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Effective field theories for QED bound states:
Extending nonrelativistic QED to study retardation effects

Patrick Labelle*
Physics Department, McGill University, Montreal, Quebec, Canada H3A 2T8
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Nonrelativistic QED bound states are difficult to study because of the presence of at least three widely
different scales: the masses, three-momenta (pi) and kinetic energies (Ki) of the constituents. Nonrelativistic
QED ~NRQED!, an effective field theory developed by Caswell and Lepage, simplifies greatly bound state
calculations by eliminating the masses as dynamical scales. As we demonstrate, NRQED diagrams involving
only photons of energyEg.pi contribute, in any calculation, to a unique order ina. This is not the case,
however, for diagrams involving photons with energiesEg.Ki ~‘‘retardation effects’’!, for which no simple
counting counting rules can be given. We present an extension of NRQED in which the contribution of those
ultra-soft photons can be isolated order by order ina. This is effectively accomplished by performing a
multipole expansion of the NRQED vertices.
@S0556-2821~98!01121-7#
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I. INTRODUCTION

It is remarkable that the spectrum of the hydrogen atom
one of the first applications of quantum mechanics be
taught and yet it is almost never mentioned in textbooks
quantum field theory and QED. Even when the problem
bound states is mentioned, it is made clear that it is a diffic
subject and that, to quote Ref.@1#, ‘‘accurate predictions re-
quire some artistic gifts from the practitioner.’’

The problem in studying bound states with relativis
quantum field theory is that the conventional perturbat
expansion in the number of loops breaks down complet
The physical reason is the presence of energy scales a
from scattering theory. Indeed, the size of an atom mad
two particles of charge2e andZe is of the order of the Bohr
radius'1/(Zma) ~wherem is the reduced mass! which, by
the uncertainty principle, provides an additional energy sc
'Zma. Because of this new energy scale, there is a reg
of the momentum integration in which the addition of loo
will not result in additional factors ofa. Moreover, if Z
!137 ~condition to which we restrict ourselves in this p
per!, this energy scale is much smaller than the masses o
particles and the system is predominantly nonrelativistic
simplification not taken advantage of in traditional a
proaches. In addition, a third energy scale, again vastly
ferent from the previous two, is set by the particles kine
energies@.(Zma)2/mi # and further complicates bound sta
calculations.

The problem is greatly simplified by using a Schro¨dinger
theory corrected by the usual relativistic corrections obtai
by performing a Foldy-Wouthuysen-Tani@2# transformation
to the Dirac Lagrangian and expanding in powers ofp/m.

*Email address: labelle@hep.physics.mcgill.ca
†Present address.
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These corrections include the Darwin interaction, the sp
orbit coupling, the relativistic corrections to the energ
@2p4/(8m3)1p6/(16m5#1¯ and so on~from now on, it is
this corrected theory that we will refer to as the ‘‘Schr¨-
dinger theory’’!. The effects of these interactions can
computed by applying Rayleigh-Schro¨dinger perturbation
theory using the Schro¨dinger wave functions as unperturbe
states, a process familiar from elementary quantum mech
ics. Calculations are much simpler in this framework beca
it takes advantage of the nonrelativistic nature of the pr
lem.

However, such a theory is useless for high precision c
culations. This is because it does not contain the phy
corresponding to the high energy (p.m) modes of either the
fermionsor the photon. This has two consequences. The fi
one is the appearance of divergent expressions. These d
gences show up in second order of perturbation theory~PT!
as well as in first order of PT if sufficiently high order~in
1/m) operators are considered; for example, the opera
p6/(16m5) mentioned above is divergent when evaluated
first order of PT. These divergences are due to the fact
this theory reproduces faithfully QED only when the m
menta probed by the interactions are much smaller than
electron mass. This condition is not satisfied in most inter
tions considered beyond first order PT, or when the opera
contain sufficiently high powers of derivatives to probe t
relativistic (p.m) behavior of the wave functions.

The second consequence is the absence in the Schro¨dinger
theory of operators corresponding to QED diagrams w
photons of energies.me , such as the processe2e1→g
→e2e1 and the decay of of an electron-positron pair into
odd or even number of photons. These processes are cl
important; the first contributes to the lowest order hyperfi
splitting in positronium, and the others cause the decay of
ortho ~total spin S51) and para (S50) states of positro-
nium.
©1998 The American Physical Society13-1
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Let us emphasize again that these problems are due t
fact that, in a quantum field theory, the high energy mo
cannot be simply discarded; they play an important ro
even in processes involving only nonrelativistic extern
states.

Caswell and Lepage~@3,4#! have shown how to modify
the Schro¨dinger theory to incorporate relativistic effects in
consistent and rigorous manner. They constructed an e
tive field theory~eft! that reproduces QED in the nonrelati
istic regime (p!me) and which they christened nonrelativ
istic QED~NRQED!. Although NRQED has been around fo
more than ten years and have been used in high prec
calculations in positronium and muonium~@3,5,6#!, it is still
little known, both by the atomic physics community and
the eft aficionados. Indeed, the Euler-Heisenberg Lagra
ian, which describes the scattering of photons at ener
much below the electron mass, is still the conventional
ample cited as an application of efts in the context of QE
However, the Euler-Heisenberg Lagrangian~which is a sub-
set of the NRQED Lagrangian! has a range of application
quite limited which does not include, in contradistinctio
with NRQED, the important topic of bound state physics

In the next section we will review the construction
NRQED. As any eft, NRQED contains an infinite number
interactions and is therefore nonrenormalizable. This is n
problem because an effective field theory is to be used wi
a restricted range of energy (p!me in the case of NRQED!
so that only a finite number of interactions will contribute
any given process, at any given level of precision. Wh
interactions are to be kept for a given precision~in a! is
dictated by counting rules which are an essential ingred
of any eft. The counting rules of NRQED are one of t
focuses of this paper.

Clearly, NRQED can be applied to both low energy sc
tering and nonrelativistic bound states. In applications
bound states, the NRQED counting rules are more invol
than in most eft’s because of the presence, as noted abov
more than one dynamical scale in the theory: the fermi
three-momentum .Zma, and their kinetic energies
.(Zma)2/mi . For the sake of conciseness, from now on
will refer to these two scales as, respectively, the ‘‘soft’’ a
‘‘ultra-soft’’ energy scales,Es andEus . Because of the the
presence of these two scales, there is, in general, no sim
connection between an NRQED diagram and the order~in a!
at which it contributes.

In this paper, we show how to disentangle the contrib
tions from these two scales in such a way that each diag
will contribute to a unique order ina. The first step is well
known and relies on time ordered~or ‘‘old-fashioned’’! per-
turbation theory together with the Coulomb gauge to se
rate the ‘‘soft’’ photons~with energy Eg.Es) from the
‘‘ultra-soft’’ ones (Eg.Eus). The counting rules for the dia
grams containing only soft photons are straightforward an
one-to-one correspondence between a diagram and the
of its contribution can be established. The diagrams w
ultra-soft photons are more complicated; not only do th
contribute to an infinite number of contributions of differe
order ~in a!, but in addition the lowest order is not given
terms of simple rules. This leads us to the second step in
09301
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separation of scales, which amounts to performing a mu
pole expansion of the vertices involving ultra-soft photon
leading to a new~infinite! set of interactions. This can b
interpreted as defining an extension of NRQED which
more useful for dealing with ultra-soft photons and which w
will call ‘‘MQED’’ ~for ‘‘multipole QED’’ !. We will show
that in MQED, diagrams containing ultra-soft photons co
tribute to a unique order ina, as given by new counting
rules. In addition to having simple counting rules, MQED
better adapted to the study of processes involving ultra-
photons such as the Lamb shift or the generation of cer
types of logarithms. The example of the Lamb shift calcu
tion can be found in another paper@7#.

