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Experimental tests of factorization in charmless nonleptonic two-bodyB decays
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Using a theoretical framework based on the next-to-leading-order QCD-improved effective Hamiltonian and
a factorization ansatz for the hadronic matrix elements of the four-quark operators, we reassess branching
fractions in two-body nonleptonic decalgs—PP,PV,VV, involving the lowest-lying light pseudoscalaP)
and vector ¥) mesons in the standard model. We work out the parametric dependence of the decay rates,
making use of the currently available information on the weak mixing matrix elements, form factors, decay
constants, and quark masses. Using the sensitivity of the decay rates on the effective number t cobs's,
a criterion of theoretical predictivity, we classify all the current-currigrge and penguin transitions in five
different classes. The recently measured charmless two-Bedf P decays B*—K* %', B°—K%»’, B®
—K*7~, B*—#7"K° and charge conjugatesre dominated by thél.-stable QCD penguin transitions
(class-1V transitionsand their estimates are consistent with the data. The measured chaBwnid®¥ (B*
—wK*, B*—wh") andB—VV transition 8— ¢K*), on the other hand, belong to the peng(ifass-Vj
and tree(class-I) transitions. The class-V penguin transitions Blgesensitive and/or involve large cancella-
tions among competing amplitudes, making their decay rates in general more difficult to predict. Some of these
transitions may also receive significant contributions from annihilation and/or final state interactions. We
propose a number of tests of the factorization framework in terms of the ratios of branching ratios for some
selectedB— h;h, decays involving light hadronk; and h,, which depend only moderately on the form
factors. We also propose a set of measurements to determine the effective coefficients of the current-current
and QCD penguin operators. The potential impacBefh;h, decays on the CKM phenomenology is em-
phasized by analyzing a number of decay rates in the factorization framep@@%56-282(198)05119-4

PACS numbdps): 13.25.Hw, 12.38.Bx

[. INTRODUCTION QCD methods. Hence, a certain amount of model building
involving these hadronic matrix elements is at present un-
Recent measurements by the CLEO Collabordtig8] of  avoidable.

a number of decays of the tyfgg—h,h,, whereh, andh, The approach which has often been employed in nonlep-
are light hadrons such as,h,=nm, 7K, K,wK, have tonic heavy hadron decays is based on factorizaftérg].
triggered considerable theoretical interest in understandingvith the factorization ansatz, the matrix elements
two-body nonleptonid3 decays. These decays involve the (h,h,|H,|B) can be expressed as a product of two factors
so-called tredcurrent-currentb— (u,c) and/orb—s (orb  (h,;|3,|B)(h,|J,|0). The resulting matrix elements of the
—d) penguin amplitudes with, in general, both the QCD andcyrrent operators; are theoretically more tractable and have
electroweak penguin transitions participating. The approprineen mostly calculated in well-defined theoretical frame-
ate theoretical framework to study these decays is that of aorks, such as lattice QC[®—11], QCD sum rule§12—185,
effective theory based on the Wilson operator product expan; 4 potential model§8,16—18; some are also available
sion [3] obtained by integrating out the heavy degrees ofyq, yata on semileptonic and leptonic decfya]. One can

freedom, which in the standard mod&M) are the top quark then make quantitative predictions in this framework, taking

andW= bosons. This effective theory allows one to SEparatEfqto account the theoretical and experimental dispersion in

the short- and long-distance physics and one can impleme : . L
the perturbative QCD improvements systematically in thisrt]ﬂ'e input parameters in the decay rates. Factorization holds

In the limit that one ignores soft nonperturbative effects. The

approach. Leading-order corrections have been known for : o
quite some timé4] and in many cases this program has bee ationale of this lies in the phenomenon of color transparency
20], in which one expects intuitively that a pair of fast mov-

completed up to and including the next-to-leading-order cor- _ : ) ‘
rections[5]. Present QCD technology, however, does notn9 (energeti¢ quarks in a color-singlet state effectively de-
allow one to undertake a complete calculation of the exclucouples from long-wavelength gluons. In the decds
sive nonleptonic decay rates from first principles, such as>hihz, with typically E, ~O(mg/2), the energy of the
provided by the lattice-QCD approach, as this requiregjuarks leaving the interaction is large and soft final state
knowledge of the hadronic matrix elemergts,h,|He B), interactions should be small and hence factorization should
where He¢s is an effective Hamiltonian consisting of the be a good approximation. Final state interactions generated
four-quark and magnetic moment operators. These are toay hard gluon exchanges are, however, perturbatively calcu-
complicated objects to be calculated with current latticedable and can be included. The phenomenology of the factor-
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ization hypothesis in the decayB—D®)x(p), B a decay in the factorization approach can become sitgll:
—J/yK*) and related ones, involving so-called current-the effective coefficients of the various operators entering
current amplitudes, has been worked out and compared witinto specific decays are small, reflecting either their intrinsic
existing data with the tentative conclusion that data in theséperturbative values, implying they are small fd¥.=3, or
decays can be described in terms of two phenomenologic#heir N, sensitivity, meaning that they are small for some
parameters,; anda, [8], whose values seem to be universal phenomenologically relevant value df.; (i) due to
[18,21]. Cabibbo-Kobayashi-MaskawéCKM) suppression orfiii)

The decay8—h;h, have been studied repeatedly in the due to delicate cancellations among various competing Feyn-
factorization framewor22—-26. However, with the mea- man diagrams, resulting into an amplitude which is effec-
surements of some of ti@—h;h, decayd1,2], theoretical tively small. UsingN,, the effective number of colors, as a
interest in this field has resurged. In particular, a next-tovariable parameter, it becomes immediately clear that some
leading-log-(NLL-) improved perturbative framework with linear combinations of the effective coefficients entering in
updated phenomenological input has been used in a numbspecific decays are particularly sensitiveNg and they in-
of recent paperf27—31 to study the CLEO data. We would deed become very small for certain valuestef1/N.. This
like to take a closer look at the nonleptonic two-body decayshen implies that other contributions such as the ones coming
B—h;h,, in which QCD and/or electroweak penguin dia- from FSIs and/or annihilation may become important. A
grams are expected to play a significant role. good case to illustrate this is the decBy —K=K, whose

There are several theoretical issues involve®irh,h, decay rate may be enhanced by an order of magnitude due to
decays, which one does not encounter in the transitns FSIs[40] and/or annihilatiorf43] contributions.

—Hh,, where H; is an open D™),D®*)) or bound In this paper, we undertake a comprehensive study, within
(3¢, e, x.) charmed hadron, or in decays such Bs the factorization framework, of all the two-body decay
—D¥)D™), which are governed by current-currefiteg ~ modes of the typeB—PP, B—PV, and B—VV where
amplitudes. In the case of inducéd-s andb—d transi- P(V) is a light pseudoscalafvectoy meson in the flavor
tions, penguin transitions play an important role. Of theséJ(3) nonet. Concentrating on the lowest-lying' Gand 1°
penguin transitions, the ones involving the top-quark can b&esons, there are some 76 such de¢agd an equal number
reliably calculated in perturbation theory as they represenfivolving the charge conjugate state$he branching ratios
genuine short-distance contributions. The rest of the penguifif these decays are found to vary over four orders of mag-
transitions, which involve both charm and light quarks, alsonitude. We calculate their decay rafésanching ratiosand
have genuine short-distance contributions which can be caWork out the most sensitive parametric dependence of these
culated using perturbation theory. Their importance in theduantities. In many cases the factorized amplitudes are small
context of directCP asymmetries has been emphasized redue to the reasons mentioned in the preceding paragraph.
peatedly in the literaturf82,33. However, in principle, such While this by itself does not imply an intrinsic inability to
penguin amplitudes may also involve significant nonperturcalculate, it becomes difficult to be confident if the rate is
bative (long-distancg contributions. Arguments for an en- additionally unstable, requiring a good deal of theoretical
hanced role of nonperturbative penguin effects have beefine-tuning in the factorization approach. We list all such
advanced in the literatuf@4]. In simpler cases, such as the fWo-body decay modes here and caution about drawing too
electromagnetic decay8— X+ y and B—K* +y, charm  guantitative conclusions on their widths based on the factor-
penguin transitions are likewise present and they introduc&ed amplitudes alone. We think that the sensitivity of some
1/mZ (and higher orderpower corrections akin to the long- ©f the effective coefficients on N, and the fine-tuning
distance effects being discussed in nonleptonic decays. [ffduired in some amplitudes can be used as a criterion of the

these cases, one finds that thend/power corrections are predictivity of B—h,h, decay rates in the factorization ap-
negligible [35—37. The same holds for the nonresonat proach. The pattern of color suppression in current-current

— X471~ decays[37]. The pattern of the i corrections amplitudes has been previously used 1o classifylbeasen-
remains to be investigated systematically for nonleptdnic sitivity of_these decays into t_hree cIa_s@% We_ extend this

— - i to also include the penguin-transition-dominated decays,
—(s,d)qq decays. However, it is suggestive that the nextyyhich belong either td\ -stable(class-I\) or N,-sensitive
to-leading-order QCD-improved framework based on factor{cjass-\j decays. In addition, penguin-transition-dominated
ization can explain most of the recent CLEO data withoutyecay amplitudes involving large cancellations are also in-
invoking a.S|gr?|f|cant nonperturbative penguin contrlbuthnduded in class V. All penguin-transition-dominates
[27,28. With improved measurements, this aspect will_,pp gecays belong to class IV. This class includes in par-
surely be scrutinized much more quantitatively. ticular the decaysB®—K*z~, B*—K" 7', B°-K%',

A related issue is that of the current-currént-ccs and  andB*— 7 "K®, measured recently by the CLEO Collabo-
b—ccd transitions feeding into thé@—sqgq and b—dqgq  ration[1] (here and in what follows, charge conjugate decays
transitions, respectively, bysoft) final state interactions are implied. On the other hand, the recently measured
(FSIs [38—-42. While in the oft-studied case dB— K B— PV andB— VYV decay modes by CLE(2] are in class
decays these effects are not found to be overwhelming fov (B*— K™ andB—K* ¢) or tree-level-dominated class
decay rates, yet, in general, it is not difficult to imagine situ-1ll (B*—w# ™). Possibly some of these, and many more
ations where FSIs may yield the dominant contribution to aexamples of class-V decays worked out by us here, indicate
decay width. There are three ways in which the amplitude fothat the factorization-based approach is rather uncertain in
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these decays and one may have to develop more powerful 0°< y=<1y,\/180°— yo= y<180° )
methods to make theoretically stable predictions in this class.
The factorization approach is expected to do a better job Lz

X . LS ollow, where vy, is the maximum value ofy, which are
accounting for class-IV decays—a claim which is pursue omplementary to the ones from the CKM unitarity fits

here and which is supported by. thg pre;ent data. [47,48. There are similar relations involving the deces
We propose tests of factorization iB—h;h, decays PV andB—VV, whereP=1,K andV=p,K*. A deter-

thrqugh measuring a number of ratios of the branching ra.tioﬁwination of the angley, however, requires knowledge af
Wh'Ch _d_epend only on the form factors but are o_therW|seand 6, in these processes. Also, the effect of the electroweak
insensitive to other parameters, such as the effective coeff
cientsa; and hencéN., quark masses, QCD-scale parameter,
and CKM matrix elements. The residual model dependenc
of these ratios on the form factors is worked out in two
representative casedi) the Bauer-Stech-Wirbel(BSW)

model[8] and(ii) a hybrid approach, based on lattice-QCD—
light-cone QCD sum rules, specifically making use of the
results obtained in the frameworks of lattice-QCDD,11]

and light-cone QCD sum ruld42,19. The proposed ratios this analysis are consistent with the ones following from the

W'"/;estf;ﬁﬁgtri'\fﬂggtirﬁhdeeggéﬂzggnﬂ;rm rfsl;(t:?]rfiés in aCKM unitarity fits. A similar analysis can be carried out for
q PP the decay8—PP,PV,VV, where nowP=#° 7= andV

o e lecle Coellcenicl %" Measurements of these decays and thrr ras
can be calculatéd in terms of the renormalized Wilson coefyvOUId aIIov_v one to draw inferences on the angie We
ficients in the effective Hamiltonian governing the decayslllust_rate th_ls in the context. of our modgl. The other kind of

. .~ 7relations discussed by us involves ratios of the decay rates
B—h,h,. Then, there are nonperturbative contnbutlonsdominated by theb—s and b—d penguin transitions, re-
which have to be determined phenomenologically. Of thes ’

. pectively. As pointed out in Ref50], these ratios can be
a, anda, govern the current-current amplitudes and theyused to determine the ratio of the CKM matrix elements
should be determined iB—h;h, decays without anyprior

prejudice. Four of thea;’s (as, . ..,ag) govern the QCD- [Via/Vil- S.'”Cft—*;'s CKM ratio WI”’. n principle, b.e mea-
penguin amplitudes and four more, . . . a,0) govern the sured also irB”-B* mixings and radiative and ser_nlleptonlc
electroweak-penguin amplitudes. We propose measuremerl@€ B decays[4?,5]], one could ChQCk. b consistency of
of selected branching ratiogsnd their ratios to determine such determma‘qons to reaqh quantitative conclusions about
the effective coefficienta,, a,, a,, andag from the first f[h? QCD dynam|cs at work in nonleptonic dec.ays. However,
six from data onB—h;h, decays in the future. Since the it is conceivable that some of the nonleptonic decays may

Wilson coefficients of the electroweak penguin operators irplready prc_)wde interesting information ohq before thg
the SM are rather small in magnituéexcept forCs), which other mentioned processes are actually measured. While not

in turn yield very small branching ratios for these decays ompgtitive in terms of eventual thepre’FicaI prgcisi'on, non-

determination ofa ay is a formidable proposition " Teptonic decays are nevertheless quite instructive in this re-
Ty s A] .

The coefficientag can be determined and we propose severa?peCt for the current CKM phenomenology.

: . : .. This paper is organized as follows: In Sec. Il, we discuss
m re this. We also i m in whi i I . ’
decays to measure this. We also list decay modes C{he effective Hamiltonian together with the quark level ma-

Benguin transitions has to be included. Having a definite
model, whose consistency can be checked in a humber of
flecays, one could determifithin a certain rangethe val-

ues ofz; and ;. Given data, this would allow us in turn to
determiney in a number of two-body nonleptoni® decays.

We draw inferences on the angjebased on existing data on

R, and in line with[27], we show that the allowed values of

v (or the CKM-Wolfensteir{49] parameterg and ») from

electroweak penguin transitiofisencea,, . .. ,a;0) do play . 4 . .
a noticeable role, and work out their corresponding branch!"X elergﬁr_]ts and the _numencgl V"’?'“es of the Wilson coeff-
ing ratios. cientsC; ' in the effective Hamiltonian approach. In Sec. IlI,

we introduce the factorization ansatz, define the relevant ma-
decays on the phenomenology of the CKM matféd. trix elements and discuss their evaluation in the BSW model

Here, we discuss relations of the type put forward byand in the hybrid lattice QCD or QCD sum rule approach.

Fleischer and ManndWU5] (see alsd46]) involving the de- The matrix elements f_or the three Cl?SS.BS_’PP’ B
cay rates ofB°—K 'z~ and B* K%, which can be —PV, andB—VV, obtained in the factorization approach,

used to determine cgswherevy is one of the angles of the are reIegateq to Appendb_(es A B, and. C, r_espectively. Sec-
CKM unitarity triangle, in terms of the ratio of the tree-to- tion IV contains a discussion of the various input parameters
penguin amplitude$E7T/P and 8, the strong phase shift (CKM matrix elements, quark masses, hadronic form factors,

difference involving these amplitudes. A bound orfsinan and mesonic constantsThe numerical input we use in the

be obtained, assuming that there are just the tree and QC stimates of branching ratios is collected in various tables. In
penguin amplitudes: ec. V, we tabulate the values of the phenomenological pa-
rametersy; for three values of the effective number of colors
(B’ 77 K™) o (N.=2,3¢) for the four cases of interedt—s, b—s, b
= (B — KO 1-2zcosycosd+z*=sirPy. —d, andb—d. This serves to show both the relative mag-
(1) nitude of the effective coefficients of the various operators in
B—h;h, decays in the factorization approach and also the

From this, constraints oy of the form stability of these coefficients against.. The classification

Finally, we explore the potential impact of tle—h h,
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of the B—h;h, decays is also discussed here. We also dis- 3 _

cuss the contribution of the annihilation amplitudes and list O,= ESaY“Lba'E eq'%mR%.

some decays of potential interest. Section VI contains the a’

numerical results for the branching ratios which we tabulate 3 _

for three specific values of the effective number of colors, 08=§Sa7"Lb5- > eq'd57.RA,,

N.=2,3p. The parametric dependence &n 1/N is shown a’

for some representative cases in various figures and com- 3 .

pared with data, whenever available. In Sec. VII, we list a Og= —say“Lba~2 eq,q/’gyﬂqu,
ql

number of ratios of branching ratios to test the hypothesis of 2

factorization and give their values for the two sets of form 3 .
factors(in the BSW and the hybrid lattice-QCD-QCD-sum- olozzsay“LbB- > €qd57.L0,,
rule approachgs We also discuss the determination of the q'

effective coefficienta, ... ,ag here through a number of

— 2 o v A A
relations. We estimate these ratios and make comparisons ~ Qg~ (95/8T)MyS, 0 R(N;5/2)D4G), -
with data, whenever available. The potential impact of theqere o and B are the SIB) color indices and)\Aﬁ, A
B—h;h, decay rates on CKM phenomenology is also dis-—1 g are th&ell-Mann matricest. andR are the left-
cussed here. Finally, we conclude in Sec. VIl with a sum-54 right-handed projection operators  with(R) =1

mary and outlook.

Il. EFFECTIVE HAMILTONIAN

A. Short-distance QCD corrections

—7vs (1+vys5), and wa denotes the gluonic field strength
tensor. The sum ovey' runs over the quark fields that are
active at the scalge=0(m,), i.e., (' €{u,d,s,c,b}). The
usual tree-levelW-exchange contribution in the effective
theory corresponds t®; [with C;(My)=1+0(as)] and

We write the effective Hamiltoniairc¢¢ for the AB=1 O, emerges due to the QCD corrections. The operators

transitions as

Ge
Heti=—7=

V2

+VepVeq(C107+ C,07)

VipVig(C107+ C,03)

10
—vtbv;*q( ;3 C/O, +cgog>

whereq=d,s andC; are the Wilson coefficients evaluated at
the renormalization scale. We specify below the operators
in He¢t for b—s transitions(for b—d transitions, one has to

make the replacemest-d):
OTZEC,y“Lua-UB'yMLbﬂ ,
OY=s,¥"Lug ugy,Lb,,
05 =S5,7*LC, Cgy,Lby,

ngguz‘y#Lc,B'EB’y#Lba ’

OSIQLz’yﬂLba'E E’BVMLq,m
q/

04:§a7’M|—bB'Z aéﬂﬂl-q,,w
q/

05:§a‘y#|—ba'z a;;')’Mqulaa
q/

Op=S.7"Lbp 2 ayy,R,

q

O3, ... ,0¢ arise from the QCD-penguin diagrams which
contribute in orderxg through the initial values of the Wil-
son coefficients ajt~ M,y [52] and operator mixing due to
the QCD corrections [53]. Similarly, the operators
05, ...,049 arise from the electroweak-penguin diagrams.
Note that we neglect the effects of the electromagnetic pen-
guin operator which we did not list explicitly. The effect of
(3) the weak annihilation and exchange diagrams will be dis-
cussed later.

