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Light-cone gauge and the calculation of the two-loop splitting functions
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We present calculations of next-to-leading order QCD splitting functions, employing the light-cone gauge
method of Curci, Furmanski, and Petronzio~CFP!. In contrast with the ‘‘principal-value’’ prescription used in
the original CFP paper for dealing with the poles of the light-cone gauge gluon propagator, we adopt the
Mandelstam-Leibbrandt prescription which is known to have a solid field-theoretical foundation. We find that
indeed the calculation using this prescription is conceptually clear and avoids the somewhat dubious manipu-
lations of the spurious poles required when the principal-value method is applied. We reproduce the well-
known results for the flavor nonsinglet splitting function and theNC

2 part of the gluon-to-gluon singlet splitting
function, which are the most complicated ones, and which provide an exhaustive test of the ML prescription.
We also discuss in some detail thex51 end point contributions to the splitting functions.
@S0556-2821~98!03219-6#
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I. INTRODUCTION

The advantages of working in axial gauges when perfo
ing perturbative QCD calculations have been known fo
long time @1#. Those gauges enable us to retain, in hig
order calculations, a natural ‘‘partonic’’ interpretation for th
vector field, typical to a leading logarithmic approximatio

Among axial gauges, the one which enjoys a privileg
status is the light-cone axial~LCA! gauge, characterized b
the condition nmAm50,nm being a lightlike vector (n2

50). At variance with temporal (n2.0) and spacelike (n2

,0) axial gauges, which do have problems already at
free level@2#, and with the spacelike ‘‘planar’’ gauge@1# in
which the behavior of the theory to higher loop orders is s
unsettled@2#, the LCA gauge can be canonically quantiz
@3# and renormalized@4# at all orders in the loop expansio
following a well-established procedure. To reach this goa
is crucial to treat the ‘‘spurious’’ singularity occurring in th
tensorial part of the vector propagator,

D mn~ l !5
i

l 21 i«
S 2gmn1

nml n1nnl m

nl D , ~1!

according to a prescription independently suggested by M
delstam@5# and Leibbrandt@6# ~ML ! and derived in Ref.@3#
in the context of equal-time canonical quantization:

1

~nl !
→

1

@nl#
[

1

nl1 i« sgn~n* l !
5

n* l

n* lnl 1 i«
, ~2!

the two expressions being equal in the sense of the theo
distributions. The vectorn* is lightlike, and such thatn* n
51. Denoting byl' the transverse part of the vectorl m ,
orthogonal to bothnm andnm* , one has

2~nl !~n* l !5 l 21 l'
2 . ~3!
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The key feature of the ML prescription is that the spurio
poles in the complexl 0 plane are placed in the second a
fourth quadrants, i.e., with the same pattern as one enc
ters for the usual covariant denominators such as 1l 2

1 i«). One can therefore perform a proper Wick rotation
Euclidean momenta, and a suitable power counting criter
in the Euclidean integrals will give information on the ultr
violet ~UV! divergencies of the corresponding Minkowskia
integrals. This is in contrast to the Cauchy principal-val
~PV! prescription, which, under a Wick rotation, entails fu
ther contributions and therefrom a violation of power cou
ing.

A crucial property of the ML distribution is the occur
rence of two contributions with opposite signs in the abso
tive part of the vector propagator@7#:

disc@Dmn~ l !#

52pd~ l 2!Q~ l 0!S 2gmn1
2n* l

n* n

nml n1nnl m

l'
2 D

22pd~ l 21 l'
2 !Q~ l 0!

2n* l

n* n

nml n1nnl m

l'
2

. ~4!

Here the second, ghostlike, contribution~which is not
present in the PV prescription! is responsible for the milde
infrared~IR! behavior of the ML propagator. The presence
this axial ghost was stressed in@8#; its properties are exhaus
tively discussed in@2#. Clearly, if one has a cut diagram
with, say,m final-state gluons, there is a discontinuity lik
Eq. ~4! for each of the gluons: i.e., the phase space will s
up into 2m pieces.

One of the most interesting and nontrivial applications
the LCA gauge is the computation of the~spin-independent!
splitting functions for the two-loop Altarelli-Parisi~AP! evo-
lution of parton densities, following a method proposed a
© 1998 The American Physical Society20-1
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BASSETTO, HEINRICH, KUNSZT, AND VOGELSANG PHYSICAL REVIEW D58 094020
used by Curci, Furmanski, and Petronzio~CFP! in Refs.
@9,10#. This method is based on the observation@11# that in
axial gauges the two-particle-irreducible kernels of the l
der diagrams are finite, so that the collinear singularities
give rise to parton evolution only originate from the lin
connecting the kernels. Therefrom, using renormalizat
group techniques, the splitting functions are obtained
some suitable projection of the ladder diagrams, exploit
the factorization theorem of mass singularities@11#. We re-
frain from giving further details of the CFP method, sin
these can be found in@9,12#. We just mention at this poin
that one projects on the quantityG i j , given by

G i j S x,as ,
1

e D5ZjFd~12x!d i j 1x PPE ddk

~2p!d

3dS x2
nk

pnDUiK
1

12PK
L j G , ~5!

where 2e5(42d) andK is a two-particle-irreducible~2PI!
kernel, which is finite in the light-cone gauge@11,9#. The
labels i , j run over quarks and gluons; in the flavor no
singlet case one has just$ i j %5$qq%. Furthermore, in Eq.~5!,
PP denotes the pole part, and the projectorsUi ,Li are given
by

Uq5
1

4nk
n” , Lq5p” ,

Ug52gmn, Lg5
1

d22 F2gmn1
nmpn1nnpm

pn G . ~6!

The splitting functionsPi j to the desired order can be rea
off from the 1/e pole of G i j :

G i j S x,as ,
1

e D5d~12x!d i j

2
1

e S as

2p
Pi j

~0!~x!1
1

2 S as

2p D 2

Pi j
~1!~x!1 . . . D

1OS 1

e2D . ~7!

For future reference, we write down a similar expression@9#
for the residueZj ( j 5q,g) of the pole of the full quark~or
gluon! propagator:

Zj512
1

e S as

2p
j j

~0!~x!1
1

2 S as

2p D 2

j j
~1!~x!1 . . . D

1OS 1

e2D . ~8!

Inspecting Eqs.~5!,~7!,~8!, we see thatZq andZg contribute
to the end point@;d(12x)# parts of the splitting functions
Pqq andPgg , respectively.
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-
at

n
y
g

In the above references@9,10#, the ‘‘spurious’’ singularity
1/nl of the gluon propagator was handled according to
PV prescription. The method of@9,10# has been very suc
cessful in providing the first correct result for the next-t
leading order~NLO! gluon-to-gluon splitting function. The
result previously obtained in the operator product expans
~OPE! method@14# was not correct due to a subtle conce
tual problem which was recently clarified@15,16#. The new
Feynman gauge OPE calculations confirmed the old C
result. Despite this success, the LCA calculation with the
prescription is considered dubious because of the difficul
with power counting and the Wick rotation mentioned abo
In particular it is not clear whether its ‘‘calculational rules
remain valid in higher orders. We note that the precise
scription of some of the new high precision collider data c
for the extension of the NLO QCD analysis tonext-to-next-
to-leading order~NNLO!. Therefore a deeper understandin
of the formal field-theoretical basis of the CFP method
strongly motivated. The use of PV is by no means mandat
in the CFP method; it can also be applied when handling
1/ln singularities with the theoretically more sound ML pr
scription.

A first attempt using the ML prescription in connectio
with the CFP method has been performed in Ref.@7#, where
the one-loop AP splitting functions@13# have been correctly
reproduced, both for the flavor nonsinglet and flavor sing
cases. A new characteristic feature of this calculation is t
‘‘real’’ and ‘‘virtual’’ contributions are separatelywell de-
fined in the limitx→1,x being the longitudinal momentum
fraction, at variance with the corresponding PV result. T
occurs thanks to the presence of the ‘‘axial’’ ghost, whic
standing by the usual gluon term, protects its singular beh
ior with respect to the transverse momentum. There is
need of any IR cutoff to regularize intermediate results.

Beyond one loop, the calculation of the splitting fun
tions, according to the CFP method in the LCA gauge w
the ML prescription, has already been tackled in a rec
paper@17#. We believe, however, that improvements to t
calculation@17# can and should be made. First of all, only th
CF

2 part of the flavornonsingletsplitting function is studied
in @17#. In this paper we will also calculate theCFTf part
and, in particular, the far more complicated piece;CFNC of
this function, as well as theNC

2 part of the gluon-to-gluon
splitting function contributing to the flavorsingletsector. As
we will show, this set of functions we consider comprises
possible one-loop structures of QCD and thus enables
exhaustive test of the ML prescription in this applicatio
The ML calculation of the other singlet splitting function
like the nondiagonal quark-to-gluon~and vice versa! one, is
therefore not really required in this context: they will ce
tainly come out correctly if the prescription works for the f
more complicated cases we study.

