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Experimental tests of factorization in charmless nonleptonic two-bodyB decays
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Using a theoretical framework based on the next-to-leading-order QCD-improved effective Hamiltonian and
a factorization ansatz for the hadronic matrix elements of the four-quark operators, we reassess branching
fractions in two-body nonleptonic decaysB→PP,PV,VV, involving the lowest-lying light pseudoscalar (P)
and vector (V) mesons in the standard model. We work out the parametric dependence of the decay rates,
making use of the currently available information on the weak mixing matrix elements, form factors, decay
constants, and quark masses. Using the sensitivity of the decay rates on the effective number of colors,Nc , as
a criterion of theoretical predictivity, we classify all the current-current~tree! and penguin transitions in five
different classes. The recently measured charmless two-bodyB→PP decays (B1→K1h8, B0→K0h8, B0

→K1p2, B1→p1K0, and charge conjugates! are dominated by theNc-stable QCD penguin transitions
~class-IV transitions! and their estimates are consistent with the data. The measured charmlessB→PV (B1

→vK1, B1→vh1) andB→VV transition (B→fK* ), on the other hand, belong to the penguin~class-V!
and tree~class-III! transitions. The class-V penguin transitions areNc sensitive and/or involve large cancella-
tions among competing amplitudes, making their decay rates in general more difficult to predict. Some of these
transitions may also receive significant contributions from annihilation and/or final state interactions. We
propose a number of tests of the factorization framework in terms of the ratios of branching ratios for some
selectedB→h1h2 decays involving light hadronsh1 and h2 , which depend only moderately on the form
factors. We also propose a set of measurements to determine the effective coefficients of the current-current
and QCD penguin operators. The potential impact ofB→h1h2 decays on the CKM phenomenology is em-
phasized by analyzing a number of decay rates in the factorization framework.@S0556-2821~98!05119-4#

PACS number~s!: 13.25.Hw, 12.38.Bx
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I. INTRODUCTION

Recent measurements by the CLEO Collaboration@1,2# of
a number of decays of the typeB→h1h2 , whereh1 andh2
are light hadrons such ash1h25pp,pK,h8K,vK, have
triggered considerable theoretical interest in understand
two-body nonleptonicB decays. These decays involve th
so-called tree~current-current! b→(u,c) and/orb→s ~or b
→d) penguin amplitudes with, in general, both the QCD a
electroweak penguin transitions participating. The appro
ate theoretical framework to study these decays is that o
effective theory based on the Wilson operator product exp
sion @3# obtained by integrating out the heavy degrees
freedom, which in the standard model~SM! are the top quark
andW6 bosons. This effective theory allows one to separ
the short- and long-distance physics and one can implem
the perturbative QCD improvements systematically in t
approach. Leading-order corrections have been known
quite some time@4# and in many cases this program has be
completed up to and including the next-to-leading-order c
rections @5#. Present QCD technology, however, does n
allow one to undertake a complete calculation of the exc
sive nonleptonic decay rates from first principles, such
provided by the lattice-QCD approach, as this requi
knowledge of the hadronic matrix elements^h1h2uHe f fuB&,
whereHe f f is an effective Hamiltonian consisting of th
four-quark and magnetic moment operators. These are
complicated objects to be calculated with current latti
0556-2821/98/58~9!/094009~40!/$15.00 58 0940
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QCD methods. Hence, a certain amount of model build
involving these hadronic matrix elements is at present
avoidable.

The approach which has often been employed in non
tonic heavy hadron decays is based on factorization@6–8#.
With the factorization ansatz, the matrix elemen
^h1h2uHe f fuB& can be expressed as a product of two fact
^h1uJ1uB&^h2uJ2u0&. The resulting matrix elements of th
current operatorsJi are theoretically more tractable and ha
been mostly calculated in well-defined theoretical fram
works, such as lattice QCD@9–11#, QCD sum rules@12–15#,
and potential models@8,16–18#; some are also availabl
from data on semileptonic and leptonic decays@19#. One can
then make quantitative predictions in this framework, taki
into account the theoretical and experimental dispersion
the input parameters in the decay rates. Factorization h
in the limit that one ignores soft nonperturbative effects. T
rationale of this lies in the phenomenon of color transpare
@20#, in which one expects intuitively that a pair of fast mo
ing ~energetic! quarks in a color-singlet state effectively d
couples from long-wavelength gluons. In the decaysB
→h1h2 , with typically Eh1,2

;O(mB/2), the energy of the
quarks leaving the interaction is large and soft final st
interactions should be small and hence factorization sho
be a good approximation. Final state interactions genera
by hard gluon exchanges are, however, perturbatively ca
lable and can be included. The phenomenology of the fac
© 1998 The American Physical Society09-1
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ization hypothesis in the decaysB→D (* )p(r), B
→J/cK (* ) and related ones, involving so-called curren
current amplitudes, has been worked out and compared
existing data with the tentative conclusion that data in th
decays can be described in terms of two phenomenolog
parametersa1 anda2 @8#, whose values seem to be univers
@18,21#.

The decaysB→h1h2 have been studied repeatedly in t
factorization framework@22–26#. However, with the mea-
surements of some of theB→h1h2 decays@1,2#, theoretical
interest in this field has resurged. In particular, a next-
leading-log-~NLL- ! improved perturbative framework with
updated phenomenological input has been used in a num
of recent papers@27–31# to study the CLEO data. We woul
like to take a closer look at the nonleptonic two-body dec
B→h1h2 , in which QCD and/or electroweak penguin di
grams are expected to play a significant role.

There are several theoretical issues involved inB→h1h2
decays, which one does not encounter in the transitionB
→H1h2 , where H1 is an open (D (* ),Ds

(* )) or bound
(J/c,hc ,xc) charmed hadron, or in decays such asB
→Ds

(* )D (* ), which are governed by current-current~tree!
amplitudes. In the case of inducedb→s and b→d transi-
tions, penguin transitions play an important role. Of the
penguin transitions, the ones involving the top-quark can
reliably calculated in perturbation theory as they repres
genuine short-distance contributions. The rest of the peng
transitions, which involve both charm and light quarks, a
have genuine short-distance contributions which can be
culated using perturbation theory. Their importance in
context of directCP asymmetries has been emphasized
peatedly in the literature@32,33#. However, in principle, such
penguin amplitudes may also involve significant nonpert
bative ~long-distance! contributions. Arguments for an en
hanced role of nonperturbative penguin effects have b
advanced in the literature@34#. In simpler cases, such as th
electromagnetic decaysB→Xs1g and B→K* 1g, charm
penguin transitions are likewise present and they introd
1/mc

2 ~and higher order! power corrections akin to the long
distance effects being discussed in nonleptonic decays
these cases, one finds that the 1/mc

2 power corrections are
negligible @35–37#. The same holds for the nonresonantB
→Xsl

1l 2 decays@37#. The pattern of the 1/mc
2 corrections

remains to be investigated systematically for nonleptonib

→(s,d)qq̄ decays. However, it is suggestive that the ne
to-leading-order QCD-improved framework based on fact
ization can explain most of the recent CLEO data witho
invoking a significant nonperturbative penguin contributi
@27,28#. With improved measurements, this aspect w
surely be scrutinized much more quantitatively.

A related issue is that of the current-currentb→cc̄s and
b→cc̄d transitions feeding into theb→sqq̄ and b→dqq̄
transitions, respectively, by~soft! final state interactions
~FSIs! @38–42#. While in the oft-studied case ofB→Kp
decays these effects are not found to be overwhelming
decay rates, yet, in general, it is not difficult to imagine si
ations where FSIs may yield the dominant contribution t
decay width. There are three ways in which the amplitude
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a decay in the factorization approach can become small~i!
the effective coefficients of the various operators enter
into specific decays are small, reflecting either their intrin
~perturbative! values, implying they are small forNc53, or
their Nc sensitivity, meaning that they are small for som
phenomenologically relevant value ofNc ; ~ii ! due to
Cabibbo-Kobayashi-Maskawa~CKM! suppression or;~iii !
due to delicate cancellations among various competing Fe
man diagrams, resulting into an amplitude which is effe
tively small. UsingNc , the effective number of colors, as
variable parameter, it becomes immediately clear that so
linear combinations of the effective coefficients entering
specific decays are particularly sensitive toNc and they in-
deed become very small for certain values ofj51/Nc . This
then implies that other contributions such as the ones com
from FSIs and/or annihilation may become important.
good case to illustrate this is the decayB6→K6K, whose
decay rate may be enhanced by an order of magnitude du
FSIs @40# and/or annihilation@43# contributions.

In this paper, we undertake a comprehensive study, wi
the factorization framework, of all the two-body deca
modes of the typeB→PP, B→PV, and B→VV where
P(V) is a light pseudoscalar~vector! meson in the flavor
U~3! nonet. Concentrating on the lowest-lying 02 and 12

mesons, there are some 76 such decays~and an equal numbe
involving the charge conjugate states!. The branching ratios
of these decays are found to vary over four orders of m
nitude. We calculate their decay rates~branching ratios! and
work out the most sensitive parametric dependence of th
quantities. In many cases the factorized amplitudes are s
due to the reasons mentioned in the preceding paragr
While this by itself does not imply an intrinsic inability to
calculate, it becomes difficult to be confident if the rate
additionally unstable, requiring a good deal of theoreti
fine-tuning in the factorization approach. We list all su
two-body decay modes here and caution about drawing
quantitative conclusions on their widths based on the fac
ized amplitudes alone. We think that the sensitivity of so
of the effective coefficientsai on Nc and the fine-tuning
required in some amplitudes can be used as a criterion o
predictivity of B→h1h2 decay rates in the factorization ap
proach. The pattern of color suppression in current-curr
amplitudes has been previously used to classify theNc sen-
sitivity of these decays into three classes@8#. We extend this
to also include the penguin-transition-dominated deca
which belong either toNc-stable~class-IV! or Nc-sensitive
~class-V! decays. In addition, penguin-transition-dominat
decay amplitudes involving large cancellations are also
cluded in class V. All penguin-transition-dominatedB
→PP decays belong to class IV. This class includes in p
ticular the decaysB0→K1p2, B1→K1h8, B0→K0h8,
andB1→p1K0, measured recently by the CLEO Collab
ration@1# ~here and in what follows, charge conjugate deca
are implied!. On the other hand, the recently measur
B→PV andB→VV decay modes by CLEO@2# are in class
V (B1→vK1 andB→K* f) or tree-level-dominated clas
III ( B1→vp1). Possibly some of these, and many mo
examples of class-V decays worked out by us here, indic
that the factorization-based approach is rather uncertai
9-2
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EXPERIMENTAL TESTS OF FACTORIZATION IN . . . PHYSICAL REVIEW D58 094009
these decays and one may have to develop more pow
methods to make theoretically stable predictions in this cla
The factorization approach is expected to do a better job
accounting for class-IV decays—a claim which is pursu
here and which is supported by the present data.

We propose tests of factorization inB→h1h2 decays
through measuring a number of ratios of the branching ra
which depend only on the form factors but are otherw
insensitive to other parameters, such as the effective co
cientsai and henceNc , quark masses, QCD-scale paramet
and CKM matrix elements. The residual model depende
of these ratios on the form factors is worked out in tw
representative cases:~i! the Bauer-Stech-Wirbel~BSW!
model@8# and~ii ! a hybrid approach, based on lattice-QCD
light-cone QCD sum rules, specifically making use of t
results obtained in the frameworks of lattice-QCD@10,11#
and light-cone QCD sum rules@12,15#. The proposed ratios
will test factorization and determine the form factors.

A quantitative test of the factorization approach lies in
consistent determination of the effective coefficientsai of
this framework. The QCD perturbative contributions toai
can be calculated in terms of the renormalized Wilson co
ficients in the effective Hamiltonian governing the deca
B→h1h2 . Then, there are nonperturbative contributio
which have to be determined phenomenologically. Of th
a1 and a2 govern the current-current amplitudes and th
should be determined inB→h1h2 decays without anyprior
prejudice. Four of theai ’s (a3 , . . . ,a6) govern the QCD-
penguin amplitudes and four more (a7 , . . . ,a10) govern the
electroweak-penguin amplitudes. We propose measurem
of selected branching ratios~and their ratios! to determine
the effective coefficientsa1 , a2 , a4, anda6 from the first
six from data onB→h1h2 decays in the future. Since th
Wilson coefficients of the electroweak penguin operators
the SM are rather small in magnitude~except forC9), which
in turn yield very small branching ratios for these decays
determination ofa7 , . . . ,a10 is a formidable proposition
The coefficienta9 can be determined and we propose seve
decays to measure this. We also list decay modes in w
electroweak penguin transitions~hencea7 , . . . ,a10) do play
a noticeable role, and work out their corresponding bran
ing ratios.

Finally, we explore the potential impact of theB→h1h2
decays on the phenomenology of the CKM matrix@44#.
Here, we discuss relations of the type put forward
Fleischer and Mannel@45# ~see also@46#! involving the de-
cay rates ofB0→K1p2 and B1→K0p1, which can be
used to determine cosg, whereg is one of the angles of the
CKM unitarity triangle, in terms of the ratio of the tree-to
penguin amplitudesz[T/P and d, the strong phase shif
difference involving these amplitudes. A bound on sin2g can
be obtained, assuming that there are just the tree and Q
penguin amplitudes:

R[
G~B0→p7K6!

G~B6→p6K0!
5122z cosg cosd1z2>sin2g.

~1!

From this, constraints ong of the form
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follow, where g0 is the maximum value ofg, which are
complementary to the ones from the CKM unitarity fi
@47,48#. There are similar relations involving the decaysB
→PV andB→VV, whereP5p,K andV5r,K* . A deter-
mination of the angleg, however, requires knowledge ofzi
andd i in these processes. Also, the effect of the electrow
penguin transitions has to be included. Having a defin
model, whose consistency can be checked in a numbe
decays, one could determine~within a certain range! the val-
ues ofzi andd i . Given data, this would allow us in turn t
determineg in a number of two-body nonleptonicB decays.
We draw inferences on the angleg based on existing data o
R, and in line with@27#, we show that the allowed values o
g ~or the CKM-Wolfenstein@49# parametersr andh) from
this analysis are consistent with the ones following from
CKM unitarity fits. A similar analysis can be carried out fo
the decaysB→PP,PV,VV, where nowP5p0,p6 and V
5r0,r6. Measurements of these decays and their ra
would allow one to draw inferences on the anglea. We
illustrate this in the context of our model. The other kind
relations discussed by us involves ratios of the decay r
dominated by theb→s and b→d penguin transitions, re-
spectively. As pointed out in Ref.@50#, these ratios can be
used to determine the ratio of the CKM matrix elemen
uVtd /Vtsu. Since this CKM ratio will, in principle, be mea
sured also inB0-B0 mixings and radiative and semilepton
rare B decays@47,51#, one could check the consistency
such determinations to reach quantitative conclusions ab
the QCD dynamics at work in nonleptonic decays. Howev
it is conceivable that some of the nonleptonic decays m
already provide interesting information onVtd before the
other mentioned processes are actually measured. While
competitive in terms of eventual theoretical precision, no
leptonic decays are nevertheless quite instructive in this
spect for the current CKM phenomenology.

This paper is organized as follows: In Sec. II, we discu
the effective Hamiltonian together with the quark level m
trix elements and the numerical values of the Wilson coe
cientsCi

e f f in the effective Hamiltonian approach. In Sec. II
we introduce the factorization ansatz, define the relevant
trix elements and discuss their evaluation in the BSW mo
and in the hybrid lattice QCD or QCD sum rule approac
The matrix elements for the three classesB→PP, B
→PV, andB→VV, obtained in the factorization approac
are relegated to Appendixes A, B, and C, respectively. S
tion IV contains a discussion of the various input paramet
~CKM matrix elements, quark masses, hadronic form facto
and mesonic constants!. The numerical input we use in th
estimates of branching ratios is collected in various tables
Sec. V, we tabulate the values of the phenomenological
rametersai for three values of the effective number of colo
(Nc52,3,̀ ) for the four cases of interest,b→s, b̄→ s̄, b

→d, and b̄→d̄. This serves to show both the relative ma
nitude of the effective coefficients of the various operators
B→h1h2 decays in the factorization approach and also
stability of these coefficients againstNc . The classification
9-3
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of the B→h1h2 decays is also discussed here. We also d
cuss the contribution of the annihilation amplitudes and
some decays of potential interest. Section VI contains
numerical results for the branching ratios which we tabul
for three specific values of the effective number of colo
Nc52,3,̀ . The parametric dependence onj51/Nc is shown
for some representative cases in various figures and c
pared with data, whenever available. In Sec. VII, we lis
number of ratios of branching ratios to test the hypothesi
factorization and give their values for the two sets of fo
factors~in the BSW and the hybrid lattice-QCD–QCD-sum
rule approaches!. We also discuss the determination of t
effective coefficientsa1 , . . . ,a6 here through a number o
relations. We estimate these ratios and make compari
with data, whenever available. The potential impact of
B→h1h2 decay rates on CKM phenomenology is also d
cussed here. Finally, we conclude in Sec. VIII with a su
mary and outlook.

II. EFFECTIVE HAMILTONIAN

A. Short-distance QCD corrections

We write the effective HamiltonianHe f f for the DB51
transitions as

He f f5
GF

A2
FVubVuq* ~C1O1

u1C2O2
u!

1VcbVcq* ~C1O1
c1C2O2

c!

2VtbVtq* S (
i 53

10

CiOi1CgOgD G , ~3!

whereq5d,s andCi are the Wilson coefficients evaluated
the renormalization scalem. We specify below the operator
in He f f for b→s transitions~for b→d transitions, one has to
make the replacements→d):

O1
u5 s̄agmLua•ūbgmLbb , ~4!

O2
u5 s̄agmLub•ūbgmLba ,

O1
c5 s̄agmLca• c̄bgmLbb ,

O2
c5 s̄agmLcb• c̄bgmLba ,

O35 s̄agmLba•(
q8

q̄b8gmLqb8 ,

O45 s̄agmLbb•(
q8

q̄b8gmLqa8 ,

O55 s̄agmLba•(
q8

q̄b8gmRqb8 ,

O65 s̄agmLbb•(
q8

q̄b8gmRqa8 ,
09400
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O75
3

2
s̄agmLba•(

q8
eq8q̄b8gmRqb8 ,

O85
3

2
s̄agmLbb•(

q8
eq8q̄b8gmRqa8 ,

O95
3

2
s̄agmLba•(

q8
eq8q̄b8gmLqb8 ,

O105
3

2
s̄agmLbb•(

q8
eq8q̄b8gmLqa8 ,

Og5~gs/8p2!mbs̄asmnR~lab
A /2!bbGmn

A .

Here a and b are the SU~3! color indices andlab
A , A

51, . . . ,8, are theGell-Mann matrices;L andR are the left-
and right-handed projection operators withL(R)51
2g5 (11g5), and Gmn

A denotes the gluonic field strengt
tensor. The sum overq8 runs over the quark fields that ar
active at the scalem5O(mb), i.e., (q8e$u,d,s,c,b%). The
usual tree-levelW-exchange contribution in the effectiv
theory corresponds toO1 @with C1(MW)511O(as)] and
O2 emerges due to the QCD corrections. The opera
O3 , . . . ,O6 arise from the QCD-penguin diagrams whic
contribute in orderas through the initial values of the Wil-
son coefficients atm'MW @52# and operator mixing due to
the QCD corrections @53#. Similarly, the operators
O7 , . . . ,O10 arise from the electroweak-penguin diagram
Note that we neglect the effects of the electromagnetic p
guin operator which we did not list explicitly. The effect o
the weak annihilation and exchange diagrams will be d
cussed later.