The renormalization group evolution fropa~My, to
~my has been evaluated in leading order in the electromag-
netic coupling and to NLL precision in the strong coupling
ag [54]. Working consistently to NLL precision, the coeffi-
cientsCq, ... ,Cygare needed to NLL precision, while it is
sufficient to use the LL value foCy. These coefficients
depend on the renormalization scheme used. To obtain nu-
merical values for th&; we must specify the input param-
eters. We fix ag(M,)=0.118, a.,(M,)=1/128, and u
=2.5 GeV. Then, in the naive dimensional regularization
(NDR) scheme, we have

(4)

C,=1.117, C,=-0.257,
C5;=0.017, C,=-0.044,
C5=0.011, C4z=-0.056,
C,=—1X107% Cg=5x10*%
Cy=-0.010, C4,=0.002,
Ce''=-0.158. (5
Here, C¢''=Cy+Cs. From the electroweak coefficients

Cs, ...,Cqg, Only Cq has a sizable value compared to the
coefficients of the QCD-penguin transitions; its major con-
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tribution arises from th&-penguin transition. Note that the . ow
scale (1) and scheme dependence of the Wilson coefficients Cg =Coq+ B e
will cancel against the corresponding dependences in the ma-
trix elements of the operators f.¢¢, as shown explicitly in
[54]. Since the matrix elements given below are obtained in
the NDR scheme, we have listed the values of the Wilson
coefficientsC; also in this scheme.

eff_
ClO_ClO-

We have separated the contributiofg, C,, and C,
arising from the penguin-type diagrams of the current-
current operator®; ,, the penguin-type diagrams of the op-
eratorsO3;—0g, and the tree-level diagram of the dipole op-

To NLL precision, the matrix elements @f.¢; are to be  erator Oy, respectively. Note also that we follow the
treated at the one-loop level. The one-loop matrix elementprocedure of Ref[27] of including the tree-level diagrams
can be rewritten in terms of the tree-level matrix elements of, _, g, s¢'q’ associated with the operatoy, into the con-

the effective operators tribution C, appearing in the expressions ffiref So we
have the hadronlc matrix elements of four- quark operators
(sq'q'|Heti|b) = E Cf’”(u)<sq’a’|0j|b>”ee. (6)  only. The process-independent contributions from the vertex-
L type diagrams are contained in the matricgsandy,,. Here
vy is that part of the anomalous matrix which is due to the
vertex (and self-energycorrections. This part can be easily

extracted fromy(®) in Ref. [54]:

B. Quark-level matrix elements

In the NDR renormalization scheme and for SU{3he
effective coefficients multiplying the matrix elements
(sq'q’|O{P|b)"*® become (y, and yy, are the transpose of
the matrices given below

-2 6 0 0 o
csif= C1+—( V—l—yvlog—) Ci+--, (7) 6 -2 0 0 0 0
4 3 0 0 -2 0 0

w=[ o o 6 -2 0 o0 [
cs''=c,+ (V+yvlog—) Cj+---, 0 O 2 -6
2 O 0 0 0 0 -16

la
cs''=c,— (ct+c »+Cy) _ _ _
The matrix Iy contains constant, l.e., momentum-

independent, parts associated with the vertex diagrams. This

+4—( ry+ 7v|09— Cit+---, matrix can be extracted from the matnixdefined in Eq.
3] (2.12 [and given explicitly in Eq(4.6)] by Buraset al. in
1 Ref. [54]:
cef'= Cat 54 (c +C,+Cy) .
- =7 0 0 0 0
3
4—(rv+ yvlog— Ci+---, 7
4j -7 = 0 0 0 O
3
eff la 63
CE'=Cs— 5 4 (Ct+C o+ Cq) o o 8 7 o o
27
As| 1 T mb) v 7 (
+—r,+ lo Ci+---, 0 0 -7 = 0 0
477. \Y 7V g? 6i ] 3
1la 0 0 0 0 L 1
cel'= Cot 57 (Ct+C +Cy) 3
35
o 0 0 0 0 -3 %
+4 V+y\,log—) Ci+---,

6j
Note that thew dependence and the scheme dependence of
ey . . . .
Cc¥'=C,+ ——C,, the vertex correction diagrams are fully taken into account in
Eq. (7) by the terms involving the matriceg, andr,,, re-
spectively. There are, however, still scheme-independent,
Ceff: C _ .pe . . . .
8 8 process-specific terms omitted as indicated by the ellipses,
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and we refer td27] for a discussion of these omitted terms As we shall see later, the branching ratios considered here

in exclusive two-bodyB decays.
The quantitiesC;, C,, andCy are given in the NDR

scheme[after modified minimal subtraction schem §)
renormalization by

2

VguVaol2 2 k2
q'bVq'q q’
C=— 299 > 4 Jlog—r — AF,| — | |Cy,
t q’=u,c thvt*q 3 3 /—L2 2/
(10
c-cli:? m§+2| m AF(k2> AF(kz)]
=C3| 3 T 3100— + Zlog——AF;| — | Ak —
P 3 3 Tt 3l m? m;
2 m k2
+(C4+Cy) Zlog——AF,| —| |, (1D
i=u,d,s,c,b 3 MZ mi
2m
Co= Mol (12

with C&''=Cy+Cs. The functionAFy(2) is defined as

AF(2)=—-4 joldx X(1—=x)log[1—z x(1—x)—ie].
(13

The corresponding electroweak coeffici€htis given by

8 VgV
Ce=—5(3Ce#+Cy) 2 —— 7~
q’=u,c thth
2

2 2 aF
373" 2

2

X (14

2
q/

Note that the quantitie€; and C. depend on the CKM
matrix elements. In addition, the coefficier@§™ depend on

are not sensitive to the value kf if it is varied in a reason-
able range.

lll. FACTORIZATION ANSATZ FOR THE HADRONIC
MATRIX ELEMENTS OF THE FOUR-QUARK
OPERATORS

We have now to calculate the hadronic matrix elements of
the type(h;h,|O;|B), whereO; are the four-quark operators
listed in the preceding section. These will be calculated in
the factorization assumption, which in the present context
has been explained in a number of papeee, for example,
Ref. [27]). To recapitulate briefly, the hadronic matrix ele-
ments involving four-quark operators are split into a product

of two matrix elements of the generic tygh,|qb|B) and

(h,|q’q’|0), where a Fierz transformation is used so that the
flavor quantum numbers of the quark currents match those of
the hadrons. Since using the Fierz transformation yields op-
erators which are in the color singlet-singlet and octet-octet
forms, this procedure results in general in matrix elements
which have the right flavor quantum numbers but involve
both singlet-singlet and octet-octet operators. No direct ex-
perimental information is available on the latter. In the fac-
torization approximation, one discards the color octet-octet
piece and compensates this by introducing a phenomenologi-
cal parameter which determines the strength of the singlet-
singlet contribution, renormalizing it from its perturbative
value. The hadronic matrix elements resulting from the fac-
torization are calculated in a model or determined from data,
if available.

To set our notation and introduce some auxiliary quanti-
ties which we shall need for numerical calculations, we il-
lustrate the salient features of our framework below. When a
pseudoscalar meson is a decay product, such as in the decay
B— PP, there are additional contributions from thé&/ (
+A) penguin operator®g and Og. After Fierz reordering
and factorization they contribute terms which involve a ma-
trix element of the quark-density operators between a pseu-
doscalar meson and the vacuum. Ey involving ab—s

k2, wherek is the momentum transferred by the gluon, pho_transition (in the b—d transitions is replaced byd), for

ton, orZ to the quark-antiquark pag’q’ in b—qqg’q’. In
two-body decays any information def is lost in the factor-

example, this is given by

ization assumption. However, given a specific model for the
momentum distributions of the quark-antiquark pair inside
the hadron, the partonic distributions calculated here can be
folded with this distribution, as, for example, has been done
in [55]. Since we are interested here in the dec®s Using the Dirac equation, the matrix elements entering
—hihy, wherehy,h; are light mesons, it is not unreason- here can be rewritten in terms of those involving the usual
able to assume that this smearing will be very similar in all(\v-A) currents:

the decays being considered. In particuld?) is expected

to be comparable in these decays. However, the actual value (P,P,|Og|B)=R[P,P,](P;P,|0,4|B)+[P;<P5] ,

of (k?) is model dependent. From simple two-body kinemat- a
ics[56] or from the investigations in Ref55] one expect&?

<P1P2|06|B>=—2§ ({(P1/sRq|0)(P,|qLb|B)

+[P1=P3]). (16)

to be typically in the range with
2 2 2M?2
mb 2 mb _ P1
- - R[P,,P,]= . 18
2 =k°= > - (15 [P1,P] (Mg +Mg) (My— M) (18
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Here,ms andm,, are the current masses of the quarks in theonly the coefficientsa; and a, are determined. Note that

mesonsP,; and P,. The same relations work fdDg. Fi- QCD does not demand the equalityaf anda, from these
nally, one arrives at the form decays and from the on&— h;h,, though their values may
) ) come out to be close to each other. Hence, all ten quantities
(P1 P3| He B) =Z1(P1|j#|0)(P2lj ,|B) a; should be treated as phenomenological parameters and

” cr fitted from data orB—h,h, decays.
+2Z5(P,|j"#|0){P B), (19 ; c 12 . :

2(P2li"|OX 1““' ) (19 Returning to the discussion of the hadronic matrix ele-

wherej, andj’, are the correspondin@eutral or charged ~Ments, we recall that when a vector meson is involved in a
Iz 1z ;

V-A currents. The quantitie&, andZ, involve the effective ~decay, such as iB—PV andB—VV decays, we need also
coefficients, CKM factors, anGg. The 0" —0~ form fac- the B—V form factors, which are defined as follows:
tors are defined as follows:

(V(py)|V,—A,IB(pg))

_ Vk N ZV(qZ)
- Eﬂuaﬁe poV(mB+mV)

2 2
(P1(py)|ay,Lb[B(pg))=| (Pg+P1) .~ Tqﬂ

2 2
Mg —mj
XF1(9%) + 7 Aq.Fo(d?),
*
. -q
(20) _|( €, = du | (Mg+my)AL(G%)
whereq=pg— p;. In order to cancel the poles gt=0, we (mé—m\z, Ay(q?)
must impose the condition i = ¥ *
P +il (PstPV) @ (€ Ty
F1(0)=Fq(0).
. . 2mV( 6* : q) 2
The pseudoscalar decay constants are defined as —i—0q Ao(d9), (24)
q

(P(p)|ay“Lq’|0)=if pp~. (21)

With this, we can write the required matrix element in
factorized form

i whereg=pg—py, and e* is the polarization vector oY/.
'S To cancel the poles af?=0, we must have

2myAo(0)=(mg+my)A;(0) — (mg—my)A,(0). (25

Ge « (1
(P1Pa|HetB) = |—2ququr N_Cci +C;

2

B—P
X fpz(mé—mi)Fo 1(m3)+(1e2). The decay constants of the vector mesons are defined as
22) follows:
The dynamical details are coded in the quantitigs which <V|a7MCI|0>= fy mye,,. (26)

we define as

P R _ This completes the discussion of the factorization ansatz.
a;=C/''+ N—Cie+1 (i=odd), The various input parameters needed to do numerical calcu-
¢ lations, including the form factors and meson decay con-

et oo stants, are discussed in the next section.
a;=C; +N—CCi,1 (i=even, (23
wherei runs fromi =1 to 10. Thus, we see that there are ten V. INPUT PARAMETERS
such quantities. They depend on the SM-input parameters, The matrix elements for the dec&~h;h, derived in
including the CKM matrix elements. The nonfactorizing the preceding section depend on the effective coefficients
contributions in the matrix element,h,|O;|B) are mod- a,, ... ,a,9, quark masses, various form factors, decay con-
eled by treating\. as a phenomenological parameter. Notestants, the CKM parameters, the renormalization sggle
that this is the only place wheig, is treated as a phenom- and the QCD scale parametdrn,s. We have fixedAys —
enological parameter. In particular, in the calculation ofusing the central value of the present world average,
Cie”, we have used the QCD valué.=3. Insisting that «a((M;)=0.118+0.003[57]. The scaleu is varied between
there are no nonfactorization effects present amounts to sets=m, and u=my/2, but because of the inclusion of the
ting N.=3 in calculatinga;. This is also referred to as NLL expressions, the dependence of the decay ratgs n
“naive factorization” and is known not to work in decays small and hence not pursued any further. To be specific, we
such aB—(D,D*)(1r,p),d/ yK*) [18,21]. In these decays useu=2.5 GeV in the following. The dependence on the
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rest of the parameters is more pronounced and we discu$sg,59 is also small. Likewise, the mass differenca,
them below, giving the present status of these quantities. —m_=(3.39+0.06) GeV[59] is well determined, which
can be used to determimg. reasonably accurately for the

A. CKM matrix elements calculations being done here. Hence, to the accuracy of the
The CKM matrix will be expressed in terms of the Present framework, the uncertainties in the decay rates re-
Wolfenstein paramete{gg], A, \, p, and 7 lated to 5mt, 5mb, and 5mc are small and ignored.

Light quark mass ratios have been investigated in chiral
1 perturbation theory[60] and updated in[61], yield-
1— )2 A AN3(p—im) ing m,/myg=0.553+0.043, mg/my=18.9+0.9, mg/m,
2 =34.4+3.7. These ratios were converted into the quark

1 masses by using the QCD sum rule estimates okthaark

Vekm= -\ 1—=\? AN? . - —
2 mass of the somewhat older vintagé2]: my(1 GeV)
AN (1—p—izn) —AN2 1 =175+ 25MeV, vyielding my(1 GeV)=5.1+=0.9 MeV,

my(1 GeV)=9.3x1.4 MeV [61]. Improved estimates
(27) based on QCD sum rules have been reported during the last
year, which includ@(ag’)—perturbative improvemen{$3];

Since the first two are well determined witA=0.81  jmproved estimates Q,g%, yieldingA%z%O MeV: and

+0.06, A =sinfc=0.2205-0.0018 [19], we fix them to nprovements in the estimates of the spectral functions
their central values. The other two are correlated and arfs4,65, lowering thes-quark mass. A contemporary repre-
found to lie (at 95% C.L) in the range 0.28 7=<0.52 and  geniative value of the-quark mass in the QCD sum rule
—0.2<p=<0.35 from the CKM unitarity fit§47]. We shall approach isny(1 GeV)=150+30 MeV [65]

s =150+ .
show the dependence of the decay rates on the pararpeters The corresponding estimates in the quenched lattice-QCD

and# in the' allowed domain. ngever, for illustrative pur- approach have been recently reported in a number of papers
pio;e;i anﬁ_ n;] not \:,'rt]ate‘% Ot{]]?{’YVIS?, WefShal::hPS?:Ok]'\-AZ,’l? . [66—68. The lattice community likes to quote the light quark
t_arit.y ﬁ’tgv[‘;% | are the “bestnt™ vajues from the UNI- - asses at the scale=2 GeV, and in comparing them with
' the QCD sum rule results, quoted above for 1 GeV, one
should multiply the lattice numbers by a factor of 1.3. Rep-

resentative lattice-QCD values argy(2 GeV)=100=12

The quark masses enter our analysis in two differeny;qy [66], my(2 GeV)=130x2+18 MeV [67], and
ways. First, they arise from the contributions of the penguin—- . . ’ ]
loops in connection with the functiamFl(kZ/miz). We treat m(2 GeV)=110=20x 11 MeV[68]. The error due to un

; : ) uenching is largely unknown, and for a discussion of the
the internal quark masses in these loops as constltueél

B. Quark masses

ther th A For th the | ven lattice-specific errors, we refer to the original litera-
Masses rather than current masses. For them we Use the T Taking the last of these values as fairly representative,
lowing (renormalization scale-independgmalues:

one now has the central value,(1 GeV)=140 MeV with

m,=4.88 GeV, m,=1.5 GeV, a typical error of+25 MeV—in reasonably good agreement
with the QCD sum rule estimates. Using,(u=my)
ms=0.5 GeV, m,=my=0.2 GeV. =4.45 GeV from the central value {%8] and
(28)

Variation in a reasonable range of these parameters does not
change the numerical results of the branching ratios in ques- my(1 GeV)=150 MeV, my(1 GeV)=9.3 MeV,
tion, as also investigated [27]. The value ofm, is fixed to

be the current quark mass value,(u=2.5 GeV) ‘my(1 GeV)=5.1 MeV, (29)

=4.88 GeV, given below. Second, the quark masses

m,, Mg, my, andm, appear through the equations of mo-

tion when working out thdfactorized hadronic matrix ele- . . .

ments. In this case, the quark masses should be interpreted @M the discussion above, the corresponding values at the

current masses. It is worthwhile to discuss the spread in thgc@le #=2.5 GeV used in our calculations are given in

guark masses, as determined from various calculational tecHable '-_ ] ] ]

niques and experiment. The top quark mass is now know%o:igyliggt;rf;g%?t iﬂ“;g;g’g:;i?e?ggzgyyg(ﬁ th;r Ii?m_

. — . . - 0

rather preciselym;(m;)=168+6 GeV. Typical uncertainty B 'K and B°— 5'K®, as also noted ifi28]). While

on the b-quark massdmy(u=2.5 GeV)]=+0.2 GeV  thjs dependence should be kept in mind in fitting the quan-
tities a; from precise data, this is clearly not warranted by the
present data. Also, fitting the values of the quantiéies not

1The corresponding “best-fit” values obtained 48], p=0.15 the aim of this paper. Hence, we shall fix all the current
and »=0.34, are very close to the ones being used here. quark masses to their values in Table I.
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TABLE I. Input values in numerical calculations. TABLE Il. Form factors at zero momentum transfer in the BSW

model[8].
Names Values

Decay Fi=Fg \% A A, Ag
as(mz) 0.118
u 25 GeV B—ar 0.33
A 0.81 EHK (;)ffs
A . 0.2205 B— 7' 0.135
7(B7) 1.62 ps B—p 033 028 028 028
7(B°) 1.56 ps B—K* 037 033 033  0.32
my(my) 168 GeV B—w 033 028 028 028
m,(2.5 GeV) 4.88 GeV
m,(2.5 GeV) 1.5 GeV
my(2.5 GeV) 122 MeV which » and/ory’ are involved. In deriving the expressions
my(2.5 GeV) 7.6 MeV for the decays involvingy and %', we include the anomaly
m,(2.5 GeV) 4.2 MeV term ind,A* and the contributions df—sgg—s(#,7’) as

C. Form factors and hadronic coupling constants

calculated in 28]. Definitions of the various matrix elements

can be seen in the Appendixes and we refef2p,28 for

further discussions. The values of the input pole masses used
Finally, we discuss the numerical values of the form fac-In calculating the form factors are given in Table Ill. How-

tors and coupling constants introduced in the previous sec@Ver, in the decayB—h;h,, only small extrapolations from

. . . 2_ H .
tion. Concerning the form factors, we shall use two differentQ”=0 are involved; hence the error due to the assuféd

theoretical approaches. The first is based on the quark mod@fPendence and/or the specific values for the pole masses is
due to Bauer, Stech, and Wird&], which has been found to Small. _

be rather successful in accommodating data on a number of The second and more modern approach to calculating de-
exclusive decays. In the BSW model, the meson-meson m&&y form.factorslls a hybrid approach, in which often lattice-
trix elements of the currents are evaluated from the overla@CD estimates in the so-call¢reay—light mesons, cal-
integrals of the corresponding wave functions. The depenculated at highQ?, are combined with th€® dependence
dence of the form factors on the momentum transfer squaref@!lowing from the light-cone QCD sum rule analysis
Q2 (which in B—h;h, decays equals the mass squared 01{12,1?3. We refer to[10] for de_ta|led discussions, compl|la—
the light mesop is modeled by a single-pole ansatz. The tion of the lattice-QCD analysis, and references to the litera-
values of the form factors in the transitiorB—, B  ture, and quote here the results from the UKQCD analysis
—K, B—7, B—7y', B—p, BoK*, andB—w, evalu- [11]. For the B— = form factor, F1(O)=FOOO(60)=0.27
ated atQ2=0, are given in Table Il. We assume ideal mixing +0.11; for B—p form factors, V(0)=0.35"gq:, A1(0)

for the (w, &) complex. This amounts to using in the quark =0.27°0.03, Az(9)=0-26fg_:8§7 andA(0)=0.30"3;. The
Ianguaged::sg and w=(1/\/§)(uU+ dE). Note that to r_esults from an improved light-cone QCD sum rule calcula-
implement they-7' mixing, we shall use the two-mixing- 0N [15] for Fy(B—m)=Fo(B—m) and F,(B—K)

angle formalism proposed recently i9,70], in which one = Fo(B—K) are given in Tab/le IV. The r(?sults fF (B
has —n)=F¢B—7) and F{(B—7%')=FyB—7%') are calcu-

lated from theB— = form factors from[15], taking into
account additionally the#, »') mixing, as discussed earlier
and further detailed in Appendix A. The results for tBe
—K* form factors have been obtained in the light-cone
QCD sum rule in Ref[12], which yield

| 7) = cosbg| ng) — sin Bg| 7o),

| ") =sin 63| 7g) + 0SBy 70) - (30

Here, g and 5, are, respectively, the flavor $8)-octet and
-singlet components. The relations for the pseudoscalar de-
cay constants in this mixing formalism involving the axial-
vector currentA’ andA’ are

(OIAZ n(p))=ifSp,. (OlA%] 7 (p))=if"p,,

A,(0)5°

1

TABLE lll. Values of pole masses in GeV.

