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Neutrino emission via the plasma process in a magnetized plasma
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Neutrino emission via the plasma process using the vertex formalism for QED in a strongly magnetized
plasma is considered. A new vertex function is introduced to include the axial vector part of the weak
interaction. Our results are compared with previous calculations, and the effect of the axial vector coupling on
neutrino emission is discussed. The contribution from the axial vector coupling can be of the same order as or
greater than the vector vector coupling under certain plasma condif®556-282(98)09019-5

PACS numbegps): 13.15+¢, 14.60.Lm, 52.35-g, 97.10.Ld

I. INTRODUCTION Boltzmann’'s constank=1 are used throughout, and only
standard neutrinos are considered.

The decay of electromagnetic oscillations in a plasma into We find that the presence of a magnetic field has very
neutrinos is of interest as a stellar energy loss mechanistitle effect on neutrino emission relative to that in an unmag-
[1,2]. The presence of a plasma allows the refractive index té€tized plasma except for magnetic fields close to the “criti-
be less than unity, which is necessary for the decay of &l magnetic field strengttB.=m?/e=4.41x10° T. At

photon into avy pair. The resulting “plasma process” for high magnetic field strengths there is an enhancement of neu-

. o U trino emission due to a large proportion of electrons bein
neutrino emission has been studied in the presence of an ge prop 9

unmagnetized plasnf2—5]. There were also calculations in present in _their lowest Landa_lu orbital. We dgriye a.criFerion
. -~ for determining when the axial vector contribution is likely

which the background medium was taken to be the magney pa important for neutrino emission.

tized vacuum; however, the refractive index for the magne-

tized vacuum is always greater than unity, and it was as-

sumed that the presence of some low density plasma coul

lead to an appropriate opening of phase space to allow the A. Vertex formalism

process to proceef—9]. Here we perform a consistent cal- o systematic development of QED in a strong magnetic

culation, in which the background plasma is included explic<ie|d was presented by Melrose and P4@—14. A sum-

ily and thus the kinematic condition is not ad hocaddi-  mary of the electron wave functions and vertex functions is

tion. contained in Appendix A. The electron energy levels for a
The decay depends on the properties of the waves, andgiatic background magnetic field of magnituBeparallel to

magnetized plasma can support a variety of natural wavehe three-axis are

modes. Canuto, Chiuderi, and Chpl0,11] considered the

plasma process in a magnetized plasma and they considered €q=(m2+ pﬁ+ 2neB)*?,

several possible wave modes. However, their analysis ne-

glected the axial vector aspect of the weak interaction an#vhere{q} labels the set of quantum numbers which includes

they also did not use the exact electron wave functions in e parallel momentump;, and the Landau levelsn

magnetic field. These deficiencies raise doubts about the va=0,1,2,... . The ground state=0 is a singlet state and the

lidity of their results at high magnetic field strengths. statesn>0 are doubly degenerate due to two-spin states. In
In this paper we calculate the amplitude for the degay the Landau gauge, the vector potentialAgx) =(0,Bx,0).

— vv in a magnetized gas of electrons@Gg). We avoid Th_e electron wave function$§(_x) are eigenfunction{s of a

the weaknesses {6—8,10,11, by using the exact electron SPIN operator and the magnetic moment operator is chosen

wave functions in a magnetic field and including the effects(cf. [15]) as

of the background plasma. In Sec. Il, the formalism required - i

to treatV — A interactions in a strongly magnetized plasma is p=mo—iy ox[pt+eA(x)], @)

summarized and extended. The formalism used is the vertev>\</here denotes the Pauli spin matrices. This spin operator
formalism[12—14], which allows both a momentum space r P ' pin op

representation for QED in a strong magnetic field and i;ommutes with both the Hamiltonian and radiative correc-
z

means to calculate the response tensors of a magneti igns to the Hamiltonian, and its eigenfunctions have sym-

plasma. In Sec. lll the transition rate for the decay of a givenmetry between electron and positron states. Here electron

wave mode is calculated. Wave modes for a plasma with gnd positron ;tates are labelled gyelectrons correspond to
cold electron distribution and for a thermal electron distribu—6__?06‘2'?05\/0;”:22?“;?@;1}6 resentation. we use a vertex
tion are considered. It is shown that the resultf10,11] _ e _ _p _’

may be recovered with suitable approximations. The impli-function[ v, ,(k)]*, defined in the following way12]:

cations of the axial vector aspect of the weak interaction are 1

discussed, and the neutrino emission rates from different e Mz_j T o€

plasma modes are compared. Natural units withc=1 and [7qrq(k)*= \Y dx exp(=ik-X) v, (X)y*1ig(x), (2

