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One-loop corrections and all order factorization in deeply virtual Compton scattering
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Department of Physics, University of Maryland, College Park, Maryland 20742
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We calculate the one-loop corrections to a general off-forward deeply virtual Compton process at leading
twist for both parton helicity-dependent and independent cases. We show that the infrared divergences can be
factorized entirely into off-forward parton distributions, even when one of the two photons is on shell. We
argue that this property persists to all orders in perturbation theory. We obtain the next-to-leading order Wilson
coefficients for the general leading-twist expansion of the product of two electromagnetic currents in theMS
scheme.@S0556-2821~98!04521-4#

PACS number~s!: 13.60.Fz, 12.38.Bx, 13.60.Hb
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I. INTRODUCTION

Photons, real or virtual, are known to be clean probes
the internal structure of the nucleon. In deep inelastic s
tering ~DIS!, the cross sections for absorption of highly v
tual photons were the first to reveal the internal quark str
ture of nucleons. The parton distributions extracted fr
these cross sections contain important structural informa
and seriously challenge our understanding nonperturba
quantum chromodynamics~QCD!. Elastic absorption of vir-
tual photons can be used to measure the electromag
form factors of the nucleon. At low virtuality, these form
factors give us direct information about the sizes and m
netic moments of nucleons. At high virtuality, they are se
sitive to the leading-twist light-cone wave functions. Mo
recently, real photon elastic scattering at low energy has b
used to extract the electromagnetic polarizabilities of nuc
ons.

In a recent paper, one of us introduced deeply virt
Compton scattering~DVCS! as a probe to a novel class o
‘‘off-forward’’ parton distributions~OFPD’s! @1#. DVCS is a
process in which a highly virtual photon~with virtuality Q2

@LQCD
2 ) scatters on a nucleon target~polarized or unpolar-

ized!, producing an exclusive final state consisting of a hig
energy real photon and a slightly recoiled nucleon. With
virtual photon in the Bjorken limit, a QCD analysis show
that the scattering is dominated by the simple mechanism
which a quark~antiquark! in the initial nucleon absorbs th
virtual photon, immediately radiates a real one, and fa
back to form the recoiled nucleon.

Several interesting theoretical papers have since appe
in the literature, which studied the DVCS process further.
Ref. @2#, the single-quark scattering was recalculated usin
different, but equivalent definition of the parton distribution
The evolution equations of the distributions were deriv
and some general aspects of factorization were discusse
Ref. @3#, the evolution equations for OFPD’s were deriv
and the leading-twist DVCS cross sections were calculate
order as

0 . Some past and recent studies of OFPD’s can
found in @5#. In Ref. @4#, estimates of these cross sectio
were made at COMPASS and TJNAF energies. In Ref.@6#,
the DVCS process was considered as a limit of unequal m
Compton scattering, which was studied from the point
0556-2821/98/58~9!/094018~13!/$15.00 58 0940
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view of the operator product expansion. Some early stud
of unequal mass Compton processes can be found in R
@7, 8#. In Ref. @9#, a number of suggestions were made to t
the leading twist dominance in DVCS at finiteQ2. In a
Rapid Communication paper, the present authors stud
O(as) corrections to DVCS for the parton helicity
independent case@10#. In Refs.@11, 12#, the same issue wa
investigated from different perspectives. The present pap
an expanded presentation of our results in Ref.@10#.

The main motivation for the present study is to see if t
theoretical basis for the DVCS process is up to par with ot
well-known perturbative QCD processes. More explicit
we discuss the existence of a factorization theorem for
process. For general two virtual photon processes in
Bjorken limit, the factorizability is suggested by studies
deep inelastic scattering. In the case of DVCS, where on
the photons is on shell, the situation could be different. P
tential infrared problems can arise because of the additio
light-like vector in this special kinematic limit. However,
is believed that these complications will not ruin the facto
ization properties@3#.

To see factorization at work, it is instructive to work o
one-loop examples. We will do this explicitly in Sec. III. Fo
consistency, we consider the unphysical process of DVCS
onshell quark and gluon ‘‘targets.’’ To ensure gauge inva
ance, we regularize the infrared divergences by going td
541e dimensions. For completeness we have conside
both the symmetric and antisymmetric parts of the am
tudes, which are related to helicity-independent and dep
dent parton distributions, respectively. The only omission
the gluon helicity flip amplitude, which will be discussed
Ref. @13#. As expected, our result contains collinear infrar
divergences which can be interpreted as the one-loop pe
bative parton distributions, as we will show in Sec. IV. Th
property is independent of the special kinematic limit
DVCS.

A general proof of the DVCS factorization was first give
by Radyushkin in his approach based ona-representation
@2#. In this paper, we give an alternative proof using the to
developed by Libby, Sterman, Collins and others@14#. Ac-
cording to these, one can represent the infrared sensitive
tributions in a generic Feynman diagram with reduced d
grams. These reduced diagrams have intuitive phys
significance and are easy to identify. General power coun
© 1998 The American Physical Society18-1
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XIANGDONG JI AND JONATHAN OSBORNE PHYSICAL REVIEW D58 094018
rules can be used to select leading reduced diagrams
process. A recent application of the method can be foun
Ref. @15#. We show in Sec. V that the leading reduced d
grams for DVCS do not contain any soft divergences and
in fact exactly the same as those present when the final
photon is deeply virtual. The collinear divergences in t
reduced diagrams can be attributed to those of OFPD’s w
calculated in perturbation theory. Therefore we conclude
factorization for DVCS is in the same footing as other we
known examples like deep inelastic scattering.

The factorization property of the general two virtual ph
ton process can be summarized beautifully in terms of W
son’s operator product expansion. In this approach, factor
tion means that the soft physics can be written in terms
certain local operators, the coefficients of which can be c
culated perturbatively. Since this operator product expans
involves an infinite sum of such operators, their matrix e
ments may be such that it does not converge. The possib
of nonconvergence corresponds directly to the possibility
singular end-point contributions to the convolution integ
discussed in@2#. This is essentially a nonperturbative pro
lem and is beyond the scope of this paper.

