

cases. A new characteristic feature of this calculation is that
U= iﬁ Ly=p “real” and “virtual” contributions are separatelywell de-
' fined in the limitx—1,x being the longitudinal momentum
fraction, at variance with the corresponding PV result. This
n“p’+n’p* occurs thanks to the presence of the “axial” ghost, which,
—gHr+ —n | (6)  standing by the usual gluon term, protects its singular behav-
ior with respect to the transverse momentum. There is no
The splitting functionsP;; to the desired order can be read need of any IR cutoff to regularize intermediate results.
off from the Lk pole of ' : . Beyond one loop, the caIcuIatlon. of the splitting fun<_:-
tions, according to the CFP method in the LCA gauge with
1 the ML prescription, has already been tackled in a recent
Fij(x,as,—) =0(1—X) 6 paper[17]. We believe, however, that improvements to the
€ calculation[17] can and should be made. First of all, only the

Ug=—g*, Lg:_d—Z

1 @ CE part of the flavomonsingletsplitting function is studied
(0) S (1) . . .
— 2|5, P (x )+ > P (x)+ . in [17]. In this paper we will also calculate th@:T; part
and, in particular, the far more complicated piee€gN¢ of
1 this function, as well as th&l2 part of the gluon-to-gluon
+0 ; . (7 splitting function contributing to the flavaingletsector. As

we will show, this set of functions we consider comprises all
possible one-loop structures of QCD and thus enables an
exhaustive test of the ML prescription in this application.
The ML calculation of the other singlet splitting functions,
like the nondiagonal quark-to-glugand vice verspone, is
1/ 1/ a2 thgrefore not really requ?red in this F:qntext: they will cer-
Zj=1-- <_S§(0>(X)+ Z (_S> VX + ... ) tainly come out correctly if the prescription works for the far
el2m” 2\2m) more complicated cases we study.
Second, the power and virtues of the ML prescription
(8  Were not fully exploited in[17], where some contributions
resulting from the axial ghosts of the ML prescription were
neglected. These contributions are5(1—x) and thus only
Inspecting Egs(5),(7),(8), we see thaZ, andZ, contribute  affect the end points of the diagonal splitting functions. Nev-
to the end poinf ~ §(1—x)] parts of the splitting functions ertheless, their inclusion is required for a complete analysis,
Pqq andPgg, respectively. since only then can the crucial question of the finiteness of

For future reference, we write down a similar express@in
for the residueZ; (j=q,g) of the pole of the full quarkor
gluon) propagator:

+02.

€

g9
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the 2PI kernels in the light-cone gauge be fully answered.
We also remind the reader in this context that in the original k
CFP paper$9,10], the end point contributions to the diago-
nal splitting functions were never determined by explicit cal- P
(a) (b)

culation, but were derived in an indirect way from fermion
number and energy-momentum conservation. The fact that
we pay more attention to the poirt=1 will enable us to

improve this situation to a certain extent: for the first time FIG. 1. Diagrams contributing tb 4 at LO.
within the CFP method, we will determine the full part
~CeT¢3(1—x) of Py by explicit calculation. Eq. (4) with their two differents functions. The first part of

Finally, in [17] a principal-value regularization was still the phase space, resulting frafl2), can be written as
used at some intermediate steps of the calculation. Even

though this was only done at places where it seemed a safe

and well-defined procedure, it is more in the spirit of the ML Xf ddkf ddl 5()(_ @) S(p—k—1)8(12)

prescription to abandon the PV completely and to stick to pn

one single regularization, the dimensional one. This view is 1—e )

corroborated by the observation that the PV regularization as - JQ d|k?|(k?) "€ 9

used in[17] actually turns out to become technically too 2I'(1-¢€) Jo R

complicated when one studies tN¢ part of the flavor

nonsinglet splitting function, or theiZ part of P{) . where
The remainder of this paper is organized as follows: to set

the framework, we will present a brief rederivation of the

leading order(LO) quark-to-quark splitting functiof®(? in

Sec. Il. Section Il will contain the calculation of the flavor

nonsinglet splitting function at two loops. More specifically, The §(12) contribution of graph(a) to I'yq is then given by

we will discuss in detail the treatment of the various virtual-

cut and real-cut contributions in Secs. Il A and Il B, respec- ,

tively, while Sec. Il C presents the final results of the calcu- (@507 () = P PPJQ d|k?||k? 1<

lation. In Sec. Ill D, we discuss the end point contributions a4 2w Jo

and provide a sample calculation of a two-loop contribution

to the quark self-energy in the LCA gauge with the ML X Ce(1—xX)~

prescription. Section IV deals with the calculation of tklé F

part onglg). Finally, we summarize our work in Sec. V.

K =1%=[K*(1—x). (10)

1+x?
€
1-x°

(11)

Using the identity

Il. RECALCULATION OF THE LO SPLITTING n
FUNCTION (1_X)_1_€E_Z5(1_X)+(1_X)
As a first example, we will rederive the LO result for the *

flavor nonsinglet splitting function, using the ML prescrip- In(1—x) )
tion. This is a rather trivial calculation that nevertheless dis- el | TOle), (12
plays the main improvements provided by the use of the ML *

prescription. Furthermore, the virtual graphs in the NLO cal-
culation have the LO kinematics, and so this section alsavhere the “plus” prescription is defined in the usual way,
serves to prepare the NLO calculation. We noted before thaine readily obtains

the LO example has already been worked oufdhwhere

collinear poles were regularized by taking the initial quark o ,

off shell, p?<0, rather than by using dimensional regulariza- r<a>ﬁ<'2)(x): _s ppr d|k?||Kk?| 1€

tion. This is perfectly fine at the LO level, but beyond LO it 4 2 0

seems a forbidding task to kegg+0, and in fact the un-

2

derlying method 0f9,10] that we are employing has been set X Cg| — E S(1—x)+ 1_ (13
up in such a way that it relies on the use of dimensional € (1-x)
regularization, yielding final results that correspond to the
modified minimal subtraction MS) scheme. It therefore For the ghostlike part we introduce the variaalas
seems a useful exercise to sketch the calculatioﬁg@f in
the ML prescription if dimensional regularization is used. K2=|2= 2=

2 =12 =~ 12= |k, (14

The Feynman diagrams contributing g, at LO are
shown in Fig. 1. For the gluon polarization tensor in diagram
(a) we need to insert the two parts of the ML discontinuity in The phase space is then given by
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kn The calculation of the LO splitting function is completed
f dko dd|5(X— ﬁ) S(p—k—=1)8(12+1%) by determining the end point contributions »at 1, corre-
sponding toZ, in Eq. (5) and given by the graphs in Fig.
mie @ o [t 2 e 1(b). They can be straightforwardly obtairfeasing the UV-
EENEET) fo dlk lJo dr(k?) singular structure of the one-loop quark self-energy, deter-
mined for the ML prescription if18]. One findg 7]
X 8((1—x)(1—«))

P Q2 1 dx d zl_ﬁl
= —_ — 2 - 2\—€ q 2
oo o1x | a1l " e

(15) Putting everything together, one eventually obtains

3 _ ©0_3
CFE' that is, & =§CF. (20)

where the last line follows since the root of the delta function "
for k=1 never contributes when we insert the second term Paq(X)=Cg
in Eq. (4) for the gluon polarization tensor into gragh),

2 .
tha?kszto'the factor @*1/I1~ (1~ «)/x accompanying the ;. »qreement witt{13]. We finally note that of course the
6(1°+17) in Eq. (4). Thus, the ghost part contributes only at gamefinal answer is obtained within the PV prescription: the

- Nge 2 oec ri . ; . . .
x=1. The contribution~1/«x of 2n*1/17 gives riseto a ¥  gingular integral, in Eq. (18) is cancelled by the contribu-

X2

T @

+351
5( X)

pole in the final answer: tion from Z,,, since we hav¢9]
r(@a0*+ Dy ﬁ5(1—x)PPfQ2d|k2||k2|—1—fc 2 vy 1.3
aq 2 0 Fle| Zq =1=5_~2C¥352l0- (22)
(16)

Thus, to summarize, the advantage of the ML prescription at
the LO level mainly amounts to producing truly finite results
for the 2PI kernels, as required for the method 1f,9,10.