Second, the power and virtues of the ML prescripti
were not fully exploited in@17#, where some contributions
resulting from the axial ghosts of the ML prescription we
neglected. These contributions are;d(12x) and thus only
affect the end points of the diagonal splitting functions. Ne
ertheless, their inclusion is required for a complete analy
since only then can the crucial question of the finiteness
0-2
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LIGHT-CONE GAUGE AND THE CALCULATION OF THE . . . PHYSICAL REVIEW D 58 094020
the 2PI kernels in the light-cone gauge be fully answer
We also remind the reader in this context that in the origi
CFP papers@9,10#, the end point contributions to the diago
nal splitting functions were never determined by explicit c
culation, but were derived in an indirect way from fermio
number and energy-momentum conservation. The fact
we pay more attention to the pointx51 will enable us to
improve this situation to a certain extent: for the first tim
within the CFP method, we will determine the full pa
;CFTfd(12x) of Pqq

V,(1) by explicit calculation.
Finally, in @17# a principal-value regularization was sti

used at some intermediate steps of the calculation. E
though this was only done at places where it seemed a
and well-defined procedure, it is more in the spirit of the M
prescription to abandon the PV completely and to stick
one single regularization, the dimensional one. This view
corroborated by the observation that the PV regularization
used in @17# actually turns out to become technically to
complicated when one studies theCFNC part of the flavor
nonsinglet splitting function, or theNC

2 part of Pgg
(1) .

The remainder of this paper is organized as follows: to
the framework, we will present a brief rederivation of th
leading order~LO! quark-to-quark splitting functionPqq

(0) in
Sec. II. Section III will contain the calculation of the flavo
nonsinglet splitting function at two loops. More specifical
we will discuss in detail the treatment of the various virtu
cut and real-cut contributions in Secs. III A and III B, respe
tively, while Sec. III C presents the final results of the calc
lation. In Sec. III D, we discuss the end point contributio
and provide a sample calculation of a two-loop contribut
to the quark self-energy in the LCA gauge with the M
prescription. Section IV deals with the calculation of theNC

2

part of Pgg
(1) . Finally, we summarize our work in Sec. V.

II. RECALCULATION OF THE LO SPLITTING
FUNCTION

As a first example, we will rederive the LO result for th
flavor nonsinglet splitting function, using the ML prescri
tion. This is a rather trivial calculation that nevertheless d
plays the main improvements provided by the use of the
prescription. Furthermore, the virtual graphs in the NLO c
culation have the LO kinematics, and so this section a
serves to prepare the NLO calculation. We noted before
the LO example has already been worked out in@7# where
collinear poles were regularized by taking the initial qua
off shell, p2,0, rather than by using dimensional regulariz
tion. This is perfectly fine at the LO level, but beyond LO
seems a forbidding task to keepp2Þ0, and in fact the un-
derlying method of@9,10# that we are employing has been s
up in such a way that it relies on the use of dimensio
regularization, yielding final results that correspond to
modified minimal subtraction (MS) scheme. It therefore
seems a useful exercise to sketch the calculation ofPqq

(0) in
the ML prescription if dimensional regularization is used.

The Feynman diagrams contributing toGqq at LO are
shown in Fig. 1. For the gluon polarization tensor in diagr
~a! we need to insert the two parts of the ML discontinuity
09402
.
l

-

at

en
fe

o
s
s

t

-
-
-

n

-
L
-
o
at

-

t
l

e

Eq. ~4! with their two differentd functions. The first part of
the phase space, resulting fromd( l 2), can be written as

xE ddkE ddldS x2
kn

pnD d~p2k2 l !d~ l 2!

5
p12e

2G~12e!
E

0

Q2

duk2u~k'
2 !2e, ~9!

where

k'
2 5 l'

2 5uk2u~12x!. ~10!

The d( l 2) contribution of graph~a! to Gqq is then given by

Gqq
~a!,d~ l 2!~x!5

as

2p
PPE

0

Q2

duk2uuk2u212e

3CF~12x!2e
11x2

12x
. ~11!

Using the identity

~12x!212e[2
1

e
d~12x!1

1

~12x!1

2eS ln~12x!

12x D
1

1O~e2!, ~12!

where the ‘‘plus’’ prescription is defined in the usual wa
one readily obtains

Gqq
~a!,d~ l 2!~x!5

as

2p
PPE

0

Q2

duk2uuk2u212e

3CFF2
2

e
d~12x!1

11x2

~12x!1
G . ~13!

For the ghostlike part we introduce the variablek as

k'
2 5 l'

2 52 l 25uk2uk. ~14!

The phase space is then given by

FIG. 1. Diagrams contributing toGqq at LO.
0-3
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E ddkE ddldS x2
kn

pnD d~p2k2 l !d~ l 21 l'
2 !

5
p12e

2G~12e!
E

0

Q2

duk2u E
0

1

dk~k'
2 !2e

3d„~12x!~12k!…

5
p12e

2G~12e!
d~12x!E

0

Q2

duk2u E
0

1 dk

12k
~k'

2 !2e,

~15!

where the last line follows since the root of the delta funct
for k51 never contributes when we insert the second te
in Eq. ~4! for the gluon polarization tensor into graph~a!,
thanks to the factor 2n* l / l'

2 ;(12k)/k accompanying the
d( l 21 l'

2 ) in Eq. ~4!. Thus, the ghost part contributes only
x51. The contribution;1/k of 2n* l / l'

2 gives rise to a 1/e
pole in the final answer:

G
qq
~a!,d~ l 21 l'

2
!
~x!5

as

2p
d~12x!PPE

0

Q2

duk2uuk2u212eCFF2

e G .
~16!

Adding Eqs.~13! and ~16!, we get the full contribution of
graph~a! to Gqq :

Gqq
~a!~x!5

as

2p
PPE

0

Q2

duk2uuk2u212eCF

11x2

~12x!1
. ~17!

An important feature of this result should be emphasized
it will also be encountered at NLO: the integrand in Eq.~17!
is completely finite, in a distributional sense. In other wor
using the ML prescription, we have verified the finiteness
the LO 2PI kernelq→qg in the light-cone gauge. We poin
out, however, that the finite 2PI kernel arises as the sum
the two singular pieces in Eqs.~13!,~16!. This is again a
finding that will recur at NLO: the full discontinuity~4! of
the gluon propagator in the ML prescription has a mu
milder behavior than the individual contributions to it.

It is instructive to contrast the result in Eq.~17! with the
one obtained for the PV prescription@9#:

Gqq
~a!,PV~x!5

as

2p
PPE

0

Q2

duk2uuk2u212e

3CFF 11x2

~12x!1
12I 0d~12x!G , ~18!

where

I 0[E
0

1 u

u21d2
du'2 ln d. ~19!

Thus, the 2PI kernel for the PV prescription has a diverg
coefficient ofd(12x), resulting from the gauge denomina
tor 1/nl and being regularized by the parameterd.
09402
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The calculation of the LO splitting function is complete
by determining the end point contributions atx51, corre-
sponding toZq in Eq. ~5! and given by the graphs in Fig
1~b!. They can be straightforwardly obtained1 using the UV-
singular structure of the one-loop quark self-energy, de
mined for the ML prescription in@18#. One finds@7#

Zq512
as

2p

1

e
CF

3

2
, that is, jq

~0!5
3

2
CF . ~20!

Putting everything together, one eventually obtains

Pqq
~0!~x!5CFF 11x2

~12x!1
1

3

2
d~12x!G , ~21!

in agreement with@13#. We finally note that of course the
samefinal answer is obtained within the PV prescription: th
singular integralI 0 in Eq. ~18! is cancelled by the contribu
tion from Zq , since we have@9#

Zq
PV512

as

2p

1

e
CFF3

2
22I 0G . ~22!

Thus, to summarize, the advantage of the ML prescription
the LO level mainly amounts to producing truly finite resu
for the 2PI kernels, as required for the method of@11,9,10#.
Furthermore, there is no need for introducing renormali
tion constants depending on additional singular quanti
like I 0 that represent a mix-up in the treatment of UV and
singularities.

III. CALCULATION OF THE FLAVOR NONSINGLET
SPLITTING FUNCTION AT NLO

At NLO, there are two different nonsinglet evolution ke
nelsP2,(1) andP1,(1) governing the evolutions of the quar
density combinationsq2q̄ and q1q̄2(q81q̄8), respec-
tively. The two kernels are given in terms of the~flavor-
diagonal! quark-to-quark and quark-to-antiquark splittin
functions by~see, for instance, Ref.@12#!

P6,~1![Pqq
V,~1!6Pqq̄

V,~1! , ~23!

where the last splitting function originates from a tree gra
that does not comprise any real-gluon emission and is th
fore free of any problems related to the use of the light-co

gauge. Thus, we do not need to recalculatePqq̄
V,(1) . The

Feynman diagrams contributing toPqq
V,(1) are collected in

Fig. 2. We have labelled the graphs according to the nota
of @9,12#. We also show the graphs contributing toZq at two
loops. We will not calculate all of these, since this is n
really required. Their role will be discussed in Sec. III D.