The generalized expansion requires operators with t
derivatives@6–8# to describe the off-forward nature of th
process. It is well-known that these derivative operators c
tribute to the wave functions of mesons@16#. In Sec. VI, we
convert our one-loop results into Wilson coefficients of t
twist-two operators in the modified minimal subtractio
(MS) scheme. Together with the two-loop anomalous
mensions of these operators, they provide the necessar
gredients for calculating DVCS at the next-to-leading ord

We summarize and discuss our results in Sec. VII.

II. KINEMATICS AND PARTON DISTRIBUTIONS

Although our ultimate interest is in deeply virtual Com
ton scattering, we start by considering a general Comp
process involving two offshell photons with different virtu
alities. This and a suitable choice of kinematic variables
lows us to exploit the full symmetry of the problem. In th
general Compton process, a virtual photon of momentumq
1D/2 is absorbed by a hadron of momentumP2D/2, which
then emits a virtual photon with momentumq2D/2 and re-
coils with momentumP1D/2. The three independent exte
nal momenta can be expanded in terms of the light-c
vectors

pm5~p1,0,0,p1!,

nm5
1

2p1 ~1,0,0,21!, ~1!

where the 3-direction is chosen as the direction of the a
age hadron momentum (P), and two transverse vectors. I
an expansion, we call the coefficient ofpm the1 component
and that ofnm the 2 component. Thus we write
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Pm5pm1
M22t/4

2
nm,

qm52zpm1
Q2

2z
nm,

Dm522jpm1j~M22t/4!nm

1DT
m , ~2!

whereM is the hadron mass~which is taken to be the sam
for the initial and final hadrons!, t5D2, Q2 is the virtuality
of qm, j is a measure of the difference of the virtualities
the two external photons,z is defined as

z5
Q2

2xB~M22t/4!

3S 211A11
4xB

2~M22t/4!

Q2 D , ~3!

and DT
m is a vector in the transverse directions which h

squared length2t(12j2)24j2M2. We have also intro-
ducedxB5Q2/(2P•q), the analogue of the Bjorken scalin
variable in this off-forward process. We note that these
pressions limit the range ofj to

j2<
2t

2t14M2
, ~4!

for fixed t, or the range oft to

2t>
4j2M2

12j2
, ~5!

for fixed j.
In the Bjorken limit, these expressions simplify conside

ably. Since we consider only the leading twist in this pap
we may neglect all but the1 components ofPm andDm ~in
order to form large scalars, one must dot the1 component of
a vector with the2 component ofq). Hence, in the limit
Q2→` (t remaining finite!, we may write

Pm;pm,

qm;2xBpm1
Q2

2xB
nm,

Dm;22jpm. ~6!

Here, we note that the external invariants have been redu
from six to three by enforcing kinematics and taking t
Bjorken limit. We express these three scalars in terms of
mass scale,Q2, and two dimensionless parameters,xB andj.
When we introduce the parton distributions, our expressi
will also involve the parton light-cone momentum variab
8-2
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ONE-LOOP CORRECTIONS AND ALL ORDER . . . PHYSICAL REVIEW D 58 094018
x. Hence, the final result will be expressed as algebraic fu
tions of xB , x, andj multiplied by the appropriate power o
Q2.

Our goal is to factorize the short and long distance ph
ics of the Compton amplitude in the Bjorken limit,

Tmn5 i E d4zeiq•zK P1
D

2UTJnS z

2D
3JmS 2

z

2D UP2
D

2 L , ~7!

whereJm5(qeqc̄qgmcq is the electromagnetic current an
cq is the bare quark field of flavorq and chargeeq . The
simplest Feynman diagram for this process is shown in F
1, where a quark comes out of the nucleon blob, scatters,
rejoins the nucleon blob. While the scattering involves
large momentum transfer and can be calculated in pertu
tion theory, the nucleon blob with two quark legs is relat
to the baryon structure and is nonperturbative. For m
complicated graphs, as will be discussed throughout this
per, the Compton amplitude can be separated analogo
into soft and hard contributions. In the remainder of th
section, we will highlight some important aspects of the s
part.

The nonperturbative contribution to the Compton amp
tude in Eq. ~7! can be expressed in terms of off-forwa
parton distributions contained in the parton density matri
@3#. For quarks, we call the density matrixMab , wherea
andb are Dirac indices, and expand it in terms of the Dir
matrices. At leading twist,Mab is just the light-cone corre
lation function,

Mab
q ~x,j!5E dl

2p
e2 ilxK P1

D

2 Uc̄b
q S l

2
nD

3P$e2 ig*2l/2
l/2 n•A~zn!dz%

3ca
q S 2

l

2
nD UP2

D

2 L
5

1

2
Fqp” ab1

1

2
F̃q~g5p” !ab1••• , ~8!

where the ellipses denote contributions either of higher tw
or chiral-odd structure, which do not contribute to the lea
ing process under consideration. The P symbol denotes

FIG. 1. The handbag diagram for the general two photon p
cess.
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path ordering of the exponential, which makes this expr
sion gauge invariant. It is necessary to include this ga
link whenever one is not working in the light-cone gau
(A150). Multiplying by n” ba and (n”g5)ba and taking
traces, we project out the same distributions as considere
@3#:

Fq~x,j!5
1

2 E dl

2p
e2 ilxK P1

D

2 Uc̄qS l

2
nD

3P$ %n”cqS 2
l

2
nD UP2

D

2 L , ~9!

F̃q~x,j!5
1

2 E dl

2p
e2 ilxK P1

D

2 Uc̄qS l

2
nD

3P$ %n”g5cqS 2
l

2
nD UP2

D

2 L . ~10!

We have suppressed the renormalization scalem which is
always present in defining a parton distribution. We ha
also suppressed thet dependence because it will not affe
most of the discussions in this paper.

At next to leading order, gluons also contribute to t
Compton process. Although it is nontrivial to show, th
twist-two gluon distributions are contained in the followin
gauge-invariant light-cone correlations (e0123511):

Gmnab~x,j!5E dl

2p
e2 ilxK P1

D

2 UFa
mnS l

2
nD

3P$e2 ig*2l/2
l/2 n•A~zn!dz%ab

3Fb
abS 2

l

2
nD UP2

D

2 L
52xFG~x,j!~gmapnpb2gmbpnpa

1gnbpmpa2gnapmpb!