Our paper is divided as follows. In Sec. II we introdu
NRQED and its Feynman rules, in the context of time o
dered perturbation theory. In Sec. III we show how tim
ordered PT permits us to separate the contributions from
and ultra-soft photons, and give the counting rules for d
grams containing only soft photons. In Sec. IV, we first
lustrate the breakdown of the previous counting rules
diagrams containing ultra-soft photons. We then show h
to incorporate the multipole expansion in the NRQED ve
ces, and how this leads to an extension of NRQED which
will call ‘‘MQED’’ for ‘‘Multipole QED.’’ In Sec. V we
give the general MQED counting rules and some examp
to illustrate their use.

II. NRQED

In principle, there are two ways of deriving an effectiv
field theory if the underlying theory is know. Firstly, one ca
integrate out the modes of energies>Lphys whereLphys is
the energy below which the effective theory is to be used~we
will keep the subscriptphys to distinguish thisL from the
regulator cutoff to be introduced later on; in NRQED
Lphys.m). In practice this is technically difficult to do o
even impossible, as in the case of low energy QCD. T
second method consists in writing down the most gene
effective field theory composed of the low energy fields a
consistent with the symmetries of the underlying theory. T
eft is not restricted by renormalizability and contains the
fore an infinite number of operators, each accompanied b
independent coefficient. If the underlying theory is perturb
tive in the range of energyE<Lphys, then these coefficients
can be computed, order by order in the loop expansion,
setting equal, or ‘‘matching,’’ some scattering process co
puted in both the underlying and the effective theories. In
case of low energy QCD, where such a matching is not p
sible, the coefficients must be determined phenomenol
cally and the usefulness of the eft is restricted by the we
of data available.

For NRQED, we follow the second method which r
quires to first identify the low energy degrees of freedom a
the relevant symmetries. There will be a field for the phot
and one for each of the charged particles participating to
process under study such as the electron, the positron
muon, proton, etc. Notice that the fermion fields correspo
to two-components Pauli spinors. A particle and its asso
ated antiparticle are independent fields in a nonrelativi
3-2



o
lo
an
sa

i

g

La
o
an
L

n

lec-
a-

both

g
the
ew

e
und
red

er
tra-
ve
on-
the
on
the

EFFECTIVE FIELD THEORIES FOR QED BOUND . . . PHYSICAL REVIEW D 58 093013
field theory; they simply correspond to distinct particles
opposite charge. NRQED must obey the symmetries of
energy QED such as invariance under parity, Galilean
gauge invariance, etc. Lorentz invariance is not neces
except for the terms containing photon fields only.

It is convenient to decompose the NRQED Lagrangian
the following way:

LNRQED5L22Fermi1L42Fermi1Lphoton1¯ ~1!

whereL22Fermi andL42Fermi are the interactions containin
two and four fermions, respectively, andLphoton is the pure
photon Lagrangian which includes the Euler-Heisenberg
grangian. We will not display the operators containing six
more fermions fields which, in all practical applications, c
be ignored because their contribution is suppressed. The
grangianL22Fermi is given by

L22Fermi5c†S iD t1
D2

2m
1

D4

8m3

1c1s•B1c2~D•E2E•D!

1c3s•~D3E2E3D!1 . . . Dc

1same terms withc→x† ~2!

wherec and x represent the~two-component! electron and
positron fields, respectively. More precisely,c† creates a
two component electron field andx† annihilates a two-
component positron field. The parameterq represents the
charge of the particle. Notice that in NRQED, a particle a
its associated antiparticle differ only by their charge.

The first few terms ofL42Fermi are given by
e
o
n
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c4c†s~2 is2!~x†!T
•xT~ is2!sc1c5c†~2 is2!~x†!T

3xT~ is2!c1c6„c
†~2 is2!sD2x•x†~ is2!sc1H.c.…

1c7c†sc•x†sx1c8c†cx†x1¯ . ~3!

The first three terms are only present whenc and x are
associated with a particle and its antiparticle such as the e
tron and positron; they come from QED annihilation di
grams@the factors ofs2 and the transpose operatorT are
necessary because we are using the same definition for
the particle and antiparticle spinors, see Eq.~15!#.

As will become clear in our derivation of the countin
rules, the Coulomb gauge is the most efficient gauge for
study of nonrelativistic systems. In this gauge, the first f
terms ofLphoton are @6#

2
1

4
FmnFmn1c9A0~k!

k4

m2 A0~k!

2c9Ai~k!
k4

m2 Ai~k!S d i j 2
kikj

k2 D1¯ . ~4!

Before discussing the calculation of the coefficientsci ,
we will switch from the Lagrangian to the Hamiltonian. W
do so because the counting rules in a nonrelativistic bo
state are most easily derived in the context of time orde
~or ‘‘old-fashioned’’! perturbation theory~TOPT for short!
and in TOPT one must work with the Hamiltonian rath
than the Lagrangian. We remind the reader that, in con
distinction with covariant PT, in TOPT the vertices conser
only three-momenta and the virtual states are always
shell. The total energy, however, is not conserved by
intermediate state so that, in this formalism, it is the violati
of energy that characterizes the virtual state rather than
off-shellness of the particles, as in covariant PT.

Using D5 i (p2qA) and Dt5] t1 iqA0 , the NRQED
Hamiltonian is given by
H22Fermi5c†S p2

2m
1qA02

p4

8m3 2
q

2m
~p81p!•A1

q2

2m
A•A2 ic1s•~k3A!2c2k2A0

12c3s•~p83p!A022qc3s•„k13A~k1!…A0~k2!

1c3k0s•„~p81p!3A…1¯ Dc~p!1x†x terms ~5!

H42Fermi52c4c†s~2 is2!~x†!T
•xT~ is2!sc2c5c†~2 is2!~x†!TxT~ is2!c1¯ ~6!

Hphoton5
1

2
~E21B2!2c9A0~k!

k4

m2 A0~k!1c9Ai~k!
k4

m2 Ai~k!S d i j 2
kikj

k2 D1¯ . ~7!
r-
eld
As explained previously, the coefficients are determin
by computing some low energy scattering process in b
QED and NRQED and matching the results. The coefficie
d
th
ts

of the operators inH22Fermi can be computed by conside
ing the scattering of a charged particle off an external fi
~see Refs.@6# or @8# for an explicit matching!. The coefficient
3-3
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PATRICK LABELLE PHYSICAL REVIEW D 58 093013
c4 is obtained by matching the tree level QED annihilati
diagrame1e2→g→e1e2 to the NRQED interaction. The
tree level contribution toc5 comes from the QED diagram
e1e2→gg→e1e2 and is therefore of ordera2. On the
other hand,c9 comes from the one-loop vacuum polariz
tion. One finds

c15
q

2m
c25

q

8m2

c35
iq

8m2 c452
ap

m2

c55
a2

m2 ~222 ln 21 ip! c95
a

15p
. ~8!

The imaginary part ofc5 corresponds, via the relatio
Im(E)52G/2, to the decay rate of positronium in a singl
(S50) state, the quantum number carried by the correspo
ing operator.

Notice that the relation between the powers ofa and the
number of loops is broken in NRQED, since factors of t
coupling constant arise from coupling to all photons wher
the eft contain only photons with momentauku!m. For the
same reason, the tree level matching, for example, invo
NRQED tree diagrams, but may involve QED loop di
grams. By ‘‘tree level matching’’ we will mean matchin
involving tree level NRQED diagrams.