The renormalization group evolution fromm'MW to m
'mb has been evaluated in leading order in the electrom
netic coupling and to NLL precision in the strong couplin
as @54#. Working consistently to NLL precision, the coeffi
cientsC1 , . . . ,C10 are needed to NLL precision, while it i
sufficient to use the LL value forCg . These coefficients
depend on the renormalization scheme used. To obtain
merical values for theCi we must specify the input param
eters. We fix as(Mz)50.118, aew(Mz)51/128, and m
52.5 GeV. Then, in the naive dimensional regularizati
~NDR! scheme, we have

C151.117, C2520.257,

C350.017, C4520.044,

C550.011, C6520.056,

C752131025, C85531024,

C9520.010, C1050.002,

Cg
e f f520.158. ~5!

Here, Cg
e f f5Cg1C5 . From the electroweak coefficient

C7 , . . . ,C10, only C9 has a sizable value compared to t
coefficients of the QCD-penguin transitions; its major co
9-4
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tribution arises from theZ-penguin transition. Note that th
scale (m) and scheme dependence of the Wilson coefficie
will cancel against the corresponding dependences in the
trix elements of the operators inHe f f , as shown explicitly in
@54#. Since the matrix elements given below are obtained
the NDR scheme, we have listed the values of the Wils
coefficientsCi also in this scheme.

B. Quark-level matrix elements

To NLL precision, the matrix elements ofHe f f are to be
treated at the one-loop level. The one-loop matrix eleme
can be rewritten in terms of the tree-level matrix elements
the effective operators

^sq8q̄8uHe f fub&5(
i , j

Ci
e f f~m!^sq8q̄8uOj ub& tree. ~6!

In the NDR renormalization scheme and for SU(3)C , the
effective coefficients multiplying the matrix elemen

^sq8q̄8uOj
(q)ub& tree become (r V

T and gV
T are the transpose o

the matrices given below!

C1
e f f5C11

as

4p S r V
T1gV

Tlog
mb

m D
1 j

Cj1•••, ~7!

C2
e f f5C21

as

4pS r V
T1gV

Tlog
mb

m D
2 j

Cj1•••,

C3
e f f5C32

1

6

as

4p
~Ct1Cp1Cg!

1
as

4pS r V
T1gV

Tlog
mb

m D
3 j

Cj1•••,

C4
e f f5C41

1

2

as

4p
~Ct1Cp1Cg!

1
as

4pS r V
T1gV

Tlog
mb

m D
4 j

Cj1•••,

C5
e f f5C52

1

6

as

4p
~Ct1Cp1Cg!

1
as

4pS r V
T1gV

Tlog
mb

m D
5 j

Cj1•••,

C6
e f f5C61

1

2

as

4p
~Ct1Cp1Cg!

1
as

4pS r V
T1gV

Tlog
mb

m D
6 j

Cj1•••,

C7
eff5C71

aew

8p
Ce ,

C8
eff5C8 ,
09400
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f

C9
eff5C91

aew

8p
Ce ,

C10
eff5C10.

We have separated the contributionsCt , Cp , and Cg
arising from the penguin-type diagrams of the curre
current operatorsO1,2, the penguin-type diagrams of the op
eratorsO3–O6 , and the tree-level diagram of the dipole o
erator Og , respectively. Note also that we follow th
procedure of Ref.@27# of including the tree-level diagram
b→sg→sq8q8 associated with the operatorOg into the con-
tribution Cg appearing in the expressions forCi

e f f . So we
have the hadronic matrix elements of four-quark operat
only. The process-independent contributions from the vert
type diagrams are contained in the matricesr V andgV . Here
gV is that part of the anomalous matrix which is due to t
vertex ~and self-energy! corrections. This part can be easi
extracted fromĝ (0) in Ref. @54#:

gV5S 22 6 0 0 0 0

6 22 0 0 0 0

0 0 22 6 0 0

0 0 6 22 0 0

0 0 0 0 2 26

0 0 0 0 0 216

D . ~8!

The matrix r V contains constant, i.e., momentum
independent, parts associated with the vertex diagrams.
matrix can be extracted from the matrixr̂ defined in Eq.
~2.12! @and given explicitly in Eq.~4.6!# by Buraset al. in
Ref. @54#:

r V5

¨

7

3
27 0 0 0 0

27
7

3
0 0 0 0

0 0
63

27
27 0 0

0 0 27
7

3
0 0

0 0 0 0 2
1

3
1

0 0 0 0 23
35

3

©

. ~9!

Note that them dependence and the scheme dependenc
the vertex correction diagrams are fully taken into accoun
Eq. ~7! by the terms involving the matricesgV and r V , re-
spectively. There are, however, still scheme-independ
process-specific terms omitted as indicated by the ellip
9-5
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and we refer to@27# for a discussion of these omitted term
in exclusive two-bodyB decays.

The quantitiesCt , Cp , and Cg are given in the NDR
scheme@after modified minimal subtraction scheme (MS̄)
renormalization# by

Ct52 (
q85u,c

Vq8bVq8q
*

VtbVtq*
F2

3
1

2

3
log

mq8
2

m2
2DF1S k2

mq8
2 D GC1,

~10!

Cp5C3F4

3
1

2

3
log

ms
2

m2
1

2

3
log

mb
2

m2
2DF1S k2

ms
2D 2DF1S k2

mb
2D G

1~C41C6! (
i 5u,d,s,c,b

F2

3
log

mi
2

m2
2DF1S k2

mi
2D G , ~11!

Cg52
2mb

A^k2&
Cg

e f f , ~12!

with Cg
e f f5Cg1C5 . The functionDF1(z) is defined as

DF1~z!524 E
0

1

dx x~12x!log@12z x~12x!2 i e#.

~13!

The corresponding electroweak coefficientCe is given by

Ce52
8

9
~3C21C1! (

q85u,c

Vq8bVq8q
*

VtbVtq*

3F2

3
1

2

3
ln

mq8
2

m2
2DF1S k2

mq8
2 D G . ~14!

Note that the quantitiesCt and Ce depend on the CKM
matrix elements. In addition, the coefficientsCi

eff depend on
k2, wherek is the momentum transferred by the gluon, ph
ton, or Z to the quark-antiquark pairq8q8̄ in b→qq8q8̄. In
two-body decays any information onk2 is lost in the factor-
ization assumption. However, given a specific model for
momentum distributions of the quark-antiquark pair ins
the hadron, the partonic distributions calculated here can
folded with this distribution, as, for example, has been do
in @55#. Since we are interested here in the decaysB
→h1h2 , whereh1 ,h2 are light mesons, it is not unreaso
able to assume that this smearing will be very similar in
the decays being considered. In particular,^k2& is expected
to be comparable in these decays. However, the actual v
of ^k2& is model dependent. From simple two-body kinem
ics @56# or from the investigations in Ref.@55# one expectsk2

to be typically in the range

mb
2

4
&k2&

mb
2

2
. ~15!
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As we shall see later, the branching ratios considered h
are not sensitive to the value ofk2 if it is varied in a reason-
able range.

III. FACTORIZATION ANSATZ FOR THE HADRONIC
MATRIX ELEMENTS OF THE FOUR-QUARK

OPERATORS

We have now to calculate the hadronic matrix elements
the type^h1h2uOi uB&, whereOi are the four-quark operator
listed in the preceding section. These will be calculated
the factorization assumption, which in the present cont
has been explained in a number of papers~see, for example,
Ref. @27#!. To recapitulate briefly, the hadronic matrix el
ments involving four-quark operators are split into a prod
of two matrix elements of the generic type^h1uq̄buB& and

^h2uq8̄q8u0&, where a Fierz transformation is used so that
flavor quantum numbers of the quark currents match thos
the hadrons. Since using the Fierz transformation yields
erators which are in the color singlet-singlet and octet-oc
forms, this procedure results in general in matrix eleme
which have the right flavor quantum numbers but invol
both singlet-singlet and octet-octet operators. No direct
perimental information is available on the latter. In the fa
torization approximation, one discards the color octet-oc
piece and compensates this by introducing a phenomeno
cal parameter which determines the strength of the sing
singlet contribution, renormalizing it from its perturbativ
value. The hadronic matrix elements resulting from the f
torization are calculated in a model or determined from da
if available.

To set our notation and introduce some auxiliary quan
ties which we shall need for numerical calculations, we
lustrate the salient features of our framework below. Whe
pseudoscalar meson is a decay product, such as in the d
B→PP, there are additional contributions from the (V
1A) penguin operatorsO6 and O8 . After Fierz reordering
and factorization they contribute terms which involve a m
trix element of the quark-density operators between a ps
doscalar meson and the vacuum. ForO6 involving a b→s
transition ~in the b→d transition s is replaced byd), for
example, this is given by

^P1P2uO6uB&522(
q

~^P1us̄Rqu0&^P2uq̄LbuB&

1@P1↔P2# !. ~16!

Using the Dirac equation, the matrix elements enter
here can be rewritten in terms of those involving the us
(V-A) currents:

^P1P2uO6uB&5R@P1 ,P2#^P1P2uO4uB&1@P1↔P2# ,
~17!

with

R@P1 ,P2#[
2M P1

2

~mq1ms!~mb2mq!
. ~18!
9-6
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Here,ms andmq are the current masses of the quarks in
mesonsP1 and P2 . The same relations work forO8 . Fi-
nally, one arrives at the form

^P1 P2uHe f fuB&5Z1^P1u j mu0&^P2u j muB&

1Z2^P2u j 8mu0&^P1u j m8 uB&, ~19!

where j m and j m8 are the corresponding~neutral or charged!
V-A currents. The quantitiesZ1 andZ2 involve the effective
coefficients, CKM factors, andGF . The 02→02 form fac-
tors are defined as follows:

^P1~p1!uq̄gmLbuB~pB!&5F ~pB1p1!m2
mB

22m1
2

q2
qmG

3F1~q2!1
mB

22m1
2

q2
qmF0~q2!,

~20!

whereq5pB2p1 . In order to cancel the poles atq250, we
must impose the condition

F1~0!5F0~0!.

The pseudoscalar decay constants are defined as

^P~p!uq̄gmLq8u0&5 i f Ppm. ~21!

With this, we can write the required matrix element in
factorized form

^P1P2uHe f fuB&5 i
GF

A2
VqbVqq8

* S 1

Nc
Ci1Cj D

3 f P2
~mB

22m1
2!F0

B→P1~m2
2!1~1↔2!.

~22!

The dynamical details are coded in the quantitiesai , which
we define as

ai[Ci
e f f1

1

Nc
Ci 11

e f f ~ i 5odd!,

ai[Ci
e f f1

1

Nc
Ci 21

e f f ~ i 5even!, ~23!

wherei runs fromi 51 to 10. Thus, we see that there are t
such quantities. They depend on the SM-input parame
including the CKM matrix elements. The nonfactorizin
contributions in the matrix elements^h1h2uOi uB& are mod-
eled by treatingNc as a phenomenological parameter. No
that this is the only place whereNc is treated as a phenom
enological parameter. In particular, in the calculation
Ci

e f f , we have used the QCD valueNc53. Insisting that
there are no nonfactorization effects present amounts to
ting Nc53 in calculatingai . This is also referred to a
‘‘naive factorization’’ and is known not to work in decay
such asB→(D,D* )(p,r),J/cK (* ) @18,21#. In these decays
09400
e

rs,

f

et-

only the coefficientsa1 and a2 are determined. Note tha
QCD does not demand the equality ofa1 anda2 from these
decays and from the onesB→h1h2 , though their values may
come out to be close to each other. Hence, all ten quant
ai should be treated as phenomenological parameters
fitted from data onB→h1h2 decays.

Returning to the discussion of the hadronic matrix e
ments, we recall that when a vector meson is involved i
decay, such as inB→PV andB→VV decays, we need als
the B→V form factors, which are defined as follows:

^V~pV!uVm2AmuB̄0~pB!&

52emnaben* pB
apV

b 2V~q2!

~mB1mV!

2 i S em* 2
e* •q

q2
qmD ~mB1mV!A1~q2!

1 i S ~pB1pV!m2
~mB

22mV
2 !

q2
qmD ~e* •q!

A2~q2!

mB1mV

2 i
2mV~e* •q!

q2
qmA0~q2!, ~24!

whereq5pB2pV , and e* is the polarization vector ofV.
To cancel the poles atq250, we must have

2mVA0~0!5~mB1mV!A1~0!2~mB2mV!A2~0!. ~25!

The decay constants of the vector mesons are define
follows:

^Vuq̄gmqu0&5 f V mVem . ~26!

This completes the discussion of the factorization ans
The various input parameters needed to do numerical ca
lations, including the form factors and meson decay c
stants, are discussed in the next section.

IV. INPUT PARAMETERS

The matrix elements for the decayB→h1h2 derived in
the preceding section depend on the effective coefficie
a1 , . . . ,a10, quark masses, various form factors, decay c
stants, the CKM parameters, the renormalization scalem,
and the QCD scale parameterLMS̄ . We have fixedLMS̄
using the central value of the present world avera
as(MZ)50.11860.003@57#. The scalem is varied between
m5mb and m5mb/2, but because of the inclusion of th
NLL expressions, the dependence of the decay rates onm is
small and hence not pursued any further. To be specific,
usem52.5 GeV in the following. The dependence on t
9-7
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A. ALI, G. KRAMER, AND CAI-DIAN LÜ PHYSICAL REVIEW D 58 094009
rest of the parameters is more pronounced and we dis
them below, giving the present status of these quantities

A. CKM matrix elements

The CKM matrix will be expressed in terms of th
Wolfenstein parameters@49#, A, l, r, andh:

VCKM.S 12
1

2
l2 l Al3~r2 ih!

2l 12
1

2
l2 Al2

Al3~12r2 ih! 2Al2 1
D .

~27!

Since the first two are well determined withA50.81
60.06, l5sinuC50.220560.0018 @19#, we fix them to
their central values. The other two are correlated and
found to lie ~at 95% C.L.! in the range 0.25<h<0.52 and
20.2<r<0.35 from the CKM unitarity fits@47#. We shall
show the dependence of the decay rates on the parametr
andh in the allowed domain. However, for illustrative pu
poses and if not stated otherwise, we shall user50.12,h
50.34, which are the ‘‘best-fit’’ values from the CKM un
tarity fits @47#.1

B. Quark masses

The quark masses enter our analysis in two differ
ways. First, they arise from the contributions of the peng
loops in connection with the functionDF1(k2/mi

2). We treat
the internal quark masses in these loops as constit
masses rather than current masses. For them we use th
lowing ~renormalization scale-independent! values:

mb54.88 GeV, mc51.5 GeV,

ms50.5 GeV, mu5md50.2 GeV.
~28!

Variation in a reasonable range of these parameters doe
change the numerical results of the branching ratios in qu
tion, as also investigated in@27#. The value ofmb is fixed to
be the current quark mass valuemb̄(m52.5 GeV)
54.88 GeV, given below. Second, the quark mas
mb , ms , md , andmu appear through the equations of m
tion when working out the~factorized! hadronic matrix ele-
ments. In this case, the quark masses should be interpret
current masses. It is worthwhile to discuss the spread in
quark masses, as determined from various calculational t
niques and experiment. The top quark mass is now kno
rather precisely,mt̄(mt)516866 GeV. Typical uncertainty
on the b-quark massd@mb̄(m52.5 GeV)#560.2 GeV

1The corresponding ‘‘best-fit’’ values obtained in@48#, r.0.15
andh.0.34, are very close to the ones being used here.
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@58,59# is also small. Likewise, the mass differencemb

2mc5(3.3960.06) GeV @59# is well determined, which
can be used to determinemc reasonably accurately for th
calculations being done here. Hence, to the accuracy of
present framework, the uncertainties in the decay rates
lated todmt , dmb , anddmc are small and ignored.

Light quark mass ratios have been investigated in ch
perturbation theory @60# and updated in @61#, yield-
ing mu /md50.55360.043, ms /md518.960.9, ms /mu
534.463.7. These ratios were converted into the qua
masses by using the QCD sum rule estimates of thes-quark
mass of the somewhat older vintage@62#: ms̄(1 GeV)
5175625MeV, yielding mū(1 GeV)55.160.9 MeV,
md̄(1 GeV)59.361.4 MeV @61#. Improved estimates
based on QCD sum rules have been reported during the
year, which includeO(as

3)-perturbative improvements@63#;
improved estimates ofLMS

(3) , yielding LMS
(3).380 MeV; and

improvements in the estimates of the spectral functio
@64,65#, lowering thes-quark mass. A contemporary repre
sentative value of thes-quark mass in the QCD sum rul
approach isms̄(1 GeV)5150630 MeV @65#.

The corresponding estimates in the quenched lattice-Q
approach have been recently reported in a number of pa
@66–68#. The lattice community likes to quote the light qua
masses at the scalem52 GeV, and in comparing them with
the QCD sum rule results, quoted above for 1 GeV, o
should multiply the lattice numbers by a factor of 1.3. Re
resentative lattice-QCD values arems̄(2 GeV)5100612
MeV @66#, ms̄(2 GeV)513062618 MeV @67#, and
ms̄(2 GeV)5110620611 MeV @68#. The error due to un-
quenching is largely unknown, and for a discussion of
given lattice-specific errors, we refer to the original liter
ture. Taking the last of these values as fairly representat
one now has the central valuems̄(1 GeV).140 MeV with
a typical error of625 MeV—in reasonably good agreeme
with the QCD sum rule estimates. Usingmb̄(m5mb)
54.45 GeV from the central value in@58# and

ms̄~1 GeV!5150 MeV, md̄~1 GeV!59.3 MeV,

mū~1 GeV!55.1 MeV, ~29!

from the discussion above, the corresponding values at
scale m52.5 GeV used in our calculations are given
Table I.

Varying the light quark masses by620% yields a varia-
tion of up to625% in some selected decay rates~such as in
B6→h8K6 and B0→h8K0, as also noted in@28#!. While
this dependence should be kept in mind in fitting the qu
tities ai from precise data, this is clearly not warranted by t
present data. Also, fitting the values of the quantitiesai is not
the aim of this paper. Hence, we shall fix all the curre
quark masses to their values in Table I.
9-8
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C. Form factors and hadronic coupling constants

Finally, we discuss the numerical values of the form fa
tors and coupling constants introduced in the previous s
tion. Concerning the form factors, we shall use two differe
theoretical approaches. The first is based on the quark m
due to Bauer, Stech, and Wirbel@8#, which has been found to
be rather successful in accommodating data on a numbe
exclusive decays. In the BSW model, the meson-meson
trix elements of the currents are evaluated from the ove
integrals of the corresponding wave functions. The dep
dence of the form factors on the momentum transfer squa
Q2 ~which in B→h1h2 decays equals the mass squared
the light meson! is modeled by a single-pole ansatz. T
values of the form factors in the transitionsB→p, B
→K, B→h, B→h8, B→r, B→K* , and B→v, evalu-
ated atQ250, are given in Table II. We assume ideal mixin
for the (v, f) complex. This amounts to using in the qua
languagef5ss̄ and v5(1/A2)(uū1dd̄). Note that to
implement theh-h8 mixing, we shall use the two-mixing
angle formalism proposed recently in@69,70#, in which one
has

uh&5cosu8uh8&2sinu0uh0&,

uh8&5sinu8uh8&1cosu0uh0&. ~30!

