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Hard-scattering factorization with heavy quarks: A general treatment

J. C. Collins
Penn State University, 104 Davey Lab, University Park, Pennsylvania 16802

~Received 9 June 1998; published 11 September 1998!

A detailed proof of hard-scattering factorization is given with the inclusion of heavy quark masses. Although
the proof is explicitly given for deep-inelastic scattering, the methods apply more generally. The power-
suppressed corrections to the factorization formula are uniformly suppressed by a power ofL/Q, indepen-
dently of the size of heavy quark masses,M , relative toQ. @S0556-2821~98!03819-3#

PACS number~s!: 13.60.Hb, 11.10.Jj, 12.38.Bx
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I. INTRODUCTION

A correct treatment of heavy quarks in higher-order p
turbative QCD calculations is important@1–11# to precision
phenomenology. Among the reasons is the fact that a s
stantial fraction of the deep-inelastic cross section at HE
is in heavy quark production. Moreover, this occurs in
region where the heavy quark masses are not necess
negligible with respect to the large momentum scales in
problem~like Q).

However, there is a considerable confusion@3,6–11#
about what constitute correct methods for treating he
quarks. Some of the difficulties occur because many tr
ments assume that quarks either are so light that their ma
are negligible with respect toQ or have masses that are
order Q, where Q denotes a typical scale for the har
scattering process under discussion. One has to be ab
handle the intermediate region, whereQ is somewhat larger
than a quark mass but not enormously much larger.

Even whenQ is much larger than all quark masses, t
intermediate region must still be treated, because evolu
equations are used to obtain the strong coupling, the pa
densities, and the fragmentation functions from starting v
ues specified at scales of a few GeV. The symptoms of
issue are the different and apparently incompatible ‘‘mat
ing conditions’’ that have been proposed.1

In this paper I will give a relatively simple and gener
proof of factorization including the effects of heavy quark
The only issue that will not be treated is the cancellation
soft gluons, an issue which is essentially orthogonal to
ones which are causing problems. The key ingredient is
observation that the short-distance coefficient functio
~‘‘Wilson coefficients’’! can legitimately be calculated wit
the quark masses left non-zero. Previous work with Aiva
Olness and Tung@6# and others@7# has used this method
what is new is the complete and detailed all-orders proo

This first main characteristic of the method, that qua
masses are retained when necessary in the calculations o
coefficient functions, enables factorization to be valid wh
the masses of quarks are non-negligible with respect to
large scaleQ of the hard scattering. Hence the meth
avoids the normal problem when theMS scheme is used

1See for example@9,6#.
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with massless Wilson coefficients, that there are uncontro
corrections of order a power ofM /Q, whereM is a heavy
quark mass.

The second main characteristic is that the renormaliza
and factorization scheme consists of a series of subsche
labeled by the number of ‘‘active quark flavors,’’nA . This is
simply a generalization of the Collins, Wilczek and Ze
~CWZ! scheme@12# that is in standard use@13# for the QCD
couplingas . When discussing the numerical values of pa
ton densities, it is necessary to specify the number of ac
flavors that is used in their definition, just as in the case
the coupling.

The subschemes with different numbers of active flav
are useful in different ranges of physical scales, but w
overlapping ranges of validity. Since the subschemes are
lated by definite matching conditions@14,15#, the choice of
the number of active flavors does not result in any m
indefiniteness in the physical predictions than does the f
dom to choose a scheme or a value of the renormalizat
factorization scale.

At first sight, the use of a sequence of subschemes ins
of a single scheme appears rather baroque. However, it
fact the simplest implementation of mass-dependent fac
ization @16#. We require that the schemes implement dec
pling @17# of heavy quarks when appropriate, and that th
implement the closest possible scheme to the ma
independentMS scheme, which is commonly used for mo
perturbative QCD calculations. If one did not have a s
quence of schemes, it would be necessary to have m
dependent evolution equations. The CWZ scheme does h
mass-dependent evolution in the following sense. If o
chooses particular ‘‘thresholds’’—more accurately call
‘‘switching points’’—to change the number of active flavor
then the evolution kernels change at the thresholds. Mo
over, the matching conditions at the thresholds can
thought of as corresponding delta-function contributions
the kernels.

Some of the confusion in the literature can be traced
the supposition that Wilson coefficients must be calcula
with massless quarks. Indeed, many papers, for exam
@8,18,19#, treat factorization as a question of factoring o
mass divergences in a massless theory. Such met
founder when the quarks have non-negligible masses, s
then some of the divergences are not literally present
should be noted that the proof of factorization in@20# does
not assume that quarks are massless~contrary to the assertion
© 1998 The American Physical Society02-1
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J. C. COLLINS PHYSICAL REVIEW D 58 094002
in @11#!; the proof merely assumes that one is treating a li
in which the scale of the hard scattering is much larger t
all masses.

Another source of problems is that many treatments
factorization@8,18,19# take as their starting point an asse
tion that hard cross sections are the convolution of ‘‘b
parton densities’’ with unsubtracted ‘‘partonic cross se
tions.’’ Although this assertion is widespread, it has
proof: it has the status of an unproved conjecture. Indeed
not obvious that it is even true. However, this bare par
conjecture is not necessary either to the proof of the fac
ization theorem or to its use.

These problems with existing treatments, even without
treatment of heavy quarks, provide motivation for providi
much detail in the proofs in this paper. The proofs ap
equally well in the absence of heavy quarks.

The treatment in this paper will be based on the ba
power counting theorems derived by Libby and Sterman@21#
and on the methods of Curci, Furmanski and Petronzio@18#
for organizing sums of generalized ladder graphs. The tr
ment of heavy quarks uses the methods of Collins, Wilc
and Zee~CWZ! @12#. The powerful methods developed b
Chetyrkin, Tkachov, and Gorishnii@16,22,23# for the opera-
tor product expansion with mass effects are consistent w
the CWZ scheme.

The outline of this paper is as follows: In Sec. II, I expla
the requirements that I consider necessary to impose o
good treatment of mass effects. Then, in Sec. III, I review
CWZ scheme for renormalization. In that section, I also
fine a consistent terminology of ‘‘light’’ and ‘‘heavy’’
quarks, and of ‘‘partonic’’ ~or ‘‘active’’ ! and ‘‘non-
partonic’’ quarks. In Secs. IV to IX, I prove factorization i
the case that there is one heavy quark and thatQ is at least as
large as the heavy quark mass; this is the case where
heavy quark is active. As an interlude in the formal proof,
Sec. VI, I provide a mathematical example of the asymp
ics of certain integrals that mimic the behavior of the mo
complicated integrals in Feynman graphs for QCD. Then
Sec. X, I prove factorization for the case that the heavy qu
may be treated as inactive.~‘‘Non-partonic’’ is a better
term.! The general case, that there are several heavy qu
of various masses, forms a relatively simple generalizatio
the preceding work, and is treated in Sec. XI. An accoun
the matching conditions and of the evolution equations
given in Sec. XII. This is followed by an account of th
relation of the present scheme to the schemes of other
thors, in Sec. XIII. The conclusions are in Sec. XIV. In th
Appendix, I explain a certain mathematical complication th
appears in the middle of the proof.

II. REQUIREMENTS FOR A GOOD FACTORIZATION
SCHEME

The overall aim of work such as ours is to represent
teresting cross sections~or other quantities! in terms of per-
turbatively calculable quantities and a limited set of no
perturbative quantities that must at present be obtained f
experiment. A typical result is that for deep-inelastic stru
ture functions and other hard-scattering cross sections
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have factorization theorems: the leading largeQ behavior is
a convolution of hard-scattering coefficients, which can
perturbatively calculated, and of parton densities and/or fr
mentation functions. There are also evolution equations
the parton densities, etc., for which the evolution kernels
perturbatively calculable.

Although the factorization theorems are true in a gene
quantum field theory, and not just in QCD, their particu
utility in QCD is caused by the asymptotic freedom of QC
Without the use of factorization, perturbative calculations
typical scattering amplitudes and cross sections involve in
grals down to low virtualities where the effective coupling
too large for low-order perturbation theory to be valid. Fa
torization theorems segregate the non-perturbative part
cross section into a limited number of experimentally me
surable parton densities, etc. Moreover, typical cross sect
depend on several scales and perturbative calculations
cally have one or two logarithms of ratios of scales for ea
loop. Since the QCD coupling is not very small, the log
rithms can ruin the accuracy of practical calculations.
working with quantities that each depend on a single sc
one avoids this loss of accuracy.

For the purposes of this section, we will letQ be a~large!
scale defining the kinematics of the hard-scattering proc
under discussion and we will letM denote the mass of som
heavy quark. A satisfactory treatment should satisfy the
lowing requirements:

~1! The formalism should apply to all orders of perturb
tion theory and include arbitrarily non-leading logarithms

~2! Explicit definitions must be given of the non
perturbative quantities, as matrix elements of operators.

~3! The formalism is to be applicable to all the casesQ
@M , Q;M andQ!M , and the errors are suppressed by
power ofL/Q.

~4! Multiple heavy quarks should be treated without lo
of accuracy no matter whether the ratios of the masses
large or not.

The results in this paper will also satisfy some other
quirements which are more matters of convenience than
solute principles:

~1! When a quark mass is large enough for decoupling
apply, calculations should exhibit manifest decoupling. T
is, they should reduce to calculations in a standard sch
~e.g.,MS) in the theory with the heavy quarks omitted, a
with no need to adjust the numerical values of the coupli

~2! The scheme should reduce to a standard scheme~e.g.,
MS) when the masses are much less thanQ. We will in fact
use theMS scheme, so that standard hard-scattering calc
tions can be used unchanged in the case that masses c
neglected.

~3! The previous two requirements apply to both facto
ization and to the couplingas .

~4! The evolution equations for the parton densities, e
should be homogeneous. That is, they should be of the f
of conventional DGLAP equations or renormalization gro
equations rather than of the form of Callan-Symanzik eq
tions @24#. ~The solutions of Callan-Symanzik equation
2-2
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HARD-SCATTERING FACTORIZATION WITH HEAVY . . . PHYSICAL REVIEW D 58 094002
need an extra level of approximation to make them useful
calculations.!

III. CWZ SCHEME

The short-distance coefficient functions are almost co
pletely determined once one has specified a scheme for
fining the parton densities—in fact a scheme for renorma
ing the ultra-violet divergences in the coupling and in t
parton densities. The scheme defined in this paper is in fa
composite of a series of related schemes in the fashion
posed by Collins, Wilczek and Zee~CWZ! @12#.

First, it is necessary to introduce some terminology wh
consistent use will aid our work. Let us define a ‘‘light’’
quark or gluon to be one whose mass is of the order ofL or
less, i.e., under about a GeV. Similarly, let us define
‘‘ heavy’’ quark to be one whose mass is larger than a GeV
so, so that the effective coupling,as(M ), at the scale of a
heavy quark mass is in the perturbative region. With t
definition, the charm, bottom and top quarks are the he
quarks. We letnl be the number of light quarks, andnf be
the total number of quarks. In our present state of knowle
of QCD we havenl53 andnf56.

Each subscheme of the CWZ scheme is labeled by a n
ber nA , which I will call the number of ‘‘active’’ ~or ‘‘ par-
tonic’’ ! quarks. These are thenA lightest quarks. All the
remaining quarks I call ‘‘non-partonic.’’ ~It is also possible
to call them ‘‘inactive,’’ but the term can be misleading.! In
each subscheme:

~1! Graphs that contain only active parton lines~i.e., glu-
ons and active quarks! are renormalized byMS counter-
terms, with the exception of the renormalization of t
masses of heavy quarks.

~2! Graphs all of whose external lines are active parto
but which have internal non-partonic quark lines are ren
malized by zero-momentum subtraction.

~3! Heavy quark masses are defined as pole masses,
the work of Smith, van Neerven and collaborators@1,2,8#.
~We could also to choose to define heavy quark masse
MS without changing the formalism.!

~4! Other graphs with external non-partonic lines a
renormalized byMS counterterms.

These definitions are applied to the renormalization of
interaction and to the renormalization of the parton densit
fragmentation functions, etc.

A consequence of the definitions is that we will talk abo
‘‘three-flavor,’’ ‘‘four-flavor,’’ etc., definitions of the cou-
pling and parton densities~and fragmentation functions!. Use
of such a sequence of definitions is already common prac
for the coupling@13#, and identical considerations apply to
the parton densities. As a consequence it is meaningfu
specify numerical values of the coupling and of parton d
sities only if the number of active flavors is specified. The
are perturbatively calculable relations, or matching con
tions, between the values of these quantities with differ
numbers of active flavors.

I will now list properties of this set of schemes that a
important for our purposes. Their proofs are either in R
@12# or are later in this paper.
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~1! The scheme coincides with ordinaryMS when all par-
tons are active,2 i.e., nA5nf .

~2! Manifest decoupling is obeyed. If we have a proce
in which all external momentum scales are much less t
the masses of the non-partonic quarks, then we can omi
graphs containing non-partonic quarks and only make
power-suppressed error. In contrast, in a scheme that
not have manifest decoupling, we would have to adjust
numerical values of the couplings and of the parton densit

~3! Evolution equations for the densities of active parto
and of the couplingas are exactly those of a pureMS
scheme in a theory withnA quark flavors. This is a conse
quence of the mass-independence of UV counterterms in
MS scheme, together with an application of the decoupl
theorem@17,25#.

~4! The relation between the subschemes is just a part
lar case of the relation between different renormalizat
schemes. The matching conditions between the schemes
different numbers of active quarks are known to three loo
for the coupling@14# and to two loops for the parton dens
ties @15#. The matching conditions between quantities in t
subschemes withN andN11 active flavors involve no large
logarithms of masses, provided that the renormalizati
factorization scalem is of order the mass of the (N11)th
quark.~For example, we would choosem to be of order the
mass of the mass of the charm quark when we compute
relation between the three- and four-flavor schemes.!

~5! In general, if one varies the physical scaleQ of some
process~e.g., deep-inelastic scattering!, one should vary the
number of active quarks suitably. Quarks of mass much
than Q are to be active, while quarks of mass much larg
than Q should be non-partonic. One has a choice for tho
flavors whose masses are close toQ, and I suspect a bias in
favor of keeping quarks non-partonic will lead to more a
curate calculations.

~6! The light partons are always to be treated as activ
It might be considered odd that in a region whereQ is of

the order of the mass of some heavy quark we have a ch
as to whether to treat the quark as active or not. The freed
is entirely comparable to the freedom to choose the pre
value of the renormalization/factorization scale. Indeed
existence of a region where the two subschemes have c
parable accuracy is vital to the success of a good treatme
heavy quarks, because it enables reliable perturbative ca
lations to be made of the matching conditions@14,15# be-
tween the two subschemes.

Commonly @6,10,13#, the scheme is implemented b
choosing what can be called ‘‘matching’’ and ‘‘switching
points to be equal to the relevant heavy quark mass.
example, in treating DIS with a charm quark, one often s
the renormalization/factorization scalem to the kinematic
variableQ. Then one uses a 3-flavor subscheme ifm,mc
and a 4-flavor subscheme ifm.mc . One also chooses to

2Except that we have chosen to define heavy quark masses as
masses.
2-3
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J. C. COLLINS PHYSICAL REVIEW D 58 094002
evaluate the matching conditions between the subschem
m5mc . None of these choices is essential, and any cha
gives a change in the physical predictions only becaus
the errors due to the truncation of the perturbation series.
probably only appropriate~i.e., suitable for fixed order per
turbative calculations! to use a 4-flavor subscheme if one
treating a situation where the cross section is above
physical threshold for charm production, which is atQ
52mcAx/(12x). Hence, ifx is rather large, then it would
be appropriate to use the 3-flavor scheme even whenQ is
substantially abovemc .