I. V=A INTERACTIONS IN A MAGNETIZED PLASMA
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whereV is the normalization volume. The incoming electron e ik e’ pau
has quantum numbefg,q}, the outgoing electron has quan- ([Tqr(K)16)" =[Tgq (ks ©
tum numbers{e’,q’}, and the outgoing photon has four- e Vel e

momentum k*=(w,k) = (w,k, cosyk, singk). From the [Ty (—KIE=(=1) T[T, K)IE. (6)
definition of the vertex function, the following symmetry

property is clear: B. Response tensors

e e The standard linear response tensor for a plagbid(k),
{[Vq’q(k)]ﬂ}* _[qu’(_k)]ﬂ' 3 when written in covariant notation satisfies the equation

Since we also wish to treat the axial vector component of the jHk)=11# (k) A¥(k), (7)

weak interaction, we define an axial vectdiv) vertex func- ] ] . .

tion similarly to Eq.(2), replacingy* with y“y5. The AV where j#(k) is the induced four-current and*(k) is the

vertex function is denoted €€ (kYT fluctuating part of the electromagnetic field. In the absence

ertex function Is denote lJCV)’q’q( )5 f a plasmall#”(k) is the vacuum polarization tensor. Us-
An electron-photon vertex corresponds to the standar

g the vertex formalism, one can introduce a medium using

vertex function, and an electron-Z boson vertex correspondg,q ejectron occupation numbers, and then with the assump-
to a combination of the standard vertex function and the AVtion that the occupation numbers of a state are independent

vertex function. TheV—A theory of weak interactions ig- o gpin the linear response tensor in a magnetic field be-
noresZ and W boson propagators and considers only thecomes[14]

charged and neutral currents at a point interaction. The neu-

tral current component of the interaction may be expressed e3B

using the standard and AV vertex functions, and hence the II*"(k)=—— > >,

charged current component of the interaction may also be 2T 00 elem =

expressed in this manner through the use of a Fierz transfor- ,

mation (see, e.g.[16]). E(e’—e)-q-ena—e n;,

. e L dp [
2 - 124
Another vertex functlor[Fq,q(k)] , which is a gauge xf 2 o— byt e EqTi0 T5 .,

!

invariant part of[ y;/,;(k)]“, is identified due to the desir-
ability of having a gauge-invariant theory. The gauge- (8)
mvgnant part of the AV vertex function is identified as whereT"”. is the product of vertex functions summed over
[Tqq(K)15. (An example of the separation of gauge- gpin states, i.e.,

dependent and gauge-independent terms is given in Appen-

dix A.) , e e V

Using the vertex formalism, we obtain a momentum space T .= 2 . [T qrq(KIXL (k)T )
representation of the effectiné— A interaction Lagrangian T
as

The result of the summation in E¢Q) is presented in Ap-
pendix A, the three-tensor form of the response tensor was
calculated if17], correcting the result dfL8], and the renor-

F—
Let=— 5 u(qy)yu(1- Y*)v(d2) malized vacuum polarization tensor has been treated using
the vertex formalisnj19]. The infinitesimal imaginary term
X{A[F;,Z(k)]’“rB[Fg,;(k)]g‘}, 4) in the denominator of Eq(8) arises from the requirement

that the response tensor be a causal function. Note also that
conservation of momentum is implicit through the relation
€'p=ep—k;.

The matrix element for the decay of a photon into a neu-
rino pair contains the product of a standard vertex function
and an AV vertex function. This allows one to identify an
axial vector response functid®], which can be generalized
in the same manner as the vacuum polarization tensor to
include a medium. Thus we have

wheree,q ande’,q’ label the incoming and outgoing elec-
tron states, respectively, angq,) andv(q,) are the neu-
trino and antineutrino wave functions, respectively. Thet
Fermi constant is represented By and the constantd and
B are given by A=2sirf4,+3 and B=—3 for electron
neutrinos and by4=2 sirfé,— % and B=2% for muon and
tau neutrinos, wher#,, is the Weinberg angle. In the ap-
proximation where st =3, then.4=0 for muon and tau

neutrinos, so that only the axial vector component of the 3 o

. . ‘ . gy e’B dp;
weak interaction contributes to their emission, as noted by mE°k)=—=— > > —
[9] 2m n’,n=0 €',e=+ 2m

