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Modeling the glueball spectrum by a closed bosonic membrane
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We use an analogy between the Yang-Mills theory Hamiltonian and the matrix model description of the
closed bosonic membrane theory to calculate the spectrum of glueballs in thél|aliget. Some features of
the Yang-Mills theory vacuum, such as the screening of the topological charge and vacuum topological
susceptibility, are discussed. We show that the topological susceptibility has different properties depending on
whether it is calculated in the weak coupling or strong coupling regimes of the theory. A mechanism of the
formation of the pseudoscalar glueball state within pure Yang-Mills theory is proposed and studied.
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INTRODUCTION ture[10]. That is, there is an infinite number of degenerate
vacuum states labeled by some topological invariant, the

Gluodynamics[1], being the asymptotically free theory winding number or topological charge. Instantons, being de-
[2] of colored[3] massless vector particles, is believed tofined in Euclidean space, provide that quasiclassical tunnel-
underline the dynamics of strong interactions. Because oihg processes happen between the different vacua. Thus, the
asymptotic freedom the theory is well studied at short distrue ground state of the theory is a superposition of the vacua
tances; however, long distance phenomena deserve to be umith different topological charges. The superposition can be
derstood much better. provided in the path integral formulation by adding to the

The theory predicts glueballg4], the nonperturbative action thed term AS,= 6fd*xQ(x) [10]. However, such a
bound states composed of pure g|6é That prediction was maodification is not a harmless procedure. #term in QCD
confirmed some time ago by “observing” glueballs in lattice leads to an induced neutron electric dipole moment. Experi-
QCD simulationd6,7]. In addition to that, there are experi- mental bounds on that gquantity restrict the value of the
mental signatures of resonances which strongly resemblgarameter to be unnaturally small, less than the billion’th
properties of glueballgfor a recent analysis of these issuespart of the unity, and give rise the famous straD§ prob-
see Ref[8]). lem[11].

Studying glueballs one might hope to learn more about The picture outlined above implies that the integral of the
the complicated ground state structure of non-Abelian Yangtopological charge densitfd*xQ(x), being the topological
Mills (YM) theory. The main question one might wonder charge in Euclidean space, is quantized if the instanton
about is the mechanism of the formation of glueball states iiboundary conditions are imposed on gauge fiél?ﬂbus, the
YM theory. Those states appear to be heavy in comparisofyhole scenario of the superposition of the different vacua by
with the lightest hadrons and range, depending on the spifmeans of thed term relies on quasiclassical arguments. In
parity structure, within the mass interval 1.5-2.3 G&V7].  general, one expects that the quasi-classical approximation is
Thus, the naive picture of the glueball as a system of tWqustified in a weak coupling regime onfit2]. What the 6
massless gluons which interchange virtual perturbative glugerm leads to in a strong coupling approximation where qua-
ons does not seem to be appropriate. siclassical arguments cease to be valid, is not clegriori.

In this work we are looking for qualitative features re- |t was argued by Wittefi13] that in the confining phase
sponsible for the process of formation of pseudoscalar gluesf the theory noninteracting instanton boundary conditions
balls. A possible mechanism will be proposed. As an outspoyid not be relevant. The key observation was that gauge
come we calculate the spectrum of lightest pseudoscalgfe|gs with instanton boundary conditions do not yield the
glueballs. The results are in agreement with predictions ofyrea law for the Wilson loop. Thus, configurations with those
lattice calculations[6]. The paper deals with pure YM poundary conditions, as any configurations tending to a pure
theory, no light fermions are included. A brief discussion of yauge at infinity, fail to satisfy the confinement criterion
full QCD is given at the end of the work. [14]. As a result, in the strong coupling approximation of the

Our study relies on the existence of theerm in pure YM  ¢onfining theory one should rather encounter some smeared
theory. We define the topological charge density operator agistributions of interacting topological charges as opposed to
Q=(1/327%)G;,G5,, with G, being the non-Abelian the noninteracting instanton system with quantized topologi-
gauge field strength tensor and the dual tensor is normalized
as éjyz%swaﬁGZB. Because of instantor[®], the non-

Abelian gauge theory possesses a complicated vacuum structynder those boundary condition one means that the vector po-
tential A, tends to a pure gauge configuration at spatial infinity
A#HU’l(x)aMU(x), with U(x) being an element of the SN()
*Email address: gabad@physics.rutgers.edu gauge group.
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cal chargg 13]. This statement finds support in recent mod-

els of the YM vacuum. Properties of hadrons are correctly X(V)EJ' (0]TQ(x)Q(0)|0)d"x, 1)

described by the model in which instantons and antiinstan- v

tons are coupled in moleculeliKer even more complicated i ) ] ] )

entities[15]. This kind of instanton clustering, indicating on WhereQ is the topological charge density operator defined in

strong correlations between them, was also observed in soni@e previous sectiof.

recent lattice QCD studig4.6]. The functiony(V) is determined by the nonperturbative
Interactions between instantons, if sufficiently strong, leacector of Yang-Mills theory. Calculation ¢f(V) in that re-

to the screening of the topological charge at finite distance§Pect is a matter of modeling of the vacuum structure of

[17,1a’ in ana|ogy with the well-known phenomenon in Yang—MiIIS theory. This in its turn is a ComplicatEd task.

plasma physics. Below we show however, that one can still study qualitative
A quantitative study of the screening phenomenon fromfeatures of the volume dependence of the correlator of the

fundamental principles is a cumbersome task. However, a¥dcuum topological susceptibility for small and for large val-

we mentioned already, both hadron phenomenology and laties of the volumé.Let us first define, following19], what

tice simulations seem to support that picture. Below, in Secone could call a small volume or large volume limit.

| we present some argumerttgher than the ones mentioned ~ There is a dynamically generated mass scale in YM

abovg indicating that the screening of the topological chargetheory Ayy . The reciprocal quantity oA yy sets the char-

should really exist. We showSec. 1) that the three-form acteristic correlation length for the model. Let us denote that

composite field, which is Hodge dual to the Chern-Simondength by {=Agy; . Restricting for simplicity the YM beta

current and is known to propagate the Coulomb type interfunction to the next-to-leading order approximation, the ex-

action, should be relevant for the description of the screeningression for can be written as follows:

phenomenon.
In Sec. Il we present a possible mechanism of the forma- . 102 2
tion of a pseudoscalar glueball. The main ingredients needed {=p " ag)Pr?Poex Boas)’
S

for that mechanism to be realized in a confining theory are
the screening of the topological susceptibility and the pres- _ o 0 2 s
ence of thed angle in the theory. where u is the renormalization scaleys=as(u/Ayy) is

Having this part set, we discuss in Sec. Ill an analogythe scale-dependent strong coupling constant,@nand 3,
between the spectrum of the YM Hamiltonian and that of adre the first two scheme independent coefficients of the beta
closed bosonic membrane with the topology of a sphere. WalInction 8o="1IN/3, 8;=34NZ/3. The expression fof is
use that analogy to calculate the spectrum of glueballs. Ifienormalization group invariant in the corresponding order.
fact, we derive a matching condition between the spectrum Let us now introduce the following two limits. One can
of YM theory in the largeN, limit and the matrix quantum define the value of the volume elementto be small if the
mechanics formulation of the closed bosonic membrangorrelation length? is much larger thav'4, i.e., >V
theory. Then, studying the spectrum of a spherical closef19]. The large volume limit in that case would refer to a
membrane and using the matching condition we calculate theolume element satisfying the conditidgre V.
spectrum of the YM Hamiltonian. That gives the prediction One can show that the two limits defined above corre-
for masses of lightest glueballs. We also show that the scespond respectively to the weak coupling and strong coupling
nario discussed in this work is realized only when the regimes of the theory. In order to see this let us keep the
parameter is a macroscopic number, i.e., a number of ordgiroduct of the renormalization scaleand the value ot/
of the unity or so. More accurate estimates are given in Sedixed, say,Vu*=1. This condition sets the scaje as an
Il C. We briefly discuss how the stror@P violation, being infrared cutoff. Then, the expression for the correlation
present in pure YM theory, might still not be observable inlength takes the form
full QCD with light quarks.

Discussions in the present paper are based on the results z , 2
obtained by Lscher[19,20,21, by Goldstone and Hoppe _:(as)ﬁlﬂﬁ‘oex;( )
(see Ref[22]), and by de Wit, Hoppe, and NicoldR3]. V4 0%s
Where it is possible we present below brief summaries of
those results. Thus, the small volume approximation given by the condi-

tion ¢>VY* corresponds to the weak coupling regime, i.e.,

|. TOPOLOGICAL SUSCEPTIBILITY

In this section we study properties of the correlator of the 2y, correlator(1) is in general a divergent Green's function.

vacuum topological susceptibility. We work in Euclidean these divergences can be removed by means of standard proce-
space-time assuming that the theory is defined in a compagfres which are discussed in the Appendix.