(0|A%| 7(p))=if%p,.. (O|A%|7'(p)=if",p,. Current m(0~) m(17) m(1") m(0")

@) 5 5.2789 5.3248 5.37 573

The best-fit values of thes-»') mixing parameters from db 5.2792 5.3248 5.37 5.73
[71] yields 3= —22.2°, §,=—9.1°, fg=168 MeV, and gp 5.3693 5.41 5.82 5.89

fo=157 MeV, which are used to calculate the decay rates ir
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TABLE IV. Form factors at zero momentum transfer from lattice-QCD and light-cone QCD sum rules.

Decay F.=Fq \% A A, Ay

B— r [15] 0.30+0.04

B—K [15] 0.35+0.05

B— 7 (see text 0.13+0.02

B— 7' (see texx 0.12+0.02

B—p [11] 0.35+0.05 0.270.04 0.26-£0.04 0.30:£0.05

B—K* [12] 0.48+0.09 0.35-0.07 0.34-0.06 0.39£0.10

B—w [[11] and SU3)] 0.35+0.05 0.27-0.04 0.26-0.04 0.33:-0.05
V(0)B—r —s], and b—d [b—d]. Numerical values ofa; (i
WZO.Y& 0.05, =1, ...,10) for representative values of the phenomenologi-

cal parameteN, are displayed in Tables VI and VII for the

which, in turn, lead to the estimates,(0)8~X"=0.35 b—s [b—s] and b—d [b—d] cases, respectively. A
PR B Kk wes number of remarks on the entries in these tables is helpful for
+0.07 andv(0) =0.48+0.09. Assuming similar SB) 3 giscussion of the branching ratios worked out later.

bre_akmg in the remaining two form factors,_and using the  The determination of, and a, in the b—c current-
estimates for the corresponding form factor®ia p quoted  ¢rrent transitions has received a lot of attention. It remains
above, one get#\,(0)° " =0.34+0.06 andAy(0)® "~ an open and interesting questionaif and a, in the b—u
=0.39+0.10. The values from this hybrid approach are col-transitions are close to their—c counterparts, which have
lected in Table IV. As for the form factors in the BSW the phenomenological values;=1 and a,=0.2 [18,21].
model, we use a simple pole approximation for calculatingThese values correspond to the paraméted/N, having a
the form factors aQ? different from Q>=0. However, for value around 0.4. The decay@— 7w, B—pw, and B
the decays of interest, this extrapolation is small and one., o, 7 are well suited to determine these coefficients.
does not expect any significant error from this source. For The coefficientsa; andas in the QCD-penguin sector are
example, for theB— P form factors, using the parametriza- smaller compared ta, andag. In particular, the combina-
tion of Fo4(Q?) given in Eq.(12) of Ref.[15], the resulting  tion as+as has a perturbative value of>3107%, i.e., for
difference in the form factors is found to be less than 2%. NC: 3, in all four cases resu]ting from |arge cancellations
The values for the pseudoscalar and vector decay Corhetweenn, andas. This coefficient also shows extreme sen-
stants are given in Table V. The values fiof, fi, fx«,  sitivity to the parameteN,, which in the present model is a
and f . coincide with the central values quoted[ib8] ex-  measure of nonfactorizing effects. Hence, for decays whose
tracted from data on the electromagnetic decays @nd 7  decay widths depend dominantly on these coefficients, the
decays, respectively [19]. The decay constants factorization framework is not reliable. The reason is simply
f;'], , f;, , f5, andf defined in Appendix A are obtained that the neglected contributions, such as the weak annihila-
from the values forf, and fg, 6g and 6, for the (»,')  tion diagrams and/or feed down from final state interactions
mixing, given earlier. The errors in the decay constants irto these channels, could easily overwhelm the perturbative
Table V are smal[typically (1-3)%], except forf(nc,) and factorizable contributions. N
f(r;:) for which we use here the estimates fré28] obtained Concerning the effective coefficients of the_electroweak
using the QCD-anomaly method. These quantities have alsgperators, we note thay, as, .andalo are.numerlcaflly very
been determined from the.-7'-7-mixing formalism and small. Th_ls_ agalr;frfeflects their perturk_Jatlve magnitudes, i.e.,
radiative decays/y— (7.,7',7)y and the two-photon de- the coefflqents(:i , as can be seen in the columns _
cay widths (7., 7', 7)— vy in Ref.[27] with results similar =3. Varyln_g.Nc, one sees no noyceablg enhancement in
to the corresponding values obtained using the Qcpthese coefficientsexcept fora,o but it remains phenomeno-

anomaly method28]. For some recent determinations of logically small to have any measurable effe¢tence, elec-
these quantities, see alft2,73. troweak penguin transitions enter dominantly through the op-

eratorQq, barring rather drastic enhancemepi$ O(100)]
in the matrix elements of the operatd@s, Og, andOqg,
which we discount. No attempts will be made to determine
these coefficients here. In fact, in the context of the SM one

V. EFFECTIVE COEFFICIENTS a; AND A
CLASSIFICATION OF B—h;h, DECAYS

A. Effective coefficientsa,

The effective coefficients;, which are specific to the TABLE V. Values of decay constants in MeV.
factorization approach, are the quantities of principal phes=
nomenological interest. Note that there are four types of tranf= Tk fs  To 5 £, f fie fo Ty
sitions that one encounters in the current-current andss 158 168 157 —09 -23 210 214 195 233

penguin-transition-induced decay8—hih,: b—s [H
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TABLE VI. Numerical values of effective coefficients for b—s [Ea?] at N.=2,3, whereN,

= corresponds t€¢'". The penguin coefficient€$™, ... ,C¢" and CE" are calculated for the Wolfen-

stein parameters=0.12 andy=0.34. Note that the entries far, ... a;o have to be multiplied by 10,
No=2 N.=3 No=c

a, 0.99[0.99] 1.05[1.05] 1.16[1.16]

a, 0.25[0.25] 0.053[0.053 ~0.33[-0.33]

as —37-14i [—-36-14i] 48 48] 218+29 [215+29i]

a, —402-72 [—395-72] —439-77i [—431-77] —511-87i [—503-87]

as —150- 141 [—149-14i] —45 [—45] 165+ 29 [162+291]

ag —547-721 [~541-72] —575-77 [—~568-77i] —630-87 [—622—87i]

a, 13-1.3 [14-13] 05-1.3 [0.5-1.3] ~12-13 [-11-13]

as 4.4-0.7 [4.4-0.7] 46-0.4 [4.6-0.4] 5.0[5.0]

ao ~91-1.3 [-91-1.3] —94-1.3 [—94-1.3] ~101-1.3 [-101-1.3]

as ~31-0.7 [-31-0.7] —14-0.4 [—14-0.4] 20[20]

could as well work with a much reduced basis in the effechd are mesons from the set®, 7, 7', p° andw. The
tive theory in which the coefficients;, ag, andajpare set decayB°— 7%5!") exceptionally do not belong to this class,
to zero. _ o as their decay amplitudes proportional &g almost cancel
The dominant coefficients are thea,, a, (current-  qye to the destructive interference in two tree diagrams hav-
current amplitudgs ay, ag (QCD penguin transitiodsand ing to do with the configurationm®>~uu—dd and 7"
ag (electroweak penguin transitiprwvhich can be eventually -
determined from experiments and we discuss this program= (Uu+dd)+--- . Note that a, has the smallest value at
matically later. Of thesa,, a, (and to a very high accuracy Nc=3. all class-Il decays have their lowest valuesNat
alsoag) do not depend on the CKM matrix elements. The =3.
dependence O&4 and ag (|ikewise’ the smaller parameters Class-lll decays, invoIving the interference of class-I and
a; andas) on the CKM factors enters through the function class-Il decays, as in this case both a charged and a neutral
C.. The numbers given in the tables far are obtained for meson is present, both of which can be generated through the
the CKM parameters having the valugs=0.12 and  currents involved inHq¢;. An example of these decays is
=0.34. Note thana, depends strongly oNl. B*—a*x0, and the relevant coefficient & +ra,, where
This sets the stage for discussing the various branching is process dependeftiut calculable in terms of the ratios
ratios numerically and comparison with the available data. of the form factors and decay constantSor r<1, the N,
Before discussing the numerical results and their detailedependence of the class-IIl amplitudes is belb®0% with
comparison with experiment and existing results in the lit-respect to the perturbative value. As we shall see, the quan-

erature, |t iS WOI‘thWhile to Organize the deC@& h1h2 in t|ty r may Considerab|y enhance tm dependence if is
terms of their sensitivity ofN; and anticipated contributions \ye|| jn excess of 1. This, in particular, is the caseBf

due to the annihilation diagrams in some of these decays. —p% " andB* —wm' decays, where=2; hence these

Class-Ill decays show a marked. dependence. However,
B. Classification of factorized amplitudes one should note that the decay rates for this class do not have
In the context of the treeT() decays, a classification was their minima atN,=3, but rather aiN,=, reflecting the
introduced in 8], which is used widely in the literature in the behavior ofa;+a,. There are 11 such decays involving
analysis of B decays involving charmed hadrons. TheseB*—(x*,p") (7% 7, 7" ,p° ») and exceptionally also the
classes, concentrating now on tBe-h;h, decays, are the decayB*—K**#’, in which case the penguin amplitudes
following. interfere destructively. Its decay rate is, however, rather
Class-1 decays, involving those decays in which only astable with respect to the variation My but small due to the
charged meson can be generated directly from a singlet cuUGKM suppression.
rent, as inB°— 7+ ™, and the relevant coefficient for these ~ However, when QCDR) and electroweak penguin tran-
decays isa;. This coefficient is stable against variation of sitionss Pgy,) are also present, as is the case in the decays
N, (see Tables VI and V]I There are just five class-l de- B—h;h, being considered, in general, the above classifica-
cays:B’ -7 7t B'—p n", B'—pTm, B—p pT, tion has to be extended. In this case, the generic decay am-
and exceptionally als8°—p K ™. plitude depends o + P+ Pgy. If the amplitude is still
Class-Il decays, involving those transitions in which thedominated by the tree amplitude, the BSW classification
meson generated directly from the current is a neutral mesomgjiven above can be applied as before. For those decays
like B®— 797°, and the relevant coefficient for these decayswhich are dominated by penguin amplitudes, i€+ P
is a,, which shows a strondl. dependencé¢see Tables VI  +Pgy=P+Pgy, the above classification used for the tree
and VII). There are 12 such decaBS8—h¢h), whereh{ and  amplitude is no longer applicable.
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For the penguin-transition-dominated decays, we introcombination a;+as—1/2(a;+ag) ] (see Appendixes B and
duce two new classes C). Examples of those where the amplitudes proportional to

Class-IV decays, consisting of decays whose amplitudethe dominant penguin coefficients interfere destructively are
involve one(or more of the dominant penguin coefficients B*—K"¢, B'—K%¢, etc. The above five classes exhaust
a4, as, anday, with constructive interference among them. || cases, though clearly there are some amplitudes where
They are stable against variation M, (see Tables VI and comparableT and penguin P+ Pg,) contributions are

ViI) and have the generic form present. They can be assigned to one of the classes depend-
ing on their tree and/or penguin coefficients, the criterion
M(B%—hihy)=aja;+ agit+ ..., being theN, dependence of the decay rates.

(22}

i=4,6,9

Summarizing the classification, class-l and class-IV de-
cays are relatively large, unless suppressed by CKM factors,

M(B°—hohd)=a,a,+ i+ ..., and stabl_e_against va_riation of., which is a measure of
i=4,69 nonfactorizing effects in the present model. Class-1ll decays
are mostly stable, except for the already mentioBed PV
£ g+ decays. Many class-Il and class-V decays are rather unstable
M(B*—hih)=a;(a;+ray) + wait ..., _ i~ ;
(B —hihy)=e(a, 2 i:;ag s against variation ofN. either due the dependence on the

(33 N.-sensitive coefficients or due to delicate cancellations.
Many decays in class-Il and class-V decays may receive sig-

with the second R+ Pgy) term dominant in each of the pificant contributions from the annihilation diagrams which
three amplitudes. The ellipses indicate possible contributiong;e giscuss now.

from the coefficientaa;, a5, a;, ag, anda;g which can

be neglected for this class of decays. The coefficientare

process dependent and contain the CKM matrix elements, C. Contribution of annihilation amplitudes

form factors, etc. The decays whetg and «, are zero are N ,

pure penguin processes and are obviously included here. The Annihilation  (by ~which ~are ~meant here both

tree-level-dominated decays, discussed earlier, also have'y -€xchange and W=-annihilation contributions are

generic amplitude of the type shown above. However, in thiPrésent in almost all decays of the tyBe-h;h, being con-

case the penguin-operator-related coefficientare numeri- sidered here. However_, the.lr Qontr|but|on should bg under-

cally small due to the CKM factoréspecifically due tov,; ~ Sto0d as power corrections in inverse powersngfequiva-

<V,). Iently_ in _1/mB) in B decay_s. In |ncl_u5|veB decays, their
Examples of class-IV decays are quite abundant. In oupontnbyuon to the decay width relative to that of the parton

classification, all 128—PP decays dominated by penguin Model is determined by the factor

amplitudes are class-IV decays. They include decays such as 2 )

B*—K*#°% B*—K* ("), which involvea,;+ra, as the 4szBmB:(2”fB) ~50p (34)

tree amplitude, an8°— K°#°, andB°—K°%("), which in- mg mp '

volve a, from the tree amplitude. Finally, the pure-penguin-

transition decays, such &8*—#"K°% B*—K*K’ and

BO—KOK?, naturally belong here. There are altogether 29where fg=200 MeV is theB-meson decay constant. The

such decays. The dec®8P—K*°%', in contrast to its8*  near equality of the lifetimes a8, B°(B°), andBY(BY)

counterpart, is not a class-IV decay due to the destructivenesons shows that the above crude estimate is largely cor-

interference in the QCD-penguin amplitude. The variation inrect, and that annihilation contributions are sufficiently

the decay rates belonging to class-IV decays is less thapower suppressed iB-meson decays. For more sophisti-

+30% compared to their perturbativbl{=3) value. cated but in their spirit essentially similar calculations, see,
Class-V decays, involving penguin transitions with strongfor example [74].
N.-dependent coefficients;, ag, a,;, anda,q, interfering However, in exclusive two-bod decays, the contribu-

significantly with one of the dominant penguin coefficientstion to a particular channel depends on the CKM factors and
a,, ag, andag (analogous to the class-lll decags+ra,  the dynamical quantitieg;, and in some cases the nonanni-
dominated by tree amplitudesThen, there are decays in hilation contribution is enormously suppressed. In these
which the dominant penguin coefficienta,(ag,ay) inter-  channels, the annihilation diagrams, despite being power
fere destructively. Their amplitudes can be written much likesuppressed in 2, may yield the dominant contributions to
the ones in Eq(33), except that the sum in the second termthe decay and must therefore be included in the rate esti-
now goes over all eight penguin coefficients. Since thesenates andCP asymmetries. Instead of working out the an-
amplitudes involve large and delicate cancellations, they araihilation contribution in all the channels discussed here,
generally not stable against, . which necessarily introduces unknown hadronic quantities,

Examples of this class are present B+~PV and B we do a classification of annihilation diagrams and list only
—VV decays, such asB*—x"¢, B°—n%, B® those decays in which they are anticipated to be important.
-3¢, BP—wep, B*—p ¢, B'—p°p, etc. In all For the decay8—h;h,, we need to consider the follow-
these cases, the amplitudes are proportional to the lineang annihilation amplitudes:
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W* exchange: M (bd—uu)=M(B%—(uq)(qu))e<a\®;
W* annihilation: M(bu—du)=M(B"— (dq)(qu))=a,;\3;

W= annihilation: M(bu—su)=M(B"—(sq)(qu))=a;\*,

where A =siné.. Here, qq is a light quark-antiquark pair. If h1 andh; are two pseudoscalars, the annihilation form
These amplitudes can be termed as the tree-operatolactors are defined as

annihilation contributions. In addition, there are also the

penguin-operator-annihilation contributions which are im- ] mi—m% PPy o
portant for certain decays. For example, they feed domi- (P1P2li*{0)=|(p1—p2)*~ e Q¥ |F Q%)

nantly to the decaB’— ¢ ¢.

There are yet more decays which can be reached via an- m2—m?2
nihilation followed by rearrangement of the quark-antiquark +— 5 2Q"F(F;lPZ(QZ), (36)
pairs in the final state. Representative of these are the decays Q

B* * B* + d BO go 0 RO go
e, N an (B)—¢m, BYBY) whereQ=p;+ p,. With this, we can write the required ma-

(r) 0/RO 0/ RO 0 i o _—
—¢n", BY(B)—ow, BY(B)—dpp". However, these i oloment from the annihilation contributiqdenoted here
rescattering effectsfinal state interactionsare expected to by a subscriptin its factorized form

suffer from suppression due to the color-transparency argu-

ment used in defense of the factorization ansatz. Since we G

have neglected these rescattering contributions in the faCtor'(PlelHefle)azi —FquV* aifB(mf—mg)Fglpz(mé)
qq’ '

ization amplitudes worked out in this paper, it is only con- \/E
sistent that we also drop the annihilation contributions which (37)
feed into other channels through rescattering.

We specify below those two-bodB decays which are Wherea;, i=1,2. Note that the annihilation amplitude in the
accessible directly in annihilation processes and hence majecayB— P, P, is proportional to the mass difference of the
have significant annihilation contributions: two mesons in the final state. Hence, in the present frame-

work, there is no annihilation contribution to the decays such
B—PP decays: B'—n’5'"), B°—yn'; asB%— 797%, B°—K*'K™, etc. Comparing this amplitude

with the nonannihilation contributions given in E@2), one
B—PV decays: B°—p°n°%, B—p°n!", finds that the annihilation amplitude B— P,P, decays is

indeed suppressed by a hefty factor
B°—wn’, B’—wzp'"),

(m2—m2)F¢272(m3)

(mg—m2)Fg "i(m3)’

BT —K**K°, B*—K*t¢, (39
BO—K**K~, BO—K'K*~;
The annihilation form factors are difficult to relate directly to
B—VV decays: B°—p%° B°—=plw, experimental measurements but they can be modeled. We
expecthlpz(O) to have a similar magnitude as the corre-

sponding form factorngHPl(O), to which they are related
by crossing, and which we have listed in Tables Il and IV.
Based on this, the annihilation form factors appearing in Egs.
(37) and (38) are suppressed due to the large momentum
transfer aig?= mé, at which they have to be evaluated. The

Note that in addition to the decay modes listed above, theréOta'4 suppression factor inB—PP decays is then
are quite a few others in the class-, class-lll, and class-IVO(M1/mg). However, the effective coefficients;, i
decays given in the tables, which also have annihilation con= 1,2, entering in the annihilation amplitude are much larger
tributions, but in view of the larg& and/orP+ Pg,, contri-  thana;, j=3,...,10, governing the penguin amplitudes.
butions in these decays, the annihilation contributions are no?0 @ part of the power suppression is offset by the favorable
expected to alter the decay rates in these channels signifffective coefficients.
cantly and hence we have not listed them. In the decay8— PV andB—VV, we do not anticipate
The annihilation amplitude can be written as an annihilation suppression as severe as in the dé&ay
— PP. Concentrating on the decay— PV, the annihila-
(h1ho|Het1B)a=Z(hh,|j#|0)(0]j .| B). (35 tion form factors are

B’ - wo, BOH¢¢,
B+*>K*+E*O B+*>K*+¢

BO—K* TK* .
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For B— VYV decays, the conclusion is quite similar to the
one for theB— PV decays. However, as these decays in-
volve yet more untested form factors, their numerical esti-

2V(Q?)