1 ixF̃G~x,j!~emagdpnpb2embgdpnpa

1enbgdpmpa2enagdpmpb!ngpd1••• ,

~11!

where the ellipses denote higher twist contributions and
additional twist-two term which involves gluon helicity flip
and will not be considered in this paper@13#. Again, P$ %
denotes path ordering@we note that here the gauge link is
the adjoint representation of SU~3!#. The off-forward gluon
distribution functionsFG andF̃G may be isolated by contrac
tion and are

FG52
1

2x E dl

2p
e2 ilxK P1

D

2 UFa
maS l

2
nD

3P$ %abFb a
n S 2

l

2
nD UP2

D

2 L nmnn , ~12!

-

8-3
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F̃G52
i

2x E dl

2p
e2 ilxK P1

D

2 UFa
maS l

2
nD

3P$ %abF̃b a
n S 2

l

2
nD UP2

D

2 L nmnn . ~13!

Here, we have defined the dual field strength tensorF̃mn

5 1
2 emnabFab .
It is easiest to see the connection of the above gluon

tributions with the nonperturbative structure arising fro
Feynman diagrams in the light-cone gauge. In this gauge
gauge link is just the unit operator in the adjoint represen
tion and field strength tensors with one1 index F1m sim-
plify to ]1Am. Fourier transformation to momentum spa
yields

FG52
x1x2

2x

1

VT E d4l

~2p!4 d~x2 l •n!

3 K P1
D

2 UTAa
mS l 1

D

2 D
3Aa

nS l 2
D

2 D UP2
D

2 L gmn
' , ~14!

F̃G52 i
x1x2

2x

1

VT E d4l

~2p!4 d~x2 l •n!

3 K P1
D

2 UTAa
mS l 1

D

2 D
3Aa

nS l 2
D

2 D UP2
D

2 L e12mn , ~15!

where we have definedx15x1j andx25x2j. VT repre-
sents (2p)4d4(0), thespace-time volume of our system. In
factorized calculation of the Compton amplitude involvin
gluons, the gluonic indices in the hard part will be contrac
with the tensor
09401
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1

VT E d4l

~2p!4 d~x2 l •n!3 K P1
D

2 UTAa
i S l 1

D

2 D
3Aa

j S l 2
D

2 D UP2
D

2 L
52

x

x1x2
~FG~x!gi j 1 i F̃ G~x!e12 i j !. ~16!

In the above definitions, we have assumed that we
working in 311 space-time dimensions. However, to reg
larize the ultraviolet and infrared divergences arising fro
loop diagrams, it is convenient to generalize them tod di-
mensions. Let us first consider the quark density matrix
Eq. ~8!. Because the spinors are kept in 4 dimensions,
first term on the right hand side generalizes tod dimensions
without change. The second term, however, involvesg5
which has no unique extension. Different choices, in the e
define different factorization schemes. If one uses
’t Hooft–Veltman definition (g55 ig0g1g2g3) @17#, one
usually introduces an extra renormalization constantZ5 so
that the non-singlet axial currents are conserved. An alte
tive choice has been offered by Bardeen@18# which employs
the usual four-dimensional rules

$gm,g5%50, ;mP@0,d#

Tr@g5gagbgggd#52„41O~e!…i eabgd. ~17!

The ambiguity in the second equation does not affect ca
lations as long as there are no anomalies in the problem
the case that there is an anomaly, the ambiguity can be fi
by imposing the relevant Ward identities. This scheme
widely been used in one-loop calculations. Its use in hig
order calculations is ambiguous and has been the subje
some debate@19#, but these ambiguities do not affect ou
result.

We now turn to the gluon density matrix in Eq.~16!.
FG(x) contains an average over gluon polarizations.
make this consistent with the number of transverse polar
tion states available to gluons ind dimensions, we multiply
this term by 1/(11e/2). The polarized gluon density is re
lated to the antisymmetric combination of the gluon fiel
FIG. 2. Diagrams for Compton scattering on an on shell quark to orderas .
8-4
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ONE-LOOP CORRECTIONS AND ALL ORDER . . . PHYSICAL REVIEW D 58 094018
F11 andF12. This does not change after going tod dimen-
sions if the target polarization is kept the same. Hence,
have left that term as it is.

III. ONE-LOOP COMPTON AMPLITUDES ON QUARK
AND GLUON ‘‘TARGETS’’

In this section, we present a one-loop calculation of
general Compton scattering on onshell quark and gluon ‘‘
gets’’ in the Bjorken limit. The result will be used in the ne
section to show that the factorization of soft and hard c
tributions can be done consistently with the definition of o
forward parton distributions. In particular, this property do
not change in the limit of a real final state photon. Our res
will also be used to derive a generalized operator prod
expansion to next-to-leading order. For the convenience
the reader, we are going to spell out some technical detai
the one loop calculation. We believe that some of the te
niques, like the cancellation of propagators and light-fro
coordinate integration, will be useful in other contexts.

We begin with an onshell quark ‘‘target.’’ Here, there a
two diagrams at leading order~LO! and eight at next-to-
leading order~NLO!. Half of these diagrams are shown
Fig. 2. The other half will be taken into account by using t
crossing symmetry, i.e., the simultaneous replacement oq
→2q andm↔n. The terms withxB→2xB in the following
formulas reflect this contribution. Because of time rever
invariance, the Compton amplitude is also an even func
of j, i.e., symmetric underj→2j. This symmetry relates
the left and right vertex diagrams@Figs. 2~c! and 2~d!, re-
spectively# to each other. On the other hand, the quark s
energy diagram and the box diagram are themselvesj-
symmetric. This symmetry not only allows us to reduce
number of graphs at NLO from four to three, but also b
comes a powerful tool which helps us compute each am
tude, as we illustrate later.

Before presenting the details of our calculation, it is ne
essary to discuss the issues of on shell reduction and u
violet divergences. We calculate diagrams ind dimensions
and use Feynman’s gauge. As such, we can take the q
09401
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target to be massless and take the on shell limit at the be
ning of our calculation. In the modified minimal subtractio
scheme (MS), the renormalized single-quark propagator h
a residue,dZ, at the polep”50. According to Lehmann-
Symanzik-Zimmerman reduction formula, we calculate t
onshell physical matrix element of an operatorÔR as

^puÔRup&5 lim
p”→0

dZ(
G

GO , ~18!

whereGO is the set of all amputated connected graphs w
one insertion ofÔR in renormalized perturbation theory. Th
factor dZ is infrared divergent for massless quarks a
equalsZF

21 in the present calculational scheme. SinceJm

5ZFc̄RgmcR , all renormalization constants, including th
subtraction for the quark self-energy, cancel at one-lo
level. Therefore,Tmn for single quark and gluon ‘‘targets’
can be calculated just from the graphs shown in Fig. 2.

