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Modeling the glueball spectrum by a closed bosonic membrane
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We use an analogy between the Yang-Mills theory Hamiltonian and the matrix model description of the
closed bosonic membrane theory to calculate the spectrum of glueballs in the largeNc limit. Some features of
the Yang-Mills theory vacuum, such as the screening of the topological charge and vacuum topological
susceptibility, are discussed. We show that the topological susceptibility has different properties depending on
whether it is calculated in the weak coupling or strong coupling regimes of the theory. A mechanism of the
formation of the pseudoscalar glueball state within pure Yang-Mills theory is proposed and studied.
@S0556-2821~98!03019-7#
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INTRODUCTION

Gluodynamics@1#, being the asymptotically free theor
@2# of colored @3# massless vector particles, is believed
underline the dynamics of strong interactions. Because
asymptotic freedom the theory is well studied at short d
tances; however, long distance phenomena deserve to b
derstood much better.

The theory predicts glueballs@4#, the nonperturbative
bound states composed of pure glue@5#. That prediction was
confirmed some time ago by ‘‘observing’’ glueballs in lattic
QCD simulations@6,7#. In addition to that, there are exper
mental signatures of resonances which strongly resem
properties of glueballs~for a recent analysis of these issu
see Ref.@8#!.

Studying glueballs one might hope to learn more ab
the complicated ground state structure of non-Abelian Ya
Mills ~YM ! theory. The main question one might wond
about is the mechanism of the formation of glueball state
YM theory. Those states appear to be heavy in compar
with the lightest hadrons and range, depending on the s
parity structure, within the mass interval 1.5–2.3 GeV@6,7#.
Thus, the naive picture of the glueball as a system of t
massless gluons which interchange virtual perturbative
ons does not seem to be appropriate.

In this work we are looking for qualitative features r
sponsible for the process of formation of pseudoscalar g
balls. A possible mechanism will be proposed. As an o
come we calculate the spectrum of lightest pseudosc
glueballs. The results are in agreement with predictions
lattice calculations@6#. The paper deals with pure YM
theory, no light fermions are included. A brief discussion
full QCD is given at the end of the work.

Our study relies on the existence of theu term in pure YM
theory. We define the topological charge density operato
Q[(1/32p2)Gmn

a G̃mn
a , with Gmn

a being the non-Abelian
gauge field strength tensor and the dual tensor is normal
as G̃mn

a 5 1
2 «mnabGab

a . Because of instantons@9#, the non-
Abelian gauge theory possesses a complicated vacuum s
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ture @10#. That is, there is an infinite number of degenera
vacuum states labeled by some topological invariant,
winding number or topological charge. Instantons, being
fined in Euclidean space, provide that quasiclassical tun
ing processes happen between the different vacua. Thus
true ground state of the theory is a superposition of the va
with different topological charges. The superposition can
provided in the path integral formulation by adding to t
action theu term DSu[u*d4xQ(x) @10#. However, such a
modification is not a harmless procedure. Theu term in QCD
leads to an induced neutron electric dipole moment. Exp
mental bounds on that quantity restrict the value of theu
parameter to be unnaturally small, less than the billion
part of the unity, and give rise the famous strongCP prob-
lem @11#.

The picture outlined above implies that the integral of t
topological charge density*d4xQ(x), being the topological
charge in Euclidean space, is quantized if the instan
boundary conditions are imposed on gauge fields.1 Thus, the
whole scenario of the superposition of the different vacua
means of theu term relies on quasiclassical arguments.
general, one expects that the quasi-classical approximatio
justified in a weak coupling regime only@12#. What theu
term leads to in a strong coupling approximation where q
siclassical arguments cease to be valid, is not cleara priori.

It was argued by Witten@13# that in the confining phase
of the theory noninteracting instanton boundary conditio
should not be relevant. The key observation was that ga
fields with instanton boundary conditions do not yield t
area law for the Wilson loop. Thus, configurations with tho
boundary conditions, as any configurations tending to a p
gauge at infinity, fail to satisfy the confinement criterio
@14#. As a result, in the strong coupling approximation of t
confining theory one should rather encounter some sme
distributions of interacting topological charges as oppose
the noninteracting instanton system with quantized topolo

1Under those boundary condition one means that the vector
tential Am tends to a pure gauge configuration at spatial infin
Am→U21(x)]mU(x), with U(x) being an element of the SU(Nc)
gauge group.
© 1998 The American Physical Society15-1
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GREGORY GABADADZE PHYSICAL REVIEW D58 094015
cal charge@13#. This statement finds support in recent mo
els of the YM vacuum. Properties of hadrons are correc
described by the model in which instantons and antiinst
tons are coupled in moleculelike~or even more complicated!
entities@15#. This kind of instanton clustering, indicating o
strong correlations between them, was also observed in s
recent lattice QCD studies@16#.

Interactions between instantons, if sufficiently strong, le
to the screening of the topological charge at finite distan
@17,18#, in analogy with the well-known phenomenon
plasma physics.

A quantitative study of the screening phenomenon fr
fundamental principles is a cumbersome task. However
we mentioned already, both hadron phenomenology and
tice simulations seem to support that picture. Below, in S
I we present some arguments~other than the ones mentione
above! indicating that the screening of the topological char
should really exist. We show~Sec. II! that the three-form
composite field, which is Hodge dual to the Chern-Simo
current and is known to propagate the Coulomb type in
action, should be relevant for the description of the screen
phenomenon.

In Sec. II we present a possible mechanism of the form
tion of a pseudoscalar glueball. The main ingredients nee
for that mechanism to be realized in a confining theory
the screening of the topological susceptibility and the pr
ence of theu angle in the theory.

Having this part set, we discuss in Sec. III an analo
between the spectrum of the YM Hamiltonian and that o
closed bosonic membrane with the topology of a sphere.
use that analogy to calculate the spectrum of glueballs
fact, we derive a matching condition between the spectr
of YM theory in the largeNc limit and the matrix quantum
mechanics formulation of the closed bosonic membr
theory. Then, studying the spectrum of a spherical clo
membrane and using the matching condition we calculate
spectrum of the YM Hamiltonian. That gives the predicti
for masses of lightest glueballs. We also show that the s
nario discussed in this work is realized only when theu
parameter is a macroscopic number, i.e., a number of o
of the unity or so. More accurate estimates are given in S
III C. We briefly discuss how the strongCP violation, being
present in pure YM theory, might still not be observable
full QCD with light quarks.

Discussions in the present paper are based on the re
obtained by Lu¨scher @19,20,21#, by Goldstone and Hoppe
~see Ref.@22#!, and by de Wit, Hoppe, and Nicolai@23#.
Where it is possible we present below brief summaries
those results.

I. TOPOLOGICAL SUSCEPTIBILITY

In this section we study properties of the correlator of
vacuum topological susceptibility. We work in Euclidea
space-time assuming that the theory is defined in a com
Euclidean four-volumeV[ l 33t, with l being the linear size
of the volume andt stands for Euclidean time. The correlat
of the vacuum topological susceptibilityx(V) can be written
as follows:
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x~V![E
V
^0uTQ~x!Q~0!u0&d4x, ~1!

whereQ is the topological charge density operator defined
the previous section.2

The functionx(V) is determined by the nonperturbativ
sector of Yang-Mills theory. Calculation ofx(V) in that re-
spect is a matter of modeling of the vacuum structure
Yang-Mills theory. This in its turn is a complicated tas
Below we show however, that one can still study qualitat
features of the volume dependence of the correlator of
vacuum topological susceptibility for small and for large va
ues of the volume.3 Let us first define, following@19#, what
one could call a small volume or large volume limit.

There is a dynamically generated mass scale in Y
theoryLYM . The reciprocal quantity ofLYM sets the char-
acteristic correlation length for the model. Let us denote t
length byz[LYM

21 . Restricting for simplicity the YM beta
function to the next-to-leading order approximation, the e
pression forz can be written as follows:4

z5m21~as!
b1/2b0

2
expS 2p

b0as
D ,

where m is the renormalization scale,as[as(m
2/LYM

2 ) is
the scale-dependent strong coupling constant, andb0 andb1
are the first two scheme independent coefficients of the b
function b0511Nc/3, b1534Nc

2/3. The expression forz is
renormalization group invariant in the corresponding orde

Let us now introduce the following two limits. One ca
define the value of the volume elementV to be small if the
correlation lengthz is much larger thanV1/4, i.e., z@V1/4

@19#. The large volume limit in that case would refer to
volume element satisfying the conditionz!V1/4.

One can show that the two limits defined above cor
spond respectively to the weak coupling and strong coup
regimes of the theory. In order to see this let us keep
product of the renormalization scalem and the value ofV1/4

fixed, say,Vm451. This condition sets the scalem as an
infrared cutoff. Then, the expression for the correlati
length takes the form

z

V1/4
5~as!

b1/2b0
2
expS 2p

b0as
D .

Thus, the small volume approximation given by the con
tion z@V1/4 corresponds to the weak coupling regime, i.

2The correlator~1! is in general a divergent Green’s function
These divergences can be removed by means of standard p
dures which are discussed in the Appendix.

3We vary l keepingt fixed. Thus, we actually study the three
volume dependence ofx(V).

