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Within QED, we examine several issues related to constructing a parton-model-based QCD transport theory.
We rewrite the QED analog of the parton model, the WaikeaWilliams approximation, entirely in terms of
phase-space quantities and we study the phase-space photon and electron densities created by a classical point
charge. We find that the densities take a distinctive “source-propagator” form. This form does not arise in a
conventional derivation of the semiclassical transport equations because of the overuse of the gradient approxi-
mation. We do not apply the gradient approximation and so derive the phase-space analog of the generalized
fluctuation-dissipation theorem. Together, this theorem and the expression for the phase-space particle self-
energies give a set of coupled phase-space evolution equations. We illustrate how these evolution equations
can be used perturbatively or to derive semiclassical transport equations. Our work relies on phase-space
propagators and sources, so we describe them in detail when calculating the photon and electron phase-space
densities. We use these tools to discuss the shape of a nucleon’s partor SlthEb-282198)08019-9

PACS numbsg(s): 24.10.Cn, 12.38.Mh, 25.75q

[. INTRODUCTION footing. We have not done this for QCD, but we have made
several steps toward doing the analogous thing in QED. Our
Primary hadronic collisions in a typical nuclear reaction attechniques also allow for a simple connection with the QCD
the BNL Relativistic Heavy lon CollidefRHIC) will occur  parton model. This paper consists of three parts, each one
at \/s~200A GeV. Such a collision is so violent that the using QED and the partons of QEfe. photons and elec-
partons, i.e. the quarks and gluons, comprising the hadrortsong to describe different aspects of the problem of con-
will become deconfined. With hadronic densities exceedingtructing a QCD-based partonic transport theory. In the end,
the inverse volume of a typical hadron, the partons will re-we use our accumulated insight to discuss the shape of the
main deconfined and are expected to form a quark-gluoparton cloud of a nucleon.
plasma(QGP [1-3]. Since transport theory descriptions of  Before outlining the paper, we must say a few words
nuclear collisions have proven successful at lower energiegbout our formalism. In the first two sections, we use Feyn-
it is natural to attempt to describe the time evolution of theman’s formulation of perturbation theory. In Feynman per-
QGP using a transport model derived from QCD. A transporturbation theory, one specifies the initial and final states of a
model would describe the time evolution of the partonreaction and calculates the probability of going from the ini-
phase-spacedensities throughout the collision. The proce- tial to final state. Thus, it is the appropriate tool for calculat-
dures for deriving semiclassical transport equations usingng observables for simple processssch as exclusive cross
time-ordered nonequilibrium methods are well developedsectiong. For this reason, we use Feynman perturbation
[5-9]. In fact, there have been several attempts at constructheory to illustrate how the phase-space sources and propa-
ing a QCD transport model based on these procedui®@s  gators work and to calculate the reaction probabilities for
12], but each of them have their problems. Chief amongsome simple processes. We show that, in Feynman perturba-
these problems is that one either treats the soft long-rang@n theory, the particle phase-space densities have a
phenomenain the case 0f12]) or one treats the hard short- “source-propagator” form. Namely, the densities are a con-
distance phenomer(éin the case of10]), but never both in  volution of the probability to create a particléthe source
the same framework. Normally when one discusses transwith the probability to propagate from the creation point to
port, one assumes a separation between the interaction attte observation poir(the propagator We are not the first to
the kinetic length scales. This assumption allows one to apeonsider writing transition probabilities in phase-space:
ply the gradient approximation, simplifying the form of Remler[13] discusses simulating many-particle systems in
transport equations. However, the trade-off of making thigphase-space. Remler’'s work is not immediately applicable to
approximation is that one throws out the structure of thepartons because it only applies to particles with large mass.
densities on one length scale in favor of the structure at anor more complicated processes, i.e. when we only know the
other length scale. If one relaxes this assumption then oniitial conditions, we must resort to time-ordered nonequilib-
may be able to treaboth hard and soft modes on equal rium methods. In the last two sections we use time-ordered

*Email address: dbrown@nscl.msu.edu 2Strictly speaking, neither the phase-space sources nor propaga-

TEmail address: danielewicz@nscl.msu.edu tors are probabilities as they can be negative. As with any other

!By phase-space, we mean in space, time, momentum and enerfj¥igner transformed quantities, they must be smoothed over small
(or invariant masgssimultaneously. phase-space volumes to render them positive definite.
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methods to derive the phase-space evolution equations, tee can discuss a simple case where the “source-propagator”
derive the generalized fluctuation-dissipation theorem and tpicture breaks down. This is the case of two virtual photons
discuss the parton distributions of a nucleon. The generalizecblliding to produce an electron positron pair. The “source-
fluctuation-dissipation theorem shows that, in time-orderegropagator” picture breaks down because the photon fields
field theory, the particle densities also have a ‘“source-interfere on the length scale of the electron-positron creation
propagator” form. It should come as no surprise that we findregion. Nevertheless, discussing the process in phase-space
similar forms for the particle phase-space densities sincgives us insight into the reaction dynamics. Finally, we com-
both formalisms are equivalent descriptions of elementarynent on the implications of the results from this section for
processes. For simple tree-type processes in the energ@CD parton densities.

momentum representation, the moduli of the Feynman and In Feynman perturbation theory, both the photon and
retarded(or advancejl single particle propagators are the electron phase-space densities have a “source-propagator”
same, so one can rewrite the reaction probability in terms oform. This form does not usually arise when one uses time-
either[17]. In fact, both sets of Feynman rules are specialordered nonequilibrium methods because one usually derives
cases of the contour Feynman rules in Appendix A. transport theory only after making the gradient approxima-

In the QCD parton model, a cross section is a folding oftion. The gradient approximation amounts to ignoring small-
the parton distribution functiofPDP with the cross section scale structure of the particle phase-space densities, resulting
for the partonic subprocess. The QED analog of the partoin much simpler collision integrals,9]. In Sec. IV, we fol-
model is the Weizszker-Williams approximation 18,19  low essentially the standard semiclassical transport equation
since a cross section in the Weizkar-Williams approxima-  derivation, but never make the gradient approximation. Thus,
tion is a folding of the effective photon distribution with the we arrive at the generalized fluctuation-dissipation theorem
cross section for the photon absorption subpro¢#4s1g.  which codifies the “source-propagator” picture of the par-
In Sec. Il, we write the Weizgker-Williams approximation ticle densities. Crucial inputs to the theorem are the phase-
in phase-space in several steps. First, we write the reactiospace sources; we will discuss how to calculate them. With
rate density for our “partonic subprocess,” namely the reacthe sources and the generalized fluctuation-dissipation theo-
tion rate for absorbing a free photon. By writing this rate inrem, we derive a set of phase-space evolution equations.
phase-space, we also illustrate how we do our momentumFhese evolution equations describe the evolution of the sys-
space to phase-space conversions. Next, we write the rea®m in phase-space from the distant past to the present, in-
tion probability for photon exchange in phase-space. Comeluding all “partonic” splittings, recombinations and scatter-
paring the full reaction probability with the reaction rate ings. Furthermore, we can expand these evolution equations
density for absorbing a photon, we identify the effectiveto get the lowest order contributions to the particle densities
phase-space photon distribution. This photon distribution i®r we can differentiate the evolution equations to get trans-
the effective photon number density in phase-space and jiort equations.
has the form of a phase-space source folded with a phase- As a practical application of this study, in Sec. V we
space propagator. We calculate the photon number densigxamine the coordinate space structure of the parton cloud of
surrounding a classical point charge and explain how th@ nucleon. In principle, one should Wigner transform the
photon’s phase-space propagator and phase-space sougg&rk or gluon wavefunctions of a nucleon. Since we do not
work. Finally, we comment on the implications of this sec- know the quark or gluon wavefunctions of a nucleon, such a
tion for the QCD parton model. We will find that we under- specification is not possible and we must result to model-
stand how partons propagate and have an idea how to makeiilding. One might envision constructing a model phase-
the gluon distribution gauge invariant, but since our photorspace parton density of a nucleon by multiplying the momen-
source is point-like we do not learn anything about QCDtum space densitgthe parton distribution functionand the
parton sources. coordinate space density of the partd@4]. This approxi-

To find the parton distribution functions, one can solvemation neglects correlations between the momentum and po-
the parton evolution equations or equivalently one can sursition in the parton density which are present in the phase-
up a class of parton ladder diagrams. The simplest partospace densitf22,23. One might insert these correlations
ladder has one rung corresponding to a single partonic splitising uncertainty principle based argumefi9,21]. This
ting. In Sec. Ill, we study the QED analog of this process: ahas intuitive appeal, but such a prescriptiomdshocat best.
virtual photon splitting into a virtual electron and on-shell We can approach this problem in a more systematic manner
positron. We start our analysis by generalizing the phasedsing some physical insight from the momentum-space
space Weizszker-Williams approximation to include elec- renormalization-group improved parton model. In this
trons and writing down the effective electron distribution. model, one calculates the parton densities by evolving the
This effective electron distribution takes the “source- densities in virtuality Q2) and in longitudinal momentum
propagator” form. While this “partonic” splitting leads to a fraction (x). This evolution is equivalent to evaluating a cer-
complicated form of the electron source, the shape of théain class of ladder diagrams and these diagrams can be re-
source is mostly determined by the underlying phoftire  cast in the form of the phase-space generalized fluctuation-
“parent parton’) distribution. We calculate the electron dis- dissipation theorem. Thus, we can discuss the parton phase-
tribution explicitly for a classical point charge and discussspace densities of a hadron in the la@®imit or in the
how the electron propagates from the source to the observamallx limit. We argue that neither larg®? partons nor
tion point. We have another reason for studying electronssmallx partons extend beyond the nucleon bag in the trans-
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density of photons. Next, we calculate the phase-space pho-
ton density surrounding a classical point charge. This calcu-
lation will highlight how the photon source and the propaga-
tor function in phase-space. Finally, we conclude this section
with a brief discussion of the implications for a phase-space
version of the QCD parton model.

In all of our calculations, we find the reaction probability.
Mapping our results to cross sections is trivial and is outlined
in Appendix B. Since we are finding reaction probabilities,
we work in Feynman perturbation theory.

A. Photon-current B reaction rate

) ) We start this subsection by finding the photon-current B
FIG. 1. (a) Cut diagram for current A to exchange a photon with reaction fateWyBHBI(X,CI)- This reaction rate plays the role
current B.(b) Cut diagram for current B to absorb a free photon. In of the “partonic” subprocess cross section in a QCD parton
both figures, the photon/current B interaction is unspecified and i?nodel calculation. Our derivation demonstrates how to re-
represented with a blob. write the reaction probability completely in terms of phase-
o space quantities. The high point in this calculation occurs in
verse direction. However, we also argue that the lapde- Eg. (2.1 when we identify the Wigner transforms of B's
partons extend out an additiodic/xP, from the bag sur-  cyrrent and of the photon field. This type of identification
face in the longitudinal direction. This is in line with what |ets us rewrite the reaction probabilities in phase-space.
others have estimat¢@0,21]. Furthermore, we estimate that T fing W5 _g:(x,q) We write the S-matrix for the pro-
the smallx partons extend at least an additioal\—q°  cess in Fig. b):
from the bag so the smal-parton cloud is substantially
larger than the Iarg(a}2 cloud. S,e_8
Throughout this paper we use natural units=c=1)
when convenient, but we insert factors fof whenever di- :f d4X<O|AM(X)|a')\><B’|j’u(x)|B>
rectly comparing a length to an inverse momentum. The sig-
nature of the metric tensor {s-,—,—,—).

d*k . - ]
= [ dx goa e K OIAOIGANB K B).
Il. THE PHASE-SPACE PHOTON DENSITY

One calculates a QCD parton-model cross-section bylere <0|A“(x)|ﬁ,)\)=\/477/2|q0|Ve“()\)e'q'X is the free
folding a parton distribution functioGPDF) with the cross photon wave functionwith g®>=0) and j,. is the current
section for the partonic subprocess. One follows a similaoperator for the probe particle B. We leave both the initial
procedure for calculating the cross-section in theand final states oB unspecified so the final state may be a
Weizsaker-Williams approximatioril4—16: one folds the single particle or several particlg¢as in Fig. 1b)].
effective photon distribution with the cross section for ab- We now square the S-matrix and average over photon
sorbing the photorishown in Fig. 1b)] to obtain the full  polarizations:
cross sectiofishown in Fig. 1a)]. We recast the Weizshker-
Williams approximation in phase-space and, in the process%,SyB_>B/|2
define the phase-space effective photon distribution. This

phase-space photon density has the form of a phase-space 4 ds d* d%’ kKX 1

source convoluted with a phase-space propagator. = f dxd™x (2m)?* (2m)* e 2
Let us outline this section. First we will compute the

photon-current B reaction rate in phase-space. This is simply > - . vror

the probability for the probe particle, B, to interact with a xé (OlA*(0la, M) {(a, A A*(x")|0)

free photon. This calculation is simple so we use it to illus-

trate how we rewrite quantities in phase-space. Second, we X(B'j ,(k)|B)(BIjT(k")|B").

will calculate the reaction probability for one-photon ex-

change. In the Weizsher-Williams approximation, the re- On writing the coordinates and momenta in terms of the
action rate is the effective photon distribution folded with therelative and average quantiti¢ise. k=k—k’ and K= 1(k
photon-current B reaction rate. So, we can identify the+k’)], and taking advantage of the momentum conserving

phase-space effective photon distribution. The effective phodelta functions in the current matrix E|emed373ﬂsr|2 be-
ton distribution is a gauge-independent effective numbegomes

d*Kk  d%k .~ =

|SyB_>B'|2=J'd4Xd4)~((ZT)4(ZT)4e i(K-X+k-X)

3The nucleon has 4-momentuR), = (Py,P_ ,5T).
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1 -~ - DS ,(x,y){B'|j®"(y)|B). 2.4
M Taking the absolute square of this S-matrix and rewriting it
X(ﬁ | A* V(X_;(/2)|O> in terms of Wigner transformed currents and propagators, we
' find
X (B']j u(K+K/2)[B)(BIj (K —k/2)[B"). dq
(2.2 |SABHA’B’|2=J dtyd?x 2n)" JA"(y,Q9)
There are two Wigner transfolrms in -thIS equation: the % D;,,IurVr(y_XaQ)\]g,W(X,Q). 25
Wigner transform of the photon fieldhe x integra) and the
Wigner transform of B’s currentthe'k integra). Here, the Wigner transform of the photon propagator is
Now we rewrite the S-matrix in terms of the phase-space
guantities and define the reaction rate density: D;VM'V'(X'Q)ZJ dl)“(ei;~qDZV(X+')‘Z/2)
d*k =
2__ 4 ~
IS,5-5] —f d"x 2m Vag| )\21 e (N)ey(N) XD;*,V,(X—X/Z)
X (2m)48%(q—K) IE(x,K) =(47)%9,,9,7, G(x,0)

_ 4 and G%(x,q) is the Wigner transform of the scalar propaga-
_J’ d>W,e_p/(X,Q). (22 {or. We outline the derivation oB(x,q) in Appendix G.
We discuss the Wigner transforms of the propagator and cur-
We also have defined the Wigner transform of the current: rent when we study the photon and electron distributions of a
point charge.

v B d“q R Equation(2.5) has an obvious physical meanin@) cur-
Jg (x,q)=f 2m? € (B'[i*(a+a/2)[B) rent A makes a photon with momentugrat space-time point
y, (2) the photon propagates frognto x with momenturmq
X (B|j™(q—q/2)|B"). (2.3 and(3) current B absorbs the photon at space-time pwint

The spatial structure of the integrand(@f5 can come from
Since B’s Wigner current is proportional to the reaction ratejocalizing eitherA or B.
it is natural to give them the same physical interpretation: as Now we take a detour and calculate the Wigner transform
a “probability” density;" for absorbing a free photon with of the vector potential of the curreAt This detour will lead
momentuny at space-time point. Now, it may not be clear us to a form of the reaction probability amenable to a parton
where the spatial structure of the reaction rate comes fronmodel-like interpretation. In terms of the current density and
especially since the incident photon is completely delocalpropagator, the vector potentiaF igl5]
ized in spacdit is in a momentum eigenstatelo give the
reaction rate spatial structure, we must localize either the Y
initial or final states oB with a wavepacket. AM(X):J d*y Dy, (x=Y)IR(Y). (2.6

B. Photon exchange The Wigner transform of this is

In this section, we write the reaction rate for one-photon
exchangdsee Fig. 1a)] in phase-space. We do it two differ-
ent ways: in terms of the Wigner transforms of the currents
A and B and the photon propagator and in terms of the :f 4y, ' v’ c _

Wigner transform of the photon vector potential. The first dyJa (y,q)DM,V,W(X y.a)- 27

form of the reaction rate has a clear physical interpretation in _ _ .

However, it is the second form which can be brought into thePropagator” form. Currena (the photon sourgecreates the

A, (%,Q)= J d*xe™ A, (X+X/2) A% (x—X/2)

form of a “partonic” cross-section. photon with momentuny at space-time poiny and the
The S-matrix for Fig. (a) is propagator takes the photon froyto x. Let us put this in
Eq' (2'5)1
SABHA’B’ZJ d*xdy(A'|jA#(x)|A) ) 4 d*q v
|Sag—ap|°=| d XWAW(X,CI)JEL (x,q). (2.9

“Because the Wigner current is the Wigner transform of a quan-
tum object, it may not be positive definif22,23 so it cannot be SJackson actually uses the retarded propagator to define the vector
strictly interpreted as a probability. potential because he discusses classical fields.

094003-4



PARTONS IN PHASE SPACE PHYSICAL REVIEW [58 094003

Stated this way, the spatial structure of the integrand of this = Since e#(\)€};(\") =8y, , it is simple to find the sepa-
equation comes from either localizirgy or from the spatial rate currents ir(2.9) in terms ofJ4”(x,q):
structure in the Wigner transform of the photon vector po-
tential. Jscalar(XvQ):GM(O)ft(O)‘]gV(XaQ)
Equation(2.8) is close to the form of a cross section in the
QCD parton model because currdhtis proportional to the and
photon-current B reaction ratas discussed in the previous 1
subsectiop and the_vector potential is pr_oportlonal_ to the Jtrans(X,OI)=§ 2 €, (N) e (M)IE"(X,).
phase-space effective photon dendias discussed in the A=

next subsectior:
n The longitudinal pieceJong(X,q), vanishes due to current

C. The Weizszker-Williams approximation conservation.

The effective photon distribution we derive here is the 2. The effective photon distribution
phase-space analog of Weizkar-Wiliams® effective pho- If we insert(2.9) into Eq.(2.5), the reaction probability is
ton distribution. Thus, it has the interpretation as the numbeg sum of two terms:
of photons with virtualityq® in a unit cell of phase-space.