The gauge-invariant form of the AV vertex function is L, e e
given in Appendix A. When calculated using magnetic mo- {z(e'—e)+eng—e'n,} |
: ) : o X y . 515, (10

ment operator eigenfunctions, it obeys similar symmetry re- w—€eEgt e Eq+i0 €€
lations to the standard vertex function. Explicitly these rela-
tions are with a similar sum over spin states:
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v plasma is close to unity, then the decay rBEjg for a mode
M can be written in the well-known forrte.g.,[4,5,10)

v ! __ GfRu(k)
M 6me’elom(K)]

o

(k“k"—k?g*")Q (13

uvo
W Diagram
v

where Ry, (K) is the ratio of the electric energy to total en-
ergy in the wave, and

Q.= [ AL, (k) +BIT3 (k) Jef (k) |*

X|LATL,, (k) + BT () e (k)] (14
Z Diagram

The power emitted per unit volume for a given wave
mode may be obtained by multiplying the decay rate for a
given mode by the energy), of a photon in that mode and
the plasmon occupation numbé(w)y,). Integrating over
momentum space leads to the power emitted per unit volume
by the decay of wave quanta into neutrinos as

4-Vertex Diagram

v

d3k
QM:J' (2—)3wMFMf(0)M)- (19
FIG. 1. TheW diagram,Z diagram, and th& — A diagram for m

the plasma neutrino process i o )
To calculate the neutrino emission from given plasma

v e . conditions, one proceeds through the following steps. First,
s5Tere= Z [Fq’q(k)]ﬂ[rq’q(k)k : (1D the electron distribution function is required to determine the
7omE plasma response. Second, the plasma response is used to find
The axial vector response for a magnetized plasma hake natural wave modes of the plasma. The combined effects
not been written down previously to the best of our knowl-on the wave properties of the vacuum polarization of the
edge; however, there have been calculationdlgf using magnetized vacuum and of the plasma response was dis-
the proper time formalism for the magnetized vacuy@9]. cussed by 21], but the vacuum contribution is ignored here.
The result of the sum over spin states is presented in Apperfhird, the polarization vector, dispersion relation, and re-
dix A. sponse tensor are used to calculate the decay rate1By.
which is then integrated in Eq15) to determine the power
. MATRIX ELEMENT emitted in neutrinos. The most difficult step in obtaining ana-

h ibuting di h litude f lytic results is solving for the wave modes in a magnetized
There are two contributing diagrams to the amplitude org;,5mathere are relatively few cases in which the modes

the plasma process for neutrino emissionQ(G). These g simple enough to allow computational ease. However,
diagrams and the diagram for the process when regarded agfen the relatively straightforward procedure to calculate
V—A interaction are shown in Fig. 1. For simplicity, only the power emitted in neutrinos, there is the opportunity to
electron neutrinos are considered here. Using YheA  gptain numerical rates for a large range of plasma conditions.
theory of the weak interaction, the matrix elements fore A further simplification for computational ease is to take

andZ diagrams contributing to the decay may be expressethe ong wavelength limit of the expressions fdr* and

in the same form using a Fierz transformation. The matringw_ These expressions are presented in Appendix A.

element is Rather than using the response four-tensor to determine the
G wave modes, it is convenient to use the dielectric three-
My=— _Fj(ql) Yy (1—9%)v(qy) tensor which is related to the response three-tensor by
V2e
_ _ 1
Eqw

whereA* is the fluctuating part of the electromagnetic field.
For a magnetized plasma, the only difference in the matriXrhe form of the dielectric tensor is the same as that for a cold
element, Eq(12), from that for an unmagnetized plasma is plasma[22]:
the form of the electron wave functions.
The decay rate for a plasma mode is taken to be the tran- S —iD O
sition probability per unit volume of—k space per unit time i_|ip S 0
for the decay of a quantum of a plasma mode into a neutrino- K=\ : (16)
antineutrino pair. Provided that the refractive index of the 0 0O P
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A. Neutrino emission from a “cold” plasma TABLE I. The natural modes of a cold plasma.