1Alternatively one can obtain the contributions from the requi
ment*0

1Pqq
(0)(x)dx50 @13,9#.
0-4
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A. Virtual-cut diagrams and renormalization

Many of the diagrams in Fig. 2 have real and virtual cu
as has been indicated by the dashed lines. Let us star
discussing the contributions from the virtual cuts in grap
~c!,~d!,~e!,~f!,~g!. It is clear that these essentially have the L
topology in the sense that there is always one outgoing gl
~momentuml ), to be treated according to the ML prescri
tion as discussed in the previous section. We recall that
means that there are two contributions for this gluon, one
l 250 and the other withl 21 l'

2 50, corresponding to the
gluon acting as an axial ghost.2 This immediately implies
that we will have to calculate the loop integrals for these t
situations. In addition, it is clear that the ML prescriptio
also has to be used in the calculation of the loop itself,
just for the treatment of the external gluon. For instance,
gauge denominator 1/(r •n), wherer is the loop momentum
is subject to the prescription~1!. In short, we will need sev-
eral two-point and three-point functions with and witho
gauge denominators like 1/(n•r ), and for bothl 250 and
l 21 l'

2 50.
We point out that important qualitative differences wi

respect to the PV prescription arise here: in the PV calc
tion one always hasl 250 for the outgoing gluon in the
virtual-cut graphs, and there is no explicit dependence onl'

2 .
For instance, the way to deal with the self-energies in gra
~f!,~g! in the PV prescription is identical to their treatment
covariant gauges: one calculates them for off-shelll 2, renor-

2In the next subsection we will see that for diagrams~d!,~f! there
are also other contributions atl 21 l'

2 50, not just the one from the
axial ghost going into the loop. However, the integration of tho
contributions proceeds in exactly the same way as outlined h
We postpone the discussion of all the contributions atl 21 l'

2 50 for
graphs~d!,~f! to the next subsection.

FIG. 2. Diagrams contributing toGqq at NLO.
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malizes them, and eventually takes the limitl 2→0. In this
way, almost all contributions of the diagrams will vanis
since all loop integrals have to be proportional to (l 2)2e (e
,0) on dimensional grounds. Only the contribution from t
MS counterterm remains@19,9# because this is the only
quantity not proportional to (l 2)2e. In contrast to this, in the
ML prescription l'

2 sets an extra mass scale. For graph~f!,
one therefore encounters terms;( l 2)2e, but also terms of
the form;(al21bl'

2 )2e. The latter terms yield nonvanish
ing contributions to the virtual-cut resultevenat l 250. This
is still not the case for graph~g! since here the pure quar
loop of course does not contain any light-cone gauge
nominator and thus does not depend onl'

2 . Nevertheless,
one gets a contribution from the quark loop in~g! for l 2

1 l'
2 50, i.e., when the gluon running into the loop is an ax

ghost, corresponding to the second part of the ML disco
nuity in Eq. ~4!.

As expected, in the actual derivation of the loop integr
the property of the ML prescription to allow a Wick rotatio
is of great help. Nevertheless, some of the integrals are q
involved, since the ML prescription introduces an expli
dependence of the loop integrands on the transverse com
nentsr'

2 due to the identity 2(nr)(n* r )5r 21r'
2 . Further-

more, since we are interested in calculating also the con
butions atx51, we need to calculate the loop integrals up
O~e! rather thanO~1!. The reason for this is that very ofte
the final answer for a loop calculation withl 250 will con-
tain terms of the form (12x)212ae (a51,2), to be ex-
panded according to Eq.~12!. As a result, a further pole
factor 1/e is introduced into the calculation, yielding finit
contributions when multiplied by theO~e! terms in the loop
integrals. A similar thing happens in the loop part withl 2

1 l'
2 50. Here, an extra factor 1/e can be introduced when

integrating this part over the phase space in Eq.~15!. The
higher pole terms created in these ways will cancel out ev
tually, but not the finite parts they have generated in int
mediate steps of the calculation. The detailed expressions
the loop integrals in the ML prescription are given in Appe
dix A.

For the renormalization of the loop diagrams, one ne
to subtract their UV poles, which is achieved in the easi
way by inserting the UV-divergent one-loop structures
calculated for the light-cone gauge in the ML prescription
@6,18,20,21#. All structures have also been compiled in@2#.
The ones we need for the nonsinglet calculation are
played in Fig. 3. One notices that, as expected, the struct
are gauge dependent and Lorentz noncovariant. Even m
the expressions for the non-Abelian quantitiesPmn

g and Gm
g

in Fig. 3 are nonpolynomial in the external momenta, owi
to terms;1/@nl#. It is an important feature of the ML pre
scription that these nonlocal terms exist, but decouple fr
physical Green’s functions@4# thanks to the orthogonality o
the free propagator with respect to the gauge vec
nmD mn( l )50 ~this has actually been an important ingredie
for the proof@4# of the renormalizability of QCD in the ML
light-cone gauge!. Thus, the nonlocal pole parts never appe
in our calculation. This is in contrast to the PV prescriptio
where one has@9# contributions from the renormalizatio

e
e.
0-5
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FIG. 3. UV-divergent one-loop structures as obtained in the light-cone gauge, using the ML prescription. The indicesi , j (a,b) denote
quark ~gluon! colors;Ta are the generators of SU~3!.
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constants to the calculation that explicitly depend on the
ternal momentum fractionsx,12x.

B. Real-cut graphs

Let us now deal with the real cuts. One way of evaluat
these is to integrate over the phase space of the two outg
particles with momental 1 ,l 2 ~for the notation of the mo-
menta, see Fig. 2!, in addition to the integration over th
‘‘observed’’ parton with momentumk. This is the strategy
we have adopted for all diagrams contributing to theCF

2 and
the CFTf parts of the splitting function, i.e., graph
~b!,~c!,~g!,~h!. For graphs~d!,~f!, we found it simpler to use a
different method, as will be pointed out below.

If the two outgoing partons are gluons, their phase sp
in the ML prescription splits up into four pieces, as we d
cussed in Sec. I. It is possible to write down a phase sp
that deals with all four parts. We leave the details for A
pendix B.

Upon integration of the squared real-cut matrix elem
for a diagram, each of the four parts of phase space g
highly divergent results, but their sum is usually less sin
lar. This is similar to the pattern we found at LO. For i
stance, the phase space integration of graph~b! of Fig. 2
~before performing the final integration overuk2u) is ex-
pected to give a finite result, since the graph is 2PI a
possesses no virtual cut. This indeed turns out to be the c
but the individual contributions to~b! by the four parts of
phase space all have poles;1/e2 and;1/e which cancel out
when combined. A similar cancellation of higher pole term
happens for graph~h! @which of course is not finite by itself
09402
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but has a leftover 1/e singularity, to be cancelled by th
contribution from diagram~i!#. Here even poles;1/e3 occur
at intermediate stages of the calculation. For those gra
that also have virtual cuts, the situation is in general ev
more complicated, as cancellations will occur only in t
sum of the real and virtual cuts. An example for this ca
will be given in Sec. III C.

For graphs~d!,~f!, the phase space integrals become
tremely complicated. This is due to the extra denomina
1/(l 11 l 2)2 present in these graphs, which causes great c
plications in the axial-ghost parts of the phase space. For~f!,
we found it still possible to get the correct result via t
‘‘phase space method,’’ but for~d! this seemed a forbidding
task. It turned out to be more convenient to determine
result in a different way: if one calculates, for instance, t
gluon loop in graph~f! for an arbitrary off-shell momentum
l going into the loop, the imaginary part of the loop w
correspond to the real-cut contribution we are looking f
To be more precise, the strategy goes as follows: we ca
late the loop graph for off-shelll and insert the result into the
appropriate LO phase space. The latter can be derived a
Eq. ~9!, omitting, however, thed( l 2) there. One finds

xE ddkE ddldS x2
kn

pnD d~p2k2 l !

5
p12e

2G~12e!
E

0

Q2

duk2u E
0

1/~12x!

dt~k'
2 !2e, ~24!

where now
0-6
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k'
2 5 l'

2 5uk2u~12x!t, l 25
uk2u~12x!

x
~12t!. ~25!

The limits for thet integration in Eq.~24! span the larges
possible range fort, given by the conditionsl'

2 .0, l 21 l'
2

.0. The full imaginary part arising when performing th
loop and thet integrations has to correspond to the sum o
all cuts in the diagram. One encounters discontinuities fr
the following sources.

~A! From the loop integrations. Here imaginary pa
arise, for instance, if for certain values oft and of the Feyn-
man parameterst1 , . . . ,tk , one finds terms of the form

@ f ~ t1 , . . . ,tk ,t!#2e, ~26!

wheref is negative. Details for integrals with such propertie
are given in Appendix C. The imaginary part originating
this way essentially corresponds to the cut through the l
itself, i.e., to the real-cut contribution we are looking for.

