PHYSICAL REVIEW D, VOLUME 58, 093013

Effective field theories for QED bound states:
Extending nonrelativistic QED to study retardation effects
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Nonrelativistic QED bound states are difficult to study because of the presence of at least three widely
different scales: the masses, three-momepta &nd kinetic energiesK) of the constituents. Nonrelativistic
QED (NRQED), an effective field theory developed by Caswell and Lepage, simplifies greatly bound state
calculations by eliminating the masses as dynamical scales. As we demonstrate, NRQED diagrams involving
only photons of energ¥,=p; contribute, in any calculation, to a unique orderanThis is not the case,
however, for diagrams involving photons with energigs=K; (“retardation effects’), for which no simple
counting counting rules can be given. We present an extension of NRQED in which the contribution of those
ultra-soft photons can be isolated order by orderainThis is effectively accomplished by performing a
multipole expansion of the NRQED vertices.
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I. INTRODUCTION These corrections include the Darwin interaction, the spin-
orbit coupling, the relativistic corrections to the energy
It is remarkable that the spectrum of the hydrogen atom i§ — p*/(8mq) + p®(16m°]+--- and so or(from now on, it is
one of the first applications of quantum mechanics beinghis corrected theory that we will refer to as the “Schro
taught and yet it is almost never mentioned in textbooks oringer theory’). The effects of these interactions can be
quantum field theory and QED. Even when the problem ofcomputed by applying Rayleigh-Scliiager perturbation
bound states is mentioned, it is made clear that it is a difficultheory using the Schdinger wave functions as unperturbed
subject and that, to quote Ré¢L], “accurate predictions re- states, a process familiar from elementary quantum mechan-
quire some artistic gifts from the practitioner.” ics. Calculations are much simpler in this framework because
The problem in studying bound states with relativistic it takes advantage of the nonrelativistic nature of the prob-
guantum field theory is that the conventional perturbativelem.
expansion in the number of loops breaks down completely. However, such a theory is useless for high precision cal-
The physical reason is the presence of energy scales absenfations. This is because it does not contain the physics
from scattering theory. Indeed, the size of an atom made aforresponding to the high energy- m) modes of either the
two particles of charge-e andZe is of the order of the Bohr fermionsor the photon. This has two consequences. The first
radius~1/(Zna) (wherew is the reduced magsvhich, by  one is the appearance of divergent expressions. These diver-
the uncertainty principle, provides an additional energy scalgences show up in second order of perturbation théefy
~Zua. Because of this new energy scale, there is a regiomas well as in first order of PT if sufficiently high ordén
of the momentum integration in which the addition of loops1/m) operators are considered; for example, the operator
will not result in additional factors of. Moreover, if Z p®/(16m°) mentioned above is divergent when evaluated in
<137 (condition to which we restrict ourselves in this pa- first order of PT. These divergences are due to the fact that
pern, this energy scale is much smaller than the masses of thiis theory reproduces faithfully QED only when the mo-
particles and the system is predominantly nonrelativistic, anenta probed by the interactions are much smaller than the
simplification not taken advantage of in traditional ap-electron mass. This condition is not satisfied in most interac-
proaches. In addition, a third energy scale, again vastly diftions considered beyond first order PT, or when the operators
ferent from the previous two, is set by the particles kineticcontain sufficiently high powers of derivatives to probe the
energie$ = (Zu«a)?/m;] and further complicates bound state relativistic (p=m) behavior of the wave functions.
calculations. The second consequence is the absence in the @nher
The problem is greatly simplified by using a Sctiriyer ~ theory of operators corresponding to QED diagrams with
theory corrected by the usual relativistic corrections obtaineghhotons of energies=m,, such as the process e"—vy
by performing a Foldy-Wouthuysen-Taf#] transformation —e~e* and the decay of of an electron-positron pair into an
to the Dirac Lagrangian and expanding in powerspah. odd or even number of photons. These processes are clearly
important; the first contributes to the lowest order hyperfine
splitting in positronium, and the others cause the decay of the
*Email address: labelle@hep.physics.mcgill.ca ortho (total spinS=1) and para $=0) states of positro-
"Present address. nium.
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Let us emphasize again that these problems are due to tlseparation of scales, which amounts to performing a multi-
fact that, in a quantum field theory, the high energy modegole expansion of the vertices involving ultra-soft photons,
cannot be simply discarded; they play an important roleJeading to a new(infinite) set of interactions. This can be
even in processes involving only nonrelativistic externalinterpreted as defining an extension of NRQED which is
states. more useful for dealing with ultra-soft photons and which we

Caswell and Lepagé3,4]) have shown how to modify Will call “MQED" (for “multipole QED"). We will show
the Schrdinger theory to incorporate relativistic effects in a that in MQED, diagrams containing ultra-soft photons con-
consistent and rigorous manner. They constructed an effedtibute to a unique order im, as given by new counting
tive field theory(eft) that reproduces QED in the nonrelativ- rules. In addition to having simple counting rules, MQED is
istic regime p<m,) and which they christened nonrelativ- better adapted to the study of processes involving ultra-soft
istic QED (NRQED). Although NRQED has been around for photons such_as the Lamb shift or the generat|or_1 of certain
more than ten years and have been used in high precisidiPes of logarithms. The example of the Lamb shift calcula-
calculations in positronium and muoniufi8,5,6)), it is still  tion can be found in another papi@f]. .
little known, both by the atomic physics community and by ~Our paper is divided as follows. In Sec. Il we introduce
the eft aficionados. Indeed, the Euler-Heisenberg Lagrand¥RQED and its Feynman rules, in the context of time or-
ian, which describes the scattering of photons at energiedered perturbation theory. In Sec. Ill we show how time
much below the electron mass, is still the conventional ex.ordered PT permits us to Separate the contributions from soft
ample cited as an application of efts in the context of QED2aNd ultra-soft photons, and give the counting rules for dia-
However, the Euler-Heisenberg Lagrangiahich is a sub- grams containing only soft photons. In Sec. IV, we first il-
set of the NRQED Lagrangiarhas a range of applications Iu_strate the bre'al'<down of the previous counting rules for
quite limited which does not include, in contradistinction diagrams containing ultra-soft photons. We then show how

In the next section we will review the construction of C€s, and how this leads to an extension of NRQED which we
NRQED. As any eft, NRQED contains an infinite number of Will call “MQED" for “Multipole QED.” In Sec. V we
interactions and is therefore nonrenormalizable. This is not &ve the general MQED counting rules and some examples
problem because an effective field theory is to be used withif0 illustrate their use.
a restricted range of energp€m, in the case of NRQED
so that only a finite number of interactions will contribute to
any given process, at any given level of precision. Which
interactions are to be kept for a given precision «) is In principle, there are two ways of deriving an effective
dictated by counting rules which are an essential ingredierfield theory if the underlying theory is know. Firstly, one can
of any eft. The counting rules of NRQED are one of theintegrate out the modes of energies\ y, s where A ;s is
focuses of this paper. the energy below which the effective theory is to be uses