4Since we are interested in the magnitude of this quantity
explicit u dependence in this expression is dropped.
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MODELING THE GLUEBALL SPECTRUM BY A CLOSED . . . PHYSICAL REVIEW D 58 094015
as!1. For instance, if one setsz/V1/4.10@1, the corre-
sponding value of the coupling constant5 is as.0.2.

Let us now turn to the discussion of the large volum
limit defined by the conditionz!V1/4. This limit is equiva-
lent to the smallm approximation. However, for small value
of m the running coupling constantas is a big number.
Hence, the large volume limit corresponds to the strong c
pling regime of the theory. Regretfully, we can not estim
~as we did in the case of the small coupling constant! how
large the coupling constant should actually be. The appr
mation which is used definingz breaks down for large value
of the coupling. Though one could present the definition oz
for any orders of perturbation theory~see, for example,@24#!,
that definition would contain the exact form of the beta fun
tion b(as) which is known only perturbatively. So, the a
order formula also becomes inappropriate for practical c
culations in the strong coupling approximation.

Below we show, at least qualitatively, that the topologic
susceptibility as a function ofV has different behavior de
pending whether it is calculated in the weak or strong c
pling regimes. In the weak coupling phase it is an increas
function of the argument, and on the contrary, in the stro
coupling regime the function decreases with the argum
monotonically.

A. The weak coupling approximation

Let us start with the small volume or weak coupling a
proximation. The non-Abelian gauge theory provides a go
description of physics in that domain. Excitations with a ze
topological charge do not contribute to the value ofx(V)
defined in Eq.~1!. Only nontrivial topological configurations
of gauge fields are to be taken into account. In the w
coupling regime the YM vacuum can be approximated
noninteracting, well-separated instantons@25#. In that ap-
proximation instantons can be treated as pointlike obje
The expression for the topological charge density can
written as follows:

Q~x!5(
i

qid
~4!~x2xi !,

whereqi denotes the topological charge for a configurat
localized at the pointxi . Assuming that instantons do no
interact with one another we derive

^0uTQ~x!Q~0!u0&5
1

V (
q52`

1`

q2Pq~V!d~4!~x!, ~2!

where the indexi in the definition of the topological charg
was omitted. The quantityPq denotes the probability for a
nonabelian gauge field configuration to have a topolog

5If one approximatesLYM.(100– 200) MeV, then the small vol
ume limit refers toV1/4!(1 – 2) fm.
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charge equal toq. These probabilities are exponentially su
pressed for nonzeroq and one expects that the infinite seri
in Eq. ~2! converges.6

Substituting Eq.~2! into Eq. ~1! one derives

x~V!5
1

V (
q52`

1`

q2Pq~V!. ~3!

In the approximation we set above the following relation
valid:

Pq~V!5@P1~V!# uqu,

whereP1(V) denotes the one instanton contribution. Subs
tuting this relation into Eq.~3! and performing the summa
tion of the infinite series one gets the following express
for the topological susceptibility:

x~V!5
2P1~V!

V

11P1~V!

@12P1~V!#3
. ~4!

Thus, the small volume behavior of the functionx(V) is
approximately defined by Eq.~4!. The expression forP1(V)
can be calculated in the one loop approximation using
well known results of Ref.@26#,

P1~V!5const3expS 2
2p

as~V1/2LYM
2 !

D ,

where the following expression for the strong coupling co
stant is supposed to be used:

as~V1/2LYM
2 !52

4p

b0 ln~V1/2LYM
2 !

1••• .

The result forP1(V) is

P1~V!5const3S V

z4D b0/4

3 logarithms,

where the logarithmic corrections appear in the next-
leading approximation. Hence, asV→0 the ratioP1(V)/V
also tends to zero. As a consequence, in the small volu
limit lim V→0 x(V)→0. Moreover, based on the relation
given above one concludes that for small volume eleme
the quantityx(V) is a monotonically increasing function o
the argumentV. This property should hold as the conditio
z@V1/4 is satisfied.

Suppose now that the quantityV1/4 becomes comparabl
in magnitude withz so that the weak coupling approximatio
breaks down. As a result, the pointlike noninteracting inst
ton approximation ceases to be valid. Interactions betw
instantons start to play a crucial role providing the screen
of the topological charge@18#.

6The partition functionZ(u) in that case can be approximated
Z(u)5(qPq exp(iuq).
5-3
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GREGORY GABADADZE PHYSICAL REVIEW D58 094015
Let us assume for a moment that one neglects insta
interactions even for large values of the volume and let
study what happens in this unrealistic case keeping in m
that the interaction effects are going to be included la
Doing so one is dealing with an ideal gas of instanto
placed in a large volume. The approximate calculation of
partition function with noninteracting instantons in the the
modynamic limit yields the following Gaussian distributio
function for Pq(V) @27#:

Pq~V@z4!'
1

A2pVd
expS 2

q2

2VdD ,

whered is a not yet defined positive constant. We substit
this expression into Eq.~3! and perform the summation o
the infinite series in the large volume limit. The final expre
sion can be found using the following relation:

(
q52`

1`

e2pbq2
5

1

Ab
(

q52`

1`

e2pq2/b,

whereb is an arbitrary positive number@28#. As a result one
gets

lim
V@z4

x~V!5d. ~5!

Let us summarize briefly what we learned about the v
ume dependence of the topological susceptibilityx(V). In
the zero volume approximation the topological susceptibi
was zero. Increasing the value ofV, so that the weak cou
pling approximation still holds, the functionx(V) increases
monotonically. If one goes further and neglects the inter
tion between instantons even in the large volume~strong
coupling! approximation, one finds that the functionx(V)
reaches its asymptotic value7 denoted above byx(V@z4)
5d. However, as we stressed earlier, interactions betw
instantons play a crucial role in the strong coupling appro
mation. In the next section we show that the topologi
susceptibility becomes a decreasing function of the argum
for large values ofV when the effects of finite distance co
relations between topological charges are taken into acco

B. The strong coupling approximation

Let us consider the large volume or strong coupling lim
In that limit the theory is in a confining phase. Instantons
interacting strongly.8 Those interactions become responsib
for formation of spin zero glueball states@29#. A description
in terms of colored variables is not a good approximat
anymore. The theory, however, can be defined by mean
the low-energy effective action containing colorless degr

7These properties were originally studied in Ref.@19# considering
YM theory on a four-sphereS4.

8It is not even clear whether it makes sense to talk about a c
figuration with a definite topological charge in this case@13#.
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of freedom. The explicit form of that effective action fo
pure YM theory is not known. In general, the action can
written as

Seff5E d4xL~Gn ,¹Gn ,¹2Gn , . . . !,

whereGn’s stand for glueball fields.
Below we study properties of the correlator of the vacuu

topological susceptibility in the effective theory. We deno
this quantity byxeff(V). The correlator in Eq.~1! is saturated
by the set of intermediate glueball states

^0uTQ~x!Q~0!u0&5dd~4!~x!1(
n

^0uQun&

3^nuQu0&DF~mnuxu!, ~6!

wheremn is the mass of thenth intermediate physical stat
and DF(mnuxu) stands for the Euclideanx-space Feynman
propagator of a scalar massive particle

DF~mnuxu!5
mn

4p2uxu
K1~mnuxu!,

with K1(mnuxu) being the Bessel function of an imagina
argument.

The parameterd given in Eq.~6! is a positive number. It
was introduced in the preceding section and in the simp
case of a dilute instanton gas approximation correspond
the value of the topological susceptibility in the large volum
limit. From the point of view of the effective theory we de
with, the parameterd is a momentum independent subtra
tion coefficient in the dispersion relation forxeff written in
momentum space.9 In Eq. ~6! we implicitly assumed that the
volume element is sufficiently large so that the YM topolog
cal susceptibility occurring as the first term on the right-ha
side ~RHS! equals to its asymptotic valued.

Strictly speaking, there are additional continuum con
butions on the RHS of Eq.~6!. They account for possible
many-particle intermediate states. Those contributions
studied in the Appendix. We just mention here that the c
tinuum contributions do not affect the physical picture w
are going to discuss in this subsection.

One notices that Eq.~2!, which includes only noninteract
ing instanton effects, reflects the lack of finite distance c
relations between topological charge densities, i.e., the R
of Eq. ~2! is zero for any nonzero value ofx. This would not
be the case if instanton interactions were taken into acco
We also saw that the insertion of the intermediate glueb
states into Eq.~2! yields the expression~6! with finite dis-
tance correlations occurring on its RHS. Thus, one arg

n-

9There is another subtraction term in Eq.~6!. It is proportional to
the second derivative of the Dirac delta function. This term, be
integrated in Eq.~1! gives a vanishing contribution and does n
appear in the definition ofx(V). A detailed discussion is given in
the Appendix.
5-4
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MODELING THE GLUEBALL SPECTRUM BY A CLOSED . . . PHYSICAL REVIEW D 58 094015
that the strong correlations between instantons, which
responsible for finite distance effects, are phenomenol
cally included in Eq.~6! as the intermediate glueball stat
are taken into account. The argument above becomes m
sensible if one recalls that interactions between instan
are responsible for the formation of those intermediate g
balls @29#.