The one-loop matching modifies the values of the t
level coefficients so that we will, from now on, write th
coefficients in the form

ci→cid i ~9!

with d i511O(a). As in conventional renormalization, tre
level as well as one-loop NRQED diagrams enter in the o
loop matching and this defines theO~a! corrections to the
NRQED parameters; the only difference with conventio
renormalization is that the calculation is matched to a Q
result instead of an experimental input. Because the one-
NRQED integrals are divergent, they must be regulariz
There are many possible regulators; one can use dimens
regularization or a simple cutoffLR on the momentum inte
grations~which is permitted because NRQED breaks Lore
invariance to start with!. The NRQED coefficients defined b
the matching are then cutoff dependent, i.e., they mus
viewed as bare parameters. In contradistinction with QE
the divergent terms are not only logarithmic but power-la
(LR /m)n, as well. This cutoff dependence is of course ca
celed in any physical calculation, by invariance under
renormalization group. Obviously, one can also setLR
5Lphys5m directly, but since the bare coefficients are th
finite, this can be misleading if one is not careful abo
renormalizing the effective theory properly~for a more thor-
ough discussion of this point, see@9#!.

The one-loop matching of some of the coefficients a
pearing in Eq.~2! has been performed in Refs.@6# and @10#
and the correspondingd i ’s appearing in Eq.~2! were found
to be
09301
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d2[dD511
a

p

8

3 F lnS m

2LR
D1

11

24G
12ae1O~a2!

d3[dS5112ae1O~a2!

d4[dA512
44a

9p
~10!

whereae is the electron anomalous magnetic moment whi
to the order of interest, can be taken to bea/(2p). We have
redefine our coefficients to follow the convention of@6# ~but
notice that ourd correspond to their coefficientsc); the sub-
scriptsF, D, S and 42F stand for Fermi, Darwin, spin-orbi
and four-Fermi interaction, respectively.

We now turn to the task of writing a general form for th
NRQED coefficients. Before doing so, we must address
issue of the photon mass, which provides an additional s
and has the potential of complicating our analysis. The p
ton mass does not appear in Eq.~10! but this might appear
fortuitous. However, since any photon mass dependence
sign of sensitivity to very low momenta and NRQED is d
signed to be equivalent to QED in this region of phase spa
any infrared singularity in a QED diagram is also present
the corresponding NRQED diagram, so that it gets cance
in the matching. Therefore, in general, the NRQED bare
efficients do not depend on the photon mass, to any orde
the matching. From this, it follows that the coefficients ha
the general structure

ci~LR ,m1 ,m2!5ci
0anid i~LR ,m1 ,m2!

[ci
0aniS 11 (

l i51

`

a l i c̃i
l i~LR ,m1 ,m2!D

~11!

whereci is now a generic symbol representing any NRQE
coefficient and thel i on the coefficientsc̃i is an index, not an
exponent. We have decomposed the lowest order term
coefficientci

0 of order one times a factorani which is differ-
ent for different operators. As an example, the Darwin int
action, which contains the factorc1 , hasn151/2 whereas
the singlet annihilation operator, which containsc5 , hasn5
52. The indexl i indicates the number of loops used in th
matching.

The coefficientsc̃ contain, in general, finite pieces plu
power-law terms as well as logarithms divergent terms. N
tice that for a fixedl i , there are, in principle, an infinite
number of terms to calculate because there are an infi
number ofl i2 loops NRQED Feynman diagrams, but only
finite number of interactions must be considered in any giv
calculation, as specified by the counting rules~which will
also dictate the order at which the matching must be p
formed!.
3-4
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FIG. 1. NRQED Feynman rules.
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The Feynman rules for the first few interactions of Eq
~7!, ~5! and ~6! are given in Fig. 1. We will draw the dia
grams with the time flowing to the right. In the rules for th
vertices we have followed the example of@6# and used the
expression ‘‘dipole vertex’’ to represent thep•A interaction
even though, as pointed out in@6#, the NRQED Hamiltonian
is not an expansion in multipoles. Also, we have use so
Fierz reshuffling to rewrite the annihilation vertex in th
form given in Fig. 1. As for the propagators, we have us
time ordered perturbation theory where there is one propa
tor for each different intermediate state, defined by cutt
the diagram with a vertical line. The general rule for a tim
ordered propagator is

1

E02Ei
~12!

times a factor

1

2Ak21l2 S d i j 2
kikj

k21l2D ~13!
09301
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for each transverse photon present in the intermediate s
In Eq. ~12!, E0 stands for the energy of the initial state an
Ei for the energy of the intermediate state. One uses non
ativistic energies,p2/(2m), for the fermions andAk21l2

for the photons. In Fig. 1 the propagator is given for
intermediate state containing only one fermion or one tra
verse photon. In Fig. 2, the corresponding expressions
given for the states containing two fermions or two fermio
plus one transverse photons, which are the situations m
often met in NRQED calculations.

One must sum over all the possible time ordered diagra
and integrate over all the internal three-momenta, with
measured3p/(2p)3. Notice that we prefer to include th
factors of 1/(2Ak21l2) corresponding to the transvers
photons in the propagators instead of the measure for rea
that will become clearer below.

In this work we will be mainly interested in application
of NRQED to bound state calculations in which case
external lines are not associated with free spinors, but w
wave functions. In general, the wave functions are obtai
by solving a Bethe-Salpeter type equation, with some
3-5



PATRICK LABELLE PHYSICAL REVIEW D 58 093013
FIG. 2. Time-ordered propagators for two fermions or two fermions plus one transverse photon.
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proximated kernel. This is equivalent to summing up an
finite number of this kernel into the wave functions. We w
show below that the NRQED counting rules single out~in
the Coulomb gauge! the Coulomb interaction as being th
only nonperturbative interaction in a nonrelativistic bou
state so that this part of the analysis reduces to solving
usual Schro¨dinger equation. In our explicit examples, w
will use the ground state wave function, given by

C~p!n,l 50,s1,s25
8Apg5

~p21g2!2
^ j1^ j2 ~14!

where g[Zma @the energy of the state is given b
2g2/(2m)# and j1 ,j2 are the spinors of the two particle
making up the bound state, with

jup5S 1
0D , jdown5S 0

1D . ~15!

We will not write down the states of higher angular m
mentum since they are, for the purposes of establishing
counting rules, equivalent to the above states~for the mo-
mentum Schro¨dinger wave functions for arbitrary quantu
numbers, see@11#!. As just mentioned, using Schro¨dinger
wave functions for the external states means that we are s
ming the Coulomb interaction between the external legs.
other interactions can be treated perturbatively, which will
shown to be self-consistent with the counting rules.

III. COUNTING RULES: SOFT PHOTONS

We now consider a nonrelativistic bound state made
simplify the discussion, of two particles of equal masses
of charges6e. We will also assume that it is in its groun
state (n51). We will generalize our results at the end of th
section.

There are two important energy scales in such a bo
state, the typical bound state momentumg and the binding
energy2g2/m. For a nonrelativistic fermion, for which th
dispersion relation is given by the usualE5p2/(2m), using
either scale leads topf ermion'g ~from now on, byp andk
we will always mean the magnitude of three-momenta!. In
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the case of a photon, for whichE5k, using the bound state
momentum or binding energy yields two very differe
scales fork, namely k.g5ma and k.g2/m5ma2. We
will refer to this first type of photons as ‘‘soft’’ photons, an
to the second type as ‘‘ultra-soft’’ photons. For the sake
completeness, we define ‘‘hard photons’’ as the photons w
k.m or greater. These photons play no dynamical role
NRQED, since they have been integrated out of the the
and their only effect is buried in the theory’s coefficients.