Clearly, NRQED can be applied to both low energy scat-will keep the subscripphysto distinguish thisA from the
tering and nonrelativistic bound states. In applications taegulator cutoff to be introduced later on; in NRQED,
bound states, the NRQED counting rules are more involved\ ,,,, ~m). In practice this is technically difficult to do or
than in most eft's because of the presence, as noted above, ®/en impossible, as in the case of low energy QCD. The
more than one dynamical scale in the theory: the fermionsecond method consists in writing down the most general
three-momentum =Zu«, and their kinetic energies effective field theory composed of the low energy fields and
=(Zuma)?/m; . For the sake of conciseness, from now on weconsistent with the symmetries of the underlying theory. The
will refer to these two scales as, respectively, the “soft” andeft is not restricted by renormalizability and contains there-
“ultra-soft” energy scalesEg andE, . Because of the the fore an infinite number of operators, each accompanied by an
presence of these two scales, there is, in general, no simpiedependent coefficient. If the underlying theory is perturba-
connection between an NRQED diagram and the ofides)  tive in the range of energig<A ,,,, then these coefficients
at which it contributes. can be computed, order by order in the loop expansion, by

In this paper, we show how to disentangle the contribusetting equal, or “matching,” some scattering process com-
tions from these two scales in such a way that each diagraguted in both the underlying and the effective theories. In the
will contribute to a unique order im. The first step is well case of low energy QCD, where such a matching is not pos-
known and relies on time orderédr “old-fashioned”) per-  sible, the coefficients must be determined phenomenologi-
turbation theory together with the Coulomb gauge to sepaeally and the usefulness of the eft is restricted by the wealth
rate the “soft” photons(with energy E,~=E;) from the of data available.

“ultra-soft” ones (E,=E,g). The counting rules for the dia- For NRQED, we follow the second method which re-
grams containing only soft photons are straightforward and guires to first identify the low energy degrees of freedom and
one-to-one correspondence between a diagram and the ordée relevant symmetries. There will be a field for the photon
of its contribution can be established. The diagrams wittand one for each of the charged particles participating to the
ultra-soft photons are more complicated; not only do theyprocess under study such as the electron, the positron, the
contribute to an infinite number of contributions of different muon, proton, etc. Notice that the fermion fields correspond
order(in @), but in addition the lowest order is not given in to two-components Pauli spinors. A particle and its associ-
terms of simple rules. This leads us to the second step in owated antiparticle are independent fields in a nonrelativistic

Il. NRQED
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field theory; they simply correspond to distinct particles ofc,y a(—io,)(x")T- x"(ioy) o+ sy’ (—ion) (xHT
opposite charge. NRQED must obey the symmetries of low T . st
energy QED such as invariance under parity, Galilean and XX (io2)¢+Ce(¢f'(—io) oD x'(io2) o9+ H.C)
gauge invariance, etc. Lorentz invariance is not necessary tedtow vTov+catt Ty 4 3
except for the terms containing photon fields only. ey X oxE el X x ' @
It is convenient to decompose the NRQED Lagrangian inThe first three terms are only present whgrand y are
the following way: associated with a particle and its antiparticle such as the elec-
tron and positron; they come from QED annihilation dia-
—r . 4 T grams[the factors ofo, and the transpose operatdrare
EnrQED= Lo-Fermit LaFermiT Lphoton @ necessary because we are using the same definition for both

_ ) ~ the particle and antiparticle spinors, see Ed)].
whereL; _germi @nd L, permi are the interactions containing  As will become clear in our derivation of the counting
two and four fermions, respectively, aliy,oon IS the pure  ryles, the Coulomb gauge is the most efficient gauge for the
photon Lagrangian which includes the Euler-Heisenberg Lastudy of nonrelativistic systems. In this gauge, the first few
grangian. We will not display the operators containing six orterms of Lphoton are[6]
more fermions fields which, in all practical applications, can

be ignored because their contribution is suppressed. The La- 1 , 0 k* 0
grangianL,_germi is given by ~ 2 PP CoAT(K) — 2 A(K)
ok K'k!
D2 p* —CAI(K) 5 A (K)| &=~ |+ (@)
Lo rerm=y" Dt 5ot ame m k
Before discussing the calculation of the coefficieats
+ci0-B+cy(D-E-E-D) we will switch from the Lagrangian to the Hamiltonian. We
do so because the counting rules in a nonrelativistic bound
+C30-(DXE—EXD)+ ... | state are most easily derived in the context of time ordered

(or “old-fashioned”) perturbation theorf TOPT for short

and in TOPT one must work with the Hamiltonian rather
than the Lagrangian. We remind the reader that, in contra-
distinction with covariant PT, in TOPT the vertices conserve
where ¢ and y represent thétwo-componentelectron and only three-momenta and the virtual states are always on-
positron fields, respectively. More precisely! creates a shell. The total energy, however, is not conserved by the
two component electron field ang’ annihilates a two- intermediate state so that, in this formalism, it is the violation
component positron field. The parametgrrepresents the of energy that characterizes the virtual state rather than the
charge of the particle. Notice that in NRQED, a particle andoff-shellness of the particles, as in covariant PT.

+same terms withy— ' (2)

its associated antiparticle differ only by their charge. Using D=i(p—qA) and D;=4,+iqAy, the NRQED
The first few terms ofL,_gq,m; are given by Hamiltonian is given by
P p* 1 q°
Ho—rermi= " om T4 gE T o (P TP AT ﬁA'A—iCN'(kXA)—CzszO

+2c30- (p' Xp)A°—2qczo (kg X A(ky))A%(Kp)

+ ¢35k ((p' +p) X A)+-++ | (p)+ xTx terms (5)
Ha—rermi= —Catpo(—io) (X)) T xT (i) op—csyp’ (—ion) (x") X (iop) -+ (6)
1 k4 ) k4 ) il
thotonzz(Ez-F Bz)—chO(k)WAO(k)Jrch'(k)WA'(k)(Eij—F)Jr--- } (7)

As explained previously, the coefficients are determinecf the operators if,_rem; can be computed by consider-
by computing some low energy scattering process in botling the scattering of a charged particle off an external field
QED and NRQED and matching the results. The coefficient§see Refs[6] or [8] for an explicit matching The coefficient
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c, is obtained by matching the tree level QED annihilation 51=6c=1+as+O(a?)
diagrame"e” —y—e*e” to the NRQED interaction. The

tree level contribution tas comes from the QED diagram a8 m 11
ete"—yy—e'e and is therefore of order?. On the 5255D=1+—§ In(x +2—4
other hand,cg comes from the one-loop vacuum polariza- & R
tion. One finds +2a,+ O(a?)
q q — s _ 2
= — 83=0s=1+2a,+O(a
Cq om Cy 8m2 3 S e ( )
iq am 5,=6,=1 Aa (10)
“=gme T Ch T o
o2 o wherea, is the electron anomalous magnetic moment which,
Cs=—(2-2IN2+im) Co=r—. (8) to the order of interest, can be taken todé2 ). We have
m 157 redefine our coefficients to follow the convention[6f (but

notice that ours correspond to their coefficienty; the sub-
scriptskF, D, Sand 4-F stand for Fermi, Darwin, spin-orbit
nd four-Fermi interaction, respectively.