Starting from Eq.16) for the dielectric tensor for a cold

plasma, the equation for the refractive indetakes the form Modes at§=0, «=(0,0,1)

Mode Dispersion relation Polarization vector
4 __ 2 —
ANn"—Bn"+C=0, 17 Longitudinal P=0 e=(0,0,1)
with the coefficients Ordinary ny=S+D 1
e= —(1,,0)
A=Ssirf9+ P cogé, V2
Extraordinary n=S-D 1
B=(S?—D?)sirf6+SP(1+cos6), e=5(1,—i,0)
C=P(S*-D?). (18  Modes ato= /2, k=(1,0,0)
A specific solutionn=n,, of Eq. (17) defines the mod&1.  Ordinary ny=P e=(0,0,1)
The general expression for the polarization vector of a mod&xtraordinary , $-D? (D,—iS,0)
may be expressed §20] W="g e= W
MG T D™ "
plasma frequencydefined bwa;:ezne/som) and(}, is the
k=(sinp,0,co¥), t=(cow,0,—singd), a=(0,1,0), electron cyclotron frequency, the magnetoionic theory gives
(200 [20]
and the coefficient&,, andT,, are given by ]
1o X 1 Lo TIXY
(P—nZ,)D sing . DP cow Ku=K%=1-737 Ko=~-KyW=1772.
M AnZ-PS ' MU AR -PS
K3=1-X, K! =0 otherwise. (22

To calculate the natural modes from the dielectric tensor,
the wave vector is taken to be=|k|«=|k|(sing,0,co9),
where 6 is the angle between the wave vector and the mag- 1. Emission at@=0
netic field. Note that the choice of gauge here is the temporal
gauge; thus the polarization vector for a mddetakes the
form e}; = (0,ey), whereey, is the polarization three-vector.
The polarization vectors take simple forms for the cages
=0 and#= /2. For #=0, there can be two circularly po-
larized modedor only one if the other is evanescgnthe
ordinary and extraordinary modes, or only one longitudinal
mode, the others being evanescent. For more general angl
of propagation, i.e.f+ 0,77/2 the modes have neither purely

The longitudinal mode a#=0 is independent of the mag-
netic field and the decay rate is the same as the known value
for an unmagnetized plasnp2—5]. The power emitted in the
transverse modes &=0 can be written in a particularly
simple way. Taking\ =1 to label the ordinary mode and
= —1 to label the extraordinary mode, the power emitted per
ggit solid angle is

longitudinal or purely transverse polarization. The dispersion G,2: ®max . -
relations and polarization vectors for the mode®at0 and Q0 =382,54 j doo®n(1-n)*f(e), (23
6= /2 are given in Table I. “min

A cold plasma electron distribution is
) wheren, is the refractive index for the mode The frequen-
4 _ cies wmi, and oy, correspond to the frequencies at which
Fa(En) = E[rﬁ +Nn"16n08(py), 2D the refractive index is 0 and 1, respectively—for a cold clas-
sical plasmaw,,,x=>. The frequencies here satisy<m,
where then¢(&,) correspond to the number densities of elec-and so this value is used for the upper cutoff. Integrating
trons and positrons. Equati@@1) is a distribution in which  from e, might appear to contradict the assumption made in
all the electrons are in their lowest Landau orbital. Havingderiving Eq.(13), that the refractive index is close to unity.
substituted Eq(21) into the expression for the dielectric ten- However, for almost all of the frequency range the refractive
sor, if we then take the classical limibm, eB<m?) and  index is close to unity and thus the results obtained here are
assume a purely electron plasma, we obtain the dielectrinot compromised by this—it is a far less serious approxima-
tensor of magnetoionic theory, which is exactly that used irtion than the assumption of a cold plasma. For a plasma
previous investigations of the plasma process in a magnedescribed by the magnetoionic theory, E&3) reproduces
tized plasmd10,11]. the results of 10].
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FTrrr7
4_

LA B L L
s

Using the dispersion relatiof17) the plasma resonances
(which correspond tm?=c) may be found from the equa-
tion A/C=0. In magnetoionic theory, the solutions to this
equation are

With axial vector
e
coupling e
v

1 1 1
w3 ()= E(wg+ Qg):5{(wg+ng)2—4w§9§co§0}1’2.
1 (28)

T Canutoet al.[11] claimed thaiw? (0)=Q2 is a mode which

can lead to enhanced neutrino emission at high plasma den-
sities (p>10" g cm™3). However, the plasma resonance
does not satisfy the kinematic condition that the refractive
index be less than unity, which is required for the plasma
process to proceed—hence no energy can be lost through this
mechanism. We conclude that there is no such enhanced
emission at exceptionally high plasma densities.