Note that there are three distinct mass scales referred
the previous paragraph: a matching point, a switching po
and a physical threshold.

Of course, one is free to disregard the CWZ scheme
use some other scheme, provided that it provides comp
definitions of the parton densities and of the coupling. Ho
ever, this does not affect the validity of the CWZ definition
The significance of the CWZ definitions is that when
flavors are active, they areexactlythe MS ones.

IV. BASICS OF FACTORIZATION WHEN Q*M

The principles of the proof can be best explained by fi
considering the case that there is exactly one heavy quar
massM . There will be in effect two factorization theorem
to prove. The first, whose treatment starts in this section
appropriate when the physical scaleQ of the hard scattering
is at least at large in magnitude asM . In this case, it is
appropriate to treat the heavy quark as active: the factor
tion theorem will include a term with a heavy quark densi

The second case, whose treatment starts in Sec. X, is
propriate whenQ&M , and it treats the heavy quark as no
partonic. Then the factorization theorem has no term wit
heavy quark density, and all heavy-quark production is to
found ~at leading power! in the coefficient function.

As mentioned earlier, there is an overlap region,Q;M ,
where both theorems are appropriate, i.e., they give com
rable accuracy in predictions based on finite-order calc
tions of coefficient functions.

So in this section, we start the treatment of a factorizat
theorem for deep-inelastic structure functions, given the
sumption thatQ*M . A single factorization formula will
cover the case thatQ is much bigger than the heavy qua
mass, as well as the case thatQ and the heavy quark mas
are comparable, and the intermediate region. Our nota
for the photon momentumq, the hadron momentump, and
for the Bjorken variablex is standard. As usualQ252q2

.0. We will assume that quark masses are at most of o
Q.

When reading through the proof, it may be worth t
reader’s while to refer ahead to Sec. VI. There, a sim
mathematical example is given of the kinds of integral un
discussion, and it is possible to see more easily the mea
of the formal manipulations in the proof.

A. Leading regions

In the Bjorken limit~largeQ, fixed x), the leading power
behavior is given by the regions symbolized in Fig. 1, as w
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proved by Libby and Sterman@21,26#. In each region, there
is what we call a hard subgraphH, all of whose lines are
effectively off shell by orderQ2. It is to this subgraph tha
the virtual photons couple. The rest of the graph has li
that are much lower in virtuality and that are approximate
collinear to the momentump of the target. The latter part o
the graph we will call the target subgraphT. We will give
more quantitative characterizations of the regions later.~For
example, we must deal with the fact that there is a final-s
cut, so that some lines inH are actually on shell instead o
having virtualityQ2.)

Although one often does purely perturbative calculatio
in which the target is a quark or gluon state, our treatm
will also apply to hadron targets. In that case, suita
bound-state wave functions will be incorporated inT.

A result of the power counting is that for a contribution
have the leading power—to be of ‘‘leading twist’’—the tw
subgraphsH andT must be connected to each other by tw
parton lines, one on each side of the final-state cut. The se
decompositions into two such subgraphsH andT is in one-
to-one correspondence with the set of leading regions. Th
are two exceptions to this correspondence. The main ex
tion is that if the heavy quark mass is of orderQ, then theH
andT subgraphs are connected by light parton lines, but
by heavy quark lines. This exception arises because the
nition of the region implies that the lines joiningH and T
have virtuality much less thanQ, and this is not possible if
the lines are heavy quark lines of a mass comparable toQ.
The second exception to the power-counting rules is t
gluons with scalar polarization can couple theH andT sub-
graphs without a power-law penalty, at least in a covari
gauge: we will discuss this issue in more detail later in
section.

We define the subgraphT to include the full propagators
of the lines joining it toH, since these lines have momen
collinear to the target. Hence the hard subgraphH is one-
particle-irreducible~1PI! in these same lines.

In this and later figures, we have the initial state at t
bottom of the graph, and the hard subgraph to the left. T
ensures that the orientation of the figures corresponds to
equations we will write for convolutions of amplitudes. F
example, we can write Fig. 1 asH•T.

Any region of loop-momentum space that cannot be ch
acterized by Fig. 1 is suppressed by a power ofQ. Therefore
the statement that the leading regions have the form of Fi
is true to all orders in the coupling and includes not just
leading logarithms but all non-leading logarithms as well

A typical graph can have many different decompositio
into hard and target subgraphs. For example, Fig. 2 has

FIG. 1. Regions for the leading power of structure functio
have this structure.
2-4
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HARD-SCATTERING FACTORIZATION WITH HEAVY . . . PHYSICAL REVIEW D 58 094002
such decompositions,3 and hence four leading regions. Th
possibility of having more than one leading region is ch
acteristic not only of QCD, but of any renormalizable fie
theory, since adding extra lines insideH in a theory with a
dimensionless coupling does not change the counting
powers ofQ. It is the large multiplicity of regions that re
sults in many of the complications in the proof of factoriz
tion. In addition, it results in the logarithmic dependence
Q that is typical of higher order calculations in QCD.

In contrast, super-renormalizable theories~e.g., QCD in
less than four space-time dimensions! have couplings with
positive mass dimension. This implies that there is a sin
leading region. It is of the form of Fig. 1, but with the sma
est possible graph forH. That is, the unique4 leading region
has the form of the handbag diagram, Fig. 3. Although sup
renormalizable theories do not represent real stro
interaction physics, experience in treating simple case
useful in formulating the factorization theorem. Factoriz
tion, etc., for super-renormalizable theories is equivalen
the set of results obtained many years ago by Landshoff
Polkinghorne in the context of their covariant parton mo
@27#.

Let us now list some technical complications that we w
be able to ignore, but that are treated in other pap
@21,28,20# on factorization:

~1! Although we have defined the target partT to consist
only of lines with collinear momenta, it may in fact conta
some highly virtual lines. These are confined to subgra
that are ultra-violet divergent and just generate the usual
divergences that are canceled by counterterms in the
grangian. This complication does not affect our proofs, si
none of the divergent subgraphs in QCD overlap betweeT
andH, and our proofs will treatT as a black box.

~2! Although we treat the hard subgraph as being co
posed of lines all of which have large virtuality, this su
graph necessarily includes at least one final-state line.
after a sum over the possible final-state cuts, the hard
graph is a discontinuity of a certain Green function. Th
@21# the whole graph can be represented as a contour inte
over a Green function in which all the lines inH are off shell
by orderQ2. ThusH can indeed be treated as if its lines a
all far off shell. In particular, light-quark masses can leg
mately be neglected compared toQ. A simple example is
given by a super-renormalizable theory. Graphs with cut
uncut propagator corrections, Fig. 4, to the handbag diag
have the same power law inQ as the simple handbag dia

3The one decomposition that may not be obvious is whereH
comprises the whole of the graph in Fig. 2 with the exception of
right-most two external lines.T is then a trivial graph, in essence
factor of unity.

4But see the comments below concerning Fig. 4.

FIG. 2. A graph with 4 decompositions of the form of Fig. 1
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gram. Such graphs generate the correct final-state had
for the current-quark jet. After a sum over cuts, all su
corrections cancel at the leading power ofQ, and the struc-
ture function is correctly given by the lowest order handb
Fig. 3.

~3! Soft gluons can connect the different final-state je
and can connect the final-state jets to the target subgr
After a sum over final-state cuts these contributions can
This complication is only present in a theory with elementa
vector fields, e.g., QCD. A cancellation can be proved, a
for the purposes of this paper, we may assume that no c
plications result from the implementation of the cancellati
of soft gluons. In more general processes, like the Drell-Y
process, the issue of soft-gluon cancellation is much m
difficult @28,20#.

~4! In a general gauge, there can be extra collinear glu
lines connectingT andH. Such gluons only contribute to th
leading power if they have scalar polarization. However, i
suitable ‘‘physical’’ gauge is used~e.g., axial gauge with a
gauge fixing vector proportional toq), such contributions are
not present@21#. There are some subtleties associated w
the use of such a gauge. For example, the analysis of
leading regions in Refs.@21,26# relies critically on Landau’s
analysis of the singularities associated with the denomina
of Feynman propagators. But physical gauges introduce
tra unphysical singularities—the physical gauges are no
physical as one often supposes. For the purposes of this
per it is sufficient to ignore this complication, or to assum
that the appropriate light-like gauge is being used.

~5! The same phenomenon~in a covariant gauge! leads to
what I term ‘‘super-leading’’ contributions, whenH and T
are joined only by gluons that have scalar polarizations
can be shown@29# that the super-leading contributions ca
cel after a sum over a ‘‘gauge-invariant set’’ of graphs forH,
and that@20,29# the sum over attachments of scalar gluons
the hard part gives the correct gauge-invariant form of
parton densities, with a path-ordered exponential of
gluon field joining the two main parton vertices.

B. Relation of leading regions to mass singularities

To characterize the regions of momenta that Fig. 1
picts, it is convenient to use light-front coordinates, whe

e

FIG. 3. The handbag diagram that characterizes the only lea
region in a super-renormalizable theory.

FIG. 4. Handbag diagram with the final-state interactions t
make the current quark jet.
2-5
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we write a 4-vectorV as Vm5(V1,V2,VT) with V65(V0

6Vz)/&. Then we choose a coordinate frame such that

pm5S p1,
mp

2

2p1 ,0TD ,

qm'S 2xp1,
Q2

2xp1 ,0TD . ~1!

The approximation in the definition ofq represents the ne
glect of power suppressed terms, given thatx is normally
defined asQ2/2p•q.

To exhibit the counting of powers ofQ in its simplest
form, we will choose to boost the frame in thez direction
until p1 is of orderQ. Then regions of momentum corre
sponding to the hard and target subgraphs are defined
saying that, for a momentumkm: k is in H if k2 is of order
Q; k is in T if km5„O(Q),o(Q),o(Q)…, i.e., k1 is of order
Q, while k2 andkT are much smaller thanQ, as is appro-
priate for a momentum collinear to the incoming hadron.5

After a sum over final-state cuts, the interactions that h
ronize the jets in the hard subgraph cancel@21,26#, and then
we may treat the lines inH as if they are all off shell by
orderQ2.

The gauge we are using is the light-cone gaugeA150. In
this gauge, regions with extra gluons joining the target a
hard subgraphs in Fig. 1 are power suppressed.

Much of the literature treats factorization in terms of ma
singularities. To see the relation to our treatment, supp
that we were to take a limit of the structure function in whi
all light quarks and all external lines are massless. The ta
momentum would become light-like:pm→(p1,0,0T), so that
there would be collinear and infra-red divergences. T
infra-red divergences cancel after a sum over the differ
possible graphs and final-state cuts at a given order of
turbation theory, leaving only the collinear divergences as
ciated with the target. These occur@26# at momentum con-
figurations symbolized again by Fig. 1, but where mome
in T are exactly proportional to the target momentum, i
they are of the formkm5(k1,0,0T). There is an exact corre
spondence between the leading regions~for any m) and the
location of the singularities form50: the leading regions ar
just neighborhoods of the positions of the singulariti
Moreover the counting of powers ofQ corresponds to the
degree of divergence of the singularities.

However, in the true theory there need not be any ac
divergences. For example, in a non-QCD model we co
endow all the particle with masses, and our proof of fact
ization would remain correct. In QCD there are divergen
that are associated with the necessary masslessness o
gluon, but only if we make perturbative calculations wi
on-shell external gluons or quarks. In the real world, th
divergences are cut off by the non-perturbative effects

5We use the mathematicians’ bigO and little o notation: A
5O(Q) means thatA is of orderQ in the limit Q→`. A5o(Q)
means thatA/Q→0 in the limit Q→`.
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confinement. All the real particles of QCD are massive. T
singularities in the massless limit merely provide a con
nient tool forclassifyingregions of momentum space.

C. Elementary treatment of factorization

The factorization theorem can easily be motivated fro
Fig. 1, as we will now show. We will construct an approx
mation to a proof of the theorem that will introduce a numb
of useful ideas. The proof will be exactly correct in a sup
renormalizable theory, where the single important region
given in Fig. 3. In that case the proof is equivalent to t
argument given by Landshoff and Polkinghorne for the p
ton model@27#. The greater detail given in the present pap
will enable us to make precise operator definitions of par
densities. In addition, we will introduce some notations a
auxiliary concepts that will be useful in the full proof.

The hypothesis on which the approximate proof rests is
assumption that important momenta can be classified as
longing to either a region of hard momenta~that belong only
in H) or a region of momenta collinear to the initial hadro
p ~that belong only inT). We will need to assume~not quite
correctly! that the momenta collinear to the target have v
tualities that are fixed whenQ becomes large, and more sp
cifically that the orders of magnitude of the components o
target momentum are (Q,m2/Q,m), where m is a typical
light hadron scale.

Given this hypothesis,6 each graph can be decompos
unambiguously into a sum of terms of the form of Fig.
Thus we can write

F5 (
graphs G

G1non-leading power

5 (
graphs G

(
regions R

H~R!•T~R!1non-leading power,

~2!

where the summation overG is restricted to those graphs th
are two-light-particle reducible in thet-channel and that
therefore have at least one decomposition of the form of F
1. A region of such a graph is completely defined by its ha
and target subgraphs, so we can replace the sum over gr
and regions by independent sums over graphs forH andT:

F5H•T1non-leading power. ~3!

HereH andT are the sum over all possibilities for theH and
T subgraphs in Fig. 1, with the momenta being restricted
the appropriate regions. The symbol ‘‘•’’ represents a con-
volution, the integral over the 4-momentum linkingH andT
and a sum over the flavor, color and spin indices of the lin
joining the two subgraphs. Thus we have

6Incidentally, this hypothesis excludes heavy quarks from con
eration at this level of treatment, an error which we will reme
later.
2-6
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H•T5(
i
E d4k

~2p!4 Hi~q,k!Ti~k,p!. ~4!

Recall that we definedT to include the full propagators o
the two lines that connect it toH, so thatH is amputated in
these same two lines.

To get the factorization theorem, we use the observa
that some of the components of the loop momentum can
neglected inH, and also that some of the components of
trace over spin labels can be neglected. In theH factor in Eq.
~4!, we may neglect bothk2 andkT , since all the lines inH
are effectively off shell by orderQ2. This results in an error
that is suppressed by one or two powers ofQ. Thus we can
approximate the structure function by:

F5E
x

1 dj

j
H@q,~jp1,0,0T!#E dk2 d2kT

~2p!4 jp1T~k,p!

1non-leading power. ~5!

Here, to make contact with the standard usage in this sub
we have writtenk15jp1 and have changed variable fro
k1 to j.

In Eq. ~5! there is an implicit sum over the spin indice
and the flavor of the lines joiningT andH. Suppose the line
is a quark. Then we can decompose each ofH andT into a
sum of Diracg matrices. The leading terms involve ag2 in
the target subgraphT since that can be contracted with th
largest momentum components inT, which are the1 com-
ponents. Thus the most general form of the part ofT that
gives the leading power is a sum of terms proportional
g2, g2g5 andg2gT .