Euclidean four-volum&=13x 7, with | being the linear size 3y vary| keeping 7 fixed. Thus, we actually study the three-
of the volume and- stands for Euclidean time. The correlator yolume dependence of(V).

of the vacuum topological susceptibilig(V) can be written “Since we are interested in the magnitude of this quantity the
as follows: explicit  dependence in this expression is dropped.
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as<1. For instance, if one setg/VY¥4=10>1, the corre- charge equal tg. These probabilities are exponentially sup-

sponding value of the coupling constaig as=0.2. pressed for nonzerg and one expects that the infinite series
Let us now turn to the discussion of the large volumein Eq. (2) converges.
limit defined by the conditior<VY“ This limit is equiva- Substituting Eq(2) into Eq. (1) one derives

lent to the small approximation. However, for small values
of w the running coupling constantg is a big number.
Hence, the large volume limit corresponds to the strong cou- x(V)= v q;w quq(v)- ©)
pling regime of the theory. Regretfully, we can not estimate

(as we did in the case of the small coupling constéwow  In the approximation we set above the following relation is
large the coupling constant should actually be. The approxivalid:

mation which is used definingbreaks down for large values

of the coupling. Though one could present the definitiog of Py(V)=[P1(V)]4,

for any orders of perturbation theofyee, for exampld 24]), i _— .
that definition would contain the exact form of the beta func-WhereP1(V) denotes the one instanton contribution. Substi-

tion B(as) which is known only perturbatively. So, the all {Uting this relation into Eq(3) and performing the summa-
order formula also becomes inappropriate for practical calfion of the infinite series one gets the following expression
culations in the strong coupling approximation. for the topological susceptibility:

Below we show, at least qualitatively, that the topological
susceptibility as a function o¥ has different behavior de- Y(V)= 2Py (V) 1+Py(V) .
pending whether it is calculated in the weak or strong cou- Voo [1-P(W)]®
pling regimes. In the weak coupling phase it is an increasing
function of the argument, and on the contrary, in the strongrhus, the small volume behavior of the functiqifV) is
coupling regime the function decreases with the argumerapproximately defined by E@4). The expression foP(V)
monotonically. can be calculated in the one loop approximation using the

well known results of Ref[26],

+ o

4

A. The weak coupling approximation

2

Let us start with the small volume or weak coupling ap- P1(V)=consi exp( - m) ,
proximation. The non-Abelian gauge theory provides a good s ™
deSCI‘iptiOI’l Of phySiCS in that domain. EXCitationS Wlth a ZerO\Nhere the fo”owing expression for the Strong Coup"ng con-
topological charge do not contribute to the valuexdV)  stant is supposed to be used:
defined in Eq(1). Only nontrivial topological configurations
of gauge fields are to be taken into account. In the weak A
coupling regime the YM vacuum can be approximated by ag(VHPAGy) = — ——— ot
noninteracting, well-separated instantdi&5]. In that ap- Bo IN(V*Agm)
proximation instantons can be treated as pointlike object
The expression for the topological charge density can b
written as follows:

he result forP,(V) is

Bol4

P,(V)=consX X logarithms,

&

Q=2 68 (x=x), . _ _
i where the logarithmic corrections appear in the next-to-

leading approximation. Hence, &—0 the ratioP(V)/V

whereq; denotes the topological charge for a configuration®SO tends to zero. As a consequence, in the small volume

localized at the poink;. Assuming that instantons do not IMit imy_o x(V)—0. Moreover, based on the relations
interact with one another we derive given above one concludes that for small volume elements

the quantityy(V) is a monotonically increasing function of
the argumen¥/. This property should hold as the condition
B ) 5 >V is satisfied.
(0ITQ(X)Q(0)[0)= v ;w q’Pe(V)6Y(x), (2 Suppose now that the quantit§*’# becomes comparable
a in magnitude with{ so that the weak coupling approximation
breaks down. As a result, the pointlike noninteracting instan-
where the index in the definition of the topological charge ton approximation ceases to be valid. Interactions between
was omitted. The quantity, denotes the probability for a instantons start to play a crucial role providing the screening
nonabelian gauge field configuration to have a topologicabf the topological charggl8].

+ oo

5If one approximates\ yy=(100—200) MeV, then the small vol-  ®The partition functionz(#6) in that case can be approximated as
ume limit refers tov4<(1-2) fm. Z(6) == P4 exp(6a).

094015-3



GREGORY GABADADZE PHYSICAL REVIEW D58 094015

Let us assume for a moment that one neglects instantoof freedom. The explicit form of that effective action for
interactions even for large values of the volume and let upure YM theory is not known. In general, the action can be
study what happens in this unrealistic case keeping in mingvritten as
that the interaction effects are going to be included later.

Doing so one is dealing with an ideal gas of instantons _ 4 2
placed in a large volume. The approximate calculation of the Seﬁ_f A™XL(Gn, VGn, ViGn, - ),
partition function with noninteracting instantons in the ther-

modynamic limit yields the following Gaussian distribution WhereGy's stand for glueball fields.
function for Po(V) [27]: Below we study properties of the correlator of the vacuum

topological susceptibility in the effective theory. We denote
this quantity byy.«(V). The correlator in Eq(l) is saturated

1 q? ’ .
P.(V> )~ exp< -——, by the set of intermediate glueball states
V== v 2vd
whered is a not yet defined positive constant. We substitute (0ITQ(x)Q(0)|0)=d &' (x) + ; (0[Q[n)
this expression into Eq3) and perform the summation of
the infinite series in the large volume limit. The final expres- X(n|Q|0)Dg(my|x|), (6)

sion can be found using the following relation:
wherem,, is the mass of thath intermediate physical state

+oo , 1 & , and Dg(m,|x|) stands for the Euclidear-space Feynman
> e = e malb, propagator of a scalar massive particle
q=—o \/B q=—o
m
whereb is an arbitrary positive numb¢28]. As a result one De(my|x|)= T”Kl(mn|x|),
gets 479 X|
lim x(V)=d. (5 Wit K1(m,|x|) being the Bessel function of an imaginary
Ve it argument.

The parameted given in Eq.(6) is a positive number. It

Let us summarize briefly what we learned about the vol-was introduced in the preceding section and in the simplest
ume dependence of the topological susceptibifify/). In ~ case of a dilute instanton gas approximation corresponds to
the zero volume approximation the topological susceptibilitythe value of the topological susceptibility in the large volume
was zero. Increasing the value ¥f so that the weak cou- limit. From the point of view of the effective theory we deal
pling approximation still holds, the functiop(V) increases With, the parameted is a momentum independent subtrac-
monotonically. If one goes further and neglects the interaction coefficient in the dispersion relation fateq written in
tion between instantons even in the large volufsgong Momentum spactin Eq. (6) we implicitly assumed that the
coupling approximation, one finds that the functigrfVy) ~ volume element is sufficiently large so that the YM topologi-
reaches its asymptotic vallielenoted above by(Vs %) cgl susceptibility occurring as the.flrst term on the right-hand
=d. However, as we stressed earlier, interactions betweefide (RHS equals to its asymptotic value _
instantons play a crucial role in the strong coupling approxi- Strictly speaking, there are additional continuum contri-
mation. In the next section we show that the topologicalbutions on the RHS of Eq6). They account for possible
susceptibility becomes a decreasing function of the argumeripany-particle intermediate states. Those contributions are
for large values o/ when the effects of finite distance cor- Studied in the Appendix. We just mention here that the con-

relations between topological charges are taken into accourfifuum contributions do not affect the physical picture we
are going to discuss in this subsection.

One notices that Eq2), which includes only noninteract-
ing instanton effects, reflects the lack of finite distance cor-

Let us consider the large volume or strong coupling limit.relations between topological charge densities, i.e., the RHS
In that limit the theory is in a confining phase. Instantons areof Eq. (2) is zero for any nonzero value &f This would not
interacting strongly. Those interactions become responsiblebe the case if instanton interactions were taken into account.
for formation of spin zero glueball statE®9]. A description We also saw that the insertion of the intermediate glueball
in terms of colored variables is not a good approximationstates into Eq(2) yields the expressioi6) with finite dis-
anymore. The theory, however, can be defined by means aéince correlations occurring on its RHS. Thus, one argues
the low-energy effective action containing colorless degrees

B. The strong coupling approximation

There is another subtraction term in E6). It is proportional to
"These properties were originally studied in R@9] considering  the second derivative of the Dirac delta function. This term, being

YM theory on a four-spher&®. integrated in Eq(1) gives a vanishing contribution and does not
81t is not even clear whether it makes sense to talk about a conappear in the definition of(V). A detailed discussion is given in
figuration with a definite topological charge in this c438]. the Appendix.
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that the strong correlations between instantons, which ar&€hus, we see that the topological susceptibility gets addi-

responsible for finite distance effects, are phenomenologitonal positive subtraction terms in the effective thédrghe

cally included in Eq.(6) as the intermediate glueball states sum on the RHB

are taken into account. The argument above becomes more Finally, using Eq.(8) and the monotonicity of the func-

sensible if one recalls that interactions between instantongon G, (V) one concludes that the topological susceptibility

are responsible for the formation of those intermediate gluegecreases from its value defined at relatively small volumes

balls[29]. _ _ o to its value reached in the large volume limit. Physically this
Let us now define the matrix elements occurring in EQ.can he thought of as following. Suppose we set a sequence of

(6). The operator of the topological charge densityis an g pyolumes enclosing some topological charge distribution

antihermitian operator in Euclidean space. Taking this intq/l<V2<V3<‘__<oc The result of our discussion is that

account one introduces the following parametrization for the
matrix elements: 9P Xert(V)>Xer(V2)>Xer(Va) >+ Xett(>). Thus, for smaller vol-

umes one gets larger values of the topological susceptibility.