We now turn to the task of writing a general form for the
NRQED coefficients. Before doing so, we must address the
issue of the photon mass, which provides an additional scale
and has the potential of complicating our analysis. The pho-

) . Yton mass does not appear in Ed0) but this might appear
the eft contain only photons with momerjtq<m. For the fortuitous. However, since any photon mass dependence is a

same reason, the tree level matching, for example, involve§- . .
, . . n of sensitivity to very low momenta and NRQED is de-
NRQED tree diagrams, but may involve QED loop dia- 9 tivity 19 very Tow QED |

» L . <" signed to be equivalent to QED in this region of phase space,
grams. By “tree level matchl_ng we will mean matching any infrared singularity in a QED diagram is also present in
involving tree level NRQED dlagr.ams. the corresponding NRQED diagram, so that it gets canceled

The ong-!oop matching mod_|f|es the values of Fhe e8h the matching. Therefore, in general, the NRQED bare co-
Ievel_c_oefflc_lents so that we will, from now on, write the efficients do not depend on the photon mass, to any order in
coefficients in the form the matching. From this, it follows that the coefficients have
Ci—Ci & 9) the general structure

The imaginary part ofcg corresponds, via the relation
Im(E)=—T'/2, to the decay rate of positronium in a singlet
(S=0) state, the quantum number carried by the correspond-
ing operator.

Notice that the relation between the powersaofnd the
number of loops is broken in NRQED, since factors of the

with 8,=1+O(a). As in conventional renormalization, tree  Ci(Ar,My,My)=cla" §(Ag,my,my)

level as well as one-loop NRQED diagrams enter in the one- w
loop matching and this defines j[l@(a) corrections to the =cOan| 1+ > a'iE!i(AR,ml,mg)
NRQED parameters; the only difference with conventional li=1 :

renormalization is that the calculation is matched to a QED
result instead of an experimental input. Because the one-loop
NRQED integrals are divergent, they must be regularized.

. . .““Wherec; is now a generic symbol representing any NRQED
There are many possible regulators; one can use d|men5|0nar1 ! g y b g any NRQ

regularization or a simple cutoff 5 on the momentum inte- coefficient and thé; on the coefficientEi is an index, not an
grations(which is permitted because NRQED breaks Lorentz&XPonent. \{)Ve have decomposed the lowest order term as a
invariance to start with The NRQED coefficients defined by Coefficientc;” of order one times a factar™ which is differ-
the matching are then cutoff dependent, i.e., they must b&nt for different operators. As an example, the Darwin inter-
viewed as bare parameters. In contradistinction with QEDAaction, which contains the factar;, hasn;=1/2 whereas
the divergent terms are not only logarithmic but power-law,the singlet annihilation operator, which contais hasns
(Ar/m)", as well. This cutoff dependence is of course can-=2. The indexl; indicates the number of loops used in the
celed in any physical calculation, by invariance under thematching. 5
renormalization group. Obviously, one can also 96} The coefficientsc contain, in general, finite pieces plus
= Apnys=m directly, but since the bare coefficients are thenpower-law terms as well as logarithms divergent terms. No-
finite, this can be misleading if one is not careful abouttice that for a fixedl;, there are, in principle, an infinite
renormalizing the effective theory propeifipr a more thor- number of terms to calculate because there are an infinite
ough discussion of this point, s¢@]). number ofl;—loops NRQED Feynman diagrams, but only a
The one-loop matching of some of the coefficients ap-inite number of interactions must be considered in any given
pearing in Eq(2) has been performed in Ref&] and[10]  calculation, as specified by the counting rul@gich will
and the corresponding;’s appearing in Eq(2) were found also dictate the order at which the matching must be per-
to be formed.

(11)
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FIG. 1. NRQED Feynman rules.

The Feynman rules for the first few interactions of Eqs.for each transverse photon present in the intermediate state.
(7), (5 and (6) are given in Fig. 1. We will draw the dia- In Eq. (12), E, stands for the energy of the initial state and
grams with the time flowing to the right. In the rules for the E; for the energy of the intermediate state. One uses nonrel-
vertices we have followed the example [@j and used the ativistic energiespzl(Zm)’ for the fermions and/k2+ )\2
expression “dipole _vertex” to represent tipe A interactipn for the photons. In Fig. 1 the propagator is given for an
even though, as pointed out[ifi], the NRQED Hamiltonian  intermediate state containing only one fermion or one trans-
is not an expansion in multipoles. Also, we have use sOMgerse photon. In Fig. 2, the corresponding expressions are
Fierz reshuffling to rewrite the annihilation vertex in the given for the states containing two fermions or two fermions
form given in Fig. 1. As for the propagators, we have usedy|ys one transverse photons, which are the situations most
time ordered perturbation theory where there is one propagasien met in NRQED calculations.
tor for each different intermediate state, defined by cutting one must sum over all the possible time ordered diagrams
the diagram with a vertical line. The general rule for a time-ang integrate over all the internal three-momenta, with a
ordered propagator is measured®p/(2m)3. Notice that we prefer to include the

factors of 1/(2/k?+\?) corresponding to the transverse
(12 photons in the propagators instead of the measure for reasons
Eo—Ei that will become clearer below.

In this work we will be mainly interested in applications
of NRQED to bound state calculations in which case the
external lines are not associated with free spinors, but with

times a factor

_ 8i— —2&4 (13  Wave functions. In general, the wave functions are obtained
2JkZH a2 KA by solving a Bethe-Salpeter type equation, with some ap-
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FIG. 2. Time-ordered propagators for two fermions or two fermions plus one transverse photon.

proximated kernel. This is equivalent to summing up an in-the case of a photon, for whid=k, using the bound state
finite number of this kernel into the wave functions. We will momentum or binding energy yields two very different
show below that the NRQED counting rules single Gat  scales fork, namelyk=y=ma and k=y?/m=ma?. We

the Coulomb gaugethe Coulomb interaction as being the will refer to this first type of photons as “soft” photons, and
only nonperturbative interaction in a nonrelativistic boundto the second type as “ultra-soft” photons. For the sake of
state so that this part of the analysis reduces to solving theompleteness, we define “hard photons” as the photons with
usual Schrdinger equation. In our explicit examples, we k=m or greater. These photons play no dynamical role in

will use the ground state wave function, given by NRQED, since they have been integrated out of the theory
and their only effect is buried in the theory’s coefficients.
8\my® The first step in deriving counting rules is to separate
Y(P)ni=0s152= ;@608 (14 diagrams involving soft photons from diagrams with ultra-

2, .2
P+ 79 soft photons, since they bring in very different scales, which
where y=Zua [the energy of the state is given by will necessarily complicate the rules. This is where the use of
—y2/(2u)] and &, ,&, are the spinors of the two particles the Coulomb gauge in conjunction with time ordered PT will

making up the bound state, with be crucial in simplifying the analysis.
Consider a transverse photon exchange between two fer-

0 mions in a nonrelativistic bound state. This is represented by
1)- (19  the two time ordered diagrams of Fig. 3, where we put the
time axis toward the right and th# attached to the external

We will not write down the states of higher angular mo- lines represent the wave functions. The photon will contain
mentum since they are, for the purposes of establishing thoth soft and ultra-soft components. Now, if the photon is
counting rules, equivalent to the above staffies the mo-  Soft, its momentum as well as its energy are of order the
mentum Schidinger wave functions for arbitrary quantum fermion momentumme so that its energy is much greater
numbers, se¢11]). As just mentioned, using Schdimger than the fermion energies. This means that from the point of
wave functions for the external states means that we are suriiew of the fermions, the propagation of the soft photons is
ming the Coulomb interaction between the external legs. Alinstantaneous and is therefore represented by vertical lines in
other interactions can be treated perturbatively, which will belime-ordered diagrams.