Here,h8 andh0 are, respectively, the flavor SU~3!-octet and
-singlet components. The relations for the pseudoscalar
cay constants in this mixing formalism involving the axia
vector currentsAm

8 andAm
0 are

^0uAm
8 uh~p!&5 i f h

8pm , ^0uAm
8 uh8~p!&5 i f h8

8 pm ,

^0uAm
0 uh~p!&5 i f h

0pm , ^0uAm
0 uh8~p!&5 i f h8

0 pm .
~31!

The best-fit values of the (h-h8) mixing parameters from
@71# yields u85222.2°, u0529.1°, f 85168 MeV, and
f 05157 MeV, which are used to calculate the decay rate

TABLE I. Input values in numerical calculations.

Names Values

as(mZ) 0.118

m 2.5 GeV

A 0.81

l 0.2205

t(B1) 1.62 ps

t(B0) 1.56 ps

mt(mt) 168 GeV

mb(2.5 GeV) 4.88 GeV

mc(2.5 GeV) 1.5 GeV

ms(2.5 GeV) 122 MeV

md(2.5 GeV) 7.6 MeV

mu(2.5 GeV) 4.2 MeV
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which h and/orh8 are involved. In deriving the expression
for the decays involvingh andh8, we include the anomaly
term in]mAm and the contributions ofb→sgg→s(h,h8) as
calculated in@28#. Definitions of the various matrix element
can be seen in the Appendixes and we refer to@27,28# for
further discussions. The values of the input pole masses u
in calculating the form factors are given in Table III. How
ever, in the decaysB→h1h2 , only small extrapolations from
Q250 are involved; hence the error due to the assumedQ2

dependence and/or the specific values for the pole mass
small.

The second and more modern approach to calculating
cay form factors is a hybrid approach, in which often lattic
QCD estimates in the so-calledheavy→ l ight mesons, cal-
culated at highQ2, are combined with theQ2 dependence
following from the light-cone QCD sum rule analys
@12,13#. We refer to@10# for detailed discussions, compila
tion of the lattice-QCD analysis, and references to the lite
ture, and quote here the results from the UKQCD analy
@11#. For the B→p form factor, F1(0)5F0(0)50.27
60.11; for B→r form factors, V(0)50.3520.05

10.06, A1(0)
50.2720.04

10.05, A2(0)50.2620.03
10.05, andA0(0)50.3020.04

10.06. The
results from an improved light-cone QCD sum rule calcu
tion @15# for F1(B→p)5F0(B→p) and F1(B→K)
5F0(B→K) are given in Table IV. The results forF1(B
→h)5F0(B→h) and F1(B→h8)5F0(B→h8) are calcu-
lated from theB→p form factors from@15#, taking into
account additionally the (h,h8) mixing, as discussed earlie
and further detailed in Appendix A. The results for theB
→K* form factors have been obtained in the light-co
QCD sum rule in Ref.@12#, which yield

A1~0!B→r

A1~0!B→K* 50.7660.05, ~32!

TABLE II. Form factors at zero momentum transfer in the BS
model @8#.

Decay F15F0 V A1 A2 A0

B→p 0.33
B→K 0.38
B→h 0.145
B→h8 0.135
B→r 0.33 0.28 0.28 0.28
B→K* 0.37 0.33 0.33 0.32
B→v 0.33 0.28 0.28 0.28

TABLE III. Values of pole masses in GeV.

Current m(02) m(12) m(11) m(01)

ūb 5.2789 5.3248 5.37 5.73

d̄b 5.2792 5.3248 5.37 5.73

s̄b 5.3693 5.41 5.82 5.89
9-9
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TABLE IV. Form factors at zero momentum transfer from lattice-QCD and light-cone QCD sum rul

Decay F15F0 V A1 A2 A0

B→p @15# 0.3060.04
B→K @15# 0.3560.05
B→h ~see text! 0.1360.02
B→h8 ~see text! 0.1260.02
B→r @11# 0.3560.05 0.2760.04 0.2660.04 0.3060.05
B→K* @12# 0.4860.09 0.3560.07 0.3460.06 0.3960.10
B→v @@11# and SU~3!# 0.3560.05 0.2760.04 0.2660.04 0.3060.05
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V~0!B→r

V~0!B→K* 50.7360.05,

which, in turn, lead to the estimatesA1(0)B→K* 50.35
60.07 andV(0)B→K* 50.4860.09. Assuming similar SU~3!
breaking in the remaining two form factors, and using t
estimates for the corresponding form factors inB→r quoted
above, one getsA2(0)B→K* 50.3460.06 andA0(0)B→K*

50.3960.10. The values from this hybrid approach are c
lected in Table IV. As for the form factors in the BSW
model, we use a simple pole approximation for calculat
the form factors atQ2 different from Q250. However, for
the decays of interest, this extrapolation is small and
does not expect any significant error from this source.
example, for theB→P form factors, using the parametriza
tion of F0,1(Q

2) given in Eq.~12! of Ref. @15#, the resulting
difference in the form factors is found to be less than 2%

The values for the pseudoscalar and vector decay c
stants are given in Table V. The values forf v , f K , f K* ,
and f p coincide with the central values quoted in@18# ex-
tracted from data on the electromagnetic decays ofv andt
decays, respectively @19#. The decay constant
f h8

u , f h8
s , f h

u , and f h
s defined in Appendix A are obtaine

from the values forf 0 and f 8 , u8 and u0 for the (h,h8)
mixing, given earlier. The errors in the decay constants
Table V are small@typically (1 –3)%], except for f h8

(c) and
f h

(c) for which we use here the estimates from@28# obtained
using the QCD-anomaly method. These quantities have
been determined from thehc-h8-h-mixing formalism and
radiative decaysJ/c→(hc ,h8,h)g and the two-photon de
cay widths (hc ,h8,h)→gg in Ref. @27# with results similar
to the corresponding values obtained using the QC
anomaly method@28#. For some recent determinations
these quantities, see also@72,73#.

V. EFFECTIVE COEFFICIENTS ai AND A
CLASSIFICATION OF B˜h1h2 DECAYS

A. Effective coefficientsai

The effective coefficientsai , which are specific to the
factorization approach, are the quantities of principal p
nomenological interest. Note that there are four types of tr
sitions that one encounters in the current-current
penguin-transition-induced decaysB→h1h2 : b→s @ b̄
09400
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→s̄#, and b→d @ b̄→d̄#. Numerical values of ai ( i
51, . . .,10) for representative values of the phenomenolo
cal parameterNc are displayed in Tables VI and VII for the
b→s @ b̄→ s̄# and b→d @ b̄→d̄# cases, respectively. A
number of remarks on the entries in these tables is helpfu
a discussion of the branching ratios worked out later.

The determination ofa1 and a2 in the b→c current-
current transitions has received a lot of attention. It rema
an open and interesting question ifa1 and a2 in the b→u
transitions are close to theirb→c counterparts, which have
the phenomenological valuesa1.1 and a2.0.2 @18,21#.
These values correspond to the parameterj[1/Nc having a
value around 0.4. The decaysB→pp, B→rp, and B
→vp are well suited to determine these coefficients.

The coefficientsa3 anda5 in the QCD-penguin sector ar
smaller compared toa4 anda6 . In particular, the combina-
tion a31a5 has a perturbative value of 331024, i.e., for
Nc53, in all four cases resulting from large cancellatio
betweena3 anda5 . This coefficient also shows extreme se
sitivity to the parameterNc , which in the present model is
measure of nonfactorizing effects. Hence, for decays wh
decay widths depend dominantly on these coefficients,
factorization framework is not reliable. The reason is simp
that the neglected contributions, such as the weak annih
tion diagrams and/or feed down from final state interactio
to these channels, could easily overwhelm the perturba
factorizable contributions.

Concerning the effective coefficients of the electrowe
operators, we note thata7 , a8 , anda10 are numerically very
small. This again reflects their perturbative magnitudes,
the coefficientsCi

e f f , as can be seen in the columns forNc

53. Varying Nc , one sees no noticeable enhancement
these coefficients~except fora10 but it remains phenomeno
logically small to have any measurable effect!. Hence, elec-
troweak penguin transitions enter dominantly through the
eratorO9 , barring rather drastic enhancements@of O(100)]
in the matrix elements of the operatorsO7 , O8 , andO10,
which we discount. No attempts will be made to determ
these coefficients here. In fact, in the context of the SM o

TABLE V. Values of decay constants in MeV.

f p f K f 8 f 0 f h
c f h8

c f r f K* f v f f

133 158 168 157 20.9 22.3 210 214 195 233
9-10
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TABLE VI. Numerical values of effective coefficientsai for b→s @ b̄→ s̄# at Nc52,3,̀ , whereNc

5` corresponds toCi
e f f . The penguin coefficientsC3

e f f, . . . ,C7
e f f andC9

e f f are calculated for the Wolfen
stein parametersr50.12 andh50.34. Note that the entries fora3 , . . . ,a10 have to be multiplied by 1024.

Nc52 Nc53 Nc5`

a1 0.99 @0.99# 1.05 @1.05# 1.16 @1.16#

a2 0.25 @0.25# 0.053@0.053# 20.33 @20.33#

a3 237214i @236214i # 48 @48# 218129i @215129i #

a4 2402272i @2395272i # 2439277i @2431277i # 2511287i @2503287i #

a5 2150214i @2149214i # 245 @245# 165129i @162129i #

a6 2547272i @2541272i # 2575277i @2568277i # 2630287i @2622287i #

a7 1.321.3i @1.421.3i # 0.521.3i @0.521.3i # 21.221.3i @21.121.3i #

a8 4.420.7i @4.420.7i # 4.620.4i @4.620.4i # 5.0 @5.0#

a9 29121.3i @29121.3i # 29421.3i @29421.3i # 210121.3i @210121.3i #

a10 23120.7i @23120.7i # 21420.4i @21420.4i # 20 @20#
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could as well work with a much reduced basis in the eff
tive theory in which the coefficientsa7 , a8 , anda10 are set
to zero.

The dominant coefficients are thena1 , a2 ~current-
current amplitudes!, a4 , a6 ~QCD penguin transitions!, and
a9 ~electroweak penguin transition!, which can be eventually
determined from experiments and we discuss this progr
matically later. Of thesea1 , a2 ~and to a very high accurac
also a9) do not depend on the CKM matrix elements. T
dependence ofa4 and a6 ~likewise, the smaller parameter
a3 anda5) on the CKM factors enters through the functio
Ct . The numbers given in the tables forai are obtained for
the CKM parameters having the valuesr50.12 and h
50.34. Note thata2 depends strongly onNc .

This sets the stage for discussing the various branch
ratios numerically and comparison with the available dat

Before discussing the numerical results and their deta
comparison with experiment and existing results in the
erature, it is worthwhile to organize the decaysB→h1h2 in
terms of their sensitivity onNc and anticipated contribution
due to the annihilation diagrams in some of these decay

B. Classification of factorized amplitudes

In the context of the tree (T) decays, a classification wa
introduced in@8#, which is used widely in the literature in th
analysis of B decays involving charmed hadrons. The
classes, concentrating now on theB→h1h2 decays, are the
following.

Class-I decays, involving those decays in which only
charged meson can be generated directly from a singlet
rent, as inB0→p1p2, and the relevant coefficient for thes
decays isa1 . This coefficient is stable against variation
Nc ~see Tables VI and VII!. There are just five class-I de
cays:B0→p2p1, B0→r2p1, B0→r1p2, B0→r2r1,
and exceptionally alsoB0→r2K1.

Class-II decays, involving those transitions in which t
meson generated directly from the current is a neutral me
like B0→p0p0, and the relevant coefficient for these deca
is a2 , which shows a strongNc dependence~see Tables VI
and VII!. There are 12 such decaysB0→h1

0h2
0 , whereh1

0 and
09400
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0 are mesons from the setp0, h, h8, r0, and v. The

decaysB0→p0h (8) exceptionally do not belong to this clas
as their decay amplitudes proportional toa2 almost cancel
due to the destructive interference in two tree diagrams h

ing to do with the configurationp0;uū2dd̄ and h (8)

;(uū1dd̄)1••• . Note that asa2 has the smallest value a
Nc53, all class-II decays have their lowest values atNc

53.
Class-III decays, involving the interference of class-I a

class-II decays, as in this case both a charged and a ne
meson is present, both of which can be generated through
currents involved inHe f f . An example of these decays
B1→p1p0, and the relevant coefficient isa11ra2 , where
r is process dependent~but calculable in terms of the ratio
of the form factors and decay constants!. For r<1, the Nc

dependence of the class-III amplitudes is below620% with
respect to the perturbative value. As we shall see, the qu
tity r may considerably enhance theNc dependence ifr is
well in excess of 1. This, in particular, is the case inB1

→r0p1 and B1→vp1 decays, wherer .2; hence these
Class-III decays show a markedNc dependence. However
one should note that the decay rates for this class do not h
their minima atNc53, but rather atNc5`, reflecting the
behavior of a11a2 . There are 11 such decays involvin
B1→(p1,r1)(p0,h,h8,r0,v) and exceptionally also the
decayB1→K* 1h8, in which case the penguin amplitude
interfere destructively. Its decay rate is, however, rat
stable with respect to the variation inNc but small due to the
CKM suppression.

However, when QCD (P) and electroweak penguin tran
sitionss (PEW) are also present, as is the case in the dec
B→h1h2 being considered, in general, the above classifi
tion has to be extended. In this case, the generic decay
plitude depends onT1P1PEW. If the amplitude is still
dominated by the tree amplitude, the BSW classificat
given above can be applied as before. For those dec
which are dominated by penguin amplitudes, i.e.,T1P
1PEW.P1PEW, the above classification used for the tr
amplitude is no longer applicable.
9-11
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For the penguin-transition-dominated decays, we int
duce two new classes

Class-IV decays, consisting of decays whose amplitu
involve one~or more! of the dominant penguin coefficient
a4 , a6, anda9 , with constructive interference among them
They are stable against variation inNc ~see Tables VI and
VII ! and have the generic form

M~B0→h1
6h2

7!.a1a11 (
i 54,6,9

a iai1 . . . ,

M~B0→h1
0h2

0!.a2a21 (
i 54,6,9

a iai1 . . . ,

M~B6→h1
6h2

0!.a1~a11ra2!1 (
i 54,6,9

a iai1 . . . ,

~33!

with the second (P1PEW) term dominant in each of the
three amplitudes. The ellipses indicate possible contributi
from the coefficientsa3 , a5 , a7 , a8 , and a10 which can
be neglected for this class of decays. The coefficientsa j are
process dependent and contain the CKM matrix eleme
form factors, etc. The decays wherea1 anda2 are zero are
pure penguin processes and are obviously included here.
tree-level-dominated decays, discussed earlier, also ha
generic amplitude of the type shown above. However, in
case the penguin-operator-related coefficientsa j are numeri-
cally small due to the CKM factors~specifically due toVtd
!Vts).

Examples of class-IV decays are quite abundant. In
classification, all 12B→PP decays dominated by pengu
amplitudes are class-IV decays. They include decays suc
B1→K1p0, B1→K1h (8), which involve a11ra2 as the
tree amplitude, andB0→K0p0, andB0→K0h (8), which in-
volve a2 from the tree amplitude. Finally, the pure-pengu
transition decays, such asB1→p1K0, B1→K1K̄0, and
B0→K0K̄0, naturally belong here. There are altogether
such decays. The decayB0→K* 0h8, in contrast to itsB1

counterpart, is not a class-IV decay due to the destruc
interference in the QCD-penguin amplitude. The variation
the decay rates belonging to class-IV decays is less
630% compared to their perturbative (Nc53) value.

Class-V decays, involving penguin transitions with stro
Nc-dependent coefficientsa3 , a5 , a7 , anda10, interfering
significantly with one of the dominant penguin coefficien
a4 , a6 , anda9 ~analogous to the class-III decaysa11ra2
dominated by tree amplitudes!. Then, there are decays i
which the dominant penguin coefficients (a4 ,a6 ,a9) inter-
fere destructively. Their amplitudes can be written much l
the ones in Eq.~33!, except that the sum in the second te
now goes over all eight penguin coefficients. Since th
amplitudes involve large and delicate cancellations, they
generally not stable againstNc .

Examples of this class are present inB→PV and B
→VV decays, such as B6→p6f, B0→p0f, B0

→h (8)f, B0→vf, B6→r6f, B0→r0f, etc. In all
these cases, the amplitudes are proportional to the lin
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combination@a31a521/2(a71a9)# ~see Appendixes B and
C!. Examples of those where the amplitudes proportiona
the dominant penguin coefficients interfere destructively
B1→K1f, B0→K0f, etc. The above five classes exhau
all cases, though clearly there are some amplitudes wh
comparableT and penguin (P1PEW) contributions are
present. They can be assigned to one of the classes dep
ing on their tree and/or penguin coefficients, the criteri
being theNc dependence of the decay rates.

Summarizing the classification, class-I and class-IV d
cays are relatively large, unless suppressed by CKM fact
and stable against variation ofNc , which is a measure o
nonfactorizing effects in the present model. Class-III dec
are mostly stable, except for the already mentionedB→PV
decays. Many class-II and class-V decays are rather unst
against variation ofNc either due the dependence on t
Nc-sensitive coefficients or due to delicate cancellatio
Many decays in class-II and class-V decays may receive
nificant contributions from the annihilation diagrams whi
we discuss now.

C. Contribution of annihilation amplitudes

Annihilation ~by which are meant here bot
W6-exchange and W6-annihilation! contributions are
present in almost all decays of the typeB→h1h2 being con-
sidered here. However, their contribution should be und
stood as power corrections in inverse powers ofmb ~equiva-
lently in 1/mB) in B decays. In inclusiveB decays, their
contribution to the decay width relative to that of the part
model is determined by the factor

4p2
f B

2mB

mb
3

.S 2p f B

mb
D 2

.5%, ~34!

where f B.200 MeV is theB-meson decay constant. Th
near equality of the lifetimes ofB6, B̄0(B0), and B̄s

0(Bs
0)

mesons shows that the above crude estimate is largely
rect, and that annihilation contributions are sufficien
power suppressed inB-meson decays. For more sophis
cated but in their spirit essentially similar calculations, s
for example,@74#.

However, in exclusive two-bodyB decays, the contribu-
tion to a particular channel depends on the CKM factors a
the dynamical quantitiesai , and in some cases the nonann
hilation contribution is enormously suppressed. In the
channels, the annihilation diagrams, despite being po
suppressed in 1/mb

2 , may yield the dominant contributions t
the decay and must therefore be included in the rate e
mates andCP asymmetries. Instead of working out the a
nihilation contribution in all the channels discussed he
which necessarily introduces unknown hadronic quantit
we do a classification of annihilation diagrams and list on
those decays in which they are anticipated to be importa

For the decaysB→h1h2 , we need to consider the follow
ing annihilation amplitudes:
9-12
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W6 exchange: M~ b̄d→ūu!⇒M„B0→~ ūq!~ q̄u!…}a2l3;

W6 annihilation: M~ b̄u→d̄u!⇒M„B1→~ d̄q!~ q̄u!…}a1l3;

W6 annihilation: M~ b̄u→ s̄u!⇒M„B1→~ s̄q!~ q̄u!…}a1l4,
.
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where l5sinuC . Here, qq̄ is a light quark-antiquark pair
These amplitudes can be termed as the tree-oper
annihilation contributions. In addition, there are also t
penguin-operator-annihilation contributions which are i
portant for certain decays. For example, they feed do
nantly to the decayB0→ff.