The first step in deriving counting rules is to separa
diagrams involving soft photons from diagrams with ultr
soft photons, since they bring in very different scales, wh
will necessarily complicate the rules. This is where the use
the Coulomb gauge in conjunction with time ordered PT w
be crucial in simplifying the analysis.

Consider a transverse photon exchange between two
mions in a nonrelativistic bound state. This is represented
the two time ordered diagrams of Fig. 3, where we put
time axis toward the right and theC attached to the externa
lines represent the wave functions. The photon will cont
both soft and ultra-soft components. Now, if the photon
soft, its momentum as well as its energy are of order
fermion momentumma so that its energy is much greate
than the fermion energies. This means that from the poin
view of the fermions, the propagation of the soft photons
instantaneous and is therefore represented by vertical line
time-ordered diagrams.

This can be seen more qualitatively by looking at t
explicit expression for the intermediate state propaga
which is given by~recall thatk[Auk2u)

FIG. 3. The two time-ordered diagrams corresponding to
exchange of a transverse photon~the vertical lines indicate the in
termediate states used for the time-ordered propagators!.
3-6
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1

2k S d i j 2
kikj

k2 D S 1

2g2/~m!2p2/~2m!2~p2k!2/~2m!2k

1
1

2g2/~m!2p2/~2m!2~p2k!2/~2m!2kD . ~16!

Notice that the photon mass can be set to zero in bo
states calculations, the size of the atom preventing the
pearance of any infrared singularity; the scale of the ferm
three-momentump is of order g. For soft photons,k
.Zma, and we clearly see thatk dominates in the propaga
tors for the intermediate state so that we can approximate
~18! by

1

2k S d i j 2
kikj

k2 D S 22

k D52
1

k2 S d i j 2
kikj

k21l2D ~17!

which corresponds to a single diagram, with an energy in
pendent photon propagator. This corresponds to the tr
verse photon propagator of@6# if one approximatesk0

22k2

'2k2 and setl50 @this is why we kept the 1/(2k) factor in
the definition of the propagator instead of the measure#. This
shows again that in a time ordered diagram, the propaga
of such a photon is represented by a vertical line, i.e.,
instantaneous interaction, since it is independent ofk0 so that
its Fourier transform contains a delta function in time.

We can now isolate the soft from the ultra-soft comp
nents in any photon exchange by rewriting the time orde
diagram as a sum over an instantaneous interaction a
‘‘retarded’’ one, as in Fig. 4~this is why we refer to the
effects of ultra-soft photons as ‘‘retardation effects’’!. If we
restrict ourselves to NRQED diagrams containing soft p
tons only, then all photon exchanges can be represente
vertical lines. In real space, such interactions are represe
by potentials local in time, i.e., functions ofur12r2u only.

Besides photon exchanges, the only other possible in
actions are the self-energy interactions such as2p4/8m3 and
the contact interactions contained inL42Fermi , L62Fermi ,
etc. These can clearly be represented by potentials, so th
arbitrary diagram containing soft photons only can be writ
as a string of potentials connected by fermion lines only.
this case, the intermediate states contain fermion lines o
and the time ordered propagators take on a particul
simple form. If there are no interaction fromLn.4 , for ex-
ample, the propagators are all of the form

1

E02E~ intermediate state!
5

1

2g2/m2p2/~2m!2p2/~2m!

52
m

g21p2 ~18!

FIG. 4. Separation of a transverse photon into a soft, insta
neous contribution~represented by a vertical line! and an ultra-soft
propagator~represented by the broken wavy line!.
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where we have used the fact that the bound state energ
2g2/m. The crucial observation is that the mass depende
factors out, in the form of the overall factor ofm, leavingg
as the only dynamical scale in the integrals. If interactio
contained inLn.4 are included, then some intermedia
states will contain more than two fermion lines, but it w
always be of the form

1

2g2/m2( ipi
2/~2m!

52
m

g21( ipi
2 ~19!

and the mass still factors out. Therefore any NRQED d
gram containing only soft photons leads to an integral of
form

mb
„P j cj~LR!…ELR

~P id
3pi !F~pi ,g! ~20!

whereb is some integer that depends on the types and n
ber of potentials. The product is over all the vertices of ty
j , with coefficientscj , as given in Eq.~11!. Again, the cru-
cial point for the following discussion is that the massm
does not appear in the integrand, i.e., does not play any
namical role. There are two scales in the integral,g andLR ,
but the invariance under the renormalization group impl
that the divergentLR dependent terms arising from the int
grations will be canceled by corresponding terms in the b
coefficientsci(LR). As noted before, these divergent term
are either power-law, i.e., of the form (LR)n with n being a
positive integer, or logarithmic. The power law terms a
canceled exactly whereas theLR in the logarithms get can
celed after combining logarithms containing different sca
which leaves, in the end, logarithms ofa.1

How the logarithms become finite is instructive in that
clearly illustrates the separation of scales accomplished
the effective theory. As mentioned in Sec. III, some NRQE
bare coefficients contain divergent logarithms of the fo
ln(LR/m) @as is explicit in Eq.~10!#. To be precise, the
NRQED scattering diagrams appearing in the matching p
cess contain logarithms ofLR overl since these are the onl
two dynamical scales of the eft, whereas the QED scatte
diagrams contain logs of the form ln(m/l); upon solving for
the bare coefficients, the logarithmic dependence is the
the form ln(LR/m) ~again, the photon mass dependence dr
out entirely for the reasons explained above!. On the other
hand, the NRQED bound state integrals can only depend
the scalesLR andg, yielding ln(LR/g). In the end, the logs

1Obviously, dimensional regularization can be used instead o
momentum cutoff. The power law divergences are then either
tirely absent or replaced by 1/e divergences. Again, these dive
gences cancel, by invariance under the renormalization group.
leaves logarithms depending on the scalem, which gets canceled in
the way described above for the logLR terms. In actual explicit
analytical calculations, using dimensional regularization or a m
mentum cutoff is simply a matter of taste. However, for high p
cision calculations, where numerical calculations are required
explicit cutoff is necessary.

a-
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PATRICK LABELLE PHYSICAL REVIEW D 58 093013
of the bare coefficients combine with the logs generated
the bound state integrals to give corrections of the fo
ln(g/m)5ln a. We see how the use of an effective theory h
separated the contributions from all the scales present in
problem ~l, g, m and LR) in such a way that only two o
them played a dynamical role in any given stage of the c
culation ~l and m appear in the QED scattering diagram
LR andl in the NRQED scattering diagrams, andg andLR
in the NRQED bound state diagrams!.

The only LR dependence remaining is therefore of t
form (g/LR)n which, upon settingLR5m, leads to correc-
tions beyond the order of interest; in analytical calculatio
one can get rid of these terms by simply lettingLR→` at
the end of the calculation, as in conventional renormali
tion.

It is now a trivial matter to write down the counting rule
for an arbitrary bound state diagram containing only s
photons, i.e., the order ina at which it will contribute. There
are two sources of factors ofa. First, there are the explici
factors contained in the NRQED vertices. Secondly, ther
a factor ofa for each factor ofg generated by the diagram
To be more rigorous, the factors associated to the vertices
genuine factors of the coupling constant whereas the fac
of g are associated with factors ofv which scale is set by the
bound state to be of ordera; here it is not important to
distinguish between the two types of contributions, but thi
necessary in QCD bound states because of the notice
running of the strong coupling constant@12#.