Y — * V@B
<PV|J |O> G,uvaﬁe pPmeP+ my

(e*-Q) mates require a model for these form factors. The suspected
—il €= —Qu|(mp+ my)A1(Q?) channels iBB— VYV decays sensitive to the annihilation con-
Q tribution have been listed above. We conclude that the de-
2_ 12 cays most sensitive to the annihilation channel are indeed the
+il (PP—PV) P 5 VQM class-Il and class-V decays, mostly involvifgf(B®) de-
Q cays.
(& -0) 2(Q?)
mp+my, VI. BRANCHING RATIOS AND
COMPARISON WITH DATA
2m
—i —VQ#(e* -Q)A(Q?). (39 The decay branching ratios are shown in Tables VIII-XI

2
Q for the decaysB— PP, B—PV (involving b—d transi-
T . . L . tions), B— PV (involving b—s transition, and B—VV,
The_ annihilation matrlx_ element in the factorization approx"respectively, for the two sets of form factors given in Tables
mation can now be written as follows: Il and IV. The numbers shown for the hybrid lattice-QCD—

. QCD sum rules correspond to usitgf, "=0.36, F7 "
PV|Heti|B)a=iV2GEVpVr, aifgmy(€* - pg)Ag(m3). , ’ ’
(PVIHerlB)o=i V26 VqnViq aifamv(<* - Pa)Aol B()40) =0.41, F¥;7=0.16, andF?;” =0.145. The first two are

slightly above the range determined [ib5] but within the

From this, it is easy to see that for this class of decays thélargel) range as dgtermine_d from the Iattice-QC_D calcula}—
suppression factor is only due to the large momentum trandions [11]. This choice is dictated by data, as discussed in
fer involved in the form factoré,(m2). Hence, the annihi- detail belogv. Thek” dependence of the branching ratios in
lation diagrams can contribute more significantly in the de{he rangek®=my/2+2 GeV# is small and hence the num-
cay amplitude. For some of the channels for which thebers in these tables are shown only for the defse mg/2.
nonannihilation contributions are highly suppressed, the anThe CKM parameters are fixed at their “best-fit” valugs:
nihilation diagram can be easily dominant. For example, the=0.12,7=0.34. All other parameters have their central val-
annihilation amplitude to the dec@*—»K”KO is ues, discussed in the preceding section. In @ese tables we
give the averages of the branching fractionsB3f and B°
and of B* andB~, respectively. Hence, when we refer to
branching fractions in the following sections we always
mean the averages over tBeand antiB decays. TheCP
asymmetries are, however, in general quite sensitivk?to

If we take Ay(0)=0.4, fg=200 MeV, the annihilation [33,32. We shall discuss this point in a forthcoming paper
branching ratio is of the order of 18 which is an order of on CP asymmetrie$75].

magnitude higher than the branching ratio calculated with A number of observations are in order.

the penguin contribution alone. Other channels where the There are so far five measur8&d-h.h, decay modes in
annihilation channel may play a significant role have beerwell-identified final statesB°—K*#~, B"—K"5’, B°
listed above. —K%', B"—#"K® andB"—wK™, with their branch-

<K* +EO|H eff| B+>a
=i V2GpV}i,Vygas femis (€* - pg)Ag(m3). (41)

TABLE VII. Numerical values of effective coefficient; for b—d [E—E] at N.=2,3, whereN,
= corresponds t€°'". The penguin coefficient€$'", ... ,CS" and CE'" are calculated for the Wolfen-
stein parameters=0.12 andy=0.34. Note that the entries fai, ... a;,have to be multiplied by 10,

N.=2 N.=3 Ng=o0

a, 0.99[0.99] 1.05[1.05] 1.16[1.16]

a, 0.25[0.25] 0.053[0.053 ~0.33[-0.33]

as —33-7i [—42-23] 48 48] 208+ 141 [226+47i]
a, —377-34i [—423-116] —412-361 [—461-124] —481-41i [—536-140]
as —145-14i [—154-14] — 45 [—45] 155+ 14i [173+47i]
ag —523-34i [—568-116] —548-36i [—597-124] —600-41i [—655-140]
a, 1.5-1.00 [1.1-1.8] 0.7-1.01 [0.3—-1.8] ~1.0-1.0 [-1.4-18]
ag 45-05 [4.3-0.9] 47-0.3 [45-0.6] 5.0(5.0]

ag -91-1.0 [-91-1.8] ~94-1.0 [-95-1.4] —101-1.00 [—101-1.8]
s —~30-0.5 [-31-0.4] —14-0.3 [-14-06] 20[20]
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TABLE VIII. B—PP branching ratiogin units of 10 °) using the BSWlattice-QCD—QCD-sum-ruje

form factors, Withk2=mk2,/2, p=0.12, »=0.34, and\.= 2,3 in the factorization approach. The last col-

umn contains measured branching ratios and upper lig@d%0 C.L) [1].

Channel Class N.=2 N.=3 N,= Expt.
BO— 7t | 9.0 [11] 10.0 [12] 12 [15] <15
BO— 7070 I 0.35 [0.42] 0.12 [0.14] 0.63 [0.75] <9.3
B— 7'y’ I 0.05 [0.07] 0.02 [0.0Z] 0.09 [0.10] <47
BO— 57’ I 0.19 [0.22] 0.08 [0.10] 0.29 [0.34] <27
B°— 7 I 0.17 [0.20] 0.10 [0.11] 0.24 [0.29] <18
Bt —aa® 11} 6.8 [8.1] 5.4 [6.4] 3.0 [3.6] <20
B*—aty I 2.7 [3.2] 2.1 [2.5 1.1 [1.4] <31
B*—m'y I 3.9 [4.7] 3.1 [3.7] 1.9 [2.2] <15
BO— 0y’ v 0.06 [0.07] 0.07 [0.09] 0.11[0.13 <11
BO— 7%y v 0.20 [0.24] 0.23[0.27] 0.30 [0.36] <8
Bt —K"#m° 1% 9.4 [11] 10 [12] 12 [15] <16
BO—K* 7~ v 14 [16] 15 [18] 18 [21] 1575+1
BO—K%#° v 5.0 [5.9] 5.7 [6.8] 7.4 [8.9] <41
B*—K*y' v 21 [25] 25 [29] 35 [41] estif}rg
B K%' v 20 [24] 25 [29] 35 [41] 47°55+9
B*—K*y v 2.0 [2.3] 2.4 [2.7] 3.4 [3.9] <14
B°—K%y v 1.7 [1.9] 2.0 [2.2] 2.6 [3.0] <33
B*—amtKO° v 14 [17] 16 [20] 22 [26] 23" 11+4
B* K*K° v 0.82 [0.95] 0.96 [1.1] 1.3 [1.5] <21
BO_, KOK© v 0.79 [0.92] 0.92 [1.1] 1.2 [1.4] <17

ing ratios (averaged over the charge conjugate modesing ratio B(B—K* ¢)=(1.1"38+0.2)x 107° [2], have also
given in Tables VII and X. In addition, the decay peen measured. '

modes B* —#°h*(h"=a" K") with a branching ratio  The branching ratios foB°—K* 7~ andB*— " K° are
B(B*—m°h")=(1.6.58+0.4)x 10 ° [1], the decay mode in good agreement with the CLEO data. Moreover, being
B*—wh*(h"=#",K") with a branching ratioB(B* class-IV decays, they show only a small sensitivityoiThe
—wh*)=(2.5"3%+0.3)x107® [2], and the decay modes estimated branching ratios f&" — =+ 7° andB* —K* 7°
B—K* ¢, averaged oveB™ andB° decays with a branch- are in agreement with the respective upper bounds. The latter

TABLE IX. B— PV branching ratiogin units of 10 %) involving b—d (or AS=0) transitions using the
BSW (lattice-QCD—-QCD-sum-ruleform factors, withk2:m§/2, p=0.12, »=0.34, and\.=2,3 in the
factorization approach. The last column contains upper lif®@%6 C.L) from [1]. The upper limit on the
branching ratio foB* — p* 70 is taken from the PDG tablg49].

Channel Class N.=2 N.=3 N, = Expt.
BO—p m* I 5.7 [6.6] 6.4 [7.3] 7.8 [9.0] ~88
B—pta I 21 [25] 23 [28] 28 [34] }
BO— pOr° I 0.75 [0.88] 0.07 [0.08] 1.4 [1.7] <18
R I 0.28 [0.33 0.08 [0.10] 0.10 [0.12] <14
B%— 7 I 0.02 [0.03] 0.02 [0.02] 0.06 [0.07] <13
BO—p%yp' I 0.01 [0.07] 0.001 [0.007] 0.03 [0.04] <23
B°—wy I 0.46 [0.54] 0.05 [0.06] 0.63 [0.74] <12
B'—wn' I 0.29 [0.34] 0.02 [0.02] 0.46 [0.54] <60
B*—plm* i 6.3 [7.3] 3.9 [4.5] 0.89 [0.99] <58
B*—p*a® i 14 [16] 13 [15] 11 [13] <77
Bt—ww" I 6.8 [7.9] 4.2 [4.9] 1.0 [1.1] <23
B*—p*y i 6.3 [7.4] 5.5 [6.5] 4.2 [5.0] <32
B*—pty I 4.5 [5.3] 4.0 [4.7] 3.0 [3.7] <47
BO_, K*OKO v 0.31 [0.36] 0.38 [0.44] 0.55 [0.64] -
Bt LK*OK™* v 0.32 [0.37] 0.40 [0.46] 0.57 [0.67] -
B+ L K* K0 v 0.001 [0.002 0.0005 [0.0007 0.002 [0.002 -
Bt—om" Y 0.040 [0.047 0.005 [0.005] 0.36 [0.43 <5.0
B%— ¢xr° \Y 0.019 [0.023 0.002 [0.003 0.17 [0.21] <5.0
B°— g7y v 0.008 [0.010 0.0009 [0.007] 0.073 [0.087] <9
B°— g7’ \Y 0.006 [0.007] 0.0007 [0.0009 0.053 [0.064 <3.1
B0 K*OK? Y 0.001 [0.002 0.0004 [0.0004 0.002 [0.002 -
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TABLE X. B— PV branching ratiogin units of 10 %) involving b—s (or|AS|=1) transitions using the

BSW (lattice-QCD-QCD-sum-rubeform factors, Withk2=m§/2, p=0.12, »=0.34, and\.=2,3 in the

factorization approach. The last column contains the measured branching ratio and uppé®Ufnit€.L)

[1].

Channel Class N.=2 N.=3 Ng=00 Expt.
B'—p K" | 0.40 [0.46] 0.45 [0.52] 0.56 [0.64] <33
BT —K* 'y M 0.28 [0.39] 0.24 [0.29 0.33[0.33 <130
BO—K* o 1Y 6.0 [7.2] 6.6 [7.8] 7.8 [9.3] <67
BO—K* 070 v 1.8 [2.0] 2.2 [2.5] 3.2 [3.6] <20
BO— p°K?° v 0.50 [0.58] 0.49 [0.57] 0.62 [0.73] <30
BT —K* a0 v 4.4 [5.4] 4.7 [5.9] 5.6 [6.9] <80
BT —p%K* v 0.58 [0.67] 0.50 [0.58| 0.47[0.55] <14
Bt —K** v 2.2 [2.8] 2.2 [2.7] 2.0 [2.4] <30
B0 K*?© v 2.0 [2.5] 2.1 [2.7] 2.6 [3.1] <30
Bt —K*O7™" v 5.6 [6.7] 6.9 [8.3] 10 [12] <39
B*—p*K° v 0.03 [0.03] 0.01 [0.07] 0.01 [0.0Z] <64
BO—K*Op’ \% 0.06 [0.12] 0.07 [0.07] 0.41 [0.39] <39
B*— oK™ Y, 16 [18] 8.3 [9.6] 0.45 [0.53] <5.0
B%— ¢K© \% 15 [18] 8.0 [9.3] 0.44 [0.51] <31
B°— wK?® \Y 2.8 [3.3] 0.02 [0.02] 8.9 [10] <57
Bt —wK™ Y 3.2 [3.7] 0.25 [0.2§] 11 [13] 1577+2

being a class-IV decay is again stable with respect to théo their theoretical range given in Table Iidotted curve
variation ofN.; the former(a class-Ill decayvaries by ap- We see that the data for this mode are well explained.
proximately a factor of 2.3 abl. is varied. The branching We estimate the branching ratio f@&°— 7+ 7~ to be
ratio for the sumB*— #°h* is plotted as a function of around 1x 10 ° for the central values of the CKM param-
£=1/N, in Fig. 1 for the BSW model form factor&lash-  eters, which could go down to about<q0® for V,/Vp
dotted curveé and two different sets, corresponding to the =0.06. The present CLEO upper limit is in comfortable ac-
central values of the hybrid lattice-QCD—-QCD-sum-rule cordance with our estimates but we expect that this decay
form factors(dashed curveand for values which are closer mode should be measured soon. However, the d&%y

TABLE XI. B—VV branching ratiogin units of 10 ) using the BSW(lattice-QCD—QCD-sum-ru)e
form factors, withk2=m§/2, p=0.12, »=0.34, andN.=2,3 in the factorization approach. The last
column contains upper limité90% C.L) mostly from[1] except for the branching ratios f@&°—p*p~,

B%—p%° BT—ptp°® BO—K*%° andB*—K**p° which are taken from the PDG tablgk9].

Channel Class N.=2 N.=3 Ng=o0 Expt.
B—ptp~ I 18 [20] 20 [22] 24 [27] <2200
B%— p%p° I 1.3 [1.3] 0.59 [0.59] 2.5 [2.5] <280
B'—ww I 0.87 [0.96] 0.15[0.17] 0.86 [0.96] <19
B*—p*p° I 14 [15] 11 [12] 6.1 [6.8] <1000
B"—pTw 11} 15 [16] 12 [13] 6.6 [7.3] <67
BO—K**p~ v 5.4 [6.0] 5.9 [6.6] 7.0 [7.8] -
BO— K* 00 v 1.1 [1.2] 1.3[1.4] 1.9 [1.9] <460
Bt —K**p° v 5.0 [5.8] 5.5 [6.3] 6.6 [7.6] <900
BT —ptK*0 \Y 5.1 [5.6] 6.3 [6.9] 9.1 [10] -
BT K*TK*O v 0.29 [0.38] 0.37 [0.47] 0.53 [0.68] -
BO_, K*O0K*O0 v 0.28 [0.36] 0.35 [0.45] 0.51 [0.65] -
B%— p%w \% 0.018 [0.020] 0.005 [0.006] 0.23 [0.26] <11
B°—K*% \Y 10 [12] 3.6 [4.0] 0.63 [1.1] <23
Bt*—K**w \Y; 11 [13] 3.7 [4.1] 1.7 [2.4] <87
BT —K* "¢ \Y 16 [20] 8.2 [10] 0.45 [0.57] <41
BO—K*%¢ Y 15 [19] 7.9 [10] 0.43 [0.55] <21
Bf—=p'¢ \Y 0.039 [0.043 0.004 [0.005 0.35[0.38] <16
B%—p%¢ Y 0.019 [0.021 0.002 [0.002Z 0.17 [0.18] <13
B~ wé Y 0.019 [0.020] 0.002 [0.002 0.17 [0.18] <21
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FIG. 1. Branching ratio for the decayB*—#°h* (h* FIG. 3. Branching ratio foB°—K°%%’ as a function of¢. The
=m*,K*) as a function of: for three different sets of form factors: legends are the same as in Fig. 2.
BSW model(dash-dotted curyeand lattice-QCD—QCD sum rules
with central values in Table IMdashed curye with the values
Fo1 "=0.36 andFg,“=0.41(dotted curvi The horizontal solid
lines are thet 1o measurements from experimdnf.

ever, the experimentally preferred values of the form factors
all lie within the range allowed by the present theoretical

estimates. Likewise, the branching ratio increases as the
s-quark mass decreases, as already notg@T2§. Thus,

—a%® is not expected to go above 19 which makes itat for m, (u=2.5 GeV)=100 MeV andF5; 7 =0.15, there
least a factor of 10 below the present experimental sensitivis no problem to accommodate the CLEO data within the
ity. measured+ 1o range. As already discussed at length in
We show the dependence of the branching ratios on thRefs.[27,28], these decay modes are dominated by the QCD
input form factors and the parametg+ 1/N,, for the decays penguin operator, and while the contributions of the anomaly
B*—K*'y' andB°—K%y’ in Figs. 2 and 3, respectively. terms are included in the rate estimates, their role numeri-
As can be seen in these figures, data tend to prefer somewhedlly is subleading. The decay modB$ —K™* 7' and B®
larger values for the form factof5,; othan the central values — K%z’ show some preference for smaller values &f
given by the lattice-QCD—QCD sum rules in Table IV. How- though this is correlated with other input parameters and at
this stage one cannot draw completely quantitative conclu-
sions. Summarizing th8— PP decays, we stress that the
factorization-based estimates described here are consistent
with the measured decay modes. All other estimated branch-
ing ratios are consistently below their present experimental
limits. However, we do expect the modB8— 77—, B"
— 7% andB*—K* #° to be measured soon.
The two observed3— PV decays,B*—wK* andB™
—wh®, h"=7% K", show a strondN, dependence as an-
I | ticipated. The deca™—w=", a class-lll decay, has not
- yet been measured and the md@le—K* » (a class-V de-
cay) has a 3.8 experimental significance. The branching
) ratios ofB" — wK™ andB" — ™ are plotted as functions
~ < T~ ] of ¢in Figs. 4 and 5, respectively, showing the variations on
~ F - - T~ 4 other parameterdorm factors and CKM matrix elementas
~~ well. Taking the CLEO measuremenB(B*— wK™)
0 oz oz o8  os 1 =(1.5"04+0.2)x10°° on face value, this mode suggests
. . . . . S
that £<0.1 or£=0.6. The present CLEO upper limi&(B
¢ N Te e
—wm )<2.3X10° is not yet restrictive enough. The
FIG. 2. Branching ratio foB*—K* %' as a function of¢  branching ratio for the combined decé§™ — wh™(h™
=1/N.. The dash-dotted and dashed curves correspond to the 7% K™*) is shown in Fig. 6 as a function of for two
choice F2~7'(0)=F5~7(0)=0.15, my(u=25 GeV)=100 values of the form factor67 ¥ andF¥~™ and two sets of
MeV and F5~7(0)=F5~7'(0)=0.135, my(u=2.5 GeV) values for the CKM parametetsand . The values of these
=122 MeV, respectively. The horizontal solid lines are thés  form factors correspond to the BSW model and the upper
measurements from experimdni. limit in Table IV to the lattice-QCD—-QCD-sum-rule case.

o
—

BR (B* —>K*p*)*10°
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FIG. 4. Branching ratio foB™ —K*  and as a function of. FIG. 6. Branching ratio foB* —h*» as a function of¢. The

The legends are as followgi=0.30,7=0.42F3"X=0.44 (dash-  legends are as followgi=0.307=0.42F7 " "=0.38F 7 "=0.44
dotted curvi, p=0.1277=0.34F5~¥=0.38 (dashed curje The  (dash-triple-dotted curye p=0.3077=0.42F7 " "=0.33F7 ¢
horizontal solid lines are the: 1o measurements from experiment =0.38 (dotted curvg p=0.12,7=0.34F} " "=0.38F; "“=0.44
[2]. (dash-dotted curye p=0.12,7=0.34F5 "=0.33F] *=0.38
(dashed curve The horizontal solid lines are th& 1o measure-

Again, one sees that there is a tendency in the data to pref@?’entS from experimerf].
larger values of the form factors. We note that both small N ) )
valuesé=0 and¢=0.5 are compatible with data in this de- 9uin transition dominated and their degay rates are expected
cay, with the theoretical branching ratio rising above 1t0 be almost equal. The only worthwhile CKM dependence
% 107®. The value corresponding to the naive factorization,’S on the Wolfenstein parametér (hence weak However,
N.=3 (or £=0.33), is definitely too low compared to the being ch_‘;xss-V decays, their pranchmg ratios depend strongly
data on the two measureéB—PV decays. This is in line ©N & with both having their lowest values =0. The
with earlier observations in the literatuf27,29,31. branching ratid3(B* —K™ ¢) is shown as a function & in