For the simple case of unpolarized scattering, only theg2

term contributes, and we can write7

F5(
a
E dj

j
trHag2E dk2d2kT

~2p!4 jp1
1

4
trg1Ta

1gluon terms1non-leading power, ~6!

with a similar decomposition being applied to the glu
term. Herea labels the different flavors of quark and an
quark. ~Note that in the usual applications,H andT are di-
agonal in quark flavor and only a single flavor index is
quired, the same for each of the lines joiningH and T.) A
similar result applies whenH and T are joined by gluon
lines.

It is convenient to represent this formula in a convoluti
notation with the aid of a projection operatorZ:

F5H•Z•T1non-leading power. ~7!

Z represents the operation of settingkT5k250 for the mo-
mentum of the external parton of the hard scattering and

7Generalization of the results to the polarized case results
purely notational complications, as regards the proof of factor
tion @30#.
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picking out the largest terms in the spin indices coupling
hard and target subgraphs. It is a sum of quark and gl
terms. The quark term is

Zaa8;bb8~k,l ;1st definition!

5
1

4
gaa8

2 gbb8
1

~2p!4d~k12 l 1!d~k2!d~2!~kT!. ~8!

This and similar objects will be used repeatedly in our wo
It is readily verified thatZ is a projection, i.e.,

Z25Z, ~9!

and hence, for example, (12Z)•Z50. The label ‘‘1st defi-
nition’’ in Eq. ~8! indicates that a modified definition, whic
we will now give, is superior.

In fact, the above definition of the projectorZ is suitable
for massless quarks. Its use in Eq.~7! remains valid when the
quarks inH have non-zero mass, but it is not perfectly co
venient for practical calculations.8 For example, calculations
of the short-distance coefficient functions do not satisfy
act gauge invariance, because the external lines ofH are off
shell. Therefore it is convenient to replace Eq.~8! by a defi-
nition in which the external quarks ofH are put on shell.
This involves replacingk by an on-shell momentum

k̂m5~jp1,m2/2jp1,0T!, ~10!

and using the Dirac matrix for on-shell wave functions:

Zaa8;bb8~k,l ;massive quark!

5
k̂mgaa8

m
1m

4k1 gbb8
1

~2p!4d~k12 l 1!

3d~k22m2/2k1!d~2!~kT!. ~11!

The resulting leading-power approximation toF is

H•Z•T5(
a
E dj

j
trH

k̂mgm1m

2

3E dk2d2kT

~2p!4 tr
g1

2
T1gluon terms. ~12!

Here k̂m is the approximated momentum, Eq.~10!. Notice
that although the external parton lines ofH are put on shell,
this is not true of the corresponding external partons of
target subgraphT; these are integrated over all values ofk2

andkT in the collinear region of momentum.
The change in the definition ofZ for massive quarks doe

not affect the factorization theorem~7!. To see this, observe
that the change of definition only changes small compone

in
-

8Observe that in conventional treatments of factorization, it is n
mal to set quark masses to zero in the hard scattering. Prec
because we wish to treat heavy quarks, we do not at this p
choose to set quark masses to zero.
2-7
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of the momentumk and of theg matrices attached toH.
Thus we have only made an error similar in size to
power-suppressed error that we already induced by ma
an approximation in the first place. Also the algebraic pro
erty Z25Z, which we will make frequent use of later,
unchanged.

Since the operationZ projects out the integral overk1,
Eq. ~7! gives the structure function as a convolution of a ha
scattering coefficient and parton densities:

F5F̂ ^ f 1non-leading power. ~13!

The symbol^ represents a convolution in thej variable,9

together with a sum over quark flavors and over the gluon
will also include a sum over the spin degrees of freedom
polarization-dependent effects are being treated.

The parton densities can be expressed in their usual f
@31# as matrix elements of light-cone operators. A quark d
sity is then

f ~j!5E dk2d2kT

~2p!4 tr
g1

2
T~k,p!. ~14!

Given that we obtained the factorization theorem by deco
posing momentum space into a hard region and a collin
region, the integral in Eq.~14! is restricted to the collinea
region. When we provide a more correct proof, we will r
move the restriction to collinear momenta, so that the d
nition of a parton density is exactly as a matrix element o
bilocal operator on the light-cone.

From the definition ofZ, Eq. ~11!, it then follows that the
hard-scattering coefficient is computed fromH by contract-
ing with the Dirac matrices appropriate for an external o
shell fermion, with a spin average:

F̂5trH
k̂mgm1m

2
. ~15!

The factor of 1/2 means thatF̂ has the normalization of a
spin-averaged cross section.

D. Why the simple derivation does not work

The above derivation of the factorization theorem wou
be valid if one could use a fixed decomposition of mome
tum space into regions appropriate forH andT, at least up to
power-suppressed terms. This assumption is in fact true
super-renormalizable theory, and the above derivation t
leads to the parton model. Only the lowest order graph foH
gives a leading contribution in this case, Fig. 3. This kind
reasoning led Feynman to formulate the parton model@32#.

Unfortunately the error estimates obtained from the ab
argument, in a renormalizable theory, are of a relative s
that we represent as of order (T/H)p. Here we useT to

9F̂ ^ f [*dj/j F̂(x,j) f (j).
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represent the largest virtuality in the subgraphT, we useH
to represent the smallest important virtuality inH, andp is a
fixed exponent. In a super-renormalizable theory there
leading power contributions only when the virtualities in t
subgraphT are of order a hadronic mass~squared!, so we get
an excellent error estimate.10 But in renormalizable theories
including QCD, there are logarithmic corrections that cov
the whole range of virtualities from a hadronic mass up toQ.
Thus the only simple estimate of the errors is that they are
relative order unity, with perhaps only a logarithmic suppre
sion: the maximum virtuality inT might only be a little less
than the minimum virtuality inH. A more powerful argu-
ment is needed to get a good proof of a theorem of the fo
of Eq. ~13!, with relative errors of order (L/Q)p, whereL
denotes a typical hadronic infra-red scale.

In addition, when we have heavy quarks, the proof do
not give us a factorization theorem that applies uniformly
any value ofQ larger than or of order of the quark mass.
Q is much larger thanM , the proof gives a factorization o
just the same form as with light quarks. IfQ were of order
M , then we would have to restrict the lines joiningH andT
to be light partons, and then to use the methods of Sec
below. But the proof would be unable to give an optim
error estimate in the intermediate region.

V. PROOF OF FACTORIZATION WHEN Q*M

Even with its defects, the reasoning in the previous s
tion contains a core of truth, which we will now use as t
basis for a correct proof.

Our aim is to prove

F5F̂ ^ f 1remainder, ~16!

with the following properties:
~1! The coefficient functionF̂(x/j,Q2,M2) is infra-red

safe: it is dominated by virtualities of orderQ2.
~2! The parton densityf is a renormalized matrix elemen

of a light-cone operator.
~3! The remainder is suppressed by a power ofL/Q.
~4! This suppression is uniform over the whole rangeQ

*M , so that, for example, there are noO(M /Q) terms.
This theorem looks just like the result~13! we tried to

prove by elementary methods, except that the precise de
tions of the factors are different.

A. Expansion in 2PI graphs

To utilize the result in Fig. 1, it is convenient@18# to
decompose the structure function in terms of two-parti
irreducible amplitudes, Fig. 5:

10This fact is established from the same power-counting rules
show that all regions of the form of Fig. 1 are leading in a ren
malizable theory.
2-8
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FIG. 5. Decomposition of structure function in terms of 2PI amplitudes.
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F5 (
n50

`

C0•~K0!n
•T01D

5C0•
1

12K0
•T01D. ~17!

The notations11 C0 andK0 are the same as in Ref.@18#. Each
of the amplitudes is two-particle irreducible~2PI! in the hori-
zontal channel~i.e., thet channel!, except for the inclusion
of full propagators joining the amplitudes. ThusD is the 2PI
part of the structure function, while for the reducible grap
C0 is the 2PI subgraph to which the currents couple, andT0
is the 2PI subgraph to which the target hadron couples. B
K0 and T0 include full propagators12 on the left side, and
consequentlyC0 andK0 are amputated on the right, just as
Fig. 1. In principle this is a non-perturbative decompositio
The intermediate two-particle ‘‘states in thet channel,’’ be-
tween theC0 , K0 , and T0 factors, include all flavors of
parton,including heavy quarks.13

B. Construction of remainder

It turns out to be convenient to first construct what w
turn out to be the remainder in Eq.~16!. This is defined by
the following formula;

r 5 (
n50

`

C0•~12Z!•@K0~12Z!#n
•T01D

5C0•
1

12~12Z!K0
•~12Z!•T01D

5C0•~12Z!•
1

12K0~12Z!
•T01D, ~18!

with Z being defined by Eq.~11!. This formula is obtained
from the formula Eq.~17! for the structure function by in-
serting a factor 12Z on each two-particle intermediate sta
in the t channel. This, as we will show, gives a power su

11The subscript zero inC0 , K0 and T0 is used because we wil
want to define some related but different objects later, with
same primary symbol, and we will in particular wish to reserve
unadorned symbolC for the short-distance coefficient.

12Strictly speaking, this means that to call the amplitudes 2P
not quite correct.

13In the case that the external hadrons are replaced by quar
gluons, we will haveD50 andT051.
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pression. The 2PI part,D, is non-leading since all the lead
ing regions, Fig. 1, are associated with two-particlereducible
graphs. The 12Z factors may be considered as providin
subtractions that cancel all the leading regions. That is, if
start with the decomposition Eq.~17! of the full structure
function and subtract off all leading contributions, then w
end up with Eq.~18!.

Once we know thatr as defined above is power sup
pressed, we will be able to use the methods of linear alge
to construct a factorized form forF2r . This will be suffi-
cient to give the factorization theorem together with all t
desired properties.

Now, leading contributions to the structure function com
from regions of the form of Fig. 1. At the boundary betwe
the hard and target subgraphs, inserting a factor of the
eratorZ gives a good approximation. Hence an insertion o
factor 12Z produces a power suppression. Inserting a fac
12Z at other places does not increase the order of the m
nitude of the graph.14 Since we have put a factor 12Z at
every possible position of boundary between hard and ta
subgraphs, we obtain a power suppression for every term
Eq. ~18!.

To be more concrete, suppose that we have a region o
form of Fig. 1. The insertion of a factor 12Z at the bound-
ary between the region’s hard subgraph and its target s
graph gives a suppression by a factor of order

S highest virtuality in T

lowest virtuality in H D p

, ~19!

as follows from the arguments in Sec. IV C.
Furthermore, let us observe that in the left-most ru

closest to the virtual photon, we have virtualities of ord
Q2, while in the right-most rung, closest to the target, w
have virtualities of orderL2. Within a given rung, the lead
ing power contribution comes where all the lines have co
parable virtualities, since leading power contributions on
occur when the boundaries of very different virtualities a
as in Fig. 1. Given that in Eq.~18! we have a factor 12Z
between every 2PI rung, there is a suppression when
there is a strong decrease of virtuality in going from one ru
to its neighbor to the right. Thus we find that Eq.~18! has an
overall suppression of ordere

e

s

or

14Except that certain ultra-violet divergences may be introduc
We will see later that there are divergences when one separate
terms in Eq.~18! with the 1 and theZ factors, but that there are n
divergences in Eq.~18! itself.
2-9
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S L

QD p

, ~20!

when it is compared to the structure function itself~17!.
This suppression of course gets degraded as one go

higher order for the rungs, since the lines withinK0 can have
somewhat different virtualities. The larger a graph we ha
for K0 , the wider the range of virtualities we can have wit
out meeting a significant suppression.

C. Induced UV divergences

The above argument shows that the quantityr , as defined
by Eq. ~18!, is power-suppressed in all the regions of m
mentum space that are relevant for the structure functionF.
However, the existence of terms containing factors ofZ in
Eq. ~18! entails some extra regions. These regions have
potential of not only being unsuppressed but also of giv
UV divergences.

The lowest order non-trivial example is given by then
51 term:

r 15C0•~12Z!•K0•~12Z!T0

5C0•K0•~12Z!T02C0•Z•K0•~12Z!T0

5C0•K0•~12Z!T02C0•Z•K0•T01C0•Z•K0•Z•T0 .
~21!

In the second term on the last line, the factorZ•K0•T0 is a
contribution to the matrix element of the bilocal opera
defining a parton density, Fig. 6. There is a UV divergen
when thekT and k2 in the loop~s! comprising the operato
vertex and the rungK0 go to infinity. The divergence is in
fact canceled by the last term in Eq.~21!. To see this, ob-
serve that the two terms combine to give the second term
the second line. The 12Z factor gives a power suppressio
of the potentially divergent region, and the proof is the sa
as we used to obtain the suppression proved in the prev
subsection. Look ahead to Sec. VI to see a concrete exa
illustrating the above manipulations.

A general proof of the cancellation of the induced U
divergences immediately suggests itself. The regions
give the possible divergences arise from regions of the fo
shown in Fig. 7. There, the insertion of aZ factor between
two rungs has given an operator vertex, through which
flow ultra-violet momenta. The proof of cancellation of th

FIG. 6. Second term of third line of Eq.~21!.

FIG. 7. Induced UV divergences inr are in subgraphs of the
form of U in this diagram.
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UV divergences is simply that the 12Z factors to the right
suppress the regions giving the UV divergences.

D. Factorization

We now derive a factorization formula for the structu
function by showing thatr is equal to the structure functio
minus the factorized term in Eq.~16!. Starting from Eqs.~17!
and ~18!, we find

F2r 5C0•F 1

12K0
2

1

12~12Z!K0
~12Z!G•T0

5C0•
1

12~12Z!K0
•@12~12Z!K0

2~12Z!~12K0!#•
1

12K0
•T0

5C0•
1

12~12Z!K0
•Z•

1

12K0
•T0 . ~22!

This proof is very similar to some proofs in Refs.@18# or
@33#. It consists of some ordinary linear algebra, which
valid sinceZ andK0 are just linear operators on the space
4-momenta. The form of the right-hand side of this equat
is that of the factorization theorem. Aside from a normaliz
tion, the factorZ•@1/(12K0)#•T0 is exactly the matrix ele-
ment that is a parton density, and then the remaining facto
the short-distance coefficient function.

The only complication is the presence of UV divergenc
of the form discussed in Sec. V C. There are divergence
the parton density factorZ•@1/(12K0)#•T0 on the right-
hand side of Eq.~22!. There are also divergences in the c
efficient functionC0•$1/@12(12Z)K0#%. Of course, these di-
vergences cancel, since the left-hand side of Eq.~22! is
finite, as we have already proved. For the moment, let us
apply any convenient UV regulator, e.g., dimensional re
larization. We will show later how to reorganize the righ
hand side of Eq.~22! in terms of UV finite quantities.

Given that there is a regulator, so that everything in E
~22! is well defined, we define a bare coefficient function

CB5C0•
1

12~12Z!K0
•Z, ~23!

and a bare15 operator matrix element

15Our use of the terminology ‘‘bare parton density’’ has nothi
in common with the usage in some other literature@8,18,19#. In the
present work, and in Ref.@31#, the word ‘‘bare’’ is used to denote a
quantity that has ultra-violet divergences that have not been
celed by renormalization. In@8,18,19#, the word ‘‘bare’’ refers in
some undefined sense to parton densities that are convoluted
unsubtracted partonic cross sections, and divergences in su
quantity are infra-red, not ultra-violet. See Sec. XIII C, where
examine Zimmermann’s methods, for a way of giving meaning
such formulas.
2-10
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AB5Z•
1

12K0
•T0 . ~24!

