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One-loop corrections and all order factorization in deeply virtual Compton scattering
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We calculate the one-loop corrections to a general off-forward deeply virtual Compton process at leading
twist for both parton helicity-dependent and independent cases. We show that the infrared divergences can be
factorized entirely into off-forward parton distributions, even when one of the two photons is on shell. We
argue that this property persists to all orders in perturbation theory. We obtain the next-to-leading order Wilson
coefficients for the general leading-twist expansion of the product of two electromagnetic currentd/i the
scheme[S0556-282(198)04521-4

PACS numbgs): 13.60.Fz, 12.38.Bx, 13.60.Hb

[. INTRODUCTION view of the operator product expansion. Some early studies
of unequal mass Compton processes can be found in Refs.
Photons, real or virtual, are known to be clean probes of7, 8]. In Ref.[9], a number of suggestions were made to test
the internal structure of the nucleon. In deep inelastic scatthe leading twist dominance in DVCS at fini@?. In a
tering (DIS), the cross sections for absorption of highly vir- Rapid Communication paper, the present authors studied
tual photons were the first to reveal the internal quark strucO(as) corrections to DVCS for the parton helicity-
ture of nucleons. The parton distributions extracted fromindependent cagd0]. In Refs.[11, 12, the same issue was
these cross sections contain important structural informatiofvestigated from different perspectives. The present paper is
and seriously challenge our understanding nonperturbativ@n €xpanded presentation of our results in Re@)]. .
quantum chromodynamig€CD). Elastic absorption of vir- The main motivation for the present _study is to see if the
tual photons can be used to measure the electromagnefideoretical basis for the DVCS process is up to par with other
form factors of the nucleon. At low virtuality, these form Well-known perturbative QCD processes. More explicitly,
factors give us direct information about the sizes and ma we discuss the existence of a factorization theorem fqr this
netic moments of nucleons. At high virtuality, they are sen-Process. For general two y!rtu_al photon Processes in the
. . o . Bjorken limit, the factorizability is suggested by studies of
sitive to the leading-twist light-cone wave functions. More

. . deep inelastic scattering. In the case of DVCS, where one of
recently, real photon elastic scattering at low energy has be

dt tract the elect " larizabilit ¢ le[ﬂe photons is on shell, the situation could be different. Po-
used 1o extract the electromagnetic polarizabililies ot NUCI€antia| infrared problems can arise because of the additional
ons. light-like vector in this special kinematic limit. However, it

In a recent paper, one of us introduced deeply virtualg'helieved that these complications will not ruin the factor-
Compton scatteringDVCS) as a probe to a novel class of j,ation propertie$3].

“off-forward” parton distributions(OFPD’g [1]. DVCS is a To see factorization at work, it is instructive to work out
process in which a highly virtual photdwith virtuality Q> one-loop examples. We will do this explicitly in Sec. I1l. For
>A%cp) scatters on a nucleon targgolarized or unpolar-  consistency, we consider the unphysical process of DVCS on
ized), producing an exclusive final state consisting of a high-onshell quark and gluon “targets.” To ensure gauge invari-
energy real photon and a slightly recoiled nucleon. With theance, we regularize the infrared divergences by goingd to
virtual photon in the Bjorken limit, a QCD analysis shows =4+ ¢ dimensions. For completeness we have considered
that the scattering is dominated by the simple mechanism ipoth the symmetric and antisymmetric parts of the ampli-
which a quark(antiquark in the initial nucleon absorbs the tudes, which are related to helicity-independent and depen-
virtual photon, immediately radiates a real one, and fallsdent parton distributions, respectively. The only omission is
back to form the recoiled nucleon. the gluon helicity flip amplitude, which will be discussed in
Several interesting theoretical papers have since appear@®ef. [13]. As expected, our result contains collinear infrared
in the literature, which studied the DVCS process further. Indivergences which can be interpreted as the one-loop pertur-
Ref.[2], the single-quark scattering was recalculated using #&ative parton distributions, as we will show in Sec. IV. This
different, but equivalent definition of the parton distributions. property is independent of the special kinematic limit of
The evolution equations of the distributions were derivedDVCS.
and some general aspects of factorization were discussed. In A general proof of the DVCS factorization was first given
Ref. [3], the evolution equations for OFPD’s were derived by Radyushkin in his approach based afrepresentation
and the leading-twist DVCS cross sections were calculated §P]. In this paper, we give an alternative proof using the tools
order 2. Some past and recent studies of OFPD'’s can beleveloped by Libby, Sterman, Collins and othftd]. Ac-
found in[5]. In Ref.[4], estimates of these cross sectionscording to these, one can represent the infrared sensitive con-
were made at COMPASS and TINAF energies. In [R&f.  tributions in a generic Feynman diagram with reduced dia-
the DVCS process was considered as a limit of unequal maggams. These reduced diagrams have intuitive physical
Compton scattering, which was studied from the point ofsignificance and are easy to identify. General power counting
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rules can be used to select leading reduced diagrams in a M2—t/4
process. A recent application of the method can be found in Pf=pf+t ——n",
Ref.[15]. We show in Sec. V that the leading reduced dia-
grams for DVCS do not contain any soft divergences and are

2
in fact exactly the same as those present when the final state qr=—{pH+ Q_nu
photon is deeply virtual. The collinear divergences in the 2{
reduced diagrams can be attributed to those of OFPD’s when
calculated in perturbation theory. Therefore we conclude that A#=—2¢pt+ E(M?—t/4)n*
factorization for DVCS is in the same footing as other well- + AL )

known examples like deep inelastic scattering.