There are yet more decays which can be reached via
nihilation followed by rearrangement of the quark-antiqua
pairs in the final state. Representative of these are the de
B6→fp6, B6→fr6 and B0(B̄0)→fp0, B0(B̄0)
→fh (8), B0(B̄0)→fv, B0(B̄0)→fr0. However, these
rescattering effects~final state interactions! are expected to
suffer from suppression due to the color-transparency a
ment used in defense of the factorization ansatz. Since
have neglected these rescattering contributions in the fac
ization amplitudes worked out in this paper, it is only co
sistent that we also drop the annihilation contributions wh
feed into other channels through rescattering.

We specify below those two-bodyB decays which are
accessible directly in annihilation processes and hence
have significant annihilation contributions:

B→PP decays: B0→p0h~8 !, B0→hh8;

B→PV decays: B0→r0p0, B0→r0h~8 !,

B0→vp0, B0→vh~8 !,

B1→K* 1K̄0, B1→K1f,

B0→K* 1K2, B0→K1K* 2;

B→VV decays: B0→r0r0, B0→r0v,

B0→vv, B0→ff,

B1→K* 1K̄* 0, B1→K* 1f,

B0→K* 1K* 2.

Note that in addition to the decay modes listed above, th
are quite a few others in the class-I, class-III, and class
decays given in the tables, which also have annihilation c
tributions, but in view of the largeT and/orP1PEW contri-
butions in these decays, the annihilation contributions are
expected to alter the decay rates in these channels sig
cantly and hence we have not listed them.

The annihilation amplitude can be written as

^h1h2uHe f fuB&a5Z^h1h2u j mu0&^0u j muB&. ~35!
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If h1 and h2 are two pseudoscalars, the annihilation for
factors are defined as

^P1P2u j mu0&5F ~p12p2!m2
m1

22m2
2

Q2
QmGF1

P1P2~Q2!

1
m1

22m2
2

Q2
QmF0

P1P2~Q2!, ~36!

whereQ5p11p2 . With this, we can write the required ma
trix element from the annihilation contribution~denoted here
by a subscript! in its factorized form

^P1P2uHe f fuB&a5 i
GF

A2
VqbVqq8

* ai f B~m1
22m2

2!F0
P1P2~mB

2 !,

~37!

whereai , i 51,2. Note that the annihilation amplitude in th
decayB→P1P2 is proportional to the mass difference of th
two mesons in the final state. Hence, in the present fra
work, there is no annihilation contribution to the decays su
as B0→p0p0, B0→K1K2, etc. Comparing this amplitude
with the nonannihilation contributions given in Eq.~22!, one
finds that the annihilation amplitude inB→P1P2 decays is
indeed suppressed by a hefty factor

~m1
22m2

2!F0
P1P2~mB

2 !

~mB
22m1

2!F0
B→P1~m2

2!
. ~38!

The annihilation form factors are difficult to relate directly
experimental measurements but they can be modeled.
expectF0

P1P2(0) to have a similar magnitude as the corr

sponding form factorsF0
B→P1(0), to which they are related

by crossing, and which we have listed in Tables II and I
Based on this, the annihilation form factors appearing in E
~37! and ~38! are suppressed due to the large moment
transfer atq25mB

2 , at which they have to be evaluated. Th
total suppression factor inB→PP decays is then
O(m1,2

4 /mB
4). However, the effective coefficientsai , i

51,2, entering in the annihilation amplitude are much larg
than aj , j 53, . . .,10, governing the penguin amplitude
So a part of the power suppression is offset by the favora
effective coefficients.

In the decaysB→PV andB→VV, we do not anticipate
an annihilation suppression as severe as in the decaB
→PP. Concentrating on the decaysB→PV, the annihila-
tion form factors are
9-13
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^PVu j mu0&5emnabe* npP
apV

b 2V~Q2!

mP1mV

2 i F em* 2
~e* •Q!

Q2
QmG ~mP1mV!A1~Q2!

1 i F ~pP2pV!m2
mP

2 2mV
2

Q2
QmG

3~e* •Q!
A2~Q2!

mP1mV

2 i
2mV

Q2
Qm~e* •Q!A0~Q2!. ~39!

The annihilation matrix element in the factorization appro
mation can now be written as follows:

^PVuHe f fuB&a5 iA2GFVqbVqq8
* ai f BmV~e* •pB!A0~mB

2 !.
~40!

From this, it is easy to see that for this class of decays
suppression factor is only due to the large momentum tra
fer involved in the form factorsA0(mB

2). Hence, the annihi-
lation diagrams can contribute more significantly in the d
cay amplitude. For some of the channels for which
nonannihilation contributions are highly suppressed, the
nihilation diagram can be easily dominant. For example,
annihilation amplitude to the decayB1→K* 1K̄0 is

^K* 1K̄0uH e f fuB1&a

5 iA2GFVub* Vuda1f BmK* ~e* •pB!A0~mB
2 !. ~41!

If we take A0(0)50.4, f B5200 MeV, the annihilation
branching ratio is of the order of 1028 which is an order of
magnitude higher than the branching ratio calculated w
the penguin contribution alone. Other channels where
annihilation channel may play a significant role have be

listed above.
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For B→VV decays, the conclusion is quite similar to th
one for theB→PV decays. However, as these decays
volve yet more untested form factors, their numerical e
mates require a model for these form factors. The suspe
channels inB→VV decays sensitive to the annihilation co
tribution have been listed above. We conclude that the
cays most sensitive to the annihilation channel are indeed
class-II and class-V decays, mostly involvingB̄0(B0) de-
cays.

VI. BRANCHING RATIOS AND
COMPARISON WITH DATA

The decay branching ratios are shown in Tables VIII–
for the decaysB→PP, B→PV ~involving b→d transi-
tions!, B→PV ~involving b→s transitions!, and B→VV,
respectively, for the two sets of form factors given in Tab
II and IV. The numbers shown for the hybrid lattice-QCD
QCD sum rules correspond to usingF1,0

B→p50.36, F1,0
B→K

50.41, F1,0
B→h50.16, andF1,0

B→h850.145. The first two are
slightly above the range determined in@15# but within the
~larger! range as determined from the lattice-QCD calcu
tions @11#. This choice is dictated by data, as discussed
detail below. Thek2 dependence of the branching ratios
the rangek25mb

2/262 GeV2 is small and hence the num
bers in these tables are shown only for the casek25mb

2/2.
The CKM parameters are fixed at their ‘‘best-fit’’ values:r
50.12,h50.34. All other parameters have their central v
ues, discussed in the preceding section. In these tables
give the averages of the branching fractions ofB̄0 and B0

and of B1 and B2, respectively. Hence, when we refer
branching fractions in the following sections we alwa
mean the averages over theB and anti-B decays. TheCP
asymmetries are, however, in general quite sensitive tok2

@33,32#. We shall discuss this point in a forthcoming pap
on CP asymmetries@75#.

A number of observations are in order.
There are so far five measuredB→h1h2 decay modes in

well-identified final states:B0→K1p2, B1→K1h8, B0

→K0h8, B1→p1K0, and B1→vK1, with their branch-
-

TABLE VII. Numerical values of effective coefficientsai for b→d @ b̄→d̄] at Nc52,3,̀ , whereNc

5` corresponds toCi
e f f . The penguin coefficientsC3

e f f , . . . ,C7
e f f andC9

e f f are calculated for the Wolfen
stein parametersr50.12 andh50.34. Note that the entries fora3 , . . . ,a10 have to be multiplied by 1024.

Nc52 Nc53 Nc5`

a1 0.99 @0.99# 1.05 @1.05# 1.16 @1.16#
a2 0.25 @0.25# 0.053@0.053# 20.33 @20.33#
a3 23327i @242223i # 48 @48# 208114i @226147i #
a4 2377234i @24232116i # 2412236i @24612124i # 2481241i @25362140i #
a5 2145214i @2154214i # 245 @245# 155114i @173147i #
a6 2523234i @25682116i # 2548236i @25972124i # 2600241i @26552140i #
a7 1.521.0i @1.121.8i # 0.721.0i @0.321.8i # 21.021.0i @21.421.8i #
a8 4.520.5i @4.320.9i # 4.720.3i @4.520.6i # 5.0 @5.0#
a9 29121.0i @29121.8i # 29421.0i @29521.8i # 210121.0i @210121.8i #
a10 23020.5i @23120.9i # 21420.3i @21420.6i # 20 @20#
9-14



l-

EXPERIMENTAL TESTS OF FACTORIZATION IN . . . PHYSICAL REVIEW D58 094009
TABLE VIII. B→PP branching ratios~in units of 1026) using the BSW~lattice-QCD–QCD-sum-rule!
form factors, withk25mb

2/2, r50.12, h50.34, andNc52,3,̀ in the factorization approach. The last co
umn contains measured branching ratios and upper limits~90% C.L.! @1#.

Channel Class Nc52 Nc53 Nc5` Expt.

B0→p1p2 I 9.0 @11# 10.0 @12# 12 @15# ,15
B0→p0p0 II 0.35 @0.42# 0.12 @0.14# 0.63 @0.75# ,9.3
B0→h8h8 II 0.05 @0.07# 0.02 @0.02# 0.09 @0.10# ,47
B0→hh8 II 0.19 @0.22# 0.08 @0.10# 0.29 @0.34# ,27
B0→hh II 0.17 @0.20# 0.10 @0.11# 0.24 @0.29# ,18
B1→p1p0 III 6.8 @8.1# 5.4 @6.4# 3.0 @3.6# ,20
B1→p1h8 III 2.7 @3.2# 2.1 @2.5# 1.1 @1.4# ,31
B1→p1h III 3.9 @4.7# 3.1 @3.7# 1.9 @2.2# ,15
B0→p0h8 IV 0.06 @0.07# 0.07 @0.09# 0.11 @0.13# ,11
B0→p0h IV 0.20 @0.24# 0.23 @0.27# 0.30 @0.36# ,8
B1→K1p0 IV 9.4 @11# 10 @12# 12 @15# ,16
B0→K1p2 IV 14 @16# 15 @18# 18 @21# 1524

1561
B0→K0p0 IV 5.0 @5.9# 5.7 @6.8# 7.4 @8.9# ,41
B1→K1h8 IV 21 @25# 25 @29# 35 @41# 65214

11569
B0→K0h8 IV 20 @24# 25 @29# 35 @41# 47220

12769
B1→K1h IV 2.0 @2.3# 2.4 @2.7# 3.4 @3.9# ,14
B0→K0h IV 1.7 @1.9# 2.0 @2.2# 2.6 @3.0# ,33
B1→p1K0 IV 14 @17# 16 @20# 22 @26# 23210

11164
B1→K1K̄0 IV 0.82 @0.95# 0.96 @1.1# 1.3 @1.5# ,21

B0→K0K̄0 IV 0.79 @0.92# 0.92 @1.1# 1.2 @1.4# ,17
es
y

s
-

ing

tter
ing ratios ~averaged over the charge conjugate mod!
given in Tables VIII and X. In addition, the deca
modes B1→p0h1(h15p1,K1) with a branching ratio
B(B1→p0h1)5(1.620.5

10.660.4)31025 @1#, the decay mode
B1→vh1(h15p1,K1) with a branching ratioB(B1

→vh1)5(2.520.7
10.860.3)31025 @2#, and the decay mode

B→K* f, averaged overB1 andB0 decays with a branch
09400
ing ratioB(B→K* f)5(1.120.5
10.660.2)31025 @2#, have also

been measured.
The branching ratios forB0→K1p2 andB1→p1K0 are

in good agreement with the CLEO data. Moreover, be
class-IV decays, they show only a small sensitivity onj. The
estimated branching ratios forB1→p1p0 andB1→K1p0

are in agreement with the respective upper bounds. The la
TABLE IX. B→PV branching ratios~in units of 1026) involving b→d ~or DS50) transitions using the
BSW ~lattice-QCD–QCD-sum-rule! form factors, withk25mb

2/2, r50.12, h50.34, andNc52,3,̀ in the
factorization approach. The last column contains upper limits~90% C.L.! from @1#. The upper limit on the
branching ratio forB1→r1p0 is taken from the PDG tables@19#.

Channel Class Nc52 Nc53 Nc5` Expt.

B0→r2p1 I 5.7 @6.6# 6.4 @7.3# 7.8 @9.0#
%,88

B0→r1p2 I 21 @25# 23 @28# 28 @34#
B0→r0p0 II 0.75 @0.88# 0.07 @0.08# 1.4 @1.7# ,18
B0→vp0 II 0.28 @0.33# 0.08 @0.10# 0.10 @0.12# ,14
B0→r0h II 0.02 @0.03# 0.02 @0.02# 0.06 @0.07# ,13
B0→r0h8 II 0.01 @0.01# 0.001 @0.001# 0.03 @0.04# ,23
B0→vh II 0.46 @0.54# 0.05 @0.06# 0.63 @0.74# ,12
B0→vh8 II 0.29 @0.34# 0.02 @0.02# 0.46 @0.54# ,60
B1→r0p1 III 6.3 @7.3# 3.9 @4.5# 0.89 @0.98# ,58
B1→r1p0 III 14 @16# 13 @15# 11 @13# ,77
B1→vp1 III 6.8 @7.9# 4.2 @4.9# 1.0 @1.1# ,23
B1→r1h III 6.3 @7.4# 5.5 @6.5# 4.2 @5.0# ,32
B1→r1h8 III 4.5 @5.3# 4.0 @4.7# 3.0 @3.7# ,47
B0→K̄* 0K0 IV 0.31 @0.36# 0.38 @0.44# 0.55 @0.64# 2

B1→K̄* 0K1 IV 0.32 @0.37# 0.40 @0.46# 0.57 @0.67# 2

B1→K* 1K̄0 V 0.001 @0.002# 0.0005 @0.0007# 0.002 @0.002# 2

B1→fp1 V 0.040 @0.047# 0.005 @0.005# 0.36 @0.43# ,5.0
B0→fp0 V 0.019 @0.023# 0.002 @0.003# 0.17 @0.21# ,5.0
B0→fh V 0.008 @0.010# 0.0009 @0.001# 0.073 @0.087# ,9
B0→fh8 V 0.006 @0.007# 0.0007 @0.0008# 0.053 @0.064# ,3.1
B0→K* 0K̄0 V 0.001 @0.002# 0.0004 @0.0006# 0.002 @0.002# 2
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TABLE X. B→PV branching ratios~in units of 1026) involving b→s ~or uDSu51) transitions using the
BSW ~lattice-QCD–QCD-sum-rule! form factors, withk25mb

2/2, r50.12, h50.34, andNc52,3,̀ in the
factorization approach. The last column contains the measured branching ratio and upper limits~90% C.L.!
@1#.

Channel Class Nc52 Nc53 Nc5` Expt.

B0→r2K1 I 0.40 @0.46# 0.45 @0.52# 0.56 @0.64# ,33
B1→K* 1h8 III 0.28 @0.39# 0.24 @0.29# 0.33 @0.33# ,130
B0→K* 1p2 IV 6.0 @7.2# 6.6 @7.8# 7.8 @9.3# ,67
B0→K* 0p0 IV 1.8 @2.0# 2.2 @2.5# 3.2 @3.6# ,20
B0→r0K0 IV 0.50 @0.58# 0.49 @0.57# 0.62 @0.73# ,30
B1→K* 1p0 IV 4.4 @5.4# 4.7 @5.9# 5.6 @6.9# ,80
B1→r0K1 IV 0.58 @0.67# 0.50 @0.58# 0.47 @0.55# ,14
B1→K* 1h IV 2.2 @2.8# 2.2 @2.7# 2.0 @2.4# ,30
B0→K* 0h IV 2.0 @2.5# 2.1 @2.7# 2.6 @3.1# ,30
B1→K* 0p1 IV 5.6 @6.7# 6.9 @8.3# 10 @12# ,39
B1→r1K0 IV 0.03 @0.03# 0.01 @0.01# 0.01 @0.02# ,64
B0→K* 0h8 V 0.06 @0.12# 0.07 @0.07# 0.41 @0.39# ,39
B1→fK1 V 16 @18# 8.3 @9.6# 0.45 @0.53# ,5.0
B0→fK0 V 15 @18# 8.0 @9.3# 0.44 @0.51# ,31
B0→vK0 V 2.8 @3.3# 0.02 @0.02# 8.9 @10# ,57
B1→vK1 V 3.2 @3.7# 0.25 @0.28# 11 @13# 1526

1762
th
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he
le
r

-

c-
cay
being a class-IV decay is again stable with respect to
variation ofNc ; the former~a class-III decay! varies by ap-
proximately a factor of 2.3 asNc is varied. The branching
ratio for the sumB1→p0h1 is plotted as a function o
j51/Nc in Fig. 1 for the BSW model form factors~dash-
dotted curve! and two different sets, corresponding to t
central values of the hybrid lattice-QCD–QCD-sum-ru
form factors~dashed curve! and for values which are close
09400
eto their theoretical range given in Table IV~dotted curve!.
We see that the data for this mode are well explained.

We estimate the branching ratio forB0→p1p2 to be
around 131025 for the central values of the CKM param
eters, which could go down to about 531026 for Vub /Vcb
50.06. The present CLEO upper limit is in comfortable a
cordance with our estimates but we expect that this de
mode should be measured soon. However, the decayB0
t

TABLE XI. B→VV branching ratios~in units of 1026) using the BSW~lattice-QCD–QCD-sum-rule!

form factors, withk25mb
2/2, r50.12, h50.34, andNc52,3,̀ in the factorization approach. The las

column contains upper limits~90% C.L.! mostly from @1# except for the branching ratios forB0→r1r2,
B0→r0r0, B1→r1r0, B0→K* 0r0, andB1→K* 1r0, which are taken from the PDG tables@19#.

Channel Class Nc52 Nc53 Nc5` Expt.

B0→r1r2 I 18 @20# 20 @22# 24 @27# ,2200
B0→r0r0 II 1.3 @1.3# 0.59 @0.59# 2.5 @2.5# ,280
B0→vv II 0.87 @0.96# 0.15 @0.17# 0.86 @0.96# ,19
B1→r1r0 III 14 @15# 11 @12# 6.1 @6.8# ,1000
B1→r1v III 15 @16# 12 @13# 6.6 @7.3# ,67
B0→K* 1r2 IV 5.4 @6.0# 5.9 @6.6# 7.0 @7.8# 2

B0→K* 0r0 IV 1.1 @1.2# 1.3 @1.4# 1.9 @1.9# ,460
B1→K* 1r0 IV 5.0 @5.8# 5.5 @6.3# 6.6 @7.6# ,900
B1→r1K* 0 IV 5.1 @5.6# 6.3 @6.9# 9.1 @10# 2

B1→K* 1K̄* 0 IV 0.29 @0.38# 0.37 @0.47# 0.53 @0.68# 2

B0→K* 0K̄* 0 IV 0.28 @0.36# 0.35 @0.45# 0.51 @0.65# 2

B0→r0v V 0.018 @0.020# 0.005 @0.006# 0.23 @0.26# ,11
B0→K* 0v V 10 @12# 3.6 @4.0# 0.63 @1.1# ,23
B1→K* 1v V 11 @13# 3.7 @4.1# 1.7 @2.4# ,87
B1→K* 1f V 16 @20# 8.2 @10# 0.45 @0.57# ,41
B0→K* 0f V 15 @19# 7.9 @10# 0.43 @0.55# ,21
B1→r1f V 0.039 @0.043# 0.004 @0.005# 0.35 @0.38# ,16
B0→r0f V 0.019 @0.021# 0.002 @0.002# 0.17 @0.18# ,13
B0→vf V 0.019 @0.020# 0.002 @0.002# 0.17 @0.18# ,21
9-16
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→p0p0 is not expected to go above 1026, which makes it at
least a factor of 10 below the present experimental sens
ity.