Let us now define the matrix elements occurring in E
~6!. The operator of the topological charge densityQ is an
antihermitian operator in Euclidean space. Taking this i
account one introduces the following parametrization for
matrix elements:

^0uQun&52 i f nmn
2 , ^0uQun&^nuQu0&52 f n

2mn
4 ,

where f n can be thought of as a decay constant of the co
spondingnth glueball state~in analogy with the pion decay
constantf p). If one substitutes these definitions back in
Eq. ~6! the following expression emerges:

^0uTQ~x!Q~0!u0&5dd~4!~x!2(
n

f n
2mn

4 mn

4p2uxu
K1~mnuxu!.

~7!

Having this relation established let us study what happ
with the correlator of the topological susceptibility@Eq. ~1!#.
Substituting Eq.~7! into Eq. ~1! we find

xeff~V!5d2(
n

f n
2mn

2Gn~V!, ~8!

where

Gn~V![mn
2E

V
DF~mnuxu!d4x.

The functionGn(V) determines the volume dependence
the topological susceptibility for large values ofV. This
function has a simple behavior.10 The straightforward calcu
lation yields

Gn~0!50, Gn~`!51.

In general,Gn(V) is a monotonically increasing function o
the argument. Its value increases rapidly from zero atV50
to almost its asymptotic value at some finiteV. Then, in-
creasing very slowly, the function approaches the unity
V→`. Relying on these properties one derives

lim
V→`

xeff~V!5d2(
n

f n
2mn

2 . ~9!

10For a spherically symmetric volume element with the radiusR
one can calculate thatGn(V)512mn

2R2K2(mnR)/2.
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Thus, we see that the topological susceptibility gets ad
tional positive subtraction terms in the effective theory11 ~the
sum on the RHS!.

Finally, using Eq.~8! and the monotonicity of the func
tion Gn(V) one concludes that the topological susceptibil
decreases from its value defined at relatively small volum
to its value reached in the large volume limit. Physically th
can be thought of as following. Suppose we set a sequenc
subvolumes enclosing some topological charge distribu
V1,V2,V3,¯,`. The result of our discussion is tha
xeff(V1).xeff(V2).xeff(V3).¯xeff(`). Thus, for smaller vol-
umes one gets larger values of the topological susceptibi
One should remember, however, that this picture emerge
the confining phase of the theory, i.e., whenV1@z4 and
effective degrees of freedom are colorless excitations.
interpretation in terms of colored gluons does not make se
in that region because of the lack of asymptoticin and out
states for those excitations.

Recalling that the behavior of the functionGn(V) is gov-
erned by exponents of the typee(2mnR), one concludes tha
the effective size at whichxeff(V) gets substantially sup
pressed is defined by the Compton wavelength of the ligh
021 glueball state@Eq. ~8!#. In accordance with lattice cal
culations the lightest pseudoscalar glueball of pure Y
theory is expected to have mass approximately equal to
GeV @6#. Thus, the effective suppression length scale isL
51/mG0

.0.09 fm.

We complete this subsection by listing the main quali
tive conclusions of the discussion presented above.

~i! In the domain of asymptotic freedom, where YM
theory is defined most accurately, the topological susce
bility is an increasing function of the argument.

~ii ! In contrast, in the phase where composite, colorl
excitations are formed the topological susceptibility d
creases monotonically.

~iii ! The suppression length of the topological suscepti
ity is defined by the inverse mass of the lightest 021 glueball

11In general, the quantity on the RHS of Eq.~9! is a nonzero
number. However, it was argued in Ref.@17# that the topological
susceptibility might completely be screened in the infinite volu
limit if instanton interactions are sufficiently strong, i.e.,xeff(`)
would equal to zero in that case. This condition would yield
relation between the quantityd and parameters of glueballs. Impo
ing the conditionxeff(`)50 @17# one derivesd5(nf n

2mn
2 . This

relation is the analog of the Witten-Veneziano formula@30,31# for
the h8 meson mass~if one considers full QCD and combines th
relation derived above with the Witten-Veneziano formula one n
essarily needs to take into account the fact that the value od
depends on whether it is calculated in pure YM theory or in f
QCD!. Thus, the relationd5(nf n

2mn
2 is a phenomenological crite

rion of the validity of the proposal of Ref.@17#. That relation can be
tested in lattice QCD studies by measuringd in noninteracting in-
stanton gas picture of pure YM theory and also by studying mas
and decay constants of the whole tower of pseudoscalar glue
states. For the mass and decay constant of the lightest glueball
sum rule results can also be used@32,33#.
5-5
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GREGORY GABADADZE PHYSICAL REVIEW D58 094015
state and equals approximately 0.09 fm. This length is
than the effective radius of the 021 glueball itself~approxi-
mately 0.7–1.0 fm@29,34#!.

An underlying nonperturbative mechanism which is
sponsible for the formation of the 021 glueball state, mos
likely, should also be responsible for the suppression of
topological susceptibility and vice versa. However, the d
namical reason underlying these properties is not capture
the qualitative discussion of this section. The question w
can this happen will be addressed below.

Let us notice that the properties listed above are in a
ogy with what happens in the (211)-dimensional Polyakov
@35# model. In the case of the Polyakov model those featu
can be derived in a rather model-independent way@35,36#.

II. THE u ANGLE AND FORMATION OF GLUEBALLS

In this section we study how glueballs can be formed
the vacuum of YM theory. In order to address this quest
let us first recall how quark containing hadrons are formed
QCD @37,38#. It was found in Ref.@25# that nonperturbative
fluctuations lower the value of the vacuum energy density
QCD: If the ground state energy density for a perturbat
vacuum was zero, then instantons lower it yielding a ne
tive value@25#. When colored quarks are submerged in th
vacuum the QCD ground state responds to the insertio
the quarks by suppressing the instanton density in a s
domain around the quarks@37#. In other words, quarks, bein
submerged in the YM vacuum, yield a positive energy d
sity which in the domain around the quarks partially co
pensates the existed negative ground state energy den
The size of that domain is determined by the dynamics
nonperturbative QCD@37#. Hence, if one takes the value o
the vacuum energy density inside the quark containing
main and subtracts the value of the vacuum energy den
outside the domain one would be left with a positive ene
density excess in the interior of the domain.

Having a positive energy excess inside of some reg
means that there should be an inward pressure acting on
small volume element of that domain. In other words,
outside region with the negative energy density produce
pressure on the quark containing domain tending to sque
its volume down to zero. The quark confinement emerge
this picture as an effect of the complicated structure of
QCD ground state. This serves as a derivation of the
model for hadrons@39,40# from fundamental principles o
nonperturbative QCD@37#.

In this section we show that the same phenomenon m
occur in pure YM theory. The crucial difference from th
previous case is the existence of a purely gluonic dom
with a positive energy density excess. That positive ene
density can be provided by theu term. We show below tha
the positive energy density in the interior of the domain
proportional to the value ofu2 multiplied by the value of the
topological susceptibility. Since the topological susceptib
ity is screened outside of some region, this naturally yield
compact region of space with a positive vacuum energy d
sity excess inside. We show that this domain can hadro
forming a YM glueball state.
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Let us start with the action for Yang-Mills theory with th
CP violating u term. In this section we work in Minkowsk
space-time.

We decompose the actionS into the usualCP evenS(1),
andCP odd S(2), parts.S5S(1)1S(2), where

S~1 !5E d4xS 2
1

4g2
Gmn

a Gmn
a D ,

S~2 !5uE d4xS 1

32p2
Gmn

a G̃mn
a D . ~10!

The total energy density of this systemE is the sum of the
energy densities of theCP even partE (1) andCP odd part
E (2), i.e., E5E (1)1E (2).

Let us consider theCP even part of the action. As we
mentioned above, nonperturbative contributions yield
negative vacuum energy density@25#. The total energy den-
sity of theCP even part is a sum of the negative ground st
energy densityEvac

(1) and the energy density of perturbation
about that ground stateEpert

(1)

E ~1 !5Evac
~1 !1Epert

~1 ! . ~11!

Suppose we start with no perturbations being excit
i.e., put Epert

(1)50. Then, E (1)5Evac
(1)5 1

4 ^0uQmm
(1)u0&

5„b(as)/4as
2
…^0u(1/32p2)Grt

2 u0&.2(0.250 GeV)4 @41#.
Here, Qmm

(1) stands for the anomalous trace of the ener
momentum tensor corresponding toS(1) and perturbative
contributions to the gluon condensate are subtracted.

Let us now address the question what is the contribut
of theCP odd part of the action to the total energy density
the whole system given in Eq.~10!. It is convenient to intro-
duce a new variable by rewriting the expression for the
pological charge density12 Q in terms of a four-form field
Fmnab

Q5
1

4!
«mnabFmnab,

where the four-form fieldFmnab is the field strength for the
three-form potentialCmna

Fmnab5]mCnab2]nCmab2]aCnmb2]bCnam .

The Cmna field itself is defined as a composite operator
colored gluon fieldsAm

a

Cmna5
1

16p2
~Am

a ]̄nAa
a2An

a]̄mAa
a2Aa

a ]̄nAm
a

12 f abcAm
a An

bAa
c !,

12Though in Minkowski space-timeQ does not have the meanin
of the topological charge density and, moreover, differs from E
clidean definition of the topological charge byi , we formally keep
that name and letter for simplicity.
5-6
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with f abc being structure constants of the correspond
SU(Nc) gauge group. The right-left derivative in this expre
sion acts asA]̄B[A(]B)2(]A)B.