Adding Egs.(13) and (16), we get the full contribution of
graph(a) to I'gq:

) 142 Furthermore, there is no need for introducing renormaliza-
@ y)= 2= pp| Cd|k2||K3 1 X ti tants dependi dditional singul titi
I ()=5=PP[ ~ d|k?|k? Ce—w—. (17) ion constants depending on additional singular quantities
2m 0 (1=x)+ like 14 that represent a mix-up in the treatment of UV and IR
singularities.

An important feature of this result should be emphasized, as

it will also be encountered at NLO: the integrand in ELy?)

is completely finite, in a distributional sense. In other words, lll. CALCULATION OF THE FLAVOR NONSINGLET

using the ML prescription, we have verified the finiteness of SPLITTING FUNCTION AT NLO

the LO 2PI kernef—qg in the light-cone gauge. We point At NLO, there are two different nonsinglet evolution ker-

e o Sl ECes 1 EOSL0/10, i 12 2981 2 densty comtnations—g and q+q-(3+q'), respec
g : tively. The two kernels are given in terms of tliavor-

the gluon propagator in the ML prescription has a much . g e o o
milder behavior than the individual contributions to it. diagona) - quark-to-quark and. quark-to-antiquark splitting

It is instructive to contrast the result in EQL7) with the functions by(see, for instance, Ref12])

one obtained for the PV prescripti¢]:

p=(W=pyM+prd) (23

as Q2 _q
Fgag,Pv(X): o PP 0 dk?[k? =t where the last splitting function originates from a tree graph
that does not comprise any real-gluon emission and is there-
x? fore free of any problems related to the use of the light-cone
X Cr (1-x) 4 T2100(1=0) 1, (18 gauge. Thus, we do not need to recalculﬁ’tga'q-(l). The
Feynman diagrams contributing 0Y.(!) are collected in
where Fig. 2. We have labelled the graphs according to the notation
of [9,12]. We also show the graphs contributingzg at two
[t u loops. We will not calculate all of these, since this is not
lo= fo mduw—ln 0. (19 really required. Their role will be discussed in Sec. Il D.

Thus, the 2PI kernel for the PV prescription has a divergent
coefficient of §(1—x), resulting from the gauge denomina- !Alternatively one can obtain the contributions from the require-
tor 1/l and being regularized by the paramesier ment 5P (x)dx=0 [13,9].
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malizes them, and eventually takes the liffit=0. In this
way, almost all contributions of the diagrams will vanish
B f since all loop integrals have to be proportional t8)( € (e
/ o \ ( )\ (') <0) on dimensional grounds. Only the contribution from the
c b e

(b-)

MS counterterm remain§l19,9 because this is the only

quantity not proportional tol¢) ~€. In contrast to this, in the
LoON, /@\ ML prescriptionlf sets an extra mass scale. For gr&ph
Pt 4@ Q 4%?‘7: \ one therefore encounters termg12) ¢, but also terms of
TN \ \ S the form ~ (al?>+bl?) €. The latter terms yield nonvanish-
(b) (d)

© ® ing contributions to the virtual-cut reswvenat |2=0. This
is still not the case for grapty) since here the pure quark
loop of course does not contain any light-cone gauge de-
nominator and thus does not depend4n Nevertheless,
one gets a contribution from the quark loop (g) for 12
+ If=0, i.e., when the gluon running into the loop is an axial
ghost, corresponding to the second part of the ML disconti-
nuity in Eq. (4).

As expected, in the actual derivation of the loop integrals
the property of the ML prescription to allow a Wick rotation
is of great help. Nevertheless, some of the integrals are quite

FIG. 2. Diagrams contributing tb, at NLO. involved, since the ML prescription introduces an explicit
9 dependence of the loop integrands on the transverse compo-
2 H : 2
A. Virtual-cut diagrams and renormalization nentsr? due to the identity 2¢r)(n*r)=r+rf. Further-

i o ) more, since we are interested in calculating also the contri-
Many of the diagrams in Fig. 2 have real and virtual cuts,, tions aix= 1, we need to calculate the loop integrals up to

as has been indicated by the dashed lines. Let us start ) rather than(1). The reason for this is that very often
discussing the contributions from the virtual cuts in graphspe final answer for a loop calculation with=0 will con-

(c),(d),(e),_(f),(g). It is clear that th(_ese essentially have_ the Lotain terms of the form (+x) 172 (a=1,2), to be ex-
topology in the sense that there is al_vvays one outgoing g,luoﬂanded according to Eq12). As a result, a further pole
(momentuml), to be treated according to the ML prescrip- t5040r 14 is introduced into the calculation, yielding finite

tion as discussed in the previous section. We recall that thiéontributions when multiplied by thé(e) terms in the loop
means that there are two contributions for this gluon, one a

2 22 ; ﬁ]tegrals. A similar thing happens in the loop part with
1"=0 and the other with”+11=0, corresponding fo the +12=0. Here, an extra factor d/can be introduced when

gluon acting as an axial ghdstThis immediately implies integrating this part over the phase space in @%). The
that we will have to calculate the loop integrals for these tWOhigher pole terms created in these ways will cancel out even-
situations. In addition, it is clear that the ML prescription ya|ly, but not the finite parts they have generated in inter-
also has to be used in the calculation of the loop itself, nofyegiate steps of the calculation. The detailed expressions for
just for the treatment of the external gluon. For instance, thegne loop integrals in the ML prescription are given in Appen-
gauge denominator I/(n), wherer is the loop momentum, jix A.
is subject to the prescriptiofl). In short, we will need sev-  £qr the renormalization of the loop diagrams, one needs
eral two-point and three-point functions with ?”d without 1 sybtract their UV poles, which is achieved in the easiest
gauge denominators like T(r), and for bothl*=0 and  \yay py inserting the UV-divergent one-loop structures as
12+17=0. calculated for the light-cone gauge in the ML prescription in
We point out that important qualitative differences with [6’18,20'21 All structures have also been Comp"ed[ﬁi
respect to the PV prescription arise here: in the PV calculaThe ones we need for the nonsinglet calculation are dis-
tion one always ha$?=0 for the outgoing gluon in the played in Fig. 3. One notices that, as expected, the structures
virtual-cut graphs, and there is no explicit dependencEon are gauge dependent and Lorentz noncovariant. Even more,
For instance, the way to deal with the self-energies in graphthe expressions for the non-Abelian quantiﬂégv and 1“%
(f),(g) in the PV prescription is identical to their treatment in in Fig. 3 are nonpolynomial in the external momenta, owing
covariant gauges: one calculates them for off-stelfenor-  tg terms~ 1[nl]. It is an important feature of the ML pre-
scription that these nonlocal terms exist, but decouple from
physical Green’s functiong!] thanks to the orthogonality of
2In the next subsection we will see that for diagrafds(f) there ~ the free propagator with respect to the gauge vector,
are also other contributions B+12=0, not just the one from the NP *"(1)=0 (this has actually been an important ingredient
axial ghost going into the loop. However, the integration of thosefor the proof[4] of the renormalizability of QCD in the ML
contributions proceeds in exactly the same way as outlined herdight-cone gauge Thus, the nonlocal pole parts never appear
We postpone the discussion of all the contribution€atl>=0 for ~ in our calculation. This is in contrast to the PV prescription,
graphs(d),(f) to the next subsection. where one hag9] contributions from the renormalization
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E(k) = ~ gt 6+ 2 ('R — o (nk)} |

k
_;_ ( ) HZy(l) = %—‘Z} 8% [lzg;u/ - lulu]
l Z

I, (1) = —faallo 5ob [13—1 {Pouw — L} — 22 {A,h5 + ﬁ;ﬁ,,}]

nl at = pr _ o'l
== Fle, A, = - o

Ty(D) = — S Ceielt Ty, 42 fn; — i,

p k
ldi=p-k
T = — 40 No T: [W -2 {ﬂn; + ¥, — 2¢ﬁn,,}]
p k

FIG. 3. UV-divergent one-loop structures as obtained in the light-cone gauge, using the ML prescription. Thel jpicle}s denote
guark (gluon colors; T? are the generators of $8).