We show the dependence of the branching ratios on
input form factors and the parameterj51/Nc for the decays
B1→K1h8 and B0→K0h8 in Figs. 2 and 3, respectively
As can be seen in these figures, data tend to prefer some
larger values for the form factorsF1,0 than the central value
given by the lattice-QCD–QCD sum rules in Table IV. How

FIG. 1. Branching ratio for the decaysB1→p0h1 (h1

5p1,K1) as a function ofj for three different sets of form factors
BSW model~dash-dotted curve! and lattice-QCD–QCD sum rule
with central values in Table IV~dashed curve!, with the values
F0,1

B→p50.36 andF0,1
B→K50.41 ~dotted curve!. The horizontal solid

lines are the61s measurements from experiment@1#.

FIG. 2. Branching ratio forB1→K1h8 as a function ofj
51/Nc . The dash-dotted and dashed curves correspond to

choice F1
B→h8(0)5F0

B→h8(0)50.15, ms(m52.5 GeV)5100

MeV and F1
B→h8(0)5F0

B→h8(0)50.135, ms(m52.5 GeV)
5122 MeV, respectively. The horizontal solid lines are the61s
measurements from experiment@1#.
09400
v-

e

hat

ever, the experimentally preferred values of the form fact
all lie within the range allowed by the present theoretic
estimates. Likewise, the branching ratio increases as
s-quark mass decreases, as already noted in@27,28#. Thus,

for ms (m52.5 GeV)5100 MeV andF1,0
B→h850.15, there

is no problem to accommodate the CLEO data within
measured61s range. As already discussed at length
Refs.@27,28#, these decay modes are dominated by the Q
penguin operator, and while the contributions of the anom
terms are included in the rate estimates, their role num
cally is subleading. The decay modesB1→K1h8 and B0

→K0h8 show some preference for smaller values ofj,
though this is correlated with other input parameters and
this stage one cannot draw completely quantitative con
sions. Summarizing theB→PP decays, we stress that th
factorization-based estimates described here are consi
with the measured decay modes. All other estimated bran
ing ratios are consistently below their present experime
limits. However, we do expect the modesB0→p1p2, B1

→p1p0, andB1→K1p0 to be measured soon.
The two observedB→PV decays,B1→vK1 and B1

→vh1, h15p1,K1, show a strongNc dependence as an
ticipated. The decayB1→vp1, a class-III decay, has no
yet been measured and the modeB1→K1v ~a class-V de-
cay! has a 3.9s experimental significance. The branchin
ratios ofB1→vK1 andB1→vp1 are plotted as functions
of j in Figs. 4 and 5, respectively, showing the variations
other parameters~form factors and CKM matrix elements! as
well. Taking the CLEO measurementB(B1→vK1)
5(1.520.6

10.760.2)31025 on face value, this mode sugges
that j<0.1 or j>0.6. The present CLEO upper limitB(B1

→vp1),2.331025 is not yet restrictive enough. Th
branching ratio for the combined decayB1→vh1(h1

5p1,K1) is shown in Fig. 6 as a function ofj for two
values of the form factorsF1

B→K andF1
B→p and two sets of

values for the CKM parametersr andh. The values of these
form factors correspond to the BSW model and the up
limit in Table IV to the lattice-QCD–QCD-sum-rule cas

he

FIG. 3. Branching ratio forB0→K0h8 as a function ofj. The
legends are the same as in Fig. 2.
9-17
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Again, one sees that there is a tendency in the data to p
larger values of the form factors. We note that both sm
valuesj.0 andj>0.5 are compatible with data in this de
cay, with the theoretical branching ratio rising above
31025. The value corresponding to the naive factorizatio
Nc53 ~or j50.33), is definitely too low compared to th
data on the two measuredB→PV decays. This is in line
with earlier observations in the literature@27,29,31#.

No otherB→PV decays have been measured yet. Ho
ever, an interesting upper boundB(B1→K1f),0.5
31025 ~at 90% C.L.! has been put by the CLEO Collabor
tion @2#. This and the related decayB0→K0f are both pen-

FIG. 4. Branching ratio forB1→K1v and as a function ofj.
The legends are as follows:r50.30,h50.42,F1

B→K50.44 ~dash-
dotted curve!, r50.12,h50.34,F1

B→K50.38 ~dashed curve!. The
horizontal solid lines are the61s measurements from experime
@2#.

FIG. 5. Branching ratio forB1→p1v as a function ofj. The
legends are as follows:r50.30,h50.42,F1

B→p50.38 ~dash-dotted
curve!, r50.12,h50.34,F1

B→K50.34~dashed curve!. The horizon-
tal solid line is the 90% C.L. upper limit from experiment@2#.
09400
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guin transition dominated and their decay rates are expe
to be almost equal. The only worthwhile CKM dependen
is on the Wolfenstein parameterA ~hence weak!. However,
being class-V decays, their branching ratios depend stron
on j, with both having their lowest values atj50. The
branching ratioB(B1→K1f) is shown as a function ofj in
Fig. 7 for A50.81 ~dashed curve! andA50.75 ~dash-dotted
curve! and the CLEO 90% C.L. upper bound is also ind
cated. This shows that valuesj>0.4 are disfavored by the

FIG. 6. Branching ratio forB1→h1v as a function ofj. The
legends are as follows:r50.30,h50.42,F1

B→p50.38,F1
B→K50.44

~dash–triple-dotted curve!, r50.30,h50.42,F1
B→p50.33,F1

B→K

50.38 ~dotted curve!, r50.12,h50.34,F1
B→p50.38,F1

B→K50.44
~dash-dotted curve!, r50.12,h50.34,F1

B→p50.33,F1
B→K50.38

~dashed curve!. The horizontal solid lines are the61s measure-
ments from experiment@1#.

FIG. 7. Branching ratio forB1→K1f as a function ofj. The
legends are as follows: Upper curve: Wolfenstein parameteA
50.81, F1

B→K50.38. Lower curve: Wolfenstein parameterA
50.75, F1

B→K50.31. The horizontal solid line is the 90% C.L
upper limit from experiment@1#.
9-18
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present data. In fact, taken the data on their face value
measured branching ratios for the decaysB1→vh1(h1

5p1,K1) andB1→vK1, as well as the upper bounds o
the branching ratios forB1→K1f and B1→vp1 can be
accommodated for a value ofj, close toj50. All other
decay modes in Tables IX and X~for the B→PV case! are
consistent with their respective upper limits. However, we
expect that the decay modesB1→r1h, B1→r1h8, B0

→K* 0p0, B1→K* 0p1, and B1→r1v should be ob-
served in the next round of experiments at CLEO and aB
factories.

There is oneB→VV decay modeB→fK* , for which
some experimental evidence exists, and an averaged bra
ing ratio B(B→fK* )5(1.120.5

10.660.2)31025 has been
posted by the CLEO Collaboration@2#. The decay modes
B1→fK* 1 andB0→fK* 0 are dominated by penguin tran
sitions and are expected to be almost equal~see Table XI!.
They also belong to class-V decays, showing very stronj
dependence~almost a factor 35!, with the branching ratios
having their smallest values atj50. A comparison of data
and factorization-based estimates is shown in Fig. 8. In
case, the data favor 0.4<j<0.6, apparently different from
the values ofj suggested by theB→PV decays discusse
earlier. In fact, the branching ratios of the decaysB1

→fK1, B0→fK0, B1→fK* 1, and B0→fK* 0 are al-
most equal in the factorization approach and they all bel
to class V. Hence, their measurements will be rather cru
in testing this framework.

Based on the present measurements of theB→PV and
B→VV decay modes, we summarize that all of them belo
to class-V ~and one to class-III! decays, for which the
factorization-based estimates show a strong sensitivity toj.
This implies that they are harder to predict. The classificat
given above, however, does not imply that the class-V

FIG. 8. Branching ratio forB→K* f as a function ofj, after
averaging over theB1 and B0 decay rates. The legends are
follows: Upper curve: Wolfenstein parameterA50.81. Lower
curve: Wolfenstein parameterA50.75. For the form factors, we us
the BSW model. The horizontal solid lines represent the CL
measurement with61s errors.@1#.
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cays are necessarily small. In fact, forNc52, the measured
class-IV decays and a number of class-VB→PV and B
→VV decays such as the ones mentioned above are com
rable in rates~within a factor of 2!. For the class-V decays
the amplitudes can become very small in some range oj,
implying large nonperturbative renormalizations which a
harder to quantify in this framework. Also, many class
penguin decays may have significant contributions from
nihilation and/or FSIs, as factorization-based amplitudes,
pending onj, may not dominate the decay rates. This
generally not foreseen for the class-I~tree-operator-
dominated! and class-IV~penguin-operator-dominated! de-
cays and most of the class-III decays. Hence, these de
can be predicted with greater certainty.

Concerning comparison of our results with the earl
ones in@27,28#, we note that we have made use of the the
retical work presented in these papers. We reproduce al
numerical results for the same values of the input parame
Our decay amplitudes agree with the ones presented in@31#,
although our estimates of the matrix elements of pseu
scalar densitieŝ 0uūg5uuh (8)& and ^0ud̄g5duh (8)& differ
from the ones used in@31#. Our expressions are given explic
itly in Appendix A. The disagreement in the decay rates
B0→r0h and B0→r0h8 between our results and the on
given in @31# has now been resolved.2 However, we do not
subscribe to the notion thatNc(V1A) induced by the (V
2A)(V1A) penguin operators is different from theNc(V
2A) arising from the (V2A)(V2A) operators, advocated
in @31#, and continue to use the sameNc irrespective of the
chiral structure of the four-quark operators. We have d
cussed at length the difficulties in predicting class-V dec
some of which, in our opinion, may require annihilatio
and/or FSI effects.

Comparison of our numerical results in the branching
tios for theB→PV modes with the ones presented in@29#
requires a more detailed comment. First of all, our inp
parameters are significantly different from those of@29#. For
the same values of input parameters, our results in cha
B1→(PV)1 decays are in reasonable accord. However, s
nificant differences exist in the neutralB0→(PV)0 decay
rates, which persist also if we adopt the input values use
@29#. In particular, in this case we find, forNc5`, B(B0

→r0h)52.731027 compared to 6.731026 @29#, B(B0

→r0h8)51.231027 compared to 3.631026 @29#, B(B0

→vh)56.931027 compared to 7.131026 @29#, andB(B0

→vh8)51.331027 compared to 3.631026 @29#. For our
input values, the differences in branching ratios are e
more drastic, as can be seen by comparing our results
the ones in@29# for these decays. We have given sufficie
details in our paper to enable a comparison of the formu
including matrix elements of the pseudoscalar densities,
hence it should not be too difficult to figure out the source
the present discrepancy. Such details are not given in@29#.

Within the present framework, we have calculated t
relative importance of electroweak penguin transitions in

2We thank Hai-Yang Cheng for correspondence on this point.
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TABLE XII. Ratios of branching ratiosRW defined in Eq.~42! for Nc52,3,̀ for the form factors in the
BSW model~lattice-QCD–QCD-sum-rule method!. The horizontal lines demarcate the decaysB→PP, B
→PV, andB→VV.

Channel Class Nc52 Nc53 Nc5`

B0→p0p0 II 1.2 @1.2# 1.5 @1.5# 1.1 @1.1#
B0→p0h8 II 1.3 @1.3# 1.3 @1.3# 1.4 @1.4#
B0→K0p0 IV 1.5 @1.4# 1.4 @1.4# 1.3 @1.3#
B0→K0h IV 1.5 @1.5# 1.5 @1.5# 1.4 @1.4#
B1→K1h IV 1.6 @1.6# 1.5 @1.5# 1.3 @1.3#

B0→r0p0 II 1.0 @1.0# 1.9 @1.9# 1.1 @1.1#
B0→r0h II 1.4 @1.4# 1.5 @1.5# 1.1 @1.1#
B0→r0h8 II 1.1 @1.2# 4.7 @4.9# 1.3 @1.2#
B0→K* 0p0 IV 1.7 @1.8# 1.6 @1.7# 1.4 @1.5#
B0→r0K0 IV 0.077 @0.077# 0.008 @0.008# 0.11 @0.11#
B0→K* 0h IV 0.69 @0.66# 0.70 @0.67# 0.71 @0.69#
B1→K* 1p0 IV 0.63 @0.61# 0.68 @0.66# 0.78 @0.75#
B1→r0K1 IV 0.83 @0.83# 0.59 @0.59# 0.13 @0.13#
B1→K* 1h IV 0.60 @0.58# 0.66 @0.63# 0.78 @0.76#
B1→r1K0 IV 0.45 @0.45# 0.60 @0.60# 0.66 @0.66#
B0→K* 0h8 V 0.97 @0.54# 1.8 @1.6# 1.1 @1.2#
B0→vK0 V 0.83 @0.83# 0.42 @0.42# 1.2 @1.2#
B0→fp0 V 1.7 @1.7# 0.002 @0.002# 0.78 @0.78#
B0→fh V 1.7 @1.7# 0.002 @0.002# 0.78 @0.78#
B0→fh8 V 1.7 @1.7# 0.002 @0.002# 0.78 @0.78#
B0→fK0 V 1.2 @1.2# 1.3 @1.3# 2.1 @2.1#

B0→K* 0K̄0 V 0.46 @0.46# 0.84 @0.84# 0.73 @0.73#

B1→K* 1K̄0 V 0.46 @0.46# 0.84 @0.84# 0.73 @0.73#

B1→fp1 V 1.7 @1.7# 0.002 @0.002# 0.78 @0.78#
B1→fK1 V 1.2 @1.2# 1.3 @1.3# 2.1 @2.1#

B0→r0r0 II 0.58 @0.58# 0.31 @0.31# 1.0 @1.0#
B0→r0K* 0 IV 2.5 @2.7# 2.4 @2.6# 2.1 @2.2#
B1→r0K* 1 IV 0.54 @0.52# 0.61 @0.58# 0.74 @0.72#
B0→r0v V 1.9 @1.9# 0.08 @0.08# 0.77 @0.77#
B0→rf V 1.7 @1.7# 0.002 @0.002# 0.78 @0.78#
B0→vf V 1.7 @1.7# 0.002 @0.002# 0.78 @0.78#
B0→K* 0v V 0.93 @0.92# 0.84 @0.82# 1.7 @1.6#
B0→K* 0f V 1.2 @1.2# 1.3 @1.3# 2.1 @2.1#
B1→r1f V 1.7 @1.7# 0.002 @0.002# 0.78 @0.78#
B1→K* 1f V 1.2 @1.2# 1.3 @1.3# 2.1 @2.1#
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the B→PP, B→PV, and B→VV decays studied in this
paper. The decay modes where the electroweak penguin
sitions may make a significant contribution are shown
Table XII where we give the ratio

RW[
B~B→h1h2!~with a7 , . . . ,a1050!

B~B→h1h2!
. ~42!

In the B→PP case, there are five such decays whose ra
show a moderate dependence on the electroweak pen
transitions. The decayB0→p0p0 receives a significant elec
troweak penguin contribution forNc53. In the class-IVB
→PP decays, three decays, namely,B0→K0p0, B0

→K0h, andB1→K1h ~all having branching ratios in ex
09400
n-

es
uin

cess of 1026), have significant electroweak contribution
The presence of electroweak penguin transitionss in th
decays reduces the decay rate by about;20% to;40%.

In the B→PV decays, the three class-II decays whi
may have significant electroweak penguin amplitudes
B0→r0p0 and B0→r0h (8). Most striking among the
class-IV decays isB0→r0K0, which is completely domi-
nated by the electroweak penguin transitions for all values
Nc . This decay is estimated to have a branching ratio
O(1026). Measurement of this decay mode will enable us
determine the largest electroweak penguin coefficienta9 . In
theB→VV decays, the class-II decayB0→r0r0 is sensitive
to the electroweak penguin transitions. Likewise, the t
class-IV decaysB0→r0K* 0 andB1→r0K* 1 are sensitive
9-20
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EXPERIMENTAL TESTS OF FACTORIZATION IN . . . PHYSICAL REVIEW D58 094009
to electroweak penguin tansitions. All of them are expec
to have branching ratios ofO(1026) or larger, and can in
principle all be used to determine the coefficients of the e
troweak penguin transitions. Once again, a large numbe
class-V decays show extreme sensitivity to the electrow
penguin transitions, as can be seen in Table XII.

VII. STRINGENT TESTS OF THE FACTORIZATION
APPROACH AND DETERMINATION

OF FORM FACTORS

In the preceding section, we have compared available
with estimates based on the factorization approach and h
already commented on the tendency of data to favor so
what higher values of the form factorsF0,1

B→P , than, for ex-
ample, the central values given in Table IV. However, as
decay rates depend on a number of parameters and the
ous parametric dependences are correlated, it is worthw
in our opinion, to measure some ratios of branching ratio
which many of the parameters endemic to the factoriza
framework cancel. In line with this, we propose three diffe
ent types of ratios which can be helpful in a quantitative t
of the present framework:~i! ratios which do not depend o
the effective coefficientsai , and which will allow to deter-
mine the form factors more precisely in the factorizati
framework, ~ii ! ratios which depend on the parametersai ,
and whose measurements will determine these effective
efficients, and~iii ! ratios whose measurements will impa
on the CKM phenomenology; i.e., they will help determi
the CKM parametersr andh ~equivalently sina, sinb, and
sing).

A. Ratios of branching ratios independent
of the coefficientsai

We start with the ratios of branching ratios in which t
effective coefficientsa1 , . . . ,a10 cancel. In the present ap
proach, these ratios depend on the form factors and hadr
coupling constants. Their measurements will allow us to d
criminate among models, determine some of the hadro
quantities, and improve the quality of theoretical predictio
for a large number of other decays where these hadr
quantities enter.
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In what follows, we shall illustrate this by giving com
plete expressions for the relative decay widths of the de
modes in question. These expressions can be derived
straightforward way from the matrix elements given in t
Appendixes. Then, we shall present simple formulas, wh
are approximate but instructive, and highlight the particu
form factors which play dominant roles in these decays.
nally, we shall compare the numerical results for these ra
obtained from the complete expressions, which have b
used in calculating the entries in Tables VIII–XI, and th
corresponding ones obtained from the simple formulas
judge the quality of the approximation in each case. As pr
tically an almost endless number of ratios can be form
from the 76 branching ratios given in Tables VIII–XI, som
thought has gone into selecting the 11 ratios which we d
cuss below. Our criterion is based on the theoretical simp
ity and experimental feasibility of these ratios. To be sp
cific, these ratios involve those decays whose branch
ratios are expected to beO(1026) or higher, with the ratios
of branching ratios of order 1 so that a reasonable exp
mental accuracy could be achieved, and whose decay wi
are dominated by a single form factor.