_ One should remember, however, that this picture emerges in
(0|Q[ny=—if,mi, (0|QIn)(n|Q|0)=—fimy, the confining phase of the theory, i.e., wheg>¢* and

effective degrees of freedom are colorless excitations. The

wheref, can be thought of as a decay constant of the correpierpretation in terms of colored gluons does not make sense

spondingnth glueball stat€in analogy with the pion decay jn that region because of the lack of asymptaticand out
constantf ;). If one substitutes these definitions back into gi4ta5 for those excitations.

Eq. (6) the following expression emerges: Recalling that the behavior of the functigh(V) is gov-
erned by exponents of the tyg& ™R, one concludes that
mp, the effective size at whichye#(V) gets substantially sup-
(0]TQ(X)Q(0)|0)=d & (x)— ; fﬁmﬁFKl(mnWD- pressed is defined by the Compton wavelength of the lightest
™I 0~ glueball statdE | d ith lattice cal
@ glueball statdEq. (8)]. In accordance with lattice cal-
culations the lightest pseudoscalar glueball of pure YM

Having this relation established let us study what happentheory is expected to have mass approximately equal to 2.3
with the correlator of the topological susceptibilfizq. (1)].  GeV [6]. Thus, the effective suppression length scald is
Substituting Eq(7) into Eq. (1) we find = 1/mGOzO.09 fm.
We complete this subsection by listing the main qualita-
> 5 tive conclusions of the discussion presented above.
Xeﬁ(V):d_zn: Famagn(V), 8 (i) In the domain of asymptotic freedom, where YM
theory is defined most accurately, the topological suscepti-
where bility is an increasing function of the argument.
(i) In contrast, in the phase where composite, colorless
excitations are formed the topological susceptibility de-
gn(V)Emﬁf De(my|x|)d*x. creases monotonically.
v (iii) The suppression length of the topological susceptibil-
ity is defined by the inverse mass of the lightest'Oglueball
The functiong,(V) determines the volume dependence of
the topological susceptibility for large values df. This
function has a simple behavidt The straightforward calcu-

11 . .
lation yields In general, the quantity on the RHS of E@®) is a nonzero

number. However, it was argued in R¢L7] that the topological
susceptibility might completely be screened in the infinite volume
Gn(0)=0, Gy(»)=1. limit if instanton interactions are sufficiently strong, i.6()
would equal to zero in that case. This condition would yield a
In general,G,(V) is a monotonically increasing function of relation between the quantityand parameters of glueballs. Impos-
the argument. Its value increases rapidly from zeryat0  ing the condition xe(>)=0 [17] one derivesd=ZS,f2m2. This
to almost its asymptotic value at some finile Then, in- relation is the analog of the Witten-Veneziano formi28,31] for

creasing very slowly, the function approaches the unity ashe 7' meson massif one considers full QCD and combines the
V— oo, Relying on these properties one derives relation derived above with the Witten-Veneziano formula one nec-

essarily needs to take into account the fact that the valud of
depends on whether it is caICL;Iatzed in pure YM theory or in full
. _ 2 2 QCD). Thus, the relatioml=X,f m;, is a phenomenological crite-
J'an Xer(V)=d— ; famy. ©) rion of the validity of the proposal of Reff17]. That relation can be
tested in lattice QCD studies by measurithgn noninteracting in-
stanton gas picture of pure YM theory and also by studying masses
and decay constants of the whole tower of pseudoscalar glueball
0For a spherically symmetric volume element with the radtus  states. For the mass and decay constant of the lightest glueball QCD
one can calculate that,(V)= 1fmﬁR2K2(mnR)/2. sum rule results can also be udé,33.
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state and equals approximately 0.09 fm. This length is less Let us start with the action for Yang-Mills theory with the
than the effective radius of the 0 glueball itself(approxi-  CP violating 6 term. In this section we work in Minkowski
mately 0.7-1.0 fn{29,34). space-time.
An underlying nonperturbative mechanism which is re- We decompose the actidinto the usualCP evenS(™),
sponsible for the formation of the 0 glueball state, most andCP odd S, parts.S=S)+S), where
likely, should also be responsible for the suppression of the
topological susceptibility and vice versa. However, the dy- (+) 4 a ~a
namical reason underlying these properties is not captured by S= f d*x| - FGWGW
the qualitative discussion of this section. The question why 9
can this happen will be addressed below. 1
Let us notice that the properties listed above are in anal- S )= GJ d"'x(— Ge &2 ) . (10)
ogy with what happens in the (21)-dimensional Polyakov w2 HYORY
[35] model. In the case of the Polyakov model those features
can be derived in a rather model-independent }&836]. The total energy density of this systefhis the sum of the
energy densities of th€ P even part€(*) andCP odd part
£ e, =M+,
Il. THE 6 ANGLE AND FORMATION OF GLUEBALLS Let us consider the€€P even part of the action. As we
mentioned above, nonperturbative contributions yield a
egative vacuum energy densfi35]. The total energy den-

In this section we study how glueballs can be formed in
the vacuum of YM theory. In order to address this questiorﬂ : .
let us first recall how quark containing hadrons are formed irsity Of theCP evci? partis a sum of the negative ground state
QCD[37,38. It was found in Ref[25] that nonperturbative €Nergy density(s) and the energy density of perturbations
fluctuations lower the value of the vacuum energy density ir@bout that ground Sta%;r)t
VacuL was zero. then instantons ower i yielding A nega. ECI=E+ Epih. 1y

) yielding a nega vac pert

tive value[25]. When colored quarks are submerged in that‘?
vacuum the QCD ground state responds to the insertion Q " 01 -
the quarks by suppressing the instanton density in a smali€ ~Put Zgéer)tzo' ;I'hezn, £ =£20=3(0/64,)0)
domain around the quark37]. In other words, quarks, being = (B(a5)/4a5)(0[(1/327%) G |0)~ — (0.250 GeVf ~ [41].
submerged in the YM vacuum, yield a positive energy denHere, ®") stands for the anomalous trace of the energy-
sity which in the domain around the quarks partially com-momentum tensor corresponding 8*) and perturbative
pensates the existed negative ground state energy densig@ntributions to the gluon condensate are subtracted.
The size of that domain is determined by the dynamics of L&t us now address the question what is the contribution
nonperturbative QCIP37]. Hence, if one takes the value of of theCP odd part of the action to the total energy density of
the vacuum energy density inside the quark containing dothe whole system given in E¢L0). It is convenient to intro-
main and subtracts the value of the vacuum energy densitjfuce a new variable by rewriting the expression for the to-
outside the domain one would be left with a positive energypological charge density Q in terms of a four-form field
density excess in the interior of the domain. Furab

Having a positive energy excess inside of some region
means that there should be an inward pressure acting on each O=—¢
small volume element of that domain. In other words, the 41" wvab
outside region with the negative energy density produces a i , i
pressure on the quark containing domain tending to squeez¥here the four-form field="*# is the field strength for the
its volume down to zero. The quark confinement emerges ifree-form potentiaC,, .,
this picture as an effect of the complicated structure of the
QCD ground state. This serves as a derivation of the bag

model for hadrong39,4Q from fundamental principles of thg C,.. field itself is defined as a composite operator of
nonperturbative QCID37]. colored gluon fieldsA2
In this section we show that the same phenomenon might "

occur in pure YM theory. The crucial difference from the

uppose we start with no perturbations being excited,

F,uva,B,

Fl’vvaﬁ: o7lucmﬁ— &,,CIWIB— &OICWLB— L?BCVC”L .

previous case is the existence of a purely gluonic domain Cura= Z(AZZ,Az—AEﬁMAz—AiZAZ
with a positive energy density excess. That positive energy 16w

density can be provided by theterm. We show below that Lo a pbAC)

the positive energy density in the interior of the domain is abcAuAAL),

proportional to the value of?> multiplied by the value of the

topological susceptibility. Since the topological susceptibil-

ity is screened outside of some region, this naturally yields a 2Though in Minkowski space-tim@ does not have the meaning
compact region of space with a positive vacuum energy derof the topological charge density and, moreover, differs from Eu-
sity excess inside. We show that this domain can hadronizelidean definition of the topological charge hywe formally keep
forming a YM glueball state. that name and letter for simplicity.
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with f,,. being structure constants of the correspondingexpression in Eq(12) is zero for any smooth closed surface
SU(N.) gauge group. The right-left derivative in this expres-which does not enclose any field singularities.

sion acts andB=A(dB)— (dA)B.