One could use it to calculate the reaction probability in Fig. d“q

1(a) by folding it with the photon-target reaction rate |SAB—>A/B/|2:f d*x 2m) AL(X,a)
W,s_g(X,0). In QCD parton model terms, we take the

parton distribution functionthe effective photon distribu-

tion) and fold it with the partonic subproces¢the photon- X)Z; €"(N) € "(N)Jtrans(X,Q)
target reaction rajeto get the reaction probability for the B

entire process. .. dig
We will derive the WeizSeker-Williams approximation +f d*x 2m)° AL(X,9)
in several stages. First we decompose B’s Wigner current
into photon polarization vectors, allowing us to rewrite X e*(0)e* "(0)Igcaad X,q). (2.10

W,g_p/(X,q) in terms ofJg”(x,q). Knowing this, we iden- ) )
tify the effective photon distribution. In the final subsection The two terms in(2.10 describe transverse and scalar pho-

we will discuss the gauge independence of our effective pholon €xchange between currents A and B, respectively.

ton distribution. Noting that if Jy,ans(X,q) has a weakg? dependencé,
thenJians(X,q) * W, g_g/(X,0). In other wordsJ;rans(X,0)
1. Current decomposition is proportional to the reaction rate for the “partonic” sub-
. Therefore, the t t of b it-
If the photon probinglg*(x,q) is sufficiently delocalized {:)E:ﬁcaesss erefore, the transverse terot() can be wri
in spaceli.e. d,A,,(X,0)<d,A,,(X,q)], the momentum-
space cutting rules tell us that we can expafd(x,q) in 5 4 Vdiq dg?
terms of the photon polarization vectd4]: |Sag—are|®= yp= f d*x @) 27
JB"(x,9) dn,(x,q)
><d xd qd WyBHB’(qu)y (21])
:xzt €“(N) € "(M)Jyrans(X,0) provided we identify the transverse effective photon distri-
bution a8
4 €(0) € (0)gcatal KD+ - g-Jng(, D) dn,(x,q)
lark X, —z Y Q). ,
scalar' q ong Y q _ Z+ 6'“()\)6* V()\)A#V(X,q)_ (212)

3y A3 2

2.9 d°xd*qdq” ==

This effective photon distribution is the spin summed photon
Wigner function. In other words, it is the phase-space num-
ber density of photons at time, per unitq?. This effective
photon distribution is the QED analog of the phase-space
parton distribution function. With Eq2.12, we have gen-
eralized the Weizsker-Williams method to phase-space.

Here, €,(0) is the scalafi.e. time-like polarization vector:
€,(0)=pg,—0,q-ps/q?, wherepg is the momentum of B.
The transverse polarization vectoes,(*), span the hyper-
plane perpendicular te,(0) andq, . Now, if A,,(X,q) is
not delocalized, then E¢2.9) should be modified to include
gradient§ in x. However, if we were to include those gradi-
ents here, we may not be able to m#(x,q) to W,g_.g' .

"The reader should note here that the reaction rates are for photons
with any g2, while in Sec. Il A the reaction rate was for on-shell

These gradients come from Wigner transforming terms proporphotons only.
tional to the relative photon momentum. 8We can make a similar identification with the scalar term.
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While classical derivations of the Weizd@r-Williams

method begin with finding the photon power spectra from the =P uvapA7(X,0) (214
Poynting flux[15,14], a quantum mechanical derivation fol- where

lows along the lines of what we do hdr24,16. Were we to

perform the spatial integrals i2.10, we would find that the . (qzid2),(q=id2),

exponentials in the Wigner transforms conspire to make sev- = Q= id/2)? . (2.15

eral delta functions. The resulting delta function integrations

are trivial and we would quickly recover the momentum- r;s projector must be understood as a series,jmnda,, ,

space result.' . . so can only really be wused whend, A, (X,Q)
Now, multiplying the photon phase-space density by the_, A (y 4y Now, the statement of current conservation

projection tensoZ), _ . e#(\)e*"(\) in (2.12 doesnotren- ¢ . ‘; gﬂé}ne’raU (x q,) is

der the photon distribution gauge invariant, unlike in mo- pyRe

mentum spacé24], because the photon distribution is not (A=id/2)M,,(x,q)=(q*1/2)"3,,,(x,q)=0.

completely delocalized. WheA,,,(x,q) undergoes a gauge (2.16

transformation, terms proportional wp, are removed but _

terms proportional t@/Jdx* are not. A gauge invariant vir- SO, as expected, current conservation ensures that only the

tual photon distribution is introduced below. This gauge in-gauge independent part &f,,(x,q) appears in the reaction

variant distribution reduces .12 whenA ,,(x,q) is suf- ~ probability.
ficiently delocalized. With Ajﬁ(x,q) in hand, we can postulate the gauge in-

variant photon distribution:
3. Gauge issues

dn,(x,q) > M VAL (). (217

Parton densities are supposed to be gauge invariant but — =
pp gaug d3xd3qdq2 .

our effective photon distribution is gauge dependent. In this
section, we discuss howv,,(x,q) transforms under a change
of gauge, determine the gauge invariant partAgf,(x,q),
and state how the gauge invariant parof,(x,q) is related
to the effective photon phase-space distribution.

In the energy-momentum representation, gauge tran
forming the photon field adds an arbitrary function in the
direction of the photon momentum to the photon vector po- pﬂmmm(gw_ q“g”)(gw_ q”?”)
tential: A,(q)—A,(a)+aq,f(q). Because components of a q
A,(q) in the direction ofq, are gauge dependent, we can
write A,(q) as a sum of the gauge independent and depen- _
dent parts:

This reduces tq2.12 if the photon field varies slowly in
space [i.e. we neglect the gradientsd,A,,(X,q)
<q,A,,(x,q)], as we now show. Neglecting the derivatives
é'rj (2.15), the projection tensor if2.14) reduces to

> eﬂ<x>ez(x>)

A==%,0

A=A, (a)+A,(q) y

> ev()\’)e:()\’)). (2.18
N==0
whereA‘L(q) = (quqy/qz)AV(q) is the gauge dependent part
of A,(q) andAﬁ(q)zAM(q)—AL(q) is the gauge indepen- Since the polarization vectors form a complete basis in
dent part. Wigner transforming the photon field gives us aMinkowski space, i.e. EFi,OeM()\)e,’j()\)+(qﬂq,,/q2)
term that is gauge independent and terms which are gaugeg,,. Putting (2.18 in Eq. (2.17), we arrive back at the
dependent: effective photon distribution ii2.12).

The tactic of projecting out the gauge dependent parts of

d“q i the photon distribution works mainly because of the simple
Aur(X,0) = (2m)* e form of the U1) gauge transformation. Nevertheless, a vari-
~ ~ ant of this technique may possibly be applied to the gluon
X[AL(q+a/2)+A(q+a/2)] field.
X[AL(q—a/2)+A,(q-a/2)]* D. Photon phase-space density of classical point charge
=A,, (x,q)+A,,(x,q) We now calculate the density for the simple case of a
n " classical point charge radiating photons. If we localize the
TALXA)TALXQ). (213 source’s wavepacket and view it on a length scale larger than

_ ) o its localization scale, we can treat its density as a delta func-
The only gauge independent pieceAgf,(x,q) is A, (X,4)-  tion. Thus, the shape of the photon distribution is determined
We do the integrals inf2.13 and identify the tensor that the photon propagation and we can use this calculation to

projects off the gauge dependent partAgf,(x,q): illustrate how partons propagate in phase-space. We explain
i N B that, despite our use of Feynman perturbation theory, we can
AL (X @) = (9= N0 (9,,— N, )ATP(X,0) describe photon propagation via the Wigner transform of the

094003-6



PARTONS IN PHASE SPACE PHYSICAL REVIEW B8 094003

retarded (time-orderedl propagator. As such, the photon the retarded propagator here because it leads to a more trans-
propagates a distance of rough®y~1//q, | in the direction  parent interpretation of the particle densities. We discuss the
parallel to the photon 3-momentum am~1/\/|EZT inthe  Feynman propagator in our discussion of the electron distri-
direction perpendicular to the photon 3-momentum. Webution of the point charge.

demonstrate this behavior by plotting the coordinate-space The Wigner transform of the retarded propagator gives
distribution of photons witly?< g3 (making the photons col- the weight for a particle with four-momentug), to propa-
linear with the sourceand withq?~qg3. In Appendix E we  9ate across the space-time separafion,=x,—y, . In the

examine the additional case of a static point chaiige v Lo+rentz gaugg, the ) retarded  photon  propagator,
=0). This case is not relevant for QCD partons since a QCDP ury’»(A%,0), is proportional to the retarded scalar propa-

> + .
parton source must be taken in the lirhit—c. gatorG™(Ax,q):

1. Classical current D;,,,Lryr(AX,Q):guugﬂ/u/GJr(AXyQ)- (2.20

For our source current, we assume the source particle’.?h tarded | tor i
wavepacket is localized on the length scales that our photons € refarded scalar propagator 1S
can resolve so we can replace its current with the current of )

a point particle(\we discuss when this replacement is valid in G (Ax.q)= iﬁ(Ax ) 0(AX?) H(AZ)SIH(Z\/F)
Appendix D. The source particle follows a classical trajec- ' iy 0 W2

tory x,, = Xqv , with four-velocityv,, = (1, ,0r), v ~c and

y=1/(1—v?%)>1. Ignoring the recoil caused by photon and it is derived in Appendix G. In this expression, the Lor-

emission, the current of the point chargd 1] entz invariant\? is A= (Ax- q)2— g2Ax>.
Let us now estimate how far the retarded propagator can
jﬂ(x)zevﬂbﬁ(x—xov). send a particle with the momentqu:(qo,qL,ﬁ). First,

the retarded propagator has two theta functions, one that en-
The Wigner transform of this is the classical Wigner current:forces causality and one that forces propagation inside the
light cone. The rest of the interesting features of the propa-
gator are tied up in the dependence of. Since
G*(Ax,q)= 6O(A?)sin(yA?)/\?, the particle does not
- - propagate much farther than the inequalities (\><1 al-
=2 tter 0 ,8(v) 8°(X—Xov). low. To see what these constraints mean, we investigate the
(2.19 q?>0, g°<0, andg®=0 cases separately.
To study theq?>0 case, we position ourselves in the
Heree®= a.p is the QED coupling constant. frame whereq’,=(q),0). In this frame, the? constraint

The current has several easy to interpret features. The firglansates into a restriction on the spatial distance a particle
delta function setsy-v=0. This ensures that the emitted can propagate:

photons are space-like and that current is conserved. It also

insures that, wheg?— 0, the photons become collinear with Osq’zAi’zsl
the emitting particle §o=v,q,~q, making g?~g2~0). °
This delta function arises because we neglect the recoil of th
point charge as it emits a photon. The second delta functio
insures that the source is point-like and follows its classica

WX = [ 4575, 0042 (=502

€ombined with the light-cone constraimtx’ is constrained

trajectory. , > /
This source has one other feature of note: it allows for |A§r|5{ AXO, for small AXO, l/|q0J, (2.213
emission of both positive and negative energy photons. In Uqo| for large Axo>1/qg|.

the following work, we consider creating only positive en- . , . o
ergy photons so we insert a factor 0d@)o) in (2.19. This  To find a cutoff forAx, , we realize that, for a giveq,, , the
amounts to constraining the source’s initial energy to bePropagator gives the “probability” distribution for propagat-

greater than its final energy. ing across the space-time displacemAvﬂL. Thus, we can
integrateG* (Ax’,q’) over all space and over time up to
2. Retarded propagator some cutoff timer, giving us the total “probability” for

et?ropagating to time. We find that the propagation probabil-

For our phase-space propagator, we take the Wign ) )
p P propag d {ty becomes unimportant for= 1/|g4| and this sets a cutoff

transform of the retarded propagator instead of the Wigne
transform of the Feynman propagator. This replacement i 4Xo:

legal since the reaction probability may be expressed in

terms of either propagator, provided one uses the same Axp=1/qg|. (2.219
asymptotic states in both cases. Both propagators will give

different particle densities at intermediate stages but the finalogether, these three constraints define the space-time region
state particle densities converge as time goes4a We use  where the particle can propagate. When we move back to the
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frame withq,, = (do,q, ,07), the region contracts in the tem- Again, these constraints define a space-time region where the

poral and longitudinal directions. From E@.23), the limits ~ Particle can propagate. Boosting back to the frame \gjth

of the propagation region are =(do,9.,07), again the longitudinal and temporal spread
gets Lorentz contracted:

N 1
|AX{|=R, = (2.223 A 1
Vg7 |AX | =R, =—— (2.243
Va9
1
|dlol
1
AXo|SRg=r—. (2.22 1
A%l =Ro=q ] 9 A%l =Ro=17- (2.249

We study theg><0 case in a similar manner. In the frame

: 2 o N tudy theg®=0 . Withg?=0, \? b
with g, =(0,9; ,0y), the A2 constraint implies ow we study theg case. Withg ecomes

2: . = —)'A_
qu/E(AX/%_AX/_|2_)Sl. A |AX q| |q0||AX g AX0|$1. (225)

o o ) o ) In other words, high energy particles tend to follow their
Combining this with the light-cone constraint immediately ¢5ssical path while low energy particles can deviate from
gives us a limit onAX : their classical path. Expressid8.25 then gives a measure

of the deviation from the classical path.

INHE (2.233

|q£| ) 3. Phase-space effective photon distribution

As with the >0 case, we can integrate the propagator to Now we put these elements together into the photon den-
find the total “probability” for propagating to the time. In sity. We concentrate our efforts a&,,(x,q) because all of

thi th i bability is i tant only f the spatial dependence of the photon distribution is tied up in
IS ca§e, ne propagation pro ,a ity 1S important only 10Ty, o Wigner transform of the vector potential. Inserting the
=1/ q||, giving us a limit inAx} of

classical current and the retarded photon propagator in the
Lorentz gauge intd2.7), we find

1
AX)|=—. 2.23
| O| |qL| ( b AMV(qu):47Taemv,qu0(q0)é(q’U)
The limit on |Ax}]| then follows directly from the light-cone X j dy G (x—Y,q) 3 (Y—Yyov). (2.26
constraint:
1 The delta function integrals in E¢R.26) are trivial, however
|A§<}|s—,. (2.230 the remaining proper time integral cannot be done analyti-
lay | cally. We find
|
(877)2aem70(q0)6(q'v)
Au(X,q)= — v, A2|X-q],2V =%y ((x-v)* = x"v?) = (x-0)?), (2.27)
I _q2 M
|
where the dimensionless functiof(a,b) is given by gularity in the photon density and nearly on-shell photons

(i.e. g°—0) are collinear, there will be many more collinear
photons than any other kind.

o sin r Two plots, representative of collinear photons and rﬁgh
A(a,b)= L dr\/ﬁ. (2.28  photons, are shown in Fig. 2. The left is a plot of the dimen-

sionless function.A(a,b) for collinear photons withg,

=(me,my/v, ,07). On the right is a plot of photons with

. . transverse momentum comparable to their transverse mo-
There are two interesting cases that are easy to eXplor?hentum and energyg, = (m,,M./v,,0.56 MeVk,0). The
) e e LAl H .

that of phﬁotons nearly collinear to the source partiéle.  .oracteristic energy scale of QEDris, so we choose this
do~d.>|ds|), and that of photons with a large transversescale for the momenta to plot. In both plots, we choge

momentum(i.e. |§T|~q0,q|_). Since there is a 3/—qg“ sin-  =0.% to illustrate the Lorentz contraction of the distribu-
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-1000 -500 0 500 ~1000 =500 0 500 1000

X [fm] X [fm]

FIG. 2. Both figures are plots of the dimensionless functibnorresponding to the effective photon distribution of a point charge with
3-velocity J:(UL ,6T) with v =0.9c. The photons in these slices of the phase-space distribution q;gvéme,me/vL,ﬁT) (left) and
q,=(me,me/v,0.56 MeVE,0) (right). In both plots, only the negative and zero contours are labeled. The positive contours increase in
increments of 0.25.

tion. The oscillations exhibited by both photon distributionsalter shape of the distributiof2.27) are the gradients. Now
are expected for a Wigner transformed den$2,23. To  because the photon source is extremely localitdd a delta
obtain an equivalent classical distribution, one should smedunction), the shape of the photon distribution comes solely
this distribution over a unit volume of phase-space. from the propagator. Since the propagator varies signifi-
Both cuts through the photon distribution show LOTentZCanﬂy on |ength scale Comparab|e thll_l derivatives of
contraction. For the collinear photons, this contraction OCCUr\ (x,q) are always comparable in size ¢p, and any ex-
in the longitudinal direction. We can account for the contrac-yansion of the gauge projector in E@.14) will not con-
tion with the behavior of the retarded propagator. We expetierge. So, we must conclude that our photon distribution

that the width will be ~R,=7c/|qq| parallel to g and  cannot be made gauge invariant using this technique and that
~R, =#ic/\|q? perpendicular tay. For the collinear pho- we cannot tell what features of the photon density survive a
tons, g is in the longitudinal direction and,=y+[g% so  9eneral gauge transform. Now, had wet used a point
~RL:ﬁC/7’\/|_q2_|- In other words, the collinear photon dis- SOurce for our photons, the mtegranon over th_e source cogld
tribution is a “Lorentz contracted onion” centered on the Smooth the photon distribution so that it varies slower in
moving point source. The inner layers of this “onion” cor- SPace. In that case, our distribution could be rendered gauge
respond to highefq?| photons. However, we must empha- Invarant.
size that the contraction isot due to the movement of the
source, but rather due to kinematics of the photon’s creation
and the propagation of the photon. To illustrate this point,
one only needs to look at the high transverse momentum QCD parton model cross sections can be written in phase-
photons: their distribution is tilted. In the case plotted on thespace as a folding of the phase-space parton distribution
right in Fig. 2, the photon momentum points 45° to the lon-function with the reaction rate for the partonic sub-process.
gitudinal direction, coinciding with the tilt of the distribu- The phase-space parton distribution functions are the spatial
tion. Furthermore, the width of the distribution isR;  number density of partons with a certain momentum. The
=1c/|qe| along this tilted axis and-R, =%c/\/|q?] perpen-  parton distribution functions have a “source-propagator”
dicular to this tilted axis. form and can be defined in a gauge invariant manner. If the
phase-space parton source produces only positive energy
4. Comment on the gauge dependence of the effective photon Partons or if we use time-ordered field theory then the par-
distribution of a point charge tons propagate from their source using the Wigner transform
of the retarded propagator. This retarded propagator propa-

gates off-shell partons up to roughtyR,=#c/min(ag,ql)

E. What the photons tell us about QCD partons

Now, A,,(x,q) is a gauge dependent object and the
physically interesting object, the effective photon distribu-

tion, is gauge invariant. One might ask whether the interestgafgalllf/l—zzo the dparltont mree-mtomegntum atnd RLB th
ing features ofA ,,(x,q) disappear under a gauge transform. ¢/\lg?| perpendicular to the parton 3-momentum. Bo

To see whether this happens, one must indgri(x,q) into of these estimates are Yalid only in frames with,q+0.
Eq. (2.17); the only things in(2.17) that could significantly When eithergo=0 or q=0, propagation is cut off at
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(b) pendix F. In subsection Il C, we discuss an apparent failure
of the “source-propagator” picture: lepton pair production
in the strong field produced by two point charges. Because
the photon fields of the two point charges interfere, it is not
possible to clearly isolate the source or probe and we cannot
factorize the square S-matrix into an electron distribution
and electron-probe interaction. Nevertheless, we can still dis-
cuss the process in phase-space, even though we cannot write
down the electron distribution. Finally, in subsection Il D
we discuss the implications of this section. The discussions
of splitting, of the massless propagators, and of a failure of
factorization are all relevant for QCD partons.