Examining these graphs, we see that the self-energy
gram contains a loop integral with two Feynman denomi
tors, the vertex diagram contains one with three, and the
with four. A one-loop integral with two propagators
straightforward. Difficulties arise, however, with the calcul
tion of three and especially four-propagator integrals. Th
difficulties may be avoided in this calculation because
several simplifications. Consider first the box diagram. T
loop integral is of the form~with momentum routing as
shown in Fig. 3!

FIG. 3. The momentum flow in the box diagram.
ancel

oblem to
enomi-
tegrals.
E ddk

~2p!d

Tr@ga~k”2jp” !gn~k”1q” !gm~k”1jp” !gap” ~g5!#

~k1jp!2~k2jp!2~k2p!2~k1q!2 , ~19!

where we have replacedDm by 22jpm. In order to simplify the integral, we express the trace as a sum of terms which c
one of the propagators. This can be done because bothk2 and 2p•k can be written as linear combinations of (k1jp)2 and
(k2jp)2, and the trace vanishes wheneverk2 andkT

2 do.
Now that we have shown that a denominator can be cancelled, we have effectively reduced the four-propagator pr

a three-propagator one. Since we have only shown that the numerator will be a linear combination of two different d
nators, rather that proportional to one, the four-propagator integral will in general become two three-propagator in
However, we may use thej symmetry by writing

k25
1

2
~k1jp!21~j→2j!,

2p•k5
1

2j
~k1jp!21~j→2j!. ~20!
8-5
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XIANGDONG JI AND JONATHAN OSBORNE PHYSICAL REVIEW D58 094018
In this way, we consider only the (k1jp)2 cancellation and let the symmetry take care of the rest. We note that the int
we now have is exactly the same~up to numerator differences! as that arising from the right vertex correction. We will see th
this basic integral is the only one we must calculate to obtain both the polarized and unpolarized amplitudes for both t
and gluon contributions~if we forget, for the moment, the simple self-energy diagram!. The integral has the form

E ddk

~2p!d

numerator

@~k2p!21 i e#@~k2jp!21 i e#@~k1q!21 i e#
. ~21!

We have found that this integral is easily done in light-cone coordinates by expandingkm in terms of the light cone momenta
pm andnm. We first do thek2 integration by contour in the unphysical region of largexB , and then the transverse integration
The k1 integration is left until the end. If we writek15yp1, the value of the integral~21! is

i

16p2 S Q2

4p D e/2GS 2
e

2D
12j H E

a

xB
dyS y2a

xB2aD 11e/2S 12
y

xB
D e/2

NU
a5j

a51J , ~22!

where we have definedN according to

Numeratoruk25k
T
2/2p1~y2a!5a1bkT

2 ;

N5b2
a

Q2

xB~xB2a!

~y2a!~xB2y!
. ~23!

Doing the y-integrals requires some care because a delicate cancellation must occur if one is to get finite result,
treatment is straightforward. After thej and crossing symmetries are used, we find the full next leading order~NLO! result for
the symmetric quark amplitude

Tq
~ i j !52gi j (

q8
eq8

2 dqq8H 1

xB21
2

asCF

4p S Q2egE

4pm2 D e/2H 3

xB21 S 2
2

e
13D

2
1

j F S 2j

xB
221

1
xB1j

12j2D X2 4

e
132 lnS 12

j

xB
D C23

xB2j

12j2G lnS 12
j

xB
D

1F S xB11

12j2
1

2

xB21D X2 4

e
132 lnS 12

1

xB
D C23

xB21

12j2
2

3

xB21G lnS 12
1

xB
D J 1~xB→2xB!J ~24!

and the antisymmetric amplitude

Tq
[ i j ]5 i eab i j napb(

q8
eq8

2 dqq8H 1

xB21
2

asCF

4p S Q2egE

4pm2 D e/2H 3

xB21 S 2
2

e
13D

2F S 2xB

xB
221

1
xB1j

12j2D X2 4

e
132 lnS 12

j

xB
D C2 xB2j

12j2G lnS 12
j

xB
D

1F S xB11

12j2
1

2

xB21D X2 4

e
132 lnS 12

1

xB
D C2 xB21

12j2
2

3

xB21G lnS 12
1

xB
D J 2~xB→2xB!J . ~25!

Here we have introducedCF5tata5(Nc
221)/2Nc in SU(Nc), whereNc is the number of colors. We note that the divergenc

in these amplitudes are, in fact, infrared divergences since renormalization has removed all ultraviolet singularitie
presence signals the existence of nonperturbative physics in the process. As mentioned earlier, these divergenc
factorized into nonperturbative matrix elements whose values can be extracted from experiment. We will explicitly sh
in the next section. For now, we summarize the results of the gluon piece of the calculation.

There are six graphs which contribute to the LO amplitude for gluon-photon scattering. These six can be reduced
by reversing the fermion number flow, and one of these can be eliminated by crossing symmetry. The two distinct gr
must calculate are shown in Fig. 4. The denominator of Fig. 4~a! is identical to that of the quark box. Again, the numerator
seen to vanish wheneverk2 and 2p•k do, which allows us to cancel one of the propagators exactly as above. Figure 4~b! is
094018-6
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somewhat more tricky. This diagram is itself symmetric under both crossing andj symmetry. Labeling the momenta as show
we see that under an integral the symmetryq→2q is equivalent toA↔B andC↔D andj→2j is equivalent toB↔D and
A↔C. We also note that here it is possible to represent 1 as a linear combination of Feynman denominators, which gu
our ability to cancel one. Of course, since 1 does not depend onq or j, it may be represented in the symmetric form

152
1

2~12j!p•q
A21~j→2j!1~q→2q!. ~26!