This differs slightly in normalization from the parton dens
ties defined in Eq.~14!, since Z contains a1

2 ( k̂mgm1m)
factor that we will ultimately put in the coefficient function
Other than that, the matrix element in Eq.~24! is the same as
the parton density defined in Eq.~14! when the momenta ar
unrestricted, which was not the case in our derivation of
~14!.

From Eq.~22!, together with the property thatr is power
suppressed, follows the factorization theorem

F5CB^ AB1non-leading power. ~25!

Except for the subscripts, this equation has the same form
Eq. ~13!. As in that equation, we have replaced the sym
‘‘ •’’ for convolution in 4-momentum by the symbol̂ for
convolution in fractional1momentum. The differences be
tween the two factorizations are that in Eq.~25! the integrals
defining the parton density and the coefficient are un
stricted. Instead, the coefficient function, Eq.~23!, has fac-
tors of 12Z placed between the 2PI rungs. As we will see
ni
r

to

a
4

na

ll
ne

09400
.

as
l

-

an example in Sec. VI, these factors have the effect of m
ing subtractions that prevent the double counting of the
ferent regions and of forcing the momenta in the integrals
the coefficient function to be in the hard region of virtuali
of order Q. In contrast to this, the integrals in our first a
proximation to a factorization theorem, Eq.~13!, are re-
stricted to particular regions. Moreover, for the new form
the factorization equation we have an explicit estimate of
error, Eq.~20!.

The bare matrix elementAB is exactly a matrix element o
a particular bilocal light-cone operator. This follows from th
fact that it is defined as an integral of the form of Eq.~14!,
with unrestricted integrals overk2 andkT .

VI. EXAMPLE

To understand the meaning of the above derivation, i
convenient to examine a simple set of integrals that have
same structure.

First, we observe that all the equations can be written a
sum over powers inK0 , and that equations are true for ea
power of K0 separately.16 Thus we can write the first few
terms in the structure functionC0(1/12K0)T0 as
C0•T05@C0•Z#•@Z•T0#1C0•~12Z!•T0 , ~26!

C0•K0•T05@C0•Z#•@Z•K0•T0]

1@C0•~12Z!•K0•Z#•@Z•T0]

1C0•~12Z!•K0•~12Z!•T0, ~27!

C0•K0•K0•T05@C0•Z#•@Z•K0•K0•T0]

1@C0•~12Z!•K0•Z#•@Z•K0•T0#

1@C0•~12Z!•K0•~12Z!•K0•Z#•@Z•T0]

1C0•~12Z!•K0•~12Z!•K0•~12Z!•T0. ~28!
ing
tion
The last term in each line is a power-suppressed and fi
remainder term, the contribution at the appropriate orde
K0 to the remainderr defined in Eq.~18!. The other terms
are each a contribution to the coefficient function in Eq.~23!
times a contribution to the matrix element in Eq.~24!. ~I
have usedZ25Z and then the square-bracket notation
make this structure more manifest.!

A. Model

Now let us make a simple mathematical model that has
the relevant structure. We replace integrals over
dimensional momenta by integrals over a 1-dimensio
variable that runs between 0 and̀, and we remove all labels
for the flavor and spin of the partons. We also set the fu
2PI partD of the structure function to zero. Then we defi
te
in

ll
-
l

y

C0~k!5
Q

Q1k1m
,

K0~k,l !5
as

k1 l 1m
,

T0~k!5
1

~k1m!2 . ~29!

The motivations for these formulas are as follows:

16Note thatK0 can be expanded in powers of the strong coupl
as , so that this expansion is related to the ordinary perturba
expansion.
2-11
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Q corresponds to the external photon momentum of de
inelastic scattering,m corresponds to a quark mass~heavy or
light!, andk and l correspond to the loop momenta couplin
neighboring rungs in Eq.~17!.

C0(k) is an analogue of a lowest order graph for the h
part in Fig. 1. In deep-inelastic scattering, it has a propag
that depends on a loop momentumk plus a hard momentum
q. This is modeled by the denominatorQ1k1m. The factor
Q in the numerator is inserted to provide a convenient n
malization:C0→1 asQ→`.

K0(k,l ) is an analogue of the lowest order graph for
rung. The lowest order graph forK0 in Eq. ~17! has a depen-
dence on a difference of external momenta,k andl . To make
a simpler mathematical example, we have replacedk2 l by
k1 l . To symbolize the analogy with a rung, we have put
a factor of the strong couplingas , just as we would have fo
the lowest order rung in QCD. To ensure that the analog
with a renormalizable theory,K0 is defined in such a way
that the coupling is dimensionless.

T0(k) is given an extra power of 1/(k1m) compared with
K0 . Then it gives a finite result when integrated over allk,
just as happens forT0 in real QCD. We could have use
T051/(k1p1m)2, with p being like an external momen
tum. But this would have been an irrelevant complication

In each denominator in Eq.~29!, m is meant to be like a
mass term. Just as in QCD we get a logarithmic infra-
divergence when we have an integral overK0(k,l ) with re-
spect tok, and we replacel andm by zero.

The mathematical structures we get are of the same f
as in QCD, but we will be able to present simple formul
For example, there is no longitudinal1component of mo-
mentum to integrate over in the factorization formula.

To obtain examples of heavy quark physics, we can
placem in C0 and/or some of theK0’s by M .

B. Lowest order

The lowest-order term in the structure functionF is

C0•T05E
0

`

dk
Q

Q1k1m

1

~k1m!2 . ~30!

WhenQ→`, k remains finite, and the asymptote is

C0•T0→E
0

`

dk
1

~k1m!2 . ~31!

Up to power suppressed factors, this is just the lowest o
coefficient functionC0•Z times the lowest order matrix ele
mentZ•T0 :

C0•Z•T05
Q

Q1m E
0

`

dk
1

~k1m!2 . ~32!

Here the operatorZ(k,l ) is just d(k). That is, we get
C0•Z•T0 from C0•T0 by settingk50 in theC0 factor.

If we takeQ→` with m fixed, the leading power behav
ior is obtained by settingm50 in the coefficient function:
Q/(Q1m)→1.
09400
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C. NLO term

The next order term is

C0•K0•T05E
0

`

dkE
0

`

dl
Q

Q1k1m

as

k1 l 1m

1

~ l 1m!2 .

~33!

There are two simple regions that give a leading powerQ0:
~a! k and l of orderm, and~b! k of orderQ with l of order
m. In addition the regionQ@k@ l;m interpolates between
the two simple regions and gives a logarithmically enhan
contribution of order lnQ. This last region gives the leadin
logarithm approximation. It can be checked that the lead
power contributions are all from the region wherel;m.

To derive the factorization formula expanded to orderK0 ,
we decomposeC0•K0•T0 as follows:

C0•K0•T05C0•Z•K0•T01C0•~12Z!•K0•Z•T0

1C0•~12Z!•K0•~12Z!•T0 , ~34!

just as in Eq.~27!. We can explain the right-hand side of th
equation as being obtained by a series of successively
proved approximations for the leading behavior asQ→`.

The first term on the right is the lowest-order coefficie
times the one-loop matrix element:

C0•Z•K0•T05
Q

Q1m E
0

`

dkE
0

`

dl
as

k1 l 1m

1

~ l 1m!2 .

~35!

It gives a good approximation to the original integral E
~33! in the region wherek andl are of orderm. Its accuracy
gets worse ask increases. Furthermore, we have an ult
violet divergence whenk→`, since the extra convergence
largek given by theQ/(Q1k1m) factor in ~33! is removed
by the approximation. In the real factorization theorem
field theory, the divergence is the normal UV divergen
associated with the insertion of the vertex for a compos
operator~such asc̄gmc). To define the integral in Eq.~35!
we must implicitly apply an ultra-violet regulator. The reg
lator can be removed if we apply suitable renormalization,
we will show in Sec. VI E.

The poor approximation ask increases towardsQ is rem-
edied by the second term in Eq.~34!, the one-loop coefficient
times the lowest-order matrix element:

C0•~12Z!•K0•Z•T05E
0

`

dkE
0

`

dlS Q

Q1k1m
2

Q

Q1mD
3

as

k1m

1

~ l 1m!2 . ~36!

This can be thought of as a termC0•K0•Z•T0 , which gives
a good approximation whenk;Q, together with a subtrac
tion term 2C0•Z•K0•Z•T0 , which prevents double count
ing from the previous term, Eq.~35!. The subtraction term
2-12
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suppresses the contribution to Eq.~36! of the infra-red region
k!Q, so that the one-loop contribution to the bare coe
cient function

E
0

`

dkS Q

Q1k1m
2

Q

Q1mD as

k1m
, ~37!

has no IR divergence in the massless limit. This term a
has a UV divergence equal and opposite to that in Eq.~35!,
so that the sum of the two terms is UV finite.

The structure of the subtraction terms is exactly the sa
as in the work of Aivaziset al. @6# on calculations of coef-
ficient functions for heavy quark processes. To get a m
exact analogy to that work, one could changeC0 to Q/(Q
1k1M ), i.e., one could replace the light quark mass inC0
by a heavy quark mass. This mimics the effect of a he
quark loop at the left-hand end of the diagram~confined to
C0). It is left to the reader to check that all the statements
make about the asymptotic behavior remain true in t
heavy quark example, provided only thatQ is large com-
pared to thelight quark massm, and thatQ is roughly at
least as large as the heavy quark massM . That is the remain-
der that is suppressed bym/Q rather than justM /Q.

D. NLO: Remainder

The third term on the right of Eq.~34! is the remainder. It
is simply the left-hand side minus the first two terms. T
fact that the sum of the first two terms gives the full leadi
power, complete with its logarithm, is demonstrated
showing that the remainder,

C0•~12Z!•K0•~12Z!•T0

5E
0

`

dkE
0

`

dlS Q

Q1k1m
2

Q

Q1mD
3S as

k1 l 1m
2

as

k1mD 1

~ l 1m!2 , ~38!

is power suppressed. To see this, we observe that the p
tially leading contributions, whenk&Q and l;m are can-
celed by the subtractions.17 There is a possible UV diver
gence ask→`, but this is canceled by the subtraction in t
second factor. This subtraction suppresses the regionk@ l ,
and it is as effective at suppressing the region for the ul
violet divergence, viz.k→`, as it is at suppressing the orig
nal region it was designed to handle,k;Q.

E. NLO: Renormalization

Next, we perform renormalization in the two terms co
tributing to the leading power. We can remove the UV
vergence in each term separately by adding suitable cou
terms; in the factorization theorem this would amount
defining renormalized composite operators, a procedure
will implement in Secs. VII A–VII C. A convenient metho

17Q*k includes the regionsk;Q andk!Q.
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of constructing counterterms is subtraction of the asymp
@34#. So we can define the lowest-order coefficient times
renormalized two-loop matrix element to be

R~C0•Z•K0•T0!

5
Q

Q1m E
0

`

dkE
0

`

dlS as

k1 l 1m
2

asu~k.m!

k D
3

1

~ l 1m!2 . ~39!

In field theory, a sensible counterterm to a subgraph i
polynomial in the external momenta of the subgraph. If
use minimal subtraction, the counterterm is also polynom
in masses. The degree of the polynomial is equal to the
gree of divergence. In our toy example, this means that
counterterm has to be independent ofl andm. The counter-
term asu(k.m)/k does indeed satisfy this criterion. Theu
function is needed to prevent there from being an infra-
divergence in the counterterm, and the arbitrary parametem
has the function of a renormalization/factorization scale, j
as in conventional minimal subtraction.

It now follows that the renormalized one-loop coefficie
function is

R@C0•~12Z!•K0•Z#5E
0

`

dkF S Q

Q1k1m
2

Q

Q1mD
3

as

k1m
1

Q

Q1m

asu~k.m!

k G ,
~40!

which is multiplied by the one-loop matrix elemen
*0

`dl/( l 1m)2. The counterterms in the above two terms a
equal and opposite, so that the sum of the two renormali
contributions to the leading power is the same as the sum
the bare terms. Notice that if we choose the factorizat
scalem to be of orderQ, then the integral in the one-loo
coefficient function is dominated byk of orderQ.

F. Zero mass limit of coefficient function

Finally, we observe that the coefficient function has
finite m→0 limit. The coefficient function is the sum of th
lowest order termC0•Z5Q/(Q1m), the one-loop term Eq
~40!, and higher-order terms. In a field theory, the existen
of the zero mass limit implies that the coefficient function
infra-red safe and is a symptom of the perturbative comp
ability of the coefficient function in QCD whenQ is large.

For example, the massless limit of Eq.~40! is

E
0

`

dkF S Q

Q1k
21D as

k
1

asu~k.m!

k G . ~41!

The infra-red divergence ~at k50) in the term
*dkQ/(Q1k)(as /k) is canceled by the subtraction in th
2-13
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first term. The subtraction is designed to cancel the reg
where k!Q, and this includes the region of the possib
infra-red divergence.

One reason for emphasizing the zero mass limit is t
calculations become algorithmically much simpler, es
cially for the analytic evaluation of Feynman graphs. But o
derivation shows that a non-zero mass may be left in
calculation of the coefficient functions, as would be app
priate if the mass is not sufficiently small compared withQ.

VII. USE OF RENORMALIZED PARTON DENSITIES

We now return to the factorization theorem in fie
theory.

A. Renormalization of operators

To construct the final form of the factorization, we w
re-express the bare factorization theorem, Eq.~25!, in terms
of the matrix elements of renormalized operators. These
erators have no UV divergences, unlike the bare oper
matrix elements defined in Eq.~24!.

Now, the divergences come from regions of the fo
shown in Fig. 8. This figure is very reminiscent of Fig. 1, f
the very good reason that the derivation of the associa
regions is essentially identical for the two cases. We w
choose to renormalize the divergences in theMS scheme
using dimensional regularization. As we will see, the fa
that the counterterms in this scheme are mass indepen
will permit us to take the zero mass limit for the coefficie
function without encountering mass divergences introdu
by the renormalization counterterms. Minor changes to
argument would permit the use of any other suitable sche

To see what to do, let us first expand the bare oper
matrix element,AB , in powers ofK0 :

AB5Z•T01Z•K0•T01Z•K0•K0•T01¯ . ~42!

The first term is UV finite. The second term has a diverge
when the loop momentumk joining the operator vertex an
K0 ~Fig. 9! goes to infinity. It can be renormalized by su
tracting the pole part ate50. ~We define the number o
space-time dimensions to be 42e.) This gives a result we
symbolize as

R@Z•K0•T0#5Z•K0•T02pole part ~Z•K0!•T0

5Z•K0•~12PQ !•T0 . ~43!

FIG. 8. Regions of momentum integration that give the U
divergences in the operator matrix element defined by Eq.~24!.

FIG. 9. One-rung graph for the matrix element.
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HerePQ means to take the pole part of everything to its le
with the usual modifications of the pole part that define
MS scheme. Although we have used a notation that sugg
PQ is to be treated as a linear operator, it does not18 in fact
obey all the properties of linear operators, in particular as
ciativity.