Without axial
vector coupling

Log (Power) (W/m3)

‘ L1 11 | | N ‘ I ‘ L1 11 | 111
30 31 32 33 34
Log (Electron Number Density) (m=3)

FIG. 2. Comparison of emission from the ordinary modedat
=7/2, both with and without the axial vector coupling. The power
is in units of W m 3 and the electron number density is in units of
m~3. The temperature is $K and the magnetic field is OBL.

B. Neutrino emission from a thermal plasma

To obtain analytic expressions for the energy loss in neu-
trinos from a thermal magnetized plasma one assumes a ther-
mal form for the electron distribution in the expression for

The behavior of the ordinary and extraordinary modes athe response tensor, E@). We make either a nonrelativistic
6= 7/2 is less simple than fof=0. The axial vector part of Or semirelativistic expansion of the resonant denominator in
the weak interaction can only couple to modes which have &he tensor to simplify the analysis.
component of their polarization vector parallel to the mag-
netic field. The ordinary mode has such a component but the
extraordinary mode does not. For comparison, the power For an unmagnetized plasma, it has been shown numeri-
emitted by the ordinary mode per unit volume per unit solidcally that the AV contribution to energy loss via the plasma
angle is presented both with and without the axial vectoprocess is of the order of 0.01% for temperatures below

2. Neutrino emission from modes al=/2

1. Role of the axial vector coupling

coupling. With the axial vector coupling one has

2
Qo= fe5e5s f:r::xdwwgno(l—n§)2(4—3n§)f(w),
(24)
and without the axial vector coupling one has
GE o o
Qo=7357.52 f dow®ng(1-nd(w). (25

min

The power emitted in the extraordinary mode is

Q :G—'2: fwmaxd 8n (1_n2) (26)
X 384m°a Omin @O X
4D?S(S—1)
X (5—1)2+D2—W f(w).
(27)

10* K [23]. However, in a magnetized plasma, it is possible
that the AV coupling can have a more significant effect on
neutrino emission. Physically this may be seen as follows:
the AV coupling cannot affect processes in a system which
has reflection symmetry; it requires that there be some axial
vector in the system to which it can couple. Although there is
no such axial vector in a classical magnetized plagapart
from the magnetic field, which is not relevant heran a
guantum magnetized plasma, the electronic ground &tage
lowest Landau orbitalcorresponds to a specific spin state,
unlike all excited states which have two degenerate spin
states. A plasma with a significant fraction of its electrons in
their lowest Landau orbitals thus has an appropriate axial
vector that allows coupling to occur.

Hence we expect the AV component of the weak interac-
tion to be important when a significant fraction of the elec-
trons are in their lowest Landau level. Consider a Fermi dis-
tribution of electrons,

On
exf (§— p)IT1+ 1’

f(Eq) = (29)

As can be seen in Fig. 2, the inclusion of the axial vectorwhereg,, is the degeneracy of theth energy levelu is the
coupling leads to results which differ significantly from chemical potential, and@ is the temperature. Taking the limit
those obtained when it is ignored. The effects are most prathat T becomes large, Eq(29) becomes a Maxwell-
nounced for lower electron number densities, and there iBoltzmann distribution

only about a 25% increase in emission close to the peak

when AV effects are included.

f(Eq)=gnexd — (£q— w)/T],
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which when normalized in the nonrelativistic limit givEz4] o e
Regions where the axial vector L’ ’
471-2ne tanh(\/2) pf 1 coupling should be included o> =001
f(EY)=0n mexXp — s—=—n\|, (30 L’
eB (2mmT) 2mT =g .
Y
7/
wherehx =eB/mT. The normalization that is used is — ] pmrmmEa /<=1
= B o]
~ Passents ,
- 47%n T R .
z J'dpug f(& ):—e. (3D 2 ‘ 'E..:}:‘.':'.&
n=0 nira eB %
2
The most probable value of should be when the energy &b
associated with parallel motion is of the same order as theZ
associated with perpendicular motion, corresponding to ecéD
uipartition of energy. This occurs whepf/ZmT= n\. The
condition is
2
Pi_neB
—=—. 32
2mT mT (32)