It was noticed some time agi®0] that theC,,,; field

The topological charge density can also be expresseBropagates in the bulk of the domait if the topological

through the Chern-Simons currekt, asQ=4,K, . Using

susceptibility is nonzero in that domain. This becomes more

this expression one can deduce the relation between tHvident if one recalls the notion of the Kogut-SusskiKe)

Chern-Simons current and the three-form poten@g)g,
these two quantities are Hodge dual to each otKér
=(1/3!)s“”“ﬁcmﬁ.

pole[42] in the correlator of two Chern-Simons currents. We
briefly present those arguments.
Consider the correlator of the vacuum topological suscep-

Let us rewrite theCP odd part of the action in terms of tibility at a nonzero momentum. The topological charge den-

the three-form potentiaC, ;. For the further convenience

sity Q is the derivative of the Chern-Simons curre@t

the integration over space-time will be restricted to a finite,= K - One can substitute this definition back into the ex-

not yet specified domain denoted 3y

(%
S(*):gj Qd4X=——
M 4! Jm

z—af F,
M

F vapdx*Odx’Odx*Odx?

where the following differential four-form was introduced:

|~

F=—F apdx*Odx’Odx*Odx?.

N

In terms of differential forms and an exterior derivativ¢he
equations above formally simplifi? Indeed,F=dC, where
C=(1/3!)C,,zdx"0dx*0dx? and the expression fos~)
reads as

s<*>=—0f Fz—af C
M oM

9
= v a B
3 LMcmﬁdx OdxeOdxe. (12)

In the last equation we used the Stokes theorem assumiﬁ’é’1

that the boundaryM enclosing the domaimM is an orient-
able smooth surface. Speaking in terms of@hg field, the

nonzero value of thed angle corresponds in Minkowski

space to the nonzero coupling of g, ; field to the bound-

ary manifolddM. That coupling is gauge invariant, although
theC, 4 field itself is not a gauge invariant quantity. Indeed,

if the gauge transformation parameter is denoted Bythen
the three-form field transforms a€,,,—C, .5+, A g
— oA, 5= dgA o, Where A,z xASd5A%— A%, A% How-

pression for the correlator of the topological susceptibility. In
that way one discovers thatis defined as the zero momen-
tum limit of the correlator of two Chern-Simons currents
multiplied by two moment4

x=i lim g*q” | €90|TK,(X)K,(0)|0)d*x. (13)
q~>0

The only way for this expression to be nonzero is to claim
that the correlator of two Chern-Simons currents develops a
pole as the momentum goes to zero. This is called the Kogut-
Susskind pold42].

Knowing that the correlator of two Chern-Simons cur-
rents has a pole, one can use the relation between the Chern-
Simons current and the three-fol@y,. 4 field and conclude
that theC, .4 field also has a nonzero Coulomb propagator
[20]. Thus, theC,,; field behaves as a massless collective
excitation transferring a long-range interacti@o].

Let us summarize briefly the results of the discussion
given above. Following Ref[20] we established that the
three-form fieldC,,; propagates in the bulk transferring a
long-range Coulomb interaction. The exact propagator of
this field is of the Coulomb type and is proportional to the
lue of the vacuum topological susceptibility.

We also saw that th€ P odd term in the action of Yang-
Mills theory can be expressed as a coupling of the three-form
composite fieldC,,; to the boundary manifold. Hence, the
three-form fieldC, .,z being a free field in the bulk actually
does couple to the boundary surface.

All the properties mentioned above can be summarized in
the following effective action for th€,,; field:

ever, it is easy to check that the expression for the field **The multiplier —i appears in the definition of the topological
strengthF ,,,.5 is gauge invariant. Since the coupling of the susceptibility in Minkowski space-time. There are some delicate
three-form field to the boundary can be expressed in terms d§sues regarding the definition of the correlator of the vacuum to-
the F;Lvaﬁ field [as in Eq.(12)], then that coupling is also pologlca_ll_ suscept_lblllty: If one defineg as a second derivative of
gauge invariant and can lead to some physically observabl@e partition function with respect to tigeangle, then some contact

results. The same conclusion could be drawn without refer!
ring to the field strength. The gauge variation of the las

13we apologize for using the same lettefor an exterior deriva-
tive utilized in this section and the quantity which has to do with
the instanton charge density, defined in the previous section.

erm appears in that expressi¢80]. Likewise, a special care is

tneeded while treating the covariahtproduct in Eqs(1) and (13)

when this last is taken to be the definitionyof43]. One should add
a contact terrr(given in the Appendix of Ref.30]) to the RHS of
Eq. (1) in order to definey as a second derivative of the vacuum
energy with respect to thé angle[30,43 [this contact term can
effectively be included in Eq(6) by redefining the value of the
positive constantl].
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1 ) The integration constafi, if nonzero, induces an additional
ge?:_mf F,uvaﬁd4X CP violation beyond the existed angle [45]. Since we
XYM IM would like to avoid to have an extr@P violating term we
seth=0. Simplifying the previous equation one finds that the
30 LMCdeXVDdx“Ddxﬁ. (14 classical solution is a nonzero constant tensor density inside
of the domainM

The first term in this expression yields the correct Coulomb Fuvap=—OX(V )€ pvap (15

propagator for the three-for@,,.; field. The second term is ] )

just the usualCP odd 6 term of the initial YM action.v,,  andis zeroF ,,;=0, outside ofM. _

denotes the three-volume of the domai. As a next step let us compute the vacuum energy associ-
Our next step is to study the effective action giteim ated with the solution given in Eq15). The density of the

Eq. (14). In particular, we will calculate the ground state €nergy-momentum tensor for theéP odd sector of the

energy of the system using the effective actiad). Before  theory can be written as

we turn to that calculation let us mention that Maxwell’'s

equations for a free four-form potentigl,, .z yield only a (=)= _ ; E

constant solution in (3 1)-dimensional space-timg44]. - 3x (Va0

The reason is the following. A four-form potential has only . . .

one independent degree of freedom in four-dimensionat/Sing the expres(s_lc))nlS) one calculates the corresponding

space-time, let us call &. Then, the four Maxwell's equa- €N€rgy density &

tions written in terms of the&, field ensure that this field is 1

independent of all four space-time coordinates. Hence, the ET=20%(V ).

solution can only be a space-time constant. ThusFthg, 5 2

field propagates no dynamical degrees of freed®idow- . , .
ever, this field can be responsible for the existence of a posiS‘InCe theF,,.0 field does not propagate dynamical degrees

: P of freedom the expression above is the total energy density
tive vacuum energy density in different models of quantum . ) . .

field theory (see Ref[45]). Thus, studying classical equa- of the system given by the acup(r;4). Thg .cru0|al thmg
tions of motion for theF,,,; field one can determine the abogt this e“‘;’rgy d¢n§|ty is that it is a positive quanuty pro-
value of the ground state energy given by configurations OPomonaI to 9° multiplied by the value of the topological

. L . .~ ~susceptibility®
F . We are going to solve explicitly classical equations . . . .
mvaB m
of motion for the effective action{14). Then, the energy We learned in the preceding section that the magnitude of

density associated with those solutions will be calculated. ;Z%Jgﬁj?llzgIiia\lfvfltjcshcipit;blcl:gxllclig?ee;dgngnalt;? \rﬁcl)l;? ir%f :)hf
Let us start with the equations of motion. Taking the ' ’ P

variation of the actiori14) with respect to the€,,,; field one tantly, Itis screened_ by nonperturbative effects of YM theory
gets outside of some finite subvolume element. So far we treated

the domainM as some arbitrary volume. Let us now sup-
pose thatM is the subvolumae outside of which the topologi-
“ _ Y cal susceptibility is screendd Thus, the topological suscep-
I"F pvep(2) QX(VM)LMg (z=x)dx, Hdx, Hdxg. tibility is given by the quantityd inside of the volumeM
and by the difference—=,f2m? outside of the volume. As

It has been shown in Ref44] that this kind of equations can

be solved exactly in four-dimensional space-time. The solu-

tion is the sum of a particular solution of the inhomogeneous 1’0One can use eithef= %1(% or £= 0.

equation and a general solution of the homogeneous equatiortone might wonder whether the same result is obtained if one
treatsd not as a constant multiplyin@ in the Lagrangian, but as

pnafBT

1
afBr__ — 2
FV 8 g,u.VFpa,BT .

the phase that the states acquire under a topologically nontrivial

Frvap(2)= GX(VM)f 8(z—x)dx, Odx,0dx,0dxg gauge transformations. These two ways of presentingttiepen-
M dence are equivalent. Thus, results of our discussion should be

+he equivalent in both cases. The key observation is that i$ not
prap: entering the Lagrangian, the arbitrary integration constant in Eq.