The factorization property of the general two virtual pho-
ton process can be summarized beautifully in terms of Wil-
son’s operator product expansion. In this approach, factoriz
tion means that the soft physics can be written in terms o
certain local operators, the coefficients of which can be cal-
culated perturbatively. Since this operator product expansion

whereM is the hadron masivhich is taken to be the same
for the initial and final hadronst=A?, Q? is the virtuality

5f g#, £is a measure of the difference of the virtualities of
he two external photong; is defined as

2
involves an infinite sum of such operators, their matrix ele- = Q—
ments may be such that it does not converge. The possibility 2xg(M?—t/4)
of nonconvergence corresponds directly to the possibility of
singular end-point contributions to the convolution integral 4Ax3(M2—t/4)
discussed if2]. This is essentially a nonperturbative prob- 1+ 1+ T ) ©)

lem and is beyond the scope of this paper.

The generalized expansion requires operators with total A% is a vector in the transverse directions which has
derivatives[6—8] to describe the off-forward nature of the squared length—t(1— £2) — 4£2M2. We have also intro-

process. It is well-known that these derivative operators Conducede Q2/(2P-q), the analogue of the Bjorken scaling

Gonert b one-loop resuls into Wison coeffients of the!23b1E i 1S oft-forward process. We note that these ex-
P pressions limit the range a@fto

twist-two operators in the modified minimal subtraction
(MS) scheme. Together with the two-loop anomalous di- _t

mensions of these operators, they provide the necessary in- P<— (4
gredients for calculating DVCS at the next-to-leading order. —t+4Mm?

We summarize and discuss our results in Sec. VII. _
for fixed t, or the range of to

II. KINEMATICS AND PARTON DISTRIBUTIONS 4§2M2 ®)
—t/ , 5

Although our ultimate interest is in deeply virtual Comp- 1-¢2
ton scattering, we start by considering a general Compton
process involving two offshell photons with different virtu- for fixed &
alities. This and a suitable choice of kinematic variables al- In the Bjorken limit, these expressions simplify consider-
lows us to exploit the full symmetry of the problem. In the ably. Since we consider only the leading twist in this paper,
general Compton process, a virtual photon of momentqum we may neglect all but the: components oP# andA* (in
+ A/2 is absorbed by a hadron of momentém A/2, which ~ order to form large scalars, one must dot theomponent of
then emits a virtual photon with momentu- A/2 and re- @ vector with the— component ofg). Hence, in the limit
coils with momentunP + A/2. The three independent exter- Q*— ¢ (t remaining finit¢, we may write
nal momenta can be expanded in terms of the light-cone

vectors PH~p#,
+ + Q?
p'u:(p ;Ouop ), qMN_XBpM+ _nM,
2Xg
1 AP~ —2EpH. 6
= 5+(10,0-1), (D) & ©

Here, we note that the external invariants have been reduced
from six to three by enforcing kinematics and taking the
where the 3-direction is chosen as the direction of the averBjorken limit. We express these three scalars in terms of one
age hadron momentunPj, and two transverse vectors. In mass scaleQ?, and two dimensionless parametets.andé.
an expansion, we call the coefficientpf the + component When we introduce the parton distributions, our expressions
and that ofn* the — component. Thus we write will also involve the parton light-cone momentum variable
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q+A/2 q-A/2 path ordering of the exponential, which makes this expres-
sion gauge invariant. It is necessary to include this gauge
link whenever one is not working in the light-cone gauge
(A*=0). Multiplying by #z, and @ys)sz, and taking
traces, we project out the same distributions as considered in

[3]:
1 dh Al— [N\
P-Ar2 P+A/2 Fq(x,g):zf 278 \Pt5lYq 5N
FIG. 1. The handbag diagram for the general two photon pro- )\ A
cess. xp{}vﬁwq( ) P—5> ©
X. Hence, the final result will be expressed as algebraic func-
tions ofxg, X, and& multiplied by the appropriate power of ~ 1 (dhv Al— /N
tons ofxa ¢ multiplied by the appropriate p Fq(xg):_fz_el)\x<|3+_¢q_
Our goal is to factorize the short and long distance phys-
ics of the Compton amplitude in the Bjorken limit, y P{}ﬁy5zﬁq< b %> (10
my— 4zd9°2 P+—TV—) ot ich i
'f dze < 2 J (2 We have suppressed the renormalization sgalehich is
A always present in defining a parton distribution. We have
X JH| — E) ‘ p— _> (7) also suppressed thedependence because it will not affect
2 2/’ most of the discussions in this paper.

At next to leading order, gluons also contribute to the
where J#= quqt//qy“z,//q is the electromagnetic current and Compton process. Although it is nontrivial to show, the
iy is the bare quark field of flavog and charges;. The  twist-two gluon distributions are contained in the following

simplest Feynman diagram for this process is shown in Figgauge-invariant light-cone correlatione®t?*= +1):
1, where a quark comes out of the nucleon blob, scatters, and

rejoins the nucleon blob. While the scattering involves a dn . A A
large momentum transfer and can be calculated in perturba- G’”“B(X,f):f Ee”‘x< P+ E‘FQ‘”(En
tion theory, the nucleon blob with two quark legs is related

to the baryon structure and is nonperturbative. For more Xp{e_igfﬁ/flzn.A(gn)dg} X
complicated graphs, as will be discussed throughout this pa- é

per, the Compton amplitude can be separated analogously B A

into soft and hard contributions. In the remainder of this xXFp _E”) P_E

section, we will highlight some important aspects of the soft

part. = —xFg(x,£)(g"*p"p?—g*Pp"p“
The nonperturbative contribution to the Compton ampli- VB v

tude in Eq.(7) can be expressed in terms of off-forward +9"p”p* =g p"p”)

parton distributions contained in the parton density matrices
[3]. For quarks, we call the density matrM ,;, where

and B are Dirac indices, and expand it in terms of the Dirac +€"P7opHp— e prpPin pst- -
matrices. At leading twistM .4 is just the light-cone corre-