~B! From the propagator 1/(l 21 i«) via the identity

1

l 21 i«
5PVS 1

l 2D 2 ipd~ l 2!, ~27!

where PV denotes the principal value. The imaginary p
;d( l 2) obviously represents the loop contribution atl 250
which we have determined in the last subsection. Theref
we do not need to reconsider this part of the discontinuit

~C! From terms;1/@nl#, for which a relation similar to
Eq. ~27! holds:

1

@nl#
[

1

nl1 i« sgn~n* l !
5PVS 1

nl D2 ip sgn~n* l !d~nl !.

~28!

At first sight, one might think that the discontinuity;d(nl)
simply corresponds to the calculation of the gluon loop
the case when the gluon entering the loop is an axial gh
with l 252 l'

2 . However, the situation is more subtle: Th
terms;1/@nl# do not only originate from the propagators
the external gluons, but also from splitting formulas such
@2#

1

@nr#@n~ l 2r !#
5

1

@nl# S 1

@nr#
1

1

@n~ l 2r !# D ~29!

~where r is the loop momentum!, as well as from the loop
integrals themselves, like in the case of

E ddr

~2p!d

1

~r 21 i«!@~ l 2r !21 i«#@nr#
. ~30!

All these terms;1/@nl# have to be treated according to th
ML prescription, i.e., give rise to discontinuities;d(nl)
;d(12x) via Eq. ~28!. The sum of all discontinuities aris
ing in this way actually has to correspond to the ‘‘pure-axi
ghost’’ part of the graph, given by~a! the virtual-cut contri-
bution when the gluon going into the loop is an axial gho
plus~b! the real-cut contribution whenbothfinal-state gluons
09402
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act as axial ghosts. These two parts cannot easily be s
rated from each other, which is the reason why we postpo
the whole treatment of graphs~d!,~f! at l 252 l'

2 to this sec-
tion. The integrals needed to obtain this part of the disco
nuity are those already mentioned in the last subsection
collected in the right-hand column of Table IV in Append
A.

It is also worth mentioning that despite the fact that gra
~f! has asquaredgluon propagator, there are cancellatio
coming from the algebra in the numerator; as a conseque
one never encounters expressions like 1/@nl#2 or 1/(l 2

1 i«)2 before taking the discontinuity, and Eqs.~28!, ~27!
are all we need.

Clearly, when finally collecting all the imaginary par
from ~A! and~C!, the PV parts in~B! and~C! play a role in
the calculation. While 1/nl;1/(12x) in Eq. ~28! only di-
verges at the end point atx51 where it is always regularized
by factors such as (12x)2e, the propagator 1/l 2 in Eq. ~27!
in general has its singularity inside the region of thet inte-
gration: from Eq.~25! one finds thatl 2.0 for t,1, but
l 2,0 for t.1. The principal-value prescription3 in Eq. ~27!
takes care of the pole att51 and leads to a cancellation o
the positive spike fort→12 and the negative one fort
→11, resulting in a perfectly well-defined finite result.

The vertex graph~d! can be treated in a similar fashion a
~f!. Here one calculates the full vertex forp250, k2,0, but
arbitrary l 2, and determines the imaginary parts arising w
respect tol 2. This corresponds again to point~A! above, and
calculational details are also given in Appendix C. T
imaginary part from~B! is again related to the virtual-cu
contribution atl 250 that we already calculated in the la
subsection. The discontinuity from~C! needs to be taken into
account, and as before it corresponds to the full ‘‘pu
ghost’’ contribution~virtual cut and real cut!, residing atx
51.

A final comment concerns graph~i!. Its contribution to
Gqq is essentially given by a convolution of two LO expre
sions, each corresponding to Fig. 1~a!, keeping, however,
also allfinite terms in the upper part of the diagram, inclu
ing the factor (12x)2e from phase space@see Eqs.~11!,
~12!#:

~ i!;
1

e F 11z2

~12z!1
2e~11z2!S ln~12z!

12z D
1

2e~12z!G
^

1

e F 11z2

~12z!1
G , ~31!

where

~ f ^ g!~x![E
x

1 dz

z
f S x

zDg~z!. ~32!

Note that this is in contrast with the PV prescription whe
the contribution from ~i! does not correspond to

3To avoid confusion, we emphasize at this point that the princi
value for 1/l 2 in Eq. ~27! is well defined here andnot related to the
principal-value prescription for the light-cone denominator 1/nl that
we heavily criticized in the Introduction.
0-7
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genuine convolution in the mathematical sense. Since b
convoluted functions in Eq.~31! contain distributions, the
convolution itself will also be a distribution. The evaluatio
of Eq. ~31! is most conveniently performed in Mellin
moment space where convolutions become simple produ
Some details of the calculation and a few nonstandard
ment expressions are given in Appendix D.

C. Final results

We now combine the results of the previous subsectio
The first observation is that for the ML prescription all 2
graphs, and also the difference (h)2( i ), turn out to give
us

th

n

ar
an

in

th

er

09402
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ts.
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truly finite contributions toGqq , before the final integration
over uk2u is performed. This expectation for the light-con
gauge@11# was not really fulfilled by the PV prescription,
where the results for the diagrams depended on integ
such asI 0 in Eq. ~19! that diverge if the regularizationd of
the PV prescription is sent to zero@9,12#. The finiteness of
the kernels in the ML prescription comes about via delic
cancellations of terms sometimes as singular as 1/e2 or even
1/e3 when the various real-cut~gluon and axial-ghost! and
virtual-cut contributions are added. To give just one exam
beyond those already discussed in the previous subsec
let us discuss the contributions of graph~g! to Gqq . From the
real-cut diagram, one has, up to trivial factors,
lso for
Gqq
~g!,r;S as

2p D 2

PPE
0

Q2 duk2uuk2u2122e

G~122e! Fd~12x!S 2

3e2
1

10

9e
2

2

3
z~2!1

56

27D
1

11x2

~12x!1
S 2

2

3e
2

10

9 D1
4

3
~11x2!S ln~12x!

12x D
1

2
2

3

11x2

12x
ln xG . ~33!

The virtual-cut graph forl 252 l'
2 ~corresponding to the gluon being an axial ghost! contributes before renormalization:

Gqq
~g!,v;S as

2p D 2

d~12x!PPE
0

Q2 duk2uuk2u2122e

G~122e! S 2
2

3e2
2

10

9e
2

2

3
z~2!2

56

27D . ~34!

The loop withl 250 only contributes via its renormalization counterterm as explained earlier. This contribution exists a
the loop withl 252 l'

2 and reads, on aggregate for both loop parts,

Gqq
~g!, ‘ ‘ ren’ ’ ;S as

2p D 2

PPE
0

Q2 duk2uuk2u212e

G~122e!

2

3 F1

e

11x2

~12x!1
2~11x2!S ln~12x!

12x D
1

211xG . ~35!
he
-
olid

t
e

g

When adding the integrands of Eqs.~33!–~35!, all poles can-
cel, and as promised the contribution toGqq is finite before
integration overuk2u.

Next, we determine the contributions of the vario
graphs toPqq

V,(1) , making use of Eq.~7!. The results are
displayed in Tables I and II. We see that all entries in
tables are completely well defined, even atx51, in terms of
distributions, which is a property that we already encou
tered at LO.

The sums of the various graph-by-graph contributions
also presented in Tables I and II. One realizes that m
more complicated structures, such as the dilogarithm Li2(x),
cancel in the sums. Considering onlyx,1 for the moment, it
is the most important finding of this work that the entries
the columns ‘‘Sum’’ in Tables I and IIexactlyreproduce the
results found in the PV calculations@9,12# for x,1. Since
the latter are in agreement with those obtained in
covariant-gauge OPE calculations@22#, we conclude that the
ML prescription has led to the correct final result. To a c
e

-

e
y

e

-

tain extent, this is a check on the prescription itself in t
framework of a highly nontrivial application. Since—in con
trast to the PV recipe—the ML prescription possesses a s
field-theoretical foundation@3,4#, our calculation has finally
provided a ‘‘clean’’ derivation of the NLO flavor nonsingle
splitting function within the CFP method, highlighting th
viability of that method.

The next subsection will address the end point@d(1
2x)# contributions to the NLO flavor nonsinglet splittin
function.

D. Contributions at x51 and a sample two-loop
calculation of Zq

In the PV calculations@9,10,12# of the two-loop splitting
functions the contributions;d(12x) were never directly
calculated, but inferred@9,23,12# from fermion number con-
servation, expressed by the requirement

E
0

1

@Pqq
V,~1!~x!2Pqq̄

V,~1!~x!#dx50. ~36!
0-8
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TABLE I. Final results for theCF
2 part of Pqq

V,(1) on a graph-by-graph basis.