By simple dimensional analysis, there will be a factor og
to compensate each explicit factor of mass appearing in
vertices and each factor of mass due to the fermion pair t
ordered propagators. An arbitrary bound state diagram
built out of a given number of potentials,NP , connected by
NTOP time ordered propagators. For example, consider F
5, where 3 potentials are connected by 2 time-ordered pro
gators so thatNP53 and NTOP52 for that diagram. For
later use, we also defineVi as the number of vertices con
tained in thei th potential andV as the total number of ver
tices in the diagram

V5(
i 51

NP

Vi . ~21!

We now define the ‘‘vertex mass degree’’dj as the number
of inversemasses contained in thej th vertex and the ‘‘po-
tential mass degree’’Di as the number of inverse mass
contained in thei th potential,

FIG. 5. Generic bound state potential; the dependence on
charges and on the masses of each vertex is indicated.
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Di5(
j 51

Vi

dj . ~22!

For example, the first potential of Fig. 5~the self-energy
potential! hasD153, whereasD250 ~for the Coulomb in-
teraction! andD354. Since each potential generatesDi fac-
tors of inverses masses and each fermion-fermion time
dered propagator generates one factor ofm, an arbitrary
diagram having the dimensions of energy will then gener
a factorgl, with

l512NTOP1(
i 51

V

di ~23!

where the sum is over all the vertices in the diagram. For
present purposes, it is more convenient to writel as

l512NTOP1(
i 51

NP

Di ~24!

where now the sum is over all the potentials in the diagra
We now define the ‘‘coupling constant degree’’Ci as the

total number of explicit factors ofa contained in each po
tential, namely

Ci[(
j

Vi

~nj1 l j ! ~25!

where nj and l j are the powers ofa associated with the
coefficient of each vertex as defined in Eq.~11!.

Finally, a diagram made ofNP potentials will contribute
to ordermaz with z being the sum of Eq.~24! and the cou-
pling constant degrees~25! of all the potentials:

z5(
i 51

NP

~Di1Ci !112NTOP . ~26!

It is easy to see thatNTOP and NP are related byNTOP
5NP21 so that we can write

z5(
i 51

NP

~Di1Ci !122NP5(
i 51

NP

~Di1Ci21!12. ~27!

This expression gives the order ina of any NRQED diagram
containing only soft photons, keeping in mind that this res
can be enhanced by factors of ln(a). For the example of Fig.
5, one findsz58.

Equation~27! shows clearly that if there is a potential fo
whichDi1Ci51, perturbation theory will break down and
will have to be summed up to infinity. It is an easy matter
find such a potential. We can choosel j50 ~i.e., the coeffi-
cients of the vertices have their tree level values!. Now, nj is
zero for the self-energy interactions, but the lowest value t
the mass degree can take is 3, corresponding to the inte
tion 2p4/(8m3), so that the conditionDi1Ci51 cannot be
fulfilled. Many potentials havenj51 ~i.e., one factor ofa!
but the only one with, in addition,Di50 ~no inverse masses!
is the Coulomb potential2e2/k2. Therefore, as expected

he
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EFFECTIVE FIELD THEORIES FOR QED BOUND . . . PHYSICAL REVIEW D 58 093013
only the Coulomb interaction must be summed up to infin
and the resulting contribution is, from Eq.~27!, of order
ma2; all other potentials can be treated in perturbat
theory.

In an actual calculation, the counting rules are used in
following way. For a given process~hyperfine splitting, de-
cay rate, etc.!, one selects all the diagrams with the app
priate quantum numbers that will, using the counting rul
contribute to the order of interest. The counting rules de
mine not only the diagrams that must be retained, but a
via the l j dependence in Eq.~27!, the number of loops tha
must be used in the matching of each vertex. The matchin
then carried for each vertex using scattering diagrams in b
QED and NRQED. For a given number of loops, there are
infinite number of NRQED scattering diagrams, but here
counting rules are used a second time to pick the NRQ
diagrams that need to be taken into account. Notice tha
the matching process, which involves scattering diagra
one uses Eq.~27! even though this relation was derived f
bound state diagrams. Once all the relevant diagrams h
been taken into account and the NRQED coefficients h
been renormalized to the appropriate order, the final calc
tion will be finite and will reproduce the QED result, to th
order of interest.

A. Extension to arbitrary masses and charges

We now extend our counting rules for two constituen
having arbitrary massesm1 and m2 . The above derivation
must then be modified at two points. First, the NRQED c
efficients given by Eq.~11! will now contain a dependenc
on m1 andm2 :

ci~LR ,m1 ,m2!

5ci
0~m1 ,m2!aniS 11 (

l i51

`

a l i c̃i
l i~LR ,m1 ,m2!D .

~28!

No simple general expression can be given for the mass
pendence of the coefficientsc̃; it arises from QED loop dia-
grams entering the matching and may involve logarithms
m1 /m2 , etc. The mass dependence of the zeroth order c
ficients ci

0 can be taken into account in the following wa
first, define the vertex mass degrees with respect to e
mass,dj (m1) and dj (m2) as the number of inverse mass
m1 and m2 contained in the vertex. For a given NRQE
bound state diagram, one can then define the following
indices

k[(
i 51

V

di~m1!, ~29!

r[(
i 51

V

di~m2!. ~30!

Obviously, such a diagram will contribute an overall fa
tor 1/(m1

km2
r). Since the overall result must have the dime
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sions of energy and since the only energy scale provided
the bound state NRQED diagrams isg, which contains the
reduced massm, the overall mass factor will be

mk1r11

m1
km2

r . ~31!

The more general counting rule is therefore

O5
mk1r11

m1
km2

r az ~32!

times possible factors of lnma and functions of the masse
m1 , m2 and m ~which, however, arise only if some of th
NRQED coefficients have been matched beyond tree lev!.

Finally, we consider a bound state with constituents
charges2e andZe. We first include aZ dependence in the
NRQED coefficients:

ci~LR ,m1 ,m2 ,!5ci
0~m1 ,m2!Zaiani

3S 11 (
l i51

`

a l i c̃i
l i~LR ,m1 ,m2 ,Z!D

~33!

whereai will denote the explicit power ofZ contained in the
zeroth order coefficient of thei th vertex. Again, theZ de-
pendence of thec̃i

l i arises from the computation of QED loo
diagrams and we will not write a general expression for t
dependence, but notice that it will necessarily be some po
of Z. There is an additionalZ dependence which, this time
we can take into account: an additionalZ dependence come
from each factor ofg5Zma generated by the NRQED
bound states. This number is given by Eq.~23!:

l512NTOP1(
i 51

V

di . ~34!

A bound state diagram~with all the NRQED coefficients
taking their tree level value! will therefore generate a facto
Zh with h given by this last expression plus theZ depen-
dence of the tree level NRQED coefficients, as given in E
~35!:

h512NTOP1(
i 51

V

~di1ai !. ~35!

Again, the power ofZ is independent of the order in pertu
bation theory for the Coulomb interaction since each C
lomb potential increases both the sum overai andNTOP by
one. Our most general counting rule for diagram contain
soft photons is therefore given by

O5
mk1r11

m1
km2

r Zhaz ~36!
3-9
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PATRICK LABELLE PHYSICAL REVIEW D 58 093013
times possible factors of ln(Zma), and dependence onm1 ,
m2 , m and Z arising from the loop corrections to th
NRQED coefficients.

IV. COUNTING RULES: ULTRA-SOFT PHOTONS

The above derivation relied heavily on the fact that t
only scale present in the bound state diagram wasg. How-
ever, if we start considering ultra-soft transverse photo
then we have to go back to the general time ordered pro
gator ~see Fig. 3!