Renormalization of graphs with two or more rungs
more interesting. For example the two-rung graphs, Fig.
have a sub-divergence as the left-most loop momentumk
goes to infinity; this is exactly the same divergence as in
one-rung graphs Fig. 9. It must be canceled by the one-r
counterterm before we add in the counterterm for the tw
rung divergence, which occurs when both the loop mome
k and l , go to infinity. Note that there will also be UV di
vergences inside each rung from divergent self-energy
vertex graphs. These are associated with renormalizatio
the Lagrangian and are present independently of the UV
vergences that we are discussing now, divergences tha
due to the use of composite operators. The divergences
sociated with the interactions are canceled by the usual
lection of counterterms in the Lagrangian, so thatC0 , K0
and T0 are finite before we convolute them together. Th
implies, in particular, that the Green functions that defi
these amplitudes are Green functions ofrenormalizedfields.

According to this procedure, the one-rung divergence
Fig. 10 is canceled by a counterterm

2Z•K0•PQ •K0•T0 , ~44!

and so the two-rung counterterm is

2Z•~12PQ !•K0•PQ •K0•T0 . ~45!

The important point in the definition ofPQ is that it must only
be applied to quantities~to its left! that are free of subdiver
gences. To do otherwise would generate counterterms
have non-polynomial dependence on the external mom
and that can therefore not be interpreted in terms of oper
renormalization. The renormalized value of the operator
two-rung order is therefore

Z•K0•~12PQ !•K0•~12PQ !•T0 . ~46!

This pattern evidently generalizes. To renormalize the
erator matrix element, we simply insert a factor of 12PQ to
the right of everyK0 factor. The result is that the renorma
ized matrix element is

18Compare the remarks of Curci, Furmanski and Petronzio be
Eq. ~2.25! of Ref. @18#, and see also the Appendix of the prese
paper.

FIG. 10. Two-rung graph for the matrix element.
2-14
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AR5 (
n50

`

Z•@K0•~12PQ !#n
•T0

5Z•
1

12K0•~12PQ !
•T0 . ~47!

The structure here is very similar to our construction of
remainder, Eq.~18!. This is not surprising, since in bot
cases we are cancelling contributions from a set of region
loop-momentum space that have very similar structures.

Given thatZ effectively represents the vertices for th
operators that define parton densities, Eq.~47! is our defini-
tion of the parton densities, up to a trivial normalization fa
tor.

B. Operator renormalization is multiplicative

At first sight, the above manipulations give a rather ar
trary definition of the renormalization of the operators and
the parton densities. In fact, as we will now show, they g
a definition in which the renormalized and bare parton d
sities differ by a multiplicative factor, with the multiplicatio
being in the sense of convolution over fractional longitudin
momentum. Therefore the only freedom is the us
renormalization-group freedom to change the renormal
tion scheme or to change the scale parameter~s! within a
particular scheme.

What enables these results to be proved is the fact
renormalization counterterms are polynomial in the exter
momenta of the subgraph to which they apply. Thus
counterterms can be interpreted as factors times operator
tices.~The same property is what enables renormalization
the interaction to work.! Moreover, the fact that the diver
gences are logarithmic implies that the operator vertices
just the ones defining the bare parton densities. These p
erties can be summarized by the statement that multiplyinPQ
on the right byZ has no effect:

X•PQ 5X•PQ •Z. ~48!

HereX is any quantity which is free of subdivergences.
Now we can express the renormalized parton densitiesAR

in terms of the bare parton densities:

AR5Z•
1

12K0•~12PQ !
•T0

5Z•
1

12K0•~12PQ !
~12K0!•

1

12K0

•T0

5Z•
1

12K0•~12PQ !
@12K0~12PQ !2K0PQ #•

1

12K0

•T0

5FZ2Z•
1

12K0•~12PQ !
•K0PQ G •Z•

1

12K0

•T0

5G^ AB . ~49!
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In the next-to-last line, we have usedZ25Z andPQ •Z5PQ , to
write the result in terms of an explicit factor times the ba
operator matrix element. Then we observe that there
factor Z at the left of the operator matrix elementZ•1/(1
2K0)•T0 and that the integral coupling it to everything fu
ther to the left only involves the1 component of momen-
tum. Thus the result has the form of a convolution over lo
gitudinal momentum fraction, for which we use the symb
^.

The factor

G[Z2Z•
1

12K0•~12PQ !
•K0PQ ~50!

is the renormalization factor of the operator defining the p
ton densities. We can therefore write the renormalized pa
densities in terms of the unrenormalized ones:

f i /p
R ~x!5(

j
E dj

j
Gi j ~j/x,as ,e! f j /p

B ~j!, ~51!

where we have now explicitly displayed the sum over par
flavors and the integral over momentum fractionj. Let us
reiterate that the word ‘‘bare’’ is used in the sense of ‘‘lac
ing UV renormalization,’’ and has no connection with a
other common usage of the word in this context@8,18,19#.
The renormalization factor starts with a lowest order te
which is effectively a unit operator:

Gi j 5d i j d~j/x21!1O~as!. ~52!

C. Factorization with renormalized parton densities

Once we have seen that the renormalization of the op
tors is multiplicative, we can write the factorization theore
Eq. ~25! in terms of renormalization quantities:

F5CR^ AR1remainder, r , ~53!

where the renormalized coefficient function is

CR5CB^ G21, ~54!

with G21 being the inverse of the renormalization factorG
for the parton densitiesAR . The inverse is with respect to
convolution in the longitudinal momentum fraction.

It is possible to derive a simple and very plausible, b
wrong, formula for the renormalized coefficient functio
The derivation relies on using associativity for the pole p
operation. We give the false derivation in the Append
since it is instructive.

There does not appear to be a simple closed formula
the renormalized coefficient function. But there is a conv
nient recursion relation that we will now derive. It corre
sponds to the actual algorithms used to do real calculatio

The derivation starts from the fact that by our definition
CR ,
2-15
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CR^ AR5CB^ AB . ~55!

We simply expand all quantities in this in powers ofK0 .
Since we already know thenth order terms forCB , AB , and
AR :

CB
~n!5C0@~12Z!K0#nZ,

AB
~n!5ZK0

nT0 ,

AR
~n!5Z@K0~12PQ !#nT0 , ~56!

we can obtain the expansion ofCR , which we write as

CR5 (
n50

`

CR
~n! . ~57!

Our problem is to find an explicit formula for the termCR
(n) ,

given the lower order terms.
Expanding Eq.~53! to zeroth order inK0 , we find

C0ZT05CR
~0!ZT0 . ~58!

This equation is true for any value ofT0 , since factorization
applies for any initial state. Hence we must haveCR

(0)

5C0Z, the same as corresponding term in the bare coe
cient.

To first order, we have

CB
~1!AB

~0!1CB
~0!AB

~1!5CR
~1!AR

~0!1CR
~0!AR

~1! , ~59!

which gives

CR
~1!5C0~12Z!K0Z1@C0Z#@~ZK0!PQ #

5C0K0Z2C0Z@ZK02~ZK0!PQ #. ~60!

A convenient way of formulating this is to say that the righ
hand side is the structure function of an on-shell quark~or
gluon! minus the lower order term in the Wilson expansi
of this partonic structure function.

Notice very carefully the placement of the pole-part o
eration. It is tempting to treat the last term on the first line
this equation as (C0ZK0)PQ . But this would mean that the
pole-part operation would be applied to the whole obj
C0ZK0 , whereas it should only be applied to the quant
that is an operator matrix element, i.e., toZK0 ; this is indi-
cated by the brackets. The incorrect method, of taking
pole part of everything, i.e., ofC0ZK0 , will get different
results from the correct method ifC0 has any dependence o
the regulator parametere—see the Appendix.

For the general case, we apply the factorization theo
to a target which is a single on-shell parton. The struct
function in this case,Fp , is obtained by settingD50 and
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T05Z in Eq. ~17!, and it follows that the remainder termr is
zero—see Eq.~18!. We letABp andARp correspond to parton
densities on a parton target:19

ABp5Z
1

12K0

Z, ARp5Z
1

12K0~12PQ !
Z. ~61!

Then the bare factorization theorem Eq.~25! becomes just20

Fp5CB^ ABp , ~62!

while the renormalized factorization theorem on a parton
get is

Fp5CR^ ARp . ~63!

Neither of these equations has a remainder term. The co
cient function is, of course, target independent; it is the sa
here, on a parton target, as in the factorization theorem o
hadron target.

We expand in powers ofK0 , and thenth term inFp is

Fp
~n!5CR

~n!1 (
j 50

n21

CR
~ j !ARp

~n2 j ! . ~64!

Rewriting this equation as

CR
~n!5Fp

~n!2 (
j 50

n21

CR
~ j !ARp

~n2 j ! . ~65!

gives the desired recursion. Thenth order renormalized co
efficient is thenth order partonic structure function minu
lower-order terms in the Wilson coefficients times parton
matrix elements of the operators defining the parton de
ties. Both the partonic structure functions and the parto
operator matrix elements can be computed in perturba
theory, and actual calculations to orderas

2 exist @8#. The
recursion starts at order 0, where the coefficient function
the lowest-order partonic structure function: the first no
trivial case, forn51, is exactly Eq.~60!.

The indicesn and j can equally well be interpreted a
parametrizing an expansion in loops~or as) as well as an
expansion in powers ofK0 .

19Observe that the word ‘‘parton’’ has just been used with tw
different meanings. The parton target is an on-shell state co
sponding to one of the elementary fields in the Lagrangian. A p
ton density is a number density computed using a particular op
tor involving the corresponding field. Thus a parton density in
parton is a non-trivial but non-contradictory concept.

20Note that this equation has no remainder term even if we h
non-zero quark masses, since we have not yet taken a zero-
limit in the coefficient function. To compute the coefficient functio
for a light parton, it is normally convenient to take the zero ma
limit, as we will see later. In that case the remainder term o
parton target will become nonzero.
2-16
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VIII. PARTON DENSITIES

A. Gauge-invariant parton-densities

Our derivation leads to a factorization theorem in whi
the bare parton densities are defined by formulas like

f B~x!5E dy2

2p
e2 ixp1y2

^puc̄~0,y2,0T!g1c~0!up&.

~66!

~The vacuum expectation value of the operator should
subtracted, so that this matrix element is a connected one! In
a gauge theory like QCD, this is a matrix element of a gau
variant operator. The gauge to be used to define the ope
is the light-cone gaugeA150, since that was the gauge us
for the proof of factorization. In accordance with the deriv
tion, the two quark fields arerenormalizedquark fields.
However, as we saw, there are divergences associated
the bilocal light-cone operator, so this formula, witho
renormalization, defines a bare parton density.21

As is well known, a gauge invariant form of the parto
density can easily be made by inserting a path-ordered e
nential of the gluon field:

f B~x!5E dy2

2p
e2 ixp1y2

^puc̄~0,y2,0T!

3PexpF2 ig0E
0

y2

dy82taA0a
1 ~0,y82,0T!G

3g1c~0!up&. ~67!

In the light-cone gaugeA150, the exponential reduces t
unity, so that the parton density agrees with the previ
definition. Note that to get gauge invariance the coupling a
the gluon field in the exponential are the bare ones.

Renormalization is performed by convoluting the ba
parton densities with the previously determined renormal
tion factor.

Notice that the recursion formula, Eq.~65!, for the coef-
ficient function is actually gauge invariant, if we interpret
as an equation for terms in expansions in powers ofas . For
example, the left-hand side is theas

n term in the expansion o
the structure function of an on-shell quark or gluon, and
coefficientsARp

(n2 j ) are terms in the expansion of the reno
malized parton densities in the same on-shell quark or gl
state.

B. Evolution equations

The final element in the factorization formalism th
makes it useful for phenomenology is the set of DGLA

21A better definition of a bare parton density is to replace
renormalized quark fields by bare quark fields. This new definit
differs from the one given above by a factor of the quark’s wa
function renormalization. The advantage of this second definitio
that it is renormalization-group invariant, so that formal derivatio
of the renormalization-group equation are simpler.
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evolution equations. Since the parton densities are ma
elements of renormalized composite operators, the evolu
equations are just the ordinary renormalization-group eq
tions for the operators. To use the factorization formula o
sets the renormalization/factorization scalem to be of order
Q. Then there are no large logarithms in the coefficient fu
tions, for which low-order perturbation calculations a
therefore useful. The parton densities at different scales
related by use of their evolution equations.

Since we have chosen to useMS renormalization, the
renormalization-group coefficients are independent
masses, and are in fact the ones normally used. This is
even if one~or more! of the quarks is heavy and has a ma
M comparable withQ. Our proof of factorization has dem
onstrated that all relevant effects of non-zero quark mas
can be found either in the coefficient functions or in t
starting values of the parton densities.

Of course, one can perturbatively compute the values
the heavy quark densities, by the methods that Witten@25#
first devised. In our formalism this is most conveniently do
in association with the version of factorization that is app
priate whenM is bigger thanQ, which we will treat in Sec.
X.

IX. QUARK MASSES IN THE COEFFICIENT FUNCTION

In conventional treatments of factorization, masses are
to zero in the coefficient functions. But our treatment h
preserved masses, and this is the key to a correct treatme
the effects of heavy quarks.

A. Massless limit

The massless limit can be taken in the coefficient fu
tion. This can be done since the 12Z factors in Eq.~54!
cancel leading power contributions from all regions exc
where all the loop momenta are of orderQ2 in virtuality, and
except for regions that contribute to the~canceled! UV di-
vergences. Thus setting a massm to zero gives an error tha
is a power ofm/Q. A particular consequence of this result
that all potential collinear divergences are canceled. Thus
coefficient function is a truly infra-red safe quantity. If th
renormalization massm is chosen to be of orderQ, then
perturbative calculations can be made.

Since errors in setting a mass to zero are a power ofm/Q,
taking the massless limit is sensible if all the quark mas
are of the order of a typical hadronic mass or smaller;
errors are no bigger than errors that have been made
where in the derivation of factorization.

B. Heavy quarks

However, there are quarks whose masses are larger
this ~charm, etc.!. Let us first treat the case that there is on
one heavy quark, of massM . It is not always appropriate to
setM50 in the coefficient functions, since the error in doin
so is of order (M /Q)p, which may be much bigger than th
error associated with dropping the remainder term in
derivation of the factorization theorem. An error of ord

e
n
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s
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(M /Q)p may also be larger than the error caused by usin
finite order truncation of the perturbation series for the co
ficient function.

Now, the error in the factorized form of the structu
function is of order (L/Q)p, and the derivation of this erro
estimate is valid over the whole range of quark mass
which Q*M . This means both the region whereQ is of
orderM and the region whereQ is much bigger thanM . The
remainder term is uniformly suppressed by a power ofL/Q.
The sole effect of a heavy quark line is to restrict its virt
ality to be at least of orderM2, and this is completely com
patible with the derivation of the error estimate.

We therefore have a factorization theorem that is valid
the whole of the region thatQ*M , as we have already
observed. IfQ is sufficiently much bigger than all the quar
masses, then we may set all the masses to zero in the
ficient function. If some of the quark masses are no
negligible, then we simply leave their masses at their cor
values.