Now it remains only to calculate the trace in a symmetric way and substitute the result into the formulas of the
calculation. Averaging the gluon polarization for the symmetric amplitude ind-dimensions, one finds

Tg
~ i j !52

asTF

2p
gi j S (

q
eq

2D S Q2egE

4pm2 D e/2
1

12j2 H F S 112xB

xB21

12j2D X2 4

e
142 lnS 12

1

xB
D C22G lnS 12

1

xB
D

22xBF S xB

12j2
2

1

2j D X2 4

e
142 lnS 12

j

xB
D C1 1

j G S 12
j

xB
D lnS 12

j

xB
D1~xB→2xB!J , ~27!

for the symmetric amplitude and

Tg
[ i j ]5 i

asTF

2p
eab i j napbS (

q
eq

2D S Q2egE

4pm2 D e/2
1

12j2 H F S 112
xB21

12j2D X2 4

e
142 lnS 12

1

xB
D C22G lnS 12

1

xB
D

22xBF 1

12j2
X2 4

e
142 lnS 12

j

xB
D CG S 12

j

xB
D lnS 12

j

xB
D2~xB→2xB!J , ~28!
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5Tr@ tatb#5 1

2 dab .

IV. ONE-LOOP FACTORIZATION AND EVOLUTION OF
OFF-FORWARD PARTON DISTRIBUTIONS

We now turn to the infrared divergences present in all
the amplitudes. These divergences arise from the region
loop-momentum integration where some of the inter
propagators are near their ‘‘mass shells.’’ In these regio
perturbative calculations are clearly meaningless. The s
dard procedure of fixing this problem is to factorize the a
plitudes into the infrared safe~i.e. devoid of infrared diver-
gences! and infrared divergent pieces, interpreting the lat
as nonperturbative QCD quantities. Of course, the factor
tion procedure has a large degree of arbitrariness. To fac
ize in a physically interesting way, one usually chooses
nonperturbative objects as the parton distributions in the
get, defined in a particular renormalization scheme. In

FIG. 4. Diagrams for gluon Compton scattering at one loop.
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paper, we consider parton distributions in theMS scheme.
The goal of this section is to show that all infrared dive
gences present in the Compton amplitudes can be assoc
with these distributions.

Since we consider factorization within the framework
perturbation theory, we need to compute the parton distri
tions in quark and gluon targets in perturbative QCD. At t
leading order inas , one has

Fq8/q
0

~x,j!5dqq8d~x21!, ~29!

in an on shell quarkq. At next-to-leading order, one ca
calculate directly from the definitions in Sec. II~with the
external hadron states replaced with perturbative qu
states!:

Fq8/q
1

~x,j!5
as~m!

2p
dqq8S 2

e
1 ln~m2egE/4pm0

2! D
3@P~x,j!1Ad~x21!#, ~30!

where

A5CFF3

2
1E

j

x dy

y2x2 i e

1E
2j

x dy

y2x2 i eG , ~31!

and
8-7
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P~x,j!5CF

x21122j2

~12x1 i e!~12j2!
, x.j

5CF

x1j

2j~11j! S 11
2j

12x1 i e D , 2j,x,j

50, x,2j. ~32!

The quark distributions contain infrared divergences signa
by the presence of the 1/e terms. These divergences refle
the soft physics intrinsic to the parton distributions.Fq8/q

1 ,
calculated for the quark target, satisfies the evolution eq
tion derived in Ref.@3#:
09401
d

a-

DQFa~x,j!

D ln Q2

5
as~Q2!

2p E
x

1 dy

y
PabS x

y
,
j

yDFb~y,j!, ~33!

whereb is summed over all parton species and theP’s are
the off-forward Alterelli-Parisi kernels, or splitting functions
The ‘‘covariant’’ derivative is defined to includeA, the end-
point contribution in Eq.~30!.

We can reexpress the symmetric part of the quark Com
ton amplitude in terms of the unpolarized, off-forward qua
distribution
olarized

ere the
distribu-
ugh the
der, the

ude
Tq
~ i j !52gi j (

q8
eq8

2 E
21

1

dxFq8/q~x,j!H 1

xB2x
2

asCF

4p H 9

xB2x
2

x

j F S 2j

xB
22x2

1
xB1j

x1x2
D X32 lnS 12

j

xB
D C23

xB2j

x1x2
G

3 lnS 12
j

xB
D1F S xB1x

x1x2
1

2

xB2xD X32 lnS 12
x

xB
D C23

xB2x

x1x2
2

3

xB2xG lnS 12
x

xB
D J 1~xB→2xB!J . ~34!

Analogously, we find that the antisymmetric part of the quark Compton amplitude can be expressed in terms of the p
off-forward quark distribution

Tq
[ i j ]5 i eab i j napb(

q8
eq8

2 E
21

1

dxF̃q8/q~x,j!H 1

xB2x
2

asCF

4p H 9

xB2x
2F S 2xB

xB
22x2

1
xB1j

x1x2
D X32 lnS 12

j

xB
D C2 xB2j

x1x2
G

3 lnS 12
j

xB
D1F S xB1x

x1x2
1

2

xB2xD X32 lnS 12
x

xB
D C2 xB2x

x1x2
2

3

xB2xG lnS 12
x

xB
D J 2~xB→2xB!J . ~35!

We now turn to Compton scattering on a gluon ‘‘target.’’ Infrared divergent contributions come from the regions wh
quarks in the box diagrams are nearly on shell. Therefore, it is natural to associate these divergences with the quark
tions in a gluon target. On the other hand, the finite contributions come from regions where large momenta run thro
quark loop. In these regions, the photon has an effective pointlike coupling with the gluons in the target. At leading or
off-forward gluon distribution in a gluon target is just

Fg/g
0 ~x,j!5

1

2
~d~x21!2d~x11!!. ~36!

To orderas , there are quark partons in the gluon. The corresponding off-forward quark distribution is

Fq/g
1 ~x,j!5

as~m!

2p S 2

e
1 ln~m2egE/4pm0

2! D P~x,j!, ~37!

where forx.j

P~x,j!52TF

x21~12x!22j2

~12j2!2
, ~38!

and for2j,x,j

P~x,j!5TF

~x1j!~122x1j!

j~11j!~12j2!
. ~39!