(15) has to be nonzero. It should be chosen in a way that would
guarantee a propef dependence of the VEV of the topological
150ne should notice that the acti¢h4) is not an effective action charge density. That would leave the results of our discussion with-
in the Wilsonian sense. It is rather related to the generating funceut modifications.
tional of one-particle-irreducible diagrams of the composite field. °n this discussion we assume that the domain has a more or less
The effective action in Eq(14) is not to be quantized and loop definite boundary, or in other words, that there is a narrow interval
diagrams of that action are not to be taken into account in calculatwhere the topological susceptibility drops in magnitude from the
ing higher order Green’s functions. The analogous effective actiovalued to d—Enfﬁmﬁ. That assumption does not seem to be far
for the CP even part of the theory was constructed in Rgf8, 47]. from the reality if one recalls the behavior of the functigg(V)
6The exception is when that field couples to other fields. (see Sec.)l
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we mentioned above, the differende =,f2m? turns to zero  tations could stabilize the system. The energy of those exci-
if interactions between instantons are sufficiently strfij.  tations, identified in Eq(11) asé g;{ provides an additional
However, this is not guaranteed in general. Trying to deatontribution to the total energy. Anticipating the results of
with the most general case, we assume here fthat the next section we present the expression for the total en-
—3>.f2m? is some number not necessarily equal to zeroergy inside of the domain
Clearly, our result presented below will also be applicable to

the case when the topological susceptibility is zero outside of

22 . 1, (positive numbey
the volumeM andd=X,f;m; . In accordance with our pre- AEtotaIZE O°AxV p+ 7 ' 17)
vious calculations, the vacuum energy density inside of the Vi

domain M is Epnsige=E'2)+36%d. Let us now turn to the

vacuum energy density outside of the volumé. As we  where the first term is related to tki® odd part of the initial
assumed, the topological susceptibility is not necessariliction and the second one is the contribution of perturbations
zero outside of\1. Hence, the three-form field can propagateof the CP even part.

in that region too ané .57 0 outside ofM in the general The structure of this equation allows one to minimize the
case. As a result, there exists some nonzero vacuum energyiantity A E,o(V ) With respect to/ ,, and find an optimal
density outside of\1. In analogy with the previous case one yalue of the three-volume occupied by the system. We treat
derives the following expression for the vacuum energy denthis physical system as a model for a pure YM glueball state.
sity Eousige= € (ad + 3 67(d— =, f2mZ). This value is less than The spectrum and some properties of that system are studied
the energy density inside of the volumd. Thus, there is a below.

positive energy density excess inside/of. The expression

for the corresponding energy excess in the subvolume takes
the form Il. YANG-MILLS VS CLOSED MEMBRANE SPECTRUM

It was shown in the previous section that the screened
topological susceptibility leads to a positive energy density
excess inside of some finite volume. The system tends to
minimize that volume. The compression of the volume con-
Here A Y= Xinside— XoutsideZEnfﬁmﬁ is the difference be- tinues until some YM states are exited inside of that domain.

tween the topological susceptibility defined inside and out-/"0S€ States have nonzero energy, @tym)#0, where
side of the subvolume. As we mentioned, Efif) is also  /tvm iS the Hamiltonian density of YM theorithe CP even
valid in the particular case when the topological susceptibilPar)- We mentioned already that the phenomenon described
ity equals to zero outside of the volumet. In that case above is related to the fact thagtis screened. On the other

Ax=2nfﬁmﬁ=d and the energy difference in E(L6) co- hand, we saw that the effects responsible for the screening of

incides with the energy of th€P odd part inside of the the topological charge should also be responsible for the for-
volume M mation of the 0 * glueball state. Hence, it is reasonable to

There are two basic questions to be elucidated here. Fir%.j_eft'f?’ tT)OTIe finite volume YM excitations with physical
of all why would any distinguished subvolume exist in the ~ ghl_Je all states. & th  the phvsical YM
YM vacuum? The reason, as we already mentioned above, js " (IS section we study the spectrum of the physica

the screening of the topological susceptibility. This naturaIIyHIamgton'c?rl‘) 'T a f|nr|1te volume. Ur}d\((elz/lszme approxwgialtlonhs,
provides finite domains in the YM vacuum with the positive €lucidated below, the spectrum o theory resembles that

vacuum energy excess in accordance with @6). of a closed bosonic membrane with the topology of a sphere

The second question is what happens with this finite vol 2" ©0Tus[22,23. One can use that analogy to derive the re-

ume if it is allowed to flow freely to a stationary state. The Ialtlondbt()atwee_n the st[))ectrura Qf lel thetl)ry and éhat |°f|a
system will tend to minimize the energy given in Hag). C/oSed bosonic membrane. Using that relation and calculat-

The expansion is not an energetically allowed process. A9 thed§pectrum f?r a clolge;]j sphencag bos?nlc;merlnbrsnﬁa
alternative possibility for the system is to squeeze its volumd'€ Predict masses for two lightest pseudoscalar YM glueba

down as much as it is possibie. In that case the RHS of Eqaes:

(16) would be decreasing. In other words, there should be an

inward pressure acting on the system and tending to squeeze A. Studying the spectrum of Yang-Mills theory
its volume down. That pressure is due to the positive differ- . : . .
ence between the energy densities in the interior and exterigr -6t US start with the physical Hamiltonian density of YM

of the domain. Hence, one concludes that the system wifneory. In ordgr to stress the approximatio_ns we ma_lke we
tend to minimize its energy by squeezing its volume down present the brief discussion of the Hamiltonian formalism of
or decreasing/ ,, in Eq. (16) the theory(for detailed discussions see Rdi48,49,5Q).

At first glance such a system is unstable and should col- ON€ starts with the Lagrangian density of pure YM theory

lapse to a point. However, that would be a wrong conclusion Minkowski space-time

The point is that we did not yet take into account perturba- 1
tions of YM fields which should get excited inside Wfy, L=— G2 G2 .
while the system is shrinking its volume down. Those exci-

1
AE=§62AXVM. (16)
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The canonically conjugate momentum is defined as the deway to follow, however. One can solve only some part of the
rivative of the Lagrangian density with respect to the timeconstraint equations keeping the rest of the constraints un-

derivative of the canonical coordinate and is given by solved and allowing some of nonphysical variables to be
present in the Hamiltonian. Then, the physical system is de-
a 1 . fined by that Hamiltonian accompanied by unsolved con-
Pi=— EGOi - straint equations imposed on the physical states of the Fock
space. For our purposes we found it convenient to follow that
The Hamiltonian density takes the form way. Using the conditionsb{=0, ®5=0, and®3=0 the
Hamiltonian density can be rewritten as
2
g 1 o
H0=7P?P?+ FG;”}G;”}JrAS(DiPi)a, i,j=1,2,3. 92 L1
9 HYM:7Pum+4_92GmnGmn
This is not the physical Hamiltonian density yet. There are
extra degrees of freedom in this expression. The existence of an, 1 a2
those extra variables is related to the gauge invariance of the + 2—92(03A0) + 2_92(073Am) , (18)

theory.
The Lagrangian density does not contain time derivatives . . .

of the A, field. As a result, the following primary constraint whgre m,n;l,z anad the expression conta|n§ thae physical

appearP2=0. vanable;Am a_md Em a_llong with th(a;1 nonphysmad.\O. The_
Introduce[48] the so called “total’” HamiltonianH-(t) constraint which is still left related to the physical vari-

= [d3x(Ho+\?PJ), wheren?(x) denotes a Lagrange mul- ables

tiplier. Time evolution of a physical quantity is given by the

Poisson brackets dfly and the quantity itself. Thus, one

needs to set conventions for the Poisson brackets. For a

two (bosoni¢ functionals A and B we use the following

93A3+g2(D pPr)3=0. (19

n
Tyhus, the system is defined by the Hamiltonian dendig)
and the constraint19).

expression: ) )
Let us now turn to the discussion of the spectrum of the
SA B SB  SA system(18),(19) which is placed in a finite three-volume
{A.B}Ef dsZ( 3q(2) op(2) _ 5a(2) opD))’ denoted by ,,. Calculating the spectrum we are going to

keep only “slow” modes, i.e., the modes with zero momenta

whereq and p denote canonical coordinates and momentd?Ut @ nonzero energy. All the “fast” modes with nonzero
respectively. Using this definition one finds that the conserMomenta can be thought of as being integrated out. The net

vation of the primary constraiftP3(x,t),H(t)} =0, leads result of the corrections due to the fast modes is just a per-
one to the secondary constraint in the form of the Gauss'{Urbative spliting of the energy levels determined by the

0 . . .
law D&’PP=0. One can also check that the conservation oflow mode® (for a detailed discussion see Rd®1)).

the Gauss’s law is identically satisfied and no further con-’A‘d(.)pt'r.]g th.at approximation one can dro_p a[l the spatial
. ; derivatives in the expression for the Hamiltonian and con-
straints are produced at this stage.