A. Factorization and the effective electron

FIG. 3. (a) Cut diagram for creating an electron-positron pair by phase-space distribution

photon splitting. The electron interacts with the probe partiBle,

The square vertex represents the photon souingeCut diagram for First we show that the process in Fig. 3 can be factorized

a free electron interacting with the probe particle. in phase-space, giving a parton model-like form. The S-
matrix for the process in Fig.(8) is

~R, . =hcl\]g?[. On-shell(i.e. g>=0) partons tend to fol-

low their classical trajectory, with deviations from that tra-

jectory of order~1//qo|. SyBHgB;f d*xdy A, (X) e X,S)

Despite what we have learned, we know next to nothing

about QCD parton sources in phase-space. We use a point

source here while a nucleon has spatial structure on the Xey*S (X—Y)Veep(¥)- Q.1

length scales of interest. Furthermore, QCD partons radiate

other partons and this alters the source. We gain more insigfthe spatial structure of the electron source comes from lo-

into the phase-space sources in the next few sections. calizing the photon vector potentiah,(x). The spatial

structure of the “partonic” subprocess comes from

lll. PHASE-SPACE ELECTRON DENSITY Vee_s' (), the elec}ron-pro4be intefaﬁtifnjﬂ Figh3. In Eq.

~In the QCD parton model, the parton distribution func- Eﬁél)' wfﬁf;s) g([)gitl:c/,(fﬁ) Vg,l;\(,l;s;iket[f (;%é éck(‘;v_] ;?

tions can be found by summing a class of ladder dlagramgf[d4p/(277)4]e7ip.(xfy)[(ijme)/(p2+m§+i6)] is the

and the simplest of these has only one rung, corresponding

a single partonic splitting. One can see the QED analog o

the first rung of such a ladder in Fig(eB. Probing the elec-

ectron Feynman propagator.
We squareS g_ and write it in terms of phase-space

tron distribution occurs in three step&) a virtual photon quantities:
splits into an electron-positron pair with the positron on- g d? d*k
shell, (2) the virtual electron propagates from the splitting |SVBAEB’|2:aemJ d*xdy p4 Q4 .
point toward the probe particle arid) the electron interacts (2m)" (2m)" (2)
with the probe. We can give this rate a parton-model like

P g P XA, (%, @) f(x,K) (2m) 8% (k+p—a)

form by associating steps 1 and 2 with the effective electron
distribution and step 3 with the electron-probe reaction rate 1
[see Fig. ®)]. XTr[E(k—m) Y*S(y—x,p)
Let us outline this section. In subsection Il A, we dem-
onstrate that the reaction rate for the virtual electron ex-
change process in Fig(l3 factorizes in phase-space, giving XVBe—»B’(y'p)?’v]- 3.2
the reaction rate a parton model like form. In the process, the

electron  phase-space ~density ~acquires the “SOUICErere St(y—x,p) is the Wigner transform of the electron
propagator” form. In subsection Il B, we calculate the elec- Feynman propagator and it can be written in terms of the

tron distribution of a point charge. The electron source ShapWigner transform of the scalar Feynman propagator
is determined mostly by the shape of the parent photon disGC(X qQ): ’

tribution. The electron can equivalently propagate with the
retarded or Feynman phase-space propagators. We assuge

the electrons are massless throughout this section because W’BB’(X’p)

only know the form of the proplagator for massive particles 45 N o B

in the high mass limit > p(l,|p|). This limit is irrelevant zf 2 e PXS; 4(p+ p/2)S‘;,B,(p—p/2)
for QCD asAgcp~Mg<po.|p|. For completeness, we cal-

culate the electron distribution in the high-mass limit in Ap- =(P+id+mg)5(P—id+ M), 5 GUX,P).
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Also in Eg. (3.2), Vge_p(Y,p) is the Wigner transform of integral of A,,(x,k+p) over the positron momentuny,,

the electron-probe interaction arfifix,k) is the phase-space plays the role of the “partonic” source. Because the emitted

density of final state positrons. positron is in a momentum eigenstate, the spatial structure of
Since the positron rung in Fig. 3 is cut, we sum over thethe source comes solely from the parent photon’s phase-

complete set of positron final states by putting the final posspace distribution.

itron in a momentum eigenstdtend summing over the pos- At this stage, we see several important features of the

itron final states and spin. Furthermore, we can separate offyrce. First, we note thaPk/| k| in the positron momentum

the spinor structure of the electron propagator and shift thgytegral. This factor weights positron emission toward small

derivatives to act 0nge_.p: - In the end we find ko. In a typical QCD parton ladder, ordering momenta to

maximize the contribution from this particular singularity

L a . d'p dig d3ks leads to the BFKL evolution equatiofig5,26. Second, we
Sye—er|*= “emf d*xd’y (2m)?* (2m)* 2|keo|(27)3 note that the entire spatial dependence of the electron source
comes from the parent photon distribution. These two points
XA, (%) Gy —x,p)(2m)*6*(ki+p—Q) are especially important for the partons in Sec. V so they are

elaborated on in the next subsection.

1
X Tr E(kf—m)y”(p+i¢9/2+ me)

B. The effective electron distribution of a classical
point charge
" Veep/ (VP (P12 me) v @3 Our main interest is with how the “parton laddetih our
i . case, the source is only one rung of the lajiddrapes the

Since Vge g/ (y.P) is separated from the electron propa- gjectron distribution. First, we discuss the electron’s source
gator, the reaction probability facto_rlzes. We could explicitly 5nd how both the parent photon distribution and the cut pos-
calculate the rate for the “partonic” subprocee®—B’,  jyon rung effect it. Second, we discuss the interplay of the
but we are only interested in the shape of the distribution agjectron creation and propagation. Because the electron has
a function of electron momentum. We can guess the form ofosjtive energy, we can use either the retarded or Feynman
the electron density just by looking at E(.3), without  yhage-space propagator. We choose to use the retarded
perfo.rmi'ng the explicit rate density calculation. The 9|eCtr0”propagator but, for completeness, we describe the Feynman
density is propagator.

dne-(y,p)
de‘yed?’pdp2 maemJ d*xG(y—x,p) 1. The electron source

d® For our electron source, we choose the photon distribution
Xf 2[ko[(2m)3 Auu(Xk+p) of Eq. (2.27. This is not a QCD parton-like distribution as
the photon source is point-like. Nevertheless, it contains
many of the general features that one expects from a QCD
EJ’ d*xG(y —x,p)Z(X,p). parton source. In particular, we discuss thikd/singularity
(3.4) from the positron rung and we detail both the shape of the

source and how this shape depends on the photon distribu-

Here, G%(x,p) is the Wigner transform of the scalar propa- tion.

gator. Equation(3.4) has the “source-propagator” form: the Up to irrelevant constants, the electron source is

A(a,b)

—_— 3.5
py? (

(D)% aam | 4°K0(—ko) 8P+ ko) 02— 5(0-0)

wherea=2|x- (k+p)| and

b=2=(k+p)*¥*((x-v)*=x*?) — (x- (k+p))*.

The longitudinal and temporal positron momentum integrals can be done with the aid of the delta functions, leaving the
transverse momentum integrals:

2

®This makes the positron momentum weight-functibr(k) = 8*(k—k;), with k?=m3, and the positron phase-space densiy,k)

=(2Vlkol) "H(2m)* 8" (k—k).
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Electron Source Distribution

% [fm] X [fm]

FIG. 4. On the left: the electron source for electrons with momemgm(Z.O,Z.OSfQ) MeV/c electrons. In this figure, only the zero
contours are labeled. The positive contours @mearbitrary unitg 1.0, 2.5, 5.0, 7.5 and 10.0. On the right: the virtual photon distributions
corresponding to one of dominant contributions to electron source. These photongghaye= (0.956,1.063,0.045,0.045) Me¥/ The
other root has similar momentum and a similar distribution. In this figure, only the negative and zero contours are labeled. The positive
contours increase in increments of 0.@% arbitrary units.

Pk [ 0(po+kos)A(@s by)  B(potko)A(a_ b
=) aant(P-0) | T [ #potko )AL D) BPotko AR D)

) +
krl <kt max VKT max— KT V—(ky+p) V—(k_+p)

(3.6

Here, k2 ,..=7%(p-v)>—mE. The two roots of the positron For the purposes of illustration, we choose to emit the posi-
momentum are given by tron in the directionks-X;=cos@)=1/2. By momentum
_ conservation, the dominant photon momentum(ds. )
kox=—y(yp-v+uvL \/k%max_k%) :p#+<kiﬂ>'
On the left in Fig. 4, we plot the electron source fof
ki.=—7y(yo p-vF «/k$ e |2$)_ (3.7 =(2.0,2.057Q) MeV/c electrons from a point charge mov-
ing to the right withv, =0.9c. We choose thip,, because it
Now, in a QCD parton ladder we expect to find a factor ofis both collinear with the point charge and because it is
d3k/|ko| for each cut rung. Here is no exception, one can seépace-like p?<0). Our source can emit both>>0 and
that d*k6(— k) 8(k2—m2) gives us this factor. However, P°<O0 electrons, however the typical QCD parton in a parton
because we neglect the recoil of the source, we have dﬁddelf is e:tr;etrhspa%e—tlike g_f ?nt;sthe”. On the rig(r;_t in It:|gth4
it _ kZ )&  we also plot the photon distribution corresponding to the
g(ii:og:ﬁ((r;k) and:the. fa<<c|tor |b|e co|m e:iksl l;T.nmaXIar.Tt' dominant(q,,). Note that both the source and the photon
u T/ =K1 max=7P-v<lko-|,K .|, this singularity distribution have approximately the same width in both the
forces the positrons to be anti-collinear with the point

charge. Furthermore, becalm~0 (because of the 3~ a7 angitudinal and transverse directi'ons.aThe tilt in the photon
singularity) the electrons are collinear with the point charge.distribution gets averaged away in the integrals in Eq.
As in a QCD parton ladder, the shape Hfcomes from (3.6).
the parent’s distribution. In the case at hand, we can actually
estimate theq,) that gives the dominant contribution ¥
Becausek, andk, are fixed by the delta functions afkg is
bounded bykt ., We can estimate the average positron

2. Electron density using the retarded propagator

Now we put elements of the electron distribution together.
In Eq. (3.6), we need the Wigner transform of the Feynman
) I " propagator. However, since the electrons have positive en-
recoil momentum. The averagkr is given by (k)  ergy we can replace the Feynman propagator with the re-
~(V3/2)Kt max. In general, forv, ~1, the averagék=,) is  tarded propagator. We discuss the retarded propagator in

given by Sec. Il D 2 and we describe the phase-space Feynman propa-
1 1 gator in the next subsection.
. We are interested in electrons that have momenta that are
ke )=7v%(p-v)| —1*+=,— 1+, I, ly]. : _ _ :
{ +“> v(p-v) 2 2 cos Or)/ y,sin(67)]'y both space-like and collinear with the soutéa comparison
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1000 Electro.n Distribufion GO AX,p)

1
= E[sgrﬁ(sz)ﬁ—sgr(pz)JrZ SgrAX-p)]

500
son2) SN2 sin(24A?) ) T2 2\-2?)
N NEY
E o o . o
E_ The combination of the sign functions in the square brackets
can be rewritten in a more transparent form:
-500 4 if Ax-p,p? Ax2>0,
[---]={ —4 if Ax-p,p?,Ax2<0,

2 sgriAx-p) if p?x% have opposite sign.

Thus, particles with time-like momentum tend to travel for-
ward in time and inside the light-cone and particles with
X [fm] space-like momentum tend to travel backwards in time out-
L side the light cone. Also as one might expect, anti-particles
with time-like momentum tend to travel backwards in time
FIG. 5. Coordinate space distribution qjuz(z.o,z.osfo inside the light-cone and anti-particles with space-like mo-
MeV/c electrons. Only the negative and zero contours are labelednentum tend to travel forwards in time outside the light-
The positive contours are in increments of 1@ arbitrary unit. cone.
The sign of the contours in each region are denoted-tsigns. The rest of the interesting features of the Feynman propa-
with QCD partong, so we plot the coordinate space distribu- gzzifz z)rf ;I)ezd_prlzr;)ghigeaﬁﬂdﬁlgcfe?;égz Lporro%r:;:?c;/rair:]ant

tion Of e|eCtI’0nS W|thplu:(20,205,-)q) MeV/C in F|g 5. subsection Il D' we will Study th@2>0, p2<0, andp2:O
The point source is moving to the right with velocity 6.9 ¢ases separately.

Both the source and the Underlying phOton distribution for To Study thep >0 case, we boost to the frame where
these electrons are shown in Fig. 4. To perform the four =(py,0). In this frame,\2= p’2|Ax 12=0, so only the
=(pg. =

dimensional spatial integral in Eq3.6), we use a Monte
Carlo integration schem27]. This integration scheme, be- sme term contributes. The sine term is greatestyibf=1
§0 we have the following limit on the spatial propagation

ing probabilistic by nature, returns both the integral at a poin

-1000 -500 0 500 1000

and the error on the integral at that point. The nonzero datglI stance:

points never had a relative error greater than 20%, but due to R 1

this error, the location of the zero contours is uncertain by |[AX'|s —. (3.8a
~30 fm. [Py

Comparing the electron distribution with the source, WeAs with the retarded propagator, we can compute the total

see that the electron distribution is elliptical with longitudi- “probability” to propagate to certain time. This calculation

nal gnd transverse vv_|dths_, comparable to wh_at one expects ves us the following limit on the temporal propagation dis-
adding the source width in Fig(@ to our estimates for the tance:

propagation length in Eq$2.24). Unlike the electron source
distribution, the electron distribution is not symmetric about
x,_=0. This is caused by the positron recoil because, were |AXo|=
there no positron recoil, we would have a delta function to | Pol
insurepy=p. v, (as we found for the photohsBecause of
the positron recoil, the delta function is widened and the
additional spread in energy causes the electron to propag
forward preferentially.

(3.8

Boosting the space-time region defined by these constraints

atP ck to the frame withp , = (po,pL ,07), we find the follow-
ing constraints:

3. The Feynman propagator |A)Z-|-|SRL= 12 (3.93
Even though we choose situations where we can avoid vIp?|

using the phase-space Feynman propagator, we should de-

scribe how it WOFkS. While the_Feynman propagator propa- IAx <R =i (3.9
gates a particle with a given momenturfsay p, L T )
=(p0,pL,6T)] across a space-time displacementx,,

=(Ax0,AxL,A§T), it does so in a manner very different IAxo|<Ro=i. (3.99
from the retarded propagator. The Feynman propagator is |pol
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These limits are exactly the same as the ones we found for

the retarded propagator in subsection Il D.
To study thep<<O case, we boost to the, = (0,p, ,07)

frame. In this frame\?=p’2(Ax'3—Ax’2). Inside the
light-cone, the exponential term disappears and we get a con-

straint on\?:

0=\?=p'}(AX'§-Ax'})=1.

We can integrate to find the total “probability” to propagate

to a certain time, giving us a limit oA x| :

1
|AX)| = —~

. (3.10
o] ?

Using thex? and light-cone constraints, we find similar lim-

its on Ax} andAx| :

|AX]|=< (3.100

]

|AXS = (3.100

Ipll”

Boosting back to the, = (po.p. ,07) frame, we find

- 1
|AXf| =R, = (3.113
BRE
1
1
|AX0|SR0=W, (3.110

which is what we found for the retarded propagator. Now,
outside of the light-cone the situation is more complicated

PHYSICAL REVIEW D 58 094003

FIG. 6. Cut diagram for lepton pair production from a two pho-
ton interactionR is the space-time point of the center of the colli-
sion region.

because the exponential term does not contribute on the light
cone. In other words the Feynman propagator functions ex-
actly like the retarded propagator: high energy particles tend
to follow their classical path while low energy particles can
deviate from their classical path. Expressi@13 then
gives a measure of the deviation from the classical path.

We find that, despite the different boundary conditions on
the two propagators, both the Feynman and retarded propa-
gators send particles the same distances. This is probably no
surprise since a calculation done using Feynman’s formula-
tion of perturbation theory must give the same results as the
same calculation done using time-ordered perturbation
theory.

C. Failure of factorization and the
“source-propagator” picture

In this section, we investigate electron-positron pair pro-

and we must integrate the propagator in the various direcduction in the strong field of two point charges. One might

tions to find limits. We find

L

L
L1

L

When we boost back to the frame with = (po,p, ,5T), we
find the result in Eq(3.110.