2
Pi j

2k S 1

g2/~2m!1~p2k!2/~2m1!1p2/~2m2!1k

1
1

g2/~2m!1p2/~2m1!1~p2k!2/~2m2!1kD
~37!

where we have defined the transverse projection operato

Pi j [d i j 2
kikj

k2 . ~38!

In general, such a propagator would contain both the soft
ultra-soft scales so that counting rules would be imposs
to establish. However, we have already isolated the soft c
tribution in an instantaneous interaction with the phot
propagator given by Eq.~17!. Therefore, if the contribution
from the soft photon is calculated separately, only the ul
soft scale remains in Eq.~37!. We represent this separatio
graphically in Fig. 4 where a general transverse photon~on
the left-hand side! is represented by a slanted wavy line an
on the right-hand side, the soft photon contribution is rep
rs
nd

r

y-

w

09301
s,
a-

d
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sented by a vertical~instantaneous! wavy line and the ultra-
soft contribution is represented by a slanted, broken, w
line. To get the ultra-soft propagator, we must therefore s
tract from the general propagator the expression corresp
ing to the soft photon propagator which we have seen in
~17! to be 2Pi j /k2 ~notice, however, that we would no
operate this subtraction in a diagram like Fig. 6 where th
is no corresponding soft photon contribution!:

2
Pi j

2k S 1

g2/~2m!1~p2k!2/~2m1!1p2/~2m2!1k

1
1

g2/~2m!1p2/~2m1!1~p2k!2/~2m2!1k
2

2

kD .

~39!

This expression now corresponds to the propagator of
ultra-soft photon so the scale ofk is of orderma2. Recalling
that the scale ofp is .ma, we can perform a Taylor expan
sion in k/p.a. Applying this to Eq.~39! gives

FIG. 6. Ultra-soft photon spanning a Coulomb interaction.
such a diagram, one does not subtract the soft photon propag
from the intermediate state propagator because there is no c
sponding soft photon diagram.
'2
1

2k
Pi j S 1

g2/~2m!1p2/~2m!1k
2

1

k
1

p•k/m1

„g2/~2m!1p2/~2m!1k…2
~40!

1
2k2/~2m1!

„g2/~2m!1p2/~2m!1k…2
1

~p•k!2/m1
2

„g2/~2m!1p2/~2m!1k…3
~41!

1
2k2p•k/m1

2

„g2/~2m!1p2/~2m!1k…3
1

~k•p!3/m1
31

„g2/~2m!1p2/~2m!1k…4
1¯ D 1same with m1↔m2 ~42!
-
ill

-
of
where the first line contain the zeroth order term plus the fi
order one~thep•k term!, the second line contains the seco
order contribution and so on.

Since the expansion is ink/p, we expect that each powe
of k appearing in the numerator will be associated with
power ofa with respect to the zeroth order term of the Ta
lor expansion@the first term in Eq.~40!#. We will show this
explicitly for a few terms.

Consider first the zeroth order propagator. It contains t
t

a

o

inverse powers ofk, which scales likema2, so that it con-
tributes to the counting rules by a factor 1/(m2a4) ~we will
not distinguish betweenm1 , m2 andm to discuss the count
ing rules!. Of course, in an actual diagram, other factors w
enter to make the overalla contribution of the diagram posi
tive; here we are just interested in the relative contribution
the terms in the Taylor expansion.

Now consider the first order correction@the second term
of Eq. ~42!#. The numeratork•p/m scales like ma2
3-10
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3ma/m5ma3 and the denominator contains 3 factors ofk so
it scales like (ma2)3. Therefore, the first order propagat
scales like

ma3/~m3a6!51/~m2a3! ~43!

which is one power ofa times the zeroth order propagato
The k2/m term in the second order Taylor propagator~41!
scales like
o

a
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09301
~ma2!2/~m3m3a6!51/~ma!2 ~44!

which is down by two powers ofa with respect to the zeroth
order propagator. It is a simple matter to verify that the oth
term of Eq. ~41! also contribute with a factor ofa2 with
respect to the lowest order contribution, and the terms of
~42! contribute with a factora3, etc.

In an actual diagram, the Taylor expansion must of cou
be carried on the whole diagram. As an illustration, we e
pand the complete integrand corresponding to Fig. 3~a!,
sandwiched between ground state wave functions:
8Apg5

~p21g2!2

q1q2

4m1m2
~2pi2ki !~kj22pj !

Pi j

2k S 1

2g2/~2m!2~p2k!2/~2m1!2p2/~2m2!2k
1

1

kD 8Apg5

„~p2k!21g2
…

2

5
~8Apg5!2

~p21g2!4

q1q2

4m1m2

Pi j

2k

4pipjp•k/m1

„2g2/~2m!2p2/~2m!2k…2
1

~8Apg5!2

~p21g2!4

q1q2

4m1m2

Pi j

2k

3S 1

„2g2/~2m!2p2/~2m!2k…
1

1

kD S 24pipj12kipj12pikj2
16pipjp•k

~p21g2!
1¯ D . ~45!
ree-
g

ain

bed
er-

-
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er
Again, one can easily verify that each power ofk in the
numerator is associated with an extra factor ofa.

Notice that the spin-spin diagram with an ultra-soft ph
ton, Fig. 7~b!, contains at least two powers ofk since the
NRQED Feynman rule for the Fermi vertex is proportion
to k; in other words, the first non-vanishing contributio
comes from the second order term in the Taylor expans
Therefore, the lowest order contribution of the ultra-s
spin-spin exchange is suppressed by two powers ofa with
respect to the corresponding dipole-dipole exchange~this is
due to the fact that the Fermi interaction involves theB
field!. This is very different from the corresponding soft ph
ton diagrams which both contribute to the same order. T
difference, again, is that only the factors ofe and 1/m enter
in the soft photon counting rules whereas factors of the p
ton momentumk matter in the ultra-soft counting rules.

Clearly, the fact that one power ofa is generated by eac
term in the Taylor expansion will prove crucial in writin
down the counting rules of this new, Taylor expanded, v
sion of NRQED. However, before doing so, we now want
show that the Taylor expansion we just carried is equiva
to a multipole expansion of the NRQED vertices.

A. Connection with the multipole expansion

As an example, consider the2qc†(p•A1A•p)/(2m)c
interaction contained in the term2c†D2/(2m)c in the
Hamiltonian. To obtain the NRQED Feynman rule, we fi
expand the fields in plane waves:

1qiS e2 ip8•r
“•e~e2 ik•reip•r !

2m
1

e2 ip8•r~e2 ik•re•“eip•r !

2m
D

~46!

wherep,p8 are, respectively, the three momenta of the f
-

l

n.
t

e

-

-

t

t

-

mion line before and after the interaction, andk is the photon
three-momentum;e is the photon polarization. Applying the
derivatives, we get

q

2m
~ki22pi !e

2 i ~p81k2p!•r. ~47!

The exponential leads, as usual, to the conservation of th
momentump85p2k ~here we considered a photon bein
emitted!. Using this to write22p52p2p82k and discard-
ing all factors associated with the external fields, we obt
the Feynman rule

2q
pi1pi8

2m
. ~48!

The rule is obviously unchanged if we consider an absor
photon. Now we consider a multipole expansion of this v
tex, i.e., we expand the photon field

e2 ik•r512 ik•r1 1
2 ~2 ik•r !21¯ . ~49!