If one replace®? by (p?)=mT andn by (n), Eq.(32) gives

Log(Temperature / K)
() m«T T N .
(ny= = =0.06—, (33 FIG. 3. Temperature and magnetic field regimes for which the
2ehB  2ehB B axial vector coupling is likely to be important in astrophysical ob-
whereT is the temperature in kelvin ari8l is the magnetic Jects
2'21? |(r)1nt:srl;151i. rITor a young, highly magnetized white dwarf' (&)
, ght expect the surface values of the magnetic + @ qwr
field and temperature to &~ 10° T andT<1C° K, respec- w—E—Eq+i0 T
tively, which gives(n)=0.6; so a sizable proportion of the ()
electrons are in their lowest Landau orbital. Hot, strongly q’

-—— =T (35
magnetized white dwarfs or their precursors, and neutron o+E+Eq+i0 T

stars, are objects which are likely to have their plasma neu-
trino emission affected by the presence of a strong magnetid£” may be found by replacin@’e‘fé by 5T’:,"e.

field. In making the nonrelativistic approximation, it is assumed

If we take(n)<1 to characterize when most of the elec- that the thermal energy of the electrons is much less than
trons are in their lowest Landau orbital, then a criterion fortheir rest mass energy, i.&<m~6x10° K [21]. Provided
whether the AV part of the weak interaction is important for that one considers a p|asma Mﬁé«m and modes such that
neutrino emission is w<Q,, so thaté,+ £, =>2m>w, the second and third de-
nominators do not vanish. There are three transitions that can
(E 20.06( I) (34) occur in the highly magnetized plasma, all of which must be
T K taken into account when calculating the plasma response.
There are processes in which an electron remains in the same
Temperature and magnetic field regimes that occur in the andau orbital after emission, i.e1=0, n’ =0, and there is
interior of neutron stars and white dwarfs are compared withy|gg cyclotron emissiom(=1, n’ =0) and cyclotron absorp-
the criterion, Eq(_3_4), in Fig_. 3. While there is a larger range jgn (n=0,n’ =1). The first denominator has a zero, called a
of B andT conditions available for neutron stars, the elec-resonance, corresponding to either cyclotron emission or cy-
trons are almost certainly degenerate, in which case the r@qotron absorption. The resonant term is sensitive to finite
fractive index is greater than unity and the plasma process iﬁ-}mperature effects, but the two nonresonant terms are not
forbidden. The white dwarf and neutron star internal condi-[24]_ Hence, for the two nonresonant terms, one may set the

tions are taken fron1]. distribution function to be
2. Neutrino emission 4m2n
To calculate the response tensor, start with the distribu- f(&y) = efseﬂpu)t‘)‘no- (36)

tion function, Eq.(30), and substitute into Eq8). In the

absence of positrons, the response tensor takes the form . , N
These “nonresonant” contributions to the response tensors

B FH(E)—FH(Ey) are shown in Appendix B.
I*"(k)=—— 2 g 9" quv In the resonant terms we use a Maxwellian distribution of
4 " w0—EqtEq+i0 TF in thei -
T nn'=0 O—CqTeg Tl electrons in their lowest Landau orbital:
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process for neutrino emission has not previously been calcu-
. (37 lated taking into account strong magnetic field effects,
plasma effects, and the axial vector part of the weak interac-
tion. Our work takes a consistent approach to the inclusion of
a plasma and the kinematic conditions under which the neu-
pik, f[rino pl_asma_em?ssion process may occur, as opposed to the
0—EtEg=(0+Q)— e (38 inconsistencies in previous calculatiof&-9]. Second, the
formalism for looking at weak processes in a strongly mag-
netized plasma has not previously been able to deal with
diagrams containing electron loops. The axial vector vertex

1 4x®n 2
f(&q)= T p( o

J2=mT €B Ono®X - 2mT

For cyclotron emission the resonant denominator is

and for cyclotron absorption we have

Pk, function and axial vector response tensor described here pro-
0=t Eqg=(0—Q¢)— e (39 vide mathematical tools which can be used for such calcula-
tions. Third, we have produced some analytic approxima-
The resonant response tensor becomes tions to the power emitted in neutrinos from a volume of

plasma with a given magnetic field, electron number density,

, e’n, % pf and temperature. The exact results for the response tensors
(k)= — ot fﬁ dpexg — 55 (400 mean that these can be used to calculate numerical results for
mm magnetic fields greater than the critical magnetic field—this

T (n=0, n'=1) T#%(n=1, n'=0)

_ that contrary to the case of an unmagnetized plasma, the
(0+Qe)—pki/m  (0—Q¢)—pk/m

axial vector coupling can have a role in affecting neutrino
(4D emission via the plasma process, and we have suggested a