Finally, we investigate th@?=0 case. Withp?=0, \?2
becomes

0<\2=|Ax-p|=|pol|AX-p—Axo|=1  (3.13

visualize this interaction as a virtual photon from one point
charge probing the virtual electron distribution of another
point charge. Thus, the electron distribution would appear
factorized from the virtual electron-virtual photon collision
process. However, we will show that this picture is incorrect
because the photon fields interfere with one another on
length scales comparable to the size of pair production re-
gion. Of course, this also means that our “source-
propagator” picture fails here. Nevertheless, we can still for-
mulate the problem in phase space and discuss the interplay
of the interaction length and particle production length
scales.

1. Interference of photon fields

We can write down the S-matrix corresponding to the
process in Figs. 6 and 7 using the same procedures used in
the previous sections. To lowest order in the coupling
strength, we obtain
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Herex, andx, are the interaction points of the photons and

should not be confused with the classical source particles 1
M = i + }ﬁ: and 2. We have already separated {hee e effective vertex

FIG. 7. Th.e diagrams that contribute, at lowest order, to the A, (Ky,S1,K2,52,P) = U(Kq,51) ¥,iS(P) y,0(Ky,Sp).
yy— ee effective vertex.

In A,,(K1,81.,K2,5,,p), S°(p) is the momentum-space

d*k; d*k, d% Feynman electron propagator. The final state electron-
S12.127e6= a’emf d*x;d*x; 2m)? (2m)? (2m)? positron wavepacket i$* (k;,k,) and we will assume the
final ee pair to be free and use the free wavepacket from
f*(kq,ky) Appendix D. The reader should note that we can already see
XW the photons interfering in Eq3.14).
10 2,0 As usual, we can rewrite Eq43.14) in terms of Wigner
><eikl-xl+ikz~><z+ip-<X1—X2>Aw(kl,sl,kz,sz,p) transformed quantities. However, due to the photon fields
interfering, the structure of the cross terms are complicated.
X{AL(X1)AZ(X2) + AL (X1)AL(X2) } (319 The|Sip.110ad?is

|512—>1'2'e§2

d*k; d%, d*g; d*g, d%p (R
2m? (2m)* (2m) (2m)* 2

=a§mf d*Rdr r12Ky,R+112K)A 000 (Ky kg, p,r)(277)4 5%

><<q1+qz—k1—k2>[<2w>464<q1—k1+p)A*f#’(R—r/z,q1>A5”’<R+r/z,q2>+<2w>454<q1—k2—p)Az”

' Vit ~ kl_kz .
X(R+r/2,0,) A" (R—r/2,q2)+f d*r expir-| —p+ 5 —ir-(g:—qy)

+f d*r ex;{i?

This equation could look simpler if, in the interference terms, we Wigner transfoAneogether withA,. However then we

would have a virtual electron being emitted by some interference field and then reabsorbed by another interference field and
the resulting equations would be impossible to interpret using our photon distributions. (8.E8|, we negleck relative to

k in the effective vertex and in the factors ofl(/) because the final state wavepackets are sharply peaked in momentum. In
Eqg. (3.15, R is the center of the interaction pointg andx, andr is the space-time separation of these points. The final state
Wigner density is

A (R=T14,01) ALY (R+TI40,)

ki—ka
2

—p+ +ir-(g,—qp) A*f"’(R+?/4,q1>A5“’<R—?/4,qz>] : (3.15

f(x1,Ky X0 Ky) = ! ! %, d%, e ko —ikoxapx (o 1R /2 kot Kof2) f (K —K/2 Ko —Kol2)
10122502 (2k1’0V) (2k2,OV) (277)4 (277)4 1 1/&R2 2 1 1/&R2 2

and the Wigner transform of the effective vertex is

dp - ~ ~
Al’-#'vv’(kl!kZIpir):J' (27T)4 elp.rA,u.V(klikZIp—i_p/Z)A;’V’(klvk21p_p/2)-

We can write the effective vertex in terms of the scalar Feynman propagator,
i
[b+ Eﬁ'ﬁ‘ Mg

A,u,u’VV’(klvk21p1r):U(klrsl) Yu 7#’u(klysl)Gc(rap)

— i
7,0 (Kz,82)v(Ky,S;) )/,,r( p— 504‘ Me

E)\,u,u,'vv’(klik2apar)Gc(rap)- (316)

We simplify the reaction probability by summing over the final state electron and positron spins. We simplify things even
further by working in the ultrarelativistic limit, namely Wheﬁ~v§~0. Under these approximations, we find
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d*k,; d*, d%g; d%q, d%p
|812~>1’2’832:a§mf d4Rd4r (277)4 (277)4 (277)4 (277_)4 (2,”_)4 f(R_r/Z!kl!R_l—r/zlkZ)z )\,U,/,L’VV’(kllk21p1r)Gc(rap)

spins

><<2w)4a4(q1+q2—k1—k2>[<2w>4a4<q1—k1+p)Afﬂ’(R—r/z,q1>A5”'(R+r/2,q2>+<2w>464

’ ’ Yot ~ k]__kz
X(ql—kz—p)Ai”(R+r/2,q1)A‘2”‘(R—r/2,q2)+2fd reogr| —pt+———|-r-(di-d)

r
vu
A;

X (R—F/4,q1)AgV’(R+?/4,q2)] . (3.17)

Given the relatively simple form of this equation, one wouldity” for propagating between two space-time points drops
think that we could identify the exchanged electron’s phasetike e 2™ for space-like electrons and like sin(@/p?
space density. In fact, if we use free particle distributions for+m,)/(\/p?+m,) for time-like electrons. The proper time
the final state electron and positron and sum over final stateajong the electron 4-momentum is In the direction trans-

we can identify the virtual electron distributi¢gq. (3.4)]in  verse to the electron four-momentum, the “probability” is
the direct terms. However, we cannot make the same identigero. Thus, the interaction region has a characteristic length
fication in the interference term and factorization is not posscale of ~1/m,. This is comparable to the width of the
sible here. We might find factorization again if we had sev-photon distributions, so there is no scale separation. Typi-
eral point charges as one can envision a situation with manyally one requires the interaction length scale to be much
photon sources screening the photdias plasma for in-  smaller than the characteristic length scale of the particle
stance. The photon field might then be an incoherent superdensity in order to justify the gradient expansions and allow
position of photon fields. In the absence of photon interferfor a transport description. Because our approach does not
ence, we might be able to define an effective electrorrely on the gradient expansions, a transport description may

distribution. still be possible.
2. The eeproduction region vs the interaction region
With Eg. (3.17), we can discuss the various length scales D. What the electrons tell us about QCD partons
of the problem. First thee production region is set by the In this section, we learned several things about the mass-

shape and size of the photon distributions. Second, the twigss QCD parton phase-space densities. First, owing to the

photon interaction region’s size depends on the mass anfdct that the simplest parton ladder contains one rung repre-

virtuality of the exchanged electron. senting a single partonic splitting, we learned how both the
First, take the virtual photon distribution of the classical parent parton and cut rung affect the parton distribution. The

point charge from Sec. Il D. Now, the lowest energy and

momentum that each of the interacting photons can hafe is

q:(me,me/vL,GT). Because the high energy or far off-
shell photons are closer to the point charge then their lower
energy and nearly on-shell cousins, photons with the mini-
mum g, have the largest distributions. So, the geometrical
overlap of the high energy portions of the virtual photon

distribution sets the size of thee production region. In Fig.
8 we illustrate this: the two ellipses represent the edge of the
photon distribution and the shaded region is the region where

the ee pairs can be created.

Now, the size of the two photon interaction itself is deter-
mined by how far the exchanged electron can travel between
the vertices in Fig. 7. For this, we look at the phase-space
electron propagator. Assuming massive electfonse use
Remler’s causal propagator. Here the phase-space “probabil-

FIG. 8. The ellipses represent the edge of the photon distribu-
°The distribution of photons witly=(me,m./v, ,0r) is shown  tions, each with four-momentum=(m,,m,/v, ,07). The shaded

in Fig. 2. region is the geometrical overlap of the photon distributions and
The me=0 case is uninteresting because #®production re-  sets the size of thee production region. The arrows point in the
gion always extends over the two photon interaction region. direction of the photons’ source’s 3-momentum.
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shape of the parent parton distribution determines the spatial Im
structure of the parton source. The rung of the parton ladder
segment gets cut, putting that parton on shell. The integral
over final states of this parton is weighted toward giving it a . -

low ky. Second, partons propagate to the same distances _ \, Re
with the Feynman propagator that we found for the retarded ]
propagator, despite the difference in the boundary conditions to

of the two propagators. Finally, we learned that the “source-
propagator” picture of parton densities fails when the source
particle and probe particle interact, even through quantum ) , _
interference. Nevertheless, we can still discuss the process in F'G: 9- The contour in the complex time plane used in the

phase-space with the phase-space sources and propagatg?@luation of operator expectation values. The upper branch corre-
even if the densities have no clear meaning sponds to causal ordering and the lower branch to anticausal order-

ing. The arrows denote the contour ordering enforced byTthe
operator.

IV. QED TRANSPORT THEORY

The “source-propagator” picture of particle densities for fermions. The(---)=Tr(p...)/Tr(p) is a trace over the
seems both common and physically intuitive. In this sectiongystem’s density matrix, specified at timg- — . The field
we see how this picture arises in time-ordered nonequiliboperators are taken in the Heisenberg pictiirelenotes or-
rium theory by deriving the generalized fluctuation- dering along the contour shown in Fig. 9. This ordering can
dissipation theorem in phase-space. The derivation of thipe written as
theorem mirrors the steps often used to derive the semiclas-
sical transport equations. Namely, we derive the Kadanoff- TA(X)B(y)= 6(Xq,Yo) A(X)B(Y) = 8(Yo,%Xo) B(Y)A(X).
Baym equations and formally solve them to get the general- (4.2
ized fluctuation-dissipation theorem. Unlike other . ) )
derivations of the transport equations, we do not perform thd he upper sign refers to bosons and the lower sign to fermi-
gradient expansion. Instead, we directly Wigner transformPS. The contour theta function is defined as
the generalized fluctuation-dissipation theorem. If we then
insert the W.igner transformed self-energies into the
fluctuation-dissipation theorem, we get a set of phase-space 0(Xo,Yo) = -
evolution equations for the particle densities. These evolu- 0 otherwise.
tion equations describe the complete evolution of the system
in phase-space from some time in the distant past to the . , .
present, including all parton splittings, recombinations and In a(_1d|t|on to the contour(?reens_fungt|ofx‘ala)—(4.1©,
scatterings. In principle, the equations are nonperturbativeV® define the> and < Green’s functions:
but we can expand them perturbatively. We demonstrate this
by recalculating the photon and electron distributions of Ay
Secs. Il and II1. Following this, we derive transport equations G~ (X.¥)=(#(X)¢*(y)) (4.39
from the phase-space evolution equations. Finally, we de-
scribe how the results of this section can be applied to QCD ~ ~ R R
parton transport. iD,,(%,Y)=(A()A(Y) = (AL))ALY))

For those familiar with the common steps in deriving (4.3b
semiclassical transport equations from the Kadanoff-Baym
equations, we suggest skipping past Sec. IV B to Sec. IV C.

1 if Xxq is later on the contour thary,

IS25(%,Y) = (a(X) hg(y) (4.39
A. Green'’s functions . A
Our derivations begin with the contour Green's function G~ (X.Y)=(*(y) $(x)) (4.30
which we define as . R R N
A iD 5, (%,Y)=(A,(Y)A,L(X)) = (AL ))ALY))
iIG(X,y)=(To(x)d* (y)) (4.1a (4.3¢9
for scalar particles, isiﬁ(xyy): —<12,3(Y) Do (X)). (4.3
iD,,,(%Y)=(TA,()A,(y))—(A(X))A,X)) These Green’s functions are hermitian and contain the com-

(4.1b plete single-particle information of the system. For example,
settingx=y gives us the single particle density matrix. Fur-

for photons and thermore, Wigner transforming in the relative coordinate, we
L N find the off-mass shell generalization of the Wigner function
iSus(X,Y)=(Tth(X)hp(y)) (4.19  for the particles:
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f(X,p)=iG<(X,P) (a) RAARARARS — MNV\J_;'_NVV\.%W
D Do II D

= J’ d*(x—y)e'* V) PiG=(x,y)

:f A (x—y)&' I P B (y) (). g 5 $ w8
We identify f(x,p) with the number density of particl@r ccccote _ e————- PR R
antiparticle$ per unit volume in phase-space per unit invari- (c) G - GO + GO Q

ant mass at timeg:
FIG. 10. The Dyson-Schwinger equations of the propagators.
F(x,p) = dn(x,p) Double lines represent the dressed Green’s functions and single
P d3xd3pdp2' lines represent the non-interacting Green'’s functions. The particle
self-energies are the large square vertices.
The off-shell Wigner function is related to the conventional
Wigner function,fo(x,p), through the invariant mass inte- (G7(x,y)—G=(x,y)). (4.5
gration:
For the Feynman and anti-Feynman propagators, we have

dn(xo,X,p) (=

fo.P) = — @y~ | dPFF(x.P). G(x,¥)=0(X0=Y0) G~ (X,Y) + 0(Yo—X0) G=(X.Y),
xdp - (4.6
In terms of the= Green’s functions, the contour Green’s > <
' = — + — )
function can be written as GAX,Y) = 0(Yo—X0)G~(X,y) + 8(X~Yo) G (X’yz4.6b)

G(x,Y)=0(X0,Y0) G~ (X.y)+ 0(Y0,X0)G=(X.Y) (44  Ope can also obtain these Feynman and anti-Feynman propa-
ators by restricting the arguments of the contour propaga-

for both fermions and bosons. Furthermore, because of t s to be on one side of the contour in Fig. 9.

equal time commutation relations, for both fermions and
bosonsG~ (x,y)=G<(y,x) andG(x,y)=G(Y,X).

We define several auxiliary Green’s functions in terms of
the > and < Green’s functions: the retarded and advanced In this subsection, we follow the standard derivation of
Green’'s functions and the Feynman and anti-Feynmathe transport equations up to the point where we find the
propagators. We write only the equations for the scalar pargeneralized fluctuation-dissipation theorem. The procedure is
ticles. For the retarded and advanced propagators, we haves follows: (1) find the Dyson-Schwinger equations for the

contour Green'’s functiong?) apply the free field equations
G (x,y)=*6(*(Xo—Yo)) of motion to get the Kadanoff-Baym equations a8isolve

B. Conventional transport theory

(e)

N
Il
M
=
+
-«
—
2
g
_|_
—
3
<
<
+

=
M N
Il
-
2
_|._
™
= [

) A = ¢==== Logp + D Tyoe + [

£
0 o

FIG. 11. The scalar and electron self-energies and the photon polarization tensor. Bare vertices are represented by dots and dressed
vertices by blobs. The self-energies and the polarization tensor are all represented by large square vertices.
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the Kadanoff-Baym equations to get the generalized

fluctuation-dissipation theorem. Dw(l,l’)=wa(l,1’)+fdZdSwa,(l,Z)
C

1. Dyson-Schwinger equations XH“I"/(Z 3D, (3,1) @.7h
The Dyson-Schwinger equations encapsulate all of the o
nonperturbative effects in the field theory that are possible o0 , 0
with only two-point functions. We can write the Dyson- Sap(11)=Se(1,1) + Cdngsaa’(l’z)

Schwinger equations for the photon, electron and scalar con-
tour Green'’s functions: xE“’ﬁ/(2,3)Sﬂ,ﬂ(3,1’). (4.79

In these equations, we represent the coordinates by their in-
dex, i.e.x;—1. We present the corresponding diagrams in

G(l,l’):Go(l,1’)+jd2d3G0(1,2) Figs. 1Qa)—1(1f:). In E_qs. (4.7a-4.7¢, the non-mteractmg
c contour Green'’s functions hawa O superscript.
) The self-energies describe all of the branchings and re-
xQ(2,3G(3,1) (4738 combinations possible for the photons, electrons and scalars.

The self-energies are

Q(L,1)=i(ez) fcdzdse(l,s)rg¢¢(2,3,1')Dw(l,s)+i(ziaemzng)

Yvd

><Ld2d3d4e(1,2)r#’”’¢,(2,3,4,1')D,w,(1,3)DW,(1,4)+QMF(1)54(1,1') (4.8

HW(l,l')=—i(—ie(yM)aB)fdZdBS‘mr(1,2)F‘;éﬁl(2,3,1’)83,3(3,1)+i(eZ;;M)
C
XJd2d3G(1,2)Fy¢¢,V(2,3,1’)G(3,1)+i(2iaemZZgW,)
C

X f d2d3d4G(1,2G(3, )T 4, (2,3,4,1)D,, (1,4 +Iye(1)g,,6(1,1) (4.8b
C

Eaﬁ(l,l’)zi(—ie(y“)wr)J'Cd2d35a/ﬁ/(1,2)F’fj;'3"’(2,3,1’)D“,,(l,S)+EMF(1)5QB64(1,1’).
(4.80
In Figs. 11a)-11(c), we show all the diagrams corresponding to the non-mean-field terms if4E8@—(4.89. We define the
contour delta function*(x,y) by
SM(x—vy) for Xq,yo on the upper branch
5*x,y)=4 0 for Xq,yo on different branches
—8*x—y) for xq,yo on the lower branch.

Finally, there is another set of Dyson-Schwinger equations aing(X,y):Aﬂgwy(x,y)
for the vertex functions. Since we will truncate the vertices at (4.9
tree level, we will not state the Dyson-Schwinger equations
here.
. _ 0 _
2. Kadanoff-Baym equations (i0x=me)S,p(xY) 5“B54(X’y)' (4.90
The free-field contour Green'’s functions satisfy the equa- '

tions of motion:
Combining these with the Dyson-Schwinger equations, we

(93+M?)GO(x,y) = 8*(x,y) (498  have
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(A+M?)G(1,1)=6%1,1) + LdZQ(l,Z)G(Z,l’)
(4.103

93D, (1,1))=4mg,,s%(1,1)
+477fd2H;,(1,2)D,,/,,(2,1’)
C
(4.100
(11— Me)Spp(1,1) = 8,5%(1,1')
+Jdzzaﬁ,(l,Z)sﬁ,,B(z,l').
C

(4.109

There is a conjugate set of equatia@s9), (4.10 with the
differential operators acting on’1

Restrictingt, andt,. to lie on different sides of the time

PHYSICAL REVIEW D 58 094003

Here the> and < self-energies have the same relation to the
contour self-energy that the and<< Green'’s functions have
to the contour Green’s functions. Again, there is a set of
conjugate equations with the differential operators acting on
1.
3. Generalized fluctuation-dissipation theorem

Now we define the retarded and advanced self-energies

for scalars:
Q" (1,2 =Qued(t1,tp) = 6(+(t;—t5))
X(Q7(1,2-Q7(1,2). (4.12

The photon polarization tensor and electron self-energy are

defined in a similar manner.
Using these, we simplify the Kadanoff-Baym equations:

(93+ MZ)Gz(l,l')zdeZQ*(l,Z)Gz(Z,l’)
to
(4.133

contour in Fig. 9, we arrive at the Kadanoff-Baym equations.