The topological charge density can also be expres
through the Chern-Simons currentKm as Q5]mKm . Using
this expression one can deduce the relation between
Chern-Simons current and the three-form potentialCnab ,
these two quantities are Hodge dual to each otherKm

5(1/3!)«mnabCnab .
Let us rewrite theCP odd part of the action in terms o

the three-form potentialCnab . For the further convenienc
the integration over space-time will be restricted to a fin
not yet specified domain denoted byM

S~2 !5uE
M

Qd4x52
u

4! EMFmnabdxm∧dxn∧dxa∧dxb

[2uE
M

F,

where the following differential four-form was introduced

F[
1

4!
Fmnabdxm∧dxn∧dxa∧dxb.

In terms of differential forms and an exterior derivatived the
equations above formally simplify.13 Indeed,F5dC, where
C[(1/3!)Cnabdxn∧dxa∧dxb and the expression forS(2)

reads as

S~2 !52uE
M

F52uE
]M

C

52
u

3! E]M
Cnabdxn∧dxa∧dxb. ~12!

In the last equation we used the Stokes theorem assum
that the boundary]M enclosing the domainM is an orient-
able smooth surface. Speaking in terms of theCnab field, the
nonzero value of theu angle corresponds in Minkowsk
space to the nonzero coupling of theCnab field to the bound-
ary manifold]M. That coupling is gauge invariant, althoug
theCnab field itself is not a gauge invariant quantity. Indee
if the gauge transformation parameter is denoted byLa, then
the three-form field transforms asCnab→Cnab1]nLab

2]aLnb2]bLan , where Lab}Aa
a]bLa2Ab

a]aLa. How-
ever, it is easy to check that the expression for the fi
strengthFmnab is gauge invariant. Since the coupling of th
three-form field to the boundary can be expressed in term
the Fmnab field @as in Eq.~12!#, then that coupling is also
gauge invariant and can lead to some physically observ
results. The same conclusion could be drawn without re
ring to the field strength. The gauge variation of the l

13We apologize for using the same letterd for an exterior deriva-
tive utilized in this section and the quantityd, which has to do with
the instanton charge density, defined in the previous section.
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expression in Eq.~12! is zero for any smooth closed surfac
which does not enclose any field singularities.

It was noticed some time ago@20# that theCnab field
propagates in the bulk of the domainM if the topological
susceptibility is nonzero in that domain. This becomes m
evident if one recalls the notion of the Kogut-Susskind~KS!
pole@42# in the correlator of two Chern-Simons currents. W
briefly present those arguments.

Consider the correlator of the vacuum topological susc
tibility at a nonzero momentum. The topological charge de
sity Q is the derivative of the Chern-Simons currentQ
5]mKm . One can substitute this definition back into the e
pression for the correlator of the topological susceptibility.
that way one discovers thatx is defined as the zero momen
tum limit of the correlator of two Chern-Simons curren
multiplied by two momenta14

x5 i lim
q→0

qmqnE eiqx^0uTKm~x!Kn~0!u0&d4x. ~13!

The only way for this expression to be nonzero is to cla
that the correlator of two Chern-Simons currents develop
pole as the momentum goes to zero. This is called the Ko
Susskind pole@42#.

Knowing that the correlator of two Chern-Simons cu
rents has a pole, one can use the relation between the Ch
Simons current and the three-formCnab field and conclude
that theCnab field also has a nonzero Coulomb propaga
@20#. Thus, theCnab field behaves as a massless collect
excitation transferring a long-range interaction@20#.

Let us summarize briefly the results of the discuss
given above. Following Ref.@20# we established that the
three-form fieldCnab propagates in the bulk transferring
long-range Coulomb interaction. The exact propagator
this field is of the Coulomb type and is proportional to t
value of the vacuum topological susceptibility.

We also saw that theCP odd term in the action of Yang
Mills theory can be expressed as a coupling of the three-fo
composite fieldCnab to the boundary manifold. Hence, th
three-form fieldCnab being a free field in the bulk actually
does couple to the boundary surface.

All the properties mentioned above can be summarize
the following effective action for theCnab field:

14The multiplier 2 i appears in the definition of the topologica
susceptibility in Minkowski space-time. There are some delic
issues regarding the definition of the correlator of the vacuum
pological susceptibility. If one definesx as a second derivative o
the partition function with respect to theu angle, then some contac
term appears in that expression@30#. Likewise, a special care is
needed while treating the covariantT product in Eqs.~1! and ~13!
when this last is taken to be the definition ofx @43#. One should add
a contact term~given in the Appendix of Ref.@30#! to the RHS of
Eq. ~1! in order to definex as a second derivative of the vacuu
energy with respect to theu angle @30,43# @this contact term can
effectively be included in Eq.~6! by redefining the value of the
positive constantd].
5-7
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Seff
~2 !52

1

234!x~VM!
E
M

Fmnab
2 d4x

2
u

3! E]M
Cnabdxn∧dxa∧dxb. ~14!

The first term in this expression yields the correct Coulo
propagator for the three-formCnab field. The second term is
just the usualCP odd u term of the initial YM action.VM
denotes the three-volume of the domainM.

Our next step is to study the effective action given15 in
Eq. ~14!. In particular, we will calculate the ground sta
energy of the system using the effective action~14!. Before
we turn to that calculation let us mention that Maxwel
equations for a free four-form potentialFmnab yield only a
constant solution in (311)-dimensional space-time@44#.
The reason is the following. A four-form potential has on
one independent degree of freedom in four-dimensio
space-time, let us call itS. Then, the four Maxwell’s equa
tions written in terms of theS field ensure that this field is
independent of all four space-time coordinates. Hence,
solution can only be a space-time constant. Thus, theFmnab
field propagates no dynamical degrees of freedom.16 How-
ever, this field can be responsible for the existence of a p
tive vacuum energy density in different models of quant
field theory ~see Ref.@45#!. Thus, studying classical equa
tions of motion for theFmnab field one can determine th
value of the ground state energy given by configurations
Fmnab . We are going to solve explicitly classical equatio
of motion for the effective action~14!. Then, the energy
density associated with those solutions will be calculated

Let us start with the equations of motion. Taking t
variation of the action~14! with respect to theCnab field one
gets

]mFmnab~z!5ux~VM!E
]M

d~4!~z2x!dxn∧dxa∧dxb .

It has been shown in Ref.@44# that this kind of equations ca
be solved exactly in four-dimensional space-time. The so
tion is the sum of a particular solution of the inhomogeneo
equation and a general solution of the homogeneous equ

Fmnab~z!5ux~VM!E
M

d~4!~z2x!dxm∧dxn∧dxa∧dxb

1h«mnab .

15One should notice that the action~14! is not an effective action
in the Wilsonian sense. It is rather related to the generating fu
tional of one-particle-irreducible diagrams of the composite fie
The effective action in Eq.~14! is not to be quantized and loo
diagrams of that action are not to be taken into account in calcu
ing higher order Green’s functions. The analogous effective ac
for theCP even part of the theory was constructed in Refs.@46, 47#.

16The exception is when that field couples to other fields.
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The integration constanth, if nonzero, induces an additiona
CP violation beyond the existedu angle @45#. Since we
would like to avoid to have an extraCP violating term we
seth50. Simplifying the previous equation one finds that t
classical solution is a nonzero constant tensor density in
of the domainM

Fmnab52ux~VM!«mnab , ~15!

and is zero,Fmnab50, outside ofM.
As a next step let us compute the vacuum energy ass

ated with the solution given in Eq.~15!. The density of the
energy-momentum tensor for theCP odd sector of the
theory can be written as

Qmn
~2 !52

1

3!x~VM! S FmabtFn
abt2

1

8
gmnFrabt

2 D .

Using the expression~15! one calculates the correspondin
energy density17 E (2)

E ~2 !5
1

2
u2x~VM!.

Since theFmnab field does not propagate dynamical degre
of freedom the expression above is the total energy den
of the system given by the action~14!. The crucial thing
about this energy density is that it is a positive quantity p
portional to u2 multiplied by the value of the topologica
susceptibility18

We learned in the preceding section that the magnitud
the topological susceptibility depends on the value of
subvolume in which it is calculated, and also, most imp
tantly, it is screened by nonperturbative effects of YM theo
outside of some finite subvolume element. So far we trea
the domainM as some arbitrary volume. Let us now su
pose thatM is the subvolume outside of which the topolog
cal susceptibility is screened.19 Thus, the topological suscep
tibility is given by the quantityd inside of the volumeM
and by the differenced2(nf n

2mn
2 outside of the volume. As

c-
.

t-
n

17One can use eitherE5 1
4 Qm

m or E5Q00.
18One might wonder whether the same result is obtained if

treatsu not as a constant multiplyingQ in the Lagrangian, but as
the phase that the states acquire under a topologically nontr
gauge transformations. These two ways of presenting theu depen-
dence are equivalent. Thus, results of our discussion should
equivalent in both cases. The key observation is that ifu is not
entering the Lagrangian, the arbitrary integration constant in
~15! has to be nonzero. It should be chosen in a way that wo
guarantee a properu dependence of the VEV of the topologica
charge density. That would leave the results of our discussion w
out modifications.