. . . . simple criterion with which to estimate whether such axial
v uv
with the expression foll£ . obtained by replacing%”. by ctor effects are likely to be important.

e
v i i ; ) -
574 . This leads naturally to expressing the components OY The neutrino plasma process is related to neutrince@-

the tensors in terms of the plasma dispersion funcié¢z),  kov radiation by a crossing symmettgee[9]), so that the
defined by{20] results obtained here for the response functions can be used
e to study the @renkov process in plasmas with a refractive
E(z)si f“ at s (42) index greater than unity.
Ja J-w 2=t The magnetic field dependence of the plasma process par-
allels the results found for neutrino dispersion in a strong
wherez=(w=*Q¢) m/k,y2T. To simplify the expressions field [25], in that the results are relatively insensitive to the
obtained in Appendix B further, one can make use of thenagnetic field. The plasma process is only sensitive to the
asymptotic expansion ab(z) for largez [20]: magnetic field forB close toB.—there is a much stronger
dependence on temperature and electron number density than
the magnetic field. Hence, unless one considers strongly

} regime has not been investigated here. We have also shown

Y . _ 52
d(D)=1+ 5o+ gt i Vrze ®, (43} magnetized plasmas, most of the expressions derived for un-
magnetized plasmas are adequate.
taking only the highest order term in and ignoring the There are several highly magnetized astrophysical envi-

imaginary part. This leads to E¢B10) for the response ten- ronments where the plasma process may be of importance.
sor. For waves propagating parallel to the magnetic field, thdhese are in the cooling of giant stars with highly magne-
tensor reduces to the same form as for a cold plasma; tHézed cores, in the early stages of the evolution of a hot
power emitted in the ordinary and extraordinary modes ignagnetized white dwarf. The process may also be of impor-
given by Eq.(23), and the longitudinal mode is identical to tance for neutrino emission from neutron stars. The enhanced
that for an unmagnetized plasma. Waves which are noteutrino emission due to the axial vector coupling in regions
propagating parallel to the magnetic field lead to expressionsf a stronger than average magnetic field might contribute to
for power emission which are more complicated than Egsan anisotropic neutrino luminosity which has been suggested
(23)—(25) and may have significant contributions from the as a possible mechanism for the large proper motions of
axial vector coupling. many pulsars.

IV. CONCLUSIONS ACKNOWLEDGMENTS

The calculations in this paper address a number of issues The authors thank Stephen Hardy and Jeanette Weise for
relating to the neutrino plasma process. First, the plasmhbelpful comments.

APPENDIX A

The electron wave functions determined using the magnetic moment operator have been deterrfiiZédngy display
them here for convenience:
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Pgx.)=e""“dyg(x), (A1)
where

cron expliep,y+iep;z)
0= (g U et €D (ET+ M2 (A2)

(A3)
(5q+58)(58+m)vn—1(§) _ignp\ﬂén—l(g)
—ipaPwn(é) (Eq+EN(EGTM)V,(£)
XY Oeal Goal  pedimvy (&) | Ot —ipy(EqtEDun 1) A4
ipn(Eqt+EPUn(€) — P EJ+ M a(§)
PIEI+HMV,_1(&) ipn<6q+058>vn,1<§)
—ipp(EqtEPUn(€) —py(Eq+mun(é)
Toa1l dnal (g e0(El+mvy y(&) | T ipgpiwn1(8) ' (A5
ipnPyva(£) (EqHENEGT M)V ,(£)
where the quantitiep,,, 58, and&, are given by
pn=(2neB)™?,  £0=(m*+pH)'Z  £,=(£9%+pf) 2 (A6)

In Eq. (A2), o is the spin quantum number which takes the valtiels for spin up and spin down, respectively, ang the
sign of the energy. If; is thez component of momentum for an electroe=(1), thenp, represents minus thecomponent

of momentum for a positrone= —1). The functionsy,,(£) are normalized simple harmonic oscillator wave functions of the
form

H L
n(g)ex _Ef)

vn(é)= (77rnnTz

whereH(§) is thenth Hermite polynomial and
¢=(eB)Y(x+ep,/eB).