+ixFg(x,&)(e#*YppP - erFrop p®

lation function, (12)
N Al where the ellipses denote higher twist contributions and an
a(X,€) j —e‘”‘x< P+ lﬁg( ) additional twist-two term which involves gluon helicity flip
and will not be considered in this papEgt3]. Again, K}
v P{e_igﬁ/i/znAA(é«n)dg} denotes path orderinigve note that here the gauge link is in
the adjoint representation of $8)]. The off-forward gluon
q A A distribution functiong=5 andF ¢ may be isolated by contrac-
X e —on P_E tion and are
1.
1 d\ A A
pa + (75p)a +- ) (8) =-— — 7”‘X pap
aFap q B Fo o 277 P+ > Fi > n
where the ellipses denote contributions either of higher twist Y A
or chiral-odd structure, which do not contribute to the lead- XP{ }anFp a( - En) P=3 )N, (12

ing process under consideration. The P symbol denotes the
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Tf I dx —I}\X P+A Fura A
6= x| 2x° 2|ma (2"
=, A A
XP{ }apFp o —En P_E n.n,. (13

Here, we have defined the dual field strength teriS6t
:%Euvaﬂpaﬁ

PHYSICAL REVIEW D58 094018

IA
2

f il S(x—1 Pt 2|7A
W W (x—=1-n)Xx +E "

.

__ X F +iF +-i
= x+x,( c(X)g" +iFg(x)e™ ).

X AL

(16)

It is easiest to see the connection of the above gluon dis- In the above definitions, we have assumed that we are
tributions with the nonperturbative structure arising fromworking in 3+1 space-time dimensions. However, to regu-
Feynman diagrams in the light-cone gauge. In this gauge, thi@rize the ultraviolet and infrared divergences arising from
gauge link is just the unit operator in the adjoint representaloop diagrams, it is convenient to generalize thendtdi-

tion and field strength tensors with ore index F*# sim-

mensions. Let us first consider the quark density matrix in

plify to 9" A*. Fourier transformation to momentum space EQ. (8). Because the spinors are kept in 4 dimensions, the

yields

Fo=—~ S VT (2 )45()‘ n)

A
_ M _
><<P+2‘TAa I+ 5

v A A L
XA, I_E P_E Guvr (14
= _ XX f d4l 5
=155 VT | (2mpdxiin
P 2 TAL -
X +E a +§
, A A
XA, |—§ P_E €t puvs (15

where we have definexl, =x+ ¢ andx_=x—¢&. VT repre-

first term on the right hand side generalizesitdimensions
without change. The second term, however, involvwes
which has no unique extension. Different choices, in the end,
define different factorization schemes If one uses the
't Hooft—Veltman definition §s=iy°y'y?y% [17], one
usually introduces an extra renormalization cons@niso

that the non-singlet axial currents are conserved. An alterna-
tive choice has been offered by Bardg¢&8] which employs

the usual four-dimensional rules

{v*,vs}=0, Vuel[0d]
T ¥sy*YPy"y°]= — (4+ O(€))i €P7°. 17)

The ambiguity in the second equation does not affect calcu-
lations as long as there are no anomalies in the problem. In
the case that there is an anomaly, the ambiguity can be fixed
by imposing the relevant Ward identities. This scheme has
widely been used in one-loop calculations. Its use in higher
order calculations is ambiguous and has been the subject of
some debat¢l19], but these ambiguities do not affect our
result.

We now turn to the gluon density matrix in EL6).
Fc(x) contains an average over gluon polarizations. To

sents (2r)*5%*(0), thespace-time volume of our system. In a make this consistent with the number of transverse polariza-
factorized calculation of the Compton amplitude involving tion states available to gluons éhdimensions, we multiply
gluons, the gluonic indices in the hard part will be contractedhis term by 1/(1+ €/2). The polarized gluon density is re-

with the tensor

(@)

(b) (©

lated to the antisymmetric combination of the gluon fields

() ()

FIG. 2. Diagrams for Compton scattering on an on shell quark to arder
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F*1andF*2. This does not change after goingdalimen- B v
sions if the target polarization is kept the same. Hence, we
have left that term as it is. k+q
>
IIl. ONE-LOOP COMPTON AMPLITUDES ON QUARK k+&p — k-&p

AND GLUON “TARGETS”

In this section, we present a one-loop calculation of the (1+§)p (1-8)p
general Compton scattering on onshell quark and gluon “tar-
gets” in the Bjorken limit. The result will be used in the next

section to show that the factorization of soft and hard con-

tributions can be done consistently with the definition of off- target to be massless and take the on shell limit at the begin-
forward parton distributions. In particular, this property doesping of our calculation. In the modified minimal subtraction

not change in the limit of.a real final state photon. Our resultscheme @), the renormalized single-quark propagator has
will also be used to derive a generalized operator produg? residue,5Z, at the polep=0. According to Lehmann-
o]

k-p

FIG. 3. The momentum flow in the box diagram.

expansion to next—to-_leading order. For the cor_wenienc_e ymanzik-Zimmerman reduction formula, we calculate the
the reader, we are going to spell out some technical details hell phvsical i el f -
the one loop calculation. We believe that some of the tech®nShell physical matrix element of an operaf@ as

niques, like the cancellation of propagators and light-front .
coordinate integration, will be useful in other contexts. (p|Og|p) = lim b‘ZE Go, (18

We begin with an onshell quark “target.” Here, there are p—0 G
Pelvz;)diﬂlg gor;':(ljrgrs(Nalfolt)a.aﬁ'lgﬁc; ;‘r?séfe) dai‘ggraerigg ta?et gr?())(\t/vf in WhereGo 'is theAse't of all amputated connegted graphs with
Fig. 2. The other half will be taken into account by using theone insertion o in renormalized perturbation theory. The
crossing symmetry, i.e., the simultaneous replacemenf of factor 6Z is infrared divergent for massless quarks and
— —q andu< v. The terms withxg— — Xz in the following equaIsZ;1 in the present calculational scheme. Sinke
formulas reflect this contribution. Because of time reversak=Zry* i, all renormalization constants, including the
invariance, the Compton amplitude is also an even functiosubtraction for the quark self-energy, cancel at one-loop
of & i.e., symmetric undeé— — &. This symmetry relates level. Therefore,T#” for single quark and gluon “targets”
the left and right vertex diagrani&igs. 2c) and 2d), re-  can be calculated just from the graphs shown in Fig. 2.
spectively to each other. On the other hand, the quark self- Examining these graphs, we see that the self-energy dia-
energy diagram and the box diagram are themselifes gram contains a loop integral with two Feynman denomina-
symmetric. This symmetry not only allows us to reduce thetors, the vertex diagram contains one with three, and the box
number of graphs at NLO from four to three, but also be-with four. A one-loop integral with two propagators is
comes a powerful tool which helps us compute each amplistraightforward. Difficulties arise, however, with the calcula-
tude, as we illustrate later. tion of three and especially four-propagator integrals. These