19In this discussion we assume that the domain has a more or
definite boundary, or in other words, that there is a narrow inter
where the topological susceptibility drops in magnitude from
value d to d2(nf n

2mn
2 . That assumption does not seem to be

from the reality if one recalls the behavior of the functionGn(V)
~see Sec. I!.
5-8
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MODELING THE GLUEBALL SPECTRUM BY A CLOSED . . . PHYSICAL REVIEW D 58 094015
we mentioned above, the differenced2(nf n
2mn

2 turns to zero
if interactions between instantons are sufficiently strong@17#.
However, this is not guaranteed in general. Trying to d
with the most general case, we assume here thad
2(nf n

2mn
2 is some number not necessarily equal to ze

Clearly, our result presented below will also be applicable
the case when the topological susceptibility is zero outsid
the volumeM andd5(nf n

2mn
2 . In accordance with our pre

vious calculations, the vacuum energy density inside of
domainM is Einside5E vac

(1)1 1
2 u2d. Let us now turn to the

vacuum energy density outside of the volumeM. As we
assumed, the topological susceptibility is not necessa
zero outside ofM. Hence, the three-form field can propaga
in that region too andFmnabÞ0 outside ofM in the general
case. As a result, there exists some nonzero vacuum en
density outside ofM. In analogy with the previous case on
derives the following expression for the vacuum energy d
sity Eoutside5E vac

(1)1 1
2 u2(d2(nf n

2mn
2). This value is less than

the energy density inside of the volumeM. Thus, there is a
positive energy density excess inside ofM. The expression
for the corresponding energy excess in the subvolume ta
the form

DE5
1

2
u2DxVM . ~16!

Here Dx[x inside2xoutside5(nf n
2mn

2 is the difference be-
tween the topological susceptibility defined inside and o
side of the subvolume. As we mentioned, Eq.~16! is also
valid in the particular case when the topological suscepti
ity equals to zero outside of the volumeM. In that case
Dx5(nf n

2mn
25d and the energy difference in Eq.~16! co-

incides with the energy of theCP odd part inside of the
volumeM.

There are two basic questions to be elucidated here. F
of all why would any distinguished subvolume exist in t
YM vacuum? The reason, as we already mentioned abov
the screening of the topological susceptibility. This natura
provides finite domains in the YM vacuum with the positi
vacuum energy excess in accordance with Eq.~16!.

The second question is what happens with this finite v
ume if it is allowed to flow freely to a stationary state. Th
system will tend to minimize the energy given in Eq.~16!.
The expansion is not an energetically allowed process.
alternative possibility for the system is to squeeze its volu
down as much as it is possible. In that case the RHS of
~16! would be decreasing. In other words, there should be
inward pressure acting on the system and tending to squ
its volume down. That pressure is due to the positive diff
ence between the energy densities in the interior and exte
of the domain. Hence, one concludes that the system
tend to minimize its energy by squeezing its volume dow
or decreasingVM in Eq. ~16!.

At first glance such a system is unstable and should
lapse to a point. However, that would be a wrong conclusi
The point is that we did not yet take into account pertur
tions of YM fields which should get excited inside ofVM
while the system is shrinking its volume down. Those ex
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tations could stabilize the system. The energy of those e
tations, identified in Eq.~11! asE pert

(1) , provides an additiona
contribution to the total energy. Anticipating the results
the next section we present the expression for the total
ergy inside of the domainM

DEtotal5
1

2
u2DxVM1

~positive number!

VM
1/3

, ~17!

where the first term is related to theCP odd part of the initial
action and the second one is the contribution of perturbati
of the CP even part.

The structure of this equation allows one to minimize t
quantityDEtotal(VM) with respect toVM and find an optimal
value of the three-volume occupied by the system. We tr
this physical system as a model for a pure YM glueball sta
The spectrum and some properties of that system are stu
below.

III. YANG-MILLS VS CLOSED MEMBRANE SPECTRUM

It was shown in the previous section that the scree
topological susceptibility leads to a positive energy dens
excess inside of some finite volume. The system tends
minimize that volume. The compression of the volume co
tinues until some YM states are exited inside of that doma
Those states have nonzero energy, i.e.,^HYM&Þ0, where
HYM is the Hamiltonian density of YM theory~theCP even
part!. We mentioned already that the phenomenon descri
above is related to the fact thatx is screened. On the othe
hand, we saw that the effects responsible for the screenin
the topological charge should also be responsible for the
mation of the 021 glueball state. Hence, it is reasonable
identify those finite volume YM excitations with physica
021 glueball states.

In this section we study the spectrum of the physical Y
Hamiltonian in a finite volume. Under some approximation
elucidated below, the spectrum of YM theory resembles t
of a closed bosonic membrane with the topology of a sph
or torus@22,23#. One can use that analogy to derive the
lation between the spectrum of YM theory and that of
closed bosonic membrane. Using that relation and calcu
ing the spectrum for a closed spherical bosonic membr
we predict masses for two lightest pseudoscalar YM glue
states.

A. Studying the spectrum of Yang-Mills theory

Let us start with the physical Hamiltonian density of YM
theory. In order to stress the approximations we make
present the brief discussion of the Hamiltonian formalism
the theory~for detailed discussions see Refs.@48,49,50#!.

One starts with the Lagrangian density of pure YM theo
in Minkowski space-time

L52
1

4g2
Gmn

a Gmn
a .
5-9
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The canonically conjugate momentum is defined as the
rivative of the Lagrangian density with respect to the tim
derivative of the canonical coordinate and is given by

Pi
a52

1

g2
G0i

a .

The Hamiltonian density takes the form

H05
g2

2
Pi

aPi
a1

1

4g2
Gi j

a Gi j
a 1A0

a~Di Pi !
a, i , j 51,2,3.

This is not the physical Hamiltonian density yet. There a
extra degrees of freedom in this expression. The existenc
those extra variables is related to the gauge invariance o
theory.

The Lagrangian density does not contain time derivati
of the A0 field. As a result, the following primary constrain
appearsP0

a50.
Introduce@48# the so called ‘‘total’’ HamiltonianHT(t)

[*d3x(H01laP0
a), wherela(x) denotes a Lagrange mu

tiplier. Time evolution of a physical quantity is given by th
Poisson brackets ofHT and the quantity itself. Thus, on
needs to set conventions for the Poisson brackets. For
two ~bosonic! functionals A and B we use the following
expression:

$A,B%[E d3zS dA

dq~z!

dB

dp~z!
2

dB

dq~z!

dA

dp~z! D ,

whereq and p denote canonical coordinates and mome
respectively. Using this definition one finds that the cons
vation of the primary constraint$P0

a(x,t),HT(t)%50, leads
one to the secondary constraint in the form of the Gau
law Di

abPi
b50. One can also check that the conservation

the Gauss’s law is identically satisfied and no further c
straints are produced at this stage.

We are going to work in the axial gaugeA3
a50. Requiring

the conservation of the gauge condition$A3
a(x,t),HT(t)%

50, one derives the additional secondary constraintg2P3
a

2]3A0
a50. Finally, the conservation of that constraint lea

to the equation for determination of the Lagrange multipl
]3la(x)1]3] iAi

a(x)2 f abcA0
b]3A0

c50. Thus, the whole sys
tem of gauge conditions and constraints can be summar
as

F1
a5P0

a , F2
a5Di

abPi
b ,

F3
a5A3

a , F4
a5g2P3

a2]3A0
a .

The physical Hamiltonian in the axial gauge can be writ
in terms of the following physical variablesPm

a and Am
a ,

wherem51,2 @50#. In general, the straightforward procedu
implies the elimination of all nonphysical variables by so
ing ~wherever it is possible! constraint equations and subs
tuting those expressions back into the formula for the Ham
tonian. In most cases the result is a complicated nonlo
expression for the Hamiltonian. There is a formally simp
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way to follow, however. One can solve only some part of t
constraint equations keeping the rest of the constraints
solved and allowing some of nonphysical variables to
present in the Hamiltonian. Then, the physical system is
fined by that Hamiltonian accompanied by unsolved co
straint equations imposed on the physical states of the F
space. For our purposes we found it convenient to follow t
way. Using the conditionsF1

a50, F3
a50, and F4

a50 the
Hamiltonian density can be rewritten as

HYM5
g2

2
Pm

a Pm
a 1

1

4g2
Gmn

a Gmn
a

1
1

2g2
~]3A0

a!21
1

2g2
~]3Am

a !2, ~18!

where m,n51,2 and the expression contains the physi
variablesAm

a and Pm
a along with the nonphysicalA0

a . The
constraint which is still left relatesA0

a to the physical vari-
ables

]3
2A0

a1g2~DmPm!a50. ~19!

Thus, the system is defined by the Hamiltonian density~18!
and the constraint~19!.

Let us now turn to the discussion of the spectrum of
system ~18!,~19! which is placed in a finite three-volum
denoted byVM . Calculating the spectrum we are going
keep only ‘‘slow’’ modes, i.e., the modes with zero momen
but a nonzero energy. All the ‘‘fast’’ modes with nonze
momenta can be thought of as being integrated out. The
result of the corrections due to the fast modes is just a p
turbative splitting of the energy levels determined by t
slow modes20 ~for a detailed discussion see Ref.@21#!.
Adopting that approximation one can drop all the spa
derivatives in the expression for the Hamiltonian and co
straint equation assuming that all the canonical variables
pend on the time variable only.

Let us turn to the Hamiltonian instead of the Hamiltoni
density. Dropping all the spatial derivatives one writes do

HYM5
g2VM

2
Pm

a Pm
a 1

VM

4g2
~ f abcAm

b An
c!2.