No otherB— PV decays have been measured yet. How-Fig. 7 for A=0.81(dashed curveandA=0.75 (dash-dotted |
ever, an interesting upper boun®(B*—K*¢)<0.5 curve anq the CLEO 90% C.L. upper bpund is also indi-
%1075 (at 90% C.L) has been put by the CLEO Collabora- cated. This shows that valu€s=0.4 are disfavored by the
tion [2]. This and the related dec&f—K°¢ are both pen-
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FIG. 7. Branching ratio foB* —K™* ¢ as a function of. The
FIG. 5. Branching ratio foB* — 7" w as a function of¢. The legends are as follows: Upper curve: Wolfenstein paraméter
legends are as followgi=0.30,7=0.42F%~"=0.38 (dash-dotted =~ =0.81, F®7=0.38. Lower curve: Wolfenstein parametek
curve, p=0.12,=0.34F%~K=0.34(dashed curje The horizon-  =0.75, FS~X=0.31. The horizontal solid line is the 90% C.L.
tal solid line is the 90% C.L. upper limit from experimei]. upper limit from experimengd].
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[ T T 7 7 cays are necessarily small. In fact, fdg=2, the measured
< e class-IV decays and a number of classBv»PV and B
I | —VV decays such as the ones mentioned above are compa-
rable in rategwithin a factor of 2. For the class-V decays,
the amplitudes can become very small in some rangg, of
/7 ] implying large nonperturbative renormalizations which are
/7 1 harder to quantify in this framework. Also, many class-V
/7 1 penguin decays may have significant contributions from an-
nihilation and/or FSls, as factorization-based amplitudes, de-
/., 1 pending on¢, may not dominate the decay rates. This is
77 1 generally not foreseen for the class{tree-operator-
dominatedl and class-1V(penguin-operator-dominatgdle-
cays and most of the class-1ll decays. Hence, these decays
[ = ] can be predicted with greater certainty.
ok 1 1. 11 Concerning comparison of our results with the earlier
0 02 04 06 08 1 ones in[27,28, we note that we have made use of the theo-
£ retical work presented in these papers. We reproduce all the
FIG. 8. Branching ratio foB—K* ¢ as a function of¢, after numerical result_s for the same yalues of the input parameters.
averaging over th&8* and B® decay rates. The legends are as OUr decay amplitudes agree with the ones presenté8lih
follows: Upper curve: Wolfenstein parametér=0.81. Lower although our estimates of the matrix elements of pseudo-
curve: Wolfenstein parameté=0.75. For the form factors, we use scalar densities(O|uysu|7{")) and (0|dysd| (") differ
the BSW model. The horizontal solid lines represent the CLEOfrom the ones used if81]. Our expressions are given explic-
measurement with: 1o errors.[1]. itly in Appendix A. The disagreement in the decay rates for
B°—p%» and B°—p%y;’ between our results and the ones
present data. In fact, taken the data on their face value th@iven in[31] has now been resolvéd-owever, we do not
measured branching ratios for the deca&5—wh*(h*  subscribe to the notion thai.(V+A) induced by the ¥
=7",K") andB"—wK ", as well as the upper bounds on —A)(V+A) penguin operators is different from the;(V
the branching ratios foB* —K*¢ andB* —w=* can be —A) arising from the {—A)(V—A) operators, advocated
accommodated for a value @f close to&=0. All other in[31], and continue to use the sarg irrespective of the
decay modes in Tables IX and for the B—PV casg are  chiral structure of the four-quark operators. We have dis-
consistent with their respective upper limits. However, we docussed at length the difficulties in predicting class-V decays
expect that the decay mod&' —p*75, B*—pty’, B some of which, in our opinion, may require annihilation
—K*97% BT —K*%%* and B*—p*w should be ob- and/or FSI effects.
served in the next round of experiments at CLEO an@at _ Comparison of our numerical results in the branching ra-
factories. tios for theB— PV modes with the ones presented[R8]
There is oneB—VV decay modeB— ¢K*, for which ~ fequires a more detailed comment. First of all, our input
some experimental evidence exists, and an averaged brandprameters are significantly different from thos¢ 24]. For
ing ratio B(B— ¢K*)=(1.1"96+0.2)x10"5 has been thf same \ialues of input parameters, our results in charged
posted by the CLEO Collaboratidi2]. The decay modes B —(PV)" decays are in reasonable agcord. ngever, SIg-
B* — ¢K** andB®— ¢K*© are dominated by penguin tran- nificant d_lfferenc_es exist in the neutrsl _—>(PV) decay _
sitions and are expected to be almost eqsak Table X). rates, Whlch.per3|st_ alsq if we adopt .the input values uged in
They also belong to class-V decays, showing very stréng [2916 In partlcula_r,7|n this case we find, f_‘%ﬂc:m’ B(BO
dependencéalmost a factor 3§ with the branching ratios HPO”),:Z-?X 10 . compared to 6.X 1076 [29], B(BO
having their smallest values §=0. A comparison of data —P 7')=1.2X 1_07 compared to 3-3_160 [29], B(BO
and factorization-based estimates is shown in Fig. 8. In this™ ©7) =6.9x10 77compared to 7.£10 7g29], and5(B
case, the data favor 0s4<0.6, apparently different from —®?7')=1.3<10"" compared to 3.810 > [29]. For our
the values of¢ suggested by th8— PV decays discussed input value_s, the differences in branchlr_lg ratios are even
earlier. In fact, the branching ratios of the decags  More drastic, as can be seen by comparing our results with
KT, BO— KO, BT —K* T, andB%— ¢K*O are al-  the ones in(29] for these decays. We have given sufficient
most equal in the factorization approach and they all belon§€t@ils in our paper to enable a comparison of the formulas,
to class V. Hence, their measurements will be rather crucigf'cluding matrix elements of the pseudoscalar densities, and
in testing this framework. hence it shou!d not be too difficult to' figure out the source of
Based on the present measurements ofBhePV and the present discrepancy. Such details are not givé29h
B—VV decay modes, we summarize that all of them belongr W_'th”_‘ the present framework, we ha_ve calc_u_lateq the
to class-V (and one to class-lil decays, for which the elative importance of electroweak penguin transitions in all
factorization-based estimates show a strong sensitivity. to
This implies that they are harder to predict. The classification
given above, however, does not imply that the class-V de- ?We thank Hai-Yang Cheng for correspondence on this point.

BR(B—>K"$)x10°
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TABLE XII. Ratios of branching ratioR,, defined in Eq(42) for N,=2,3 for the form factors in the
BSW model(lattice-QCD—-QCD-sum-rule methpdThe horizontal lines demarcate the dec&8ys PP, B
—PV, andB—VV.

Channel Class N.=2 N.=3 Ng=o0

B°— 7070 I 1.2 [1.2] 1.5 [1.5] 1.1[1.1
BO— 0y’ I 1.3 [1.3] 1.3 [1.3] 1.4[1.4]
BO— K070 v 1.5 [1.4] 1.4 [1.4] 1.3[1.3]
B°—K%y v 1.5 [1.5] 1.5[1.5] 1.4[1.4]
B*—K*yp v 1.6 [1.6] 1.5[1.5] 1.3[1.3]
BO— pOr° I 1.0 [1.0] 1.9 [1.9] 1.1[1.9
B%—p°y I 1.4 [1.4] 1.5[1.5] 1.1[1.1]
B%— %y’ I 1.1 [1.2] 4.7 [4.9] 1.3[1.2]
BO— K* 070 v 1.7 [1.9] 1.6 [1.7] 1.4[1.5]
B%— p°K© \Y; 0.077 [0.077] 0.008 [0.009] 0.11[0.11]
B'—K*%p v 0.69 [0.66] 0.70 [0.67] 0.71[0.69]
BY*—K**a0 v 0.63 [0.61] 0.68 [0.66] 0.78[0.75
B*—pK* v 0.83 [0.83 0.59 [0.59] 0.13[0.13]
B*—K** gy v 0.60 [0.58] 0.66 [0.63] 0.78[0.76]
B*—p*K° v 0.45 [0.45] 0.60 [0.60] 0.66[0.66]
BO—K*Oyp' v 0.97 [0.54] 1.8 [1.6] 1.1[1.2]
B’— wK® v 0.83 [0.83] 0.42 [0.42] 1.2[1.2]
B%— ¢7r° v 1.7 [1.7] 0.002 [0.002 0.78[0.78]
B°— o7 v 1.7 [1.7] 0.002 [0.002 0.78[0.78]
B— ¢ 7' \Y 1.7 [1.7] 0.002 [0.002 0.78[0.7§]
B%— ¢K?° \Y 1.2 [1.2] 1.3 [1.3] 2.1[2.1
BO_, K*OKO Y 0.46 [0.46] 0.84 [0.84] 0.73[0.73
B+ L K**KC Y 0.46 [0.46] 0.84 [0.84] 0.73[0.73
B*—onm™ \Y 1.7 [1.7] 0.002 [0.002 0.78[0.78]
BY— @K™ v 1.2 [1.2] 1.3 [1.3] 2.1[2.1]
B%— p%p° I 0.58 [0.5§] 0.31 [0.37] 1.0[1.0]
BO— pOK*© v 25 [2.7] 2.4 [2.6] 2.1[2.2]
B*—pOK*+ v 0.54 [0.52] 0.61 [0.58] 0.74[0.72]
B%— p%w \Y 1.9 [1.9 0.08 [0.08] 0.77[0.77]
B°—p¢ \Y 1.7 [1.7] 0.002 [0.002 0.78(0.78]
B> we v 1.7 [1.7] 0.002 [0.002 0.78(0.78]
B°—K*% v 0.93 [0.97] 0.84 [0.82] 1.7[1.6]
B'—K*%¢ \Y 1.2 [1.2] 1.3 [1.3] 2.1[2.1]
Bt—p*o \Y 1.7 [1.7] 0.002 [0.002 0.78[0.78]
B*—K* "¢ Y 1.2 [1.2] 1.3 [1.3] 2.1[2.1]

the B—PP, B—PV, and B—VV decays studied in this cess of 10°), have significant electroweak contributions.
paper. The decay modes where the electroweak penguin traifthe presence of electroweak penguin transitionss in these
sitions may make a significant contribution are shown indecays reduces the decay rate by abe@b% to ~40%.

Table XII where we give the ratio In the B—PV decays, the three class-Il decays which
may have significant electroweak penguin amplitudes are
B°—p%#% and B°—p%%»("). Most strikihg among the
class-1IV decays i88°— p°K®, which is completely domi-
nated by the electroweak penguin transitions for all values of
In the B— PP case, there are five such decays whose ratell,. This decay is estimated to have a branching ratio of
show a moderate dependence on the electroweak pengu®(10 °). Measurement of this decay mode will enable us to
transitions. The decaB®— #%x° receives a significant elec- determine the largest electroweak penguin coefficigntin
troweak penguin contribution fol.=3. In the class-IVB the B— V'V decays, the class-1l dec®P— p°p° is sensitive
—PP decays, three decays, namelg°—K%#° B to the electroweak penguin transitions. Likewise, the two
—K%, andB"—K ™ (all having branching ratios in ex- class-IV decay8®— p°K*° andB*— p°K** are sensitive

B(B—hqh,)(with a;, ...

a10=0)
B(B—) hth) )

Rw

(42
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to electroweak penguin tansitions. All of them are expected TABLE XIIl. Values of P;'s calculated with the form factors

to have branching ratios dd(10™®) or larger, and can in from the BSW model and the hybrid lattice-QCD—QCD-sum-rule
principle all be used to determine the coefficients of the elecmethod. The numbers in square brackets are calculated using the
troweak penguin transitions. Once again, a large number giPproximate formulas derived in the text.

class-V decays show extreme sensitivity to the electroweak

penguin transitions, as can be seen in Table XII. Ratio BSW model Lattice-QCD-QCD sum rules
P, 1.19[1.21] 1.27[1.55)
VII. STRINGENT TESTS OF THE FACTORIZATION P, 0.43[0.39] 0.43[0.39]
APPROACH AND DETERMINATION P, 0.28[0.28] 0.27[0.27]
OF FORM FACTORS P, 0.49[0.47] 0.53[0.61]
In the preceding section, we have compared available dats 0.52[0.47] 0.55[0.61]
with estimates based on the factorization approach and havé 111[1.21 1.19[1.55
already commented on the tendency of data to favor some?7 1.11[1.21] 1.19[1.55
what higher values of the form factoFg 7, than, for ex-  Ps 1.08[1.14] 0.99[1.1§
ample, the central values given in Table IV. However, as thé®o 1.09[1.14] 0.99[1.18
decay rates depend on a number of parameters and the vaHso 1.01[1.19 0.92[1.19
ous parametric dependences are correlated, it is worthwhil&1; 1.01[1.15 0.92[1.19]

in our opinion, to measure some ratios of branching ratios i
which many of the parameters endemic to the factorization

framework cancel. In line with this, we propose three differ- ot expressions for the relative decay widths of the decay
ent types of ratios which can be helpful in a quantitative tesﬁlodes in question. These expressions can be derived in a
of the present frameworki) ratios which do not depend on  strajghtforward way from the matrix elements given in the
the effective COEﬁICIentﬂi , and which will allow to deter- Appendixes_ Then, we shall present simp|e formulas, which
mine the form factors more precisely in the factorizationare approximate but instructive, and highlight the particular
framework, (i) ratios which depend on the parametars  form factors which play dominant roles in these decays. Fi-
and whose measurements will determine these effective carally, we shall compare the numerical results for these ratios
efficients, and(iii) ratios whose measurements will impact obtained from the complete expressions, which have been
on the CKM phenomenology; i.e., they will help determineused in calculating the entries in Tables VIII-XI, and the
the CKM parameterp and 5 (equivalently sinv, sing, and  corresponding ones obtained from the simple formulas to
siny). judge the quality of the approximation in each case. As prac-
tically an almost endless number of ratios can be formed
from the 76 branching ratios given in Tables VIII-XI, some
thought has gone into selecting the 11 ratios which we dis-
cuss below. Our criterion is based on the theoretical simplic-
We start with the ratios of branching ratios in which theity and experimental feasibility of these ratios. To be spe-
effective coefficientsa, ... ,a;0 cancel. In the present ap- cific, these ratios involve those decays whose branching
proach, these ratios depend on the form factors and hadroniatios are expected to (10 °) or higher, with the ratios
coupling constants. Their measurements will allow us to disof branching ratios of order 1 so that a reasonable experi-
criminate among models, determine some of the hadronimental accuracy could be achieved, and whose decay widths
guantities, and improve the quality of theoretical predictionsare dominated by a single form factor.
for a large number of other decays where these hadronic We start with the discussion of decay modes involving the

In what follows, we shall illustrate this by giving com-

A. Ratios of branching ratios independent
of the coefficientsa;

guantities enter. final statesra, p7r, andpp. These ratios are listed below:
|
o _ BB—pm) X2t (m,p)*[F17(mp)|? 43)
" BB —pp) EES 2po, HRPPAT  2¢V2 (1, |
f(p,p) - +1 (1+X) A1+ + —|5—X A1A2
4 f(p.p)? (1+x)?  (1+x)? 12

wherex=m,/mg. The form factorsA;, A,, andV involve theB— p transition. The functiorf(a,b) is the momentum
fraction carried by the final particle$(a,b)<1/2:

A S—, 22
V(mg—m2—m?)2—4m?m?

f(a,b)=
2m3

Since f(,p)=f(p,p)=1/2—x? and in almost all models one expeds=A,, the expression given in Eq43) gets
considerably simplified. Neglecting the terms proportionaktdn the denominator, one has
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_IFETTm)?
1

= 44
(1+x)|ASP(mD)[?’ 49

which is essentially determined by the ratios of the form faclﬁfré’” andA?ﬁP. We show the values of the rati®, in Table

Xl for the BSW model and the lattice-QCD—-QCD-sum-rule method for both the full widths and following from the
approximate relation given in E¢44). There are various other relations of a similar kind. For example, neglecting the small
QCD penguin contribution and the very small difference in phase space, we get the relations

BB —mat) [f,FB m(m2)\?
P2= 0, +._—\ Bom, 2y | (45)
BB "—p"77) f,Fr7(my)
o BB —m ) (1A (m) ? s
* BB—pta) | f,FET(m?)

As can be seen in Table XIII, both Eqg5) and(46) are excellent approximations and, for the two models in question, we
get an almost form-factor-independent prediction, namely=0.4 andP3;=0.28. It must be remarked here that one must
disentangleB® decays from thd° decays as botP, and P; are defined for the decays BF.

In the same vein, we define the ratiBs and P5 involving the w7 and pp modes:

b _B(B+—>7T+7TO) a7
BB —pT ")

P _B(BO—)’]T_'TT-'—) (48)
* B(B°—pp?)’

Neglecting the QCD penguin contribution iy, and the EW penguin contribution iRs, which are excellent approximations
(see Table XIllI}, we can obtain these ratios as

b _p fw)z x?(1—mZ/m3)f(mr,m)|Fg~ "(m2)|? 9
R f(p.p)* L +1](1+ )2A2+f(p'p)2A%+ 2V 1(1 2X%)AlA
, - X —=(1-2x
S EETPISE e (1+x? 2 o
Neglecting higher order terms i we get
fr\?  [FE~7(m))[?
F’42P5z e y (50)
fol (1+x)|AT ()2
very similar to the relation foP,, except for the ratio of the decay constants.
The next ratios are defined for the final states involvitigr and K* p:
BB —K**77) B(BT—7tK*?)
P=———"—"—, P=——-—"—. (51
B(BO—>K*+p7) B(B+_)p+K*O)
One can express these ratios as
o _p_ X*f(m,K*)FE ()| -
6— "7 ’
f(p,K*)3 —(ﬂﬂ (1+x)2A%7+ f(’J’K*)zAg+2X2y2v2—E(l—xz—yz)A A
S TS U ae? (10?2 o

wherey=my« /mg, and we have neglected the small phase space difference. Similar to the expresBipnviercan derive
a simple formula by dropping higher powersxn
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IFS "m0

(1+x)|AZ P (mi,)[2

(53

PGZ P7:

Again, neglecting the small phase space factor and the extrapolations of the form factors qu%wea)f\ and g
= mi* , the near equality?,=Pg=P- holds in the factorization assumption.

The next ratios, calle®g and P4, involve the final state&KK* andK*K*, respectively. Defining

B(B+_>K+E*O) B(BOHKOR*O)
Py s 549
B(B+*>K*+K*O) B(BO—)K*OK*O)
we now have
YA RS K(mg P (KK* )/ (K* K*) 2
Psng: (55)

F(K* K*)ZAST2 2y VK2 1 -
——+ —— 5 (1-2y) AL AS
(1+y) (1+y)? 2

_ 3—y4+1 (1+y)2|AK*|2+
4\ f(K* K*)?2 !