However, these considerations only apply ifM&Q. If, on
the contrary, a heavy quark mass is much larger thanQ, then
the coefficient functions that we constructed have logarith
of M /Q in this region of relatively smallQ. This is a prob-
lem we will treat in Sec. X. The work in this section is bas
on a factorization theorem derived under the condition thaQ
is at least comparable withM .

Despite the fact that we have retained heavy quark ma
wherever necessary, the kernels of the evolution equat
for the parton densities are in fact the same as with the qu
masses set to zero, i.e., they are identical to the ordin
DGLAP equations in theMS scheme. This happens becau
the evolution equations are in our approach just the ren
malization group equations for the renormalized parton d
sities. The Altarelli-Parisi kernels are anomalous dimensio
obtained from the renormalization factorGi j . Since the
renormalization counterterms in theMS scheme are mas
independent, so are the Altarelli-Parisi kernels, a statem
that is true not only for the leading-orderas terms in the
kernels, but for all higher order corrections.

C. Redefinition of the Z operation

The analytic core of our proof is in the definition of theZ
operation and in the proof that the remainder term, Eq.~18!,
is suppressed by a power ofL/Q. The rest of the proof is
simple linear algebra. It is possible to adjust to the definit
of Z to make calculations more convenient. We have alre
made one such redefinition—see Eqs.~8! and ~11!.

In the next section we will propose one further redefi
tion of Z that will simplify some calculations, by allowing
heavy quark masses to be set to zero in certain parts o
calculations of the coefficient functions. But first we mu
characterize the allowed redefinitions. We address explic
only the momentum dependence ofZ. The spin-dependen
part can be discussed in a similar fashion.

The first and most essential property is thatZ provide a
good approximation to leading regions, of the form of Fig.
i.e., that
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H•Z•T5H•T1non-leading power, ~68!

whenever we are in an integration region where the virtu
ties in H are much bigger than the virtualities inT. The
second property is that when we go outside the momenta
which Z gives a good approximation, insertion of a factor
Z should not produce a result that is much bigger than
original. To make this precise, letH andT be subdiagrams
that could be used in Fig. 1. We have

H•T5E d4k

~2p!4 H~q,k!T~k,p! ~69!

and

H•Z•T5E d4k

~2p!4 E d4l

~2p!4 H~q,k!Z~k,l !T~k,p!.

~70!

We require, with one exception, thatH•Z•T should not be
much larger thanH•T. The exception is that we can have
logarithmic ultra-violet divergence for largel 2.

The above properties are sufficient to ensure that the
mainder as defined in Eq.~18! is power suppressed. Then w
can obtain the renormalized factorization theorem Eq.~53!
given that any divergences in the operator matrix eleme
are at worst logarithmic.

A final property is needed in order that the factorizati
theorem be of a usefully simple form. We choose this
mean that factorization involves a convolution in just o
variable, a longitudinal momentum fraction. This forces t
momentum-dependent partZ to be of the form

Z~k,l !5d~4!~km2 l̂ m! f ~ l !. ~71!

Here the functionf ( l ) must be unity whenl T is less than
about Q and l 2 is less than aboutQ2/p1. Moreover, the
approximated momentuml̂ m must approach (l 1,0,0T) in the
collinear limit. Both f ( l ) and l̂ m must be smooth functions
In order that the convolution in the factorization formula
a convolution in one variable, the approximated moment
l̂ m must be independent ofl 2 and l' .

Perhaps the simplest and most natural definition is
write

Z~k,l !5d~4!@km2~k1,0,0T!#u~ l T,m!, ~72!

which is just like Eq.~8!, except for a cut-off on the trans
verse momentum entering from the right. This definiti
would be favored, for example, by Brodsky@35#. It corre-
sponds to defining parton densities by integrals of the follo
ing form:

f ~x,m!5standard normalization factors

3E
2`

`

dl2E
l T,m

d2lT^puc̄~2 l !g1c~ l !up&,

~73!
2-18
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where there is an integral over all virtualities of the part
from the target and an integral up to a certain maxim
transverse momentum, and we are using the Four
transformed fields.

This definition suffers from two inconveniences. The fi
is that in a gauge theory it does not give parton densities
are manifestly gauge invariant. The second is that the ev
tion equations~in m! are not exactly homogeneous equatio
of the Altarelli-Parisi form; a subsidiary expansion for lar
m is needed to get the Altarelli-Parisi equations.

Neither disadvantage is fatal, but we prefer to use a d
nition in which f ( l )51, as in Eqs.~8! and ~11!. The parton
densities are then precisely of the form of light-cone ope
tors, and UV renormalization must be applied as describe
earlier sections.

D. Proposal for optimal redefinition of Z

The remaining freedom in definingZ resides in what it
does to the factors on its left, and in the definition of t
approximated momentuml̂ . The most natural definition is
perhaps the one in Eq.~11!. But a simplification is possible

Let us first recall the classification of partons as light
heavy according to whether their masses are less tha
greater than a few hundred MeV. Thus the gluon, and the
down, and strange quarks are light, while the charm, bott
and top quarks are heavy. The importance of this distinc
is that it is always legitimate to neglect light parton masse
the hard scattering coefficients, since the errors in doing
are of the same order as the non-leading power correct
~‘‘higher-twist terms’’! that constitute the remainder in th
factorization formula. But it is not always valid to negle
heavy quark masses. Even ifQ is much larger than the mas
M of some heavy quark, the error resulting from replac
M by zero in the coefficient function is larger than the erro
that result from neglect of higher twist terms.~In practice we
normally have larger errors that result from truncation of
perturbation expansion of the coefficient functions, and th
it will be sensible to neglectM at suitably highQ.) Note,
however, that it is never legitimate to neglect masses in
parton density.

So it is convenient to equipZ with a prescription to se
light parton masses in everything to its left. This new ope
tion we call Z1 . Consider a convolutionH•T like that im-
plied by Fig. 1, and suppose thatH andT are joined by a pair
of light parton lines. We have

H•T5E d4kH~q,k,m,M !T~k,p,m,M !, ~74!

so that

H•Z1•T5E djH~q,j p̂,0,M !E d2kTdk2T~k,p,m,M !,

~75!

where p̂5(p1,0,0T), and, for simplicity, we have omitted
the treatment of the Dirac matrices, which is unchanged fr
our earlier work. We usem andM to refer to light and heavy
parton masses.
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In the above equations, we have assumed that the lim
zero mass for the light partons exists. This is, of cour
normally not true ifH is a simple sum of Feynman graph
such as corresponds to theH subgraph in Fig. 1. RatherH
should be a quantity such as a bare coefficient function
tained from such a subgraph with a series of subtraction
cancel the collinear regions, i.e., a quantity such as

C0•
1

12~12Z1!K0
. ~76!

Just like the pole part operation,PQ , Z1 is not a linear
operator, at least not on momentum space. Neverthele
obeys enough of the algebraic rules for linear operators
the proof of factorization still works if we replaceZ by Z1 .
The advantage of the use ofZ1 is that it directly implements
the zero-mass limit for light partons in the definition of th
coefficient functions. It is necessary to add to the proo
verification that the zero-mass limit is only being applied
quantities for which the limit exists, at all stages of the pro
The verification is elementary, since the dangerous regi
arise from regions of exactly the kind that are suppressed
the 12Z1 factors in Eq.~76!. We can apply the same argu
ments to the renormalized coefficient functions as well.

In practical work, it is of course very important to take th
zero mass limit wherever possible, since massless Feyn
graphs are generally much easier to calculate than mas
ones.

We now show that there are certain parts of calculatio
with heavy quarks where one can correctly redefineZ1 also
to setheavyquark masses to zero, even whenQ is of order
M . Let us continue to defineZ1 as in Eq.~75! when the lines
joining H and T are light partons. The light parton mass
are set to zero inH, but the heavy parton masses are not

But now supposeH and T are joined by heavy quarks
We will now show that it is legitimate to defineZ1 to set the
heavy quark mass~es! to zero inH:

HQ•Z1•TQ

5E djHQ~q,j p̂,0,0!E d2kTdk2TQ~k,p,m,M !.

~77!

Here we have equippedH andT with a subscriptQ to sym-
bolize their being joined by heavy quark lines.

In Fig. 11 we show some diagrams to whichZ1 is applied,
at the place indicated by the vertical line. To allow zero ma
limits to be taken, we assume implicit 12Z1 factors at all
necessary points to theleft of the vertical bar, as in Eq.~76!.
In the case that there is more than one heavy quark,
should set to zero only the masses of those quarks tha
lighter than the quarks joiningH and T. This need for this
last requirement will become apparent in the proof.

In the first three graphs, which have either gluons or lig
partons as their external lines, only the light quarks ha
their masses set to zero. But in the last three graphs, w
have heavy quark external lines, all the quark masses sh
2-19
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J. C. COLLINS PHYSICAL REVIEW D 58 094002
be set to zero; the external quarks will also be given mass
on-shell momenta,k250, and the Dirac matrix will be tha
for a massless quark.

If it is indeed valid to defineZ1 in this way, a substantia
simplification is achieved in practical calculations, since it
only necessary to retain non-zero masses for heavy quar
loops of heavy quark lines in coefficient functions with e
ternal light lines, i.e., in graphs such as the first three of F
11.

The formal proof is as follows.
~1! H•Z1 is only used whenH has a zero mass limit

Hence the virtualities inH are of orderQ2 or larger. This is
simply the assertion that collinear subtractions have b
applied insideH, as in Eq.~76!.

~2! If H andT are joined by heavy quark lines, the virtu
ality of the heavy quark is at least of orderM2 in the domi-
nant region of integration, for the whole leading power. T
virtuality, as is well known, is in fact space-like.

~3! In a region where the virtualities inT are much less
than the virtualities inH, thenH•Z1•T provides as good an
approximation toH•T as does the approximation with th
heavy quark mass left non-zero. The original approximat
involved replacing a momentum of space-like virtuality
orderM2 by an on-shell momentum. Instead we now repla
it by a light-like momentum. The newZ operation provides a
suitable approximation given that the old operation did. Th
the first essential property of aZ operation is obeyed.

~4! If the virtuality of the lines joiningH andT is of order
the virtualities in H, then setting masses to zero inH
changes the precise value but not the order of magnitu
ThusH•Z1•T is of the same magnitude asH•T in this case.
The second property forZ is satisfied.

~5! The effect ofZ1 on T, in Z1•T, is the same as forZ.
Thus there is no change in the logarithmic UV divergen
that are generated.

A more physical argument can be made with the aid of
example. Consider the lowest order calculation of a he
quark loop to a structure function. In Fig. 12, we have t
Born graph for DIS on a heavy quark that comes out of

FIG. 11. Diagrams with theZ1 operation applied at the vertica
line. The heavy quarks are denoted by the thick solid lines.

FIG. 12. Born graph for heavy quark in DIS.
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shaded target bubble. IfQ is much larger than the quar
massM , it is a useful approximation to replace the graph
the lowest order Wilson coefficient times the heavy qua
density, as shown on the right of Fig. 12, for the importa
region when the quark has transverse momentum much
thanQ. It is also a good approximation to replaceM by zero
in the contribution to the coefficient function.

Now both of these approximations fail whenQ is compa-
rable to M ~the ‘‘threshold region’’!. But in this case the
heavy quark distribution is of orderas relative to the gluon
distribution. So to do valid phenomenology we must inclu
also a one-loop coefficient times the gluon density. The
sult is shown in Fig. 13. We start with a particular kind
graph for the structure function where a heavy-quark lo
couples to the target by gluon lines. To avoid extra irrelev
complications, suppose that the gluons have low virtual
The first part of the right-hand side is a contribution to t
coefficient function times the gluon density. In the one-lo
coefficient there is a subtraction term. The second term
the right is the previously defined heavy quark coefficie
function times a heavy quark density. In the region where
gluons have low virtuality this second term cancels the s
traction in the one-loop Wilson coefficient times the glu
density.

Hence the incorrectness in the approximation used in F
12 is compensated by the subtraction in Fig. 13. Of cours
would have been much simpler to use the heavy quark~or
‘‘fixed-flavor’’ ! scheme that we will discuss in Sec. X. B
that scheme does not permit us to go to largeQ, because
there will then be large logarithms ofQ/M in its coefficient
functions. In contrast, the scheme in Figs. 12 and 13 perm
an interpolation between low and highQ without loss of
accuracy.

At sufficiently largeQ, the Born term alone provides use
ful phenomenology, because the heavy quark density
large. Moreover, zero-mass coefficient functions can be u

As Q is decreased towards the threshold region, the B
term in the coefficient function becomes increasingly inac
rate as a representation of the graph on the left of Fig.
Note that even if we evaluate the coefficient with the corr
mass there is still an error of the same order of magnitud
the error in neglecting the mass completely. This is beca
the horizontal lines are necessarily space-like. Replac
them with on-shell lines gives an error of orderM2/Q2.

When one decreasesQ, the errors in the approximation o
Fig. 12 increase. At orderas , the errors are compensated b
the subtraction term in Fig. 13. But beyond some point,
errors in the approximation become larger than the quan
one is trying to compute. Correct compensation of errors w
involve the use of even higher order diagrams. Then o
must abandon this scheme and use only the heavy q

FIG. 13. One-loop graph for heavy quark in DIS.
2-20
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scheme of Sec. X. The important point is that there is
overlap in the region of validity of both schemes.

X. FACTORIZATION WITH Q&M

WhenQ is reduced below the massM of a heavy quark,
the scheme described in Sec. V becomes inappropriate
deed, given a fixed value ofx, we go below the threshold a
Q52MAx/(12x) for producing the heavy quark by redu
ing Q enough. On the other hand the factorization theor
that we derived earlier has a non-zero subprocess in w
there is production of heavy quarks in the final state, for a
value of Q. An example is given by Fig. 12. There we r
place a graph for heavy quark production by the lowest or
approximation to the factorization theorem. The replacem
of an off-shell heavy quark by an on-shell quark in the ha
scattering enables the approximated graph to be non-z
even when the true physical process is below the thres
for producing heavy quarks. The error in the approximat
is repaired by higher-order approximations to the coeffici
functions, as illustrated in Fig. 13.

Clearly it is likely to be a poor and inaccurate method
calculation to obtain an answer that is known to be zero
adding a collection of non-zero pieces, in a truncated per
bation expansion. Even a little above threshold we may h
inaccurate calculations: a cross section that approaches
as the threshold is approached is calculated as a sum
terms that do not have the correct threshold behavior.

The remedy is to use a different version of the factori
tion theorem, in fact the well-known fixed-flavor-numb
scheme@1,4#. In this section we present a proof of factoriz
tion in this scheme in a form that will mesh with the form
lation and proof of factorization that we gave earlier. Usi
the terminology introduced in Sec. III, we will say that th
heavy quark is treated as non-partonic. It will be convenie
for the purposes of this section, to call this scheme
‘‘heavy-quark scheme.’’ The essence will be to treat t
heavy quark as always being part of the hard scattering. T
scheme has a range of validity that includes the whole reg
thatQ&M . This range overlaps with the range of validity
the factorization theorem where the heavy quark is treate
partonic, i.e., the rangeQ*M .