It is convenient to perform the following rescaling of th
canonical variables

Am→
g2/3

VM
1/3

Am and Pm→
1

g2/3VM
2/3

Pm .

20The crucial point in this discussion is that the spectrum is c
culated in a small volume limit. As we mentioned in Sec. I, th
corresponds to the weak coupling approximation. As a result,
rections due to the fast modes are of orderg2/3/4p5(as /16p2)1/3

@21# and can be neglected in the leading approximation.
5-10
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MODELING THE GLUEBALL SPECTRUM BY A CLOSED . . . PHYSICAL REVIEW D 58 094015
The new, rescaled variables are dimensionless. In term
these variables the expression for the Hamiltonian takes
form

HYM5
g2/3

VM
1/3F1

2
Pm

a Pm
a 1

1

4
~ f abcAm

b An
c!2G ~20!

and the constraint equation is given as follows:

f abcAm
b Pm

c 50, m51,2. ~21!

This is the system which defines the spectrum.21 The first
thing to notice is that the potential in Eq.~20! has flat direc-
tions. Thus, one would expect a continuous spectrum with
a mass gap. However, it was proved in Ref.@51# ~see also
Ref. @21#! that in the quantum theory, contrary to the nai
classical expectation, the operator defined in Eq.~20! has
only discrete positive eigenvalues. As a result, the follow
expression for the spectrum emerges:

Epert
~1 ![^HYM&5E pert

~1 !VM5
g2/33~positive number!

VM
1/3

.

This expression was used earlier in Eq.~17!. The exact cal-
culation of the positive numbers occurring in the express
above is a complicated problem of YM theory. However,
it will be shown below, one can use some analogies
calculate the spectrum explicitly. We turn now to that d
cussion.

B. The membrane matrix model

It was shown some time ago@22,23# that the Hamiltonian
of a closed bosonic membrane in the light-cone gauge ca
reduced to the form given in Eq.~20!.

The variables substituting the gauge fields in that c
occur as coefficients of the harmonic expansion of the spa
coordinates on the membrane world surface. The two Ha
tonians, one for the membrane and the other one given in
~20! formally look similar.

The YM theory constraint~21! also has an analogue in th
case of the closed membrane theory. The constraint in
case is related to the residual reparametrization invarianc
the membrane action which is still left in the light-con
gauge.

Below we discuss briefly the membrane action and
way it reduces to the form given in Eq.~20!. Then we deduce
the matching condition relating the spectrum of the clos
bosonic membrane to the spectrum of YM theory. T
matching condition allows one to obtain the spectrum of Y
theory by calculating the spectrum of the closed boso
membrane.

We present below only the basic features of the me
brane Hamiltonian construction in the light-cone gauge.

21The operator in Eq.~20! acts on functionals of the canonica
variable while the momentum operator is defined asPm

52 i (d/dAm).
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details we refer to the original papers@22,23#.
The membrane action in flat Minkowski space-time c

be written as

Sm52TE d3sAudet gi j u, ~22!

whereT is the membrane tension, the constant with the
mensionality of mass cubed,s0 ,s1 ,s2 are the coordinates
on the membrane world volume,gi j denote the component
of the induced metric in the membrane world volume

gi j ~s![
]Xm~s!

]s i

]Xm~s!

]s j
, ~23!

whereXm , m50,1,2,3, are the space-time coordinates.
The membrane action is reparametrization invaria

Thus, in accordance with the Noether second theorem no
of the variables in the action are independent~as in gauge
theories!. One should carry out the gauge fixing procedure
is convenient to introduce the light-cone coordinates

X65
1

&
~X36X0!,

and choose the light-cone gauge

X1~s!5X1~0!1s0 .

The light-cone gauge does not completely fix the gauge fr
dom of the membrane action.22 As a result, there still is a
residual local invariance left. Hence, one should expec
have the Hamiltonian of the theory accompanied by a c
straint equation. The detailed discussion and the construc
of the Hamiltonian is given in Refs.@22, 23#. We present the
final result here. The expressions for the mass squared
erator and the constraint can be written as follows:

M2

2
5F1

2
Pm

aPm
a 1

T2

4
~gabcXm

b Xn
c!2G , ~24!

gabcXm
bPm

c 50 m51,2.

The canonical coordinates and momenta are the function
the time variable only. The coordinatesXm

a in this expression
are the coefficients of the harmonic expansion of the spa
time coordinatesXm on the surface of the membrane. F
example, if the membrane has the topology of a sphere,
the harmonic expansion mentioned above is just the exp
sion of the space-time coordinates in the basis of spher
functions

Xm~s!5 (
a51

`

Xm
a Ya~s1 ,s2!, a51,2 . . .`,

22As opposed to the case of a string action where in the light-c
gauge no freedom is left@52#.
5-11
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GREGORY GABADADZE PHYSICAL REVIEW D58 094015
whereYa(s)’s are the harmonic functions on the sphere.
If the membrane has the topology of a sphere or torus

harmonic functionsYa(s) form a representation of the Li
algebra of the SU~`! gauge group23 @22,23#. Thus, the SU~`!
gauge group appears due to the reparametrization invari
of the membrane action.24

The expression~24! resembles the Hamiltonian of the YM
system in the approximation given in Eq.~20! and in the
Nc→` limit. The constraint equations in the two cases a
also similar.

In order to make use of this analogy let us perform
following rescaling of the canonical variables25

P→T1/3P and X→T21/3X.

The new canonical variables are dimensionless. The exp
sion for the mass squared operator in terms of those varia
takes the form

M2

2
5T2/3F1

2
Pm

aPm
a 1

1

4
~gabcXm

b Xn
c!2G . ~25!

Thus, one concludes that the spectrum of a closed bos
spherical membrane is determined by the same differen
operator as the one for YM theory in the largeNc limit.26

Matching this expression with Eq.~20! one finds the relation
between the spectrum of YM theory in a finite volume a
the spectrum of the closed bosonic membrane

En
YM5

g2/3

V3
1/3

Mn
2

2T2/3
, ~26!

whereMn’s are the mass eigenvalues defined by the oper
given in Eq. ~25!. The complimentary constraint equation
acting on the physical states ensure that the physical ei
functionals of the Hamiltonians in both Eqs.~20! and ~25!
are the functionals of ‘‘colorless’’~gauge invariant! variables
only. Indeed, in both cases the constraint equations~the
Gauss’s law and its membrane counterpart! serve as the gen
erators of the ‘‘gauge’’ transformations of the initial syste
Since those generators are supposed to annihilate any p
cal state~imposed as the Gauss’s law annihilating a sta!,
then all the physical eigenfunctionals should be gauge inv
ant.

23The SU~`! group~and its Lie algebra! should be understood a
a limit of the SU~N! group atN→`.

24The supersymmetric version of the membrane matrix mode
used for the formulation of the M theory in the infinite momentu
frame @53#.

25One can check that the rescaling procedures we perform lea
dimensionless canonical coordinates and momenta which satisf
commutation relation with the unity on its RHS.

26In both cases these differential operators act on the functio
of the canonical coordinates. Those functionals are annihilated
the constraint equations. The boundary conditions will be fixed la
during the actual calculations.
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In the next subsection we calculateMn
2 for a closed mem-

brane with the topology of a sphere and using the match
condition ~26! deduce the energy levels for the YM theo
excitations identifying them with the pseudoscalar glueba

C. Calculating the membrane spectrum

We start with a closed spherical membrane. The spa
time coordinates on the membrane world surface are give

Xm5@ t, r ~ t !sinu cosw, r ~ t !sinu sinw, r ~ t !cosu#,

0<u<p, 0<w<2p,

wherer (t) is the time-dependent radius of the membrane
The induced metric on the membrane worldvolume h

the following nonzero components:

gtt512 ṙ 2~ t !, guu52r 2~ t !, gww52r 2~ t !sin2u.

The action functional for the membrane takes the form

S52TE dtdudwr 2~ t !sinuA12 ṙ 2~ t !.

Thus, the Lagrangian can be written as follows:

L~ t !524pTr2~ t !A12 ṙ 2~ t !.

Calculating the canonically conjugate momentum

P5
]L~ t !

] ṙ
54pT

r 2~ t ! ṙ ~ t !

A12 ṙ 2~ t !
,

one derives the Hamiltonian for the spherical membrane27

H5AP2116p2T2r 4.

As we mentioned above we are looking for the mass squa
operator for the membrane@see Eq.~25!#. Thus, we need to
solve the following Schro¨dinger equation

Mn
2C~r !5S 2

d2

dr2
116p2T2r 4D C~r !,

with the boundary conditionsC(`)50 andC(0)50.
It is useful to turn to the dimensionless variablez defined

as

z[r ~16p2T2!1/6.

In terms ofz the Schro¨dinger equation takes the form

Mn
2

~16p2T2!1/3
C~z!5S 2

d2

dz2
1z4D C~z!. ~27!

is

to
he

ls
by
r

27The Hamiltonian looks similar to the one for a relativistic pa
ticle with the time-dependent massm(t)54pTr2(t) and describes
the pulsation of the spherical membrane.
5-12
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MODELING THE GLUEBALL SPECTRUM BY A CLOSED . . . PHYSICAL REVIEW D 58 094015
The Schro¨dinger equation with the quartic potential has be
extensively studied in the literature~for a review see Ref.
@54#!. The results of numerical calculations of the first t
eigenvalues can be found in Ref.@54#. Those calculations are
usually done for the potential defined on the wholez axis. In
our casez is defined on the positive semiaxis only. Thu
only the odd parity solutions are relevant for the pres
case. Those solutions have nodes atz50 and satisfy the
boundary conditionsC(0)50 andC(`)50.