We start with the discussion of decay modes involving
final statespp, rp, andrr. These ratios are listed below

TABLE XIII. Values of Pi ’s calculated with the form factors
from the BSW model and the hybrid lattice-QCD–QCD-sum-ru
method. The numbers in square brackets are calculated using
approximate formulas derived in the text.

Ratio BSW model Lattice-QCD–QCD sum rules

P1 1.19 @1.21# 1.27 @1.55#
P2 0.43 @0.39# 0.43 @0.39#
P3 0.28 @0.28# 0.27 @0.27#
P4 0.49 @0.47# 0.53 @0.61#
P5 0.52 @0.47# 0.55 @0.61#
P6 1.11 @1.21# 1.19 @1.55#
P7 1.11 @1.21# 1.19 @1.55#
P8 1.08 @1.14# 0.99 @1.18#
P9 1.09 @1.14# 0.99 @1.18#
P10 1.01 @1.15# 0.92 @1.19#
P11 1.01 @1.15# 0.92 @1.19#
P1[
B~B0→r1p2!

B~B0→r1r2!
5

x2f ~p,r!3uF1
B→p~mr

2!u2

f ~r,r!3F1

4S 3x4

f ~r,r!2
11D ~11x!2A1

21
f ~r,r!2A2

2

~11x!2
1

2x4V2

~11x!2
2S 1

2
2x2DA1A2G , ~43!

wherex5mr /mB . The form factorsA1 , A2 , and V involve theB→r transition. The functionf (a,b) is the momentum
fraction carried by the final particles,f (a,b),1/2:

f ~a,b!5
A~mB

22ma
22mb

2!224ma
2mb

2

2mB
2

.

Since f (p,r). f (r,r).1/22x2, and in almost all models one expectsA1.A2 , the expression given in Eq.~43! gets
considerably simplified. Neglecting the terms proportional tox4 in the denominator, one has
9-21
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P1.
uF1

B→p~mr
2!u2

~11x!uA1
B→r~mr

2!u2
, ~44!

which is essentially determined by the ratios of the form factorsF1
B→p andA1

B→r . We show the values of the ratioP1 in Table
XIII for the BSW model and the lattice-QCD–QCD-sum-rule method for both the full widths and following from
approximate relation given in Eq.~44!. There are various other relations of a similar kind. For example, neglecting the
QCD penguin contribution and the very small difference in phase space, we get the relations

P2[
B~B0→p2p1!

B~B0→r1p2!
.S f pF0

B→p~mp
2 !

f rF1
B→p~mr

2!
D 2

, ~45!

P3[
B~B0→p1r2!

B~B0→r1p2!
.S f pA0

B→r~mp
2 !

f rF1
B→p~mr

2!
D 2

. ~46!

As can be seen in Table XIII, both Eqs.~45! and~46! are excellent approximations and, for the two models in question
get an almost form-factor-independent prediction, namely,P2.0.4 andP3.0.28. It must be remarked here that one m
disentangleB0 decays from theB0 decays as bothP2 andP3 are defined for the decays ofB0.

In the same vein, we define the ratiosP4 andP5 involving thepp andrr modes:

P4[
B~B1→p1p0!

B~B1→r1r0!
, ~47!

P5[
B~B0→p2p1!

B~B0→r2r1!
. ~48!

Neglecting the QCD penguin contribution inP4 and the EW penguin contribution inP5 , which are excellent approximation
~see Table XIII!, we can obtain these ratios as

P4.P5.S f p

f r
D 2 x2~12mp

2 /mB
2 ! f ~p,p!uF0

B→p~mp
2 !u2

f ~r,r!3F1

4S 3x4

f ~r,r!2
11D ~11x!2A1

21
f ~r,r!2A2

2

~11x!2
1

2x4V2

~11x!2
2

1

2
~122x2!A1A2G . ~49!

Neglecting higher order terms inx, we get

P4.P5.S f p

f r
D 2 uF1

B→p~mp
2 !u2

~11x!uA1
B→r~mr

2!u2
, ~50!

very similar to the relation forP1 , except for the ratio of the decay constants.
The next ratios are defined for the final states involvingK* p andK* r:

P6[
B~B0→K* 1p2!

B~B0→K* 1r2!
, P7[

B~B1→p1K* 0!

B~B1→r1K* 0!
. ~51!

One can express these ratios as

P65P75
x2f ~p,K* !3uF1

B→p~mK*
2

!u2

f ~r,K* !3F1

4S 3x2y2

f ~r,K* !2
11D ~11x!2A1

21
f ~r,K* !2A2

2

~11x!2
1

2x2y2V2

~11x!2
2

1

2
~12x22y2!A1A2G , ~52!

wherey5mK* /mB , and we have neglected the small phase space difference. Similar to the expression forP1 , we can derive
a simple formula by dropping higher powers inx:
094009-22
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P65P7.
uF1

B→p~mK*
2

!u2

~11x!uA1
B→r~mK*

2
!u2

. ~53!

Again, neglecting the small phase space factor and the extrapolations of the form factors betweenq25mr
2 and q2

5mK*
2 , the near equalityP1.P6.P7 holds in the factorization assumption.

The next ratios, calledP8 andP9 , involve the final statesKK̄* andK* K̄* , respectively. Defining

P8[
B~B1→K1K̄* 0!

B~B1→K* 1K̄* 0!
, P9[

B~B0→K0K̄* 0!

B~B0→K* 0K̄* 0!
, ~54!

we now have

P8.P95
y2uF1

B→K~mK*
2

!u2u f ~K,K* !/ f ~K* ,K* !u3

1

4S 3y4

f ~K* ,K* !2
11D ~11y!2uA1

K* u21
f ~K* ,K* !2uA2

K* u2

~11y!2
1

2y4uVK* u2

~11y!2
2

1

2
~122y2!A1

K* A2
K*

. ~55!

The form factorsA1
K* , A2

K* , VK* are abbreviations forA1
B→K* , etc., and again small phase space differences have

neglected. Expanding iny and dropping higher order terms, we get

P8.P9.
uF1

B→K~mK*
2

!u2

~11y!uA1
B→K* ~mK*

2
!u2

, ~56!

which involves ratios of the form factorsF1
B→K andA1

B→K* .
Finally, in this series we define the ratioP10 andP11 involving the statesKf andK* f, respectively:

P10[
B~B1→K1f!

B~B1→K* 1f!
, P11[

B~B0→K0f!

B~B0→K* 0f!
. ~57!

Ignoring the small phase space difference, we get

P10.P115
y2uF1

B→K~mf
2 !u2u f ~K,f!/ f ~K* ,f!u3

1

4S 3y2z2

f ~K* ,f!2
11D ~11y!2uA1

K* u21
f ~K* ,f!2uA2

K* u2

~11y!2
1

2y2z2uVK* u2

~11y!2
2

1

2
~12y22z2!A1

K* A2
K*

, ~58!
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wherez5mf /mB . Expanding iny andz and again neglect
ing higher order terms iny andz, we get

P10.P11.
uF1

B→K~mf
2 !u2

~11y!uA1
B→K* ~mf

2 !u2
. ~59!

So in the factorization approximation and ignoring the sm
extrapolation betweenq25mK*

2 and q25mf
2 , in the form

factors, we have the near equalityP8.P9.P10.P11.
These ratios are all proportional to the ratios of the fo

factorsF1
B→K andA1

B→K* .
The ratiosP1 , . . . ,P11 involve decays in which at leas

one of the 02 mesons is replaced by the corresponding v
tor 12 particle. If these particles in the decayB→h1h2 were
heavy, such asD,D* ,Ds ,Ds* , one could use the large en
ergy (1/E) expansion to derive the ratiosPi . We have not
investigated this point and hence cannot claim that these
09400
ll

-

a-

tios are on the same theoretical footing as the correspon
relations involving the decaysB→D(D* )p(r), studied, for
example, in @18#. However, as the energy released inB
→h1h2 decays is large, and no fine-tuning among the va
ous amplitudes is involved, which is the case in class-V
cays, we think that the above relations are likely to hold. T
ratios of branching ratios are also independent of the CK
matrix elements; therefore they constitute a good test of
factorization hypotheses. In Table XIII, we have presen
the numerical values of the ratiosPi , i 51, . . .,11. This
table shows that almost all the ratios are remarkably close
the two models used for the form factors. This, howev
reflects our choice of the specific values of the form facto
which is influenced by the present CLEO data. In gene
the ratiosPi are measures of the ratios of the form facto
which could vary quite significantly from model to mode
and hence they can be used to distinguish between them
can also be seen that in most cases, the simple formulas
9-23
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good approximations and would enable us to draw quan
tive conclusions about the ratios of dominant form factors
these decays.

B. Determination of the effective coefficientsai

In this section, we aim at measuring the effective coe
cients ai of the factorization framework. To that end, w
shall study some ratios of branching ratios which are larg
free of hadronic form factors and decay constants. In gene
these ratios depend on the effective coefficientsai and the
CKM parameters in a rather entangled fashion. To dis
tangle this and gain some insight, we will have to ma
approximations, whose accuracy, however, we specify qu
titatively within the present framework.

1. Determination of the tree coefficients a1 and a2

We start with a discussion of the decaysB0→p1p2 and
B1→p1p0, which are on the verge of measurements@1#.
Neglecting the electroweak contributions, which we ha
checked is a very good approximation in these decays,
can derive from Eqs.~A1! and ~A3! the following relation:

S1[
B~B0→p1p2!

2B~B1→p1p0!

.
tB0

tB1
F S a1

a11a2
D 2

22
a1

a11a2
z1cosacosd11z1

2G ,
~60!

where

z15U VtbVtd*

VubVud*
UUa41a6R1

a11a2
U.

Here, the quantitiestB0 andtB1 are the lifetimes of theB0

and B1 mesons, which, within present experimental ac
racy, are equal to each other. The implicit dependence on
CKM matrix elements in the quantitya41a6R1 is not very
marked~see Sec. II!. The explicit CKM factor is bounded
from the unitarity fits in the range~at 95% C.L.!: 1.4
,uVtbVtd* u/uVubVud* u,4.6. Varying thenNc from Nc52 to
Nc5`, we get 0.08,z1,0.50. This would suggest that on
might be able to determine the quantity cosa from this ratio.
However, the value ofz1 is strongly correlated with that o
the producty1[cosd1cosa, as shown in Fig. 9 where th
dependence of this product is shown as a function ofz1 ,
indicating the allowed range ofz1 for assumed values of th
ratio S1 . As a result of this correlation, which is specific
the factorization approach, the ratioz1cosd1cosa remains
small in the entire allowed parameter space. The quan
z1cosd1cosa is bounded from above to lie below 0.16, whic
corresponds to usingNc52 and uVub /Vcbu50.06. This is
then bad news for determining the quantity cosa from the
ratio S1 but good news as far as the determination of
effective coefficientsa1 /(a11a2) from S1 is concerned.
Taking this as a generic case for other decays of interest,
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best bet in the determination of the effective coefficients is
find ratios of branching ratios in which the quanti
zicosdicosfi ~heref i5a, b, or g) and zi

2 are both small.
Within the factorization framework, and using the prese
constraints on the CKM parameters, this can be system
cally studied. With this in mind, we shall present a numb
of approximate formulas for the ratiosSi , which are ex-
pected to hold in the limit:zicosdicosfi!1 and zi

2!1. To
quantify the quality of our approximation, we shall mak
detailed numerical comparisons between the numerical
sults forSi , obtained with the complete expressions for t
respective decay widths, and the ones following from o
approximate formulas.

There are some ratios of branching ratios in which, with
our theoretical framework, the factorszicosdicosfi are large,
or else the CKM dependence of the ratios factorizes i
simple way. We shall use these ratios to determine the C
parameters in nonleptonic two-body decaysB→h1h2 . This
kind of analysis has already been suggested in the litera
@45,27,50#. We add a number of interesting decay modes
the cases already studied in the literature and make quan
tive predictions for them in the present model.

Returning to the determination of the coefficientsai , we
note that a ratio similar toS1 can be defined with therr final
states:

S2[
B~B0→r1r2!

2B~B1→r1r0!

.
tB0

tB1
F S a1

a11a2
D 2

22
a1

a11a2
z2cosacosd21z2

2G ,
~61!

FIG. 9. y15cosd1cosa as a function ofz1 in the factorization
approach. The dotted, dash-dotted, and dashed curves correspo
Nc5` and uVub /Vcbu50.11, Nc53 and uVub /Vcbu50.08, and
Nc52 anduVub /Vcbu50.06, yielding in the BSW model the value
S152.07, S150.94, andS150.59, respectively. The two vertica
lines indicate the bounds onz1 from our model and the CKM uni-
tarity fits 0.08,z1,0.50.
9-24
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where

z25U VtbVtd*

VubVud*
UU a4

a11a2
U.

This is not expected to exceed its maximum valuez2
max

50.26, the central value being aroundz2.0.08. Hence, one
could use approximate formulas forS1 andS2 by keeping the
dominant term arising from the tree contributions~setting
tB05tB1):

S1[
B~B0→p1p2!

2B~B1→p1p0!
.S a1

a11a2
D 2

, ~62!

S2[
B~B0→r1r2!

2B~B1→r1r0!
.S a1

a11a2
D 2

. ~63!

Likewise, neglecting the penguin contributions, whi
give only several percent uncertainties, the valuea2 /a1 can
also be measured from the following ratios:

S3[
2B~B1→r1p0!

B~B0→r1p2!
.S 11

1

x

a2

a1
D 2

, ~64!

S4[
2B~B1→p1r0!

B~B0→p1r2!
.S 11x

a2

a1
D 2

, ~65!

where the quantityx5( f rF1
B→p)/( f pA0

B→r) can be mea-
sured by measuring the ratioP3 .

2. Determining the penguin coefficients

Concerning the coefficientsa3 , . . . ,a6 , we recall that the
dominant QCD penguin amplitudes are proportional toa4
anda6 . The others (a3 anda5) enter either as small correc
tions in class-IV decays, or else enter in class-V deca
which in most cases are highly unstable due to large can
lations in the respective amplitudes, hence rendering this
ercise not very trustworthy for determining the smaller co
ficients. In view of this we concentrate on relations involvi
the QCD-penguin coefficientsa4 and a6 . For this purpose,
quite a few class-IV decays listed in Tables VIII–XI sugge
themselves. Here, we take the ratios between some of
representative decays from this class and from class-
class-III decay. These ratios and their approximate dep
dence on the coefficients of interest are as follows:
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S5[
2B~B1→p1p0!

B~B1→p1K0!
.S f p

f K
D 2UVubVud*

VtbVts*
U2U a11a2

a41a6R5
U2

, ~66!

S6[
2B~B1→r1r0!

B~B1→r1K* 0!
.S f r

f K*
D 2UVubVud*

VtbVts*
U2Ua11a2

a4
U2

, ~67!

S7[
B~B0→p2r1!

B~B1→p1K* 0!
.S f r

f K*
D 2UVubVud*

VtbVts*
U2Ua1

a4
U2

, ~68!

S8[
B~B0→r2r1!

B~B1→r1K* 0!
.S f r

f K*
D 2UVubVud*

VtbVts*
U2Ua1

a4
U2

, ~69!

S9[
B~B0→p1p2!

B~B1→p1K0!
.S f p

f K
D 2UVubVud*

VtbVts*
U2U a1

a41a6R5
U2

. ~70!

Here, the quantity R5 is defined as R5[2mK0
2 /(mb

2md)(md1ms). As is obvious from the formulas given
above, the determination of the effective coefficients throu
these ratios is correlated with the values of the CKM facto
which in all cases are given essentially by the ra
uVub /Vtsu.uVub /Vcbu.0.0860.02. We expect that the
CKM matrix elementuVub /Vcbu will be very precisely mea-
sured in forthcoming experiments. Hence, a better use
these ratios is to determine the effective coefficients. To g
a quantitative content to the approximations made in rea
ing the simple expressions forSi , i 51, . . . ,9, wedisplay in
Table XIV the numerical values of these ratios, together w
the ratiosS10 and S11 discussed below, as a function o
uVub /Vcbu, taking a rather generous error in this quantity
the range 0.06<uVub /Vcbu<0.11, for three values ofNc .
The rows labeled as ‘‘Exact’’ are the results obtained
using the complete amplitudes and the rows labeled as ‘‘
prox.’’ are the results following from the simple relation
given above for these ratios. As one can see, these form
are quite accurate over a large parameter space, with
deviations mostly remaining well within 10%. One can al
check that the ratiosS5–S9 for the complete result scal
almost quadratically withVub /Vcb , as follows from the
simple formulas, which shows that the CKM dependen
displayed in the approximate formulas is actually quite ac
rate.

Concerning the measurements of the electroweak co
cients,a7 , . . . ,a10, we recall that the dominant contributio
of the electroweak penguin amplitudes is proportional toa9 .
The rest of the electroweak coefficients are either smal
they enter in combinations which render them very sensi
to the variation inNc . It is instructive to consult Table XII,
where the decays in which electroweak penguin amplitu
may make a significant contribution to the branching rat
are listed. In line with our argument, we will concentra
only on class-IV penguin amplitude decays, and pick up
9-25
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TABLE XIV. The ratiosSi calculated using the indicated values ofNc and different values ofr andh.
The values are calculated using the approximate formula~Approx.! derived in the text also.

Nc Nc52 Nc53 Nc5`

uVub /Vcbu 0.06 0.08 0.11 0.06 0.08 0.11 0.06 0.08 0.11

S1 Exact 0.59 0.66 0.68 0.83 0.94 0.95 1.81 2.03 2.0
Approx. 0.64 0.64 0.64 0.91 0.91 0.91 1.97 1.97 1.9

S2 Exact 0.60 0.64 0.65 0.85 0.90 0.91 1.84 1.95 1.9
Approx. 0.64 0.64 0.64 0.91 0.91 0.91 1.97 1.97 1.9

S3 Exact 1.33 1.32 1.32 1.09 1.09 1.09 0.74 0.75 0.7
Approx. 1.29 1.29 1.29 1.06 1.06 1.06 0.71 0.71 0.7

S4 Exact 2.41 2.20 2.13 1.40 1.23 1.17 0.32 0.23 0.1
Approx. 2.13 2.13 2.13 1.20 1.20 1.20 0.22 0.22 0.2

S5 Exact 0.55 0.97 1.96 0.37 0.66 1.33 0.16 0.28 0.5
Approx. 0.55 0.95 1.89 0.38 0.66 1.31 0.17 0.29 0.5

S6 Exact 3.07 5.46 11.01 1.95 3.47 7.00 0.75 1.34 2.7
Approx. 3.10 5.30 10.56 2.06 3.53 7.03 0.86 1.46 2.9

S7 Exact 1.97 3.73 7.62 1.77 3.35 6.84 1.49 2.82 5.7
Approx. 1.99 3.40 6.78 1.87 3.19 6.36 1.68 2.88 5.7

S8 Exact 1.84 3.47 7.10 1.65 3.12 6.37 1.39 2.62 5.3
Approx. 1.99 3.40 6.78 1.87 3.19 6.36 1.68 2.88 5.7

S9 Exact 0.32 0.65 1.33 0.31 0.62 1.27 0.28 0.57 1.1
Approx. 0.36 0.61 1.22 0.35 0.59 1.18 0.33 0.57 1.1

S10 Exact 0.22 0.18 0.13 0.15 0.14 0.13 0.09 0.12 0.1
Approx. 0.14 0.14 0.14 0.13 0.13 0.13 0.11 0.11 0.1

S11 Exact 0.37 0.17 0.06 0.28 0.15 0.07 0.20 0.16 0.1
Approx. 0.26 0.15 0.07 0.25 0.14 0.07 0.23 0.13 0.0
t
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decay modeB0→r0K0 as an illustrative example. To tha
end, we define the following two ratios involving a class
and a class-IV process, dominated by the tree and QCD
guin amplitudes, respectively:

S10[
2B~B0→r0K0!