Terms

CF
2

~b! ~c! ~e! ~h-i! Sum

d(12x) 22z(2)22z(3) 232z(2)112z(3) 422z(2)28z(3) 2z(2)14z(3) 123z(2)16z(3)

11x2

~12x!1

2714z(2) 724z(2)

~11x2!Sln~12x!

12x D
1

4 23 3 24

11x2

12x
ln x ln~12x! 22 4 24 22

11x2

12x
ln2 x 21 1

11x2

12x
ln x 21 2

1

2
21 1 2

3

2

11x2

12x
@Li2~x!2z~2!# 22 4 24 2

(11x)ln2 x 2
1

2
2

1

2

ln(12x) 2 22

x ln x 1 2
5

2
21 21 2

7

2

ln x 1 2
9

2
1 1 2

3

2

x 9 21 23 5

1 25 23 3 25
tio
M
c

we

q
is

cu-

u-

2.
on-
the
sy
We could proceed in the same way and stop the calcula
here. However, the calculation we have performed in the
prescription allows us to go beyond this pragmatic approa
since—at least for theCF

2 andCFTf parts—we have always
picked up the finite amounts ofd(12x) contributed by the
2PI kernels. If we now performed a calculation ofjq

(1) , cor-
responding to the graphs in the bottom row of Fig. 2,
would have all terms;d(12x) in the NLO flavor non-
singlet splitting function and could check whether indeed E
~36! is correctly reproduced. As an example, we will go th
way for theCFTf part of the splitting function.

Let us first establish what we need to get forjq
(1) . The

coefficient of d(12x) in the NLO splitting function was
determined in@23,12# via Eq. ~36! to be

CF
2 S 3

8
23z~2!16z~3! D1CFTf S 2

1

6
2

4

3
z~2! D

1CFNCS 17

24
1

11

3
z~2!23z~3! D , ~37!

while in our calculation we have, according to Eq.~8! and
Tables I and II,
09402
n
L
h,

.

jq
~1!1CF

2@123z~2!16z~3!#

1CFTf S 2
4

3
z~2! D1CFNCS 11

3
z~2!1 . . . D , ~38!

where the ellipsis indicates that we have not entirely cal
lated the finite amount ofd(12x) in the CFNC part of
Pqq

V,(1) , even though we were able to determine its contrib
tion ;z(2) ~see Appendix C!. Comparing Eqs.~37! and
~38!, we get a prediction for theCF

2 andCFTf parts ofjq
(1) in

the light-cone gauge with the ML prescription:

jq
~1!52

5

8
CF

22
1

6
CFTf1CFNC~ . . . !, ~39!

where all we can say about theCFNC part is that it does not
contain any terms;z(2). It is quite remarkable that noz~2!,
z~3! terms are left over in theCF

2 andCFTf parts ofjq
(1) .

To directly calculate theCFTf part of jq
(1) , we only have

to evaluate the first diagram in the bottom row of Fig.
What we need to extract is the two-loop renormalization c
stant for that diagram, when the light-cone gauge with
ML prescription is used. The calculation is relatively ea
0-9
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TABLE II. Final results for theCFNC andCFTf parts ofPqq
V,(1) on a graph-by-graph basis. The dots in the contributions;d(12x) in

the first row denote uncalculated pieces consisting ofz~3! and a rational number~see Appendix C!.

Terms

1

2
CFNC

CFTf

~b! ~c! ~d! ~f! Sum ~g!

d(12x) 2z(2)12z(3) 31z(2)212z(3) 5z(2)1¯ 2
2
3 z(2)1¯

22
3 z(2)1¯ 2

4
3 z(2)

11x2

~12x!1

724z(2) 2312z(2)
31

9

67

9
22z~2! 2

10

9

~11x2!S ln~12x!

12x D
1

24 3 1

11x2

12x
ln x ln~12x! 2 24 2

11x2

12x
ln2 x 1 1

11x2

12x
ln x 1

1

2

5

2
2

1

3

11

3
2

2

3

11x2

12x
@Li2~x!2z~2!# 2 24 22 4

ln(12x) 22 6 24

x ln x 21
5

2

1

2
2

ln x 21
9

2
2

11

2
4 2

x 29 21 2
10

3
2

40

3

4

3

1 5 23
34

3

40

3
2

4

3
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since the inner quark loop has obviously no light-cone ga
propagator and can in fact be calculated exactly:

Pmn~r !52 iT f

as

4p

8G2~22e!G~e!

G~422e!
S 4p

2r 2D e

@r 2gmn2r mr n#.

~40!

This self-energy can then be renormalized with the help
the counterterm in Fig. 3. The renormalized loop is th
inserted into the outer loop. Here it is very convenient t
Pmn is transverse:

D am~r !@r 2gmn2r mr n#D nb~r !;D ab~r !. ~41!

In other words, the whole calculation is not very differe
from a simple one-loop calculation of the quark self-ener
the only exception being that we now need loop integr
with the extra factor (2r 2)2e present in Eq.~40!. If we
embed the whole graph into the Dirac trace as shown in
1~b!, it turns out that we only need a few integrals of th
kind; they are collected in Appendix E. Since we have ren
malized the inner loop, the leftover divergence after lo
09402
e
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t

t
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integration determines the two-loop counterterm and thus
contribution tojq

(1) . We find, in theMS scheme,

Zq
CFTf511S as

2p D 2

CFTfS 2
1

2e2
1

1

12e D . ~42!

Comparing to Eq.~8! this implies that theCFTf part of jq
(1)

is exactly what we expected it to be in Eq.~39!:

jq
~1!,CFTf52

1

6
CFTf . ~43!

This result clearly demonstrates the consistency of the wh
approach: our example shows that the light-cone ga
method of@11,9,10# is also able to determine the contribu
tions ;d(12x) to the splitting functions by explicit calcu
lation. It would be interesting in this context to calculate al
the other contributions tojq

(1) @and the missing par
;CFNCd(12x) in our Table II#; important steps in this
direction have been taken in@24,25# by examining the sec-
ond and third diagrams in the bottom row of Fig. 2, whi
0-10
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yield theCF
2 part of jq

(1) . Indeed it turns out that the resul
of @24,25# can be exploited to reproduce the term25CF

2/8 in
our prediction~39! for jq

(1) , which can be regarded as
further confirmation of our results.

We have to admit, however, at this point that the ability
obtain the correct end point contributions is not restricted
the ML prescription: this is also possible for the PV prescr
tion. Here, the coefficient ofd(12x) in the CFTf part of
Pqq

V,(1) reads

jq,PV
~1!,CFTf2CFTf

20

9
I 0 . ~44!

Here the second term originates from the entry ‘‘210/9’’ in
the last column of Table II, when we omit the ‘‘plus’’ pre
scription there and reintroduce it using the PV identity@9#

1

12x
→I 0d~12x!1

1

~12x!1
, ~45!

where I 0 is as defined in Eq.~19!. Furthermore,jq,PV
(1),CFTf

denotes theCFTf part of jq
(1) when the PV prescription is

used. The explicit calculation gives

Zq,PV
CFTf511S as

2p D 2

CFTfF2
1

2e2 S 12
4

3
I 0D

1
1

e S 1

12
1

2

3
z~2!2

10

9
I 0D G , ~46!

that is,

jq,PV
~1!,CFTf5CFTf S 2

1

6
2

4

3
z~2!1

20

9
I 0D . ~47!

It is interesting to see how upon combining Eqs.~44! and
~47! the I 0 terms drop out, and theCFTf part of the end point
contributions comes out correctly as in Eq.~37! also for the
PV prescription. We note, however, that again this happ
at the expense of having renormalization constants dep
ing on singular quantities likeI 0 that represent a mix-up in
the treatment of UV and IR singularities.

IV. CALCULATION OF THE NC
2 PART OF THE SINGLET

SPLITTING FUNCTION Pgg AT NLO

Let us now turn to the calculation ofPgg
(1) . We restrict

ourselves to itsNC
2 part, since the contributions;CFTf ,

NCTf are essentially trivial as far as the treatment of
LCA gauge is concerned: TheCFTf part comprises no gluon
emission at all, and all diagrams contributing to theNCTf
part contain a quark loop and the emission of at mostone
gluon. Such diagrams with one-gluon emission have the
kinematics and will not reveal any new features as compa
to what we have already discussed. In contrast to this, theNC

2

part of Pgg
(1) requires the renormalization of the non-Abelia

part of the three-gluon vertex and therefore really provide
further challenge for the ML prescription.
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The diagrams contributing to theNC
2 part of Ggg at NLO

are shown in Fig. 4. We do not show here the graphs c
tributing to Zg at two loops, since we will not attempt t
calculate them.

The calculation of the various real-cut and virtual-cut d
grams proceeds in exactly the same way as before. For
renormalization of the virtual-cut contributions in the tr
angle graph~d! and the ‘‘swordfish’’ ones~s1!,~s2!, we need
the UV counterterm for the three-gluon vertex in the ligh
cone gauge with the ML prescription. Here we can rely
the result presented in@26# ~see also@27,2#!; the part of it
that is relevant for our calculation is recalled in Fig. 5.