1
0

gup:

v Edown=

shown to be self-consistent with the counting rules. This can be seen more qualitatively by looking at the
explicit expression for the intermediate state propagator,
lll. COUNTING RULES: SOFT PHOTONS which is given by(recall thatk= \[k?])
We now consider a nonrelativistic bound state made, to | |
simplify the discussion, of two particles of equal masses and 7 ek 7 i i
of charges=e. We will also assume that it is in its ground ‘ ‘
state o=1). We will generalize our results at the end of this (] Y (] N(\ﬂ"\‘\l ()
section. —— ; -
There are two important energy scales in such a bound 7 | Bk x4 | TPHE
state, the typical bound state momentynand the binding (;) (‘b)

energy— y?/m. For a nonrelativistic fermion, for which the
dispersion relation is given by the usu& p?/(2m), using FIG. 3. The two time-ordered diagrams corresponding to the
either scale leads tpsermion=y (from now on, byp andk  exchange of a transverse phothe vertical lines indicate the in-
we will always mean the magnitude of three-momenta  termediate states used for the time-ordered propagators
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“ where we have used the fact that the bound state energy is
= % + “a — ¥2Im. The crucial observation is that the mass dependence
(2) (b) factors out, in the form of the overall factor of, leaving y

as the only dynamical scale in the integrals. If interactions
FIG. 4. Separation of a transverse photon into a soft, instantagontained in£,., are included, then some intermediate
neous contributiorirepresented by a vertical linand an ultra-soft  gtates will contain more than two fermion lines, but it will
propagator(represented by the broken wavy ljne always be of the form

— L — — _ 1
2k | 217K )| =5 (m)—p?l (2m)— (p—k) %I (2m) —K —im-spiem) . prsp 19
+— . ! . . (16)  and the mass still factors out. Therefore any NRQED dia-
=y (m)—p“/(2m)—(p—k)“/(2m)—k gram containing only soft photons leads to an integral of the

form
Notice that the photon mass can be set to zero in bound

states calculations, the size of the atom preventing the ap- ) AR .
pearance of any infrared singularity; the scale of the fermion m (Hjcj(AR))f (ILd°pi) F(pi,y) (20
three-momentump is of order y. For soft photons,k

=Zpa, and we clearly see thatdominates in the propaga- whereb is some integer that depends on the types and num-
tors for the intermediate state so that we can approximate Eger of potentials. The product is over all the vertices of type

(18) by j, with coefficientsc;, as given in Eq(11). Again, the cru-
cial point for the following discussion is that the mass
i (54. — ﬁ) __2> - _ i( S — kikj ) (17) does not appear in the integrand, i.e., does not play any dy-
2k |7 K2 K k217 k242 namical role. There are two scales in the integyeand A,

but the invariance under the renormalization group implies
which corresponds to a single diagram, with an energy indethat the divergent\ g dependent terms arising from the inte-
pendent photon propagator. This corresponds to the trangrations will be canceled by corresponding terms in the bare
verse photon propagator §8] if one approximatek3—k?  coefficientsc;(Ag). As noted before, these divergent terms
~—k? and set =0 [this is why we kept the 1/() factorin  are either power-law, i.e., of the form\g)" with n being a
the definition of the propagator instead of the meagdrbis  positive integer, or logarithmic. The power law terms are
shows again that in a time ordered diagram, the propagatiotanceled exactly whereas the; in the logarithms get can-
of such a photon is represented by a vertical line, i.e., aeled after combining logarithms containing different scales
instantaneous interaction, since it is independefiafo that  which leaves, in the end, logarithms of
its Fourier transform contains a delta function in time. How the logarithms become finite is instructive in that it
We can now isolate the soft from the ultra-soft compo-clearly illustrates the separation of scales accomplished by
nents in any photon exchange by rewriting the time ordereghe effective theory. As mentioned in Sec. Ill, some NRQED
diagram as a sum over an instantaneous interaction andt@re coefficients contain divergent logarithms of the form
“retarded” one, as in Fig. 4this is why we refer to the In(Ax/m) [as is explicit in Eq.(10)]. To be precise, the
effects of ultra-soft photons as “retardation effecksIf we NRQED scattering diagrams appearing in the matching pro-
restrict ourselves to NRQED diagrams containing soft phocess contain logarithms @ over\ since these are the only
tons only, then all photon exchanges can be represented byo dynamical scales of the eft, whereas the QED scattering
vertical lines. In real space, such interactions are representeflagrams contain logs of the form m{\); upon solving for
by potentials local in time, i.e., functions @f; —r5| only. the bare coefficients, the logarithmic dependence is then of
Besides photon exchanges, the only other possible intethe form In(Ar/m) (again, the photon mass dependence drops
actions are the self-energy interactions such-@8/8m> and  out entirely for the reasons explained abpven the other
the contact interactions contained &y _rermi, L6-rermi>  hand, the NRQED bound state integrals can only depend on

etc. These can clearly be represented by potentials, so that g@fe scales\r andy, yielding In(Ag/v). In the end, the logs
arbitrary diagram containing soft photons only can be written

as a string of potentials connected by fermion lines only. In———
this case, the intermediate states contain fermion lines only,
and the time ordered propagators take on a particularly(n
simple form. If there are no interaction frof,~,, for ex-
ample, the propagators are all of the form

Obviously, dimensional regularization can be used instead of a
omentum cutoff. The power law divergences are then either en-
tirely absent or replaced by d/divergences. Again, these diver-
gences cancel, by invariance under the renormalization group. This
leaves logarithms depending on the sgalevhich gets canceled in
1 - 1 the way described above for the ldg terms. In actual explicit

Eo—E(intermediate staje —y*/m—p?/(2m)—p?/(2m) analytical calculations, using dimensional regularization or a mo-

mentum cutoff is simply a matter of taste. However, for high pre-
_ (18 cision calculations, where numerical calculations are required, an
Y2+ p® explicit cutoff is necessary.

m
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1 9 v,
3
1:1/ q m? D= E dj . (22)
| T =t
| , . .
I : I /] For example, the first potential of Fig. Ghe self-energy
| I potentia) hasD; =3, whereasD,=0 (for the Coulomb in-
l '® teraction andD5y=4. Since each potential generaf@sfac-
q q tors of inverses masses and each fermion-fermion time or-
m? dered propagator generates one factorngf an arbitrary

) ) diagram having the dimensions of energy will then generate
FIG. 5. Generic bound state potential; the dependence on thg factory* with

charges and on the masses of each vertex is indicated.
v

of the bare coefficients combine with the logs generated by A=1—Niop+ E d, (23

the bound state integrals to give corrections of the form i=1

In(v/m)=In «. We see how the use of an effective theory has

separated the contributions from all the scales present in th

problem(\, v, m and Ag) in such a way that only two of P

them played a dynamical role in any given stage of the cal- Np

culation (A and m appear in the QED scattering diagrams, )\Zl_NTOP+E D, (24)

Ag andX in the NRQED scattering diagrams, agpdnd A 5 =1

in the NRQED bound state diagrans

here the sum is over all the vertices in the diagram. For the
resent purposes, it is more convenient to wiitas