There are two important observations. One is that wheQ
is of orderM , the heavy quark mass provides a large scale
virtuality that can be treated on the same footing asQ. The
second observation is that whenQ is much less thanM , the
decoupling theorem@17# applies. Our heavy quark schem
will satisfy the decoupling theorem in the simplest way: o
can simply drop all graphs involving heavy quark lines a
obtain a correct answer without needed extra finite renorm
izations of the coupling and parton densities. The method
will use is that of Collins, Wilczek and Zee@12#, with the
heavy quark being treated as non-partonic. In that s
scheme, renormalization is done in theMS scheme for all
graphs except those involving the heavy quark. For gra
with a heavy quark loop, renormalization is done by subtr
tion at zero momentum and with the light quark masses se
zero. The remaining renormalizations involve graphs w
external heavy quark lines. Following Buzaet al. @8#, we
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define the heavy quark mass as the position of the pole in
heavy quark propagator, a definition that makes sense in
turbation theory. Remaining renormalizations are defined
pole-part subtractions, in theMS style.

The advantages of this scheme are@12#:
~1! It satisfies manifest decoupling.
~2! MS and zero momentum subtraction allow preser

tion of Ward identities in gauge theories without the need
extra finite counterterms.

~3! Anomalous dimensions for the active partons and
b function are the same as in theMS scheme for the theory
with the heavy quark omitted. They have no mass dep
dence.

~4! At no stage, in either this subscheme or the subsche
where the heavy quark is active~or partonic!, do we have to
make an expansion in powers ofM /Q or Q/M : the heavy
quark mass need never be approximated. So the schem
be applied when there are several heavy quarks and the r
of their masses are not necessarily large. Furthermore, t
is no loss of accuracy when treating problems where a he
quark is not heavy enough for it to decouple to high accur
and not light enough for its mass to be approximated by ze

In this section we will treat the case that the theory co
tains one heavy quark and thatQ*M . The most genera
case, that there are several heavy quarks, whose masse
or may not be larger thanQ, will form an elementary gen-
eralization to be treated in Sec. XI. We will first derive
factorization theorem without taking account of renormaliz
tion and then we will do the renormalization.

A. Bare factorization theorem

When we are in the regionQ&M , the leading regions
continue to be of the form of Fig. 1. However, the specific
tion of the graphs is a bit different, since heavy quark loo
must each be contained in the hard partH or in renormaliza-
tion subgraphs ofT. Thus the lines joiningH and T must
always be light partons. To obtain a factorization theore
we use the reasoning in Sec. V with two changes.

The first change is that since heavy quarks cannot join
hard and target subgraphs, we change Eq.~17! so that the
amplitudes corresponding toC0 , K0 , T0 and D are two-
particle irreducible in the light partons only. The seco
change is that we need to take account of the decoup
theorem for graphs with heavy quark loops.

The first change means that Eq.~17! needs to be replace
by

F5 (
n50

`

CH•~KH!n
•TH1DH

5CH•
1

12KH
•TH1DH , ~78!

where the subscriptH means that the amplitude with th
subscript is 2PI only in light parton lines. We can formali
the definitions ofCH , etc. by defining a projectionPL that is
unity on light lines and zero on heavy quark lines. The p
jector onto heavy lines isPH512PL . Then
2-21
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CH5C0•
1

12PHK0
•PL ,

KH5PL•K0•
1

12PHK0
•PL

5PL•
1

12K0PH
•K0•PL ,

TH5PL•
1

12K0PH
•T0 ,

DH5D01C0•
1

12PHK0
•PH•T0 .

~79!

It can be verified that with these definitions, the structu
function given by Eq.~78! is the same as before, i.e
C0•1/(12K0)•T01D0 .

We define the remainder to be

r H5CH•
1

12~12Z!KH
•~12Z!•TH1DH . ~80!

This remainder is power suppressed, just like the remaindr
that we defined in Eq.~18!.

No changes are needed in the reasoning that lead to
bare factorization theorem Eq.~25!. We find that

F5CHB^ AB1non-leading power, ~81!

where the bare coefficient function is

CHB5CH•
1

12~12Z!KH
•Z,

5CH•
1

12~12Z!KH
•Z•PL , ~82!

and the bare operator matrix element~or bare parton density!
is

PL•AHB5PL•Z•
1

12KH
•TH . ~83!

The leading regions only have active, light partons joini
the hard subgraph and the target subgraph. This is refle
in the formulas by the fact that there are explicit factors
PL on the right ofCH , on the left ofTH and on both sides o
KH . Hence we may insert the explicit factors ofPL in the
formulas for the coefficient function and operator matrix
ements, Eqs.~82! and ~83!.

The reader should clearly understand the distinction
tween the following notations:C0 is a fully 2PI and ampu-
tated Green function for two virtual photons and two quar
CH is the same Green function asC0 except for being 2PI
only in light parton lines; and finallyCHB is a Wilson coef-
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ficient: it is the full amputated Green function, including r
ducible graphs but with subtractions to make it a purely U
object.

Contrary to appearances, the definition Eq.~83! is equiva-
lent to the previous definition, Eq.~24!, so that

PL•AHB5PL•Z•
1

12K0
•T0 . ~84!

The algebraic proof of this equation, starting from Eq.~83!,
is left as an exercise. We can also define the densitie
heavy quarks byPH•AHB5PH•Z•1/(12K0)•T0 , but we
will not need to use the definition here, since only light pa
ton densities appear in the factorization theorem.

At first sight it appears that the bare parton densitiesAHB
are identical to those in the previous version of the factori
tion theorem. This is not quite so, because we are usin
different renormalization subscheme for the QCD actio
both subschemes being part of the CWZ@12# family of
schemes. Green functions in the two subschemes diffe
factors associated with the changes in the wave func
renormalization factors. In addition, even without wave fun
tion renormalization, the numerical values of the coefficie
in the perturbation expansion ofK0 , etc., would differ be-
cause the numerical value of the couplingas differs between
the two subschemes. This can all be summarized by sa
thatK0 , T0 andC0 in the two subschemes differ by a reno
malization group transformation.

When we renormalize the operators, and hence const
the renormalized factorization theorem, we will need to wo
in terms ofK0 rather thanKH . So we rewrite our new coef
ficient functionCHB in terms of fully 2PI amplitudes. This is
done quite simply by defining a new projection operatorZH
that is zero when applied to heavy quark lines and that iZ
on light parton lines. ThenZH5Z•PL .

Graphically, the coefficient functionCHB given in Eq.
~82! is C0 with any number ofK0’s attached. If neighboring
rungs are connected by active partons, then a factor o
2Z is inserted, but connections by heavy quarks are
unaltered. A straightforward but somewhat lengthy algebr
derivation shows that Eq.~82! implies that

CHB5C0•
1

12~12ZH!K0
•Z•PL . ~85!

Observe that on an active light parton 12ZH512Z and on
a heavy quark 12ZH51, so that this equation agrees wi
the verbal description given at the beginning of the pa
graph.

B. Renormalized factorization theorem

Next we copy and slightly modify the steps needed
derive the renormalized factorization theorem. To define
renormalized parton densities, we need to use a renorma
tion scheme in which the heavy parton is treated as n
partonic. So we define
2-22
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AHR5 (
n50

`

Z•@K0•~12PQ H!#n
•T0

5Z•
1

12K0•~12PQ H!
•T0 . ~86!

The renormalization is defined byPQ H , which is an operation
that acts to the left. We defineLPQ H as follows: IfL contains
heavy quark loops and its rightmost external lines are li
partons, thenLPQ H is the value ofL(q,k,M ,m) whenk2 and
kT are replaced by zero and the light parton massesm are
replaced by zero. IfL contains no heavy lines, then,LPQ H is
just theMS pole part ofL. The remaining case is when w
apply PQ H to graphs with external heavy lines. There is
choice of scheme that is not determined by the overall
quirements listed in Sec. II. This is similar to the no
uniqueness found by Roberts and Thorne@10,11#. We will
choose to define the operation to be pole-part subtraction
theMS style, as we did in a similar situation when renorm
izing the interactions.

In accordance with the dictates of the BPH approach
renormalization, counterterms are kept with the graphs t
subtract. ThusLPQ H is only used whenL is a quantity for
which all subdivergences have been subtracted. This
ensures@12# that the use of zero momentum subtractions
subgraphs containing heavy quark loops introduces no
divergences in the counterterms.

With these definitions, we can copy most of the previo
derivation of a renormalized factorization theorem. First
observe the relation between renormalized and bare pa
densities has the form

AHR5GH ^ AHB , ~87!

where we use

GH[Z2Z•
1

12K0•~12PQ H!
•K0PQ ~88!

instead ofG given by Eq.~50!. Then we express the facto
ization theorem in terms of renormalized parton densities

F5CHR^ AHR1remainder, r H , ~89!

where the renormalized coefficient function is

CHR5CHB^ GH
21 . ~90!

Finally, we bring in the decoupling theorem. This impli
that a renormalized graph forAHR is suppressed by a powe
of L/M if it contains any heavy quark lines. This is a co
sequence of the use of a renormalization scheme w
obeys manifest decoupling, for both the interaction and
erator matrix elements. We are assuming here that the ta
hadron in the structure function is a light hadron. One cas
this result is that the density of a heavy quark is power s
pressed in the scheme we are using in this section. T
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result only applies to the renormalized heavy quark dens
not to the bare heavy quark density.

We can therefore restrict the renormalized coefficie
function so that its external lines are light, and the factori
tion theorem becomes

F5CHR^ ALR1power-suppressed remainder,~91!

where now the parton densitiesALR are renormalized parton
densities in the effective low energy theory with the hea
quark omitted. There appears to be no simple formula for
remainder, and notice that the remainder isnot equal tor H
defined in Eq.~80!.

As before, there appears to be no simple formula for
coefficient function, but a simple recursion formula does e
ist and it corresponds to the algorithms actually used to
calculations. The formula is almost the same as the prev
one, Eq.~65!:

CHR
~n!5Fp

~n!2 (
j 50

n21

CHR
~ j ! ALRp

~n2 j ! . ~92!

The structure function is to be computed on a light-par
target only, not on a heavy target, and the light-par
masses are to be set to zero. The parton density has
scriptsLRp, whose meaning is as follows: TheL indicates
that ALRp is computed with the omission of all graphs co
taining heavy-quark lines. TheR indicates that it is renor-
malized, and thep indicates the same~zero-mass light-
parton! target as for the structure function.

The one complication in proving Eq.~92! results from the
fact that in deriving the factorization theorem, Eq.~91! on a
general target, we omitted graphs forALR that contain heavy
lines, but without giving a formula for the omitted terms. S
the recursion formula Eq.~92! could be in error by similar
terms, i.e., there might be a power-suppressed remai
term on the right-hand side. In fact all graphs forALRp that
include heavy quark lines are exactly zero when combin
with their counterterms. This is because they are be
evaluated with their external momenta at exactly the subt
tion point. Hence Eq.~92! is exact.

C. Differences between heavy and light factorization

The renormalized factorization theorem with hea
quarks, Eq.~91!, differs from the first factorization theorem
Eq. ~53! in two respects:~1! The sum over partons in th
heavy quark factorization is restricted to light partons on
~2! the parton densities differ by a change of scheme.

The first point accounts for our terminology of contrasti
‘‘active’’ ~or ‘‘partonic’’ ! with ‘‘non-partonic’’ quarks. In
the factorization we derived forQ*M , Eq. ~53!, the heavy
quark is partonic: there is a term involving hard scatter
off a heavy quark. In contrast, in the factorization forQ
&M , Eq. ~91!, there is no such term.

There is an overlapping domain of utility of the tw
schemes. This is where bothQ and theMS scalem are of
orderM . In this situation there are no large logarithms in t
coefficient functions and no large logarithms in the coe
2-23
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cients that relate the two schemes. This overlap is impor
because it implies that the relation between the parton d
sities in the two schemes can be computed perturbatively
practical applications it should be remembered that at la
x, the physical threshold for heavy-quark production can
well aboveQ, and consequently the region where the tw
schemes have common domains of utility should then
appropriately biased upwards inQ.

When the heavy quark is treated as non-partonic, its p
ton density is not used in the factorization theorem, and
might suppose that the heavy quark density does not exi
all. In fact the heavy quark density does exist, because
can define it by exactly the usual operator formula, toget
with renormalization~as dictated by the CWZ scheme!. The
important fact is that the heavy quark~and antiquark! densi-
ties can be expressed in terms of the light parton densitie
a version of factorization. This is a heavy quark expans
for matrix elements of heavy-quark operators in light stat
and the argument was first given by Witten@25# for the case
of local operators. In the subscheme where the heavy q
is non-partonic, the result is quite simple: the heavy qu
densities are suppressed by a power of the heavy quark m

f H/p5O~L/M !. ~93!

We used this property in our derivation of the factorizati
theorem.

XI. MULTIPLE HEAVY QUARKS

Let us now suppose that we have the most general
that there are several heavy quarks, whose masses m
may not differ greatly, and thatQ can vary over a wide
range.

A. Factorization

In this situation, we define a series of subschemes, eac
which is labeled by the subset of the flavors of quarks a
gluon which are treated as active~or partonic!. The other
flavors in the subscheme we call non-partonic. The choic
subscheme is made according to the value ofQ. If Q is
much larger than the mass of a particular quark, then
quark is partonic. IfQ is much smaller than the mass of
particular quark, then that quark is non-partonic. IfQ is com-
parable to the mass of a particular quark, we may fre
choose whether the quark is partonic or non-partonic. Glu
are light, so they are always partonic. We can define
scheme by saying that thenA lightest quarks are partonic.

Factorization is derived by a minor extension of the p
cedure in Sec. X. In that section we had one heavy qu
which was treated as non-partonic, with the gluon and ot
quarks being treated as partonic. We simply need to rep
all references to a ‘‘heavy quark’’ by references to ‘‘no
partonic quarks.’’ Thus renormalization counterterms
generated byMS pole terms, except for mass renormaliz
tion of heavy quarks, which is always performed on sh
and except for graphs with loops of non-partonic quar
whose counterterms are computed at zero external mom
tum and with the masses of the active partons set to z
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This defines the appropriate version of the renormalizat

operator that is to replacePQ in Eq. ~47! or PQ H in Eq. ~86!.
In the construction of the coefficient function and the r

mainder for the factorization formula, the operationZH must
be replaced byZnA

, which is Z when applied on an active

quark or gluon and zero on non-partonic quarks.
The methods used to construct the two factorizat

proofs readily generalize to show that the remainder is s
pressed by a power ofQ, provided that all the active parton
have masses less than or of the order ofQ. Moreover, in the
perturbative expansion of the coefficient function, if theMS
scalem is of orderQ, there will be no large logarithms o
ratios of Q, m and quark masses provided also that t
masses of the non-partonic quarks are all larger or com
rable with Q. The coefficient functions have infra-red-sa
limits when masses of active partons are set to zero.~This
applies in particular to the light quarks; their masses m
always be set to zero in the coefficient functions.!

B. When can the masses of active partons be set to zero?

The setting to zero of active parton masses in the ren
malization prescription is necessary to get the simplest
sults, for example for the renormalization-group coefficien
It is always legitimate.

Moreover, if one is computing the coefficient function fo
a particular external quark, then one can set to zero the m
of this quark and of the lighter partons, as explained arou
Eq. ~77!. It is only with this prescription that the recursio
formula for the coefficient function, Eq.~92! is exact.