The form factorsAK*, Ag*, VK" are abbreviations foA?"K*, etc., and again small phase space differences have been
neglected. Expanding ipm and dropping higher order terms, we get

IFE=K(m&.)|2

sz sz * , (56)
(1+y)|AZ (i) |2
which involves ratios of the form factos® " and AB~K" .
Finally, in this series we define the ratit,, and P4, involving the stateK ¢ andK* ¢, respectively:
_ B(BT—K'¢) _ B(B°—K°) -
1O_B(B+_)K*+¢)' 11_B(BO—>K*O¢).
Ignoring the small phase space difference, we get
o _p YA FE (M) IPIf (K, @)F(K*, ) -
10— 11— * * )
1 3 222 R f K*, ZAK 2 2 222 VK 2 . .
U 2 ) arpeare (OO0 B VIR 1 e A
A f(K*, ) (1+y)? (1+y)> 2

wherez=m,/mg. Expanding iny andz and again neglect- tios are on the same theoretical footing as the corresponding

ing higher order terms iy andz, we get relations involving the decay8—D(D*) w(p), studied, for
example, in[18]. However, as the energy released Bn

[F27K(m3)|? —h;h, decays is large, and no fine-tuning among the vari-

Pig=P1= (59 ous amplitudes is involved, which is the case in class-V de-

B—K* 2\12°
(1+y)lA; (m¢)| cays, we think that the above relations are likely to hold. The

ratios of branching ratios are also independent of the CKM
matrix elements; therefore they constitute a good test of the
; factorization hypotheses. In Table Xlll, we have presented
factors, we have the near equaliffg=Po=P1=P11. 1o numerical values of the ratid®,, i=1,...,11. This
These ratios are all pioportlonal to the ratios of the form,p e shows that almost all the ratios are remarkably close for
factorsF; " and A7 <" the two models used for the form factors. This, however,
The ratiosP4, ... ,P;; involve decays in which at least reflects our choice of the specific values of the form factors,
one of the 0 mesons is replaced by the corresponding vecwhich is influenced by the present CLEO data. In general,
tor 1~ particle. If these particles in the decBy-h;h, were  the ratiosP; are measures of the ratios of the form factors,
heavy, such a®,D*,D4,DY , one could use the large en- which could vary quite significantly from model to model,
ergy (1E) expansion to derive the ratidd . We have not and hence they can be used to distinguish between them. It
investigated this point and hence cannot claim that these raan also be seen that in most cases, the simple formulas are

So in the factorization approximation and ignoring the small
extrapolation betweeg?=m?, and q?=mj, in the form
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good approximations and would enable us to draw quantita- T T 1
tive conclusions about the ratios of dominant form factors in I
these decays. \

0.5
T
\
1

B. Determination of the effective coefficientsy;

In this section, we aim at measuring the effective coeffi-
cients a; of the factorization framework. To that end, we
shall study some ratios of branching ratios which are largely [ |-
free of hadronic form factors and decay constants. In general, e
these ratios depend on the effective coefficiemt@and the ne
CKM parameters in a rather entangled fashion. To disen- [ |
tangle this and gain some insight, we will have to make
approximations, whose accuracy, however, we specify quan-
titatively within the present framework.

y;=cosé,cosa
/
\
\

- L 1 L 1 1 L 1

1. Determination of the tree coefficients;and a, 0.2 0.4 0.6 0.8 1

We start with a discussion of the deca8%— #* 7~ and “1
B*—a*«° which are on the verge of measuremefits
Neglecting the electroweak contributions, which we havi
checked is a very good approximation in these decays, Wﬁc
can derive from Eqs/Al) and (A3) the following relation: ¢

FIG. 9. y,=coss,cosx as a function ofz; in the factorization
approach. The dotted, dash-dotted, and dashed curves correspond to
= and |V,,/Vep|=0.11, N.=3 and |V,,/V,|=0.08, and
=2 and|V,,/V¢ =0.06, yielding in the BSW model the values
S,=2.07, $;,=0.94, andS;=0.59, respectively. The two vertical
lines indicate the bounds an from our model and the CKM uni-

_ B(B’—7tn) tarity fits 0.08<z,< 0.50.
' 2B(BT— 7" 7Y
best bet in the determination of the effective coefficients is to
find ratios of branching ratios in which the quantity
z,cosscosp; (herepi=a, B, oOr y) and zi2 are both small.
Within the factorization framework, and using the present
(60 constraints on the CKM parameters, this can be systemati-
cally studied. With this in mind, we shall present a number
of approximate formulas for the ratidS, which are ex-
pected to hold in the limitz;cosscos$ <1 and zi2< 1. To
aut aGRl‘ quantify the quality of our approximation, we shall make
a,;ta, | detailed numerical comparisons between the numerical re-
sults forS;, obtained with the complete expressions for the
Here, the quantitiesgo and 75+ are the lifetimes of th@®®  respective decay widths, and the ones following from our
and B* mesons, which, within present experimental accu-2Pproximate formulas. _ o o
racy, are equal to each other. The implicit dependence on the There are some ratios of branching ratios in which, within
CKM matrix elements in the quantity,+agR, is not very ~ our theoretical framework, the factargosscosg are large,
marked (see Sec. )l The explicit CKM factor is bounded O €lse the CKM dependence of the ratios factorizes in a
from the unitarity fits in the rangdat 95% C.L): 1.4 Simple way. We shall use these ratios to determine the CKM
<|VipVE|/| VoV 4| <4.6. Varying thenN, from N,=2 to Parameters in nonleptonic two-body decads-h;h,. This
N.=c, we get 0.0& z,<0.50. This would suggest that one kind of analysis has already bee_n sugg_ested in the literature
might be able to determine the quantity adsom this ratio. [45,27,5Q. We add a n_umk_)er of Interesting decay modes to
However, the value of, is strongly correlated with that of the cases f%”eady stud|ed_ in the literature and make quantita-
the producty,=coss,cosy, as shown in Fig. 9 where the (V€ Predictions for them in the present model.
dependence of this product is shown as a functiorz,qf Returning to th_e pletermmatlon of t_he coe;fﬂmea’;s.we
indicating the allowed range a for assumed values of the note that a ratio similar t&, can be defined with thgp final
ratio S;. As a result of this correlation, which is specific to states:
the factorization approach, the ratcoss,cosy remains

2

Tgo al

a;t+ta,

a; )
-2 Z,C0sxC0SH; + 77|,
a;+a,

B+

where

VipVig ‘
Vy bvﬁd‘

1=

small in the entire allowed parameter space. The quantity _ B(B°—p*p7)

z,c085;cosy is bounded from above to lie below 0.16, which N 2B(BT—p*p?)

corresponds to usingl.=2 and |V ,/V.,|=0.06. This is

then bad news for determining the quantity @dsom the Tgo a; \? a, 5

ratio S; but good news as far as the determination of the = ata. " 2aia, Zecosacosh 73|,
effective coefficientsa,/(a;+a,) from S; is concerned. TerL T2 e

Taking this as a generic case for other decays of interest, our (61
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where SS: ZB(B+—>7T+7TO)~<f_7T)2 Vubvtd 2 al+a2 ‘2 (66)
. BB —aK% \fk/ | Vpve| |astagRs| ’
VioVig|| aa
Z,= .
2 VgVl latas . 2B(B*—p*p®) [ 1, |*VupVia ?la,+ay)?
BB —p K*%) s |VpVE| | 24 (67)
This is not expected to exceed its maximum valE™
=0.26, the central value being aroumg=0.08. Hence, one B(B— 7 p*) £\ ViV g 2 a,|?
could use approximate formulas 81 andS, by keeping the S7E+—+*O= . oo | |3l (68
dominant term arising from the tree contributiofsetting BB —m K*) fs ) | VioVis 4
TBO= TB+):
o BB ) ( £, )2 VaoVie| a2 )
BB —mm) [ a |2 S BBTp K\ ) | ViV 2]
S= ZB(B+—>7T+7TO)2 a;+a, (62
on B(Bo_mmr):(f_w)z VaoVid| a |? .
) BB —mK) Tl |Vevr| lastacRs = (70
BB°—p'p) [ a |2 ¢
= = (63
=2 2B(BT—ptpY \aita

Here, the quantityRs is defined asRs=2mZo/(my

—mg)(mg+mg). As is obvious from the formulas given
Likewise, neglecting the penguin contributions, which apove, the determination of the effective coefficients through
give only several percent uncertainties, the vagéa, can these ratios is correlated with the values of the CKM factors,
also be measured from the following ratios: which in all cases are given essentially by the ratio

IVup/Vis|=|Vup/Vep=0.08-0.02. We expect that the

CKM matrix elementV,,/V.,| will be very precisely mea-
2 sured in forthcoming experiments. Hence, a better use of

2B(BT—p*a0) la, o . . - .
Ss=——F——F———= ( 1+-—1, (64)  these ratios is to determine the effective coefficients. To give
B(B —p"m") xa a quantitative content to the approximations made in reach-
ing the simple expressions f&, i=1, .. .,9, wedisplay in
Table XIV the numerical values of these ratios, together with
2B(B* - p0) 2 the ratios Sy _and S;; discussed below, as a function qf
= :( 1+x—=] , (65) [Vue/Vepl, taking a rather generous error in this quantity in
B(B—m"p7) the range 0.08|V,,/V.|<0.11, for three values oN,.

The rows labeled as “Exact” are the results obtained by

using the complete amplitudes and the rows labeled as “Ap-
where the quantityxz(pr?Hﬂ')/(fﬂ_AgﬂP) can be mea- Prox.” are the results following from the simple relations
sured by measuring the rat;. given above for these ratios. As one can see, these formulas
are quite accurate over a large parameter space, with the
deviations mostly remaining well within 10%. One can also
check that the ratio$;—Sy for the complete result scale

Concerning the coefficients;, . . . ,ag, we recall that the almost quadratically withV,,/V.,, as follows from the

dominant QCD penguin amplitudes are proportionalato  simple formulas, which shows that the CKM dependence
andag. The others §; andas) enter either as small correc- displayed in the approximate formulas is actually quite accu-
tions in class-IV decays, or else enter in class-V decaygate.
which in most cases are highly unstable due to large cancel- Concerning the measurements of the electroweak coeffi-
lations in the respective amplitudes, hence rendering this excients,a-, . . . 2,9, we recall that the dominant contribution
ercise not very trustworthy for determining the smaller coef-of the electroweak penguin amplitudes is proportionado
ficients. In view of this we concentrate on relations involving The rest of the electroweak coefficients are either small or
the QCD-penguin coefficients, andag. For this purpose, they enter in combinations which render them very sensitive
quite a few class-IV decays listed in Tables VIII—-XI suggestto the variation inN. . It is instructive to consult Table XII,
themselves. Here, we take the ratios between some of thghere the decays in which electroweak penguin amplitudes
representative decays from this class and from class-I amay make a significant contribution to the branching ratios
class-lll decay. These ratios and their approximate deperare listed. In line with our argument, we will concentrate
dence on the coefficients of interest are as follows: only on class-IV penguin amplitude decays, and pick up the

2. Determining the penguin coefficients
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TABLE XIV. The ratiosS; calculated using the indicated valuesNyf and different values o and ».
The values are calculated using the approximate forrtAggorox.) derived in the text also.

N, N.=2 N.=3 Ng=o0

IVp/Ve)/ 006 008 011 006 008 011 006 008 011

S, Exact 059 066 068 083 094 095 181 203 207
AppIOX. 064 064 064 091 091 091 197 197 197

Exact 060 064 065 085 090 091 184 195 198

AppIOX. 064 064 064 091 091 091 197 197 197

Exact 133 132 132 1.09 109 109 074 075 0.75

ApprOX. 129 129 129 106 106 106 071 071 0.71

S, Exact 241 220 213 140 123 117 032 023 0.19
ApprOX. 213 213 213 120 120 120 022 022 0.22

S5 Exact 055 097 196 037 066 133 016 028 056
AppIOX. 055 095 1.89 038 066 131 017 029 058

Ss Exact 307 546 1101 195 347 700 075 134 271
AppIOX. 310 530 1056 206 353 703 086 146 292

S Exact 197 373 762 177 335 684 149 282 576
ApproX. 1.99 340 678 187 319 636 168 288 574

Ss Exact 184 347 710 165 312 637 139 262 536
ApprOX. 1.99 340 678 187 319 636 168 288 574

S Exact 032 065 133 031 062 127 028 057 117
ApproX. 036 061 122 035 059 118 033 057 1.13

Sio Exact 022 018 013 015 014 013 009 012 0.18
AppIOX. 014 014 014 013 013 013 011 011 0.11

Si Exact 037 017 006 028 015 007 020 016 0.12

Approx. 0.26 0.15 0.07 0.25 0.14 0.07 0.23 0.13 0.07

decay modeB°— p°K® as an illustrative example. To that C. Potential impact of B—h;h, decays
end, we define the following two ratios involving a class-I on CKM phenomenology
and a class-IV process, dominated by the tree and QCD pen-

. . . 1. B> @K channels
guin amplitudes, respectively:

In this subsection, we consider the ratios of branching

2 ratios which can be gainfully used to get information on the

0_, 0KO B—K(m2) |?
— 2B(B"—pK") 22 foF1 (M) ’ Qo CKM parameters. The most celebrated one in this class is the
10 BB T—mtK*0) 4 fK*FE‘_’”(mﬁ)‘ ay| ' ratio discussed by Fleischer and Mannel recefd§], in-
volving the decayB’—K* 7~ andB*—K°#*. Ignoring
o oLo the electroweak penguin contribution, which is estimated to
_2B(B"—p'K") be small in our model, one can write this ratio as
11—
BB —p w"
o 2 ) 2 s= 2B KT s ooyt 2y, (72
. =—=1-— 0S57,C0 ,
9 ViV |7 f,FE K(mg)’ ag 2 - 2 BB KOm) 210080108y + 215, (72)
Ve (1,88 7| o it
We show the numerical values of these ratios in Table XIV IT|  |VaVis a, ’
for the three indicated values of the r IV |, both for Z19=757 = .
ali Ve 2P| thVfS‘ ay+agRs|

the exact and approximate cases. The approximate relations
are reliable over most part of the parameter space. Other
similar ratios can be written down in a straightforward way.
Measurements of the ratioS;—S;; will overconstrain the
coefficientsa,, ag, andag, testing both the factorization
hypothesis and determining these crucial penguin coeffi- S;,=0.65+0.39. (73
cients. Note thaf,, depends only slightly on the CKM fac-

tors, compared to the others discussed aboveSr&, do  For the central values of the CKM parameter=0.12, »
not depend ofV,,/V¢,| When we use the approximations in =0.34), the value 08, is found to be 0.8&S,,<1.0, vary-
Egs. (62)—(65). ing N. and using the two form factor models displayed in

The branching ratios involved i8,, have been measured
by the CLEO Collaboration and their values can be seen in
Table VIII. The ratioS;, itself has the following value:
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FIG. 10.y,;,=cosd;,cosy as a function ok, in the factorization FIG. 11. S, as a function of cogin the factorization approach.

approach. The dotted, dash-dotted, and dashed curves correspondriee dotted, dash-dotted, and dashed curves correspoNg=te-,
Ng=0o and|V,,/Vcp=0.11,N;=3 and|V,/V¢,|=0.08, andN, N.=3, andN.=2, respectively. The horizontal lines are the CLEO
=2 and|V,,/V.p|=0.06, yielding in the BSW model the values (*1c0) measurements @&;,. The two vertical lines correspond to
S,,=0.46, S;,=0.91, andS,;,=1.12, respectively. The two vertical 32°<y<<122°.
lines indicate the bounds om, from our model and the CKM
factors discussed in the text, yielding 0<15,,<0.29. for the BSW form factors. It is seen that for all valued\if,

the CLEO data provide a constraint on gpgvhich is com-
Table VIII. However, varying the CKM parameters in their patible with the one allowed by the CKM fits, yielding 32°
presently allowed range, we find 046&,,<1.12, where the < y=<122°[47]. This is in line with what has already been
lower and upper values correspond|tq,,/V.,|=0.11 and reported in[27].
|Vuo/Vep|=0.06, respectively. The rati®;, is, formally The ratioS,, given in Eq.(72) is a generic example of the
speaking, very similar to the one defined for the reia kind of relations that one can get from the ratios of branching
However, the difference betwe&j andS;, is that the prod- ratios in which the quantity;cosscosy is not small. We
uct z,,C085,,C0Sy, as opposed to the corresponding quantityhave argued, in line witti27], that the factorization model
Z,C0s5;cosy in Sy, is not small in the allowed region af,. gives an adequate account $f,. We discuss below some
The range 0.152z,,<0.29 is estimated in the factorization related ratios, which, once measured, could be used to deter-
approach, varying the CKM matrix element ratio in the rangemine cog as well as further test the consistency of the fac-
0.013< |V Vid/|Vip Vi <0.023 andN,. This is shown in  torization approach.
Fig. 10. Hence, the rati&;, and its kind, discussed below,

do provide, in principle, a constraint on eosThis figure 2. Ratios for B—#K* modes
also shows that the rati®,, is in quite good agreement with One can define, analogous to E@2), the ratioS,s, in-
the measured ratio by CLEO. volving the decay8®— 7w~ K** andB™ —K*%7*:
In the context of the factorization models, the CLEO data
were analyzed ih27] and it was shown that theoretical es- B(B*— 7 K*™)
timates in this framework are in agreement with data. The  S;3=——————————=1—27,5005,5€0Sy+ zfg,

ratio S;, (called Ry in [27]) provides a constraint on the B(B"—m K*)
CKM parameterp (equivalently cog). Taking data at the

+ 10 value, the CLEO data disfavored the negativee-

gion. The allowed values of this parameter resulting from the

(74)

measurement db;, were found to be in comfortable agree- Tl | Veevid|a
ment with the ones allowed by the CKM unitarity fits. In Zig= = ubZus |71
addition, the dependence &, on the CKM parametem, P VipVis| 184

was found to be weak. This overlap in the valugdbllow-

ing from the analysis of the rati,, in the factorization Using 0.013<|V,,V{i|/|Vip Vg <0.023, and fromN =2 to
approach and from the CKM unitarity fits has also been conN.=%, we get 0.36Cz,3<0.60, indicated in Fig. 12. The
firmed recently if48]. We show here the rati§,, plotted as  ratio S, is plotted in Fig. 13 as a function of cpdor three
a function of coy for N.=2, 3, ande and fixed value of different values ofN. and|V,,/V.y|. When measured, this
the ratio|V,/V¢p| =0.08 in Fig. 11. The form factor depen- ratio will provide a constraint on the phase go¥arying the
dence of this ratio is rather wedks can be seen in Table CKM parameters andll; in the indicated range, we find the
VIIl) and for the sake of definiteness we display the resultatio S;; to lie in the range 0.48S,5<1.37. The upper
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with

I
244 p] -

Vu bV:s
thV?s ‘

a, |
ast a6Q4|'

0.5
T
\
I

TS TE A PR The central value of the quantita, is z;,~5.07. However,

-~ . being very large, the rati§,, implies that the branching ratio

- 1 in the denominator is appreciably smaller and perhaps a lot
- 1 more difficult to measure. In view of this, we are less sure of
the utility of the ratioS,, in the foreseeable future.

¥13=cosd qcosY
~
\
\
\

/ - 4. Ratios for B—pK* modes

Finally, we note that the rati8,5 defined below provides,
within our model, a very similar constraint on gosas the

[ 04 0.6 one following from the ratidS,5:

Zy3

B(BO_>p7K*+)

Sp= P
15 B(B+—>p+K*O)

=1- 2215005(515008‘)/"' 2%5,

(76)

FIG. 12.y,3=c0s5,5c0Sy as a function of, 5 in the factorization
approach. The dotted, dash-dotted, and dashed curves correspond to
N.=c and|V,,/V¢p=0.11,N.=3 and|V,,/V¢,/=0.08, andN,
=2 and|Vyy/Vcy|=0.06, yielding in the BSW model the values \yherez,s=z,5 and 8;5= ;5. This will be a further test of
S13=0.49, S15=0.95, andS;3=1.37, respectively. The two vertical the factorization ansatz.
lines indicate the bounds ory; from our model and the CKM Finally, in conclusion of this section, we mention that a
factors 0.36<2;3<0.60. method of measuring the CKM matrix element ratio

|Vig/Vi using exclusive nonleptoni® decays has been
bound is larger than the one f&, given earlier, reflecting proposed in Ref[50]. Some of these ratios have modest
that the QCD-penguin contributions in the two ratios aretheoretical uncertainties due to G)-breaking effects.
similar but not identical. These relations hold in the factorization framework as well,
and we list a few of them below:
3. Ratios for B—pK modes
B(B+4>K*+KO)

B(B+—>p+KO)

B(B+*>K+K* 0)

B(B+_)7T+K*O)

B(B* —=K*K?)

B(B*—7*K?)