Fq/g
1 (x,j)50 for x,2j.
With the above off-forward distributions, we reexpress the symmetric part of the gluon Compton scattering amplit
8-8
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Tg
~ i j !52

asTF

2p
gi j S (

q
eq

2D E
21

1

dx
x

x1x2
Fg/g~x,j!H F S 112xB

xB2x

x1x2
D S 42 lnS 12

x

xB
D D22G lnS 12

x

xB
D

22xBF S xB

x1x2
2

1

2j D S 42 lnS 12
j

xB
D D1

1

j G S 12
j

xB
D lnS 12

j

xB
D J 2gi j (

q
eq

2E
21

1

dxFq/g~x,j!
1

xB2x

1~xB→2xB!. ~40!

Similarly, we can reexpress the antisymmetric part of the gluon Compton amplitude in terms of helicity-depende
forward quark and gluon distributions

Tg
[ i j ]5 i

asTF

2p
eab i j napbS (

q
eq

2D E
21

1

dx
x

x1x2
F̃g/g~x,j!H F S 112x

xB2x

x1x2
D S 42 lnS 12

x

xB
D D22G lnS 12

x

xB
D

22xBF x

x1x2
S 42 lnS 12

j

xB
D D G S 12

j

xB
D lnS 12

j

xB
D J 1 i eab i j napb(

q
eq

2E
21

1

dxF̃q/g~x,j!
1

xB2x

2~xB→2xB!. ~41!

We summarize the one-loop Compton amplitude on a targetN in the factorization formula

TN
i j 52gi j E

21

1 dx

x F(
q

Fq/N~x,j!CqS x

xB
,

j

xB
D1Fg/N~x,j!CgS x

xB
,

j

xB
D G

1 i e i j abnapbE
21

1 dx

x F(
q

F̃q/N~x,j!C̃qS x

xB
,

j

xB
D1F̃g/N~x,j!C̃gS x

xB
,

j

xB
D G , ~42!
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where Cq , Cg , C̃q and C̃g are shown to orderas in Eqs.
~34!, ~40!, ~35!, ~41!, respectively.~We emphasize here aga
that we have neglected the contributions from longitudina
polarized photons and from photon helicity flip. Both effec
start at orderas .) In the above form, all infrared sensitiv
contributions have been isolated in the relevant parton di
butions, which must be calculated nonperturbatively or m
sured in experiments. In the DVCS limitj→xB , the coeffi-
cient functions remain finite, although they have branch c
there. This indicates that factorization holds for two-phot
amplitudes even when one of the photons is onshell. We
argue in the next section that the above formula, one of
main results of this paper, remains valid to all orders in p
turbation theory.

V. FACTORIZATION OF DVCS AMPLITUDES
TO ALL ORDERS

In this section, we generalize the one-loop result of
previous section, showing that the factorization formula E
~42! is valid in the DVCS limit to all orders in perturbatio
theory. The one-loop result indicates that all s
divergences—those associated with integration regi
where all components of some internal momenta are zer
cancel, whereas all collinear divergences can be factor
into the off-forward parton distributions. To see that th
happens also at higher orders in perturbation theory, i
important to understand how the soft cancellation happen
the simplest case.

The self-energy diagram in Fig. 2~b! does not contain any
09401
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infrared divergences because the intermediate quark is fa
shell. The vertex corrections in Figs. 2~c! and 2~d! poten-
tially have infrared divergences, but a simple power count
indicates that these diagrams are in fact infrared converg
Thus infrared divergences appear only in the box diagram
the region where the gluon momentumk is soft, we can
approximate the integral as

;E d4k

~2p!4
p8•p

1

p8•k

1

p•k

1

k2
, ~43!

wherep and p8 are the momenta of the two external qua
lines. On the other hand, the wave function renormalizat
of an ‘‘on-shell’’ quark, dZ, also contains infrared diver
gences. Grouping these divergent terms together, we h
the entire soft contribution

;2
1

2 E d4k

~2p!4 S pm

p•k
2

p8m

p8•k
D 2

1

k2
. ~44!

In the collinear approximation,p8 is proportional top and
thus the above integral vanishes.

For higher-order Feynman diagrams, a systematic met
of identifying, regrouping and factorizing infrared-sensitiv
contributions has been developed by Libby, Sterman, C
lins, and others@14#. The method essentially consists of th
following steps:~1! simplify the Feynman integrals by se
ting all the soft scales to zero, including the quark mass
~2! identify the regions of loop integration which give rise
8-9
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FIG. 5. General reduced diagrams for the DVCS process.
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infrared divergences;~3! use infrared power counting to fin
the leading infrared-divergent regions;~4! show that all soft
and collinear divergences either cancel or factorize into so
nonperturbative quantities. In the remainder of this sect
we examine the validity of the factorization formula Eq.~42!
in the limit of xB5j following the above steps.

In DVCS, the leading contributions come essentially fro
a massless collinear process in which the external mom
take the form shown in Eq.~6!. In this simplified kinematic
region, all infrared-sensitive contributions appear ase
poles in dimensional regularization. If a contribution co
tains no infrared divergences, it comes from regions of lo
momenta comparable to the hard scaleQ2, and thus it is
insensitive to the soft scales. An infrared divergent contri
tion must come from the integration regions where so
internal propagators are near their mass shells. Since
soft contributions cannot be calculated reliably in pertur
tive QCD and eventually must be taken into account w
nonperturbative matrix elements, one can use any valid
frared regulator to characterize them in perturbative calc
tions. Thus the collinear massless limit helps to simplify t
identification of soft contributions while leaving the truly
perturbative contributions intact.

Infrared divergences appear in a Feynman diagram w
some of the external momenta are on shell. The region
integration producing such contributions can be identifi
from the Landau equations which are derived by conside
the analytical properties of the diagrams as functions of co
plex external momenta. According to Coleman and Nor
@20#, these regions can be represented by the so-called
duced diagrams in which off shell lines are shrunk to poi
and on shell lines are drawn according to their real spa
time propagation. We shall argue below that the gene
leadingreduced diagram for DVCS is the one shown in F
5~a!, in which an incoming virtual photon and an outgoin
real one are attached to the hard interaction blob, which
turn is connected to the forward nucleon jet with two colli
ear quark lines or two physically polarized gluon lines, p
an arbitrary number of longitudinally-polarized colline
gluon lines.