constants to the calculation that explicitly depend on the exbut has a leftover ¥ singularity, to be cancelled by the

ternal momentum fractions,1—x. contribution from diagranti)]. Here even poles-1/e occur
at intermediate stages of the calculation. For those graphs
B. Real-cut graphs that also have virtual cuts, the situation is in general even

Let us now deal with the real cuts. One way of evaluatin more complicated, as cancellations will occur only in the
: ) : y 9sum of the real and virtual cuts. An example for this case

these is to integrate over the phase space of the two outgowbgi” be given in Sec. Il C

particles with momenta,,l, (for the notation of the mo- For graphs(d),(f), the phase space integrals become ex-

Tebnta, ssf F'gt' )2 'n,t?]dd't'on t(t) :;e _:_r;]t-eg-rattlr(])n otvetr the tremely complicated. This is due to the extra denominator
observed” parton with momentunk. This IS the strategy 1/(1;+1,)? present in these graphs, which causes great com-

we have adopted for all diagrams contributing to @feand plications in the axial-ghost parts of the phase space(ffor
the CgT; parts of the splitting function, i.e., graphs \e found it still possible to get the correct result via the
(b),(c),(g),(h). For graphgd),(f), we found it simpler to use & «yhase space method,” but fdd) this seemed a forbidding
different method, as will be pointed out below. task. It turned out to be more convenient to determine the
_ If the two outgoing partons are gluons, their phase spacgqt in a different way: if one calculates, for instance, the
in the ML prescription splits up into four pieces, as we d's'gluon loop in graph) for an arbitrary off-shell momentum

cussed in Se_c. I. It is possible to write down a p_hase SPAaCE going into the loop, the imaginary part of the loop will
that deals with all four parts. We leave the details for Ap-cqrrespond to the real-cut contribution we are looking for.

pendix B. , _ To be more precise, the strategy goes as follows: we calcu-
Upon integration of the squared real-cut matrix elemenfyie the 100p graph for off-shellland insert the result into the

for a diagram, each of the four parts of phase space givegynrgpriate LO phase space. The latter can be derived as in

highly divergent results, but their sum is usually less smgu-Eq_ (9), omitting, however, thes(12) there. One finds

lar. This is similar to the pattern we found at LO. For in- ’ ’ '

stance, the phase space integration of grdphof Fig. 2 kn

(before performing the final integration ovek?|) is ex- Xf ddkf dd|5(X— _n> o(p—k=1)

pected to give a finite result, since the graph is 2Pl and

possesses no virtual cut. This indeed turns out to be the case, mie Q% [0 2\ e

but the individual contributions t¢b) by the four parts of = Ti=e fo dlk |JO dr(k)) "¢ (29

phase space all have polesl/e? and~ 1/e which cancel out

when combined. A similar cancellation of higher pole terms

happens for grapth) [which of course is not finite by itself, where now
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- [k2[(1—x) act as axial ghosts. These two parts cannot easily be sepa-
k?=12=|k?|(1-x)T, |2=T(1— 7). (25  rated from each other, which is the reason why we postponed
the whole treatment of grapltd),(f) at 2= — If to this sec-

The limits for the integration in Eq.(24) span the largest tion. The integrals needed to obtain this part of the disconti-
possible range for, given by the condition$f>0 |2+|i nuity are those already mentioned in the last subsection and

~0. The full imaginary part arising when performing the collected in the right-hand column of Table IV in Appendix

loop and ther integrations has to correspond to the sum over ™

all cuts in the diagram. One encounters discontinuities fro Itis also worth mentioning that despite the fact that graph

the followi nzf) has asquaredgluon propagator, there are cancellations
e(A(; ?:Vrvc')r;? fﬁgrfgj' intearations. Here imaginar artscoming from the algebra in the numerator; as a consequence,
p 9 ' ginary panSane never encounters expressions likgnl? or 1/(1?

arise, for instance, if for certain values ofind of the Feyn- +ig)? before taking the discontinuity, and Eq@8), (27)

man parameters, . .. t,, one finds terms of the form are all we need.
f(t ¢ e 26 Clearly, when finally collecting all the imaginary parts
[f(ty, ..t ]S (26) from (A) and(C), the PV parts inB) and(C) play a role in

the calculation. While hl~1/(1-x) in Eq. (28) only di-
verges at the end point &= 1 where it is always regularized
by factors such as (1x) "¢, the propagator 17 in Eq. (27)
th general has its singularity inside the region of thimte-
gration: from Eq.(25) one finds thai?>0 for r<1, but
I2<0 for 7>1. The principal-value prescriptidin Eq. (27)
takes care of the pole at=1 and leads to a cancellation of
—im8(12) 27) the positive_spil_<e forr—1~ and the_nega_ti\(e one for
’ —17, resulting in a perfectly well-defined finite result.

The vertex graplid) can be treated in a similar fashion as
where PV denotes the principal value. The imaginary partf). Here one calculates the full vertex fpf=0, k?<0, but
~ 8(1%) obviously represents the loop contributionl 4& 0 arbitraryl?, and determines the imaginary parts arising with
which we have determined in the last subsection. Thereforgespect td2. This corresponds again to poif#) above, and
we do not need to reconsider this part of the discontinuity. calculational details are also given in Appendix C. The

Eq. (27) holds: contribution atl?=0 that we already calculated in the last

subsection. The discontinuity frof€) needs to be taken into

wheref is negative Details for integrals with such properties

are given in Appendix C. The imaginary part originating in

this way essentially corresponds to the cut through the loo

itself, i.e., to the real-cut contribution we are looking for.
(B) From the propagator 1R+ie) via the identity

1

—pv|
2+ie

12

1 1 1 _ account, and as before it corresponds to the full “pure-
WEWZPV m) —im sgn(n*1)a(nl). ghost” contribution(virtual cut and real cuj, residing atx
=1.
(28 A final comment concerns grapl). Its contribution to
At first sight, one might think that the discontinuitys(nl) ~ I'qq IS €ssentially given by a convolution of two LO expres-
simply corresponds to the calculation of the gluon loop forSions, each corresponding to Figall keeping, however,

the case when the gluon entering the loop is an axial ghoﬁ'so allfinite terms in_the upper part of the diagram, includ-
with 12=—12 . However, the situation is more subtle: The ing the factor (1-x)~¢ from phase spacgsee Eqs(11),

terms~ 1/ nl] do not only originate from the propagators of (12]:
the external gluons, but also from splitting formulas suchas 1 [ 1+22 ) In(1-2)
[2] (I)~;{(1_Z)+—6(1+Z )(—1_2 >+—E(1—Z)
1 _ 1 ( ! n ! ) (29 1[ 1+2°
[nrlin(i=r)]  [nI]\[nr] " [n(I=r)] ®— : (39
€l(1-2),