: . . L straint equation assuming that all the canonical variables de-
We are going to work in the axial gaugé= 0. Requiring pend on the time variable only
: A .
the conservation of the gauge conditigAs(x,t),H(t)} Let us turn to the Hamiltonian instead of the Hamiltonian

=0, one derives the additional secondary COHSUQ'%WS density. Dropping all the spatial derivatives one writes down
— 33A%=0. Finally, the conservation of that constraint leads

to the equation for determination of the Lagrange multiplier 2
a a abcpb c gvMaa vV abcab pCy2
daN(X) + d39;A7(X) — T2 ApdsAg=0. Thus, the whole sys- Hym= 5 PmPmt — (FP°ARAD
tem of gauge conditions and constraints can be summarized 49
as
It is convenient to perform the following rescaling of the
®3=P3, ®3=D2"PP, canonical variables
DE=A3,  Pi=g°Pi-3dsAf. 23
Am—> V_1/3Am and Pm—> —2/3\/2/3Pm-
The physical Hamiltonian in the axial gauge can be written M 97 Vom

in terms of the following physical variableB3, and A%,
wherem=1,2[50]. In general, the straightforward procedure
implies the elimination of all nonphysical variables by solv- 20rhe crycial point in this discussion is that the spectrum is cal-

ing (wherever it is possibleconstraint equations and substi- culated in a small volume limit. As we mentioned in Sec. I, this
tuting those expressions back into the formula for the Hamil-corresponds to the weak coupling approximation. As a result, cor-

tonian. In most cases the result is a complicated nonlocakctions due to the fast modes are of ord&f/4m= (as/16m2)13
expression for the Hamiltonian. There is a formally simpler[21] and can be neglected in the leading approximation.
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The new, rescaled variables are dimensionless. In terms afetails we refer to the original papdi22,23.
these variables the expression for the Hamiltonian takes the The membrane action in flat Minkowski space-time can
form be written as

2/3
g1 1 - 354[deta|
HYM:V_]_/\//lg E P?nP?n+ Z(fabcAﬁqAﬁ)z (20) S Tf d*o |detg|l|, (22
whereT is the membrane tension, the constant with the di-
mensionality of mass cubed;,,0,,0, are the coordinates
fabcAg]Pﬁ]zol m=1,2. (21) on the membrane world volumg;; denote the components

of the induced metric in the membrane world volume

and the constraint equation is given as follows:

This is the system which defines the spectflrithe first

thing to notice is that the potential in E0) has flat direc- _IXH(a) X, (o)
tions. Thus, one would expect a continuous spectrum without 9ij(0)= P Jo]

a mass gap. However, it was proved in Réfl] (see also

Ref. [21]) that in the quantum theory, contrary to the naivewhereX,, , ©=0,1,2,3, are the space-time coordinates.

: (23

classical expectation, the operator defined in E2§) has The membrane action is reparametrization invariant.
only discrete positive eigenvalues. As a result, the followingThus, in accordance with the Noether second theorem not all
expression for the spectrum emerges: of the variables in the action are independém in gauge
theories. One should carry out the gauge fixing procedure. It
9?®x (positive number is convenient to introduce the light-cone coordinates

Eé_gr)tE < H YM> = 5E)Zr)tVM = V]_/3
M 1
Thi . o X*=—(X3£X9),
is expression was used earlier in Efj7). The exact cal- V3
culation of the positive numbers occurring in the expression
above is a complicated problem of YM theory. However, asand choose the light-cone gauge
it will be shown below, one can use some analogies and
calculate the spectrum explicitly. We turn now to that dis- X*(o)=X*(0)+0y.
cussion.
The light-cone gauge does not completely fix the gauge free-
dom of the membrane actidh.As a result, there still is a
) o residual local invariance left. Hence, one should expect to
It was shown some time ad@2,23 that the Hamiltonian  haye the Hamiltonian of the theory accompanied by a con-
of a closed bosonic membrane in the light-cone gauge can hgraint equation. The detailed discussion and the construction
reduced to the form given in E¢20). of the Hamiltonian is given in Ref§22, 23. We present the
The variables substituting the gauge fields in that casgna| result here. The expressions for the mass squared op-

occur as coefficients of the harmonic expansion of the spatigd;ator and the constraint can be written as follows:
coordinates on the membrane world surface. The two Hamil-

tonians, one for the membrane and the other one given in Eq. M?2 A T2 boub wo. 2

(20) formally look similar. > =|3 PmPmt Z(Qa KmXn) |, (29)
The YM theory constrainf21) also has an analogue in the

case of the closed membrane theory. The constraint in that

case is related to the residual reparametrization invariance of

the membrane action which is still left in the light-cone The canonical coordinates and momenta are the functions of

gauge. . . : o .
Below we discuss briefly the membrane action and thé[he time variable only. The coordinatX§, in this expression

way it reduces to the form given in E(0). Then we deduce are the coefficients of the harmonic expansion of the space-

the matching condition relating the spectrum of the closec}'me coorgjmate@(m on the surface of the membrane. For
bosonic membrane to the spectrum of YM theory. Theexample, i _the memb_rane has_ the topology_of_asphere, then
matching condition allows one to obtain the spectrum of YMthe harmonic expansion mentioned above is just the expan-

theory by calculating the spectrum of the closed bosoni ion of the space-time coordinates in the basis of spherical

B. The membrane matrix model

g*PXEPE=0 m=12.

membrane. unctions
We present below only the basic features of the mem- o
brane Hamiltonian construction in the light-cone gauge. For X ()= 2 X3Ya(oy,0), a=12.. .,
a=1
2The operator in Eq(20) acts on functionals of the canonical
variable while the momentum operator is defined Bg, 2’As opposed to the case of a string action where in the light-cone
=—i(5/6A™). gauge no freedom is lef62].
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whereY?(o)’s are the harmonic functions on the sphere. In the next subsection we c:alculamf1 for a closed mem-

If the membrane has the topology of a sphere or torus theérane with the topology of a sphere and using the matching
harmonic functionsy?®(o) form a representation of the Lie condition (26) deduce the energy levels for the YM theory
algebra of the S(¥) gauge grouf’[22,23. Thus, the Sl¢») excitations identifying them with the pseudoscalar glueballs.
gauge group appears due to the reparametrization invariance
of the membrane actioff. C. Calculating the membrane spectrum

The expressiof24) resembles the Hamiltonian of the YM
system in the approximation given in ER0) and in the
N.—oe limit. The constraint equations in the two cases ar

We start with a closed spherical membrane. The space-
etime coordinates on the membrane world surface are given as

also similar. _ . . .
X, =[t, r(t)sind cosp, r(t)sind sing, r(t)cos],
In order to make use of this analogy let us perform the w=l ® Sp. 1(t) e, (1) I
following rescaling of the canonical variabfés O<6<m O=<e<2m,
P—TYP and X—T ¥3X. wherer (t) is the time-dependent radius of the membrane.

The induced metric on the membrane worldvolume has
The new canonical variables are dimensionless. The exprethe following nonzero components:
sion for the mass squared operator in terms of those variables

takes the form Gu=1-Tr2(1), Gpo=—T41), gyp=—Tr2(t)sir?o.
M2 1 1 The action functional for the membrane takes the form
— =TS PRPR+ Z(0%0X0?. (29

S= —TJ’ dtdeder?(t)sindyV1—r(t).
Thus, one concludes that the spectrum of a closed bosonic
spherical membrane is determined by the same differentiafhus, the Lagrangian can be written as follows:

operator as the one for YM theory in the lartle limit.%® _
Matching this expression with ER0) one finds the relation L(t)=—4aTr3(t)y1-r?(t).
between the spectrum of YM theory in a finite volume and _ . _
the spectrum of the closed bosonic membrane Calculating the canonically conjugate momentum
TYE JL(t) rA(r(t)
ym_97" Mn 26 P=——=4xT —.
n , _
V%B 2T2/3 ar 1-r=(t)

whereM,’s are the mass eigenvalues defined by the operato(?ne derives the Hamiltonian for the spherical membfane

given in Eq.(25. The complimentary constraint equations H= P2+ 1672T2r%

acting on the physical states ensure that the physical eigen- '

functionals of the Hamiltonians in both Eq&0) and (25  As we mentioned above we are looking for the mass squared
are the functionals of “colorless{gauge invariantvariables  gperator for the membrarisee Eq(25)]. Thus, we need to

only. Indeed, in both cases the constraint equatithe  solve the following Schidinger equation
Gauss'’s law and its membrane counterpserve as the gen-

erators of the “gauge” transformations of the initial system. 2
Since those generators are supposed to annihilate any physi- Maw(r)=| — — +16m°T?r*
cal state(imposed as the Gauss’s law annihilating a gtate dr

g1n(etn all the physical eigenfunctionals should be gauge invariz . the boundary condition® (=) =0 andW(0)=0.