Here, we present only the first two parity odd eigenvalu
of Eq. ~27!

M0
2

~16p2T2!1/3
52.393644,

M1
2

~16p2T2!1/3
57.335730.

Using these expressions and the matching condition~26! one
calculates the first two energy levels for the YM system
the finite volume

EYM
0 5

g2/3

VM
1/3

~16p2!1/3

2
2.393644, ~28!

EYM
1 5

g2/3

VM
1/3

~16p2!1/3

2
7.335730. ~29!

The numerical values for the energy levels are determined
the strong coupling constantg and also by the volume of th
domainM. The strong coupling constant is supposed to
taken at the scale appropriate for corresponding gluebal

Let us take Eqs.~28! and~29! and substitute them into Eq
~17!. This leads to the expression for the total energy ins
of the finite volume we are discussing

DE~VM!5
1

2
u2DxVM1

un
2

VM
1/3

, ~30!

where in accordance with Eqs.~28!,~29!

u0
25g2/3~2p2!1/32.393644

and

u1
25g2/3~2p2!1/37.335730. ~31!

The expression~30! can be minimized with respect to th
value of the three-volumeVM . We denote the optimal valu
for the volume byV̄, hencedDE(VM)/dVMuV̄50. Using
this condition and taking the derivative of Eq.~30! one finds

1

2
u2Dx.

1

3

un
2

V̄4/3
, ~32!

and the value of the total energy for the optimal volume
09401
n

,
t

s

y

e

e

DE~V̄n![mn'
4

3

un
2

V̄n
1/3

. ~33!

Here, we denote bymn the mass of the correspondingnth
glueball and byV̄n the corresponding optimal value of th
volume element. Thus, knowing the value of the strong c
pling constant at the scale appropriate for the lightest gl
balls ~which is about 1.5–2.5 GeV! and also knowing the
value of the effective size of the YM 021 glueball state one
can predict the value of its mass by means of Eq.~33!.

We present below the results of calculations for three d
ferent values of the strong coupling constantas . The reason-
able estimate for the lightest pseudoscalar glueball radiu
R050.7– 1.0 fm @34,29#. The size of the second excite
glueball stateR1 is not known. However, using Eqs.~32! and
~31! one can estimate thatR1'1.3R05(0.9– 1.3) fm. The
results of numerical calculations of glueball masses for th
values of the coupling constant and radii are presented
low.

as50.3:

R050.7 fm, m052340 MeV, R150.91 fm,

m155520 MeV,

R050.8 fm, m052050 MeV, R151.04 fm,

m154830 MeV,

R050.9 fm, m051820 MeV, R151.17 fm,

m154300 MeV,

R051.0 fm, m051640 MeV, R151.30 fm,

m153870 MeV.

as50.35:

R050.7 fm, m052470 MeV, R150.91 fm,

m155800 MeV,

R050.8 fm, m052160 MeV, R151.04 fm,

m155090 MeV,

R050.9 fm, m051920 MeV, R151.17 fm,

m154520 MeV,

R051.0 fm, m051730 MeV, R151.30 fm,

m154070 MeV.

as50.4:

R050.7 fm, m052580 MeV, R150.91 fm,

m156080 MeV,
5-13
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GREGORY GABADADZE PHYSICAL REVIEW D58 094015
R050.8 fm, m052260 MeV, R151.04 fm,

m155320 MeV,

R050.9 fm, m052010 MeV, R151.17 fm,

m154730 MeV,

R051.0 fm, m051805 MeV, R151.30 fm,

m154260 MeV.

These predictions can be compared with the result of
lattice calculation for the lightest pseudoscalar glueball m
m052.360.2 GeV @6#. We should stress that the mass
presented above give just the largeNc approximation to the
actual values. We regard these numbers as reasonable
mates for the pseudoscalar glueball masses.

Let us now discuss an interesting consequence of
~32!. If one knew the effective size of the glueball and al
the value ofDx, then one would be able@using Eq.~32!# to
calculate the value of theu parameter

u2'
2

3

un
2

V̄n
4/3Dx

.

In general, the value ofDx is not known. However, in orde
to get an order of magnitude estimate foru one can crudely
approximateDx by the lightest glueball contributionf 0

2m0
2

multiplied by the number of 021 glueballs in the spectrum
of the model ~let us call that numberN): Dx'N f0

2m0
2

'N(200 MeV)4 @32,33#. Then, if as50.3 and the lightest
glueball radiusR050.8 fm theu parameter should be equ
to u'6/AN. One can also estimate the magnitude ofu for
different values of the radius. Generically, if the value ofN
is not too large, the magnitude ofu is of order of the unity or
so.

Some comments are in order here. First of all the estim
for theu parameter presented above appears as a result o
physical picture of the glueball formation discussed in t
work. However, the method of modeling the glueball sp
trum by means of the membrane Hamiltonian does not
pend on a particular mechanism of the formation of glu
balls. Indeed, whatever the mechanism of the formation
the glueball can always be regarded in some extent as a c
domain of space where the YM excitations are confined
the spectrum of which is determined by the YM Hamiltoni
given in Eq.~20!.

The second comment concerns the strongCP problem. In
this work we deal with pure YM theory. No light quar
degrees of freedom were included. The large value of thu
parameter that we derived should somehow be neutral
when quark degrees of freedom are taken into account.

There are some possibilities for that. We list below thr
of them.

In full QCD the parameter which defines the magnitude
the strongCP violation is the sum of theu angle used in this
work and the phase of the determinant of the quark m
matrix, arg detM. It is possible that those two contribution
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compensate each other and the strongCP violation, being
present in pure YM theory, does not appear in full QC
This might lead to an interesting pattern of mixing betwe
the pseudoscalar glueball and theh8 meson.

The second possibility is realized if one has a mass
quark in the model. In that case theu dependence can b
eliminated from the QCD Lagrangian by an appropriate c
ral rotation of that quark field. What happens with the glu
ball state in full QCD remains to be studied.

Finally, one can argue~using the results of Refs.@18,17#!
that in full QCD theh8 meson, mediating interactions be
tween topologically charged objects, provides a suffici
~from the experimental point of view! screening of the topo-
logical susceptibility even in the massive theory. In terms
Eq. ~9! that can be understood by including theh8 contribu-
tion on the RHS and deducing a Witten-Veneziano type
lation. More detailed studies of full QCD are needed in ord
to determine which of the above scenarios~if any! can actu-
ally be realized.

DISCUSSIONS

In this paper we studied some properties of the Y
vacuum which should be responsible for the formation of
021 glueball states. The properties of the correlator of
vacuum topological susceptibility as a function of the vo
ume elementV are discussed. In the weak coupling~small
volume! approximation it is an increasing function of th
argument. Increasing the volume continuously the the
passes through a crossover region after which it should
regarded as a strongly correlated one. Above the cross
region the topological susceptibility becomes a rapidly d
creasing function of the argument and reaches its asymp
value ~not necessarily zero! in the large volume limit. Thus,
the value of the vacuum topological susceptibility
screened if the strong coupling regime of the theory is c
sidered.

It is shown that the presence of theu angle in the theory
along with the screening phenomenon can lead to the for
tion of a glueball state. An important ingredient of that sc
nario is the existence of the three-form composite fi
propagating the Coulomb-like interaction.

The spectrum of the YM Hamiltonian resembles in t
zero momentum approximation the spectrum of a clo
bosonic membrane. Using that analogy and calculating
spectrum of a closed bosonic membrane we estimate
masses of glueballs in the largeNc limit. The result for the
lightest 021 glueball is in agreement with the lattice predi
tion. We also predict the mass of the next-to-lightest glu
ball. This result can be checked in future lattice calculatio
In general, our approach allows us to compute the mas
any heavier glueball state~if such a state exists!. The method
of calculation of the spectrum is in general independent
the mechanism by which glueballs are formed in YM theo
and the YM vs the membrane Hamiltonian analogy utiliz
for that calculation can always be applied.

Notice that the largeNc arguments were not used whil
deriving Eq.~17!. The largeNc approximation was adopte
later on in order to calculate the ‘‘positive number’’ occu
5-14
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MODELING THE GLUEBALL SPECTRUM BY A CLOSED . . . PHYSICAL REVIEW D 58 094015
ring on the RHS of Eq.~17!. Thus, the approach and equ
tions presented in this work are not peculiar to theNc→`
limit. They should rather have some wider range of valid
beyond the largeNc approximation. For instance, the seco
term in Eq.~17! can be thought as a result of the uncertain
principle alone.

There are a number of interesting questions left out of
discussion in the present paper. First of all we did not disc
the fate of a scalar glueball. The effective Lagrangian
proach to the 011 channel of pure YM theory was deve
oped in Refs.@46,47#. One can apply the YM Hamiltonian v
the membrane Hamiltonian analogy to the calculation of
scalar glueball mass too. This last would correspond to
lowest parity-even solution of the Schro¨dinger equation~27!.
Hence, the scalar glueball would emerge to be lighter t
the pseudoscalar one. This is in agreement with wha
known from various lattice and theoretical studies@6,5#.
However, the mechanism of the formation of the scalar gl
ball can not be captured by our analysis.