One can define the rati8;,:

_ B(BO—>p_K+)
_ B(B+HP+KO)

2

14 =1-—27440S8,,0Sy+ 254, (75

B(B+—>K*+K*O) th
B(BT—p*™ K*0) |Vi|

(77

VIIl. SUMMARY AND CONCLUSIONS

We have presented estimates of the decay rates in two-
body nonleptonic decayB—h,h, involving pseudoscalar
and vector light hadrons in which QCD and electroweak pen-
guin transitions play a significant role. This work partly
overlaps with studies done earlier along these lines on
branching ratios, in particular ir27,31. We make use of the
theoretical framework detailed 27,28 but we think that
this is the most comprehensive study of its kind in the fac-
torization framework.

Using the sensitivity orN. as a criterion of theoretical
stability, we have classified all the decays-h1h, into five

Si3
7/
s

-1

-0.5

cos ¥

0.5

different classes involving penguin and tree amplitudes. This

extends the classification of tree amplitudes in vogue in the
literature[8,18]. We hope that the detailed anatomy of the

decaysB— h;h, presented here, in particular concerning the
QCD and electroweak penguin transitions, will serve to have
a more critical view of what can be reasonably calculated in
the factorization framework and what involves a good deal
of theoretical fine-tuning. Following the classification dis-

FIG. 13.S;3= S5 as a function of cog The dotted, dash-dotted,
and dashed lines correspond to results wWith=o, N.=3, and
N.=2, respectively. The two vertical lines correspond to 33°
<122°.
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cussed here, we think that class-I and class-1V decays, argistent determination of these coefficients will greatly help in
probably also class-lll decays, can be calculated with a readeveloping a completely quantitative theory of nonleptonic
sonable theoretical uncertainty, typically a factor of 2. How-B decays. Leaving ou, from this list, which depends sig-
ever, most class-Il and class-V decays deserve a careful theificantly on N;, we do not expect that the rest will be
oretical reappraisal to establish the extent of nonfactorizin@reatly modified by nonperturbative effects. It will be diffi-
contributions. In particular, we have outlined the pattern ofcult to quantitatively determine the smaller penguin coeffi-
power suppression in annihilation contributions to two-bodycients not listed explicitly.

nonleptonicB decays. Being suppressed bﬁ/m‘é, the an- We have proposed a number of ratios involving the de-
nihilation contributions are small in the deca§s-PP, but ~ caysB—h;h,, relating the final states in which a pseudo-
since this suppression is onlylﬁ/mé in BPV and B scalar meson is replaced by a vector meson. They will help

—VV decays, in specific cases this can be easily overcomi® determining the form factors for the various decays con-
by the favorable effective coefficients. Hence annihilationSidered here. While these relations are derived in the factor-

contributions can be significant in son—h;h, decays iZation approach, perhaps their validity is more general.
involving vector mesons. The current and impending interest in two-body nonlep-
Our results can be summarized as follows. tonic decays for the CKM phenomenology is illustrated,

The recently measured decay mod&®—K* arguing that they provide pot_entiallly nontrivial constrqipts
B*—K*5', B'-K%', B*—x'K® andB*—wK* can ON the CKM parameters. While ultimately not competitive

be explained in the factorization framework. The first four of ©© More precise determinations of the CKM parameters from
these belong to the QCD-penguin-operator-dominate®’-B° mixings and radiative and semileptoni decays,
class-1V decays, which we argue can be reliably calculatedhey are of current phenomenological interest as the con-
The last belongs to thdl.-unstable class-V decays, which straints following from them are already complementary to
may receive significant FSIs and/or annihilation contribu-the ones from the CKM unitarity fits.
tions. Taken the present theory and data at face value, all Finally, within the factorization framework which gives
measured decay modes are consistently accommodated, w2 adequate account of the present data on decay rates, it will
some preference foé=1/N.<0.2. Data on the combined be instructive to study direct and indireC® violation in all
decay mode — ¢K* prefer a somewhat h|gher value for tWO-bOdy nonleptoni(B decays discussed here. We hope to
£. However, we caution against drawing too quantitativereturn to this in a forthcoming publicatidi75].
conclusions at this stage.

A number of decays are tantalizingly close to the present

experimental upper limits. We think that with(10%) B/B We thank Christoph Greub and Jim Smith for helpful dis-
hadrons, available in the next three to five years, a goodussions on various aspects of theory and data discussed in
fraction of the 76 decay modes worked out here will be meathis paper. We also thank Jim Smith for critically reading the
sured, providing a detailed test of the factorization approachmanuscript. G.K. was supported by Bundesministeritim fu
To further quantify these tests, we have put forward nu-Bildung und Forschung, Bonn, under Contract 057HH92P
merous proposals which involve measurements of the ratiosnd EEC Program “Human Capital and Mobility” through
of branching ratios. Carefully selecting the decay modes, onsletwork “Physics at High Energy Colliders” under Con-
could determine the effective coefficierdas, a,, a,, as, tract CHRX-CT93-0357(DG12COMA). C.D.L. was sup-
andag from data onB—h,h, decays in the future. A con- ported by Alexander von Humboldt Foundation.
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APPENDIX A: MATRIX ELEMENTS FOR B DECAYS TO TWO PSEUDOSCALAR MESONS
(1) b—d processes:
G

— _ . Gg o
M(B%— 7 w*)Z—I—ZfWFg (M2)(ME—m2){VypViigas— Vi Vi as+asot (as+ag) Ry}, (A1)

with R;=2m?2/(m,—my,)(m,+my),

3 3
az— §a10+ 537— Eag+

RZ} ] 1 (A2)

_ G
M (B — 7070) =i —;fﬁFé‘”(mi)(mé—mi)[vubv:dazwmvrd

V2

dg— 5asg

2

with R2=2miol(mb—md)(md+ my). After squaring of the matrix element, the decay rate should be divided by 2, for the
symmetric factor of identical particles in the final states:

_ ) __-& B—a/ 2 2 2 * _ * E —
M(B™ -7 7)=—i 5 f.FoT(m5)(mg—m2){ VypVig(as+ay) thvtdxz[ag+a10 a;+agR,] 1, (A3)
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G
M(Bf—m'r*n(')):—i—':

u

. Gr B 12 2_ 2 * * Fo
—|Efn(,)l:0 (mn(,))(mB—m_ﬂ_) Vuquda2+Vcbvcda2

- Vt bvikd

1 1
a3~ 58107F 2a3— 2a5+§(a9— az)+
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) 2
\/Efw':g 7 mE) (Mg —me ){VpViar— VieViglas+ a0t (36 +ag) Ry}

c

u
)

1 20
RO

n

Cc
f,,(/)
+(az—astag—a;)—+

)

1
as_as—i(ag_aﬂ

] , (A4)

with R(3’)=mf](,)/(mb—md) m;. The definitions of the decay constants involvingand »' are as follows:

(Oluy, ysul 7 (PN =if" 0 p,,  (Olsy,yssl 7' (P)=if50 P, (Olcy,yseln (p)=ifS p,

(A5)
The quantitiesf;‘](,) andff,(,) in the two-angle mixing formalism are

fg . fo fs . fo

f! = —sinfg+-—=coshy, f°,=—2—sinfg+—C0SHy, (AB)
7 \/65 8 \/§ 0 7 \/6 8 \/§ 0

fg fo fg fo

f!=—cosfg——=sinf,, f5=—2—=cosfg——=sinb,. (A7)
n \/6 8 \/§S 0 7 \/6 8 \/5 0

We shall also need the matrix elements of the pseudoscalar densities for which we use the following equations:

(Oluysuln) 5 (Oluysuly’) f,

— - s’ ——, s (A8)
(Ofsyss|m) 1, (Olsyss|n’) f,,

which differ from the corresponding equationd #6], which have been sometimes used in the literature. In the approximation

of settingfg=f, and #3= 6y, the relations given above, however, agree with the results derivetZnThe results for the
densities(0|syss| 7’) and{0|syss| ) have been derived if27] which we use here:

_ (5, =Y )ym?, _ (S —fYm?
(Osyss|n')=—i——2—", (Olsyss|m)=—i —"5—". (A9)
S S

We point out that anomaly contributions have been taken into account in deriving these expressions. They are numerically
important. The relevant form factors for tle— »' and B— # transitions are

cosfg

, sinfg cosé sing
el S ) )

% B

For "= Fg,l( (A10)

The mixing angles that we have used in the numerical calculation8gare-22.2°, 6,=—9.1°[71]:
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|

1 3
—agt ;ag|Ry+ 5(89—37)

1
_a4+ _a10+ 2

2

= , - Ge )
M(B—w¥7(")=—i—-f,Fg 7 (M2)(Ma—m )| VypVigaz— Vir Vi
Cc

GF f (7)

(OFu cBom 2 2 .2 "

i fmFo ML) (Mg —mM2)§ VupVigaa + VerVed@a 7y VinVig
)
n

1
a,+2az—2ag+ E(ag—a7—a10)

X
1 20 0 1 20
+| as— 52 Rg’><1—;’— +(ag—as+ag—ay)—+| a2~ 5(@y—ay) || (. (A11)
) ) 0
0  Gr UB—p 2y, 2 2 % . f;
M(B _’777]I)=_|_f7,|:o K (my,)(mB_m )\ VubVagda+VepVeg@a —
V2 7 fu
i
1 1 fu f¢
Vi Vi a4+2a3—2a5+5(a9—a7—a10)+ aG—EaS R; 1—f—S +(a3—a5+a9—a7)—u
n 7

1 s G f
. . . n s F fu FB~>77 2 2 _ A2 V V* V V* '
az—as E(aQ a?) Fu I 7't 0 (mn/)(mB mn) ubYug@2 T VepVegaa u

)2

+

’

n

1 1 f
—VpViyl as+2a3—2as+ E(ag—a7—a10)+ ae—Eag)Rg( 1—]%)
7'
£ 1 £
+(az—astag—as);+ 33_35_5(39_37) ol (A12)
77I 7]/

=O ror 2Gg B— 7' m2 2 2 * * (7:7' * 1
M(B =" n")=—i—=1,Fo 7 (M )(Mg—m )} VupVig@z+ VepVeqda -y VinVig| @4t 283~ 285+ 5 (89— a7~ a10)

N

!

7
P r, 1 P,
+ a8~ 5 RS 1_fT +(ag—astag—ay)~+ a3—a5—§(a9—a7) fT . (A13)
771 7]/ ,'7/
Th((éZ;‘rE\trix elements foM (§°—> nn) are the same as the above equation wjth- 7.
—S Processes:
RO -+ - Gr B— 7 2 2 2 * *
M(B*—K™m ):_lﬁfKFO (M) (Mg —m2{VpVidi — Vi Vil as+aiot (as+ag)Ryl}, (A14)
with Ry=2m2/(m,—m,)(my+my),
RO__. 0,0 . Gr B— 7 2 2 2 * 1
M(B =K ) =—i—-TxFo (M) (Mg = M) VipVig @4~ 52101 | 36~ 588 |Rs
_Gr B—K/ "2 2 2 * * 3
i FFE M2 (MG —mQ)| VipViso = VieViex5 (as—ay) |, (A15)
with Rg=2mo/(mp—mg) (mg+my),
- -, 0 - Ge B/ 2 2 2 * *
M(B™ =K ) =—i—-fkFg (M) (Mg —mM{ViupVisas — Vip Vi as + aio+ (as+ag) Ral}
Ge B—K/ 2 2 2 * * 3
—i - TR (mE) (Mg —md) | VupVid—VipVisx 5 (ag—ay) |, (A16)
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R . Gg D
M(B~—K™ 7 >>=—|EfKF5’ 7 (mg)(mg—

\/— ,7(')

B—K 2 2 2
Fo (m,?(r))(mB_mK)
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2
m (o ){VupViss — VipVidas+aio+ (as+ag)Ryl}

0
7
uqusa2+Vcchsa2 u

)

* 1 1 (’) 77(/
—VipVis) 2a3—2as+ E(ag_aﬂ_ aG_EaB +(ag—as+ag—
,,m
1 1 2,
n|Ta0
+|azg—agt+as+ E(a7—ag—a10)+ a5~ 53 Rs P , (A17)
o)
with R§)=2m?,,/(m,—mg) (mg-+my),
1
M(BO— K%)= ﬁfKFB” (ME) (Mg —m2 () VioVis| 84— 5 10+ | 86~ 52 Rs}
. Gg . £
—IEfL;(,)FE “(m2 ) (ME—mR) | VupVi+ VooVt
o)
* 1 1 (1) ff}“’
—VipVis) 2a3—2as+ E(ag_aﬁ_ A5~ 53s Re +(a3—a5+a9—a7)fu—
o)
1 1 ) 0
+ a3—a5+a4+§(a7—ag—a10)+ 8~ 5 R o (] (A18)
o)
(3) Pure penguin processes:
_ 1 1
M(B™— 7 K% =i \/_f KFE7T(MZ)(M3—m2)V, Vi a4~ 210+ | 85~ 583 RS}, (A19)
1 1
M(B™—K~ KO)—|Tf KFE K (mEo) (ME—mZ)VipViy| a4 810t | 85— 52 RJ, (A20)
with R;=2m%o/(mp—mg) (mg+m,),
RO 010 G B—K 2 2 2 * 1
M(B — K"K )—| \/E KF ( Ko)(mB—ng)thth a4_§alo+ a6 Eag R7 . (AZl)
APPENDIX B: MATRIX ELEMENTS FOR B DECAYS TO A VECTOR AND A PSEUDOSCALAR MESON
(1) b—d processes:
M(BO—p~ 7 ") = 2Gf FIT(m2)m, (e p){VupViiear— VioViglas+ asl}, (B1)
M(B%—p" )= 2Gef ,AS " (m2)m, (e p){VupVigas— VipVidl astasot (ag+ag) Qul}, .
B2

with Q;=—2m?2/(m,+m,)(m,+my),
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— G 1 3
0 0.0y_ F -
M(B"—m"p )——Emp(E'Pw) f.AS P(mi)[vubvjdaﬁvtbv{‘d a4~ 5210+ | 85— 55| Qo+ E(a7—a9) )
1 3
+fPF?HW(mg)[VubV:daZ"'thvfd Ay~ 510~ E(a7+ag) ) (B3)

with Q,= —2mZo/(My+ mg) (Mg+my),

M(B™—m p%)=Gem,(e- pw){ fAS (M2 {VypVigas— Vip Vil as+asot (ag+ag)Qq 1}

] , (B4)

1 3
—ayt sat 5 (a7t ag)

+f,F7(m?) [ VunVig@2— VioVig

_ _ 1 1 3
M(B~—p WO)ZGFmP(e'pﬂ)(fwAgﬁp(mi)(VubvzdaZ_thV:cd Ayt sat| —ast 58| Qo 5(ag—ay) ]
+ pr?Hv(mi){VubV:dal_ VipViglas+ alo]}), (BS)
=0 o ,_CrF B 2 1 1 3
M(B = “’)_Emw(e'pw) f2Ag“(M2)| VupVid@2— VieVig —8s+ 52101 | 58586 | Qzt 5 (80— a7)

]) (B6)

M(B™—m w)=Ggm,(e- p»{fﬂASH“’(mi){vubvzdal—vtbv:*d[aﬁam+<ae+a8>Q1]}

1
a.4+ 2(a3+ a5)+ E(a7+ ag_alo)

—fa,F?”(mS,)‘vubv:daz—vtbvrd

1
a4+ 2(a3+ a5)+ E(a7+ ag_alo)

+ wa?”(mb[vubv:daz—vtbvrd

] . (B7)

_ _ ()
M(B™—p 7 >>=ﬁepmp<e~p,,<,>>(pr? 7MLV ypVigas— VipViglas+asol}

£
u B— 2 7
+1,00A0 p(m,,m){ VipVigaz + VenVegdz 7

(1)

1 1 fu(!)
—VpVig| ast2a3—2as+ 5(39_37_310)4' 8~ 5 as Q(sl)(l_ f:
)
C S
2 )
+(ag—astag—az)—+ a3_515_5(619_617) u “), (B8)
2 )

whereQ§) = —m?(,,/my(my+my),
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(1)

R"RO . 0_(r) B—y 1 3
M(B —pn )ZGFmp(ep,’(/)) prl _a4+—alo+ E(ag+a7)

(m2) [ VubViad2— VioVig

2
u —p(m2 * * f;(/) *
— A0 (ML) ViupVig@z+VepVegdz sy~ VinVig| @21 283—2as
)
1 1 ol . o Foon
+§(ag—a7—a10)+ A5~ 538 Q3’| 1- | t(az—astag—a;)
) )
1 fj,m
tlas—as— 5 (g~ ay) il (B9)
)

1
a4+ 2(a3+ a5)+ E(a7+ ag_alo)

— D
M(Boﬁwﬂ(')):Gme(f'pr;<'))<fmF? 7 (mi)[vubvzdaz_vtbvt*d

1 1
+fL:,(')Ag_>w(m3,('))[VubVEda2+Vcbvz:cda2;7__vtbv:rd a4+ 2a3— 285+ 5 (89— a7~ a0
()
o fl:,m fi,m 1 fj,m
+ aG—EaB Q3| 1—— +(ag—astag—a;)—+ a3—a5—§(a9—a7) - . (B10)
(1) (1) f,,(r)
(2) b—s processes:
M (goﬂ K* _7T+) = \/EGFfK* F?Hw( mi*)mK*(E' pﬂ){VubV:sal—thst[azﬁ- alo]}, (Bll)

M(B%—K™p*)=2GpfAS7P(mE)m, (e pr){VupVids— VipVi[as+ asot (ag+ag) Qul},

(B12)
with Q4= —2mz/(my+m,)(m,+my),
RO 1*x0_0 B—K*, 2 * *3 B— 7/ 2 *
M(B"—K*"7") =Gepmgxo(€-p,)| f-Ag — (M7) Vuqusaz_thVtsi(ag_aﬂ + fx FL T (Mygwo0) VipVis| @a— a0 |
(B13)
R0_. 30 0 Bop, o2 * 1
M(B"—K"p")=Gem,(e-pr)| fkAg (M) VipVisl 84— 5 810% | 86— 585 | Qs
B—K 2 * * 3
+prl (mp) VubvusaZ_thVtsXE(aQ—’_aﬂ , (814)
with Qg= —2m&o/ (My+mg) (My+my),
- *—_0 B—K*/ 2 * * 3
M(B™—K* " 7)) =Gemgx«(€-p,)| f-Ag (m2) Vuqusaz_thVtsXE(ag_aﬂ
i FE (M) {VupVisaa — VioVi(@at+ aso)} (B15)
M(BHKp°>=GFm,,<e-p@[fKAEﬂf’(mﬁ){vubv:Sal—vtbv:;[a4+a10+<a6+a8>Q4]}
B—K 2 * * 3
+f,Fi (M) Vubvusaz—vtbvtsxi(ag+a7) , (B16)
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M(goﬁiow):Gme(f' pK)(— Bﬁw(mKo)thVts aot|a

2

ag Qs}

]) (B17)

M(B™ =K w)=Gem, (e p){fkAs  “(M{VyupVids — VipVid as+aso+ (as+ag) Qul}}

1
+f FBHK(mi)[ VipVisao— VipVie| 2(ag+as) + 5(39"‘37)