(2+M?)G=(1,1)
:f A%, Qup(X1,X2,11) G=(X2,13,1")
ty _
+ft d2(Q7(1,2-Q<(1,2)G=(2,1)
0

+JtidZQz(l,Z)(G>(2,l')—G<(2,l’)) (4.1139
to

1 2= '
Ealev(l’l )

:f d3X2HMF()_()11;2=tl)Diy()Z21tlal,)
ty >/ <! =
+ | ta201z (1,2 -1 (1,2)D7 (2,1)
to

+ ftleHf”'(l,Z)(Dj,V(2,1’)—Df,y(Z,l’))
to
(4.11b
(161~ Me)Sgp(1,1)
:f d3X22MF()21r)_()Zatl)Sfﬁ()_()Zatlyl’)
ap’

ty =
d2(3°,,(1,2-3°,,(1,2)S5, (2,7
o oass, 1035, 02)8; 20)

+fttldzzfﬁ,(1,2)(s;,ﬁ(2,1')—s;,ﬁ(z,l')).
0

(4.119

+ fdeQ%(l,z)G—(z,l')
t
° (4.13h

1 * , >
22 Yy — +v = ’
22 7D5(L1) ftodznﬂ (1,2D3 (2,1)

(4.139

+f d2I15"'(1,2D,, (2,1)
to
(4.139

(ml—me)sfﬁ(l,l’)=ftodzzgﬁ,(l,z)sjﬁ(z,l’)
(4.13¢

+fmd22f (1,28, 4(2,1).
to
(4.13f

If we subtract the> equations from the< equations and
multiply the resulting equations by 6(= (t;—t4/)), we get
a second set of differential equations:
(a§+M2)Gi(1,1')=54(1—1')+f d2Q*(1,2G*(2,1)
to
(4.1439

! 2D* (1,1)=6%1—-1" Folznn'lzoi 2.1
Ealuv(’)_(_)"'to ,u(:),,r,,(a)

(4.140
(11— me)S;4(1,1')

=+

=6%1-1")+ ftwdzzaﬁ,(l,as;,ﬁ(z,l').
0

(4.149
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Solving the initial value problem posed by Ed4.13
using Eqgs(4.14), we find

G3(1,1)

=fxd2 d436(1,20%(2.3G(3.1')
t

0 to
+ J d3%,d3%3G " (1 X5, )

X G=(Xz,t0,X3,t0) G (X3,tp,1") (4.153
D= (1,1 :Fdzrdsw (1,212 (2,3
(L1) G2, wn(12 (2,3

xD;,V(3,1’)+f d3x2d3x3D:#,(1,§2,t0)

XD=#"" (%5,t0,X3,t0)D, (X3,10, 1) (4.15D

(2355 ,(3.1)

Sazﬁ(l’l,): dZJ dgs:a/r(llz)z’a2
to to
+ f d3X2d3X3S:a’ ( 11)_()2 vto)

><Sjﬁr(iz,to,ig,to)S;rB(i?,,to,l')- (4.159

PHYSICAL REVIEW B8 094003

We recognize the Wigner transforms of the self-energy and
initial particle density:

Qz(x,p):f dXeP QI (x+X/2x—X/2)  (4.17)
and

8(to—Xo)G=(X,p) = f d‘r;(eip';ﬁ(to— (Xo+X0/2))

X 8(to— (Xg— Xo/2))

X GZ(X+X2Xx—X/[2). (4.18

The delta functions render the initial density independent of
po- We have also defined the retarded propagator in phase-
space:

é*(x,p;y,q)=f d4x’ d%’elP-x'~a-y")
XGH(x+x'12y+y'I2)
XG (x=x'l2y=y'l2). (419

At this point, one usually applies the gradient approximation
to Eq. (4.16), eliminating thed*x’ integral. We do not do
this.

These equations are the generalized fluctuation-dissipation Next, we assume the translational invariance of the ad-
theorem. They describe the evolution of a density fluctuatiorvanced and retarded propagators. This is reasonable at lowest

(given by the> and < Green'’s functionsfrom t, to t; .

order in the coupling since the free field advanced and re-
tarded propagators are translationally invariant. Making this

C. Phase-space generalized fluctuation-dissipation theorem approximation, the retarded propagator in phase-space be-

We now translate the fluctuation dissipation equationsComes

(4.19 into phase-space. We only do so for the scalar equa-
tion because the photon and electron equations are similar. é*(x,p;y,q)z(Zw)“é“(p—q)j d4zdPr-z
First we extend the integration region to cover all time:

XGT(x—y+2z/2)(Gt(x—y—12z/2))*

= — 4 4 + = _
G (Xlaxl’)_f d™,0"X3G ™ (X1,X2) Q=(X2,X3) G ™ (X3,X1/) =(2m)*8*(p—q)G* (X—Y,p). (4.20
We will use G*(x—y,p) in all subsequent calculations. In
practice, we will only use the lowest order contribution to
G*(x—y,p). This means that we dress the propagators
but not thex propagators when we iterate Eg.15. Thus,
our particles propagate as though they are in the vacuum. In
Appendix G we calculate the lowest order contribution to
G (x—Y,p).

Repeating this for the photons and electrons, we arrive at
the phase-space generalized fluctuation-dissipation theorem:

+ lim fd4x2d4x35(t0—x20)

tg— —
X 8(tg—X30)G ¥ (X1,X2) G=(X2,X3) G (X3,X1/).
Next, we Wigner transform in the relative varialig
_Xl' .
4

d*p’
= — 4,1

XGH(x,p;ix",p)Q=(X",p")
d4p/
(2m)*

Gz(x,p)=f d'yG*(x—y,p)Q=(y,p)

+ lim fd3x’ - 3yat 2v 5

N + lim ) d'yGT(x=y,p)G=(y.p)
Yo——®

XGT(x,p;x",p")G=(x",p’). (4.1 (4.213
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' 15 (1Y) =iaem T{y,S%(1,1)y,57(1,1)}

>

+ienZ?91,6%(1,1)d1,,G(1,1)
+T5e(1)g,,0%(1-1") (4.22
3211 = i aen( ¥ aar Sy g (L) (7)) g

XD=#(1,1)+ 3 3e(1) 8,501 —1").
(4.229

We have neglected the second scalar term in the polarization
tensor and the second photon term in the scalar self-energy
| because they enter with a factag,,, which is higher order
than the other terms we kept.
FIG. 12. Cut diagram for probing the particle densities in the  The self-energies iff4.22) can be Wigner transformed.

generalized fluctuation-dissipation theorem. Time flows downwardraking care to integrate the derivative scalar couplings by
and, since the the probe interaction is in the future, we leave th%arts we arrive at

nature of the probe unspecified.

d*q; d%q,
(2m)* (2m)*

o = —1i 2
DE»(XaP)=fd“yDZV,uV,(x—y,p)Hz“ 7 (y.p) Q=(x,p)=iaenZ

X (0 + Qp—1i9/2) ,G= (X,
+ lim deyD;,,ﬂ,V,(x—y,p) (91+092—10/2),G=(X,01)
Yo— —®

X (Qu+qa—19/2),DZ4¥(x,0p) (277

XD=H'""(y,p) (4.210 X&' (p—(a1+0d2)+Que(x) (4233

Sia(x,p)=J dYS, gor 5 (X—Y.P)Z 5 (Y,D) d*q, d*a,

I17,(x,p) =i aemJ 2m)? 2m)? Tr{y,S%(%.01) 7,

X S=(x,02)}(2m)*6*p— (g1 + )
d*q; d'q,

+y lim f d3yszﬁa,ﬁ,(x—y,p)
0— —®

XS, 5(Y,p). 4.21 P — 2
o pr(Y:P) (4.219 Flaenl” | 551 G0
These equations describe the evolution of the particle phase- -

space densities fromp,— — o« to the timexg, including par- X(d1+09,+9/2),

ticle creation and absorption through the particle self-

energies. They clearly have the "“source-propagator” form,

but also contain information about the initial particle density.

The derivation of these equations does not rely on the form
of the self-energies and the general form is shown diagram-
matically in Fig. 12. Thus, these equation can be re-applied
to QCD. We exploit this fact when we discuss the shape of a
nucleon’s parton cloud.

D. Phase-space evolution equations

The first step toward getting the phase-space evolution
equations from the generalized fluctuation-dissipation theo-
rem is to calculate the self-energi@®. the sources To do
this, we insert Eqs(4.12 and (4.4) into the self-energy
equations and keep only the lowest order approximation to
the vertex functions. Thus, we assume that the interaction

time is much smaller than the other time scales in the probpar

lem. So, we arrive at the creation and absorption rates:

Q3(L,1)=iaenZ2d1,G=(1,1)3;,,D=#"(1,1)

fﬁ(xi p) =—i aem( ‘)/,u)aa’

X G=(X,qq) (g +0p+i 3/2)1»
X G=(x,02)(2m)*8*(p—(d1+0y))
+1I= (X)g;w (4.23b

MF

d*q; d*q,
(2m)* (2m)*

XS5, 5 (%,01)(7,) g gD =1 (X,02)
X(2m)48H(p— (A1 +92) + 2 yp(X) Sup-
(4.230

We can rewrite these equations directly in terms of the
ticle and antiparticle densitiésto make their structure
explicit. In accordance with Eq$4.39—(4.3f), we define the
particle densities as follows:

+Q$|F(1)54(1_ 1) (4.229 12Also known as the particle and anti-particle Wigner functions.
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iG=(x,p)=g=(x,p)=scalar densities (4.243
iD,(x,p)=d7,(x,p)=photon densities (4.24h
+iS;4(X,p) =S, 4(X,p)=lepton densities.(4.249

Here the positive energy part of the Green’s functions
correspond to the density for emission ¢p((|,|5) quanta,

PHYSICAL REVIEW 58 094003
XS (¥,01) (¥") prpr A (¥,02)
+J d*Y S, g (X—Y.PN(EIZGe(Y)) B

. 3 + _ = g
+y lim f d ySaBa/B/(X yap)sa/ﬁ/()’:p)-
0~ ~*

(4.259

while the negative energy part corresponds to the density for

absorption of (|py|,p) quanta. Similarly the positive en- These equations are the most important result of this section.
ergy part of the< Green'’s functions correspond to absorbing They simultaneously describe all “partonic” splittings, re-

(|p0|,5) quanta and the negative energy part to emission ofombinations and scatterings from the distant past to the

(—|pol.p) quanta. Thus#(po)g=(x,p) is the scalar density

and 6(—po)g~ (x,p) is the antiscalar density. We can make

similar identifications for the photdfiand lepton densities.
Now, combining(4.21) and(4.23 and inserting the par-
ticle densities, we arrive at

_ d'q, d*
0 00p)= [ dy G S Gy )2

X S4(p— (1 +0)) @enZ2(qy+ Qp— i 3/2)

X g=(y,01) (A1 +0,—13/2)"d=,(y,qy)

+f d*yG* (x—y,p)iQue(Y)

- f dPyG* (x—y,p)g=(y,p) (4.253

Yo— —®

d*q; d'o,
= - 4 + _
dMV(an)_f d y (277_)4 (277)4 D;“;M’V’(X y!p)

X (2m)48*(p—(d1+ )
X {atem T y*' s%(y,01) 7" s%(y,02)]
+ @enZ(dy+ i 312)2 93 (y, )

X (Qut Gat+id/2)" g=(y,q2)}

+ f dyD,, . (x—y,p)iTIge(y)g*

+ lim fd3yDZw,V/(X—y,p)dz"’”’(y,f))

Yo— —%*

(4.25h

- d*q, d'q,

X (2m)*6*(p— (a1t 02)) dend ) arar

BThe dlfy(x,p) in this section is the Wigner transform of the

present. Note that an implementation of these equations
would be very different from the conventional transport ap-
proach. First, these splittings and recombinations occur in all
cells of coordinate-space. This is very different from the con-
ventional approach where particles interact only when they
are within yoo7 Of each othef28,21,7. Second, the par-
ticles in our approach do not follow straight-like trajectories.
Instead, they have a “probability” distribution for propagat-
ing to a certain point.

Equations(4.29 are the phase-space QED analog of Ma-
khlin’s evolution equationd29]. A QCD version of the
phase-space evolution equations should reduce to Makhlin’s
equations when integrating out the coordinate dependence.
Geiger[10] has derived a set of QCD transport equations
based on Makhlin’s work. While his derivation is very simi-
lar to our derivation of the phase-space evolution equation,
he does use the gradient approximation to simplify his colli-
sion integrals. The QCD version of the transport equations
we derive in Sec. IV F would reduce to his semiclassical
equations if one applies this approximation.

There are several ways to solve E4.25 but we propose
only two methods in the following subsections. The first
method is a perturbative scheme which we will use to derive
the time-ordered version of the results of Secs. II-Ill. The
second method is to derive transport equations from Eg.

(4.29.

E. Perturbative solution to the phase-space
evolution equations

We can perform a perturbative expansion on 425
and get the leading contributions to the particle densities. We
show this for both the photons and electrons surrounding a
classical(scalay point charge.

We begin by stating the initial conditiotfsfor the particle
densities and listing the other assumptions used here. The
initial electron and photon densitidat y,— —) are sfﬁ

(—o.,y,p)=d5,(—=,y,p)=0. We also take the initial sca-
lar densities to beg”(—,y,p)=0 and g=(Yo.y.p)

= N6(po) 8°(p— p;) 8(p?— M?) 8%(xop/po—x). To get this
form for g=, we localize the initial scalar wavepacket in
momentum as discussed in Appendix C 3. In addition to as-

vector potentialA,,(x,q), of Sec. Il, as we demonstrate in subsec- *Unlike Feynman perturbation theory, we can only specify the

tion IV E.

initial particle densities here.
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FIG. 13. Cut diagram for the time-orderddonequilibrium
photon density. Time flows downward and, since the probe interac- g, 14. cut diagram for the time-orderedonequilibrium
tion is in the future, we leave the nature of the probe unspecified.q|ectron density. Time flows downward and, since the the probe

suming these densities, we must also neglect the mean fleiateractlon is in the future, we leave the nature of the probe unspeci-

and drop the gradients in the scalar-photon coupling.

1. Photons < 4 ~+
. ) d,.(x,p)= [ d%D,, ... (X=Y,p)
Since the scalar field only couples to the photons, the s

lowest order contribution to the photon density comes from

the photons directly coupling to the initial scalar density. The X Ilassicdl Y P)-
cut diagram for this process is in Fig. 13. For positive energy
photons, the density is Tzh%s,dw(x,p) can be identified with thé ,,(x,p) in Eq.
(X.p)= fd4 O Sy h
2m)* (2m)* D svurvr 2. Electrons
X (2m) 48P~ (1 + o)) denZ2(0y+Gn) Since the electrons only couple to the photons, the lowest
order contribution to the electron density comes from a pho-
9=(y,90)(a1+92)” g~ (Y,qy). ton splitting into electron-positron pairs. The cut diagram for

this is shown in Fig. 14. From Ed4.250 we have
Now, G~ (x,p)=G~(x,—p) because= propagators obey

the re<lationG>(x,>y) =G=(y,X). Thus, we can switch one of } \ d*q, d'g, .
f';netigca(d)‘/a,rq 'Zotca)l ?ingllysza(zt)e’ sccg?;rg.] Ir[])%ilgérgg], \?vré Iﬁgllael s SapX:P)= f Yy (2m* (2m)* Sugarpr(X7Y:P)
a (X,p):f dy q14 q24 L) X (2m)*8*(p—(dy+a))
' 2m)* (2 D X o V) at arSpyrgr(¥:01)
X (2m)*8*(p— (A1~ 02)) @enZ?(d1— d2)*’ X (") prpr A= ,(Y,Go).
97(,00)(d1—02)" g7 (¥,02).- (4.26

Using s 4(x,q) =s5,(x,—q), we find
Now we can bring @enZ (A1~ G2)* 9= (Y,A1) (A1

—qQs)" g ~(y,q,) into the form of the Wigner transform of . d*gq, d*q, -

the scalar current. To do this, we take the final state scalar tOSaﬁ(X p)—J d%y 2m* 2m)° Saparpr(X7Y:P)

be free and sum over all possible final momentdrdoing

so, Eq.(4.26 becomes X (2m)46*(p—(—qy+0y))

— X oY) ar arSiyrar (Y, 0D (7) grpr (¥, G)
Swe perform this calculation in detail in Appendix D. (4.27
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Taking the initial photon density fron§4.26 and taking _ I s i Kt -
Sgrar(¥,02) to be a final state positron, we recover E8j4). (k+id/2)°G (x,k)=f d*x’e” (G (x=x'/2))
However here all of the propagators are retarded while the

electron propagator in E43.4) is causal. X 84 (x+x'12) (4.283
F. Transport equations (k—ia/Z)ZG*(x,k):f d*x’ e’ K G (x+x'/2))
In this section, we find a set of transport equations from
the integral equations it%.25. We write the two equations X 8 (x—x'12). (4.28h

of motion for the phase-space retarded propagator. Applyin . .
these equations to the phase-space evolution equations, V%wesertmg the retarded propagafor in the energy-momentum

derive two sets of coupled integro-differential equations. Therepresentatlomwnh m,=0) and adding and subtracting the

first set of equations are the transport equations and the sed- and — equations, we find the equations of motion for the

ond set are the “constraint” equations of Mvozyrski and fetarded propagator:

Heinz[9,30]. The “constraint” equations describe the mass 2

shift of the particles in medium. k-9G™(x,k)= — 6(xo) 8(x?)sin(2x-k)  (4.293
The equation of motion for the non-interacting retarded m

massless scalar propagator is 2

(*14— k> G*(x,k) = ;0(x0)5(x2)cos(2x-k).