(wherer is the loop momentuin as well as from the loop
. o where
integrals themselves, like in the case of

1dz [Xx
do 1 (f®g)(x)5f 7f 2 9(2). (32
f _ _ . (30) X

2m)9 (r2+ie)[(1-r)2+ie][nr]

Note that this is in contrast with the PV prescription where
All these terms~1/[nl] have to be treated according to the the contribution from (i) does not correspond to a
ML prescription, i.e., give rise to discontinuities 6(nl)
~8(1—x) via Eq. (28). The sum of all discontinuities aris-
ing in this way actually has to correspond to the “pure-axial- 37¢ avoid confusion, we emphasize at this point that the principal
ghost” part of the graph, given bga) the virtual-cut contri-  value for 112 in Eq. (27) is well defined here andot related to the
bution when the gluon going into the loop is an axial ghost,principal-value prescription for the light-cone denominatarl That
plus(b) the real-cut contribution whelpothfinal-state gluons  we heavily criticized in the Introduction.
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genuine convolution in the mathematical sense. Since bottruly finite contributions tal’y,, before the final integration
convoluted functions in Eq(31) contain distributions, the over |k?| is performed. This expectation for the light-cone
convolution itself will also be a distribution. The evaluation gauge[11] was not really fulfilled by the PV prescription,
of Eqg. (31) is most conveniently performed in Mellin- where the results for the diagrams depended on integrals
moment space where convolutions become simple productsuch as g in Eq. (19) that diverge if the regularizatiod of
Some details of the calculation and a few nonstandard mghe PV prescription is sent to zef,12]. The finiteness of
ment expressions are given in Appendix D. the kernels in the ML prescription comes about via delicate
cancellations of terms sometimes as singular a$ d¥ even
1/e* when the various real-cugluon and axial-ghogtand
virtual-cut contributions are added. To give just one example
We now combine the results of the previous subsectiongheyond those already discussed in the previous subsection,
The first observation is that for the ML prescription all 2Pl let us discuss the contributions of grafg to I',. From the
graphs, and also the difference){ (i), turn out to give real-cut diagram, one has, up to trivial factors,

C. Final results

I‘(Q),f,\, ﬁ ? pprzw
aa "\ on o T(1-2¢)

51 2 +10 2 2+56
(1-x) 32 9e 55( ) 57
1+x?

+—(1—x)+ In x

3¢ 9

. (33

2 10) 4 In(l—x)) 2 1+x2

— ) =— 7 __
+3(1+X)( 1-x /., 3 1-x

The virtual-cut graph fot?= —If (corresponding to the gluon being an axial ghasintributes before renormalization:

2
@uv_|%s _ _°
re (277> S(1-x)P 7 0e 302~ 5. (34)

PJQ2d|k2||k2|126 2 10 2 56
o TI'(1-2¢) | 32 9¢ 3

The loop withI?=0 only contributes via its renormalization counterterm as explained earlier. This contribution exists also for
the loop with|?= —If and reads, on aggregate for both loop parts,

o T(1—-2¢ 3

2dk2 k2 71752
[ et 5

2
(9)," ren” _ ﬁ
I‘qq ( ) PP

1 1+x2 2)(In(1—x))
2 X ),

Z(l—x)+_

When adding the integrands of E¢83)—(35), all poles can- tain extent, this is a check on the prescription itself in the
cel, and as promised the contributionltg is finite before framework of a highly nontrivial application. Since—in con-
integration ovefk?|. trast to the PV recipe—the ML prescription possesses a solid
Next, we determine the contributions of the variousfield-theoretical foundatiofi3,4], our calculation has finally
graphs toPXq(”, making use of Eq(7). The results are provided a “clean” derivation of the NLO flavor nonsinglet

displayed in Tables | and Il. We see that all entries in the\slggﬂlrtlg ;lfj?ﬁg?nm:tlﬁgg] the CFP method, highlighting the

tables are completely well defined, everxat1, in terms of The next subsection will address the end pdia(1
distributions, which is a property that we already encoun-—yx)] contributions to the NLO flavor nonsinglet splitting
tered at LO. function.

The sums of the various graph-by-graph contributions are
also presented in Tables | and Il. One realizes that many D. Contributions at x=1 and a sample two-loop
more complicated structures, such as the dilogarithytxL.j calculation of Z,
cancel in the sums. Considering oyt 1 for the moment, it In the PV calculation§9,10,17 of the two-loop splitting

is the most important finding of this work that the entries infunctions the contributions- 5(1—x) were never directly
the columns “Sum” in Tables | and léxactlyreproduce the calculated, but inferref,23,19 from fermion number con-
results found in the PV calculation9,12] for x<<1. Since servation, expressed by the requirement

the latter are in agreement with those obtained in the

covariant-gauge OPE calculatiof22], we conclude that the jl[PV'(l)(x)— PV'—(l)(x)]dx=O (36)
ML prescription has led to the correct final result. To a cer- o 19 a9 '
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TABLE |. Final results for theCZ part of Py,(" on a graph-by-graph basis.

C?
Terms (b) (c) (e) (h-i) Sum
o(1-x) —2{(2)—-2{(3) —3-{(2)+124(3) 4-20(2)—8¢(3) 2{(2)+4£(3) 1-3¢(2)+6(3)
1+x2
=N —7+4L(2) 7-4{(2)
In(1—
(1+x2)( n(l_xx)) 4 -3 3 —4
X2
T In x In(1—x) -2 4 -4 -2
1 2
e -1 1
1+x2 1 3
-1 _ - - ——
T—x NX 2 ! ! 2
1+x2
Tox [L2(X) —¢(2)] -2 4 —4 2
1+x)In? 1 1
(1+x)In“x 5 5
In(1—X) 2 -2
X In x 1 _§ -1 -1 _Z
2 2
In x 1 _g 1 1 _§
2 2
X 9 -1 -3 5
1 -5 -3 3 -5

We could proceed in the same way and stop the calculation ggl)+C§[1—3§(2)+6§(3)]
here. However, the calculation we have performed in the ML

prescription allows us to go beyond this pragmatic approach, 4
since—at least for thé:% andC.T; parts—we have always +CFTf( - 55(2)
picked up the finite amounts af(1—x) contributed by the

i )
2PI kernels. If we now performed a calculationf » €O \where the ellipsis indicates that we have not entirely calcu-
responding to the graphs in thg bottom row of Fig. 2, We|5ied the finite amount oB(1—x) in the CeN¢ part of
would have all terms~5(1-x) in the NLO flavor non-_ pv.(1) gyen though we were able to determine its contribu-
singlet splitting function and could check whether indeed eqign ~¢(2) (see Appendix € Comparing Eqs(37) and
(36) is correctly reproduced. As an example, we will go th|s(38)1 we get a prediction for theZ andCT; parts Ofgt(:ll) in

way for theC.T; part of the splitting function. - . g
Let us first establish what we need to get &} The the light-cone gauge with the ML prescription:

coefficient of §(1—x) in the NLO splitting function was
determined if 23,12 via Eq. (36) to be

11
+CFNC(§§(2)+ .. ) (39)

g“)——?cz—ic Ti+CeN ) (39
g ~ T g-F g-F'f FNc(...),

CE(% —3§(2)+6§(3)) +CFTf( - %— gg(Z)) where all we can say about ti@:N¢ part is that it does not
contain any terms- £(2). It is quite remarkable that ng2),
17 11 {(3) terms are left over in th€? andCT; parts of (M.