In the following, we will use the notatione2 ik•r

5zeroth order1first order1¯ to label the terms in the mul
tipole expansion. As usual, this expansion makes sense
if kr!1. The size ofr is set by the bound state to be of ord

FIG. 7. Spin-spin exchange with a soft photon~vertical line! and
an ultra-soft photon.
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PATRICK LABELLE PHYSICAL REVIEW D 58 093013
the Bohr radiusr .1/g. For ultra-soft photons, we havek
.g2/m so thatkr.a and the multipole expansion is valid
Of course, it would be nonsensical to use it for soft photo
Also, the multipole expansion is clearly the same as the T
lor expansion performed above since the scale ofr .1/p.

We can easily find the rule for the new vertex. Using t
first term of the multipole expansion,e2 ik•r51 ~correspond-
ing to an E1 transition! in Eq. ~46!, we obtain

2
pi

m
e2 i ~p82p!•r ~50!

where now the exponential leads to the conditionp85p, i.e.,
three momentum isnot conserved at the vertices when th
er

n

ee
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fe
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09301
.
y-

multipole expansion is used. This can, however, still be u
to write the rule for the vertex as before, i.e.,

2q
pi1pi8

2m
. ~51!

Even though the rule for the vertex is the same as before,
condition p85p simplifies greatly the expression for dia
grams containing ultra-soft photons and, in particular,
propagator. To see this, we first go back to the time orde
photon-fermion pair propagator~39!. We now use in addition
the fact that the fermion momenta at the vertices are
changed by the emission or absorption of the photon to w
Eq. ~39! as
2
Pi j

2k S 1

g2/~2m!1p2/~2m!1k
1

1

g2/~m!1p2/~2m!1k
2

2

kD
52
Pi j

k S 1

g2/~2m!1p2/~2m!1k
2

1

kD ~52!
e
the
tor.

ise,
er

be
instead of the form~39! which was obtained by usingp8
5p2k. In Eq. ~52!, the scale ofk is set either byg2/(2m)
.ma2 or p2/(2m), but since p is a fermion three-
momentum it is of orderg, we get in either casek.ma2.
This shows explicitly that the multipole expansion has p
mitted us to isolate the ultra-soft scale.

To obtain the higher order terms in the multipole expa
sion, one provides a factor (6k•“p)

n/n! for each vertex
connected to an ultra-soft photon, wheren is the order of
interest in the multipole expansion, and a plus~minus! sign is
used if the photon is absorbed~emitted!. In this expression,
the gradient must be taken with respect to the thr
momentum of the fermion line on theright of the vertex. To
apply these rules, it is therefore necessary to distinguish
tween the momentum of the fermion before and after
interaction, even though we have to set them equal in
end.

To illustrate this, we will evaluate the first few multipol
corrections to the ultra-soft photon propagator. Since,
noted above, one must distinguish the momenta of each
mion and the momenta before and after the interaction,
will use the momenta as labeled in Fig. 8, with the und
standing that one must set

p15p1852p252p285p ~53!

after carrying out the derivatives. Taking this into accou
the intermediate state propagator in Fig. 8~a! is

2
1

2k
Pi j S 1

k1g2 /~2m!1p18
2/~2m1!1p2

2/~2m2!
2

1

kD
~54!
-

-

-

e-
e
e

s
r-
e
-

,

and the propagator of Fig. 8~b! is

2
1

2k
Pi j S 1

k1g2 /~2m!1p1
2/~2m1!1p28

2/~2m2!
2

1

kD .

~55!

If we consider Fig. 8~a!, then we only have to consider th
multipole expansion of the vertex on the upper line since
other vertex will not act on the intermediate state propaga
We therefore apply, as we did above, the operator2k•“p

18

on Eq.~54! to obtain

Pi j

2k

2k•p/m1

@k1g2 /~2m!1p2/~2m!#2 . ~56!

In the case of Fig. 8~b!, we apply the operatorik•“p
28

on Eq.

~55! with, for result ~recall that we replacep2 by 2p after
differentiating!

2
Pi j

2k

k•p/m2

@k1g2/~2m!1p2/~2m!#2 . ~57!

As expected, this is the same as Eq.~56! with m2 replaced by
m1 . The sum of Eqs.~56! and ~57! is the result of the first
order term of the multipole expansion. To be more prec
this is the result obtained from considering the first ord
term in the multipole expansion of either vertex.

The result of the second order multipole can easily
calculated in a similar way. We apply the operator (2k
•“p

18
)2/2 to Eq.~54! and (k•“p

28
)2/2 to Eq.~55! to obtain
3-12
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Pi j

2k S k2/~2m1!

@k1g2/~2m!1p2/~2m!#2 2
~k•p!2/m1

2

@k1g2/~2m!1p2/~2m!#3 1same with m2→m1D . ~58!

These expressions correspond to keeping then52 multipole term on either of the vertices plus the first order term on b
vertex, all of which contribute to the same order ina, as we will discuss in the next section.

We also give the third order result:

Pi j

2k S k2k•p/m1
2

@k1g2/~2m!1p2/~2m!#3 2
~k•p!3/m1

3

@k1g2/~2m!1p2/~2m!#4 1same with m2→m1D . ~59!
th

o

ore
n in
ine.
ram
n
the
-

We have recovered the expressions obtained from
Taylor expansion, Eqs.~40!, ~41! and ~42!. This is not sur-
prising since the Taylor expansion of a functionf (x1a)
aroundx50 can be written as

f ~x1a!x.05exd/daf ~a! ~60!

and this is what the multipole expansion accomplishes.
In an actual calculation, the multipole expansion must
n

n-
op
e

ro

09301
e

f

course be carried on the whole diagram. This is slightly m
complex because the wave functions must also be writte
a way that distinguishes the momenta on each fermion l
To illustrate this, we consider again the bound state diag
corresponding to Fig. 8~a! and work out the expression i
first order of the multipole expansion. We again use
ground state wave function~14! for the external states. Tak
ing this into account, the integrand corresponding to Fig. 8~a!
is given by
8Apg5

m2~p1
2/m11p2

2/m21g2/m!2

q1q2

4m1m2
~p11p18! i~p21p28! j

Pi j

2k

3S 1

2g2/~2m!2p18
2/~2m1!2p2

2/~2m2!2k
1

1

kD 8Apg5

m2~p18
2/m11p28

2/m21g2/m!2 . ~61!
n-

the

der
ed
of

ons
is

the
de-
ted
s of

D,
ul-

a
y the
The contribution of the zeroth order in the multipole expa
sion is obtained by simply using the relations~53! directly in
Eq. ~61!. The contribution of the first order multipole expa
sion is then obtained by applying on this expression the
erator2k•“p

18
, which is associated with the vertex on th

left in Fig. 8~a! plus the operatork•“p
28

for the second ver-

tex, and then reexpressing the vectors in terms ofp using Eq.
~53!. The result is

q1q2

4m1m2

8Apg5)2

~g21p2!4

Pi j

2k S 4pipjk•p/m1

@2g2/~2m!2p2/~2m!2k#2D
1

q1q2

4m1m2

8Apg5)2

~g21p2!4

Pi j

2k

3S 1

2g2/~2m!2p2/~2m!2k
1

1

kD
3S 2k ipj12k jpi216pipj

k•p

~p21g2! D . ~62!