S where now the sum is over all the potentials in the diagram.
The only Ag dependence remaining is therefore of the We now define the “coupling constant degre€”as the

form (y/Ag)" which, upon setting\g=m, leads to correc- - X .
tions beyond the order of interest; in analytical calculationstOtal number of explicit factors o& contained in each po-

one can get rid of these terms by simply lettihng— oo at tential, namely

the end of the calculation, as in conventional renormaliza- Vi

tion.. . _ _ G=2 (nj+1)) (25
It is now a trivial matter to write down the counting rules i

for an arbitrary bound state diagram containing only soft i .

photons, i.e., the order ia at which it will contribute. There Wheren; andl; are the powers ofx associated with the

are two sources of factors af. First, there are the explicit Coefficient of each vertex as defined in Eql). _

factors contained in the NRQED vertices. Secondly, there is Finally, a diagram made dfi,, potentials will contribute

a factor ofa for each factor ofy generated by the diagram. t© orderma* with £ being the sum of Eq24) and the cou-

To be more rigorous, the factors associated to the vertices aRiing constant degree@5) of all the potentials:

genuine factors of the coupling constant whereas the factors Np
of y are associated with factors ofwhich scale is set by the _ D+C)+1—N 26
bound state to be of orde; here it is not important to ¢ 2’1( e ToP: (26)

distinguish between the two types of contributions, but this is
necessary in QCD bound states because of the noticeablleis easy to see tharop and Ny are related byNrqp
running of the strong coupling constgrt2]. =Np—1 so that we can write

By simple dimensional analysis, there will be a factoryof
to compensate each explicit factor of mass appearing in the
vertices and each factor of mass due to the fermion pair time
ordered propagators. An arbitrary bound state diagram is
built out of a given number of potentialll,, connected by This expression gives the orderdnof any NRQED diagram
N+top time ordered propagators. For example, consider Figcontaining only soft photons, keeping in mind that this result
5, where 3 potentials are connected by 2 time-ordered propa&an be enhanced by factors of d))( For the example of Fig.
gators so thaN,=3 and Nyop=2 for that diagram. For 5, one finds{=8.
later use, we also defing as the number of vertices con-  Equation(27) shows clearly that if there is a potential for
tained in theith potential andy as the total number of ver- which D;+C;=1, perturbation theory will break down and it
tices in the diagram will have to be summed up to infinity. It is an easy matter to
find such a potential. We can choodse-0 (i.e., the coeffi-
V= 2 v 21) cients of the vertices haye their_tree level vajuddw, n; is

= zero for the self-energy interactions, but the lowest value that
the mass degree can take is 3, corresponding to the interac-
We now define the “vertex mass degred;j as the number tion — p*/(8m?3), so that the conditio;+C,=1 cannot be
of inversemasses contained in th¢h vertex and the “po- fulfilled. Many potentials have;=1 (i.e., one factor ofa)
tential mass degree’D; as the number of inverse massesbut the only one with, in additiorp;=0 (no inverse massgs
contained in thath potential, is the Coulomb potentiat- e?/k2. Therefore, as expected,

Np

Np
(=3 (D+C)+2-Np=3, (D+C-1)+2. (27
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only the Coulomb interaction must be summed up to infinitysions of energy and since the only energy scale provided by
and the resulting contribution is, from E@7), of order the bound state NRQED diagramsswhich contains the
ma?; all other potentials can be treated in perturbationreduced masg, the overall mass factor will be
theory.

In an actual calculation, the counting rules are used in the uetetl

following way. For a given procesdyperfine splitting, de- mme (3D
cay rate, etg, one selects all the diagrams with the appro- e

riate quantum numbers that will, using the counting rules, . .
gontribﬂte to the order of interest. The %ounting ruleg deter- The more general counting rule is therefore
mine not only the diagrams that must be retained, but also, Ktpl
via thel; dependence in Eq27), the number of loops that O= '“K_aé (32)
must be used in the matching of each vertex. The matching is mimj

then carried for each vertex using scattering diagrams in both
QED and NRQED. For a given number of loops, there are atimes possible factors of ln« and functions of the masses
infinite number of NRQED scattering diagrams, but here them;, m, and x (which, however, arise only if some of the
counting rules are used a second time to pick the NRQEINRQED coefficients have been matched beyond tree )evel
diagrams that need to be taken into account. Notice that in Finally, we consider a bound state with constituents of
the matching process, which involves scattering diagrams;harges—e andZe. We first include & dependence in the
one uses Eq27) even though this relation was derived for NRQED coefficients:

bound state diagrams. Once all the relevant diagrams have

been taken into account and the NRQED coefficients have ¢;(Ag,m;,m,,)=c’(m;,m,)Z%a"

been renormalized to the appropriate order, the final calcula-
tion will be finite and will reproduce the QED result, to the
order of interest.

oo

X 1+|Z:1 a'iE:‘(AR,ml,mz,Z)

A. Extension to arbitrary masses and charges (33
We now extend our counting rules for two constituentswherea; will denote the explicit power of contained in the
having arbitrary masses;; andm,. The above derivation zeroth order coefficient of thith vertex. Again, theZ de-
must then be modified at two points. First, the NRQED co-pengence of the|' arises from the computation of QED loop
efficients glvgn by Eq(11) will now contain a dependence diagrams and we will not write a general expression for this
onm, andm,: dependence, but notice that it will necessarily be some power
, of Z. There is an additiona dependence which, this time,
Ci(Ag,mg,my) ; L
we can take into account: an additioZatiependence comes
from each factor ofy=Zu«a generated by the NRQED

©

) ~1;
=cP(my,my)a™ 1+|21 alic/(Ag,my,my) |. bound states. This number is given by E2Q):
(28) v
A=1—Ngop+ > d;. (34)
i=1

No simple general expression can be given for the mass de-
pendence of the coefficients it arises from QED loop dia- ] ) o
grams entering the matching and may involve logarithms of* bound state diagranfwith all the NRQED coefficients
m, /m,, etc. The mass dependence of the zeroth order coetaking their tree level valyewill therefore generate a factor
ficients c® can be taken into account in the following way: £~ With 7 given by this last expression plus tZedepen-
first, define the vertex mass degrees with respect to eadjfnce of the tree level NRQED coefficients, as given in Eq.
mass,d;(m;) andd;(m;) as the number of inverse masses 35):
m; and m, contained in the vertex. For a given NRQED

%
i h fine the followi
ik)r\%lfQSSState diagram, one can then define the following two 77:1_NTOP+E (di+a,). (35
i=1
v
k=3 d(my) (29) Again, the power o is independent of the order in pertur-
= bation theory for the Coulomb interaction since each Cou-
lomb potential increases both the sum oagandNyqp by
v one. Our most general counting rule for diagram containing
p=_2, di(my). (300  soft photons is therefore given by
=1
ktpt+1l
Obviously, such a diagram will contribute an overall fac- O="——127"a* (36)
tor 1/(mfm5). Since the overall result must have the dimen- mymj
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times possible factors of I&u«), and dependence am,, ! !
|

my, w and Z arising from the loop corrections to the P ‘ iy il ; 2w
et} v - L -d
NRQED coefficients. WY mv;k/‘ ¥ P I-ﬂ’rﬁ P
—?_'V_TUZ _;'7"12
IV. COUNTING RULES: ULTRA-SOFT PHOTONS i) } 7 2 | 2
The above derivation relied heavily on the fact that the @ (b)

only scale present in the bound state diagram wadow-

ever, if we start considering ultra-soft transverse photons FIG. 6. Ultra-soft photon spanning a Coulomb interaction. In
’ 9 P such a diagram, one does not subtract the soft photon propagator

then we ha\{e to go back to the general time ordered ProP%om the intermediate state propagator because there is no corre-
gator (see Fig. 3 sponding soft photon diagram.