+CFNC(2_4+ 35(2)_35(3)) ; 37 To directly calculate th€¢Ty part of £, we only have
to evaluate the first diagram in the bottom row of Fig. 2.
What we need to extract is the two-loop renormalization con-
while in our calculation we have, according to E§) and  stant for that diagram, when the light-cone gauge with the
Tables | and I, ML prescription is used. The calculation is relatively easy
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TABLE II. Final results for theC-N¢ andC(T; parts ofP;’;](l) on a graph-by-graph basis. The dots in the contributior@1— x) in
the first row denote uncalculated pieces consisting(8f and a rational numbeisee Appendix €

1
ECFNC CFTf
Terms (b) (© (d) ®) Sum (@
3(1-x) 2£(2)+2£(3) 3+¢(2)—12{(3) 50(2)+- - — 2 [(2)+ - Zu2)+-- -2 2
1+ 31 67 10
_ 7—4f(2 —3+2¢(2 e — -
1-x). £(2) £(2) 5 g 24(2) 5
In(1—x)
PAY _
(1+x )( T )+ 4 3 1
X2
_ 2 -4 2
T—x In xIn(1—Xx)
2
1+x In? x 1 1
1-x
1+x2I 1 1 5 1 11 2
1—x "X 2 2 3 3 3
+x2
T (L0 —=4(2)] 2 -4 2 4
In(1—x) -2 6 -4
X In x -1 E’ } 2
2 2
In x 1 9 _u 4 2
2 2
X -9 -1 _E) _4_0 f
3 3 3
4
1 5 -3 34 40 3
3 3

since the inner quark loop has obviously no light-cone gaugéntegration determines the two-loop counterterm and thus the
propagator and can in fact be calculated exactly: contribution toggl), We find, in theMS scheme,

Ag 8F2(2_6)F(6) 477 )
. - CeTs__
In  T(4-2¢) AR L P A ZCFTi_q 4

g
(40)

as

Im,,(r)=—iT
a 2

262 + E . (42)

—-r

2
o

f£omparing to Eq(8) this implies that theCe T part of £

Thi If- th li ith the hel
Is self-energy can then be renormalized wi e e OIS exactly what we expected it to be in E§9):

the counterterm in Fig. 3. The renormalized loop is then
inserted into the outer loop. Here it is very convenient that

1
. i 1),CeT
IT,,, is transverse: 551 NCRTI— _ ECFTf. 43

ap 2 _ 17¢] _Tap

DEO G = 1l DTN~ D). 4D This result clearly demonstrates the consistency of the whole
In other words, the whole calculation is not very different approach: our example shows that the light-cone gauge
from a simple one-loop calculation of the quark self-energymethod of[11,9,1Q is also able to determine the contribu-
the only exception being that we now need loop integraldions ~ 8(1—Xx) to the splitting functions by explicit calcu-
with the extra factor £r?)~ € present in Eq.40). If we lation. It would be interesting in this context to calculate also
embed the whole graph into the Dirac trace as shown in Figthe other contributions toggl) [and the missing part
1(b), it turns out that we only need a few integrals of this ~CgNcS(1—x) in our Table Il; important steps in this
kind; they are collected in Appendix E. Since we have renordirection have been taken [24,25 by examining the sec-
malized the inner loop, the leftover divergence after loopond and third diagrams in the bottom row of Fig. 2, which
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yield the CZ part of & Indeed it turns out that the results
of [24,25 can be exploned to reproduce the tern5C2/8 in )
our prediction(39) for &, which can be regarded as a NG -
further confirmation of our results.

We have to admit, however, at this point that the ability to
obtain the correct end point contributions is not restricted to
the ML prescription: this is also possible for the PV prescrip-

tion. Here, the coefficient o6(1—x) in the CcT; part of
Py reads

20
1),CeT
fg,;VF f_CFTfEIO- (44

Here the second term originates from the entry 10/9” in

the last column of Table I, when we omit the “plus” pre-

scription there and reintroduce it using the PV idenfy

1 1
mﬁ|05(1—x)+m, (45)
where |, is as defined in Eq(19). Furthermore fglg,\?FT‘

denotes theCeT¢ part of £” when the PV prescription is
used. The explicit calculatlon gives

! 1 4I
262 30

1(1 10 )

2
CeT
Zov= 1+( )C Te| —

(46)

that is,

1 4 20
(1),CeT
gq pVF '=C Tf( 6_§§(2)+§|0) (47)

It is interesting to see how upon combining E¢$4) and
(47) thely terms drop out, and th&gT; part of the end point
contributions comes out correctly as in E§7) also for the

(s1)
FIG. 4. Diagrams contributing to tHeZ part of Iy at NLO.

The diagrams contributing to th\éé part of I'yq at NLO
are shown in Fig. 4. We do not show here the graphs con-
tributing to Z, at two loops, since we will not attempt to
calculate them.

The calculation of the various real-cut and virtual-cut dia-
grams proceeds in exactly the same way as before. For the
renormalization of the virtual-cut contributions in the tri-
angle graphd) and the “swordfish” onegsl),(s2), we need
the UV counterterm for the three-gluon vertex in the light-
cone gauge with the ML prescription. Here we can rely on
the result presented if26] (see alsd27,2)); the part of it
that is relevant for our calculation is recalled in Fig. 5.

Concerning the real cuts, we mention that for graphs
(h),(b),(j),(k) we use the expression in E@®5) for the phase
space. As for th€Nc part of (Y, we found it easier to
determine the contributions of the real cuts of the remaining
diagrams via the extraction of the imaginary parts of the
associated virtual graphs.

We have verified that again for the ML prescription all
2PI graphs give truly finite contributions 16,4, before the
final integration ovetk?| is performed. This also applies to
the end poinix=1, where the result for each graph is again
always well defined in terms of distributions and, as before,
also has a coefficient a¥(1—x) that contains no ¥ poles.
Table Il presents the contributions of the various diagrams

PV prescription. We note, however, that again this happeng p(lg) Here we have defined the functions
at the expense of having renormalization constants depend-

ing on singular quantities likéy that represent a mix-up in

the treatment of UV and IR singularities.

IV. CALCULATION OF THE Né PART OF THE SINGLET
SPLITTING FUNCTION P44 AT NLO

Let us now turn to the calculation d?_;). We restrict
ourselves to |tsN part, since the contrlbutlonsCFTf,

NcTs are essentlally trivial as far as the treatment of the 11+x) dz [1-2z
LCA gauge is concerned: THe:T; part comprises no gluon Sa(x zf ( )

emission at all, and all diagrams contributing to tRgT;
part contain a quark loop and the emission of at nuss

(1—x+x3)?
PosX)= (1=,

lgg(X)=

(1—x+x2)2<ln(1—x))
X 1-x +’

—In| —

x/(1+X) z z

. 1
gluon. Such diagrams with one-gluon emission have the LO =—2Lix(=x)—2In x In(1+x)+ EmZX— £(2).
kinematics and will not reveal any new features as compared

to what we have already discussed. In contrast to this\ghe

part of P{Y) requires the renormalization of the non-Abelian

(48)

part of the three-gluon vertex and therefore really provides &Ve mention in passing that grag)) and the “swordfish”

further challenge for the ML prescription.

diagram(sl) give vanishing contributions tﬁ’(l) if the PV
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__ igas N¢ frajaqas |4
Tuww:s (p1,p2, p3) - 41|-6 73f 1T §Au1uaus + 20#1#2#3 +...

Apspops = Guous (P2 — P3)ps + Guap (P3 — P1) s + Gpuapuo (PL — P2) s
Cmmus = -quwxnzl (p2 — p3) ‘n+ gﬁsmn;g (P3 - pl) ‘n

+ N, (1 —p2) 10

__ tgas No fajaza: _
Suluzus(php%pii) = T4r 2 f 1fats 6Au1uzus

D1, a1 * M1
H2 H3
P2, a2 s, a3
p,a11 Y m
b2 %] + perm
D2, a2 p3, a3
sum

60#1#2#3 +...