#?GT(x)=8%x). (4.29hH

Taylor series expanding the sine or cosine and keeping only
the lowest order is equivalent to performing the gradient ex-

FP(GH(x))* = 8%(x). pansion.

Now, we apply thek- 9 and (@?/4—k?) operators to the

Multiplying both sides of the first equation byG(" (y))*, particle densities in Eq4.25. On the right hand side, these
both sides of the second equatiG (y) and Wigner trans-  differential operators act on the retarded propagators, so we
forming in the relative space-time coordinate, we find twocan use their equations of motion to simplify the results. For
equations: scalars we get

The conjugate equation is

. d4q, d*q, 2 _
prag™(x,p)= [ dy 5% S 2 kg yo) al(x-y Asin2(x-y)- p) (2

X 84 (P (01 + Up)) @enZ2(dr+ Gp—1 912049 (y,01) (01 + Qo —1 3/2)"d3,(Y,0y)

2 . -
+f dly - 8(Xo—Yo) S((X—Y)?)sin(2(x—y) - pP)iQue(y)

. 2 ) _ -
+ lim fdsy;0(Xo—yo)5((x—y)2)sm(2(x—y)~p)g<(y,p)(<92/4—k2)9<(x,p)

Yo——

d*q; d'g, 2
=f y (277)4W;(Xo—yo)é((x—y)z)COS(Z(x—y)-p)(2w)45“(p—(q1+qz)) (4.303

g = g = 2
X aemZ?(d1+ Qo= 5/2)”g<(y,Q1)(Q1+Q2_|5/2)Vd,fy(y,Q2)+f dty p (X0~ Yo) 8((x—y)?)

= . 2 > -
Xcog2(Xx—y)-p)iQue(y)+ lim fd3y;H(XO—yo)ﬁ((x—y)z)cos(Z(x—y)-p)g<(y,p) (4.30b

yo——®

Now because of the delta functions, the boundary conditiogig-at— o only contribute whefx—y| goes toe, implying that

we needg=(x,p) asx—o. The densities are zero here, so they drop out from these equations.
The transport equations for the photons and electrons are
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= 2 .
p-ad,,(X.p)=— f d4y9(Xo—YO)5((X—Y)2)S""'(2(X—Y)'p)[J Ww(Zﬂ)%‘l(P—(Qﬁ%))
X{ @om TH ¥*$(Y,01) ¥'S=(Y,02) ]+ @enZ?(0y + A2+ /2)#9=(y,0q1) (Q1+ Qo+ 9/2) "= (y,02)}
+gwiﬂﬁp(y)} (4.313

= 2 . . _ d* d*
D IS5406D) = = (B+10) s (B=i0)5: d4ye<x0—y0>5<<x—y>2>sm<x—y>'p){ o s (27"

X 5M(p— (A1 +0p)) denl )’M)a'a"sjrﬂn(y,Q1)( ‘}’V)/;"/;'diy(yy%) + 6, p (£ izﬁF(Y))] - (4.31b

These equations almost have the form of the Boltzmann equation: the left side clearly is the Boltzmann transport operator and
the right side is almost the collision integrals. If we were to expand the sines in the collision integrals and keep only the lowest
term, we would recover the collision integrals. Furthermore, if we were to do this same approximation to the QCD version of
(4.3) we would arrive at Geiger's semiclassical QCD transport equafibdis

We also state the constraint equations:

2 2\ 4= 2 4 2 d*q; d%g 4
(o°14—k)d,,(x,p) = — f d*y 6(xo—Yo) ((x—y)“)cog2(x—~Yy)-p) WW(%) &' (p—(d1+dp))

X{ tem TH 757 (Y,01) "= (Y,02) 1+ @enZ2(Gy+ Qo+ /2)g=(y, 1) (g + 0o+ 9/2) "= (y,02)}
+9Wiﬂﬁp(y)] (4.323
d4Q1 d4Q2

2 2y o2 2 : : 4 2 4
(7°14= k%) sep(X,p) = — (p+|‘9)aa’(p_lﬂ)ﬁﬁ’f d*y6(Xo—Yo) 8((X—y) )COS{Z(X_Y)'F))[ 2m)? 2n)? (2m)

X 3% (p—(d1+d2)) denl w>a,a~sjﬂ,,<y,ql)<y”),;n,;fdixy,qzw6a/ﬁ/<riiﬁp<y)>]. (4.320

If we were to derive the constraint equation for massive parmay construct QCD phase-space parton evolution equations.
ticles, we would find that {2/4—k?)—(3%/4—k?*+m?).  However, before we could do this we must assess whether
Therefore, the constraint equations give rise to the inwe need to dress the phase-space propagators and vertices,
medium mass shift for the photons and electrons and thus thgplement renormalization and possibly attempt to treat the
RHS of the constraint equations can be interpreted as agound states.
“in-medium” mass. Note that despite the presence of this |n the present work, we dress the particle densities by
“in-medium” mass, particles still scatter onto the light-cone. iterating the phase-space evolution equations but we do not
This is not a surprise since the particles are massless. Finalljjrass the phase-space propagators or vertices. However,
we have not written the various constants in terms of theify essing the particle densities may be sufficient to incorpo-
renormalized values. Dressing the particle densities by SOlzate any needed higher order or many particle effects. One
ing the evolution equatloniwhlch are nopperturbatl\)e. uch effect is the mass shift of a particle in-medium. This has
igﬁ::%gtg some extent, be equivalent to using renormahzeaeen mentioned above and given this, it may prove necessary
‘ to give particles an effective mass as a simple form of in-
medium dressing of the phase-space propagators. In this
event, we would then need the propagators with non-zero
The “source-propagator” picture must apply to QCD par- mass and we do not know the form of the retarded phase-
tons since our derivation of the phase-space generalizespace propagators for this case. We are currently investigat-
fluctuation-dissipation theorem only depends on the form ofng propagation in this case.
the Dyson-Schwinger equations for the contour propagators The issue of implementing renormalization will require
in (4.7). In particular, the specific form of the self-energies issome work as there is not a well-developed understanding of
irrelevant. It would then seem that if we find the QCD self- renormalization in non-equilibrium gquantum mechanics. In
energies and define the parton distributions appropriately, wenomentum-space perturbation theory, renormalization is

G. Implications for QCD parton transport theory
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used to correct some parametéesg. a particle’s maggo :

make them correspond to their observed values. Some of nucleon
these corrections can be ascribed to many-particle effects

that are effectively dealt with by dressing the densities, /- n
propagators and/or vertices. Nevertheless, there may be di- 1

vergencies that need to be removed in our formulation of
non-equilibrium perturbation theory but, at the present, we

have not yet encountered any. The issue of renormalization 2
brings up one other question. Usually momentum-space
renormalization is interpreted as removing physics at one 3

momentum scale in favor of another scale. It is not clear
what this means in phase-space. When renormalizing in

phase-space, are we removing physics at a certain length n—1

scale, a certain momentum scale, both, or neither? Is renor-

malization a form of smoothing in phase-space, akin to the n

gradient approximation? . 7

The issue of QCD bound states is very much an open
issue. Will we need to introduce higher-order correlations
(i.e. four and six point functionsnto the Dyson-Schwinger

S . ) .
equations? If so, this presumably would require some under FIG. 15. Cut diagram for probing thath generation of partons

standing of hadronization and the role 8tcp- Aqcp IS i a typical cascade. Time flows downward in this diagram and the
usually interpreted as a momentum cut-off in perturbation,opne 'heing somewhere in the future, is left unspecified.
theory; as one approachfs,cp, nonperturbative effects in-

crease and perturbation treatments break down. This inter; momentum-space calculation. Typically the parton distri-

pretation may not be appropriate in phase-space for severshtion functions are calculated using either DGLAP, BFKL,

reasons. First, the phase-space evolution equations are nop- : : : :
perturbative objects, so there should be no cut-off in momen& GLR evolution, all of which are equivalent to applying a

tum. Second, it is not clear whethéi,cp should be viewed leading logarithm approximatioft.LA ). In the LLA, we as-

. me th rton is pr in represen h
as a cut-off in momentum or whetherAld.p should be sume the parton is produced in a cascade represented by the

viewed as a cut-off in coordinate space. In fact, it may beladder diagram in Fig. 15. The probability of emitting thiia

that 1/Aqcp is simply a characteristic length scale for QCD \Fl)zgznmvgﬂeﬁ:gItgd;rr]g:nr?ﬁi?ecggg d:ﬁgg]x}] and trans-
bound statedi.e. hadrons so that a proper treatment of Mot
lilcxmd states may lead to a clear identification of the role of Neag dx, d(ﬁT
Qcp- dP,= - 7
In any event, these three issues are intricately intertwined T Xn Onr
and their investigation is beyond the scope of the present
work. Nevertheless, in the absence of a phase-space eVO|T|]hus, by ordering the momentum properly as we go down
tion equation, we can still use the generalized fluctuationthe ladder, we can pick up the largest logarithmic contribu-
dissipation theorem as insight to build models. This is whatjons to thenth parton’s density.

probe

(5.7)

we do in the next section. Most hadron colliders probe regions where the data are
well described with parton distribution functions calculated
V. PARTON CLOUD OF A NUCLEON within the Dokshitzer-Gribov-Lipatov-Altarelli-ParisiDG-

. ... .. LAP) evolution scheme. DGLAP evolution is equivalent to
We cannot calculate the phase-space parton distributio

. . . fhe leading logarithm approximation ind#/ [LLA( Q?)].
functions without a set of QCD phase-space evolution equagieyy exper?megts at the pD?ESé/p collider I-?ER[A ar((e be)g]in-

tions. Nevertheless, there is significant work calculating thening to see evidence that Balitskii-Fadin-Kuraev-Lipatov

parton distribution functions in momentum-space and mar_]il?FKL) type evolution is necessary to describe the parton
of these results can be translated into phase-space. In partic stribution functions at smak-[31]. BFKL-type physics is

lar, we ShOYV that the Ieadmg_ logarithm approxmatlo_nbe“eved to be responsible for the rise in the number of par-
should work in phase-space. Using the momentum ordermg)nS asx—0, however this rise can also be partially de-

in the leading logarithm approximation and a simple model__ . ; -

. . .~ _scribed by DGLAP-type physid®6,3,31. BFKL evolution
of t_he nucleon we estimate the size of the sea parton d'Strﬁ's equivalent to the leading logarithm approximation ix 1/
bution as a function of parton momentum.

[LLA(X)]. Unlike DGLAP and BFKL evolution, Gribov-
Levin-Ryskin (GLR) type evolution does not have a simple
momentum ordering because one sums terms with varying

The QCD parton model rests on two simple assumptionspowers of 1% and 142 [32,26. Because of the simplicity of
as<1 (so perturbation theory is valicand the parton life- the ladder structure and the momentum ordering needed to
time is much larger than parton interaction tifi2®]. Both of  pick up the largest contributions, we will discuss both DG-
these conditions are necessary to factorize a cross section AP and BFKL type partons in phase-space.

A. QCD parton model and leading logarithm approximation
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We can apply the QCD parton model and LLA in phase-
space if both are modified appropriately. Assume that we are
working in a regime wherex;<1, so we can apply phase-
space perturbation theory, and assume that all elementary
particles are massless. Assume also that the probe is local- dn—1
ized on the length scale of the parton cloud. This assumption k
is equivalent to saying the parton lifetime is large compared ®
to the interaction time.

Now, if we find the same singularities in both phase-space
and momentum-space, then we know that the LLA will give
the dominant contribution to the particle densities in phase-
space. The generalized fluctuation dissipation theorem tells
us that the parton density has the form

FIG. 16. Typical rung of the LLA ladder.
g%(x,p)=f dyG*(x—y,p)2=(y.p). (5.2

found exactly this factor ofi®k/|ko|. The fact that we find
The self-energyy =, is given by the parton ladder in Fig. 15 the same factor ofi*k/|k,| in both the energy-momentum
and the nth segment of>= is shown in Fig. 16. In representation and in phase-space simply reflects the fact that
momentum-space, the cut rung gived3/|ko| which leads the cut parton density i8(ko) (k%) in both cases and we
to thedx/x in Eq. (5.1). To see how the factor ai®k/|k,| ~ sum over final parton states. The factordaf’/q® occurs in
arises in phase-space, one needs only look at the electrdty. (5.1) because of the integration over the leg’s propagator
source in Sec. Il B 1. The electron source has exactly thd/g?. In phase-space, theqf/poles are tied up in the Wigner
form of the segment in Fig. 16 and in that calculation wetransform of the retarded propagator, but they are still there:

) 1 1
(q+0'/2)*+ie(dotqo/2) (A—q'/12)*—ie(do—0g/2)’

d*q’ .
G+(qu):f (2:)4 e*IX'q

Thus, this segment of the parton ladder produces the same B. Large-Q? (DGLAP) partons
divergencies in phase-space and momentum-space whatever|, ine largeQ? regime, the parton density is low but

orderings are needed to produce the leading contributions iBS(Qz)In(QZIAéCD)zl. Here the largest contribution to the

momentum space will produce the same leading contribureading log ladder comes from larg? logarithms® To get

tions in phase-space. the largest contributions from these logs, we order the mo-
Our self-energy has the same ladder structure as the elegrenta as we move down the ladder:

tron source in Sec. lll, so we know the spatial structure of the

nth parton’s source is given by the-1th parton’s distribu- —qﬁ> —qﬁ,1>- > —qi> 1/Rk2,ag~AéCD.

tion. Iterating back to the Oth partg@a valence quank we

see that the shape of the valence distribution sets the shapetdgred? is the virtuality of theith leg. The kinematics at each
the sea parton source. We take the valence quark wave funt€g-rung vertex ensure that the momentum fraction carried
tion to be uniformly spread throughout a bag with radiusby €ach leg is also ordered:

Rpag- Since we are interested in high-energy collisions, we
take the nucleon bag to be moving to the right with 4-

momentump,, = (Pg, P ,07) with Po~P >My. Thus, this  Whether a rung or leg is a quark or gluon is irrelevant, pro-
nucleon has 4-velocity ,=(1u,,07) and the bag is con- vided k?=0 and theqg?® ordering holds. Now, given that the
tracted in the longitudinal direction by a factor of  Proton has longitudinal momentufd_ and the rungs and

— 1/\/EE> 1. We assume the partons lose memory of thd€9s are massless, each generation of partons must h?ve en-
original valence quark momentum as one goes down the lad®'9Y (gn0~an|_ and transverse momentum aft~—q

der. Thus, any momentum-coordinate correlations in the<X"PL-

source function should be washed out by the spatial integra-

tions in Eq.(5.2. One might expect that the sea partons

forget the shape of the nucleon bag as well, but we show that'®Q2 can be taken as the typical momentum scale of the process.

the partons cannot propagate far enough from the originah the case of a DIS probe, this is the momentum transferred by the
source for this to happen. probe.

1=X1= =X, 1=X,.
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Let us discuss the general features of the parton cloudie will consider the extreme cases of the transverse momen-
The retarded propagator lets th&h parton propagate out to tum and comment on the typical casﬁ,T~qu.
Rm~hc/\/—q2n transverse to the parton momentum and to If the random walk results in a large transverse momen-
Ry ~%c/an=7c/x,P, parallel to the the parton momen- tum, we will haveq?;>q3;~ — g%~ (x,P.)%. Thus, thenth
tum. SincexP >pr, the parton momentum is approxi- parton will have 3-momentum in the transverse direction.
mately parallel to the nucleon momentum. Becalilg We know that the parton can only propagate to a distance of
<Ryag. the partons can never get far from the bag in theroughlyR,~%c/|qq| =% c/\/g°+ qT2+(x P,)? in the direction

transverse direction and transverse spread of the partons WBhra”d toq. Sincehc/ q2+qT+(XPL)2*ﬁC/|QT|<Rbag

be dominated by the bag siz&Rr~Rp,q. On the other  he parton cannot travel far from the original source in the

hand, the longitudinal spread of the partons is roughly giveRansyerse direction. On the other hand, the parton’s longitu-
by AR ~Rpaq/y+#AC/XPL, so can be dominated by the ging| spread can be larger than the longitudinal bag size. The
longitudinal propagation distand®, if X<MyRy,4/%cC. In parton can propagate to a distanceRof~#c/\— g2 in the

fact, for very smallx (i.e. x~MyRyp,4/vAC) the spread of . ) - .
the partons can meet or exceed the nucleon bag radius. Flﬂl_rectlon perpendicular tq, SO we can expect a longitudinal
§pread of the parton distribution OofAR, ~Rpaq/y

thermore, the actual distribution may be somewhat broade

due to the propagation of the virtual partons between the" 7:¢/V—0". SinCeRyag>7%c/V—q7, this additional spread

subsequent emissions along the ladder. can not match the spread of the DGLAP partons.