Pii 1 sented by a verticalinstantaneoyswavy line and the ultra-
T2k YZ (20 + (p—K)H(2my) + pZ(2my) + K soft contribution is represented by a slanted, broken, wavy
line. To get the ultra-soft propagator, we must therefore sub-
1 tract from the general propagator the expression correspond-
+ Y21(2p) +p2l(2my) + (p—k)%/(2m,) + k ing to the soft photon propagator which we have seen in Eq.

(17) to be —7?ij-/k2 (notice, however, that we would not
37 operate this subtraction in a diagram like Fig. 6 where there
where we have defined the transverse projection operator 'S N0 corresponding soft photon contribution
kik;
e (39 P 1
2k \ Y2 1(2p)+ (p—k)?/(2my) +p?/(2m,) + k

Pij=dij—

In general, such a propagator would contain both the soft and

ultra-soft scales so that counting rules would be impossible n 1 B E
to establish. However, we have already isolated the soft con- Y2 I(2u)+p?(2my) +(p—k)?/(2my)+k k]
tribution in an instantaneous interaction with the photon (39)
propagator given by Eq17). Therefore, if the contribution
from the soft photon is calculated separately, only the ultra-
soft scale remains in Eq37). We represent this separation This expression now corresponds to the propagator of an
graphically in Fig. 4 where a general transverse phdton  ultra-soft photon so the scale kfis of orderu«?. Recalling

the left-hand sideis represented by a slanted wavy line and,that the scale op is = u«, we can perform a Taylor expan-
on the right-hand side, the soft photon contribution is represion ink/p=«. Applying this to Eq.(39) gives

1 ” 1 1+ p-kim; 40
=k P\ pn K kT 2w+ p(2m) K2 40
—K2/(2my) (p-k)2/m?
+( 212 7 7t ) 3 (41
VI(2m) +pA (2m) K2 T (FPI(2m) + P2 (2m) +K)
—k2p-kim? (k-p)3/m3+ " -
T 2w P 2m) K2 (PI2m) + il 2e) +hF | Fsame withmg&m, 42

where the first line contain the zeroth order term plus the firsinverse powers ok, which scales likeua?, so that it con-
order onglthep- k term), the second line contains the secondtributes to the counting rules by a factor m{a*) (we will
order contribution and so on. not distinguish betweem;, m, and u to discuss the count-
Since the expansion is k/p, we expect that each power ing rules. Of course, in an actual diagram, other factors will
of k appearing in the numerator will be associated with aenter to make the overadl contribution of the diagram posi-
power of @ with respect to the zeroth order term of the Tay- tive; here we are just interested in the relative contribution of
lor expansior{the first term in Eq(40)]. We will show this  the terms in the Taylor expansion.
explicitly for a few terms. Now consider the first order correctigthe second term
Consider first the zeroth order propagator. It contains twof Eg. (42)]. The numeratork-p/m scales like ma?
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X ma/m=me® and the denominator contains 3 factorkafo (ma?)?/(mxm3a®)=1(ma)? (44)
it scales like ma?)3. Therefore, the first order propagator _
scales like which is down by two powers af with respect to the zeroth

order propagator. It is a simple matter to verify that the other
term of Eq.(41) also contribute with a factor of? with
ma®/(m3a®)=1/(m?a®) (43)  respect to the lowest order contribution, and the terms of Eq.
(42) contribute with a factor®, etc.
In an actual diagram, the Taylor expansion must of course
which is one power of times the zeroth order propagator. be carried on the whole diagram. As an illustration, we ex-
The k?/m term in the second order Taylor propagatdf) pand the complete integrand corresponding to Fi@),3

scales like sandwiched between ground state wave functions:
8VTy> 010, (2pi— k) (k-2 )ﬂ 1 +E 8\my’
(P72 amym, PR S =22 = (=0 2my — T (2my) —k k| (p—K) 7+ 77
_(8V7my")? . Py 4pip;p-k/m; (BT i, Py
(p*+ )" 4mymy 2k (—y%(2p)—p%(2p)—k)*  (p*+y%)* 4mym, 2k
X ! 1) Zapip + 2k + 2pk — PP K 45
(12w zm—) | )| TP AR 2Pk T 49

Again, one can easily verify that each power lofin the  mion line before and after the interaction, dn the photon
numerator is associated with an extra factorof three-momentume is the photon polarization. Applying the

Notice that the spin-spin diagram with an ultra-soft pho-derivatives, we get
ton, Fig. {b), contains at least two powers &fsince the
NRQED Feynman rule for the Fermi vertex is proportional
to k; in other words, the first non-vanishing contribution
comes from the second order term in the Taylor expansion.
Therefore, the lowest order contribution of the ultra-softThe exponential leads, as usual, to the conservation of three-
spin-spin exchange is suppressed by two powera wfith ~ momentump’=p—k (here we considered a photon being
respect to the corresponding dipole-dipole exchaftigie is  emitted. Using this to write—2p=—p—p’ —k and discard-
due to the fact that the Fermi interaction involves fBe ing all factors associated with the external fields, we obtain
field). This is very different from the corresponding soft pho- the Feynman rule
ton diagrams which both contribute to the same order. The ,
difference, again, is that only the factorsefind 1m enter _ Pit Pi
in the soft photon counting rules whereas factors of the pho- 2m
ton momentunk matter in the ultra-soft counting rules.

Clearly, the fact that one power ofis generated by each The rule is obviously unchanged if we consider an absorbed
term in the Taylor expansion will prove crucial in writing photon. Now we consider a multipole expansion of this ver-
down the counting rules of this new, Taylor expanded, veriex, i.e., we expand the photon field
sion of NRQED. However, before doing so, we now want to ik . L )
show that the Taylor expansion we just carried is equivalent e Mi=l-ikerda(—iker)Te (49
to a multipole expansion of the NRQED vertices.

o (ki —2p)e P Hkp 47

(48)

In the following, we will use the notatione '

= zeroth ordet-first order+- - - to label the terms in the mul-

tipole expansion. As usual, this expansion makes sense only
As an example, consider theqy'(p-A+A-p)/(2m)y if kr<1. The size of is set by the bound state to be of order

interaction contained in the term-'D?%(2m)¢ in the

A. Connection with the multipole expansion

Hamiltonian. To obtain the NRQED Feynman rule, we first ~ T
expand the fields in plane waves: <‘T_;~‘ =
efip’-rV_Eefik-reip-r efip’-r e ik e yeipr
i ( ), e ) Y Y
2m 2m
(46)

FIG. 7. Spin-spin exchange with a soft photeertical line and
wherep,p’ are, respectively, the three momenta of the fer-an ultra-soft photon.
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the Bohr radiug=1/y. For ultra-soft photons, we hade  multipole expansion is used. This can, however, still be used

=12/ so thatkr=a and the multipole expansion is valid. to write the rule for the vertex as before, i.e.,

Of course, it would be nonsensical to use it for soft photons.