B~B1→p1K* 0!
.

9

4U f rF1
B→K~mr

2!

f K* F1
B→p~mK

2 !
U2Ua9

a4
U2

,

S11[
2B~B0→r0K0!

B~B0→r2p1!

.
9

4U VtbVts*

VubVud*
U2U f rF1

B→K~mr
2!

f pA0
B→r~mp

2 !
U2Ua9

a1
U2

. ~71!

We show the numerical values of these ratios in Table X
for the three indicated values of the ratiouVub /Vcbu, both for
the exact and approximate cases. The approximate rela
are reliable over most part of the parameter space. O
similar ratios can be written down in a straightforward wa
Measurements of the ratiosS1–S11 will overconstrain the
coefficientsa4 , a6 , and a9 , testing both the factorization
hypothesis and determining these crucial penguin coe
cients. Note thatS10 depends only slightly on the CKM fac
tors, compared to the others discussed above, andS1–S4 do
not depend onuVub /Vcbu when we use the approximations
Eqs.~62!–~65!.
09400
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C. Potential impact of B˜h1h2 decays
on CKM phenomenology

1. B˜pK channels

In this subsection, we consider the ratios of branch
ratios which can be gainfully used to get information on t
CKM parameters. The most celebrated one in this class is
ratio discussed by Fleischer and Mannel recently@45#, in-
volving the decaysB0→K1p2 and B1→K0p1. Ignoring
the electroweak penguin contribution, which is estimated
be small in our model, one can write this ratio as

S12[
B~B0→K1p2!

B~B1→K0p1!
.122z12cosd12cosg1z12

2 , ~72!

with

z125
uTu
uPu

5UVubVus*

VtbVts*
UU a1

a41a6R5
U.

The branching ratios involved inS12 have been measure
by the CLEO Collaboration and their values can be seen
Table VIII. The ratioS12 itself has the following value:

S1250.6560.39. ~73!

For the central values of the CKM parameter (r50.12, h
50.34), the value ofS12 is found to be 0.80<S12<1.0, vary-
ing Nc and using the two form factor models displayed
9-26
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Table VIII. However, varying the CKM parameters in the
presently allowed range, we find 0.46<S12<1.12, where the
lower and upper values correspond touVub /Vcbu50.11 and
uVub /Vcbu50.06, respectively. The ratioS12 is, formally
speaking, very similar to the one defined for the ratioS1 .
However, the difference betweenS1 andS12 is that the prod-
uct z12cosd12cosg, as opposed to the corresponding quan
z1cosd1cosa in S1 , is not small in the allowed region ofz12.
The range 0.15<z12<0.29 is estimated in the factorizatio
approach, varying the CKM matrix element ratio in the ran
0.013,uVubVus* u/uVtbVts* u,0.023 andNc . This is shown in
Fig. 10. Hence, the ratioS12 and its kind, discussed below
do provide, in principle, a constraint on cosg. This figure
also shows that the ratioS12 is in quite good agreement wit
the measured ratio by CLEO.

In the context of the factorization models, the CLEO da
were analyzed in@27# and it was shown that theoretical e
timates in this framework are in agreement with data. T
ratio S12 ~called R1 in @27#! provides a constraint on th
CKM parameterr ~equivalently cosg). Taking data at the
61s value, the CLEO data disfavored the negative-r re-
gion. The allowed values of this parameter resulting from
measurement ofS12 were found to be in comfortable agre
ment with the ones allowed by the CKM unitarity fits. I
addition, the dependence ofS12 on the CKM parameterh
was found to be weak. This overlap in the value ofr follow-
ing from the analysis of the ratioS12 in the factorization
approach and from the CKM unitarity fits has also been c
firmed recently in@48#. We show here the ratioS12 plotted as
a function of cosg for Nc52, 3, and` and fixed value of
the ratiouVub /Vcbu50.08 in Fig. 11. The form factor depen
dence of this ratio is rather weak~as can be seen in Tabl
VIII ! and for the sake of definiteness we display the re

FIG. 10. y125cosd12cosg as a function ofz12 in the factorization
approach. The dotted, dash-dotted, and dashed curves corresp
Nc5` and uVub /Vcbu50.11,Nc53 anduVub /Vcbu50.08, andNc

52 and uVub /Vcbu50.06, yielding in the BSW model the value
S1250.46, S1250.91, andS1251.12, respectively. The two vertica
lines indicate the bounds onz12 from our model and the CKM
factors discussed in the text, yielding 0.15,z12,0.29.
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for the BSW form factors. It is seen that for all values ofNc ,
the CLEO data provide a constraint on cosg, which is com-
patible with the one allowed by the CKM fits, yielding 32
<g<122° @47#. This is in line with what has already bee
reported in@27#.

The ratioS12 given in Eq.~72! is a generic example of the
kind of relations that one can get from the ratios of branch
ratios in which the quantityzicosdicosg is not small. We
have argued, in line with@27#, that the factorization mode
gives an adequate account ofS12. We discuss below some
related ratios, which, once measured, could be used to d
mine cosg as well as further test the consistency of the fa
torization approach.

2. Ratios for B̃ pK* modes

One can define, analogous to Eq.~72!, the ratioS13, in-
volving the decaysB0→p2K* 1 andB1→K* 0p1:

S13[
B~B0→p2K* 1!

B~B1→p1K* 0!
.122z13cosd13cosg1z13

2 ,

~74!

with

z135
uTu
uPu

5UVubVus*

VtbVts*
UUa1

a4
U.

Using 0.013,uVubVus* u/uVtbVts* u,0.023, and fromNc52 to
Nc5`, we get 0.30,z13,0.60, indicated in Fig. 12. The
ratio S13 is plotted in Fig. 13 as a function of cosg for three
different values ofNc and uVub /Vcbu. When measured, this
ratio will provide a constraint on the phase cosg. Varying the
CKM parameters andNc in the indicated range, we find th
ratio S13 to lie in the range 0.49<S13<1.37. The upper

d to
FIG. 11. S12 as a function of cosg in the factorization approach

The dotted, dash-dotted, and dashed curves correspond toNc5`,
Nc53, andNc52, respectively. The horizontal lines are the CLE
(61s) measurements ofS12. The two vertical lines correspond t
32°,g,122°.
9-27
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bound is larger than the one forS12 given earlier, reflecting
that the QCD-penguin contributions in the two ratios a
similar but not identical.

3. Ratios for B̃ rK modes

One can define the ratioS14:

S14[
B~B0→r2K1!

B~B1→r1K0!
.122z14cosd14cosg1z14

2 , ~75!

FIG. 12. y135cosd13cosg as a function ofz13 in the factorization
approach. The dotted, dash-dotted, and dashed curves corresp
Nc5` and uVub /Vcbu50.11,Nc53 anduVub /Vcbu50.08, andNc

52 and uVub /Vcbu50.06, yielding in the BSW model the value
S1350.49, S1350.95, andS1351.37, respectively. The two vertica
lines indicate the bounds onz13 from our model and the CKM
factors 0.30,z13,0.60.

FIG. 13.S135S15 as a function of cosg. The dotted, dash-dotted
and dashed lines correspond to results withNc5`, Nc53, and
Nc52, respectively. The two vertical lines correspond to 32°,g
,122°.
09400
with

z145
uTu
uPu

5UVubVus*

VtbVts*
UU a1

a41a6Q4
U.

The central value of the quantityz14 is z14.5.07. However,
being very large, the ratioS14 implies that the branching ratio
in the denominator is appreciably smaller and perhaps a
more difficult to measure. In view of this, we are less sure
the utility of the ratioS14 in the foreseeable future.

4. Ratios for B̃ rK* modes

Finally, we note that the ratioS15 defined below provides
within our model, a very similar constraint on cosg as the
one following from the ratioS13:

S15[
B~B0→r2K* 1!

B~B1→r1K* 0!
.122z15cosd15cosg1z15

2 ,

~76!

wherez155z13 and d155d13. This will be a further test of
the factorization ansatz.

Finally, in conclusion of this section, we mention that
method of measuring the CKM matrix element rat
uVtd /Vtsu using exclusive nonleptonicB decays has been
proposed in Ref.@50#. Some of these ratios have mode
theoretical uncertainties due to SU~3!-breaking effects.
These relations hold in the factorization framework as w
and we list a few of them below:

B~B1→K1K̄0!

B~B1→p1K0!
.
B~B1→K1K̄* 0!

B~B1→p1K* 0!
.
B~B1→K* 1K̄0!

B~B1→r1K0!

.
B~B1→K* 1K̄* 0!

B~B1→r1 K* 0!
.UVtd

Vts
U2

. ~77!

VIII. SUMMARY AND CONCLUSIONS

We have presented estimates of the decay rates in
body nonleptonic decaysB→h1h2 involving pseudoscalar
and vector light hadrons in which QCD and electroweak p
guin transitions play a significant role. This work part
overlaps with studies done earlier along these lines
branching ratios, in particular in@27,31#. We make use of the
theoretical framework detailed in@27,28# but we think that
this is the most comprehensive study of its kind in the fa
torization framework.

Using the sensitivity onNc as a criterion of theoretica
stability, we have classified all the decaysB→h1h2 into five
different classes involving penguin and tree amplitudes. T
extends the classification of tree amplitudes in vogue in
literature @8,18#. We hope that the detailed anatomy of th
decaysB→h1h2 presented here, in particular concerning t
QCD and electroweak penguin transitions, will serve to ha
a more critical view of what can be reasonably calculated
the factorization framework and what involves a good d
of theoretical fine-tuning. Following the classification di

d to
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EXPERIMENTAL TESTS OF FACTORIZATION IN . . . PHYSICAL REVIEW D58 094009
cussed here, we think that class-I and class-IV decays,
probably also class-III decays, can be calculated with a
sonable theoretical uncertainty, typically a factor of 2. Ho
ever, most class-II and class-V decays deserve a careful
oretical reappraisal to establish the extent of nonfactoriz
contributions. In particular, we have outlined the pattern
power suppression in annihilation contributions to two-bo
nonleptonicB decays. Being suppressed bymh

4/mB
4 , the an-

nihilation contributions are small in the decaysB→PP, but
since this suppression is onlymh

2/mB
2 in B→PV and B

→VV decays, in specific cases this can be easily overco
by the favorable effective coefficients. Hence, annihilat
contributions can be significant in someB→h1h2 decays
involving vector mesons.

Our results can be summarized as follows.
The recently measured decay modesB0→K1p2,

B1→K1h8, B0→K0h8, B1→p1K0, andB1→vK1 can
be explained in the factorization framework. The first four
these belong to the QCD-penguin-operator-domina
class-IV decays, which we argue can be reliably calcula
The last belongs to theNc-unstable class-V decays, whic
may receive significant FSIs and/or annihilation contrib
tions. Taken the present theory and data at face value
measured decay modes are consistently accommodated,
some preference forj51/Nc<0.2. Data on the combine
decay modesB→fK* prefer a somewhat higher value fo
j. However, we caution against drawing too quantitat
conclusions at this stage.

A number of decays are tantalizingly close to the pres
experimental upper limits. We think that withO(108) B/B̄
hadrons, available in the next three to five years, a g
fraction of the 76 decay modes worked out here will be m
sured, providing a detailed test of the factorization approa

To further quantify these tests, we have put forward n
merous proposals which involve measurements of the ra
of branching ratios. Carefully selecting the decay modes,
could determine the effective coefficientsa1 , a2 , a4 , a6 ,
anda9 from data onB→h1h2 decays in the future. A con
09400
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sistent determination of these coefficients will greatly help
developing a completely quantitative theory of nonlepto
B decays. Leaving outa2 from this list, which depends sig
nificantly on Nc , we do not expect that the rest will b
greatly modified by nonperturbative effects. It will be diffi
cult to quantitatively determine the smaller penguin coe
cients not listed explicitly.

We have proposed a number of ratios involving the d
caysB→h1h2 , relating the final states in which a pseud
scalar meson is replaced by a vector meson. They will h
in determining the form factors for the various decays co
sidered here. While these relations are derived in the fac
ization approach, perhaps their validity is more general.

The current and impending interest in two-body nonle
tonic decays for the CKM phenomenology is illustrate
arguing that they provide potentially nontrivial constrain
on the CKM parameters. While ultimately not competitiv
to more precise determinations of the CKM parameters fr
B0-B0 mixings and radiative and semileptonicB decays,
they are of current phenomenological interest as the c
straints following from them are already complementary
the ones from the CKM unitarity fits.

Finally, within the factorization framework which give
an adequate account of the present data on decay rates, i
be instructive to study direct and indirectCP violation in all
two-body nonleptonicB decays discussed here. We hope
return to this in a forthcoming publication@75#.
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APPENDIX A: MATRIX ELEMENTS FOR B DECAYS TO TWO PSEUDOSCALAR MESONS

~1! b→d processes:

M ~B̄0→p2p1!52 i
GF

A2
f pF0

B→p~mp
2 !~mB

22mp
2 !$VubVud* a12VtbVtd* @a41a101~a61a8!R1#%, ~A1!

with R152mp
2 /(mb2mu)(mu1md),

M ~B̄0→p0p0!5 i
GF

A2
f pF0

B→p~mp
2 !~mB

22mp
2 !H VubVud* a21VtbVtd* Fa42

1

2
a101

3

2
a72

3

2
a91S a62

1

2
a8DR2G J , ~A2!

with R252mp0
2 /(mb2md)(md1md). After squaring of the matrix element, the decay rate should be divided by 2, fo

symmetric factor of identical particles in the final states:

M ~B2→p2p0!52 i
GF

2
f pF0

B→p~mp
2 !~mB

22mp
2 !H VubVud* ~a11a2!2VtbVtd* 3

3

2
@a91a102a71a8R2#J , ~A3!
9-29
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M ~B2→p2h~8 !!52 i
GF

A2
f pF0

B→h~8 !
~mp

2 !~mB
22mh~8 !

2
!$VubVud* a12VtbVtd* @a41a101~a61a8!R1#%

2 i
GF

A2
f h~8 !

u F0
B→p~mh~8 !

2
!~mB

22mp
2 !H VubVud* a21VcbVcd* a2

f h~8 !
c

f h~8 !
u

2VtbVtd* Fa42
1

2
a1012a322a51

1

2
~a92a7!1S a62

1

2DR3
~8 !S 12

f h~8 !
u

f h~8 !
s D

1~a32a51a92a7!
f h~8 !

c

f h~8 !
u 1S a32a52

1

2
~a92a7! D G J , ~A4!

with R3
(8)5mh(8)

2 /(mb2md)ms . The definitions of the decay constants involvingh andh8 are as follows:

^0uūgmg5uuh~8 !~p!&5 i f h~8 !
u pm , ^0us̄gmg5suh~8 !~p!&5 i f h~8 !

s pm , ^0uc̄gmg5cuh~8 !~p!&5 i f h~8 !
c pm . ~A5!

The quantitiesf h(8)
u and f h(8)

s in the two-angle mixing formalism are

f h8
u

5
f 8

A6
sinu81

f 0

A3
cosu0 , f h8

s
522

f 8

A6
sinu81

f 0

A3
cosu0 , ~A6!

f h
u5

f 8

A6
cosu82

f 0

A3
sinu0 , f h

s 522
f 8

A6
cosu82

f 0

A3
sinu0 . ~A7!

We shall also need the matrix elements of the pseudoscalar densities for which we use the following equations:

^0uūg5uuh&

^0us̄g5suh&
5

f h
u

f h
s

,
^0uūg5uuh8&

^0us̄g5suh8&
5

f h8
u

f h8
s , ~A8!

which differ from the corresponding equations in@76#, which have been sometimes used in the literature. In the approxim
of setting f 85 f 0 andu85u0 , the relations given above, however, agree with the results derived in@77#. The results for the
densitieŝ 0us̄g5suh8& and ^0us̄g5suh& have been derived in@27# which we use here:

^0us̄g5suh8&52 i
~ f h8

s
2 f h8

u
!mh8

2

2ms
, ^0us̄g5suh&52 i

~ f h
s 2 f h

u !mh
2

2ms
. ~A9!

We point out that anomaly contributions have been taken into account in deriving these expressions. They are nu
important. The relevant form factors for theB→h8 andB→h transitions are

F0,1
B→h85F0,1

p S sinu8

A6
1

cosu0

A3
D , F0,1

B→h5F0,1
p S cosu8

A6
2

sinu0

A3
D . ~A10!

The mixing angles that we have used in the numerical calculations areu85222.2°, u0529.1° @71#:
094009-30



EXPERIMENTAL TESTS OF FACTORIZATION IN . . . PHYSICAL REVIEW D58 094009
M ~B̄0→p0h~8 !!52 i
GF

2
f pF0

B→h~Z8 !
~mp

2 !~mB
22mh~8 !

2
!H VubVud* a22VtbVtd* F2a41

1

2
a101S 2a61

1

2
a8DR21

3

2
~a92a7!G J

1 i
GF

2
f h~8 !

u F0
B→p~mh~8 !

2
!~mB

22mp
2 !H VubVud* a21VcbVcd* a2

f h~8 !
c

f h~8 !
u 2VtbVtd*

3Fa412a322a51
1

2
~a92a72a10!

1S a62
1

2
a8DR3

~8 !S 12
f h~8 !

u

f h~8 !
s D 1~a32a51a92a7!

f h~8 !
c

f h~8 !
u 1S a32a52

1

2
~a92a7! D f h~8 !

s

f h~8 !
u G J , ~A11!

M ~B̄0→hh8!52 i
GF

A2
f h

uF0
B→h8~mh

2 !~mB
22mh8

2
!H VubVud* a21VcbVcd* a2

f h
c

f h
u

2VtbVtd* Fa412a322a51
1

2
~a92a72a10!1S a62

1

2
a8DR3S 12

f h
u

f h
s D 1~a32a51a92a7!

f h
c

f h
u

1S a32a52
1

2
~a92a7!D f h

s

f h
uG J 2 i

GF

A2
f h8

u F0
B→h~mh8

2
!~mB

22mh
2 !H VubVud* a21VcbVcd* a2

f h8
c

f h8
u

2VtbVtd* Fa412a322a51
1

2
~a92a72a10!1S a62

1

2
a8DR38S 12

f h8
u

f h8
s D

1~a32a51a92a7!
f h8

c

f h8
u 1S a32a52

1

2
~a92a7!D f h8

s

f h8
u G J , ~A12!

M ~B̄0→h8h8!52 i
2GF

A2
f h8

u F0
B→h8~mh8

2
!~mB

22mh8
2

!H VubVud* a21VcbVcd* a2

f h8
c

f h8
u 2VtbVtd* Fa412a322a51

1

2
~a92a72a10!

1S a62
1

2
a8DR38S 12

f h8
u

f h8
s D 1~a32a51a92a7!

f h8
c

f h8
u 1S a32a52

1

2
~a92a7! D f h8

s

f h8
u G J . ~A13!