Before presenting the details of our calculation, it is necdifficulties may be avoided in this calculation because of
essary to discuss the issues of on shell reduction and ultrgeveral simplifications. Consider first the box diagram. The
violet divergences. We calculate diagramsdirdimensions loop integral is of the form(with momentum routing as
and use Feynman’'s gauge. As such, we can take the quaskown in Fig. 3

do% Tl y*(k—&p)y"(k+ &) y“(K+ ED) yab(vs)]
2m  (k+ép)Ak—ep)2k—p)i(k+a)?

where we have replace¥ by —2&p#. In order to simplify the integral, we express the trace as a sum of terms which cancel
one of the propagators. This can be done becausek3atimd 20-k can be written as linear combinations & £p)? and
(k—£p)?, and the trace vanishes wheneker and k% do.

Now that we have shown that a denominator can be cancelled, we have effectively reduced the four-propagator problem to
a three-propagator one. Since we have only shown that the numerator will be a linear combination of two different denomi-
nators, rather that proportional to one, the four-propagator integral will in general become two three-propagator integrals.
However, we may use th&symmetry by writing

(19

1
k=2 (k+€p)?+ (6=~ &),

1

2p-k= 2¢

(k+&p)2+(£——8). (20
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In this way, we consider only thek ¢ ¢p)? cancellation and let the symmetry take care of the rest. We note that the integral
we now have is exactly the sarigp to numerator differencgas that arising from the right vertex correction. We will see that

this basic integral is the only one we must calculate to obtain both the polarized and unpolarized amplitudes for both the quark
and gluon contribution&if we forget, for the moment, the simple self-energy diagrahine integral has the form

d9 numerator
| (21)

(2m)* [(k=p)*+iel[(k—¢p)>+iel[(k+a)®+ie]

We have found that this integral is easily done in light-cone coordinates by expaddingerms of the light cone momenta,
p# andn*. We first do thek™ integration by contour in the unphysical region of large and then the transverse integrations.
The k™ integration is left until the end. If we write*=yp™, the value of the integrall) is

€
i Q2 E/ZF _E) Xg y—a 1+€l2 y el2 |a=1
wlar) ¢ Ua e J 22
where we have defined according to
Numeratofi- —2izp+ (y—a) = @+ BK3:
Xp(Xg—a
N=3 o s(Xg—a) 23)

Q2 (y-a)(xg—y)

Doing they-integrals requires some care because a delicate cancellation must occur if one is to get finite result, but the
treatment is straightforward. After tHeand crossing symmetries are used, we find the full next leading gWdl&D) result for
the symmetric quark amplitude

} § 1 aCr[Q%%\"’( 3 2
Ty=—gi> e oy G| Q . (——+3
qr XB_l 4’7T 477# XB_l €
1 2 Xg+ 4 Xg—
-= 25 e ——+3—In(1—£))—3 ° In(l—i)
El\x3—1 1-¢ € Xp 1-¢2 Xg
Xetl, 2 ( 4 aom1- L ) I R [ PR | 24
12 xe 1)\ e TG TR e 1 N g [T e e 29

and the antisymmetric amplitude

€l2
) N 1 aCr [ Q%% 3 2
[ii] — | gaBii 2.5 _ TsTF -z
Tq =le napﬁ%: eq'ﬁqq { Xxe—1 47 | 47pu? [XB_l( 6+3
2X Xg+ 4 Xg—
|| =+ f ——+3—In(1—£) -2 iln(l—é)
Xg—1 1-¢ € XB 1-¢ XB
T R | P S S 1) A I N W 25
12 xe-1)\ e N1-% -2 Xo-1 L S (Xg——Xg) (- (25)

Here we have introduce@g=t,t,= (Ng— 1)/2N. in SU(N.), whereN. is the number of colors. We note that the divergences

in these amplitudes are, in fact, infrared divergences since renormalization has removed all ultraviolet singularities. Their
presence signals the existence of nonperturbative physics in the process. As mentioned earlier, these divergences will be
factorized into nonperturbative matrix elements whose values can be extracted from experiment. We will explicitly show this

in the next section. For now, we summarize the results of the gluon piece of the calculation.

There are six graphs which contribute to the LO amplitude for gluon-photon scattering. These six can be reduced to three
by reversing the fermion number flow, and one of these can be eliminated by crossing symmetry. The two distinct graphs we
must calculate are shown in Fig. 4. The denominator of Fig). i4 identical to that of the quark box. Again, the numerator is
seen to vanish whenev&f and 2p-k do, which allows us to cancel one of the propagators exactly as above. Figiis 4
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somewhat more tricky. This diagram is itself symmetric under both crossing syrdmetry. Labeling the momenta as shown,

we see that under an integral the symmetry —q is equivalent toA— B andC«+ D andé— — £ is equivalent tdB«-D and

A~ C. We also note that here it is possible to represent 1 as a linear combination of Feynman denominators, which guarantees
our ability to cancel one. Of course, since 1 does not depengl @né, it may be represented in the symmetric form

1= AP+ (== 8 +(g——a). (26)