Also, the multipole expansion is clearly the same as the Tay- pi+p!

lor expansion performed above since the scale-ef./p. —q
We can easily find the rule for the new vertex. Using the

first term of the multipole expansios, Ik'r:,l (correspond-  Eyen though the rule for the vertex is the same as before, the

ing to an E1 transitionin Eq. (46), we obtain condition p’ =p simplifies greatly the expression for dia-

grams containing ultra-soft photons and, in particular, the

propagator. To see this, we first go back to the time ordered

photon-fermion pair propagat¢89). We now use in addition

the fact that the fermion momenta at the vertices are un-

where now the exponential leads to the condifidr-p, i.e.,  changed by the emission or absorption of the photon to write

three momentum igot conserved at the vertices when the Eq. (39) as

2m (51)

P ipr-pr
e (50)

Pi'( 1 1 2)
"2k \ Y 2m) +pA 2wk T V() P 2m) K K
) pi-( 1 1)
Tk Yew+pl2u+k k (62

instead of the form(39) which was obtained by using’ and the propagator of Fig(1® is
=p—k. In Eq.(52), the scale ok is set either byy?/(2u)

=ua® or p?/(2u), but since p is a fermion three- 1 »
momentum it is of ordery, we get in either cask=ua?. T2k T kE vl 2w £ 02 (2ma+ 022 (2m Kl
This shows explicitly that the multipole expansion has per- v2/(2p) Pl (2mq) +po71 (2m;)

mitted us to isolate the ultra-soft scale. (59

_ To obtain the higher order termsnin the multipole expan- ¢ \ve consider Fig. &), then we only have to consider the
sion, one provides a factort{(k-V)"/n! for each vertex n, ingle expansion of the vertex on the upper line since the
connected to an ultra-soft photon, wheres the order of  qar yertex will not act on the intermediate state propagator.

interest in the multipole expansion, and a plosnus sign is We therefore apply. as we did above. the operatér V..
used if the photon is absorbédmitted. In this expression, PRy ’ P !

the gradient must be taken with respect to the three®" Ed-(54) to obtain
momentum of the fermion line on thight of the vertex. To

1 1

apply these rules, it is therefore necessary to distinguish be- 7’_. —k-p/my (56)
tween the momentum of the fermion before and after the 2k [k+y,/(2u)+p(2p)]?

interaction, even though we have to set them equal in the

end. In the case of Fig. ®), we apply the operatok - Vp;, on Eq.

To illustrate this, we will evaluate the first few multipole 55) with, for result(recall that we replace, by — p after
corrections to the ultra-soft photon propagator. Since, aéifferenti:atin 9 place; by —p

noted above, one must distinguish the momenta of each fer-
mion and the momenta before and after the interaction, we

will use the momenta as labeled in Fig. 8, with the under- Py k-p/m; .
standing that one must set 2k [k+ v (2p)+p2(2m) % (57)
P1=P1=—P2=—Po=P (53 As expected, this is the same as E%p) with m, replaced by

m;. The sum of Eqs(56) and (57) is the result of the first
‘order term of the multipole expansion. To be more precise,
this is the result obtained from considering the first order
term in the multipole expansion of either vertex.
_ip_ 1 1 The result of the second order multipole can easily be
2k "\ k+ yz/(2,u)+p12/(2m1)+p§/(2m2) k calculated in a similar way. We apply the operator i
(54) -Vpi)2/2 to Eq.(54) and (k-Vpé)zlz to Eq.(55) to obtain

after carrying out the derivatives. Taking this into account
the intermediate state propagator in Figa)8s
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K (58

k2/(2my) (k-p)2/m3 .\ "
[kt Y21 (2m) + (22 [kt YA(2m) +p2l(2p)]?  oome Wil Mo J.
These expressions correspond to keepingnthe® multipole term on either of the vertices plus the first order term on both

vertex, all of which contribute to the same orderdanas we will discuss in the next section.
We also give the third order result:

k2k- p/m] (k-p)%m} "
[K+ 221 (2m) + 2P K 2 (2m) + pl2p) ]t Same Wi mz—=my J.

o (59

We have recovered the expressions obtained from theourse be carried on the whole diagram. This is slightly more
Taylor expansion, Eqg40), (41) and(42). This is not sur- complex because the wave functions must also be written in
prising since the Taylor expansion of a functibfx+a)  a way that distinguishes the momenta on each fermion line.

aroundx=0 can be written as To illustrate this, we consider again the bound state diagram
corresponding to Fig. (@ and work out the expression in
f(x+a)y_o=e"99f(a) (60)  first order of the multipole expansion. We again use the

ground state wave functiofi4) for the external states. Tak-
and this is what the multipole expansion accomplishes. ing this into account, the integrand corresponding to Fig). 8
In an actual calculation, the multipole expansion must ofis given by

8\my® di1d» (Py+ D) (Pyt ,)_ﬂ
w2(py/my+ p3/my+ y? 1)? 4mim, P17 PUiP27P2);

1 1 8\my®

y + — y 7 . 61
2~ p22my) — Pl (2my) —K K] mZ(p 2t pimat /)2 (6

The contribution of the zeroth order in the multipole expan- Notice that the zeroth order term in the multipole expan-
sion is obtained by simply using the relatiai®8) directly in  sion is obtained by setting’ =p in the NRQED vertices. In
Eq. (61). The contribution of the first order multipole expan- the case of the Fermi vertex, this gives zero since the
sion is then obtained by applying on this expression the opNRQED Feynman rule is proportional ' —p=Kk. This
erator—k- 'V, which is associated with the vertex on the means that the first nonzero contribution is of the first order

p 1
left in Fig. 8(5 plus the operatok -V, for the second ver- in the multipole expansion. Higher order terms are obtained
. 2 . . as above, i.e., by applying the corresponding factor of
tex, and then reexpressing the vectors in terms aging Eq. (+Kk-V)"/n!
+ p) .

(53). The result is Even though we have simply recovered the expressions

obtained by performing a simple Taylor expansion, there is
%q, 8 /—777,5)2 Py ( 4pip;k-p/my ) one importlimt riward for dgint? s]?: or|1e car: use direlctly (;he
T A oL | T2 — —V 7 Wigner-Eckart theorem and the familiar selection rules de-
Amymg (y7+p7)" 2k [ = y7(2p) =p/(2p) —K] rived in quantum mechanics for each interaction generated
019, 8\Vmy°)? Pi by the Taylor expansion. This has consequences in decays of
Amym, (24 p2)? 2k positronium, and in nonrelativistic QCD bound staff&g].
12 1Y To summarize, we have seen that, starting from NRQED,
1 1 separating the soft and ultra-soft scales and applying a mul-
X( —2(20) - pA (20)—K + E) tipole expansion tdor Taylor expandingthe vertices con-

k- p Q ®2/‘
X 2kipj+2k]-pi—16pipj W . (62 /(/) ,¢) ¢ L,’:/L‘,‘ ,lp
Lo
Koy Yoy

This is, as expected, equal to the expression obtained from FIG. 8. The two time-ordered diagrams corresponding to a
the first order Taylor expansio@5). A similar calculation  transverse photon exchange with the routing necessary to apply the
for Fig. 8(b) gives the same result as E§2) with m;<m,. multipole expansion.
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nected to ultra-soft photons generates an extension of <

NRQED with its own set of Feynman rules. This theory, "’L,, I
which we will call “MQED” (for “Multipole QED"” ) has i/g'

the advantage of generating bound state diagrams that con- e
tribute to a unique order im. In the last section, we will )

1“7
derive the MQED Feynman rules and show some applica- | 2
tions of the counting rules. b

FIG. 9. Self-energy diagram with an ultra-soft photon.