The matrix elements forM (B̄0→hh) are the same as the above equation withh8→h.
~2! b→s processes:

M ~B̄0→K2p1!52 i
GF

A2
f KF0

B→p~mK
2 !~mB

22mp
2 !$VubVus* a12VtbVts* @a41a101~a61a8!R4#%, ~A14!

with R452mK
2 /(mb2mu)(mu1ms),

M ~B̄0→K̄0p0!52 i
GF

2
f KF0

B→p~mK
2 !~mB

22mp
2 !VtbVts* Fa42

1

2
a101S a62

1

2
a8DR5G

2 i
GF

2
f pF0

B→K~mp
2 !~mB

22mK
2 !S VubVus* a22VtbVts* 3

3

2
~a92a7! D , ~A15!

with R552mK0
2 /(mb2md)(md1ms),

M ~B2→K2p0!52 i
GF

2
f KF0

B→p~mK
2 !~mB

22mp
2 !$VubVus* a12VtbVts* @a41a101~a61a8!R4#%

2 i
GF

2
f pF0

B→K~mp
2 !~mB

22mK
2 !S VubVus* a22VtbVts* 3

3

2
~a92a7! D , ~A16!
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M ~B2→K2h~8 !!52 i
GF

A2
f KF0

B→h~8 !
~mK

2 !~mB
22mh~8 !

2
!$VubVus* a12VtbVts* @a41a101~a61a8!R4#%

2 i
GF

A2
f h~8 !

u F0
B→K~mh~8 !

2
!~mB

22mK
2 !S VubVus* a21VcbVcs* a2

f h~8 !
c

f h~8 !
u

2VtbVts* H 2a322a51
1

2
~a92a7!2S a62

1

2
a8DR6

~8 !1~a32a51a92a7!
f h~8 !

c

f h~8 !
u

1Fa32a51a41
1

2
~a72a92a10!1S a62

1

2
a8DR6

~8 !G f h~8 !
s

f h~8 !
u J D , ~A17!

with R6
(8)52mh(8)

2 /(mb2ms)(ms1ms),

M ~B̄0→K̄0h~8 !!5 i
GF

A2
f KF0

B→h~8 !
~mK

2 !~mB
22mh~8 !

2
!VtbVts* Fa42

1

2
a101S a62

1

2
a8DR5G

2 i
GF

A2
f h~8 !

u F0
B→K~mh~8 !

2
!~mB

22mK
2 !S VubVus* a21VcbVcs* a2

f h~8 !
c

f h~8 !
u

2VtbVts* H 2a322a51
1

2
~a92a7!2S a62

1

2
a8DR6

~8 !1~a32a51a92a7!
f h~8 !

c

f h~8 !
u

1Fa32a51a41
1

2
~a72a92a10!1S a62

1

2
a8DR6

~8 !G f h~8 !
s

f h~8 !
u J D . ~A18!

~3! Pure penguin processes:

M ~B2→p2K̄0!5 i
GF

A2
f KF0

B→p~mK
2 !~mB

22mp
2 !VtbVts* Fa42

1

2
a101S a62

1

2
a8DR5G , ~A19!

M ~B2→K2K0!5 i
GF

A2
f KF0

B→K~mK0
2

!~mB
22mK

2 !VtbVtd* Fa42
1

2
a101S a62

1

2
a8DR7G , ~A20!

with R752mK0
2 /(mb2ms)(md1ms),

M ~B̄0→K0K̄0!5 i
GF

A2
f KF0

B→K~mK0
2

!~mB
22mK0

2
!VtbVtd* Fa42

1

2
a101S a62

1

2
a8DR7G . ~A21!

APPENDIX B: MATRIX ELEMENTS FOR B DECAYS TO A VECTOR AND A PSEUDOSCALAR MESON

~1! b→d processes:

M ~B̄0→r2p1!5A2GFf rF1
B→p~mr

2!mr~e•pp!$VubVud* a12VtbVtd* @a41a10#%, ~B1!

M ~B̄0→r1p2!5A2GFf pA0
B→r~mp

2 !mr~e•pp!$VubVud* a12VtbVtd* @a41a101~a61a8!Q1#%,
~B2!

with Q1522mp
2 /(mb1mu)(mu1md),
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M ~B̄0→p0r0!52
GF

A2
mr~e•pp!Xf pA0

B→r~mp
2 !H VubVud* a21VtbVtd* Fa42

1

2
a101S a62

1

2
a8DQ21

3

2
~a72a9!G J

1 f rF1
B→p~mr

2!FVubVud* a21VtbVtd* S a42
1

2
a102

3

2
~a71a9! D GC, ~B3!

with Q2522mp0
2 /(mb1md)(md1md),

M ~B2→p2r0!5GFmr~e•pp!H f pA0
B→r~mp

2 !$VubVud* a12VtbVtd* @a41a101~a61a8!Q1#%

1 f rF1
B→p~mr

2!FVubVud* a22VtbVtd* S 2a41
1

2
a101

3

2
~a71a9! D G J , ~B4!

M ~B2→r2p0!5GFmr~e•pp!Xf pA0
B→r~mp

2 !H VubVud* a22VtbVtd* F2a41
1

2
a101S 2a61

1

2
a8DQ21

3

2
~a92a7!G J

1 f rF1
B→p~mr

2!$VubVud* a12VtbVtd* @a41a10#%C, ~B5!

M ~B̄0→p0v!5
GF

A2
mv~e•pp!Xf pA0

B→v~mp
2 !H VubVud* a22VtbVtd* F2a41

1

2
a101S 1

2
a82a6DQ21

3

2
~a92a7!G J

2 f vF1
B→p~mv

2 !H VubVud* a22VtbVtd* Fa412~a31a5!1
1

2
~a71a92a10!G J C. ~B6!

M ~B2→p2v!5GFmv~e•pp!H f pA0
B→v~mp

2 !$VubVud* a12VtbVtd* @a41a101~a61a8!Q1#%

1 f vF1
B→p~mv

2 !FVubVud* a22VtbVtd* S a412~a31a5!1
1

2
~a71a92a10! D G J . ~B7!

M ~B2→r2h~8 !!5A2GFmr~e•ph~8 !!S f rF1
B→h~8 !

~mr
2!$VubVud* a12VtbVtd* @a41a10#%

1 f h~8 !
u A0

B→r~mh~8 !
2

!H VubVud* a21VcbVcd* a2

f h~8 !
c

f h~8 !
u

2VtbVtd* Fa412a322a51
1

2
~a92a72a10!1S a62

1

2
a8DQ3

~8 !S 12
f h~8 !

u

f h~8 !
s D

1~a32a51a92a7!
f h~8 !

c

f h~8 !
u 1S a32a52

1

2
~a92a7! D f h~8 !

s

f h~8 !
u G J D , ~B8!

whereQ3
(8)52mh(8)

2 /ms(mb1md),
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M ~B̄0→r0h~8 !!5GFmr~e•ph~8 !!S f rF1
B→h~8 !

~mr
2!FVubVud* a22VtbVtd* S 2a41

1

2
a101

3

2
~a91a7! D G

2 f h~8 !
u A0

B→r~mh~8 !
2

!H VubVud* a21VcbVcd* a2

f h~8 !
c

f h~8 !
u 2VtbVtd* Fa412a322a5

1
1

2
~a92a72a10!1S a62

1

2
a8DQ3

~8 !S 12
f h~8 !

u

f h~8 !
s D 1~a32a51a92a7!

f h~8 !
c

f h~8 !
u

1S a32a52
1

2
~a92a7! D f h~8 !

s

f h~8 !
u G J D , ~B9!

M ~B̄0→vh~8 !!5GFmv~e•ph~8 !!S f vF1
B→h~8 !

~mv
2 !FVubVud* a22VtbVtd* S a412~a31a5!1

1

2
~a71a92a10! D G

1 f h~8 !
u A0

B→v~mh~8 !
2

!H VubVud* a21VcbVcd* a2

f h~8 !
c

f h~8 !
u 2VtbVtd* Fa412a322a51

1

2
~a92a72a10!

1S a62
1

2
a8DQ3

~8 !S 12
f h~8 !

u

f h~8 !
s D 1~a32a51a92a7!

f h~8 !
c

f h~8 !
u 1S a32a52

1

2
~a92a7! D f h~8 !

s

f h~8 !
u G J D . ~B10!

~2! b→s processes:

M ~B̄0→K* 2p1!5A2GFf K* F1
B→p~mK*

2
!mK* ~e•pp!$VubVus* a12VtbVts* @a41a10#%, ~B11!

M ~B̄0→K2r1!5A2GFf KA0
B→r~mK

2 !mr~e•pK!$VubVus* a12VtbVts* @a41a101~a61a8!Q4#%,
~B12!

with Q4522mK
2 /(mb1mu)(mu1ms),

M ~B̄0→K̄* 0p0!5GFmK* 0~e•pp!F f pA0
B→K* ~mp

2 !S VubVus* a22VtbVts*
3

2
~a92a7! D1 f K* F1

B→p~mK* 0
2

!VtbVts* S a42
1

2
a10D G ,

~B13!

M ~B̄0→K̄0r0!5GFmr~e•pK!H f KA0
B→r~mK0

2
!VtbVts* Fa42

1

2
a101S a62

1

2
a8DQ5G

1 f rF1
B→K~mr

2!S VubVus* a22VtbVts* 3
3

2
~a91a7! D J , ~B14!

with Q5522mK0
2 /(mb1md)(md1ms),

M ~B2→K* 2p0!5GFmK* ~e•pp!F f pA0
B→K* ~mp

2 !S VubVus* a22VtbVts* 3
3

2
~a92a7! D

1 f K* F1
B→p~mK*

2
!$VubVus* a12VtbVts* ~a41a10!%G , ~B15!

M ~B2→K2r0!5GFmr~e•pK!F f KA0
B→r~mK

2 !$VubVus* a12VtbVts* @a41a101~a61a8!Q4#%

1 f rF1
B→K~mr

2!S VubVus* a22VtbVts* 3
3

2
~a91a7! D G , ~B16!
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M ~B̄0→K̄0v!5GFmv~e•pK!X2 f KA0
B→v~mK0

2
!VtbVts* Fa42

1

2
a101S a62

1

2
a8DQ5G

1 f vF1
B→K~mv

2 !H VubVus* a22VtbVts* S 2~a31a5!1
1

2
~a91a7! D J C, ~B17!

M ~B2→K2v!5GFmv~e•pK!$ f KA0
B→v~mK

2 !$VubVus* a12VtbVts* @a41a101~a61a8!Q4#%%

1 f vF1
B→K~mv

2 !FVubVus* a22VtbVts* S 2~a31a5!1
1

2
~a91a7! D G . ~B18!

M ~B2→K* 2h~8 !!5A2GFmK* ~e•pB!F f K* F1
B→h~8 !

~mK
2 !$VubVus* a12VtbVts* ~a41a10!%1 f h~8 !

u A0
B→K* ~mh~8 !

2
!

3S VubVus* a21VcbVcs* a2

f h~8 !
c

f h~8 !
u 2VtbVts* H 2~a32a5!1

1

2
~a92a7!2S a62

1

2
a8DQ6

~8 !

1~a32a51a92a7!
f h~8 !

c

f h~8 !
u 1Fa32a52

1

2
~a92a7!1a42

1

2
a101S a62

1

2
a8DQ6

~8 !G f h~8 !
s

f h~8 !
u J D G ,

~B19!

with Q6
(8)522mh(8)

2 /(mb1ms)(ms1ms),

M ~B̄0→K̄* 0h~8 !!5A2GFmK* ~e•pB!F2 f K* F1
B→h~8 !

~mK
2 !VtbVts* S a42

1

2
a10D

1 f h~8 !
u A0

B→K* ~mh~8 !
2

!S VubVus* a21VcbVcs* a2

f h~8 !
c

f h~8 !
u

2VtbVts* H 2~a32a5!1
1

2
~a92a7!2S a62

1

2
a8DQ6

~8 !1~a32a51a92a7!
f h~8 !

c

f h~8 !
u

1Fa32a52
1

2
~a92a7!1a42

1

2
a101S a62

1

2
a8DQ6

~8 !G f h~8 !
s

f h~8 !
u J D G . ~B20!

~3! Pure penguin processes:

M ~B2→p2K̄* 0!52A2GFf K* F1
B→p~mK*

2
!mK* ~e•pp!VtbVts* S a42

1

2
a10D , ~B21!

M ~B2→r2K̄0!52A2GFf KA0
B→r~mK0

2
!mr~e•pK!VtbVts* Xa42

1

2
a101S a62

1

2
a8DQ5C,

~B22!

M ~B2→K2K* 0!5M ~B̄0→K̄0K* 0!52A2GFf K* F1
B→K~mK*

2
!mK* ~e•pK!VtbVtd* S a42

1

2
a10D , ~B23!

M ~B2→K* 2K0!5M ~B̄0→K̄* 0K0!52A2GFf KA0
B→K* ~mK0

2
!mK* ~e•pK!VtbVtd* Fa42

1

2
a101S a62

1

2
a8DQ7G ,

~B24!

with Q7522mK0
2 /(mb1ms)(md1ms).
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M ~B̄0→p0f!5GFf fF1
B→p~mf

2 !mf~e•pp!VtbVtd* S a31a52
1

2
~a71a9! D , ~B25!

M ~B2→p2f!52A2M ~B̄0→p0f!, ~B26!

M ~B̄0→h~8 !f!52A2GFf fF1
B→h~8 !

~mf
2 !mf~e•ph

~8 !!VtbVtd* H a31a52
1

2
~a71a9!J , ~B27!

M ~B2→K2f!5M ~B̄0→K̄0f!52A2GFf fF1
B→K~mf

2 !mf~e•pK!VtbVts* S a31a41a52
1

2
~a71a91a10! D . ~B28!

APPENDIX C: MATRIX ELEMENTS FOR B DECAYS TO TWO VECTOR MESONS

~1! b→d processes:

M ~B̄0→r2r1!52 i
GF

A2
f rmrS ~e1•e2!~mB1mr!A1

B→r~mr
2!2~e1•pB!~e2•pB!

2A2
B→r~mr

2!

~mB1mr!

2 i emnabe2
m e1

n pB
ap1

b
2VB→r~mr

2!

~mB1mr!
D $VubVud* a12VtbVtd* @a41a10#%, ~C1!

M ~B̄0→r0r0!5 i
GF

A2
f rmrS ~e1•e2!~mB1mr!A1

B→r~mr
2!2~e1•pB!~e2•pB!

2A2
B→r~mr

2!

~mB1mr!

2 i emnabe1
me2

npB
ap2

b
2VB→r~mr

2!

~mB1mr!
D FVubVud* a21VtbVtd* S a42

1

2
a102

3

2
a72

3

2
a9D G , ~C2!

M ~B2→r2r0!52 i
GF

2
f rmrS ~e0•e2!~mB1mr!A1

B→r~mr
2!

2~e0•pB!~e2•pB!
2A2

B→r~mr
2!

~mB1mr!
2 i emnabe2

m e0
npB

ap0
b

2VB→r~mr
2!

~mB1mr!
D

3S VubVud* ~a11a2!2VtbVtd* 3
3

2
@a71a91a10# D , ~C3!

M ~B̄0→vv!52 i
GF

A2
f vmvH ~e1•e2!~mB1mv!A1

B→v~mv
2 !2~e1•pB!~e2•pB!

2A2
B→v~mv

2 !

~mB1mv!

2 i emnabe1
me2

npB
ap2

b
2VB→v~mv

2 !

~mB1mv! J FVubVud* a22VtbVtd* S a412~a31a5!1
1

2
~a71a92a10! D G , ~C4!

M ~B̄0→r0v!52 i
GF

2A2
f rmrS ~e0•ev!~mB1mv!A1

B→v~mr
2!2~e0•pB!~ev•pB!

2A2
B→v~mr

2!

~mB1mv!

2 i emnabe0
mev

n pB
apv

b
2VB→v~mr

2!

~mB1mv!
D FVubVud* a22VtbVtd* S 2a41

1

2
a101

3

2
~a71a9! D G

1 i
GF

2A2
f vmvS ~e0•ev!~mB1mr!A1

B→r~mv
2 !2~e0•pB!~ev•pB!

2A2
B→r~mv

2 !

~mB1mr!

2 i emnabev
me0

npB
ap2

b
2VB→r~mv

2 !

~mB1mr!
D S VubVud* a22VtbVtd* @a412~a31a5!#

1
1

2
@a71a92a10# D , ~C5!
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M ~B2→r2v!52 i
GF

2
f rmrS ~e0•e2!~mB1mv!A1

B→v~mr
2!

2~e0•pB!~e2•pB!
2A2

B→v~mr
2!

~mB1mv!
2 i emnabe2

m e0
npB

apv
b

2VB→v~mr
2!

~mB1mv!
D

3$VubVud* a12VtbVtd* @a41a10#%2 i
GF

2
f vmvS ~e0•e2!~mB1mr!A1

B→r~mv
2 !

2~e0•pB!~e2•pB!
2A2

B→r~mv
2 !

~mB1mr!
2 i emnabe0

me2
n pB

ap2
b

2VB→r~mv
2 !

~mB1mr!
D

3FVubVud* a22VtbVtd* S a412~a31a5!1
1

2
~a71a92a10! D G . ~C6!

~2! b→s processes:

M ~B̄0→K* 2r1!52 i
GF

A2
f K* mK* S ~e1•e2!~mB1mr!A1

B→r~mK*
2

!2~e1•pB!~e2•pB!
2A2

B→r~mK*
2

!

~mB1mr!

2 i emnabe2
m e1

n pB
ap1

b
2VB→r~mK*

2
!

~mB1mr!
D $VubVus* a12VtbVts* @a41a10#%, ~C7!

M ~B̄0→K̄* 0r0!52 i
GF

2
f rmrS ~er•eK!~mB1mK* !A1

B→K* ~mr
2!2~er•pB!~eK•pB!

2A2
B→K* ~mr

2!

~mB1mK* !

2 i emnaber
meK

n pB
apK

b
2VB→K* ~mr

2!

~mB1mK* !
D S VubVus* a22VtbVts* 3

3

2
~a91a7! D

2 i
GF

2
f K* mK* S ~er•eK!~mB1mr!A1

B→r~mK*
2

!2~er•pB!~eK•pB!
2A2

B→r~mK*
2

!

~mB1mr!

2 i emnabeK
mer

npB
apr

b
2VB→r~mK*

2
!

~mB1mr!
DVtbVts* S a42

1

2
a10D , ~C8!

M ~B2→K* 2r0!52 i
GF

2
f rmrS ~e0•e2!~mB1mK* !A1

B→K* ~mr
2!2~e0•pB!~e2•pB!

2A2
B→K* ~mr

2!

~mB1mK* !

2 i emnabe0
me2

n pB
ap2

b
2VB→K* ~mr

2!

~mB1mK* !
D S VubVus* a22VtbVts* 3

3

2
~a91a7! D

2 i
GF

2
f K* mK* S ~e0•e2!~mB1mr!A1

B→r~mK*
2

!2~e0•pB!~e2•pB!
2A2

B→r~mK*
2

!

~mB1mr!

2 i emnabe2
m e0

npB
ap0

b
2VB→r~mK*

2
!

~mB1mr!
D $VubVus* a12VtbVts* @a41a10#%, ~C9!
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M ~B̄0→K̄* 0v!52 i
GF

2
f K* mK* 0S ~e0•ev!~mB1mv!A1

B→v~mK* 0
2

!2~e0•pB!~ev•pB!
2A2

B→v~mK*
2

!

~mB1mv!

2 i emnabe0
mev

n pB
ap0

b
2VB→v~mK*

2
!
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