We did not discuss here how colored degrees of freed
are confined inside of a finite closed volume. It was rat
assumed that QCD provides this property by some mec
nism. Formally, it was assumed that the operator in
Gauss’s law, being the generator of gauge transformati
should annihilate all the physical states. Thus, all those st
are supposed to be colorless states by the constructio
various models of hadrons, confinement can be warrante
imposing some boundary conditions on fields, as in the c
of the MIT bag model@39# or the model of Ref.@55#, or by
postulating some specific dielectric properties of the vacu
as in the case of the Friedberg-Lee model@56#. Some discus-
sions of these issues from the point of view of QCD can
found in Ref.@37#.

Finally, one needs to know what happens when qu
degrees of freedom are also included in the theory. In
case the mixing between theh8 meson and the glueba
should play an important role~if those two states exist simul
taneously!. Our discussion of the three-form field in that r
spect becomes crucial. It is known that theh8 meson couples
to the topological charge density, hence it couples to
three-form potential too. Thus, one can naturally couple
h8 meson to the glueball by means of the three-form fie
These and other related questions will be addressed
where.
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APPENDIX

In this appendix we consider the dispersion relation
the correlator of the vacuum topological susceptibility in m
mentum space. The space-time is assumed to be a Eucli
one. The correlator is defined as in Eq.~1!, Sec. I. Before we
09401
e
ss
-

e
e

n
is

-

m
r
a-
e
s,
es
In

by
se

m

e

k
at

e
e
.

se-

s-
-
o.

r
-
an

go further let us specify how singularities are handled in E
~1!. The product of two operators of the topological char
density is singular asx→0. The leading perturbative singu
larity at x→0 can be calculated:

TQ~x!Q~0!}
1

x8
1OS ln x2

x8 D .

Upon integration in Eq.~1! this expression yields a divergen
term. A simple way to handle the divergence is to allow
small momentumk to flow through the correlator treatin
x(V) as a zero momentum limit of the correspondi
momentum-dependent renormalized Green’s function

x~V!5 lim
k2→0

x ren~k2,V!

5 lim
k2→0

F E
V
eikx^0uTQ~x!Q~0!u0&d4xG ren

,

wherek is the regularizing momentum. This relation implie
that the limiting procedure is supposed to be carried out a
the integration and renormalization of the divergent parts
already done in momentum space. In what follows we ad
this prescription.

Another type of divergence occurring in Eq.~1! is related
to thex→` limit. In that limit

^0uTQ~x!Q~0!u0&→^0uQu0&^0uQu0&.

Supposing that generically the vacuum expectation va
~VEV! of the topological charge density might not be zero
a CP violating model, one gets the divergence in Eq.~1! as
V→`. In order to eliminate this divergence one can wo
with the subtracted correlator. This amounts to saying t
the actual integrand in Eq.~1! is the function with the fol-
lowing subtraction:

^0uTQ~x!Q~0!u0&2^0uQu0&^0uQu0&.

The subtracted function goes to zero in thex→` limit. The
coordinate-independent subtraction term does not affect
analysis and was dropped for simplicity in Sec. I. It will als
be omitted below. In what follows we show that continuu
contributions vanish in the limitk2→0.

The dispersion relation for the correlator of the vacuu
topological susceptibility in momentum space can be writ
as

x~k2!5x~0!1x8~0!k21
k4

p E
mG0

2

` r~s!ds

s2~s2k2!
, ~A1!

wherer(s)[Imx(s1ie). The correlator at zero momentum
is denoted byx~0!. The quantityx8(0) stands for the deriva
tive of the correlator with respect tok2 at k250.

In order to make the integral convergent, and also to
count for the correct asymptotic behavior of the correlat
function atk2→`, we have introduced the subtraction term
in the dispersion relation~A1!. The dispersion relation in the
form given in Eq.~A1! is not convenient for our purposes. I
5-15
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the limit k2→0 it turns into a trivial identity. One needs t
rewrite Eq.~A1! in a form similar to the one given in Eq.~6!.
For this purpose let us use the following identity:

k4

s2~s2k2!
5

1

s2k2
2

1

s
2

k2

s2
.

Substituting this formula into Eq.~A1! one rewrites the dis-
persion relation in the following form:

x~k2!5d01b0k21
1

p E
mG0

2

` r~s!ds

s2k2
, ~A2!

where

d0[x~0!2
1

p E
mG0

2

` r~s!ds

s
,

b0[x8~0!2
1

p E
mG0

2

` r~s!ds

s2
.

The form of the relation given in Eq.~A2! is very formal
one. The constantsd0 , b0 , and the integral on the RHS ar
divergent quantities. When these terms are put togethe
divergences cancel and the whole expression is finite.
divergences mentioned above are related to perturbative
tributions to the spectral density. Thus, it is convenient
separate nonperturbative and perturbative terms. We fou
useful to apply the decomposition usually adopted in Q
sum rule calculations@41#. One decomposes the expressi
for the spectral density

r~s!5rnp~s!1rpt~s!q~s2s0!,

where the superscripts np and pt denote nonperturbative
perturbative terms, respectively. Hereq denotes the step
function. The constants0 sets the continuum threshold~or
the duality interval! @41# and by the definitions0.mG0

2 . It is

assumed in this approach that resonance contributions
defined by the nonperturbative part of the spectral dens
One also supposes that due to asymptotic freedom
tinuum contributions above the continuum threshold can
approximated by leading perturbative terms@41#.

Let us make the same formal decomposition for the qu
tities d0 andb0 :

d05d1dpt, dpt52
1

p E
s0

` rpt~s!ds

s
,

b05b1bpt, bpt52
1

p E
s0

` rpt~s!ds

s2
.

Here d and b are the quantities determined by the comp
cated vacuum structure of YM theory. As we mentioned
09401
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ready, in the weak coupling approximation with nonintera
ing instantonsd is defined as the value of the topologic
susceptibility of a dilute instanton gas in the large volum
limit of pure YM theory. The quantityd appears in Eqs.~5!
and ~6!–~8! in the text. Finally, using all the expression
given above one derives

x~k2!5d1bk21
1

p E
mG0

2

` rnp~s!ds

s2k2
1

k4

p E
s0

` rpt~s!ds

s2~s2k2!
.

~A3!

We should notice here that Eqs.~A3! and ~A1! differ from
each other by some formal redefinitions. Moreover, Eq.~A3!
is written adopting some particular scheme of separation
tween perturbative and nonperturbative contributions. T
procedure is not unambiguous. In that respect, Eq.~A3!
should be regarded as an expression defined within
framework of the particular prescription outlined above.

Now one can use the fact that the quantityk2 is a regu-
larizing momentum. Thus, one can assume thatk2 is very
small, so that the conditions0@k2 is readily satisfied. The
last integral on the RHS of Eq.~A3! can be expanded in a
power series of the ratiok2/s0 ~since that integral is conver
gent!. Performing the expansion, and then Fourier transfo
ing Eq. ~A3! with the weight 1/(2p)4, one derives the ex-
pression for the correlator̂ 0uTQ(x)Q(0)u0& in the
following form28:

^0uTQ~x!Q~0!u0&5dd~4!~x!2b]2d~4!~x!

1
1

p E
mG0

2

`

rnp~s!DF~Asuxu!ds

1
1

p (
n52

`

~21!nE
s0

` rpt~s!

s S ]2

s D n

3d~4!~x!ds. ~A4!

Equation~A4! is a general form of the expression given
Eq. ~6! in Sec. I. In order to reproduce the sum on the RH
of Eq. ~6! one needs to make the following substitution
Eq. ~A4!:

rnp~s!52p(
n

f n
2mn

4d~s2mn
2!.

Some terms on the RHS of Eq.~A4! with derivatives of the
Dirac delta function yield vanishing contributions upon int
gration in Eq.~1!. For that reason those derivative containi
terms were omitted in Eq.~6!.

28We use the following normalization for the delta functio
d (4)(x)5@1/(2p)4#*2`

1`eikxd4k andd (4)(k)5*2`
1`e2 ikxd4x.
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@21# M. Lüscher, Nucl. Phys.B219, 233 ~1983!.
@22# J. Hoppe, in Proceedings of the Workshop ‘‘Constraint

Theory And Relativistic Dynamics,’’Florence, Arcetri, Italy,
May, 1986, edited by G. Longhi and L. Lusanna~World Sci-
entific, Singapore 1987!.

@23# B. de Wit, J. Hoppe, and H. Nicolai, Nucl. Phys.B305, 545
~1988!.

@24# J. Collins, Renormalization ~Cambridge University Press
Cambridge, England, 1984!.
09401
.

.

l.

.

@25# C. G. Callan, Jr., R. Dashen, and D. J. Gross, Phys. Rev. D17,
2717 ~1977!.

@26# G. t’Hooft, Phys. Rev. D14, 3432~1976!; 18, 2199~E! ~1978!.
@27# N. J. Dowrick and N. A. McDougall, Nucl. Phys.B399, 426

~1993!.
@28# T. M. Macrobert,Functions Of A Complex Variable~Mac-

millen, London, 1938!.
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