-~ 2(1-9)p-q

Now it remains only to calculate the trace in a symmetric way and substitute the result into the formulas of the quark
calculation. Averaging the gluon polarization for the symmetric amplitudg-dimensions, one finds

’ Te . 2076\ 1 xg—1\[ 4 1 1
Tg”z—ﬁg”(}‘, e§> < 1+ 2xg — (——+4—In 1——))—2 In(l——)
2 q Amp?] 1-¢2 1-£2)\ € Xg Xg
xg 1\[ 4 ¢ ) 1 ¢ ¢
—2Xg (1 gz—z—g) —;+4—In(1—X—B +E 1—X—B In 1—X—B +(Xg— —Xg) {, (27
for the symmetric amplitude and
€l2
) Te Q%e7e\? 1 xg—1 ( 4 1 ) 1
i1 XS1F _apij 2| X5 = B a1 = - _ =
T§=i =~ e"in,p, Eq: eq) P 1_§2H(1+21_§2) _+4 In(l XB) 2|inf 1-
1 4 3 & &
—2Xg 1_52(—;+4—|n(1—g))](l—g)|n(l—g)—(XB—>—XB)], (28

for the antisymmetric amplitude. We have defind¢  paper, we consider parton distributions in S scheme.

=Tr{taty]=7 Sap- The goal of this section is to show that all infrared diver-
gences present in the Compton amplitudes can be associated
IV. ONE-LOOP FACTORIZATION AND EVOLUTION OF with these distributions.
OFF-FORWARD PARTON DISTRIBUTIONS Since we consider factorization within the framework of

erturbation theory, we need to compute the parton distribu-

We now turn to the infrared divergences present in all 0f{:i)ons in quark and gluon targets in perturbative QCD. At the
the amplitudes. These divergences arise from the regions @fading order inxs, one has

loop-momentum integration where some of the internal
propagators are near their “mass shells.” In these regions, = (%, &)= 8y S(x—1) (29)
perturbative calculations are clearly meaningless. The stan- arrar a4 ’

dard procedure of fixing this problem is to factorize the am-. - on shell quarlkg. At next-to-leading order, one can

plitudes into the infrared saf@.e. devoid of infrared diver- calculate directly from the definitions in Sec. (ith the
gences and infrared divergent pieces, interpreting the Iatterextemal hadron states replaced with pertL.erative quark
as nonperturbative QCD quantities. Of course, the factoriza§tate$

tion procedure has a large degree of arbitrariness. To factor-
ize in a physically interesting way, one usually chooses the
nonperturbative objects as the parton distributions in the tar- Fé,/q(x,g):

get, defined in a particular renormalization scheme. In this

ag(um)

2 247 2
?50111’ ;+In(,u e”El4mug)

X[P(x,§)+Ad(x—1)], (30
q-¢p a-5p
where
X dy
A=Cr §+L y—X—ie
X d
] @
(1+8)p q+ip —gY—X—le
(a) (b)

FIG. 4. Diagrams for gluon Compton scattering at one loop. and
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x2+1—2¢&2 DoFa(X,£)
P(x,&)=C ,
(.9 F(l—X+i€)(1—§2) x>¢ D In Q2
x+¢ 2¢ Q) (tdy_ (x £
~CraEive ( Tl TEEXSE = on f - Pab ;,y)my,f), (33
=0, x<-¢& (32)  whereb is summed over all parton species and Bis are

o o _ . the off-forward Alterelli-Parisi kernels, or splitting functions.
The quark distributions contain infrared divergences signaleghe “covariant” derivative is defined to includg, the end-
by the presence of the dterms. These divergences reflect point contribution in Eq(30).

the soft physics intrinsic to the parton distributiovﬁé,,q, We can reexpress the symmetric part of the quark Comp-
calculated for the quark target, satisfies the evolution equaon amplitude in terms of the unpolarized, off-forward quark
tion derived in Ref[3]: distribution

} } 1 1 aCe| 9  x[[ 26 xg+¢ ( ¢ ) Xg— &
(i) — _ ] 2 , _ Us F _~ B N S B
T g %eq,f_ldxFq ,q(x,g)|XB_X e |XB_X §[<x§—x2+x+x ) 3 In(l XB) 3X+X7

Xg+X 2 X
+ 3—-In|1-—
XiX—  Xg—X Xg

Analogously, we find that the antisymmetric part of the quark Compton amplitude can be expressed in terms of the polarized

off-forward quark distribution
2X Xg+ Xg—
2 ¢ (3—In(1—£>)——8 ¢
Xg—X XEX_ XB XEX_

XgtX 2 X Xg— X 3 X
+ 3=In|1-—| |- — Inf1——|;—(Xg——Xg) (- (35
XiX—  Xg—X Xg XiX—  Xg—X Xg

We now turn to Compton scattering on a gluon “target.” Infrared divergent contributions come from the regions where the
quarks in the box diagrams are nearly on shell. Therefore, it is natural to associate these divergences with the quark distribu-
tions in a gluon target. On the other hand, the finite contributions come from regions where large momenta run through the
quark loop. In these regions, the photon has an effective pointlike coupling with the gluons in the target. At leading order, the
off-forward gluon distribution in a gluon target is just

£
Xp

XIn +

XiX_  Xg—X

) Xg— X 3

X
In(l— —
Xp

]+(XB—>—XB)]- (34)

=X 47w | Xg—X

Tl[:lljlzlfaﬁ”napﬁE ecz]’f 1dXFq'/q(X|§){ X - ; [
Q' N ®

£
Xp

XIn +

1
Fg,g(x,§)=§(5(x— 1)— 8(x+1)). (36)

To orderag, there are quark partons in the gluon. The corresponding off-forward quark distribution is

S 2
Farg(x,é)= %’T‘) —+In(uPereldmuf) |P(x,8), (37
where forx>¢
X2+ (1-x)2— &
P(X,f)ZZpr, (38)
and for — &<x<é¢
P(x,g)zTF(X+ &) (1—2x+¢) 39

EL+E)(1-¢2)