It is useful to turn to the dimensionless variabkldefined
as

W(r),

2The SUw) group (and its Lie algebrashould be understood as z=r(16m?T%)Y%,
a limit of the SUN) group atN—co. o ]

24The supersymmetric version of the membrane matrix model idn terms ofz the Schradinger equation takes the form
used for the formulation of the M theory in the infinite momentum
frame[53]. M2 2 4

25%0ne can check that the rescaling procedures we perform lead to Tt @=| TS+ V(). (27)

. . ; : . ) (167°T?) dz
dimensionless canonical coordinates and momenta which satisfy the
commutation relation with the unity on its RHS.

2%In both cases these differential operators act on the functionals
of the canonical coordinates. Those functionals are annihilated by ?>’The Hamiltonian looks similar to the one for a relativistic par-
the constraint equations. The boundary conditions will be fixed lateticle with the time-dependent masxt)=4=Tr?(t) and describes
during the actual calculations. the pulsation of the spherical membrane.
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The Schrdinger equation with the quartic potential has been . 4 u2
extensively studied in the literaturdor a review see Ref. AE(V,)=m,~— —. (33
[54]). The results of numerical calculations of the first ten 3 Vrlf3

eigenvalues can be found in RE84]. Those calculations are

usually done for the potential defined on the wholexis. In ~ Here, we denote byn, the mass of the correspondimgh

our casez is defined on the positive semiaxis only. Thus, glueball and by, the corresponding optimal value of the
only the odd parity solutions are relevant for the presenwvolume element. Thus, knowing the value of the strong cou-
case. Those solutions have nodeszatO and satisfy the pling constant at the scale appropriate for the lightest glue-

boundary condition&'(0)=0 andW¥(«)=0. balls (which is about 1.5-2.5 GegVand also knowing the
Here, we present only the first two parity odd eigenvaluesvalue of the effective size of the YM Q" glueball state one
of Eq. (27) can predict the value of its mass by means of &§).
We present below the results of calculations for three dif-

M(Z) ferent values of the strong coupling constagt The reason-

(16772—1'2)1’3:2'393644' able estimate for the lightest pseudoscalar glueball radius is
Ry=0.7-1.0 fm[34,29. The size of the second excited
5 glueball stateR, is not known. However, using Eg&2) and
M1 _ (31) one can estimate th&;~1.3R;=(0.9—-1.3) fm. The
=7.335730. . !

(167°T%)13 results of numerical calculations of glueball masses for those

values of the coupling constant and radii are presented be-
Using these expressions and the matching condiénhone  low.
calculates the first two energy levels for the YM system in  a4=0.3:
the finite volume
Ry=0.7 fm, my=2340 MeV, R;=0.91 fm,
o 9 (16T 293644 28 m,=5520 MeV
YM= V_lﬁ’fT : ; (28) 1= :
Ry=0.8 fm, my=2050 MeV, R;=1.04 fm,
1= 9O as70 (29
vy Vj’f > . . m;=4830 MeV,

. ) Ry=0.9 fm, my=1820 MeV, R;=1.17 fm,
The numerical values for the energy levels are determined by

the strong coupling constagtand also by the volume of the m,=4300 MeV,
domain M. The strong coupling constant is supposed to be
taken at the scale appropriate for corresponding glueballs. Ro=1.0 fm, my=1640 MeV, R,;=1.30 fm,
Let us take Eq928) and(29) and substitute them into Eq.
(17). This leads to the expression for the total energy inside m;=3870 MeV.
of the finite volume we are discussing
as=0.35:
1, u2
AE(VM)=§6 AxV,+ V_l/,? (30 Ry=0.7 fm, my=2470 MeV, R;=0.91 fm,

. . m;=5800 MeV,
where in accordance with Eq&8),(29)

Ry=0.8 fm, my=2160 MeV, R,=1.04 fm,
ud=g?¥(27?)1%2.393644 0 0 !

m;=5090 MeV,
and
R;=0.9 fm, my=1920 MeV, R;=1.17 fm,
uZ=g?%27?)17.335730. (31) 0 0 !
m;=4520 MeV,
The expression30) can be minimized with respect to the !
value of the three—\ﬁ)luva. We denote the optimal Yalue Ro=1.0 fm, my=1730 MeV, R,=1.30 fm,
for the volume byV, hencedAE(V,,)/dV,|y=0. Using
this condition and taking the derivative of E®0) one finds m;=4070 MeV.
1 1 u? as=0.4:
—OPAx=_—", (32)
2 3 43 Ry=0.7 fm, my=2580 MeV, R;=0.91 fm,
and the value of the total energy for the optimal volume m;=6080 MeV,
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Ro=0.8 fm, my=2260 MeV, R,;=1.04 fm, compensate each other and the str@ig violation, being
present in pure YM theory, does not appear in full QCD.
m;=5320 MeV, This might lead to an interesting pattern of mixing between
the pseudoscalar glueball and thé meson.
Rp=0.9 fm, my=2010 MeV, R;=1.17 fm, The second possibility is realized if one has a massless
quark in the model. In that case thlfedependence can be
m;=4730 MeV, eliminated from the QCD Lagrangian by an appropriate chi-
ral rotation of that quark field. What happens with the glue-
Ro=1.0 fm, my=1805 MeV, R;=1.30 fm, ball state in full QCD remains to be studied.
Finally, one can arguéusing the results of Ref$18,17)
m,=4260 MeV. that in full QCD the ' meson, mediating interactions be-

These predictions can be compared with the result of th

lattice calculation for the lightest pseudoscalar glueball mas bgical susceptibility even in the massive theory. In terms of
= —+ .

M =2.3+0.2 GeV [6]. We should stress that the massesEq. (9) that can be understood by including thé contribu-

presented above give just the layg approximation to the tion on the RHS and deducing a Witten-Veneziano type re-

actual values. We regard these numbers as reasonable esti- . . .
mates for the pseudoscalar glueball masses. ation. More detailed studies of full QCD are needed in order

Let us now discuss an interesting consequence of E 0 determine which of the above scenarisany) can actu-

ween topologically charged objects, provides a sufficient
from the experimental point of viemscreening of the topo-

(32). If one knew the effective size of the glueball and also lly be realized.
the value ofAy, then one would be ablaising Eq.(32)] to
calculate the value of th@ parameter DISCUSSIONS
2 U2 In this paper we studied some properties of the YM
P — — LI vacuum which should be responsible for the formation of the
3 VﬁlsA)( 0~ glueball states. The properties of the correlator of the

. ] vacuum topological susceptibility as a function of the vol-

In general, the value ak)_( is not known. However, in order me element are discussed. In the weak couplitgmall
to get an order of magnitude estimate foone _can_crléldezly volume approximation it is an increasing function of the
approximateAy by the lightest glueball contributiofigcmy  argument. Increasing the volume continuously the theory
multiplied by the number of 0" glueballs in the spectrum passes through a crossover region after which it should be
of the model (let us call that numbeN): Ay~Nfim3  regarded as a strongly correlated one. Above the crossover
~N(200 MeV)* [32,33. Then, if «s=0.3 and the lightest region the topological susceptibility becomes a rapidly de-
glueball radiusRy,=0.8 fm the § parameter should be equal creasing function of the argument and reaches its asymptotic
to #~6/\/]N. One can also estimate the magnitudeddbr value (not necessarily zejan the large volume limit. Thus,
different values of the radius. Generically, if the valueNof the value of the vacuum topological susceptibility is
is not too large, the magnitude 6fis of order of the unity or  screened if the strong coupling regime of the theory is con-
so. sidered.