So, in our picture, the sea quark and gluon la@fedis- If the ra_ndom Wa2|k regults in2a small trfnsverge momen-
tributions have the same transverse size as the pareft™ We will haveqqr<qir~—q°~(x,PL)". In this case,
nucleon, but the longitudinal size can be significantly biggefthe nth parton will have 3-momentum in the longitudinal
than the parent. Furthermore, the drop off in the parton dendiréction. As in the case of the DGLAP partons the addi-
sity in the longitudinal direction occurs at the characteristictional transverse spread &Rr~7c/\—q“<Rpaq and so is
radius of~#c/xP, . This picture of the nucleon is consistent Negligible. The additional longitudinal spread AR,
with the uncertainty principle based arguments of Mueller~7c/|do| =%c/\/g°+ (xP.)*+qs and may be significantly
[20], later user by Geiger to initialize the parton distributionslarger than the bag radius because the parton is space-like.

in his Parton Cascade Mod@CM) [21]. Summarizing both possibilities, the BFKL parton distri-
butions have the same transverse sprei@;~Rp,q, but
C. Smallx (BFKL ) partons different longitudinal spreads. The longitudinal spread may

. L range from AR ~Rpaq/y+7%ic/V—?<R to AR
In the smallx regime, the parton density is high and o 9 L Tbag ) 4" Fbag L
2 ~Rpag/ yt+hc/Ng“+ (XPL)“+g7>Rp, for partons with
ag(Q9)In(1/x)=1. The smallx partons are mostly gluons. In 9. 9 i
> ; ; ) space-like momentum. The fact that the spatial extent of the
this regime, the leading logs come from th&-1ype singu- . . o N
o o9 : . BFKL cloud is so large in the longitudinal direction suggests
larities, i.e. from the cut rungs. Since leading logs come from[ .
) - e hat the smallk partons(which are mostly gluonscan see
the 1k type singularities, the largest contributions come : S
. o the color charge of any other nucleon in the longitudinal tube
about by strongly ordering the longitudinal momentum frac- .
i . centered on the parent nucleon. This suggests that we should
tion as one moves down the ladd&a]: X
treat the nucleus as a whole as a source of color charge in the
15X, 3> X 15X, . spirit of McLerran-Venugopalan modg5].
The large longitudinal extent of the smallcloud has
BFKL-type evolution has only a weak dependence on theénother consequence: in a zero impact parameter nucleon-
virtuality of the partons as we move down the ladder, so wehucleon collision, we would find that the saBBFKL) par-
assumeqg? to be ﬁxed;qﬁ_lwqﬁ> l/Rﬁag' This does not tons interact much earlier than the hard@GLAP) partons
significantly effect the results of the analy§&]. because of their greater longitudinal spread. This, coupled
Now we must understand how the transverse momenturith the large density of smak-partons, leads to earlier
and energy of each parton leg changes as we go down tHtropy production and stopping of the soft partons.
ladder. A well known effect of iterating the BFKL kernel
(equivalent to moving down the laddes that the transverse
momentum undergoes a random walk ingf)([26,33. In VI. CONCLUSION
fact, after |terat|ng through a sufﬂcpntly large number of \ye have made progress toward specifying the initial
rungs, the spread in thggr distribution is given by phase-space parton distributions of a relativistic nuclear col-
21\ 2 1 lision. Regardless of the kinematical regime, the transverse
< (| (q_gT) ) =C In(—) spread of a parton distribution is dominated by the bag radius
X ~1 fm. The longitudinal spread of a parton distribution var-
) ies from roughly~ Ry,,4/ v+ fic/xP_ for moderate to large
whereC=(Ncas/m)28(3)=32.14x. Thus,gprcanbeor-  (ie. for DGLAP partons and from AR ~Ryaq/7y
ders of magnitude larger or smaller tmﬁ!f. We restate this  +#c/\—g? to ARy~ Ropag/ ¥+ ficl o2+ (xP) 2+ qu for
as smallx (i.e. BFKL parton$. Since the smalk partons have
a large longitudinal spread and a high density, we expect the
small x partons to interact much earlier than the large

dit

qﬁTNqiTe:SJ\/as In(l/x)_ (53)
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partons in a typical nuclear collision. This may cause earlier ACKNOWLEDGMENTS
entropy production and higher stopping than one expects in

models that include only DGLAP parton distributions SUChpants of the Institute for Nuclear Theory program, specifi-

as th? PC_N[Zl]’ HIING [4], and. pthers. _cally Miklos Gyulassy, Berndt Mier, Alejandro Ayala,
Using tlme-ordergd non-equmbrlum methods, vv_e der'VedRaju Venugopalan, and Alexander Makhlin. They also ac-

phase-space evolution equations for QED, illustrating how tqnowledge Viadimir Zelevinsky, Scott Pratt, C. P. Yuan, Ed

find them in QCD. Unlike conventional transport ap- spuryak and George Bertsch for their valuable discussions.

proaches, our calculation does not rely on the gradient aprhis work was supported by the National Science Founda-
proximation. Thus, it should work on all length and momen-tjon under Grant PHY-9605207.

tum scales of interest. These phase-space evolution equations

describe the complete evolution of a system from some time AppENDIX A: ELECTRODYNAMICS WITH EERMIONS

in the distant past to the present, including all splittings, AND SCALARS

recombinations and scatterings of the particles. One can use )

these evolution equations perturbatively or to derive semi- Throughout this paper we use QED and scalar electrody-

classical transport equations. These evolution equations ref}f2Mics to describe the interactions between the electrons,
on the generalized fluctuation-dissipation theorem. Thignotons and scalars. In this appendix, we review the QED

theorem states that a particle’s density is the convolution o'{';g:s;gs'zr:{ de(?(;]nitcl)z?slzgnrrnng[rl\opdI:squ'l?rlletlrl?ae f;nmgg;at";g
the Wigner transform of its self-energy and a phase-spac y : grang , €1C.,

: . L for QED and for scalar electrodynamics are given in many
prop:_agator. The generalized fluctuatlon-_dls&patlon theorerBlaces[%,Sﬂ. Even so, we restate them here both to keep
is quite general and can be directly applied to QCD.

this work self-contained and to clarify our notation. We do

In conventional Feynman perturbation theory, we foundyq¢ incjyde the renormalization counterterms nor the gauge
the reaction rategand hence the cross sectioman be writ-  fiing terms for the photons although they can be easily in-
ten in a parton model form. In other words, they take theg|,qed. We work in the Lorentz gauge.
form of a reaction rate density convoluted with a phase-space The Lagrangian for scalar QED coupled with spinor QED
parton distribution function. This phase-space PDF is thgg
parton number density and has the form of a phase-space
source folded with a phase-space propagator. Our work with i — < — 1
the Weizsaker-Williams approximation demonstrates that £= 7 #(X)#4(X) = Medh(X)(X) = 7o F ., (X)FH"(x)
the parton distribution functions can be defined in phase-

The authors acknowledge conversations with the partici-

space. +(d,0* (X)) (3* H(X)) — M2$* (X) p(X)
In order to illustrate how the propagators and sources _ -
work in phase-space, we calculated the effective photon and —ed(X)A(X) Y(X) —IZe A (X)(P* (X) 3, p(X))
electron distributions. We found that both the retarded and 2 2
Feynman propagators propagate particles to distances of +Z%aerAT(X) 6" (X) 6(X). (AD)

~R,=fc/min(qol,|q) parallel to the particle’s momentum Here y,(x) is the fermion field¢(x) is the complex scalar
and to distances of-R, =#c/\[q?] perpendicular to the field, A,(x) is the photon field, andF,,(x)=d,A,(X)
particle’s momentum wheg®# 0. Wheng®=0, the particles —3d,A,(x). The masses of the fermion and scalar fields are
tend to follow their classical paths with deviations from this m, andM respectively. The electrons couple to the photons
path being of order 1d,|. Furthermore, the retarded propa- with strengthe while the scalars couple witAe.

gator can only send particles forward in time and inside the The Heisenberg field operators satisfy the standard equal
light-cone while the Feynman propagator sends particle§me commutation relations at tinte

both forwards and backwards in time and both inside and

outside of the light-cone. We also described a phase-space [A (t,)?),,& (t,x)]_=4mg,,3(x—x") (A2a)
source that included a simple “partonic” splitting: the elec- a a m
tron distribution of a point charge. These electrons are cre-

ated when a virtual photon splits into an electron-positron [AL(EX), AL (X ] =[A, (LX), ALtX)]-=0

pair; the diagram for this process is the first segment of a (A2b)

parton ladder. We found that shape of the electron’s source is A e At 2 - =,

controlled by the parent photon’s distribution. [a(t.X), dp(t.X) ] = 8op0°(X=X") (A20)
We hope that we have provided insight into the behavior . ..

and calculation of the phase-space densities. Specifically, we [p(t,X),d(t,x")]_=3(x—x") (A2d)

hope the “source-propagator” picture of the generalized

fluctuation-dissipation theorem and the resulting phase-space [fp(t,)?),&(t,i’)],z[&(t,)?),fj;(t,)?’)],=O. (A2¢)
evolution equations can be coupled with appropriately de-

fined QCD phase-space parton densities. The resulting The Lagrangiar(Al) leads to the following equations of
theory could describe the various many-particle effects wenotion:

expect in a nuclear collision at RHIC or the LHC and it

could incorporate parton model phenomenology. 4mrj*(x)=4d,F*"(x) (A3a)
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TABLE I. The vertex Feynman rules for scalar and spinor QED.versely uniform beam, we recover the conventional defini-
tion of the cross section. Since we consider only simple scat-

3 point tering problems, we work in Feynman perturbation theory
photon-scalar = where we can specify both the initial and final states of the
vertex eZzi,= ez((?# - 5M) reactions.

The beam is a collection of single particle wavepackets

4 point distributed throughout the transverse afeaf the beam. For

photon-scalar res the sake of illustration, we take these particles to be scalars.

vertex deZ°g,, The Wigner function of these incident wavepackets is

fermion-photon 1 d*p’ )

vertex —iey, f(x,p)= _2Vpo _(277)4 e X'Pp
Xf(p+p'/12)f*(p—p’'/2) (B1)

0=(i#—eAX))(X) — Meth(X) (A3b)

where the wave functiofi(p) is given by’
0=(d,+ieA,(x))(d*+ieA(x))

|i>—f LLIAER (82)
X p(X) +M2p(X). (A3c) — ) @mr PP

We will assume the beam to be uniform in the longitudinal
direction with lengthL and to be turned on for macroscopic
. P R . - time T. The quantitiesA, T, andL are much larger than the
JEX) =ed(X) Y ip(x) +iZed™ (X) d p(X). projectile-target interaction region.
The projectile-target interaction region is characterized by
These equations are solved by the Green’s functions in Seg.reaction rate density: ¢(x). We assume the reaction rate
IV A in the limit as e—0. density to be localized in both space and time. This reflects
The contour Feynman rules have been derived previouslihe small spatial extent of the target and the short interaction

[5], so we state them for spinor and scalar QED below:  time compared to the beam lifetime. The reaction rate is
(1) The vertex Feynman rules are summarized in Table ltrivially related to the reaction probability:

(2) The contour propagators are summarized in Table II.

(3) Every closed fermion loop yields a factor of-().

(4) Every single particle line that forms a closed loop or is
linked by the same interaction line yields a factori Gf*.

The electromagnetic current operator is

|Si—>f|2=J' dW, _¢(x). (B3)

Thus, the reaction rate is easily identifiable in the calcula-
Notice that the second scalar coupling has higher ordelions in Secs. II, Ill. For example, in the proceg8— B’ in

than the rest of the couplings. So we neglect this coupling it 19 1(0), the reaction rate density ¥&/,5_g(x,q). For the

the derivation of the evolution equations of Sec. IV D. processAB—A'B' in Fig. 1(a), it is

4

_ 4 v
APPENDIX B: THE CROSS SECTION IN TERMS WAB—»A’B’(X)—J dr Gmada (xtri2)
OF PHASE-SPACE DENSITIES

c w'v' oy
In this appendix, we discuss the cross-section in terms of XD (LA ° (X 112). (B4)

phase-space quantities. Since the cross section is measuiggte that the reaction rate density is a function of the aver-
by scattering a beam of particles off a target, we define thgge space-time location of all the vertices in the process.
cross section in terms of the projectile-target reaction rate "The cross section is the effective area of the target, so we
density and the projectile flux. The beam is uniform in thegefine the cross section as the integral over the beam face of

beam direction and in time on the scale of the projectilethe fraction of incident particles that interact with the target
target interaction. Thus, the beam can only directly probe thger unit area:

transverse structure of the interaction region. Even this trans-

verse information is washed out in the typical experiment, [ ., [no. scattered particles
since the beam is usually uniform in the transverse direction 7= fAd X7 unit area

on the length scale of the interaction. In the limit of a trans-

no. incident particle
TABLE II. The contour scalar, photon, and electron propaga- unit area . (BS)
tors.
scalar line G(X1,X5)
photon line D (X1,X2) =479,,G(X1,X5)
fermion line Sep(X1,X2) =—(—id+m),zG(X1,X2) The delta function that puts the particle on-shell is absorbed into

f(p).
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The number of incident particles per unit area crossing the _ d*p .
target plane is the particle flux: ||>=f 2m)? f(p)[p). (Cy

no. incident particles L2 n - - _ _ _ _ _
unit area =Ninc _L/ZdXLn'J(X)E]:(XT)- The corresponding Wigner function of the particles is

(86) .
- f(x p)=f ae, e ™ P(i|¢*(p—p'l2)

Heren is a unit normal to the target plane ang,. is the ’ (2m)*

number of particles in the beam. The single particle current

is given in terms of the incident particle Wigner function by X p(p+p'12)|i)
[23]
1 dp’
. NNV
(X)—f d*pdpuf(x,p). (B7) 2Vpy J (2m)
Xf(p+p'/2)f*(p—p’'/2). (C2

We need not average over time because the beam is uniform
on the time scale of the reaction. The number of scattered o o )
particles per unit area is found by multiplying the number ofParticles in either the initial or final states are on-shell, so
incident particles by the reaction probability per unit area: they can be expanded in momentum eigenstates. We choose
our wavepacket to be a Gaussian superposition of momen-

no. scattered particles L2 T2 tum eigenstates with a momentum spread
= incf deLj ldeOWHf(X)

unit area T
. $(p)=N3(p*—M?)exi] - (p—p))*/20°].
E-/V‘ichViﬂf(XT)- (BB)
The Wigner transform of this wavepacket can not be done
analytically except in the limit whe¢ﬁi|>a. In this limit,
o NincWi_s(X7) pi~p>p’ so our wavepacket is localized in momentum giv-
o= fAd XTT)ZT)- (B9 ing the following Wigner density of particles:

Thus, the cross section is

(p—py)?
202

In Eqg. (BY9), all longitudinal and temporal structure of the 2
q g p | 5(p2—|v|2)e><p{——

interaction is washed out by the beam. Furthermore, in any f(X.p)= Y. (20y2m)®
practical experiment, the wavepackets are delocalized in the 0
transverse direction on the length scale of the interaction xexf —202(vXo—X)2]. (C3

region. Thus, the transverse structure]E(fiT) is gone and

the flux reduces taF=Ninc[v|/A, where|v| is the mean are 7= p/p, is the velocity of the wavepacket. Thus, the
projectile velocity. The flux can then be pulled out of the 5iicie's Wigner function is a Gaussian in both momentum
transverse integral in E¢B9). The transverse integral of the zn4 gpace. The spread in momentum is the inverse spread in
reaction probability per unit area J§inc|S;.(|°, so the cross  space. The centroid of the Gaussian follows the particle’s

section becomes classical trajectory. The energy of the packet is set by the
2 delta function out front. We have not constrained the particle
AlS : o - & .
o= ———" (B10)  in energy so this density contains both positive and negative
lv| energy contributions.

This is the conventional momentum space cross section in . ,
our choice of normalization. 2. Delocalizing the wavepacket in space: Free wavepacket
In accordance with the uncertainty principle, the wave-
APPENDIX C: WAVEPACKETS packet becomes completely delocalized in space in the limit
) ) ~ of complete localization in momentuiii.e. c—0). In this
Throughout this paper, we use wavepackets in the initiajimit, the spatial Gaussian approaches unity and the momen-

and final states of a reaction to provide spatial localization ofym Gaussian becomes a delta function. After working out

delocalization. In this appendix, we detail the construction ofhe normalization, we find

an initial or final state wavepacket and discuss the limits of

either a completely localized or delocalized wavepacket. ‘ 1 4

Fr4x,p) = 5y - (27) s'(p—py)- (C4
Po

1. On-shell Gaussian wavepacket

An initial (or final) state ket can be written with wave- This is no surprise since we squeezed the state into a mo-
packets: mentum eigenstate.
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3. Localizing the wavepacket in space: Classical wavepacket 2. Scalar vertex

A classical particle is localized in both space and momen- I',,(d,p;,p;s) is not quite the Wigner transform of the
tum, a seeming violation of the uncertainty principle. In realyAA’ vertex, although it does arise from performing the
life, this is not a problem since the reason classical particlesVigner transform in Eq(D1). It is defined by
appear localized is that we probe them on ler{gthmomen-

tum) scales too coarse to resolve the interesting quantum (2m)*6*(pi—pr— )T ,.(.P; ,PY)
features. In the case of our Gaussian wavepacket, this 4%

amounts to probing the distribution on length scales much —4v2p° _of 5.0 (a+a2) e
larger than 14. In this case, the space Gaussian is too local- Prb (2m* (piliu(a+al2)lpi)

ized to resolve and we can replace it with a delta function. >t ~
Additionally, we assume that is large, so we can replace X(pilj(a—al2)|ps). (D3)
the momentum Gaussian with a delta function as well. i .

Making these approximations, we find the Wigner densityYSing the matrix element

of a classical particle: (pi+pp)
> . - i f
(prlj w(p)=ez(2m)* 8" (pi—p1—O) ==

) 1 - - 0,0’
fCIaSSICa{X,p):E(z,n.)4b\3(p_pi) 2V P+ P;
L we get
X 8(p2—M?2)8%(vxg—X). (C5)
_ 2 1~ =

Here we have inserted the correct normalization for the u0(9,Pi,P1) = aenZ”| Pit Pit 5 (PitPy)
wavepacket. This density corresponds to an on-mass-shell #
particle that follows its classical trajectonyx,=X. Again, 1. -
we left in both positive and negative energy contributions. X PP (PP | - (D4)

APPENDIX D: THE CLASSICAL CURRENT The relative momenta; andp;, become derivatives anin

. the current(D2). We assume the wavepackets to be uniform

th;l:legtisgpehno(igﬁ \(ljviitgg%gnﬂgugﬁ:;gr?l sg:rtehrg :z;(eg(l) 0 reaction’s length scales, so we ignore the derivatives and
P : arrive at the phase-space scalar vertex

illustration, we take our point particle to be a scalar particle.
The derivation goes in three steps: first we define the Wigner
current of a scalar particle, then we derive the photon-scalar
interaction vertex in phase-space, and finally we localize the

L ,,(4,0i.P1) = aenZ?(Pi+ Pp) u(Pi+Ps),. (D5

initial and final states of the scalar to give the classical cur- 3. Classical current
rent. We are now in a position to derive Eq2.19 for the
classical current density in phase-space. First, we take the
1. Wigner current final state to be a momentum eigenstate and sum over it.