Fag(x.€)=0 for x<—£.
With the above off-forward distributions, we reexpress the symmetric part of the gluon Compton scattering amplitude
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. T .. 1 X Xg— X X X
(i) _ *s'F jj 2 f = B _ A B _=
Ty >0 (% eq) 71dXX+X7Fg,g(X,§) 1+2XBx+x)(4 In(l XB)) 2In(1 XB)
Xg 1 & 1 & & ’ 2J1 1
e (— 2—5)(4 '”(1 xal | T E 1‘@)'”(1‘@)}‘9 2 &) OXFas(x,) 5

+(Xg— —Xag). (40)

Similarly, we can reexpress the antisymmetric part of the gluon Compton amplitude in terms of helicity-dependent, off-

forward quark and gluon distributions
Xg— X X X
(12 oo 2 el a2
Xy X_ Xg Xg

. 1 1
+_apij 2 T I
+ie napﬁé qu_ldxFq,g(x,g) —

. T
[”]:.as F
Ty =i o

. 1 X
o 2 =
€ Bljnapﬁ(E eq) f_ldX_XJrX, Faig(X,6)

q
o s
Xg Xg

ol +-vl5)

—(Xg— —Xg). (41)

—2Xg

We summarize the one-loop Compton amplitude on a taxgiet the factorization formula

by Fq,N<x,f)cq(xiB,X—i) +Fg,N<x,§)Cg(i g)

dx
1 X Xg' Xg

. (1
Th=-g"

. 1 dx
+ie!*n,pg ~
-1

) | 42

-~ ~ [ X &\ - ~ [ X &
% Fq,N(x,f)cq(X—B,X—B) +Fg,N<x,§>cg(—B,g>

where Cy, ngf;q and (;g are shown to ordery in Egs. infrared divergences because the intermediate quark is far off
(34), (40), (35), (41), respectively(We emphasize here again shell. The vertex corrections in Figs(c2 and 2d) poten-

that we have neglected the contributions from longitudinallytially have infrared divergences, but a simple power counting
p0|arized photons and from photon he||c|ty f||p Both effectsindicates that these diagrams are in fact infrared Convergent.
start at ordereg.) In the above form, all infrared sensitive Thus infrared divergences appear only in the box diagram. In
contributions have been isolated in the relevant parton distrithe region where the gluon momentuknis soft, we can
butions, which must be calculated nonperturbatively or mea@Pproximate the integral as

sured in experiments. In the DVCS limft—xg, the coeffi-

cient functions remain finite, although they have branch cuts dk 1 11
there. This indicates that factorization holds for two-photon Nf .k k'
amplitudes even when one of the photons is onshell. We will

main results of this paper, remains valid to all orders in perjines. On the other hand, the wave function renormalization
turbation theory. of an “on-shell” quark, §Z, also contains infrared diver-

gences. Grouping these divergent terms together, we have
V. FACTORIZATION OF DVCS AMPLITUDES the entire soft contribution

TO ALL ORDERS

: 43
@m*" Ppikp “

In this section, we li - 1 d*k L

, generalize the one-loop result of the __Z f i (44)

previous section, showing that the factorization formula Eq. 2J) @2m*\p-k pkl K

(42) is valid in the DVCS limit to all orders in perturbation

theory. The one-loop result indicates that all softin the collinear approximatiorp’ is proportional top and

divergences—those associated with integration regionthus the above integral vanishes.

where all components of some internal momenta are zero— For higher-order Feynman diagrams, a systematic method

cancel, whereas all collinear divergences can be factorizedf identifying, regrouping and factorizing infrared-sensitive

into the off-forward parton distributions. To see that thiscontributions has been developed by Libby, Sterman, Col-

happens also at higher orders in perturbation theory, it idins, and other$14]. The method essentially consists of the

important to understand how the soft cancellation happens ifollowing steps:(1) simplify the Feynman integrals by set-

the simplest case. ting all the soft scales to zero, including the quark masses;
The self-energy diagram in Fig(l® does not contain any (2) identify the regions of loop integration which give rise to
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(a) (b) (c)

FIG. 5. General reduced diagrams for the DVCS process.

infrared divergenceg3) use infrared power counting to find must be compensated by the hard s€@fe Assuming cova-
the leading infrared-divergent regior(@) show that all soft riant normalization for the external states(p|p)
and collinear divergences either cancel or factorize into some-2p%(277)35%(0)), every external wave function contrib-
nonperturbative quantities. In the remainder of this sectionytes mass dimensior 1. The collinear quarks and gluons
we examine the validity of the factorization formula B42)  into a soft hadron vertex have effective mass dimensions
in the limit of xg= ¢ following the above steps. depending on their polarizations. A Dirac figldcan be writ-

In DVCS, the leading contributions come essentially fromiany a5 a sum of good, ) and bad (/_) components, where
a massless collinear process in which the external moment =P,y and P.=1y"y*. The good(bad component

take the form shown in Ed6). In this simplified kinematic h frective ligh . :
region, all infrared-sensitive contributions appear as 1/ as € ective |g_t-cone mass dimensioif2). A vector po-
’ tential A* has light-cone component&™®, A, and A,

poles in dimensional regularization. If a contribution con- hich have effective mass dimensions 0. 1. and 2. respec
tains no infrared divergences, it comes from regions of IooﬁN ! v v SS di sions ©, 1, » Tespec-