This is, as expected, equal to the expression obtained f
the first order Taylor expansion~45!. A similar calculation
for Fig. 8~b! gives the same result as Eq.~62! with m1↔m2 .
-

-

m

Notice that the zeroth order term in the multipole expa
sion is obtained by settingp85p in the NRQED vertices. In
the case of the Fermi vertex, this gives zero since
NRQED Feynman rule is proportional top82p5k. This
means that the first nonzero contribution is of the first or
in the multipole expansion. Higher order terms are obtain
as above, i.e., by applying the corresponding factor
(6k•“p)

n/n!.
Even though we have simply recovered the expressi

obtained by performing a simple Taylor expansion, there
one important reward for doing so: one can use directly
Wigner-Eckart theorem and the familiar selection rules
rived in quantum mechanics for each interaction genera
by the Taylor expansion. This has consequences in decay
positronium, and in nonrelativistic QCD bound states@12#.

To summarize, we have seen that, starting from NRQE
separating the soft and ultra-soft scales and applying a m
tipole expansion to~or Taylor expanding! the vertices con-

FIG. 8. The two time-ordered diagrams corresponding to
transverse photon exchange with the routing necessary to appl
multipole expansion.
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nected to ultra-soft photons generates an extension
NRQED with its own set of Feynman rules. This theo
which we will call ‘‘MQED’’ ~for ‘‘Multipole QED’’ ! has
the advantage of generating bound state diagrams that
tribute to a unique order ina. In the last section, we will
derive the MQED Feynman rules and show some appl
tions of the counting rules.

V. MQED COUNTING RULES

We can now easily extend the counting rules to inclu
diagrams containing ultra-soft photons. The concept of
tentials is not well-defined, however, when ultra-soft photo
are present, so we first rewrite the soft counting rule~26! as
a sum over vertices instead of a sum over potentials:

z~soft photons!5(
j 51

NV

~dj1nj1 l j !112NTOP ~63!

where NV is the total number of vertices contained in t
diagram. For a diagram containing ultra-soft photons, t
rule must be changed to

z~ultra-soft photons!5(
j 51

NV

~dj1nj1 l j !11

2NTOP12Ng1Multra-so f t

~64!

whereNg is the number of ultra-soft photons in the diagra
The origin of the 2Ng term can be understood in the follow
ing way: each ultra-soft photon brings in a factor*d3k/(2k)
which scales as (ma2)2 ~once the multipole expansion ha
been applied!. This must be divided by the square of a sca
having the dimensions of energy, but since the only rema
ing scale, after integration of the ultra-soft photons, isg, the
final result is (ma2)2/(ma)25a2. Therefore, each ultra-sof
photon leads to two additional powers ofa in the counting
rules, hence the factor 2Ng in Eq. ~64!.

Notice that each time-ordered propagator decreases
power ofa by one, no matter whether the intermediate st
contains ultra-soft photons or not. We have already sho
this when ultra-soft photons are absent~in which case the
intermediate states contain only fermions!. In the presence o
a single ultra-soft photon, the intermediate state propag
takes the form~we take, for simplicity,m15m2)

1

2g2/m2p2/m2k
~65!

which scales as 1/(ma2). Once again, after integration ove
the photon momentum, the only remaining scale to yield
correct dimension isg, hence a correction of orde
(ma)/(ma2)51/a for each time-ordered propagator co
taining an ultra-soft photon. This result can easily be
tended to diagrams containing any number of ultra-soft p
tons. Recall that the same result was obtained in absenc
ultra-soft photons, but for very different reasons. There,
factor of mass could be factored out of the propagator si
09301
of
,

n-

-

e
-
s

s

.

-

he
e
n

or

e

-
-
of

e
e

no photon three-momentumk appeared in the denominato
and this factor ofm was divided by a factor ofg, leaving a
factor m/g51/a.

The last term of Eq.~64!,Multra-so f t can be expressed in
two different ways, depending on whether one uses a Ta
expansion of the diagram or a multipole expansion of
vertices. In the first case,Multra-so f t is simply the power of
k appearing in the numerator. In the second case,Multra-so f t
can be written as

Multra-so f t5(
i
Mi ~66!

where the sum is over the vertices connected to ultra-
photon andMi is the order in the multipole expansion t
which thei th vertex has been expanded.

Equation~66! gives the order, in powers ofa, at which an
arbitrary MQED diagram will contribute. The dependence
arbitrary masses is unchanged by the presence of ultra
photons and is therefore still given by Eq.~32!. The charge
dependence, however, is different when there are ultra-
photons because the ultra-soft scale is.g2/m.mZ2a2 so
that theZ dependence is different than in the soft scaleg
5Zma. The expression for the charge dependence must
be changed from Eq.~35! to

h512NTOP1(
i 51

V

~di1ai !12Ng1(
Vi

Mi ~67!

where, again, the last sum is over the vertices connecte
ultra-soft photons only.

Our final result is therefore that an arbitrary MQED di
gram will contribute to order

O5
mk1r11

m1
km2

r Zhaz ~68!

with z defined in Eq.~64!, h defined in Eq.~67! andk andr
defined in Eq.~30!.

We now give a few examples of the use of Eq.~68!. As a
first example consider the interaction Fig. 9 in hydroge
where the ultra-soft photon is connected to an electron l
In this diagram,d15d251 ~there is one factor of 1/m on
each vertex!, n15n251/2 ~a factor e on each vertex!, l 1
5 l 250 ~the p•A interaction does not get renormalized!,
NTOP51, Ng51 and, if the zeroth order in the multipol
expansion~or in the Taylor expansion! is used,M15M2
50. This leads to a contribution of ordera5. The mass de-

FIG. 9. Self-energy diagram with an ultra-soft photon.
3-14
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pendence is found to bem3/me
2 and theZ dependence is

from Eq. ~67!, Z4. This diagram therefore contributes to o
der

m3Z4

me
2 a5. ~69!

In fact, this result is enhanced by a logarithm ln(Za) and
contributes to the Lamb shift.

Consider now Fig. 7~a! in positronium so thatZ51 and
m15m25me . In this diagram, the transverse photon is s
~it is represented by a vertical line!. We can therefore use Eq
~63!, i.e., the counting rules for soft photons. One hasn1
5n251/2 andd15d251. If the tree level expressions ar
used for the coefficients, then this diagram contributes
ordermea

4. The same diagram will contribute to higher o
der in a if the loop corrections to the coefficients of th
Fermi vertices are considered@the one-loop correction being
from Eq. ~10!, a/2p#.

As a final example, consider Fig. 7~b!. Here the photon is
ultra-soft. As mentioned previously, the first nonvanishi
contribution from this diagram contains two factors ofk ~one
from each spin vertex! so thatMultra-so f t in Eq. ~64! is at
least equal to two.NTOP51, Ng51 and the other coeffi-
cients are as in Fig. 7~a!, if the tree level coefficients are
used. One then finds that this diagram will contribute to
der mea

7.
Let us conclude by comparing this paper to recent, clos

related, work by other authors. First, a new effective fie
09301
t

o

-

ly

theory containing only ultrasoft photons, pNRQED~for ‘‘po-
tential NRQED’’! has been developed by Pineda and S
@13#. Let us say that MQED is not equivalent to pNRQED
the sense that MQED is not a new ultra-soft effective fie
theory, independent of NRQED. Our derivation is mu
closer in spirit to the recent work of Beneke and Smirn
@14#, in which they consider the threshold expansion of lo
diagrams in relativistic quantum field theories. They sh
how to extract the contributions due to different scales, wi
out having to resort to an effective field theory approa
This is similar to the present work in the sense that we
tract the ultrasoft contributions from the NRQED integra
without constructing any new effective field theory. Let
mention that Beneke and Smirnov identify, in addition to t
soft and ultrasoft scales described in the present paper~their
‘‘potential’’ scale corresponds to our ‘‘soft scale’’!, an addi-
tional low energy scale. The connection of this addition
scale with MQED will be explored in a future publication.
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