Fﬂluzus (pl’ p2ap3) = Tmﬂzﬂa (plvp?vpfi) + Sﬂluzus (plvp?, p3)

= 4 ﬂafalaw3 1_31AH1N2M3 -

4 €

20#1#2#3 +...

FIG. 5. UV-divergent structures of the non-Abelian part of the three-gluon vertex as obtained in the light-cone gauge, using the ML
prescription.p;,p,,p; denote the momenta of the external gluoas,a,,a; are the associated color indicg&'1#223 being the structure
constants of S(B)], anduq, 1,13 are Lorentz indices. The dots indicate structuszsne of them nonlocalvhich do not contribute to our
calculation thanks to the orthogonality of the free propagator to the gauge vector

prescription is used, but are nonvanishing for the ML pre-gluon-to-gluon splitting function within the light-cone gauge
scription, where finite contributions arise from their ghostmethod of{11,9]. The new feature of our calculation is the

parts.

As for the case oPy, ", the full result for theNZ part of
Pglg), given by the column “Sum,” is(at x<<1) in agree-
ment with the PV result df10], which in turn coincides with

use of the Mandelstam-Leibbrandt prescription for dealing
with the spurious poles generated by the gauge denominator
in the gluon propagator. In contrast to the principal-value
prescription employed in previous calculatid®s10,13, the

the OPE on&[15]. Thus, the CFP method with ML prescrip- ML prescription has a solid field-theoretical foundation and
tion has also led to the correct final answer in this CaSeWill therefore prOVide a “CIeaner” derivation Of the I’esu|t.
which clearly constitutes a further nontrivial and comple-AS expected, the final results come out correctly, i.e., are in
mentary check. As can be seen from Table IlI, we have nofdreement with the ones [8,10,12,22 This finding is both

determined the finite amounts of contributions(1 —x) for
the graphs since, like in the case of BeNc part of PY(",
these are quite hard to extract in some cases. The end

contributions toP{? can then only be derived from the

energy-momentum conservation conditi#8,12. We em-
phasize, however, that, just as ﬂéga(l), there is no princi-

pal problem concerning the calculation of the end point con

tributions: had we calculated the ful(1—x) terms in Table

[Il and the two-loop quantit)g(gl), all end point contributions
would be at our disposal, and it would no longer be neces

a corroboration of the usefulness of the general method of
[11,9] to calculate splitting functionand a useful check on

poime ML prescription itself in a highly nontrivial application.

We have also discussed tl#¢1—x) contributions to the
NLO flavor nonsinglet splitting function, performing an ex-
plicit sample calculation of a two-loop contribution to the
renormalization constar, in the ML light-cone gauge. It

turns out that one indeed obtains the right amount of contri-

butions atx=1 as required by fermion number conservation.
We conclude by conceding that the ML prescription is in

general much more complicated to handle than the simpler,

sary to invoke the energy-momentum conservation condip, ¢ |ess well-founded, PV prescription. With regard to future

tion; in fact, this could serve as a further check of the calcu

lation.

V. CONCLUSIONS

We have performed a new evaluation of the NLO flavor

nonsinglet splitting function and of tmé part of the NLO

applications at, for instance, three-loop order, this creates a

certain dilemma: the ML prescription might be too compli-
cated to be used in that case, while on the other hand the
ill-understood success of the PV prescription at the two-loop
level does not guarantee that it will also produce correct
results beyond.
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TABLE lll. Final results for theN(Z: part onglg) on a graph-by-graph basis. The table does not include the
coefficients of6(1—x), which we have not determined. However, as mentioned in the main text, we have
proved that each graph contributeirite amount of§(1—x) to Iy (before the final integration ovek?| is

performed.

NG
Terms (b) (d) (s1+s2) (e @ (=) (G & Sum
Pgg(X) — B 167(2) $-812) §-24(2)
lgg(x) 4 -3 % -8
Pgg(X)In X IN(1—Xx) -2 6 -8 -4
pgg(x)ln2 X 3 _1:1L 3 1 2 3 !
Pgg(X)In X —32 T —2 -1 —3 1 3
Pgg(X)[Lix(x)—£(2)] -2 2 -8 4 4
pgg(—X)Sz(X) 2 2
(1+x)In?x 4 4
X Inx 2 2 4 -2 -3 - 3 _4
x In x -8 -% 3 4 6 16 ¥
In x - 2 -3 -5 -5 3 3 -2
Linx = S T R TP B
x2 In(1—x) -4 1 3
X In(1—Xx) 13 -3 -4 -6
In(1—x) -5 3 6 5
1
)—( In(1—x) 8 -4 —4
: S e T T T S
1 I A A
1 136 22 _g 23 46 67
)—( 9 3 3 3 9

Network “Quantum Chromodynamics and the Deep Struc-We recall the definition§9]
ture of Elementary Particles,” contract FMRX-CT98-0194

(DG 12-MIHT). pn 10 0-1
n= ﬁ( Wy o, Uy )l
APPENDIX A: VIRTUAL INTEGRALS
P
Here we list some loop integrals needed for the calcula- n* = ﬁ(l,O, ..,0,)= ﬁp, (A2)

tion. We do not need to recall any of the covariant integrals,
which are standard, but will only present those with a light-

cone gauge denominator, to be treated according to the My_vherep= P(10,...,0,1) is the momentum of the incoming

quark: see Fig. 2. Introducing Feynman parameters, one has

prescription(1).
We begin by performing a sample calculation of the inte- AP (1 -
gral I(n =—fdtf7ds
(n,q) on Jo 9,
I(n q)Ef d ! xf d o1z
, (2m)® (r’+ig)[(q—r)+ie][nr] (2m9[r2+sr’=2(q-nNt+g’t+is]®

B f ddr n*r (A3)

d 2 _r\2.; * H :
(2m)" (r*+ie)l(q—r)"+ie](nrn™r+ie) After performing a Wick rotation and straightforward inte-
(A1) grations over one arrives at
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ir'(1+e€) 2n*q

I _ Am EJ':Ld “€1 —1-€
(n,q)= 1672 @+ie | g2 Jo tte(1-t)
1 24 % +ie
xf ds 1+st¢ (A4)
0 (g2+ie)(1—t)
For example, for the casg=k one finds
k) iT(l+e) (47| 1
nky=——|—| —=
1672 |\ |k?) [nk]
2
x| ¢(2)—Li, ﬁ +2e£(3)|,  (A5)

where we have kept those terms that contribute to the final

answer. In Eq.(A5), {(n) is Riemann’'s{ function and
Li,(x) denotes the dilogarithm, defined (38]

Lix(z)=— fol Mdy.

y (AB)

The result in Eq.A5) coincides with the one if2] for €

=0. Note that the ML prescription arising for[bk] is ac-

tually immaterial here sincek=xpn never vanishes.
Setting, on the other hand=1 one gets, fol?=0,

. iT(1+e) 4 ¢ A7)
n, = —_—
1672 | —|k¥(1—x)) Nl 2¢?
and, forl?=—12,
iT(1+¢€) [ 47\ 2n*
I(n,l)=W _—|2 12 B(—G,l—é). (A8)

Note that the real part of EgA7) has to be takeATable IV

contains all the required integrals with an ML light-cone
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Feynman parameters. Therefore we only present the final,
k-integrated, result in this case. As can be seen, the integral
was accompanied by two different powersof

APPENDIX B: THREE-PARTICLE PHASE SPACE

As we discussed in Sec. |, the phase space for two gluons
(plus one “observed” partonwill split up into four pieces
for the ML prescription:

nl,+nl
Pslzxf ddllddlzéi(l—x— #)5(@)5(@),
nl,+nl
_ dj 4d IRV S
PSZ—xfd l.d Izﬁ(l X on
X 8(12+12,)8(1%),
nl,+nl
_ di d o, M 2
PS; xfd IldI26<1 X —pn
X 8(12)8(13+13,),
nl,+nl,

Ps4=xf ddllddI25<1—x—

X S(15+1% ) 8(15+13,), (B1)

wherel,l, are the gluon momenta. Thefunctions in Egs.
(B1) determine whether on@r both of the gluons acts as an
axial ghost.