As an example, suppose that one is treating the ch
quark ~of massmc51.5 GeV) as partonic but the bottom
quark ~of massmb54.5 GeV) as non-partonic. This implie
that we are treating phenomena on a scale of at leastmc .
Furthermore, suppose that one has decided that the ch
quark is not sufficiently light compared tomb for its mass to
be neglected. Then in coefficient functions with external g
ons, for example, one leaves both the masses of the ch
and bottom quarks at their physical values. In contrast, i
coefficient function with an external charm quark, its ma
may be set to zero. As explained around Eq.~77!, this may
be done without loss of accuracy, since any errors are ta
care of by higher-order coefficients with lighter external p
tons.

XII. MATCHING CONDITIONS AND EVOLUTION
EQUATIONS

A. Matching conditions

As a consequence of the decoupling theorem, the den
of a non-partonic quark is suppressed by a power ofL/M ,
whereM is the mass of the quark, so we will normally a
proximate these densities by zero.

Furthermore there are matching conditions between
parton densities withnA andnA11 active quarks. The coef
ficients relating the parton densities are functions of
quark masses andm, and have no large logarithms provide
that m is of the order of the mass of quarknA11. The coef-
2-24
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ficients also have infra-red-safe limits when the masses
the nA lightest quarks are set to zero.

These matching conditions, have been given in Ref.@6# to
order as and in Ref.@8# to orderas

2 . They are applied to
calculate the parton densities withnA11 active quarks from
the parton densities withnA active quarks. The condition
are to be applied at a value of the renormalization sc
around the mass of quarknA11. Given that we set the den
sity of the quarknA11 to zero when it is non-partonic, th
matching conditions give initial values for allnA11 quarks
and the gluon which can therefore be evolved upward
scale. This gives an effective calculation of the density
quarknA11 in the region where it is active.

B. Evolution equations

We have a series of schemes labeled by the numbe
active quarks,nA53,4,5,. . . . In each scheme we have de
sities for the gluon and for each of the active quarks a
antiquarks. Up to power-suppressed corrections, the dens
of the non-partonic quarks and antiquarks are zero. The
tive partons evolve according to the standard DGLAP e
lution equations, with the kernels being those of theMS with
nA flavors.

XIII. MISCELLANEOUS COMMENTS

A. Relation to other methods of treating heavy quarks

Calculations of heavy quark production often use wha
called a fixed-flavor-number scheme@1,2,4,5#. This corre-
sponds exactly to the method described in the present p
if the heavy quark is treated as non-partonic.~For example, it
corresponds to a 3-flavor scheme for charm production
to a 4-flavor scheme for bottom production.!

Other calculations switch between different numbers
active quarks, but neglect the masses of the active quark
the coefficient functions. This is a valid approximation to t
scheme here when power corrections inM /Q are negligible,
but not when these power corrections are important. T
scheme described in this paper does not require the mass
active quarks to be neglected.

I have been unable to discover the justification of t
scheme proposed by Martin, Roberts, Ryskin and Stirl
@9#.

Roberts and Thorne@10,11# appear to have a schem
similar to the one in the present paper. But they do
present complete proofs, and they make a number of in
rect or misleading statements. For example, they state
‘‘the detailed construction of the coefficient functions . . . is
extremely difficult if not impossible.’’ As regards the gener
formalism, the construction is exactly as difficult as in t
light-quark case. The only computational complication
that in a calculation of the coefficient functions, heavy qua
masses must be retained. All the necessary Feynman-g
calculations for computing the coefficient functions at ord
as

2 have been done in Refs.@8#, and all that remains is to
organize them to form the coefficient function by use of t
recursion relation Eq.~65!. This recursion relation is of the
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same form as the one used to obtain the coefficient funct
in the massless case.

B. Modification of the schemes

It is possible to redefine the factorization results by
change of scheme that defines the parton densities. This
effect a change of the renormalization operation that defi
them.

In addition, the details of the extraction of the asymptot
of the structure functions may be changed by redefining
Z operation. The constraints on allowed redefinitions w
explained in Sec. IX D, and they are implied by the requi
ments for a good factorization scheme that were listed
Sec. II. TheZ operations and the renormalization operati
should not change the validity of the error estimates use
the proof of factorization.

I consider theMS scheme to be the best underlyin
scheme at the present state of the art, since it is the sch
most commonly used for calculations of QCD corrections
hard processes~at least when masses are ignored!.

C. Comparison with Zimmermann’s approach

One often gets the impression that Zimmermann’s deri
tion @36# of the operator product expansion~OPE! is consid-
ered as the most reliable. However, Zimmermann does no
fact prove the results that we need for regular QCD pheno
enology, even if we restrict to the case that the OPE is s
ficient. ~The derivation in the present paper in fact applies
the Minkowski space structure functions, rather than only
the integer moments of the structure functions. It is to th
integer moments that the OPE in its strict sense is restrict!

His results suffer from two disadvantages. The first is t
his Wilson coefficients have divergences in the zero-m
limit. They are not infra-red safe, and further work is need
to put the results in a useful form for perturbative pheno
enology in QCD. The second disadvantage is that his ev
tion equations are the inhomogeneous Callan-Syman
equations rather than the homogeneous renormalizat
group equations that can actually be used in practice.
inhomogeneous term is not of a form susceptible to e
calculation, so further work is needed to show that to a s
able approximation, this term can be neglected. In Tkacho
terminology @16#, Zimmermann’s version of the OPE doe
not give a ‘‘perfect asymptotic expansion’’ at largeQ. In
contrast, the factorization proved in the present paper is
fect in this sense.

In this section, we will see how Zimmermann’s resu
can be proved by our methods, and that they indeed su
from the above mentioned disadvantages.

The algebraic steps that led to our factorization theor
are shown in Eq.~22!. The strategy in organizing the ma
nipulations was that theright-most factor ofZ should be
made explicit. Zimmermann’s result can be obtained by
ranging so that theleft-mostZ is picked out. This results in
the following derivation:
2-25



i
o
a

e
d
bl
n

tro

,
o

na
m
s

sk

m
n

is
is
a
. I
eo

he
b

o

the
sive

tic
he
ms.

the
a
o-

lly

re-
ard

en

e

e-
-

n
c-

ark
of

hen

lid
the
ted

er
en-
in

can
n-
oef-

luon

e in
em
d is
rne

al
A,
do

n-

J. C. COLLINS PHYSICAL REVIEW D 58 094002
F2r 5C0•F 1

12K0
2~12Z!

1

12K0~12Z!G•T0

5C0•
1

12K0
•@12K0~12Z!2~12K0!~12Z!#

•

1

12K0~12Z!
•T0

5C0•
1

12K0
•Z•

1

12K0~12Z!
•T0 . ~94!

We therefore have a factorization theorem

F5CZ^ AZ1non-leading power, ~95!

where the coefficient function is

CZ5C0

1

12K0
Z, ~96!

and the operator matrix element is

AZ5Z
1

12K0~12Z!
T0 . ~97!

Notice first that the operator matrix elementAZ in Zimmer-
mann’s approach is already ultra-violet finite: the 12Z fac-
tors in Eq.~97! provide the necessary counterterms. This
contrast with our approach in Sec. V, where some extra w
was needed to express the factorization in terms of renorm
ized operators. Unfortunately, the counterterms in Zimm
mann’s approach are calculated at zero momentum, an
they suffer from divergences in the massless limit, nota
for the gluons. Thus although the bare matrix eleme
~without renormalization! are infra-red finite, if the hadron
state is well behaved, the renormalization procedure in
duces mass divergences.

Moreover the coefficient function is ultra-violet finite
since it is just a Green function of two currents and tw
partons. In Zimmermann’s work, on the OPE, the exter
partons of the coefficient function are given zero momentu
this corresponds to his use of zero momentum subtraction
do renormalization. The correct generalization to Minkow
space problems is given by the operatorZ defined in Eq.~8!:
only the ‘‘2’’ and transverse components of a momentu
are set to zero. Our derivation works equally well with o
shell renormalization, withZ defined by Eq.~11!.

However, Zimmermann’s definition of the coefficient
not infra-red finite. One cannot set the masses to zero. Th
the strongest reason for not regarding Zimmermann’s
proach as adequate for the problems we are interested in
a particular problem in QCD as opposed to other field th
ries, since the gluon is intrinsically massless.

D. Other processes

Exactly the same methods that have been explained
can be applied to other processes. Also, if there turn out to
other fields with color interactions, for example, squarks
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gluinos, they can be treated by minor generalizations of
same methods: we have the choice of treating each mas
field as either partonic or non-partonic.

XIV. CONCLUSIONS

I have given a proof of factorization for deep-inelas
structure functions including the effects of heavy quarks. T
methods are general and include all non-leading logarith
The scheme implemented is exactly that of ACOT@6#. The
proof is applicable independently of the relative sizes of
heavy quark masses andQ, and the size of the errors is
power ofL/Q. It can be readily extended to other hard pr
cesses.

Although this paper is quite lengthy, its core is rea
quite short. The essential elements of the proof are:

~1! Power counting is used to prove that the leading
gions have the form symbolized by Fig. 1. This is a stand
basic result of perturbative QCD.

~2! The remainder, as defined in Eq.~18!, is then proved
to be a non-leading power. The proof is fairly obvious giv
the form of the leading regions.

~3! The bare form of factorization then follows from th
three lines of algebra given in Eq.~22!.

~4! Renormalization of the parton densities is impl
mented in Eq.~47!. Then applying the inverse renormaliza
tion factor gives the renormalized factorization theorem.

~5! Application of the factorization theorem to a parto
target gives an algorithm for computing the coefficient fun
tion.

This gives the factorization theorem when a heavy qu
is treated as partonic. Simple modifications, plus the use
the decoupling theorem, give the corresponding results w
a heavy quark is non-partonic.

When one is treating a heavy quark as partonic, it is va
to include the heavy quark in the sum over partons in
factorization formula even though it cannot really be trea
as a parton, in Feynman’s sense.22 Errors in doing this are
automatically taken care of by the inclusion of higher-ord
terms in the coefficient functions. Since the heavy quark d
sities and the light parton densities are of different sizes
the threshold region, a correct leading-order calculation
only be done if lowest-order coefficient functions are i
cluded for all possible subprocesses. The lowest-order c
ficient functions are of different orders inas : The quark-
induced processes have a lowest order 1, and the g
induced process has a lowest orderas . As Q changes, the
relative contributions of the different subprocesses chang
size. This mixing of orders is to be expected in any probl
where the parton densities have very different sizes, an
not incorrect, contrary to the assertion of Roberts and Tho
@11#.

Notice that there is an implicit unitarity sum over fin
states in the whole of our work. As explained in Sec. IV
this implies that the details of the final-state interactions

22The word ‘‘parton’’ is used in two different senses in this se
tence.
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not affect factorization or the calculation of the coefficie
functions. In particular, it is irrelevant that in Feynman-gra
calculations, there are on-shell partons in the final-state, e
though in the real-world there are only physical hadrons
the final-state.
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APPENDIX: MISLEADING DERIVATION OF FORMULA
FOR RENORMALIZED COEFFICIENT FUNCTION

In this appendix we show some apparently correct m
nipulations can be used to justify a plausible but wrong f
mula for the renormalized coefficient function. The formu
is

Ccand5C0•
1

12~12Z!•K0
•~12PQ !•Z. ~A1!

~The subscript ‘‘cand’’ is to indicate this is a candidate f
the renormalized coefficient function.! Expanded in powers
of K0 this gives

Ccand5C0•(
n50

`

@~12Z!K0#n
•~12PQ !•Z. ~A2!
09400
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This candidate coefficient function has some proper
that make it an obvious candidate for a renormalized coe
cient function:

~1! The factors of 12Z prevent there from being leadin
contributions from regions where the momenta on the left
much higher in virtuality than those on the right.

~2! This includes the case that the left-hand momenta
hard momenta, of virtuality of orderQ2, as in the leading
regions Fig. 1, as well as the momenta that give ultra-vio
divergences.

~3! Thus the only leading regions are where all the m
menta inCcandare of virtuality of orderQ2 or where there is
an ultra-violet divergence where all the momenta in so
right-hand part ofCcand go to infinity.

~4! The factor 12PQ cancels all the ultra-violet diver
gences.

~5! The right-most factor ofZ defines the standard ap
proximation appropriate to defining a hard-scattering coe
cient that is coupled to a collinear target factor.

ThereforeCcand represents an obvious way of applyin
ultra-violet renormalization to the bare coefficient functio
defined in Eq.~23!.

Let us now attempt to prove the factorization formula

F5Ccand̂ AR1non-leading power. ~A3!

The following manipulations use just ordinary linear algeb
together with the definitions ofCB , AB , and AR , and the
propertiesZ25Z andPQ Z5PQ :
Ccand̂ AR5C0

1

12~12Z!K0
~12PQ !ZG^ AB

5CB~Z2PQ !FZ2ZK0

1

12~12PQ !K0

PQ GAB

5CBFZ2PQ 2~ZK02PQ K0!
1

12~12PQ !K0

PQ GAB

5CBFZ2PQ 1~12K01PQ K0211K02ZK0!
1

12~12PQ !K0

PQ GAB

5CBFZ2@12~12Z!K0#
1

12~12PQ !K0

PQ GAB

5CB^ AB2C0

1

12~12PQ !K0

PQ AB
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5CB^ AB2C0

1

12K0

~12K0!
1

12~12PQ !K0

PQ AB

5CB^ AB2C0

1

12K0

@12~12PQ !K02PQ K0#
1

12~12PQ !K0

PQ AB

5CB^ AB2C0

1

12K0

PQ F12K0

1

12~12PQ !K0

PQ GAB . ~A4!
ve
le
e

d

as
th
m

g
a

s

g a
In the second term of the extreme right-hand side, we ha
pole-part operation applied to a quantity without ultra-vio
divergences,C0 /(12K0). This second term is therefor
zero, and we appear to have provedCcand̂ AR5CB^ AB ,
which is sufficient to prove factorization, sinceCB^ AB
equals the structure functionF, up to a power-suppresse
remainder.

Unfortunately, the above derivation is false. It has
sumed that the operation of taking the pole part obeys all
rules of linear algebra, including associativity. The proble
can be seen at the first order inK0 . There are two terms on
the left-hand side of Eq.~A4!:

@C0~12Z!K0~12PQ !Z#@ZT0#1@C0Z#@ZK0~12PQ !T0#.
~A5!

The square brackets are used to delimit factors belongin
the coefficient and to the operator. The terms with a pole-p
are

2@C0~12Z!K0PQ #@ZT0#2@C0Z#@ZK0PQ T0#

5@C0ZK0PQ #@ZT0#2@C0Z#@ZK0PQ T0#, ~A6!

where we have observed~correctly! that C0K0 has no ultra-
violet divergence.
e
.

-

er

g,

09400
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The two terms in Eq.~A6! appear to cancel. In fact this i
not so. We are taking

@pole part~C0ZK0!#T02C0Z@pole part~ZK0!#T0 .
~A7!

This is not, in general, zero, as can be seen by takin
simple mathematical example. Let us replaceC0Z andZK0
by

C0Z511ae, ZK05
1

e
1b. ~A8!

Then Eq.~A7! becomes

pole partF ~11ae!S 1

e
1bD G

2~11ae!pole partS 1

e
1bD5

1

e
2~11ae!

1

e

52a, ~A9!

which is clearly non-zero.

TreatingPQ as an associative operator has failed.
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s.
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