To decide that a reduced diagram is leading, one can
infrared power counting@21#, which is essentially a light-
cone dimensional analysis@15#. A simple way to proceed is
to consider the mass dimensions of the soft vertices that
nect lines with either collinear or soft momenta. Since
dimension of an amplitude is fixed, all soft mass dimensio
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must be compensated by the hard scaleQ2. Assuming cova-
riant normalization for the external states (^pup&
52p0(2p)3d3(0)), every external wave function contrib
utes mass dimension21. The collinear quarks and gluon
into a soft hadron vertex have effective mass dimensi
depending on their polarizations. A Dirac fieldc can be writ-
ten as a sum of good (c1) and bad (c2) components, where
c65P6c and P65 1

2 g7g6. The good~bad! component
has effective light-cone mass dimension 1~2!. A vector po-
tential Am has light-cone componentsA1, A', and A2,
which have effective mass dimensions 0, 1, and 2, resp
tively. For the reduced diagram shown in Fig. 5~a!, the only
soft mass dimension comes from the nucleon-quark-gl
blob. Using the above rule, we find it is 0@052~physical
parton lines22~external nucleon states!#. BecauseTmn is
dimensionless, the leading reduced diagram contribute
orderO(Q0).

It is somewhat surprising that the leading region is ind
pendent of the virtuality of the final state photon as long
the initial photon is deeply virtual. When the final state ph
ton is real, it can have pointlike coupling to quarks as well
extended coupling via its soft wave function, as happens
the case of vector dominance. Thus one has an additi
reduced diagram in which a jet of quarks and gluons emer
in thenm direction and combines into a real photon long af
the hard scattering@Fig. 5~b!#. Such a reduced diagram ha
already been considered in Ref.@15# and isO(Q21) by in-
frared power counting. Indeed, according to the discussio
the previous paragraph, the photon wave function vertex
a soft mass dimension 152 ~quark lines! 21 ~photon state!
~recall the dimensionful pion decay constantf p). A negative
hard power (Q21) is needed inTmn to balance it out.

The power counting involving soft quark and gluon lin
is more subtle, and some discussion may be found in R
@15#. The result is that any reduced diagram with soft lin
connecting the hard scattering blob to the nucleon jet is s
leading@Fig. 5~c!#. The situation here is exactly analogous
the case of forward virtual Compton scattering relevant
deep-inelastic scattering as discussed, for instance, by S
man@21#. A simple example is the vertex correction diagra
we already discussed above. When the gluon becomes so
has a reduced diagram like Fig. 5~c!. However, it has no
contribution at leading power.

We now come back to the leading reduced diagr
shown in Fig. 5~a!. The collinear gluons with longitudina
8-10
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polarization connect the hard scattering part and the nuc
jets. These collinear gluons can be factorized using the g
eralized Ward identities as described in Ref.@14#. Eventu-
ally, all collinear gluons can effectively be attached to
eikonal line in the light-cone direction conjugate to t
nucleon jet,nm. Physically, this means that as far as t
collinear gluons are concerned, the hard interaction part
as a jet of particles propagating alongnm. The internal struc-
ture of the hard interaction cannot be resolved and thus o
the total color charge and momentum of the jet is releva
The eikonal line together with the physical quarks and g
ons and the nucleon jets form the off-forward parton dis
butions defined in Sec. II. In the hard scattering, only
total momentum and charge supplied by collinear partons
important. Thus, one can calculate it with incoming physi
partons carrying the total momentum and charge of all
collinear longitudinally-polarized gluons. In this way, w
have a complete factorization of the soft and hard physic
the DVCS process.

VI. GENERALIZED OPERATOR PRODUCT EXPANSION
AND WILSON’S COEFFICIENTS

TO THE NLO ORDER

The factorization formula in Eq.~42! for the general
Compton scattering process can also be examined in
form of an operator product expansion~OPE!. The OPE was
first introduced by Wilson@22# in 1969 and has been use
extensively in deep inelastic scattering and other perturba
09401
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QCD processes. For the product of two currents separ
near the light-cone, the expansion is threefold. Primarily, i
a twist expansion, in which twist-two contributions are lea
ing whereas the higher twist terms are suppressed by po
of 1/Q2. Each term in the twist expansion contains an infin
number of local operators of the relevant twist. This may
thought of as a kind of Taylor expansion of bilocal operato
along the light-cone. Finally, the coefficients of local ope
tors ~Wilson coefficients! are themselves expansions in th
strong coupling constant. The Wilson coefficients for the u
polarized DIS process were calculated at orderas in theMS
scheme in@23#. For the polarized case, one can find them
@24#.

When considering off-forward processes, the expans
of an operator product must include operators with total
rivatives. We call this expansion the generalized OPE. In
remainder of this section, we will recast our factorizati
formula in its generalized OPE form. In the process, we id
tify these total derivative operators and obtain their Wils
coefficients to next-to-leading order inas . The final result
agrees with the known OPE in the DIS limit (j→0).

To derive the generalized OPE, we expandTi j in a power
series aboutxB5`. In this way, we can express the amp
tude in terms of moments of the parton distributions rat
than the distributions themselves. Eventually, we will rela
the moments of parton distributions to the matrix elements
local operators. After the aforementioned expansion,
have
Ti j 52gi j TS1 i eab i j napbTA ;

TS52 (
n even52

`

(
m even50

` E
21

1 dx

x S x

xB
D nS j

xB
D mF(

q
cnm

q Fq~x,j!1cnm
g Fg~x,j!G

TA52 (
n odd51

`

(
m even50

` E
21

1 dx

x S x

xB
D nS j

xB
D mF(

q
c̃nm

q F̃q~x,j!1 c̃nm
g F̃g~x,j!G , ~45!

The coefficients for the moments of the quark distributions in the expansion are

cnm
q 5dm02

asCF

4p H F92
8

n
1

2

n11
14S2~n21!24T1

1~n21!2S1~n21!S 31
2

n
1

2

n11D Gdm0

1F 6n

m~m1n!
2

1

~n1m!~n1m11!
1

4

m
S1~m21!22S1~n1m21!S 1

n1m
1

1

n1m11D G~12dm0!J , ~46!

c̃nm
q 5dm02

asCF

4p H F92
6

n
14S2~n21!24T1

1~n21!2S1~n21!S 31
2

n
1

2

n11D Gdm0

1F 6n

m~n1m!
2

3

m
1

4

m
S1~m21!22S1~n1m21!S 1

n1m
1

1

n1m11D G~12dm0!J , ~47!

where we have introduced
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Sj~n!ª(
i 51

n
1

i j ,

~48!