As we know from the discontinuity in Ed4), the tenso-
rial structures of the nonghost part and the ghost part are
different. However, we can rewrite E}) as

*]

2n
disd D**(1)]1=270(ly) 2
1

[8(12)— 8(12+12)]

X[ —g*(nl) +n#l "+ n"I#]. (B2)

gauge denominator. The integrals in the first column are fofrps js possible because ofn2l/I2=1/nl for I1>=0 and

12=0; they depend on

nk ~ nl
Xx=— andx=-—=1-x.
pn pn

Recall that terms~(1—x) 172 will lead to further poles,

(A9)

as was shown by Eq12). The integrals in the second col-

umn of Table IV are for the axial-ghost ca$é=—1?, and

eventually need to be integrated further over the variable

(n)(n*1)=0 for I2+If=0. In this way, it is always pos-
sible to calculate just one combined matrix element, using
the tensorial structure in square brackets, and integrate it
over a phase space subject to simply the differeddg)
—5(I2+If). For our two-gluon case, this means that we
have to consider only the combination

defined in Eqs(15),(14). The « integration produces further We now introduce the Sudakov parametrizations

poles. We have

(A10)

We note that the last integral was much more easily obtained
by performing thex integration before the ones over the \;ere 4%)2_
I,

SHere one obviously has to discard the overall factor

PS,—PS,—PS;+PS,. (B3)
|
I‘f=(1—z)p“+pl—zn“+lﬁ,
| 4= M l2p Iy
5=z(1-y)p +ﬁn +15,, (B4)

The first§ functions in Eqs(B1) im-

ply y=x/z. If one wants to integrate over an arbitrary func-
tion f of scalar products of the momenta, one writes the four
parts of phase space in the following way:

2
__Ii,L'
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TABLE IV. Two- and three-point integrals with a light-cone gauge denominator for the ML prescription,

calculated up t@)(e). We have dropped the ubiquitous facttk6r?(47/|k?|) T (1— €)/T'(1—2€). X andk
have been defined in Eg8A9) and (A10), respectively.

fddr/(2m)¢

12=0

124+12=0

__

r2(k—r)nr]

(r>=2nk n*r)pn
r2(k—r)Anr]

__
r2(l—=rynr]
(r2=2nl n*r)pn
r2(l—r)?[nr]
pn
(p—1)%(k—r)’[nr]

_m
(p=n)*(1=r)nr]

b
(k+r)2(1—nr)qnr]

_m
rA(p—nk—n)qnr]

pn

r2(k+r)2(1-r)?nr]

_
rA(p—n(1-rnr]

1 ~ ~ ~
— = elnX[IN®>x—2Liy(x)—In xIn X]

1 ~
@)~ Lix(x)+2eL(3)]

k21+21 I +l|_' X
p (1—In x) X i2(X)

1
_ ;§(2)+e[4+ §(2)—2§(3)]}

$§*1*5[1—624<2>+263§(3>]

—2kZx €

%+2+ 6[4—5(2)]}

In x

1 1|2 Lits
- Enx i5(X)

X

— &xX+2el(2)Inx]

does not occur

(XE—XE)(EE2 —5(2)+2€§(3))
—3(2)x "¢

1
K2

1 Inx o~
—+ T —2Li,(X)

e2

1 2
3 n< x—2¢el(3)

x17¢[ 3 Inx
—+T_L|2(X)

262

k2

1,5 -
5 In?x—5 {2)~d%+543)]

2

does not occur

{(2)—Liy(x)+2€(3)

~1 ~ 1
k?k| = +2(1—In &)+ = Liy(«)
€ K

1
- ~;§(2)+6[4+ ((2)—24(3)]}

1 1
1-=
K

_Kie_
€

[1+€°4(2)]
0

1

(;+2+46+ E{(Z))(Kfe—l)

+ Ink+€e3—42)]

1
1-=
K

%2[1+ €Uk 1)

L

;2 +2§(2)+26§(3):|

1 1 e
62( K~ °)

1

k2
—k [Lixx)+{(2)]

—2[Li2<1>—§(2>+e§(3>]}
k2

! 1| K+Li 1|2~
—;nK i5(k) EnK

_K_f

e—]; +3§(2)+6e§(3)”

111 2
2 {ZS iy (C)

(after integrationf 5dxx ™€)

213 9
2let +{(2)

(after integrationf gdx x* ™€)
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nl,+nl 12, —(p=17)2 12, |
ded|1dd|25(l_x_l—2)f(i M,E,Z_p,x,z
pn 1§ LSNIS
X{8(12)8(15)— 8(12+17,)8(15) — 8(19) 8(15+15 )+ 8(12+11 ) 8(15+15 )}
1 gli-e

771/2— € fQZ
0

TA4T(1=e (ke

PHYSICAL REVIEW 38 094020
k%’

1 1 - T
d|k2||k2|1*25x€f dvv*ff dw(ww)*ff dé sin—2¢¢
0 0 0
~ o~ X 12 Xv n ~
X| X129 | Zpw(1—vX), ——=, —(r2+r2—2r,r,cos ), — X,1-vX
(x KX 1-vx - 2 T2 2|K2[xo
T(Ef oW W o, , 15, . 7<*ff WX W 22 o 0\7@
=X v X(r3Hrg—2rar,c0s ),2|k2|7(,x, =fl 5 15T 6= 2rsreCosd, - x,x
S(1-x) (1L ~ Wp W wWo
+—= fdpp_2+€p_€f(—p,—,r§+r§—2r7l’8C080, —,1,1) , (B5)
v 0 pp 2
where
x=1-x, v=1-v, w=1l-w, p=1-p,
= VWO X2
I’le, I’2— f
X
= [owx
r3:\/w, 4= e
X
WX —
I‘5— 7, I’6= vW,
wp

I’7=

7, r8: \/U_\7V

The meaning of the arguments of the functiom the various parts of the phase space can be seen from the first line of Eq.
where both gluons are axial ghosts.

(B6)
(B5). We note that the last part of the phase space in(Bf) is proportional to5(1—x); it corresponds to the contribution
frequently needs the integral

m sin"2¢ ¢ 1
de
0

ozl
—BlZ—eZ||=
r2+rg—2rrpcosg  \2 2

We do not list the results for the numerous different phase space integrals one encounters. We just mention that one

2

I
> oF4| 1,1+ €,1—¢;
ra
+—=5F
r2 21

—2)®<r§—r%)
ra
b

Jous-ra)|
My
where ,F,(a,b,c;z) denotes the hypergeometric functif28]. To expand ine, the relations

SFi(L1+el1-€2)=(1—2) 1 2,F(—€,—2¢6,1- €,2),

2
ra
1,1+ ¢,1—¢€; -

(B7)

,F1(ae,be,l1—ce;z)=1+abe?[Liy(z)+ ecLiz(z)+ e(a+b+c)S; A2) ]+ O(€?)
are useful, wher¢28]