momenta comparable to the hard sc&& and thus it is tively. For th_e reduped diagram shown in Figa) the only
insensitive to the soft scales. An infrared divergent contribuSOft mass dimension comes from the nucleon-quark-gluon
tion must come from the integration regions where somé!ob. Using the above rule, we find it is [0=2(physical
internal propagators are near their mass shells. Since suf@rton lines—2(external nucleon statdls BecauseT*" is
soft contributions cannot be calculated reliably in perturbadimensionless, the leading reduced diagram contributes at
tive QCD and eventually must be taken into account withorder O(Q°).
nonperturbative matrix elements, one can use any valid in- It is somewhat surprising that the leading region is inde-
frared regulator to characterize them in perturbative calculapendent of the virtuality of the final state photon as long as
tions. Thus the collinear massless limit helps to simplify thethe initial photon is deeply virtual. When the final state pho-
identification of soft contributions while leaving the truly- tonis real, it can have pointlike coupling to quarks as well as
perturbative contributions intact. extended coupling via its soft wave function, as happens in
Infrared divergences appear in a Feynman diagram whehe case of vector dominance. Thus one has an additional
some of the external momenta are on shell. The regions deduced diagram in which a jet of quarks and gluons emerges
integration producing such contributions can be identifiedn then* direction and combines into a real photon long after
from the Landau equations which are derived by consideringhe hard scatteringFig. 5b)]. Such a reduced diagram has
the analytical properties of the diagrams as functions of comalready been considered in Rg15] and isO(Q 1) by in-
plex external momenta. According to Coleman and Nortorfrared power counting. Indeed, according to the discussion in
[20], these regions can be represented by the so-called réhe previous paragraph, the photon wave function vertex has
duced diagrams in which off shell lines are shrunk to pointsa soft mass dimension=12 (quark line$ —1 (photon state
and on shell lines are drawn according to their real spaceecall the dimensionful pion decay constépj. A negative
time propagation. We shall argue below that the generahard power Q1) is needed ifiT#” to balance it out.
leadingreduced diagram for DVCS is the one shown in Fig. The power counting involving soft quark and gluon lines
5(a), in which an incoming virtual photon and an outgoing is more subtle, and some discussion may be found in Ref.
real one are attached to the hard interaction blob, which ifl15]. The result is that any reduced diagram with soft lines
turn is connected to the forward nucleon jet with two collin- connecting the hard scattering blob to the nucleon jet is sub-
ear quark lines or two physically polarized gluon lines, plusleading[Fig. 5(c)]. The situation here is exactly analogous to
an arbitrary number of longitudinally-polarized collinear the case of forward virtual Compton scattering relevant to
gluon lines. deep-inelastic scattering as discussed, for instance, by Ster-
To decide that a reduced diagram is leading, one can ugean[21]. A simple example is the vertex correction diagram
infrared power counting21], which is essentially a light- we already discussed above. When the gluon becomes soft, it
cone dimensional analysj&5]. A simple way to proceed is has a reduced diagram like Fig(ch However, it has no
to consider the mass dimensions of the soft vertices that corcontribution at leading power.
nect lines with either collinear or soft momenta. Since the We now come back to the leading reduced diagram
dimension of an amplitude is fixed, all soft mass dimensionshown in Fig. %a). The collinear gluons with longitudinal
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polarization connect the hard scattering part and the nucleoCD processes. For the product of two currents separated
jets. These collinear gluons can be factorized using the gemear the light-cone, the expansion is threefold. Primarily, it is
eralized Ward identities as described in Ref4]. Eventu-  a twist expansion, in which twist-two contributions are lead-
ally, all collinear gluons can effectively be attached to aning whereas the higher twist terms are suppressed by powers
eikonal line in the light-cone direction conjugate to the of 1/Q2. Each term in the twist expansion contains an infinite
nucleon jet,n”. Physically, this means that as far as thenumber of local operators of the relevant twist. This may be
collinear gluons are concerned, the hard interaction part acifought of as a kind of Taylor expansion of bilocal operators
as a jet of particles propagating alon. The internal struc-  gong the light-cone. Finally, the coefficients of local opera-
ture of the hard interaction cannot be resolved and thus only, ¢ (Wilson coefficients are themselves expansions in the

the total color charge and momentum ‘?f the jet is rel‘:"\""‘r'tstrong coupling constant. The Wilson coefficients for the un-
The eikonal line together with the physical quarks and glu- olarized DIS process were calculated at ordein the MS
ons and the nucleon jets form the off-forward parton distri-P P ¢

butions defined in Sec. Il. In the hard scattering, only th scheme irf23]. For the polarized case, one can find them in

total momentum and charge supplied by collinear partons a 4] o .

important. Thus, one can calculate it with incoming physical _ When considering off-forward processes, the expansion
partons carrying the total momentum and charge of all th@ @n operator product must include operators with total de-
collinear longitudinally-polarized gluons. In this way, we rivatives. We call this expansion the generalized OPE. In the

have a complete factorization of the soft and hard physics ifémainder of this section, we will recast our factorization
the DVCS process. formula in its generalized OPE form. In the process, we iden-

tify these total derivative operators and obtain their Wilson
coefficients to next-to-leading order ;. The final result
agrees with the known OPE in the DIS limi§{0).

To derive the generalized OPE, we expdndin a power
series aboukg=. In this way, we can express the ampli-

The factorization formula in Eq(42) for the general tude in terms of moments of the parton distributions rather
Compton scattering process can also be examined in thhan the distributions themselves. Eventually, we will relate
form of an operator product expansi@@PE). The OPE was the moments of parton distributions to the matrix elements of
first introduced by Wilsori22] in 1969 and has been used local operators. After the aforementioned expansion, we
extensively in deep inelastic scattering and other perturbativeave

VI. GENERALIZED OPERATOR PRODUCT EXPANSION
AND WILSON’'S COEFFICIENTS
TO THE NLO ORDER

Ti=—gTs+ie™in,p,Ta;