Since the final state is localized in momentum aroynrd

We begin by restating Eq2.3): this is not a bad approximation. Second, we take the initial

d%g ~ state to be a classical wavepacket. In other words, we assume
‘]X”(X,q):J 2 e "IX(A'|jH(q+q/2)|A) that the initial state is localized in momentum and delocal-

ized in space but we probe it on such large length scales that
we still see a spatially localized wavepacket. So, putting Egs.
(C4), (C5) and(D5) into (D2) and summing over final states,
we get

X(Alj"™(a—a/2)|A"). (D1)

We write the initial and final state bra’s and ket's according

to Eq. (B2). Rewriting Eq.(D1) in terms of initial and final I*(x.q)=2 2 (%= X0 D:

Wigner densities, (%,Q) = 2maend v 10,0 (X~ Xgv ) Pio
X 8((pi+a)2=M?).

d*pi d*ps
J’KV(X,CI)=j (ZT)IlefA(eri)f,:r(vaf)(zw)4 Using pf=M? and v,~ps,/pip and assumingg®p;o
<(-v, we get the classical current:
X 84 pi—ps— )T ., (a.pi ,Ps)- (D2)

‘]glgssicaqxaq):27Taemzzv,uvv5(Q'U)53(X_XOU)-
We assume that the initial and final wavepackets are local- (D6)
ized in momentum and somewhat delocalized in space.
Shortly, we assume that we probe this current on lengthNote that this current allows for emission of both positive
scales much larger than even this delocalized space distrib@nd negative energy photons. To use the retarded propaga-
tion. tors in Sec. Il, we need é(qg) in Eq. (D6). We can do this
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by suitable choosing; andp; and restricting the initial and 1000 ' '
final states to have only positive energy.
500 - B
APPENDIX E: PHASE-SPACE EFFECTIVE PHOTON
DISTRIBUTION OF A STATIONARY
POINT CHARGE —
N & o .
In this appendix, we describe limit of=0 of the photon =
distribution of the point charge in subsection Il D. Since the -0. 25
spatial dependence of the effective photon distribution is
controlled by the Wigner transform of the vector potential, -500 - .
A, (x), we only discus#\,,,(x,q) here. When =0, the pho-
ton vector potential becomes, (x) = (e/|x|,0) soA ,,(x,q) h h
is the Wigner transform of the Coulomb potential. | | |
We take the point charge to be resting at the origin and -1000
-1000 =500 0 500 1000

emitting photons with four—momentumﬂz(qo,ﬁ). Putting

v=0 in Eq.(2.27), we find Xy [fm]

FIG. 17. Plot of the dimensionless functiohcorresponding to
) 1 the Wigner transform of the Coulomb field of a static point charge.
Aoo(X,q) =321 aemd(do) m The photons in this plot have, = (0,0.788,3) MeV/c. The longi-
tudinal axis is defined by the photon three-momentum.

X A(2|x||g|cod 6),2|x][qlsin(6)) APPENDIX F: EFFECTIVE ELECTRON PHASE-SPACE
DISTRIBUTION WITH Mg#0

In this appendix, we calculate the effective electron dis-
Aij=0 (ED)  tribution for electrons with a mass much larger than their
momentum. This calculation is not included in Sec. Ill be-

cause it is not relevant for QCD partons.

_ . . ) ) When the electron momentum is much smaller than its
whered is the angle betweex andq and the dimensionless mass, we can use Remler's propagators for massive particle
function A is given in Eq.(2.28. Clearly the photon field is [13]. His propagator takes one of two forms depending on
time independent and is composed entirely of zero energwhether the electron momentum is space-like or time-like.
photons. Furthermore, by virtue of thed|/ singularity, the  His propagator is discussed in Appendix G. We show a
photon field is mostly composed of low momentum photonssample electron density for both the time-like momentum

In Fig. 17, we plot the dimensionless functioh as a and space-like momentum cases. The momenta of the elec-

function of X for g=(0,0.788,@) MeV/c in the plane de- trons are chosen to satisfy the requirements phat>0 and
fined by)Z and d Note that the central region of the distri- Kr max be real. These requirements are equivalent to the re-

bution is circular, but becomes elliptical as one moves awa uwem;nlt thatp-v=me/y. Since p<me, we must also
from the center. In the transverse directi@e. the direction a\I/e;é .III B1 how that the electron’ .
perpendicular to the photon three-momentuthe distribu- n Sec. we show that the electron's source IS con-

tion approaches zero, but never goes negative. The width ifiolled by the parent photon distribution so we show the

the transverse direction is approximately 250 fm. In the lonParent photon distributions next to the electron distributions

gitudinal direction, the distribution drops to zero at about'" all subseque_nt plots. We do not restra|_n the photon; o
havegy,>0 as in Sec. Ill, so our sources include negative

X ~250 fm and oscillates about zero for larger distances. -
These oscillations are expected for a Wigner transforme§"€r9Y contributions. Because we use retarded photon propa-

: : ; gators in our source, these calculations only serve to illus-

23%?3;2”3;&5&;.reﬂeCt the fact that andq, are Fourier trate_ how Remler's propagators function. In fact, had we

Because the photon source is a point source, the shape @Stmted Go>0, the;e would not be enough momentum-
the Coulomb distribution comes directly from the shape ofspace to perform thie; integrals and the electron distribution
the retarded propagator in subsection 1l D 2. Thus, we catvould be zero.
estimate the width of the photon distribution using the esti-
mates of the retarded propagator in subsection Il D 2. In both
the longitudinal and transverse directions, the propagator
width is ~7c/|q.| =250 fm, which is the width we measure ~ The propagator for electrons with space-like momentum
from the plots. is

1. Feynman propagator for particles with space-like
momentum
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Underlying
S ons Photon Dist.
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FIG. 18. On the left: coordinate space distribution of spaceflike=(0.05,0.008,0.06,0) MeV/] electrons. Thet's indicate the sign
of the function in a particular region. The contours go in steps dfr2&rbitrary unitg. On the right: the photon distribution for photons with
94 ,=(—6.63-6.65,0.0648,0.00478) Me¥/ The other root has_,=(—6.33,-6.36,0.0648,0.00478) Me¥/and its distribution is
similar. Again, thex’s indicate the sign of the function in a particular region. Here, the contours go in steps dir0@bitrary units.

w D Fig. 18 we have a sample cut through the phase-space den-
GC(Ax,p)zf d7'54( Ax— 7') sity for electrons with a typical space-like 4-momentum
o VTP [p,=(0.05,0.008,0.06,0.0) Me¥]. On the right is one of
1 the underlying photon distributions. We chose the source ve-
X @~ 2Me|7] locity so thaty=12.47. This velocity is a compromise be-
2 2 2 . .
2Me\ — p(mg—p*) tween having enough momentum space available for the
— — electron and rendering the plot unreadable because of the
X{V=p® cog2ry—p?) Lorentz contraction.
+m, sin(2| 7| V= p?)}. Now we examine these plots. First, we see the contribu-

tions from retarded emission and propagatiapper left
Remler's propagator for space-like electrons has a verglectron pancakeand from advanced propagatigiower
simple interpretation. First, the delta function forces the elecfight pancakg Let us concentrate on the retarded electrons.
tron to follow its classical trajectory, but with the electron At some time in the past, the photons split into the electrons
velocity defined asv,=p,/V— p2. The exponential in and the positrons. The electrons then propagate forward
proper time strongly damps propagation that extends farthealong their classical trajectory until they reach the location of
in time than 1/2n, along the classical trajectory. The fact the left pancake. Notice that this pancake has nearly the same
that the proper time can extend forward or backwards in timesize as the photon distribution on the right. The other photon
simply reflects the boundary conditions of the Feynmandistribution, corresponding to the other root of positron mo-
propagator. Next, the sine and cosine cause the expectedentum, has a slightly different tilt and width, but the dif-
Wigner oscillations. The rest of the terms simply give nor-ference in the plots is not noticeable. The electron pancakes
malization. Finally, this propagator allows propagation out-are slightly larger than the photon pancake, presumably be-
side of the light-cone, but such propagation is stronglycause of momentum broadening from the emitted positron.
damped. This may seem strange, but should come as no suithe advanced electrons have exactly the same shape and size
prise: the coordinate space propagator for massive particless their retarded brethren, but they followed a time-reversed
will propagate a particle outside the light-cof&Y]. classical trajectory, coming from some time in the future.

2. Massive electrons distribution for electrons

. . . Feynman propagator for particles
with space-like momentum 3. Fey propag P

with time-like momentum

We now perform the integrals ovePk; andd*x in Eq.
(3.4). The d*x is a trivial delta function integral and the Remler’'s propagator for massive particles with time-like
integral overd?k; can be done numerically. On the left in momentum is
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Underlying
1000 Time-Like E ons ] Photon Dist.

500
E o |
£ I
-500
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-1000 0
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FIG. 19. Coordinate space distribution of time-likp,,=(0.05,0.005,0.04,0) Me\/] electrons. The*’s indicate the sign of the
function in a particular region. The contours &ire arbitrary unit$ 150, 10, 5, 1, 0.2, 0;-1, —5, — 10, and— 150. One of the roots of the
underlying photon distribution is shown at the right. These photons have momeptert—8.39,-8.42,0.182,0.142) Me\. Here, the
+’s indicate the sign of the function in a particular region and the contours go in steps ofif® 2Bitrary units.

- 1 We see the difficulty in interpreting the electron distribu-
GC(Ax,p)=f dr ——= tion. The Fourier transform took a simple photon peak and
0 2meJ52 produced a series of large electron peaks. The retarded
i \/—2 branch corresponds to the envelope of large positive peaks
% sin(27(Vp~—me)) 54 Ax— P~ on the upper left. The advanced branch corresponds to the

(VpZ—m,) Jp? envelope of large negative peaks in the lower right. Each

peak in the pair of envelopes appears to be a Lorentz pan-

sin(27( \/F+ me))é4 p cake, but the envelope as a whole is significantly broader
- (\/Fﬂ‘ﬂ ) Ax+ WT than the underlying photon peak. Presumably, averaging the
(53

distribution over unit areas in phase-space would result in a
much tighter average distribution.
Remler’s time-like propagator does not have as simple an
interpretation as his space-like propagator. Delta functions  AppENDIX G: FREE SCALAR PROPAGATORS
still keep the particle on its classical trajectory, but the inte- IN PHASE-SPACE
grals in “proper time” are Fourier sine transformed along
this classical trajectory. Thus, a simple peak in the underly- In this section, we state all of our phase-space propaga-
ing photon distribution will get Fourier transformed into a tors, discuss the symmetries of the massless propagators and
series of peaks and valleys in the electron distribution. Furoutline the derivation of the retarded and Feynman scalar
thermore, the advanced and retarded branches enter with diffopagators. The massive Feynman propagator is discussed
ferent signs, so we have largeegativecontributions from by Remler13] so our discussion here is brief. The Dirac and
the advanced branch. vector propagators differ from the scalar propagators by the
inclusion of either spin projector@n the case of Dirac par-
) o ticles) or polarization projectorsin the case of vector par-
4. Massive .ele(.:trong distribution for electrons ticles) so we do not need to discuss them.
with time-like momentum We define the Wigner transform of any translationally
Despite the difficulty in interpreting the propagator, the invariant propagator as

d*x and d’k integrals can be done. A sample cut through 4o’
the phase-space d_|str|bl_Jt|on_|s shown in Fig. 19._These elec- G(x,p):J' p . e—ix~p’G(p+ p'12)GT(p—p'/2)
trons have a typical time-like 4-momentufip,=(0.05, (2m)
0.005,0.04,0) MeW] and the source hasye=12.47 and is
moving to the right. Again, the source velocity was picked as ,ix! , ,
a compromise between readability of the plot and available :f dx’ e PG(Xx+xX'12)GT(x~X'12).
momentum space for the electron. (G1
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The vacuum propagators that we use [&€| 1 ) )
Go(x,p)= 7 —[sgr(x*) +sgn(p®) + 2 sgrix-p)]

G*(p)=—(p*~m’*iepy) * (G239
5. SIN(2Y\?)
c . X ON) —=—
Ga(p)=—(p?—mP=ie)~ L. (G2b) N
5. BXP(—2y—\?)
1. Massless scalar propagators —O0(=\%) J=N2 (G4a
a. Symmetries 1
A time reversal transform in coordinate space is equiva-  G*(x,p)= — 6(Xo) 8(x?) O(\?)
lent to a simultaneous reflection in time and energy in phase- m
space. Under time reversal theand — propagators change sin(2%2)
into one another while the Feynman and anti-Feynman X— 7 (G4b)
propagators remain unchanged: %

PP - . . Here the Lorentz invarianh? is given by \2=(x-p)?
G (X0:X:Po,P) =G (—X0.X,—Po,P) (G383  _y2n2 since we discuss how the propagators work in the
Secs. IID 2 and 11l B 3, we do not do so here.

Ge(Xg,X,Pg,P)=Ge(—Xg,X,— Po,P). (G3b c. Derivation of G

The Wigner transform o6 * is easiest to do in coordinate

A parity transform in coordinate space is equivalent to aspace. In coordinate spad,”(x) = (1/2) 6(xo) 8(x?), so _
simultaneous reflection in a space coordinate and the corréhe Wigner transform integral is a series of delta function
sponding momentum coordinate. Under a parity transformaintegrals. Performing the first delta function integra(@u),

tion, all of the propagators remain unchanged: and simplifying the theta functions, we find
- . R R 0(X0) (2% | ———
G™(X0,%,Po,P)=G*(Xo,~X,Po,~P) (G390 G (xp)= (2m)? ) VAo
— <%0
GC(XO-)ZipOaF;):GC(XOa_)z:pOa_5)- X dQ;,eiX"p(S(x’-x),
(G3d) 4

The Feynman propagators have anotfrather amusing . " e )
argument switchingymmetry. Here all the space-time com- USing 2m5(x) = ~.dae™, we can do the angular integral,
ponents are switched with the the corresponding momentun®iVing us a Bessel function:
energy components:

Gt (x,p)=470(X,) 0(x2)f_lldaei“”\]o(§\/1—az).

Here 7= 2(po|X| = XoX- p) and&=2x%(p?—(p-X)?). This
Finally, the Feynman and anti-Feynman propagator aréntegral is in any standard integral taljl@g]. After a bit of
related through a complete reflection of all of the space osimplification, one gets the result4b). This result can be

Ge(x,p)=Ge(p,x). (G3e

momentum coordinates: checked by performing the Wigner transforms in momentum
space, but the contour integrals needed for this calculation
G%x,p)=G¥ —X,p) (G3f)  are quite tedious.

d. Derivation of G

G%x,p)=G¥x,—p). G3 _ o . .
(x,p)=GAx,~p) (G39 The simplest derivation o6%(x,p) is far more compli-

cated than the derivation & *(x,p). We start by finding
b. Propagators the transport-like equation of motion for the Wigner

We now present the massless Feynman and retard&jopag_atoﬂ.gThe derivation is sim_ple and very s_imilar to the
propagators. The advanced and anti-Feynman propagato‘?'@”va“o” for the retarded equation of motion in Sec. IV F.
can be recovered using the symmetry relations above. Since® We only state the result:
all of the massless scalar propagators are dimensionless and
Lorentz invariant, we expect that they will be functions of
x- p andx®p? and possibly theta functions in energy or time. 8The constraint-like equation could also be used,®tits easier
In fact, the propagators are to derive using the transport-like equation.
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1 1
p-dGY(x,p) = — [wé(xz)sin(2x~ P) =P -z cog2x-p)|.

Now we define a projector onto the space perpendicular to the particle’s momegtuym=g,,—p p,/p?. This
allows us to change variablesxo, =g, ,,x” andr=x-p/|p 2] sgn@?. In terms of these variables, we find= —pzxf and
the equation of motion becomes

cog2[k? 7)

3,G(7,x, ,p)= 5(|k2|7-2—)\2)sin(2\/|k2|7-)—73W2|—7_2_—)\2—.

sgr(pz)J_ [

So, instead of doing the Wigner transform directly, we only have to solve this ordinary differential equation.
We find the solution by integrating this differential equation. The delta function integral is simple and the principle value
integral can be done by contour integration. We find

sin(2A\?) [1

2722
GE(7,%,,p) =G (%X, ,p)— Iﬁ( ) ——=— e { (0(p?)— 6(x?))+sgr(p?) 6(—7) | — }

sgn(p?) 6(—7) ey

We must now divine the boundary conditionat .

To find the boundary condition, we actually have to go back to the Wigner transform of the propagator starting from
momentum-space version of E¢51). We again change variable fromto = and x, . We also change fronp’ to p;|
=g, 0" and p-p’:sgn(oz)mk. With this, we perform thek contour integral. The integral is straightforward, but
tedious. However, when we take the limit as>o0, the result simplifies dramatically:

1
Gc(waLyp):W f d®p, COE(2XL~pL)5(p2+pf).

The delta function integral is trivial and the last pair of integrals requires integral tables, but in the end we find

1 o222
GC(oc,xl,p)=;lt9(>\2)sgr(p2) n(rr)w( A2 6(—p?) e

Plugging this into the solution of our differential equation, we find Eg4b). This result can be checked by performing a
series of contour integrals in momentum or coordinate space.

2. Massive scalar Feynman propagator

Remler[13] has found the Wigner transform of the massive Feynman propagator. This transform is difficult but, when one
uses the approximatiop’ 2~ (p-p’)?/p?, wherep is the average momentum apd is the relative momentum, the integrals
become simple contour integrals. We state Remler’s result here:

f_:d754( X

‘/_p—pz 7') e72m|r|2m —_pzl(mz_ 2 {\/—p2 cog27y—p?)+m sin(2|r|\/__pZ)} for p2<0,

G%x,p)=
oo 1 sin(27(yYp?—m)) ( p ) sin(27(y/p?+m)) ( p ) 2
LS 54 — f 0
0 dTZIII\/F[ (VpZ—m) d \/FT (Vp?+m) x \/pzT P TGS)

Note that, because of the approximation made, this propagator is oversmoothed in the direction transverse to the particle’s
momentum and we expect these propagators to be accurate only for length scales much larger than the size of the smoothing.
Since the resulting propagators vary on length scales of order\é should only use these propagators for momenta with

p<m. Note also that the sine and exponential functions in the two term&# have the property that they become
proportional tod(p?—m?) as—. Thus, this propagator reduces to the classical propafBsjrFinally, we note that the
Ssfunctions constrain the particle to move along its classical trajectory, even though its four-momg@mtdrhence its
four-velocity) is being modulated by the sine and exponential functions.
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