Concerning the real cuts, we mention that for grap
~h!,~b!,~j!,~k! we use the expression in Eq.~B5! for the phase
space. As for theCFNC part of Pqq

V,(1) , we found it easier to
determine the contributions of the real cuts of the remain
diagrams via the extraction of the imaginary parts of t
associated virtual graphs.

We have verified that again for the ML prescription a
2PI graphs give truly finite contributions toGgg , before the
final integration overuk2u is performed. This also applies t
the end pointx51, where the result for each graph is aga
always well defined in terms of distributions and, as befo
also has a coefficient ofd(12x) that contains no 1/e poles.
Table III presents the contributions of the various diagra
to Pgg

(1) . Here we have defined the functions

pgg~x![
~12x1x2!2

x~12x!1
,

l gg~x![
~12x1x2!2

x S ln~12x!

12x D
1

,

S2~x![E
x/~11x!

1/~11x! dz

z
lnS 12z

z D
522Li2~2x!22 ln x ln~11x!1

1

2
ln2x2z~2!.

~48!

We mention in passing that graph~j! and the ‘‘swordfish’’
diagram~s1! give vanishing contributions toPgg

(1) if the PV

FIG. 4. Diagrams contributing to theNC
2 part ofGgg at NLO.
0-11
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FIG. 5. UV-divergent structures of the non-Abelian part of the three-gluon vertex as obtained in the light-cone gauge, using
prescription.p1 ,p2 ,p3 denote the momenta of the external gluons,a1 ,a2 ,a3 are the associated color indices@ f a1a2a3 being the structure
constants of SU~3!#, andm1 ,m2 ,m3 are Lorentz indices. The dots indicate structures~some of them nonlocal! which do not contribute to our
calculation thanks to the orthogonality of the free propagator to the gauge vectorn.
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prescription is used, but are nonvanishing for the ML p
scription, where finite contributions arise from their gho
parts.

As for the case ofPqq
V,(1) , the full result for theNC

2 part of
Pgg

(1) , given by the column ‘‘Sum,’’ is~at x,1) in agree-
ment with the PV result of@10#, which in turn coincides with
the OPE one4 @15#. Thus, the CFP method with ML prescrip
tion has also led to the correct final answer in this ca
which clearly constitutes a further nontrivial and comp
mentary check. As can be seen from Table III, we have
determined the finite amounts of contributions;d(12x) for
the graphs since, like in the case of theCFNC part ofPqq

V,(1) ,
these are quite hard to extract in some cases. The end
contributions toPgg

(1) can then only be derived from th
energy-momentum conservation condition@23,12#. We em-
phasize, however, that, just as forPqq

V,(1) , there is no princi-
pal problem concerning the calculation of the end point c
tributions: had we calculated the fulld(12x) terms in Table
III and the two-loop quantityjg

(1) , all end point contributions
would be at our disposal, and it would no longer be nec
sary to invoke the energy-momentum conservation con
tion; in fact, this could serve as a further check of the cal
lation.

V. CONCLUSIONS

We have performed a new evaluation of the NLO flav
nonsinglet splitting function and of theNC

2 part of the NLO

4See also our discussion in the Introduction concerning the O
calculations@15,14# of Pgg

(1) .
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gluon-to-gluon splitting function within the light-cone gaug
method of@11,9#. The new feature of our calculation is th
use of the Mandelstam-Leibbrandt prescription for deal
with the spurious poles generated by the gauge denomin
in the gluon propagator. In contrast to the principal-val
prescription employed in previous calculations@9,10,12#, the
ML prescription has a solid field-theoretical foundation a
will therefore provide a ‘‘cleaner’’ derivation of the resul
As expected, the final results come out correctly, i.e., are
agreement with the ones in@9,10,12,22#. This finding is both
a corroboration of the usefulness of the general method
@11,9# to calculate splitting functionsand a useful check on
the ML prescription itself in a highly nontrivial application

We have also discussed thed(12x) contributions to the
NLO flavor nonsinglet splitting function, performing an ex
plicit sample calculation of a two-loop contribution to th
renormalization constantZq in the ML light-cone gauge. It
turns out that one indeed obtains the right amount of con
butions atx51 as required by fermion number conservatio

We conclude by conceding that the ML prescription is
general much more complicated to handle than the simp
but less well-founded, PV prescription. With regard to futu
applications at, for instance, three-loop order, this create
certain dilemma: the ML prescription might be too comp
cated to be used in that case, while on the other hand
ill-understood success of the PV prescription at the two-lo
level does not guarantee that it will also produce corr
results beyond.
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TABLE III. Final results for theNC
2 part ofPgg

(1) on a graph-by-graph basis. The table does not include
coefficients ofd(12x), which we have not determined. However, as mentioned in the main text, we
proved that each graph contributes afinite amount ofd(12x) to Ggg ~before the final integration overuk2u is
performed!.

Terms

NC
2

~b! ~d! (s11s2) ~e! ~f! (h2i) ~j! ~k! Sum

pgg(x) 2
98
9 16z(2)

134
9 28z(2) 31

9
67
9 22z(2)

l gg(x) 4 2
10
3

22
3 28

pgg(x)ln x ln(12x) 22 6 28 24

pgg(x)ln2 x 21 2 1

pgg(x)ln x 2
3
2

11
6 2

3
2 21 2

1
3 1 3

2

pgg(x)@Li2(x)2z(2)# 22 2 28 4 4

pgg(2x)S2(x) 2 2

(11x)ln2 x 4 4

x2 ln x 2
31
6

11
6 2

3
2 22 23 2

19
3

3
2 2

44
3

x ln x 28 2
52
3 3 4 6 16 11

3

ln x 2
17
2

26
3 23 25 25 3 3

2 2
25
3

1

x
ln x 2

25
6 2

67
6

3
2 1 4 31

3 2
3
2

x2 ln(12x) 24 1 3

x ln(12x) 13 23 24 26

ln(12x) 2
25
2

3
2 6 5

1

x
ln~12x! 8 24 24

x2 136
9

13
3 9 1 2

20
3 2

46
3

67
9

x 2
105
8 2

16
3 29 26 139

12
19
2 2

9
8 2

27
2

1 105
8

59
6 2

9
2 12 2

103
12 2

19
2

9
8

27
2

1

x
2

136
9 2

22
3 28 23

3
46
3 2

67
9
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APPENDIX A: VIRTUAL INTEGRALS

Here we list some loop integrals needed for the calcu
tion. We do not need to recall any of the covariant integra
which are standard, but will only present those with a lig
cone gauge denominator, to be treated according to the
prescription~1!.

We begin by performing a sample calculation of the in
gral

I ~n,q![E ddr

~2p!d

1

~r 21 i«!@~q2r !21 i«#@nr#

5E ddr

~2p!d

n* r

~r 21 i«!@~q2r !21 i«#~nrn* r 1 i«!
.

~A1!
09402
-

-
,

-
L

-

We recall the definitions@9#

n5
pn

2P
~1,0, . . . ,0,21!,

n* 5
P

pn
~1,0, . . .,0,1![

1

pn
p, ~A2!

wherep5P(1,0, . . .,0,1) is the momentum of the incomin
quark: see Fig. 2. Introducing Feynman parameters, one

I ~n,q!5
4P

pn E
0

1

dtE
0

12t

ds

3E ddr

~2p!d

r 02r z

@r 21sr'
2 22~q•r !t1q2t1 i«#3

.

~A3!

After performing a Wick rotation and straightforward inte
grations overr one arrives at
0-13
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I ~n,q!5
iG~11e!

16p2

2n* q

q21 i« S 4p

2q2D eE
0

1

dtt2e~12t !212e

3E
0

1

dsS 11st
q21q'

2 1 i«

~q21 i«!~12t !
D 212e

. ~A4!

For example, for the caseq5k one finds

I ~n,k!5
iG~11e!

16p2 S 4p

uk2u
D e

1

@nk#

3F z~2!2Li2S k'
2

uk2u
D 12ez~3!G , ~A5!

where we have kept those terms that contribute to the fi
answer. In Eq.~A5!, z(n) is Riemann’sz function and
Li2(x) denotes the dilogarithm, defined by@28#

Li2~z![2E
0

1 ln~12zy!

y
dy. ~A6!

The result in Eq.~A5! coincides with the one in@2# for e
50. Note that the ML prescription arising for 1/@nk# is ac-
tually immaterial here sincenk5xpn never vanishes.

Setting, on the other hand,q5 l one gets, forl 250,

I ~n,l !5
iG~11e!

16p2 S 4p

2uk2u~12x!
D e

1

nl

1

2e2
~A7!

and, for l 252 l'
2 ,

I ~n,l !5
iG~11e!

16p2 S 4p

2 l 2D e
2n* l

l 2
B~2e,12e!. ~A8!