Some comments are in order here. First of all the estimate It is shown that the presence of tifeangle in the theory
for the 6 parameter presented above appears as a result of théong with the screening phenomenon can lead to the forma-
physical picture of the glueball formation discussed in thistion of a glueball state. An important ingredient of that sce-
work. However, the method of modeling the glueball spec-nario is the existence of the three-form composite field
trum by means of the membrane Hamiltonian does not depropagating the Coulomb-like interaction.
pend on a particular mechanism of the formation of glue- The spectrum of the YM Hamiltonian resembles in the
balls. Indeed, whatever the mechanism of the formation iszero momentum approximation the spectrum of a closed
the glueball can always be regarded in some extent as a clobesonic membrane. Using that analogy and calculating the
domain of space where the YM excitations are confined andpectrum of a closed bosonic membrane we estimate the
the spectrum of which is determined by the YM Hamiltonianmasses of glueballs in the lard&. limit. The result for the
given in Eq.(20). lightest 0 * glueball is in agreement with the lattice predic-

The second comment concerns the str@fproblem. In  tion. We also predict the mass of the next-to-lightest glue-
this work we deal with pure YM theory. No light quark ball. This result can be checked in future lattice calculations.
degrees of freedom were included. The large value oféthe In general, our approach allows us to compute the mass of
parameter that we derived should somehow be neutralizeainy heavier glueball statd such a state existsThe method
when quark degrees of freedom are taken into account.  of calculation of the spectrum is in general independent of

There are some possibilities for that. We list below threethe mechanism by which glueballs are formed in YM theory

of them. and the YM vs the membrane Hamiltonian analogy utilized
In full QCD the parameter which defines the magnitude offor that calculation can always be applied.
the strongC P violation is the sum of the angle used in this Notice that the largéN. arguments were not used while

work and the phase of the determinant of the quark masderiving Eq.(17). The largeN, approximation was adopted
matrix, arg de¥l. It is possible that those two contributions later on in order to calculate the “positive humber” occur-
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ring on the RHS of Eq(17). Thus, the approach and equa- go further let us specify how singularities are handled in Eq.
tions presented in this work are not peculiar to tg— (). The product of two operators of the topological charge
limit. They should rather have some wider range of validitydensity is singular ag—0. The leading perturbative singu-
beyond the largél; approximation. For instance, the second larity at x—0 can be calculated:
term in Eq.(17) can be thought as a result of the uncertainty
principle alone. n x2

There are a number of interesting questions left out of the TQ(X)Q(0)= E +0 x8 |
discussion in the present paper. First of all we did not discuss
the fate of a scalar glueball. The effective Lagrangian apypon integration in Eq(1) this expression yields a divergent
proach to the 0" channel of pure YM theory was devel- term. A simple way to handle the divergence is to allow a
oped in Refs[46,47). One can apply the YM Hamiltonian vs  small momentunk to flow through the correlator treating
the membrane Hamiltonian analogy to the calculation of the, (V) as a zero momentum limit of the corresponding
scalar glueball mass too. This last .}Nould Correspond to thﬁ]omentum_dependent renormalized Green’'s function
lowest parity-even solution of the Scldiager equatiorf27).

Hence, the scalar glueball would emerge to be lighter than x(V)=lim x"™Yk2,V)

the pseudoscalar one. This is in agreement with what is k=0

known from various lattice and theoretical studig&5]. ren
However, the mechanism of the formation of the scalar glue- = lim f e‘kX(O|TQ(x)Q(0)|O>d4x ,
ball can not be captured by our analysis. k_ol 7V

We did not discuss here how colored degrees of freedom . . _ o
are confined inside of a finite closed volume. It was rathepvherek is the regularizing momentum. This relation implies

assumed that QCD provides this property by some mechahat the limiting procedure is supposed to be carried out after
Gauss’s law, being the generator of gauge transformationglready done in momentum space. In what follows we adopt
should annihilate all the physical states. Thus, all those statd8iS prescription. o _

are supposed to be colorless states by the construction. In Another type of divergence occurring in E@) is related
various models of hadrons, confinement can be warranted B9 thex— o limit. In that limit

imposing some boundary conditions on fields, as in the case

of the MIT bag mode[39] or the model of Ref[55], or by (0ITQ(:)Q(0)]0)—(0]Q|0)(0|Q|0).

po;tulating some specific dielectric properties of thg vacuungypposing that generically the vacuum expectation value
as in the case of the Friedberg-Lee mdd#]. Some discus-  (vEV) of the topological charge density might not be zero in
sions <_)f these issues from the point of view of QCD can bey cp violating model, one gets the divergence in EY. as
found in Ref.[37]. V—oo. In order to eliminate this divergence one can work
Finally, one needs to know what happens when quarkyith the subtracted correlator. This amounts to saying that

degrees of freedom are also included in the theory. In thale actyal integrand in Ed1) is the function with the fol-
case the mixing between the’ meson and the glueball lowing subtraction:

should play an important rolgf those two states exist simul-

taneously. Our discussion of the three-form field in that re- (0] TQ(x)Q(0)|0)—(0|Q|0){0|Q|0).

spect becomes crucial. It is known that themeson couples

to the topological charge density, hence it couples to thdhe subtracted function goes to zero in the e limit. The
three-form potential too. Thus, one can naturally couple th&oordinate-independent subtraction term does not affect our
7’ meson to the glueball by means of the three-form field @nalysis and was dropped for simplicity in Sec. I. It will also

These and other related questions will be addressed elske omitted below. In what follows we show that continuum
where. contributions vanish in the limk?— 0.

The dispersion relation for the correlator of the vacuum
topological susceptibility in momentum space can be written
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NSF-PHY-94-23002. where p(s)=Imy(s+ie€). The correlator at zero momentum

is denoted by(0). The quantityy’ (0) stands for the deriva-
tive of the correlator with respect & at k?=0.
In order to make the integral convergent, and also to ac-
In this appendix we consider the dispersion relation forcount for the correct asymptotic behavior of the correlation
the correlator of the vacuum topological susceptibility in mo-function atk?—c, we have introduced the subtraction terms
mentum space. The space-time is assumed to be a Euclidemthe dispersion relatiofAl). The dispersion relation in the
one. The correlator is defined as in Etj), Sec. |. Before we form given in Eq.(Al) is not convenient for our purposes. In

APPENDIX
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the limit k?>—0 it turns into a trivial identity. One needs to ready, in the weak coupling approximation with noninteract-

rewrite Eq.(Al) in a form similar to the one given in Eg6).  ing instantonsd is defined as the value of the topological
For this purpose let us use the following identity: susceptibility of a dilute instanton gas in the large volume
limit of pure YM theory. The quantitg appears in Eq95)
k* 1 1 k2 and (6)—(8) in the text. Finally, using all the expressions
P(s— kD) Te k2 s 2 given above one derives

Substituting this formula into EA1) one rewrites the dis- - . o
i ion i i : 1 (= s)ds k¥ (= s)ds
persion relation in the following form: (k) =d+bie+ - f 2 p™ )2 +_j /; (s) °
™ Jmg, s—k T Jsy s°(s—k?)
1 (= s)ds A3
x(k?)=dg+bok®+ — &, (A2) A3)
m mé s—k?
0 We should notice here that Eg#3) and (Al) differ from
where each other by some formal redefinitions. Moreover, @)
is written adopting some particular scheme of separation be-

tween perturbative and nonperturbative contributions. That

dOEX(o)_E fw p(S)dS' procedure is not unambiguous. In that respect, &®)
™ méo S should be regarded as an expression defined within the
framework of the particular prescription outlined above.
Now one can use the fact that the quantifyis a regu-
be=x'(0)— 1 f” p(s)ds larizing momentum. Thus, one can assume #fats very
0=X T méo 2 small, so that the conditios,>k? is readily satisfied. The

last integral on the RHS of EGA3) can be expanded in a

The form of the relation given in EqA2) is very formal ~ power series of the ratik®/s, (since that integral is conver-
one. The constants,, by, and the integral on the RHS are gend. Performing the expansion, and then Fourier transform-
divergent quantities. When these terms are put together ald Eq. (A3) with the weight 1/(2r)*, one derives the ex-
divergences cancel and the whole expression is finite. ThBression for the correlato{0|TQ(x)Q(0)[0) in the
divergences mentioned above are related to perturbative cofllowing form?®:

tributions to the spectral density. Thus, it is convenient to

separate nonperturbative and perturbative terms. We found it N 2 o(4)

useful to apply the decomposition usually adopted in QCD (0]TQR(X)Q(0)[0)=d8™(x) ~bd*6'*(x)

sum rule calculation§41]. One decomposes the expression

1 0
for the spectral density +— f , p"™(s)De(Vs|x|)ds
T mg,
= p"P pt — =]
p()=p"™(s)+ pP(s) ¥(s—So), ey 1)nfx () (éz)n
where the superscripts np and pt denote nonperturbative and T n=2 s S S
perturbative terms, respectively. Het®e denotes the step @)
function. The constans, sets the continuum thresholdr X 6 (x)ds. (A4)

the duality interval [41] and by the definitiorsy> méo. Itis
assumed in this approach that resonance contributions affuation(A4) is a general form of the expression given in
defined by the nonperturbative part of the spectral densityEd- (6) in Sec. 1. In order to reproduce the sum on the RHS
One also supposes that due to asymptotic freedom co®f Eq. (6) one needs to make the following substitution in
tinuum contributions above the continuum threshold can b&d- (A4):
approximated by leading perturbative terféd].

Let us make the same formal decomposition for the quan-

tities do andby: p™(s)= -7, f2mis(s—m?).
n

do=d+d”, dP=— p= s Some terms on the RHS of EA4) with derivatives of the
Dirac delta function yield vanishing contributions upon inte-
gration in Eq.(1). For that reason those derivative containing
pPY(s)ds terms were omitted in E(6).
>

1 J'w pPY(s)ds

So

1 o
bo=b+Db", bp‘=——f
r SO S

Hered andb are the quantities determined by the compli- 28we use the following normalization for the delta function:
cated vacuum structure of YM theory. As we mentioned al-6®(x) =[ 1/(27)*]f T Ze'**d*k and 5 (k) = J T Ze~**d*x.
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