V. MQED COUNTING RULES
We can now easily extend the counting rules to incIudegg dp:]h?;o% é?é?i}rnn?/vn;inélijv%ae%ps ar:(:a':t;?i;elgg\wr']na;m’
diagrams containing ultra-soft photons. The concept of po: y ' 9

tentials is not well-defined, however, when ultra-soft photongac_'f_?]r ";/ yt:tlla' f Ea(6d). M 0 di
are present, so we first rewrite the soft counting (@@ as € last term of EQ(64), Miira-sort Can be expressed in

a sum over vertices instead of a sum over potentials: two dlffgrent ways, erendmg on whgther one uses a Taylor
expansion of the diagram or a multipole expansion of the

Ny vertices. In the first case\ira-sot IS Simply the power of
{(soft photong= Z (dj+nj+I;)+1—-Nsop (63 k appearing in the numerator. In the second cA4i;a-soft
=1 can be written as

where Ny, is the total number of vertices contained in the
diagram. For a diagram containing ultra-soft photons, this Multra-soft:E M, (66)
rule must be changed to i

Ny where the sum is over the vertices connected to ultra-soft
{(ultra-soft photons= Zl (dj+nj+1j)+1 photon andM; is the order in the multipole expansion to

. which theith vertex has been expanded.

—N1opt 2N, + Mjira-sott Equation(66) gives the order, in powers af, at which an

64 arbitrary MQED diagram will contribute. The dependence on
(64) arbitrary masses is unchanged by the presence of ultra-soft
whereN, is the number of ultra-soft photons in the diagram.Photons and is therefore still given by E@2). The charge
_The origin of the Al term can be _unde_rstood in the follow- dﬁgfonndseg(;i% Eg:’?ﬁgrh Ilts;aqggitresncta\llg?nz /the:re ;Eizuléga—soft
ing way: each ultra-soft photon brings in a facfat®k/(2k) P e YIin=p

that theZ dependence is different than in the soft scale

which scales asnia?)? (once the multipole expansion has - )
been appliel This must be divided by the square of a scale= Zma. The expression for the charge dependence must then
be changed from E(35) to

having the dimensions of energy, but since the only remain=
ing scale, after integration of the ultra-soft photonsy,ishe
final result is Mma?)?/(ma)?= a?. Therefore, each ultra-soft
photon leads to two additional powers @fin the counting
rules, hence the factorN2, in Eq. (64).

Notice that each time-ordered propagator decreases hghare again, the last sum is over the vertices connected to
power ofa by one, no matter whether the intermediate statg|ir4-soft photons only.

contains ultra-soft photons or not. We have already shown o fina| result is therefore that an arbitrary MQED dia-
f[hls When ultra-soft photpns are abs_eémt which case the gram will contribute to order
intermediate states contain only fermigns the presence of

v
7;=1—NTOP+;1 (di+ai)+2Ny+; M, (67

a single ultra-soft photon, the intermediate state propagator k+p+1
takes the form(we take, for simplicitym;=m,) 0= il P Z7a¢ (68
m;m;
1
—y2Im—p#m—k 65 with { defined in Eq(64), n defined in Eq(67) andx andp

defined in Eq«(30).

which scales as 1ife?). Once again, after integration over ~ We now give a few examples of the use of Egg). As a

the photon momentum, the only remaining scale to yield thdirst example consider the interaction Fig. 9 in hydrogen,
correct dimension isy, hence a correction of order where the ultra-soft photon is connected to an electron line.
(ma)/(ma?)=1/a for each time-ordered propagator con- In this diagram,d;=d,=1 (there is one factor of i on
taining an ultra-soft photon. This result can easily be ex€ach vertex n;=n,=1/2 (a factore on each vertex I,
tended to diagrams containing any number of ultra-soft pho=1,=0 (the p-A interaction does not get renormalized
tons. Recall that the same result was obtained in absence dfrop=1, N,=1 and, if the zeroth order in the multipole
ultra-soft photons, but for very different reasons. There, thexpansion(or in the Taylor expansionis used,M;= M,
factor of mass could be factored out of the propagator since=0. This leads to a contribution of orde. The mass de-
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pendence is found to bﬁ3/m§ and theZ dependence is, theory containing only ultrasoft photons, pNRQEDr “po-

from Eq.(67), Z*. This diagram therefore contributes to or- tential NRQED") has been developed by Pineda and Soto
der [13]. Let us say that MQED is not equivalent to pNRQED in
the sense that MQED is not a new ultra-soft effective field
theory, independent of NRQED. Our derivation is much
closer in spirit to the recent work of Beneke and Smirnov
[14], in which they consider the threshold expansion of loop
In fact, this result is enhanced by a logarithmZaj and  diagrams in relativistic quantum field theories. They show
contributes to the Lamb shift. how to extract the contributions due to different scales, with-

Consider now Fig. @& in positronium so thaZ=1 and out having to resort to an effective field theory approach.
m;=m,=m,. In this diagram, the transverse photon is softThis is similar to the present work in the sense that we ex-
(it is represented by a vertical lineVe can therefore use Eq. tract the ultrasoft contributions from the NRQED integrals
(63, i.e., the counting rules for soft photons. One s without constructing any new effective field theory. Let us
=n,=1/2 andd,;=d,=1. If the tree level expressions are mention that Beneke and Smirnov identify, in addition to the
used for the coefficients, then this diagram contributes tsoft and ultrasoft scales described in the present pépeir
ordermya®. The same diagram will contribute to higher or- “potential” scale corresponds to our “soft scalg”an addi-
der in « if the loop corrections to the coefficients of the tional low energy scale. The connection of this additional
Fermi vertices are considergithe one-loop correction being, scale with MQED will be explored in a future publication.
from Eq. (10), a/27].

As a final example, consider Fig(J. Here the photon is
ultra-soft. As mentioned previously, the first nonvanishing
contribution from this diagram contains two factorskafone | have benefited from many useful conversations with Pe-
from each spin vertexso that M ira-soft IN EQ. (64) is at  ter Lepage who suggested first the idea of applying the mul-
least equal to twoNrop=1, N,=1 and the other coeffi- tipole expansion to NRQED. | also want to thank S. M.
cients are as in Fig. (@), if the tree level coefficients are Zebarjad for several very useful comments and M. Beneke
used. One then finds that this diagram will contribute to or-for discussions concernindl4]. | have benefited from the
dermega’. hospitality of the CERN theory division during part of this

Let us conclude by comparing this paper to recent, closelyork. This work was supported by NSERCanada and by
related, work by other authors. First, a new effective fieldles fonds FCAR du Quzec.
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