Note that the real part of Eq.~A7! has to be taken.5 Table IV
contains all the required integrals with an ML light-con
gauge denominator. The integrals in the first column are
l 250; they depend on

x5
nk

pn
and x̃5

nl

pn
512x. ~A9!

Recall that terms;(12x)212ae will lead to further poles,
as was shown by Eq.~12!. The integrals in the second co
umn of Table IV are for the axial-ghost case,l 252 l'

2 , and
eventually need to be integrated further over the variablk
defined in Eqs.~15!,~14!. Thek integration produces furthe
poles. We have

k5
k'

2

uk2u
and k̃512k. ~A10!

We note that the last integral was much more easily obtai
by performing thek integration before the ones over th

5Here one obviously has to discard the overall factori .
09402
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d

Feynman parameters. Therefore we only present the fi
k-integrated, result in this case. As can be seen, the inte
was accompanied by two different powers ofk.

APPENDIX B: THREE-PARTICLE PHASE SPACE

As we discussed in Sec. I, the phase space for two glu
~plus one ‘‘observed’’ parton! will split up into four pieces
for the ML prescription:

PS15xE ddl 1ddl 2dS 12x2
nl11nl2

pn D d~ l 1
2!d~ l 2

2!,

PS25xE ddl 1ddl 2dS 12x2
nl11nl2

pn D
3d~ l 1

21 l 1,'
2 !d~ l 2

2!,

PS35xE ddl 1ddl 2dS 12x2
nl11nl2

pn D
3d~ l 1

2!d~ l 2
21 l 2,'

2 !,

PS45xE ddl 1ddl 2dS 12x2
nl11nl2

pn D
3d~ l 1

21 l 1,'
2 !d~ l 2

21 l 2,'
2 !, ~B1!

wherel 1 ,l 2 are the gluon momenta. Thed functions in Eqs.
~B1! determine whether one~or both! of the gluons acts as a
axial ghost.

As we know from the discontinuity in Eq.~4!, the tenso-
rial structures of the nonghost part and the ghost part
different. However, we can rewrite Eq.~4! as

disc@D mn~ l !#52pQ~ l 0!
2n* l

l'
2 @d~ l 2!2d~ l 21 l'

2 !#

3@2gmn~nl !1nml n1nnl m#. ~B2!

This is possible because of 2n* l / l'
2 51/nl for l 250 and

(nl)(n* l )50 for l 21 l'
2 50. In this way, it is always pos-

sible to calculate just one combined matrix element, us
the tensorial structure in square brackets, and integrat
over a phase space subject to simply the differenced( l 2)
2d( l 21 l'

2 ). For our two-gluon case, this means that w
have to consider only the combination

PS12PS22PS31PS4 . ~B3!

We now introduce the Sudakov parametrizations

l 1
m5~12z!pm1

l 1p

pn
nm1 l 1,'

m ,

l 2
m5z~12y!pm1

l 2p

pn
nm1 l 2,'

m , ~B4!

where (l i ,'
m )252 l i ,'

2 . The firstd functions in Eqs.~B1! im-
ply y5x/z. If one wants to integrate over an arbitrary fun
tion f of scalar products of the momenta, one writes the fo
parts of phase space in the following way:
0-14
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TABLE IV. Two- and three-point integrals with a light-cone gauge denominator for the ML prescrip

calculated up toO~e!. We have dropped the ubiquitous factori /16p2(4p/uk2u)eG(12e)/G(122e). x̃ andk̃
have been defined in Eqs.~A9! and ~A10!, respectively.

*ddr /(2p)d l 250 l 21 l'
2 50

pn

r2~k2r!2@nr#

1

x
@z~2!2Li2~ x̃!12ez~3!# z(2)2Li2(k)12ez(3)

~r222nk n* r!pn

r2~k2r!2@nr#
k2F1e 12~12ln x!1

1

x
Li2~ x̃! k2k̃F1

e
12~12 ln k̃!1

1

k̃
Li2~k!

2
1

x
z~2!1e@41z~2!22z~3!#G 2

1

k̃
z~2!1e@41z~2!22z~3!#G

pn

r 2~ l 2r !2@nr#

1

2e2
x̃212e@12e2z~2!12e3z~3!# 2k2e

1

e S 12
1

k D @11e2z~2!#

~r 222nl n* r !pn

r 2~ l 2r !2@nr#
22k2x̃2eF1

e
121e@42z~2!#G 0

pn

~p2r !2~k2r !2@nr#

1

x̃
F ln x

e
2

1

2
ln2 x2Li2~ x̃! S 1

e
1214e1ez~2! D ~k2e21!

2e x̃12ez~2!ln x# 1S12
1

kDln k̃1e@32z~2!#

pn

~p2r!2~l2r!2@nr#
does not occur

1

e2
@11e2z~2!#~k2e21!

pn

~k1r!2~l2r!2@nr#
~x̃2e2x2e!S 1

e2
2z~2!12ez~3!D 2k̃2eF1

e2
12z~2!12ez~3!G

23z(2)x2e

pn

r2~p2r!2~k2r!2@nr#

1

k2 F1

e2
1

ln x

e
22Li2~ x̃!

1

k2 F 1

e2 ~12k2e!

2
1

2
ln2 x22ez~3!G 2k2e@Li2(k)1z(2)#

22@Li2~ k̃ !2z~2!1ez~3!#G
pn

r 2~k1r !2~ l 2r !2@nr#

x̃212e

k2 F 3

2e2
1

ln x

e
2Li2~x!

1

k2k
F1

e
ln k̃1Li2~k!2

1

2
ln2 k̃

2
1

2
ln2 x2

5

2
z~2!2e@ x̃15z~3!# 2k2eS 1

e2
13z~2!16ez~3!DG

2
1

2
e ln x̃@ln2 x22Li2~ x̃!2 ln x ln x̃#G

pn

r2~p2r!2~l2r!2@nr#
does not occur

1

k2 F 1

2e3
2

z~2!

2e
23z~3!G

~after integration*0
1dkk2e)

2

k2 F1e 131z~2!G
~after integration*0

1dkk12e)
094020-15
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xE ddl 1ddl 2dS 12x2
nl11nl2

pn D f S l 1,'
2

uk2u
,
2~p2 l 1!2

uk2u
,

l 2,'
2

uk2u
,

l 2p

uk2u
,x,zD

3$d~ l 1
2!d~ l 2

2!2d~ l 1
21 l 1,'

2 !d~ l 2
2!2d~ l 1

2!d~ l 2
21 l 2,'

2 !1d~ l 1
21 l 1,'

2 !d~ l 2
21 l 2,'

2 !%

5
1

4

p12e

G~12e!

p1/22e

G~ 1
2 2e!

E
0

Q2

duk2uuk2u122exeE
0

1

dvv2eE
0

1

dw~ww̃!2eE
0

p

du sin22eu

3F x̃122eṽ2e f S x̃

x
vw~12v x̃!,

l 1,'
2

uk2uv x̃
,

x̃ṽ

12v x̃
~r 1

21r 2
222r 1r 2cosu!,

l 2,'
2

2uk2ux̃ṽ
,x,12v x̃D

2
x̃2e

ṽ
f S vw

x
,
w

x
,x̃~r 3

21r 4
222r 3r 4cosu!,

l 2,'
2

2uk2ux̃
,x,1D 2

x̃2e

ṽ
f S wx̃

x
,

w

x
,r 5

21r 6
222r 5r 6cosu,

w̃ṽ
2x

,x,xD
1

d~12x!

ṽ
E

0

1

drr221er̃2e f S wr̃

r
,

w

r
,r 7

21r 8
222r 7r 8cosu,

w̃ṽ
2

,1,1D G , ~B5!

where

x̃512x, ṽ512v, w̃512w, r̃512r,

r 15Aw̃, r 25Avwṽ x̃2

x
,

r 35Aw̃, r 45Avwx̃

x
,

r 55Awx̃

x
, r 65Avw̃,

r 75Awr̃

r
, r 85Avw̃. ~B6!

The meaning of the arguments of the functionf in the various parts of the phase space can be seen from the first line o
~B5!. We note that the last part of the phase space in Eq.~B5! is proportional tod(12x); it corresponds to the contributio
where both gluons are axial ghosts.

We do not list the results for the numerous different phase space integrals one encounters. We just mention
frequently needs the integral

E
0

p

du
sin22e u

r a
21r b

222r ar b cosu
5BS 1

2
2e,

1

2D F 1

r a
2 2F1S 1,11e,12e;

r b
2

r a
2D Q~r a

22r b
2!