(B8)
Lig(z)zfo1 Inynti=zy) ,

1 [1In*(1-2zy)
sty Ssua= |

Bg
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APPENDIX C:  IMAGINARY PARTS OF LOOP ~8(1—x)/e via Eq. (12), we will not be able to calculate
INTEGRALS thefinite amount of&(1 —x) in the final result for theCN¢
part of the two-loop splitting function, except for the contri-
butions~(2)8(1—x). However, the expressions in Table
V are sufficient for checking graph by graph the cancellation
of all pole terms proportional ta5(1—x), i.e., for proving
the finiteness of the 2PI kernelsxat 1 in the ML prescrip-

To see how to extract the imaginary part of a loop inte-
gral, let us go back to our example in Eé4) for the case
g=1 there. The integration over the Feynman parameiar
Eq. (A4) is trivial and can be done immediately. Rather than
performing straightaway the integration ovep get the gen-

eral result of the integral for arbitrafy, it is more conve- tion.
nient to include ther integration of Eq.(24) in the calcula-
tion and carry it out first: APPENDIX D: MELLIN MOMENTS

The Mellin moments of a functiofi(x) are defined by

f drrei(n) —if(1+e 1 (47)1 -
7 ‘Ilnl)=————| — — €x€
! 2 2 1
16m%e  [N111[KY wsfcmw—%uy (D)
0
1 Tmax
fo Tmin TT As a result, the moments of a convolutid®g [see Eq.
B (32)] become the product of the momentsfoandg:
X{[r(1—-tx)—1] ¢
—(1-t) <(r—1)" 9}, (Cy (feg)"=f"g". (D2)
where we have used the definitions in E(E). To result in The moments of Eq(31) are easily obtained using the

an imaginary part,the limits for ther integration have to be formulas in the appendix df30]. To invert the moments of
chosen in such a way that those terms in Egj) that are  the productf"g" back tox-space, one needs some further
raised to the power- e become negative, i.e.,<07<1/(1  moment expressions. Everything can be derived from the
—tx) for the first term in square brackets in E€1) and relations in[30], and from

0<7<1 for the second. The integrations become trivial

then and lead to simple beta functions. Afterwards, the 1 1

integration can be performed; the result is given in Table V f dxx"" 1 In?(1-x)= H[Sf(n)+82(n)],

where we also list other integrals that we encountered. As 0

can be seen from Table V, we also needed some integrals

with an extra factorr or (1— 7) in the numerator. We do not 1 1
consider the covariant integrals in Table V since in their case f X'
the extraction of the imaginary part is rather straightforward.

As we discussed in Sec. Il Bsee Eq.(27)], we have 2
terms~ 112~ 1/(1— 7) in the calculation, resulting from the —S51(N)S,(n) = 3S4(n),
propagator of the gluon running into the loop, and to be
treated according to the principal-value prescription. There-
fore, we will also need integrals such as EG1) with an 1 1 1
extra factor 1/(+ 7) in the integrand. Such integrals are in fo dxx™™" Lig(x) = né2)= ;Sl(n),
general much more difficult to calculate. A typical integral

needed is
U1-tx) d7
PV fo 11—
In x In(1—x
dx i xind=x)

1

The integrals with an extra denominator-I are also col- 0 1—x [S2(m) = §(2)]<ﬁ—81(n))
lected in Table V.

We finally emphasize that Table V doest contain all 1
terms~ e, but is in general correct only t®(1). The only + = Si(n)=S(n)+4(3),
O(e) terms that are fully accounted for in Table V are those n
~{(2). Wehave not consistently determined the other con- (D3)
tributions ~ €, because this is a very hard task. Therefore,
since terms like (+x) 1€ will lead to further pole factors Where

In?(1—x)

1 1
T=x | = LS+ S(m]-3Sim

+

J’ldxx”*l In x In(1—x)= }[Sz(n)—g(Z)]Jr iSl(n),
0 n n2

1-1tx
=In< ) (C2

tx

MD

Il
[
—
=~

&Uﬂzj (D4)

5We obviously do not take into account the overall fadtdrere.
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TABLE V. Imaginary parts ‘ZP” of loop integrals for the ML prescription, after integration over the
variable of the LO phase spad@4). As before we have defined=1—x. The integrals are in general only

correct toO(1); see text. Note that terms(1—x) ™ € must not be expanded i as further pole terms can
arise via Eq(12). We have dropped the ubiquitous factor 1264 /|k?|) T (1— €)/T' (1—2¢).

Ip{ifddr/(zw)d} Jdrrer(1-1)# fdr il
|7 1—7
pn 1 -X€ 1.
——— =|(1+2 2 — X T {1-€42
r¥(l—ryqnr] X (r2g——tel )} 28" Hmedl
(a=0,8=0) 1
+;-([|-|2(X)—§(2)]
(r®—2nl n*r)pn does not occur k?———1-—+Inx
r2(l—r)?[nr]
g
—Inx{1-=|-2x"¢
X
m x 17 €n x X1 . +2In2x
(¢=0,8=0) - o~
—2Li2(x)+ex{(2)}
1
pn - =(a=0,8=0) does not occur
(p—r)*(1=r)’[nr] X
pn } E ~ 1 In x
(k+1)2(1=r)?[nr] qlerarinx (= 6)(6_2_5(2)>_T
(«=0,8=0) o~ 1
+@)=2Li ()~ 5 In%x
pn l~‘f—l+2XI (2 1~_€1+2Inx
ré(p—r)A(k—r)’[nr] TR e e
(a=0,=0)
—4Li2(l—X)—{(2)}
pn 1 N 1 §~*f( L e )
r2(k+1)2(1—r)2[nr] @{(1x )(?5(2)> 2" e
—Liy(x)—InxInx +2[Li2(x)—g(2)]}
(a=0,8=0)
i PPy “(1 =
——|=+2-2InX[1-=]+Inx
KAz € X
(a=1,8=0)
pn X _(1_;6)<i_§(2))+|n_x does not occur
r3(p—r)2(1—r)inr] K2 é €

1
+2Liy(x)+ > In2x—3§(2)}

(a=0,8=0)
x| X 2+3x+2xIn'x
k?xz ; X X 1N X
—(1-3x)In x
(a=0p=1)
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APPENDIX E: TWO-LOOP INTEGRALS

For the calculation of th€T; part of the two-loop quark self-energy we need some integrals with an extra noninteger
power of —r? in the integrand, where is the loop momentum. Making use of the identities

1 Jl a—1
s = dx ,
a’d  “Jo  [axtb(1-x)]**?

1 1 1-x xe~1
aabc—a(a-i- 1)fO dxf0 dy [ax+by+c(1—x—y)]“+2’ (ED
one obtains, rather easily,
dor (-r?)7c . . €I'(2¢) T(1—€e)T(1-2¢)
J 2mi (por? 16 P T g T T3 E2
d%  (-r?) "¢ [ . . T(2e) T(1-e)T(1-2¢)
f 2t 162 P Y Fav g T Tz-3a E3
ddr (—=r= ) ddr 1
f 2m)9r?(p—r)?[nr] —(EP) e §(2)]J (2m)9r2(p—r)3nr]’ €4

where the integral on the right-hand side of E4) was determined in Appendix A and is actually finite. For the ML
prescription we therefore do not need the integral on the left-hand side dfEBg.however, we will see below that the
integral is divergent for the PV prescription. Also note that the integral in(E8) vanishes if the factor€£r?)~ € is not
present.

Finally, for the PV prescription one obtains, for the integral in B,

f dr  (orhc 1 Ta29 o lo+ €l(2)—2¢l,]+0 ES
2 o] 16w T(Lte) M P > g pnllot el(2) = 2el11+ Oe), (E5)
while
J dr ! (1t M P —Tlot et(2)— el 1]+ O(e) (E6)
(27T)d r2(p_r)2[nr] 167T2 € T p epn 0T € €lq €).
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lulnu
Il:fo u2+52du' =
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