” ” 1 dx/ x
TS:2 (

Xp

e

m

J' v E Cngq(va)"'C?\mFg(xyg)
neven=2 mever=0 J -1 X q

2,3 i fl d_><<i>“(£ > T Fq(x,8) + T8 Fy(x,6)
A nodd=1 meven=0 J-1 X \Xp Xg nm- g™ nm g%,

q

: (45

The coefficients for the moments of the quark distributions in the expansion are

a5 OCElg 8 2 s in—1)—aTHn—1)-Sn-1) 3+ 2+ ——||a
Cam™ Omo— A _ﬁ+n+1+ Sz(n_ )— 1(n_ )— 1(I’I- ) +ﬁ+n+1 mo0
on ! 4S 1)-2S 1 1-6 46
Flmmen  (rmyneme) T mod MY 2SS me D e g (T Gno) o (49
- aCe(] 6 ) 2 2
Sl = | |97~ +45,(n=1) = 4Th(N=1) =~ S,(n—1)| 3+ = + —— | |5
_on 3 Ay m-1)-2s 1 1-8 4
mn+m m' m (m=D)=2S(nm= Dl e e ) (1 %m0 (47)

where we have introduced

094018-11



XIANGDONG JI AND JONATHAN OSBORNE PHYSICAL REVIEW D58 094018

1 exponential, which allows one to integrate over xtthrough
ot simple partial integrations. Thi integration can then be
done trivially. So the moments of the quark distribution can
n ] (48) be expressed in terms of the matrix elements of local opera-
(n)==2 Si(i) tors in the light-cone gauge. However, in this gauge, these
= A gauge-dependent local operators are equal to the gauge in-
variant operators obtained by replacing the partial derivatives
Notice that the above expansion contains only positive powin the above expression by covariant derivatives,
ers ofx and & This result is not immediately obvious be- .
cause of thex, x_ de_:no_min_ators in _the amplitudes. In the_ qoz“l'u'Z'“l“n:l’b(o)i(lz_))(f"l‘“iﬁ"n—l’yﬂ'n)w(o)’ (51)
case of the gluon distribution functions, we have an addi-
tional factor ofx,x_ in the denominator. Since the final where(:-) signifies that the indices are symmetrized and the
OPE contains only local operators, these factors have to bgace has been removed. Thus the moments of the guark
cancelled in the process of expansion. Indeed, this turns oufistribution functions are just matrix elements of thecom-
to be the case and we obtain the coefficients of the positivBonents of the above operators between the initial and final

moments of the gluon distributions hadron states. We also recognize that
asTg| m m+2 (n-ig)gO; "T=2¢0"" (52)
9 — — _ _ q~’'n n :
Com= 2 |n¥m namez 2ountm-1)

This prompts us to define

1 m+2 m+2
X +
n+m n+m+1 n+m+2

nYm —1 ..-. I [y .o
qo#mz“'un_'a(ul '&Mm'f/’(o)'pﬂmﬂ

a

c T XiD, 0),
Chm= 257:[2"'251(”‘1””1_1)] 1 Y ¥(0)

~nYm —1 .--. m i LIS
m+1 m+2 0Oy g = 1Oy 190 HOND

)(1— On1). (49) —
X1 D“n—ly/"n) 75¢(0) .

>< —
n+m n+m+1

Having obtained an expansion involving the moments of the
n,m

distributions, we move toward a general form of the OPE. To 0O iy, =V aMmFMmHa(O)iﬁ;m”- x
this end, we consider the moments of the parton distribu-
tions. We begin by observing that for quarks X i(ﬁﬂn_l)':ﬁ (0),
1 L 1 - o ~ —
- f—— i .o nYm — .. .. i .o
fﬁldxxn Fo(x,6)= > (Pf|1,bq(0)|(?M1 0O o, =10y 19, Fra(0)ID,
Xi(gﬂn—lyﬂn‘/’q(oﬂpi)nm' “-n¥n XDy iF 11, (0)- 53

(500 After replacing the moments of parton distributions in Eq.

- . (45 with matrix elements of these operators and interpreting

holds in light-cone gauge, where we have defiried3(  the result as an operator relation, we find the following gen-
—d). The parton distribution depends &mnly through the eralized OPE,

[ gopdaer o 2 _z):_v... ST S I T
|fdzéq TJ(Z)J”( 5|=(—g""+ ) > ( o .

a M1 M
E Cn—m,maon,m

n ever=2 meven=0 =0.,9
[} n n—mq 'q
. Mo Mn ~ =B
tie @ _ Co maOlk2 g (54
uvapd nod2d=l me%mo (Qz)n ag,g n—mma=n,m

It must be pointed out that the generalized OPE does noterse powers of this variable. This will lead to a different set
have a unique form. One can defixgas any dimensionless of coefficient functions, but the physical content is the same.
invariant formed from the external momenta which remainsThe choice of which OPE to use is determined by the spe-
finite in the Bjorken limit and expand the amplitude in in- cifics of the problem at hand.
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Of course, the above expression contains only the contries for the generalized OPE including the total derivative
butions to leading order in @?. Since the operator®, ,,  operators. For general two photon processes, one has to in-
are symmetrized and traceless, their ranknisThe mass clude the longitudinal photon scattering, which has been
dimension of these operators is just the dimension of thelone in Ref.[12], and photon-helicity flip amplitud¢13].
fermion fields plus that of the derivatives, o-31— 1. Hence  The scale evolution of total derivative operators can best be
these operators are all twist 2. At the next order @%6ne  studied using conformally-symmetric operatft4]. In fact,
has to consider operators of higher twist, which are beyondt has been known for a long time that at the leading-log

the scope of this paper. level, the operators of same twist and dimension evolve mul-
tiplicatively in Gegenbauer polynomial combinations. It is a
VIl. SUMMARY AND COMMENTS simple exercise to transform E¢p4) into this basis.

) _ o Note addedAfter this work was completed, we learned
In this paper, we have studied the QCD factorization forihat the DVCS factorization has also been studied by Collins
deeply virtual Compton scattering explicitly at one loop andand Freud25]. Their arguments and conclusions are similar
then to all orders in perturbation theory. Our conclusion isto ours. We also learned that some aspects of higher-order

that DVCS s factorizable in perturbation theory. This state-corrections to DVCS have been considered by Belitsky and
ment has the same level of rigor as the ordinary operatogchger [26].

production expansion used in deep-inelastic scattering. In
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