1
1

r b
2 2F1S 1,11e,12e;

r a
2

r b
2D Q~r b

22r a
2!G , ~B7!

where 2F1(a,b,c;z) denotes the hypergeometric function@29#. To expand ine, the relations

2F1~1,11e,12e;z!5~12z!2122e
2F1~2e,22e,12e;z!,

2F1~ae,be,12ce;z!511abe2@Li2~z!1ecLi3~z!1e~a1b1c!S1,2~z!#1O~e2! ~B8!

are useful, where@28#

Li3~z![E
0

1 ln y ln~12zy!

y
dy, S1,2~z![

1

2 E
0

1 ln2~12zy!

y
dy. ~B9!
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APPENDIX C: IMAGINARY PARTS OF LOOP
INTEGRALS

To see how to extract the imaginary part of a loop in
gral, let us go back to our example in Eq.~A4! for the case
q5 l there. The integration over the Feynman parameters in
Eq. ~A4! is trivial and can be done immediately. Rather th
performing straightaway the integration overt to get the gen-
eral result of the integral for arbitraryl 2, it is more conve-
nient to include thet integration of Eq.~24! in the calcula-
tion and carry it out first:

E dtt2eI ~n,l !5
2 iG~11e!

16p2e

1

@nl# S 4p

uk2u
D e

~12x!2exe

3E
0

1

dtt212eE
tmin

tmax
dtt2e

3$@t~12tx!21#2e

2~12t !2e~t21!2e%, ~C1!

where we have used the definitions in Eqs.~25!. To result in
an imaginary part,6 the limits for thet integration have to be
chosen in such a way that those terms in Eq.~C1! that are
raised to the power2e become negative, i.e., 0,t,1/(1
2tx) for the first term in square brackets in Eq.~C1! and
0,t,1 for the second. Thet integrations become trivia
then and lead to simple beta functions. Afterwards, tht
integration can be performed; the result is given in Table
where we also list other integrals that we encountered.
can be seen from Table V, we also needed some integ
with an extra factort or (12t) in the numerator. We do no
consider the covariant integrals in Table V since in their c
the extraction of the imaginary part is rather straightforwa

As we discussed in Sec. II B@see Eq.~27!#, we have
terms;1/l 2;1/(12t) in the calculation, resulting from the
propagator of the gluon running into the loop, and to
treated according to the principal-value prescription. The
fore, we will also need integrals such as Eq.~C1! with an
extra factor 1/(12t) in the integrand. Such integrals are
general much more difficult to calculate. A typical integr
needed is

PVF E
0

1/~12tx! dt

12tG5 lnS 12tx

tx D . ~C2!

The integrals with an extra denominator 12t are also col-
lected in Table V.

We finally emphasize that Table V doesnot contain all
terms;e, but is in general correct only toO~1!. The only
O~e! terms that are fully accounted for in Table V are tho
;z(2). Wehave not consistently determined the other co
tributions ;e, because this is a very hard task. Therefo
since terms like (12x)212e will lead to further pole factors

6We obviously do not take into account the overall factori here.
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;d(12x)/e via Eq. ~12!, we will not be able to calculate
thefinite amount ofd(12x) in the final result for theCFNC
part of the two-loop splitting function, except for the contr
butions;z(2)d(12x). However, the expressions in Tab
V are sufficient for checking graph by graph the cancellat
of all pole terms proportional tod(12x), i.e., for proving
the finiteness of the 2PI kernels atx51 in the ML prescrip-
tion.

APPENDIX D: MELLIN MOMENTS

The Mellin moments of a functionf (x) are defined by

f n[E
0

1

dxxn21f ~x!. ~D1!

As a result, the moments of a convolutionf ^ g @see Eq.
~32!# become the product of the moments off andg:

~ f ^ g!n5 f ngn. ~D2!

The moments of Eq.~31! are easily obtained using th
formulas in the appendix of@30#. To invert the moments of
the productf ngn back to x-space, one needs some furth
moment expressions. Everything can be derived from
relations in@30#, and from

E
0

1

dxxn21 ln2~12x!5
1

n
@S1

2~n!1S2~n!#,

E
0

1

dxxn21F ln2~12x!

12x G
1

5
1

n
@S1

2~n!1S2~n!#2
1

3
S1

3~n!

2S1~n!S2~n!2
2

3
S3~n!,

E
0

1

dxxn21 Li 2~x!5
1

n
z~2!2

1

n2
S1~n!,

E
0

1

dxxn21 ln x ln~12x!5
1

n
@S2~n!2z~2!#1

1

n2
S1~n!,

E
0

1

dxxn21
ln x ln~12x!

12x
5@S2~n!2z~2!#S 1

n
2S1~n! D

1
1

n2
S1~n!2S3~n!1z~3!,

~D3!

where

Sk~n![(
j 51

n
1

j k
. ~D4!
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TABLE V. Imaginary parts ‘‘IP’’ of loop integrals for the ML prescription, after integration over th

variablet of the LO phase space~24!. As before we have definedx̃512x. The integrals are in general onl
correct toO~1!; see text. Note that terms;(12x)2e must not be expanded ine, as further pole terms can
arise via Eq.~12!. We have dropped the ubiquitous factor 1/16p2(4p/uk2u)e G(12e)/G(122e).

2IPF 1

ip
*ddr /~2p!dG *dtt2eta(12t)b

*dt
t2e

12t

pn

r2~l2r!2@nr#

1

x̃
F~112e!

12x̃2e

e
1ez~2!G 1

2e2
x̃212e@12e2z~2!#

(a50,b50)
1

1

x̃
@Li2~x!2z~2!#

~r 222nl n* r !pn

r 2~ l 2r !2@nr#
does not occur k2F2

1

e
212

1

x
1 ln x

2ln x̃S12
1

xD22x̃2eG
pn

~p2r!2~k2r!2@nr#
2 x̃212eln x x̃212eFln x

e
1

1

2
ln2x

(a50,b50)
22Li2~ x̃!1e x̃z~2!G

pn

~p2r !2~ l 2r !2@nr#
2

1

x̃
~a50,b50! does not occur

pn

~k1r !2~ l 2r !2@nr#

1

x̃
F1

e
121 ln xG ~12x̃2e!S 1

e2
2z~2!D2 ln x

e

(a50,b50)
1z~2!22Li2~ x̃!2

1

2
ln2 x

pn

r2~p2r!2~k2r!2@nr#

1

k2
x̃2eF2 1

e
1

2x

x̃
ln x1ez~2!G 1

k2
x̃2eF1

e2
1

2 ln x

e

(a50,b50)
24Li2~12x!2z~2!G

pn

r 2~k1r !2~ l 2r !2@nr#

1

k2x̃
F2~12 x̃2e!S 1

e2
2z~2!D 1

k2x̃
F3

2
x̃2eS 1

e2 2z~2! D
2Li2~x!2 ln x ln x̃G 12@Li2~x!2z~2!#G

(a50,b50)

x

k2x̃2 F1e 1222 ln x̃S12
1

xD1ln xG
(a51,b50)

pn

r2~p2r!2~l2r!2@nr#

x

k2x̃
F2~12x̃2e!S 1

e2
2z~2!D1 ln x

e
does not occur

12Li2~x!1
1

2
ln2x23z~2!G

(a50,b50)

x

k2x̃2
F2 x̃

e
2213x12x̃ ln x̃

2~123x!ln xG
(a50,b51)
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APPENDIX E: TWO-LOOP INTEGRALS

For the calculation of theCFTf part of the two-loop quark self-energy we need some integrals with an extra nonin
power of2r 2 in the integrand, wherer is the loop momentum. Making use of the identities

1

aab
5aE

0

1

dx
xa21

@ax1b~12x!#a11
,

1

aabc
5a~a11!E

0

1

dxE
0

12x

dy
xa21

@ax1by1c~12x2y!#a12
, ~E1!

one obtains, rather easily,

E ddr

~2p!d

~2r 2!2e

~p2r !2
5

i

16p2
~4p!e~2p2!122e

eG~2e!

G~11e!

G~12e!G~122e!

G~323e!
, ~E2!

E ddr

~2p!d

~2r 2!2e

r 2~p2r !2
5

i

16p2
~4p!e~2p2!22e

G~2e!

G~11e!

G~12e!G~122e!

G~223e!
, ~E3!

E ddr

~2p!d

~2r 2!2e

r 2~p2r !2@nr#
5~2p2!2e @11e2z~2!#E ddr

~2p!d

1

r 2~p2r !2@nr#
, ~E4!

where the integral on the right-hand side of Eq.~E4! was determined in Appendix A and is actually finite. For the M
prescription we therefore do not need the integral on the left-hand side of Eq.~E4!; however, we will see below that th
integral is divergent for the PV prescription. Also note that the integral in Eq.~E2! vanishes if the factor (2r 2)2e is not
present.

Finally, for the PV prescription one obtains, for the integral in Eq.~E4!,

E ddr

~2p!d

~2r 2!2e

r 2~p2r !2@nr#
5

i

16p2

G~112e!

G~11e!
~4p!e~2p2!22e

1

2epn
@ I 01ez~2!22eI 1#1O~e!, ~E5!

while

E ddr

~2p!d

1

r 2~p2r !2@nr#
5

i

16p2
G~11e!~4p!e~2p2!2e

1

epn
@ I 01ez~2!2eI 1#1O~e!. ~E6!

Here

I 1[E
0

1 u ln u

u21d2
du. ~E7!
n
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