1
+1,FE 7 (m ){vubv’;saz—vtbv;; 2(ag+as)+ 5 (ag+ay) (B18)
M(B™—K* ")) = 2Gemys (e- pB)|:fK*FB_”I (M{VupViar—ViVis(ag+ a0} + 11, AF K (m2 )
fn( ) * 1 1 (1
X | VupViot+VepVaa, —— T ViVis) 2(az—ag) + E(ag—a7)— ae_iag Qs
o)
f(;]( ) 1 1 (1) fj,(/)
+(ag—astag—as);—+ a3—a5—§(ag—a7)+a4— §a10+ 8~ 588| Q6 | 4 ,
) 0
(B19
with Q§)= —2m?,)/(my+mg) (mg+my),
- = , !
M(B—K*O7! >>=ﬁGFmK*<e.pB){—fK*F? 7 (MViVis| 8~ 510
‘0
+f (')AB_kK (mi(')) uqusa2+Vcchsa2 :I
o)
. 1 1 ) f,,(/)
—VipVis 2(33_35)"‘5(39_37)_ 45~ 53s 6 T(az—astag—as)_
,,(r)
1 1 1 ) 50
+lag—as— 5(ag—az)tas— sa10t | 84— 53| Qs ' | (B20)
2 2 2 £,
7
(3) Pure penguin processes:
M(B™— 7 K* %)== V2Ggf i FE (Mg )M (- p)VipVie| 24— a0, (B2D)
- -%0 B—p( 2 x 1 1
M(B —-p K )_ \/—G fKA (mKO)mp(e'pK)VIbV’[S a4—§a10+ ag_zag Q5,
(B22)
*0 RO O *0 B—K 2 *
M(B~—K K*%)=M(B°-=K°K —\2GEfx FEK(m2, )M« (€ p) VipViy a,~ a0, (B23)
. 1
M(B™—K* K% =M(B°—K*°K?) = — V2Ge AT " (Mo M (- i) VeoViy| 84— 5810+ | @6~ 58| Q7.
(B24)

with Q7= —2mZo/(My+mg) (mg+m,).
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_ 1
M (B 70¢) = Gef 8" (mB)my(e po)ViViyl @z +as— 5 (ar+ag) |, (B25)
M(B™ =7 ¢)=—2M(B°—7%¢), (B26)
RO (r) —q 1) 1
M (B 7)) = =26 F5 7" (mi)my(e- Py )VipVia| 85 +as— 5 (ar+ag) (B27)
Bo o B—K 2 * _E
M(B HK ¢) M(B HK ¢)— \/—G f¢F (m¢)m¢(€pK)thVts a3+a4+35 2(a7+a9+a10) . (828)
APPENDIX C: MATRIX ELEMENTS FOR B DECAYS TO TWO VECTOR MESONS
(1) b—d processes:
— ZABHp(mZ)
0,y pH)=— B—pm?2 . . 72 Ve
M(B p P ) \/— p p((e+ €_ )(mB+mp)A (m) (E+ pB)(E— pB) (mB+mp)
H MV N~ 2VB_’P(m§) * *
—i€,,qp€t €} poer {VupVisar— VipViglas +asl}, (C1
M (B° |—fm mg+m,)AB=P(m?)— )Lp(mz)
(B°—p%% = 2 (€1-€2)(Mmg+m,)A; (M) —(€1-Pp)(€2- Ps (mg+m,)
52V (m) . . 1 3 3
p.va,@elEZpoZW VupVig@e+ VipVig a4~ 5810~ 5877 589 |, (C2
M(B—p p0) = —i ot +m, )AL P (m?
(B"—p p)=—i 2 pMp| (€0- €-)(Mg+m AT (M)
2AP(m2) 52VEP(m))
—(fo-ps)(e—-ps)m 1 €,00p€" fopspom
* * 3
X Vuqud(al+az)—ththxz[a7+ag+alo] : (C3
M (B ww) = —i £, m {< (Mot M) AZ (12 (3 Pa) (€5 Pa) 25 (m)
—ww)=—1—=Ff,m,{ (€, € © w) —(€1- € Pp)—————
\/5 1" €2)(Mg 1 1-Pe)(€2- P (Mg+m,)
VB—»w(m ) . 1
;waﬁele2po2W ViupVigaz— VipVig| as+2(ag+as) + E(a7+a9_a10) (CH
_ 2AB—>w(m2)
_ B—w 2 14
M (B°— p%w)=— \/— f,m p((fo €,)(Mg+m,)AT " “(m7) — (& Pa) (€, ps)m
52VET (M) . . 13
—ie uvaBGOEwapr VupVug@2~VinVig| ~8a+ 5810F 5(a7+a9)
4ioEy (( (g M)A (2) (- o) e o) et )
i——=f,m,| (€9 €,)(Mg+m m?,) — (eg- €, Pg)———
202 0 BT My)AL o Ps Ps (mg+m,)
2VB=r(m?) .
—i€4,ap8€, €OIOB|O_W VupVid@2— VipViglas+2(az+as)]
P
1
+§[a7+ag_alo] , (CH
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_ _ .GF B—w 2
M(B —p w):—|7fpmp (€0 €-)(Mg+m,)AT (M)
2A57C(m2) 2V'%“’(VT12)
—(€o - pp)(€_- DB)(er—m) i €,005€" 60po“‘(rT1+—m)

. Gr _
X{VypVigar— VipViglas+aol} —i wamw< (€0 €_)(mg+m,)AFP(m3)

2A57P(m2) szsz))

—_— . . —_— /-L N
(€0-PB)(€--PB) (mg+m,) —i€uap€0€” po* (mg+m))

1
as+2(azt a5)+§(a7+ag—a10)

* *
X | VypVig@2— VibVig

(2) b—s processes:

_ G 2A8~P(m?,)
M(B°—K* p*)=—i Tng*mK*(<e+-e)(mB+mp>A?HP<m§*>—<e+-pB)<e-pB> :

5 2VEr (g, ) . .
i €,,05€" € PAPS “(mgtm,) {VupVisa: — Vi Vid ag+agol},

2AEHK (mi)

. G
M(BOHK*OPO):_i_Ffpmp (€ GK)(mB"_mK*)ABHK (m,z))_(fp'ps)(EK'pB)
(Mg+ M)

2
2VvE~K (m?2)

—i €4rap€l ek PEPK
uraB=p (Mg+ M)

3
( VubvusaZ thV?sX E(a9+ a?)

Gg Bp 2 ZAZBHP(mi*)
—i 5 fieMix | (€, €) (Mg + M)A (mK*)_(Ep'pB)(EK'pB)m
— 2
2VvE P(mK*)

3 1
—ie elkepppl ——— \Vp
praBCKEpMBMp (mB mp) tbVts

as— Ealo )

2AB~>K (m’Z))

G e
M(B—>K*PO):_Iffme((fof)(mB+mK*)A? “m)~(eorpolepor
BT Ik

2VvE~K (m?2)

(Mg +mgx)

) 3
—i€u,apel e’ pap” (V bV 82— thV?sXE(ag+ as)

G 2A8P(m?,)
L 7Ff|<* mK*((fo' 67)(mB+mp)A?ﬂp(mi*)_(60' Pe)(€--Pg) <

VB—p
52V (M)
i €40ap€" EOpoO(mT {VupViai— Vi Vidas+agol},
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RO 1ex0  Ge B— 2 ZAB_}w(mi*)
M(B"—K* @)=~ frxMixo| (€0 €,)(Mg+ M)A w(mK*O)_(fo'pB)(Ew‘pB)(mB_l_—m)
2VB~>w(mi*) 1 GF *
—iéﬂyaﬁfgfngpgw—m) wVis| ~ast 5810 —15-f,m, (€0° €,)(Mg+ My ) AT (m2)
(eopo) e o) ) BZVBAK*(mi))
— (€0 Pe)(€y Pg)————— —i€,,0p€€0PgP ——————
(Mg +mgx) CurabS (mg+mgx)
1
VupVido— Vi Vi 2(asztas)]+ 5 (a9+a7) (C10
- * — 'GF B—w 2
M(B™—K w)=—|7fK*mK* (€o-€-)(mg+m,)AT " “(Myy)
B—w 2 B—w 2
2AS (M%) e 2VE (M)
_(EO'pB)(E—‘pB)m_|5Muaﬂ6—EOpo0m
* * : GF B—K* 2
X{Vubvusal_vtbvts[a4+alO]}_Iwamw (€0-€-)(Mg+myx)AT " (MY)
BHK B—K* 2
(m2) 2V (m)
—(60‘ps)(€—'ps)— i€,,0p€h € PR’ ————
(Mg+mex) 0B (mg+mye)
1
X| VupVisd2— VipVid 2(az+as) ]+ E(ag+a7) : (C11
(3) Pure penguin processes:
— 2
= . Gr Bp 2 2A3 P(Migx)
M(B™—p K*O):lEfK*mK*((Ep'fK)(mBerp)Al p(mK*)_(ep'pB)(EK'pB)m
| v |
_IE#Vaﬁeﬁengpp(rnBT) bV a4—§a10 , (C12)
p
_ Gg Y 2A57“(m3)
M(BO—>(D¢):|qusmqs((qu‘fw)(ms"‘mw)A? (mfj,)_(prs)(fm'pB)(mB_i_—m(;
52VEe(m)) . 1
Mvaﬁeqﬁéwapw(rnB_l_—m) VipVig| @3+ 85— 5 (a7+ao) |, (C13
B0 G Bpy o2 2A7P(m})
M(B"—p ¢)——|—f¢m¢ (€4 €,)(Mg+my)A; p(mqs)_(qu'pB)(fp'pB)m
S2VETmY)| 1
M,,a,36¢€pp5ppm VipVigl a3+ as— §(a7+ag) , (C19
M(B™—p~ ¢)=—2M(B"—p°¢), (C19
M(B™—K*~ ¢)=M(B°—K*%¢)
Ge 2A5~K" (m3)
=i—f,my| (€, € m-l-m*AEHK m2)— (€, €k-Pg)————
\/E famyl (€4 €x)(Mg K*) (my)— (€4 Pe)(€k-PB) (Mg -+ Mee)
H Vo EZVBHK*(mfﬁ) 1
_'E#mﬂfngpspKW—m) VipVis| @3+ as+as— (a7+ag+a10) , (C19
B K*
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M(B_HK*_K*O):M(goﬂK*OK*O)

LK* 2
GF * 2 ZAE K (mK*)
=i —=freMix| (€1-€)(Mg+ M) AT K (M) —(€1-pp) (€2 pp)—————
2 K* Mg ( 1 €2){Mg T My )Ag K 1-Pe)(€2-PB (Mg+ Mex)
. g2V () . 1 17
—i€,,ap€) €2PpP; ———————— | VipVig| 84— 5a10)- Ci
nrab (Mg + M) 2

[1] CLEO Collaboration, R. Anastass&t al, CLEO CONF 97- [18] M. Neubert and B. Stech, iHeavy Flavors2nd ed., edited by
24, EPS-334; presented at the EPS Conference, Jerusalem, Is- A.J. Buras and M. LindnerWorld Scientific, Singapore,

rael, 1997; CLEO Collaboration, R. Godaggal, Phys. Rev. 1998.
Lett. 80, 3456 (1998; CLEO Collaboration, B.H. Behrens [19] Particle Data Group, R.M. Barnett al, Phys. Rev. D54, 1
et al, ibid. 80, 3710(1998: J.G. Smith, Report No. COLO- (1998.

HEP-395, 1998; Proceedings of the Seventh Internationaizo] J.D. Bjorken, Nucl. Phys. _&Proc. Suppb.l_l,_ 325(1989.
Symposium on Heavy Flavor Physics, Santa Barbara CA[Zl] T.E. Browder, K. Honscheid, and D. Pedrini, Annu. Rev. Nucl.
' ' ' Part. Sci.46, 395(1996.

1997. g . . . .
[2] CLEO Collaboration, T. Bergfelet al., Phys. Rev. Lett81 [22]11. Bigi etal, in CP Violation edited by C. Jarlskog, Ad-
272(1998 T ? ' ' ' vanced series on Directions in High Energy Physics Vol. 3

(World Scientific, Singapore, 1989and the earlier literature
quoted therein.

[23] L.-L. Chau, in CP Violation [22], and the earlier literature
quoted therein.

[3] K.G. Wilson, Phys. Revl179 1499(1969.
[4] G. Altarelli and L. Maiani, Phys. Let62B, 351(1974); M.K.
Gaillard and B.W. Lee, Phys. Rev. LeB3, 108 (1974; G.

Altarelli, ~ G.  Curci,  G.  Martinelli, —and S. |24 L. Chauet al, Phys. Rev. D43, 2176(1991).

Petrarca, Phys. LetB9B, 141(1981); Nucl. Phys.B187 461  [25] D. Du and Z. Xing, Phys. Lett. B12, 199 (1993.

(198Y. [26] A. Deandreaet al, Phys. Lett. B318 549 (1993; 320, 170
[5] For a review, see G. Buchalla, A.J. Buras, and M.E. Lauten- (1994.

bacher, Rev. Mod. Phy$€38, 1125(1996. [27] A. Ali and C. Greub, Phys. Rev. B7, 2996(1998.
[6] R.P. Feynman, ilsymmetries in Particle Physicsdited by A.  [28] A. Ali, J. Chay, C. Greub, and P. Ko, Phys. Lett.424, 161

Zichichi (Academic, New York, 1965 p. 167; O. Haan and B. (1998.

Stech, Nucl. PhysB22, 448 (1970. [29] N.G. Deshpande, B. Dutta, and Sechul Oh, Phys. Re%7D

[7]J. Ellis, M.K. Gaillard, and D.V. Nanopoulos, Nucl. Phys. 5723(1998; Report No. OTIS-644, hep-ph/9712445.
B100, 313 (1975; D. Fakirov and B. Stechipid. B133 315 [30] H.Y. Cheng, hep-ph/9712244 and references quoted therein.
(1978; A. Ali, J. Korner, G. Kramer, and J. Willrodt, Z. Phys. [31] H.-Y. Cheng and B. Tseng, Phys. Rev.(fd be publishey

C 1, 203(1979. hep-ph/9803457.

[8] M. Bauer and B. Stech, Phys. Lett52B, 380 (1985; M. [32] G. Kramer, W.F. Palmer, and H. Simma, Nucl. PHy428 77

Bauer, B. Stech, and M. Wirbel, Z. Phys.33, 103 (1987. (1994); Z. Phys. C66, 429(1995.

[9] APE Collaboration, A. Abadat al, Phys. Lett. B365 275 [33] G. Kramer and W.F. Palmer, Phys. Rev.52, 6411 (1995;

(1996. 45, 193(1992; Phys. Lett. B279 181 (1992.

[10] J.M. Flynn and C.T. Sachrajda, Report No. SHEP-97-20,[34] M. Ciuchini, E. Franco, G. Martinelli, and L. Silvestrini, Nucl.

hep-1at/9710057. Phys. B501, 271 (1997; M. Ciuchini et al, ibid. B512 3
[11] UKQCD Collaboration, J.M. Flynret al., Nucl. Phys.B461, (1998.

327 (1996; UKQCD Collaboration, L. Del Debbicet al, [35] M.B. Voloshin, Phys. Lett. B397, 275(1997.

Phys. Lett. B416, 392(1998. [36] A. Khodjamirian et al, Phys. Lett. B402 167 (1997); Z.
[12] A. Ali, V.M. Braun, and H. Simma, Z. Phys. 63, 437(1994). Ligeti, L. Randall, and M.B. Wisepid. 402 178(1997); A.K.
[13] P. Ball and V.M. Braun, Phys. Rev. B, 5561(1997. Grantet al, Phys. Rev. [66, 3151(1997.

[14] A. Khodjamirian et al, Phys. Lett. B410, 275 (1997); A. [37] G. Buchalla, G. Isidori, and S.J. Rey, Nucl. Phia&11, 594

Khodjamirian and R. Rekl, Report No. WUE-ITP-97-049, (1998.

hep-ph/9801443. [38] A.F. Falk, A.L. Kagan, Y. Nir, and A.A. Petrov, Phys. Rev. D
[15] P. Ball, Report No. FERMILAB-PUB-98/067-T, 57, 4290(1998.

hep-ph/9802394. [39] M. Neubert, Phys. Lett. Bl24, 152 (1998.

[16] N. Isgur, D. Scora, B. Grinstein, and M.B. Wise, Phys. Rev. D[40] R. Fleischer, Report No. CERN-TH/98-60, hep-ph/9802433.

39, 799(1989. [41] H.J. Lipkin, hep-ph/9802205.

[17] D. Ebert, R.N. Faustov, and V.O. Galkin, Phys. Re\6®)312 [42] D. Delepine, J.-M. Geard, J. Pestieau, and J. Wyers, Phys.

(1997. Lett. B 429, 106 (1998.

094009-39



A. ALI, G. KRAMER, AND CAI-DIAN LU PHYSICAL REVIEW D 58 094009

[43] Z.Z. Xing, Phys. Rev. 13, 2847(1996; D.S. Du, L.B. Guo, [58] M. Gremm, A. Kapustin, Z. Ligeti, and M.B. Wise, Phys. Rev.

and D.X. Zhang, Phys. Lett. B06, 110(199%; C.D. Lu and Lett. 77, 20 (1996.
D.X. Zhang,ibid. 400, 188(1997. [59] M. Neubert, Report No. CERN-TH/97-24, hep-ph/9702375.
[44] N. Cabibbo, Phys. Rev. Letl0, 531 (1963; M. Kobayashi  [60] J. Gasser and H. Leutwyler, Nucl. Phya250, 465 (1985.
and T. Maskawa, Prog. Theor. Phy®, 652 (1973. [61] H. Leutwyler, hep-ph/9609467.
[45] R. Fleischer and T. Mannel, Phys. Rev.5J, 2752(1998;  [g2] J. Bijnens, J. Prades, and E. de Rafael, Phys. Le84® 226
Report No. TTP-97-22, hep-ph/9706261. (1995.
[46] R. Fleischer, Phys. Lett. 865 399 (1996; A.J. Buras, R.  [63] K.G. Chetyrkin, D. Pirjol, and K. Schilcher, Phys. Lett 484,
Fleischer, and T. Mannel, hep-ph/9711262. 337(1997.

[47] A. Ali, in Proceedings of the First APCTP Workshop, Pacific
Particle Physics Phenomenology, Seoul, South Korea. For fu
ther details, see A. Ali and D. London, Nucl. Phys.(Broc.
Suppl) 54A, 297 (1997, DESY Report No. 97-256,
hep-ph/9801270.

[48] F. Parodi, P. Roudeau, and A. Stocchi, hep-ph/9802289.

[49] L. Wolfenstein, Phys. Rev. Letgl, 1945(1983.

[64] P. Colangelcet al,, Phys. Lett. B408 340 (1997).

rE65] M. Jamin, Nucl. Phys. BProc. Supp). 64, 250 (1998.

[66] CP-PACS Collaboration, S. Aolét al,, Nucl. Phys. B(Proc.
Suppl) 63, 161(1998.

[67] V. Gimenez, L. Giusti, F. Rapuano, and M. Talevi, Report No.
Edinburgh 97-15, hep-lat/9801028.

[50] M. Gronau and J.L. Rosner, Phys. Lett386 205 (1996. [68] R. Gupta, Report No. LAUR-98-271, hep-ph/9801412.
[51] A. Ali, H. Asatrian, and C. Greub, Phys. Lett. 829 87 69 H. Leutwyler, Nucl. Phys. BProc. Supp). 64, 223 (1998.
(1998. [70] P. Herrera-Sikoldy, J.I. Latorre, P. Pascual, and J. Taron, Phys.
[52] A.J. Buras, M. Jamin, M.E. Lautenbacher, and P.H. Weisz,  Lett. B 419 326(1998.
Nucl. Phys.B370, 69 (1992; B375 501 (1992. [71] T. Feldmann and P. Kroll, Report No. WU-B 97-28,
[53] M.A. Shifman, A.l. Vainshtein and V.I. Zakharov, Nucl. Phys. hep-ph/9711231.
B120, 316(1977; Sov. Phys. JETR5, 670(1977); F. Gilman [72] T. Feldmann, P. Kroll, and B. Stech, Report No. WU-B 98-2,
and M. Wise, Phys. Rev. R0, 2392(1979; W. Ponce,ibid. hep-ph/9802409.
23, 1134(198). [73] F. Araki, M. Musakhanov, and H. Toki, hep-ph/9803356.
[54] A.J. Buraset al, Nucl. PhysB370, 69(1992; M. Ciuchini, E. [74] M. Neubert and C. Sachrajda, Nucl. Ph183 339(1997).
Franco, G. Martinelli, and L. Reinahid. B415, 403 (1994. [75] A. Ali, G. Kramer, and C.-D. LuReport DESY 98-056, Phys.
[55] H. Simma and D. Wyler, Phys. Lett. B72, 395(1991). Rev. D (to be publisheg hep-ph/9805403.
[56] N.G. Deshpande and J. Trampetic, Phys. Rev4D 2926  [76] P. Ball, J.M. Free, and M. Tytgat, Phys. Lett. B65 367
(1990. (1996.
[57] M. Schmelling, hep-ex/9701002. [77] R. Akhoury and J.M. Fire, Phys. Lett. B220, 258 (1989.

094009-40