Tj
k~n!ª(

i 51

n
Sj~ i !

i k .

Notice that the above expansion contains only positive p
ers of x and j. This result is not immediately obvious be
cause of thex1x2 denominators in the amplitudes. In th
case of the gluon distribution functions, we have an ad
tional factor of x1x2 in the denominator. Since the fina
OPE contains only local operators, these factors have to
cancelled in the process of expansion. Indeed, this turns
to be the case and we obtain the coefficients of the pos
moments of the gluon distributions

cnm
g 5

asTF

2p F m

n1m
2

m12

n1m12
22S1~n1m21!

3S 1

n1m
2

m12

n1m11
1

m12

n1m12D G
c̃nm

g 5
asTF

2p
@212S1~n1m21!#

3S m11

n1m
2

m12

n1m11D ~12dn1!. ~49!

Having obtained an expansion involving the moments of
distributions, we move toward a general form of the OPE.
this end, we consider the moments of the parton distri
tions. We begin by observing that for quarks

E
21

1

dxxn21Fq~x,j!5
1

2
^Pf uc̄q~0!i ]Jm1

¯

3 i ]Jmn21
gmn

cq~0!uPi&n
m1
¯nmn

~50!

holds in light-cone gauge, where we have defined]J5 1
2 (]W

2]Q ). The parton distribution depends onx only through the
n
s
in
n-
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exponential, which allows one to integrate over thex through
simple partial integrations. Thel integration can then be
done trivially. So the moments of the quark distribution c
be expressed in terms of the matrix elements of local op
tors in the light-cone gauge. However, in this gauge, th
gauge-dependent local operators are equal to the gaug
variant operators obtained by replacing the partial derivati
in the above expression by covariant derivatives,

qOm1m2¯mn

n 5c̄~0!iDJ(m1
¯ iDJmn21

gmn)c~0!, ~51!

where~¯! signifies that the indices are symmetrized and
trace has been removed. Thus the moments of the q
distribution functions are just matrix elements of the1 com-
ponents of the above operators between the initial and fi
hadron states. We also recognize that

~n• i ]!qO n
1¯152jO n

1¯1 . ~52!

This prompts us to define

qO m1m2¯mn

n,m 5 i ] (m1
¯ i ]mm

c̄~0!iDJmm11
¯

3 iDJmn21
gmn)c~0!,

qÕm1m2¯mn

n,m 5 i ] (m1
¯ i ]mm

c̄~0!iDJmm11
¯

3 iDJmn21
gmn)g5c~0!.

gO m1m2¯mn

n,m 5 i ] (m1
¯ i ]mm

Fmm11a~0!iDJmm12
¯

3 iDJmn21)Fmn

a ~0!,

gÕm1m2¯mn

n,m 5 i ] (m1
¯ i ]mm

Fmm11a~0!iDJmm12
¯

3 iDJmn21)i F̃ mn

a ~0!. ~53!

After replacing the moments of parton distributions in E
~45! with matrix elements of these operators and interpret
the result as an operator relation, we find the following ge
eralized OPE,
i E d4zeiq•zTJnS z

2D JmS 2
z

2D5~2gmn1¯ ! (
n even52

`

(
m even50

n S 2n2mqm1
¯qmn

~Q2!n D (
a5q,g

cn2m,m
a

aOn,m
m1¯mn

1 i emnabqa (
n odd51

`

(
m even50

n S 2n2mqm2
¯qmn

~Q2!n D (
a5q,g

c̃n2m,m
a

aÕn,m
bm2¯mn1¯ . ~54!
et
e.

pe-
It must be pointed out that the generalized OPE does
have a unique form. One can definexB as any dimensionles
invariant formed from the external momenta which rema
finite in the Bjorken limit and expand the amplitude in i
ot

s

verse powers of this variable. This will lead to a different s
of coefficient functions, but the physical content is the sam
The choice of which OPE to use is determined by the s
cifics of the problem at hand.
8-12
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Of course, the above expression contains only the con
butions to leading order in 1/Q2. Since the operatorsOn,m
are symmetrized and traceless, their rank isn. The mass
dimension of these operators is just the dimension of
fermion fields plus that of the derivatives, or 31n21. Hence
these operators are all twist 2. At the next order in 1/Q2 one
has to consider operators of higher twist, which are bey
the scope of this paper.

VII. SUMMARY AND COMMENTS

In this paper, we have studied the QCD factorization
deeply virtual Compton scattering explicitly at one loop a
then to all orders in perturbation theory. Our conclusion
that DVCS is factorizable in perturbation theory. This sta
ment has the same level of rigor as the ordinary oper
production expansion used in deep-inelastic scattering
fact, assuming the generalized OPE with total derivative
erators, DVCS can be recovered by analytically continuexB
variable fromxB.1 region to the pointxB5j. The factor-
ization theorem guarantees that the Compton amplitudes
finite there, although the one-loop calculation indicates t
they are not analytic.

We have also computed the coefficient functions to or
h
C

an
L,

.

e-

t. B

.

09401
ri-

e

d

r

s
-
or
In
-

re
t

r

as for the generalized OPE including the total derivati
operators. For general two photon processes, one has t
clude the longitudinal photon scattering, which has be
done in Ref.@12#, and photon-helicity flip amplitude@13#.
The scale evolution of total derivative operators can bes
studied using conformally-symmetric operators@11#. In fact,
it has been known for a long time that at the leading-l
level, the operators of same twist and dimension evolve m
tiplicatively in Gegenbauer polynomial combinations. It is
simple exercise to transform Eq.~54! into this basis.

Note added.After this work was completed, we learne
that the DVCS factorization has also been studied by Col
and Freud@25#. Their arguments and conclusions are simi
to ours. We also learned that some aspects of higher-o
corrections to DVCS have been considered by Belitsky a
Schäfer @26#.
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