The separation of the vertex function into gauge-dependent and gauge-independent terms was|@Rieforirseveral
choices of electromagnetic gauge. We write down their result for the Landau gauge:

(75 (014 ={(2m)2IV(eB) exdiky(ep, + € p))/2eB] 5 ep,— €' pj—k,) 8(ep,— € P, —K)ITL (K]~ (A7)

A similar separation may be made for the AV vertex function. One may write out the gauge-invariant vertex function for the
magnetic moment operator eigenfunctions as

(T8 e(K)1#=ChCo(8pr ol (31 1+ phiondl) ) €BE oL — poexpioy) 3 " —priexp—io)d, . ],

. €'e . I+o ' . | e, 4l ’ I+o
|GUIBqu[PneXFmU‘#)Jﬁqffr_l)nfexq_|0";b)\]|u|+g]a 77qrq(J|rf|+Pann‘]|f+7|)}

€'e . I+o ’ . | € erql ’ . I+o
— €08, dag [ —pnexplioy)d) oL exaioy)d, | 1.ebs e[~ phpn€XA2iay) ) 5 ],
ieabl L3, + phpneXA2i )3}, 1,05 — prexlioy) )+ plexpioy)d), 1D, (A8)
where the argument of the functions is the same as in EA14), and with the coefficients
a;f;:5e’e(1+P|\,PH)+Uae’—e(P\?+P||)v ﬁ;’;:56/6(1_p|ipH)+UgEI*E(pH’_p”)l (Ag)

E_

Ngrq=Oc Pl TP+ 8- (1+pip), 8gq=0cdlp|+p)—0ds_1+p[p)),
b;’;: 5e’e(p|\, _p\l)_o-ge’—e(l_p\\,pll)l d;’;: 56'6(1+p\\,p”)_056’—E(p|1 +pH)’
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and the abbreviations

0 0 1/2
0= (gq+i?q(§gq+m) {i expti)}!,
c E((gq,+5g,)(5g,+m) 1/Z{i expli )} (A10)
v 484 Eq ’
Pi=PI(EgHED, p{=PII(Eq+EQ), Pa=Pn/(Eq+M), pl,=py/(Eq,+m). (A1)

As noted by[12], the gauge-invariant vertex function satisfies symmetry properties similar t¢3Egprovided that the
magnetic moment operator eigenfunctions are used. These symmetry properties are

([Tg (k1M * =T (—k)1*, (A12)

[(r e_s( k)]#=(-)" _'[F q(K) 1%, (A13)

with the symmetry property, EqA13), holding for suitably chosen phase factors.
The gauge-invariant form of the AV vertex function is

[T (K)1E=CqrC (8, B (31— Prpndl D) e oL~ prXi o) 3+ pliexp—iay)dy, . ],

|+o’

I+o
|€0'7Tq q[Pnequalﬂ - g+pnrexq |0'¢)J|r ol l9q q( |r I pnrpn‘]w+ DY

— €08, At L —paexpioy)d))_ —plexptioy)d__,1.eg5 3+ phpnexp2ia ) I, ],
ieag;,g[Jl,,l—p;,pnexp(zimp)Jl,*j’,,ZU],h;,;[—pnexp(iaw)Jl,*j’l,U—pr;,exmm/;)JI,,l,(,]}), (A14)
wherel =n—3(o+1) ando= *1 is the spin eigenvalugote that for the ground state spin singtet 0, the spin eigenvalue

is o= —1). TheJ functions have argumekf/Ze B, and are related to the generalized Laguerre polynorteais,[ 26]) via the
relation

n!

1/2
IN(x)= (n+y)!) e X2 V2Lr(x)=(—)"I" ¥ (x). (A15)

The properties of these functions have been summarized previdi&lyThe coefficients for the AV vertex function are

d’q q= 0 dpitp)t e dLtpip), o= dpi—p)t e -1-pipy),

6; ;_0-56 e(1+p|1pH)+ 55’—e(p|1+pH)! f;';: _056’6(1+p\1p“)+ 56’—e(p\1+pH)!
gq q 0-56 6(1 pllp\\)+5s —e(pll pH)! h;f;:_Uée’e(pl\,+p\l)+56’—6(1+p|\,p\|)' (A16)

1. Response tensors

The sum over spin states for the linear response tensor and the vector axial response are presented below:

1 (m*=p/p)) PP
00 n 2 n— l 2 nkn" onon-1
Tiee= 2(1——5(]/5(] [(3)°+(J, ]+g £ NN (A17)
1f _(m’=pip) L PoPr
1 _(m*=p/p) _ p p
T?fee:z'“ (VR o o R
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1 (mzip’pu)] PnPn’
Tii;—lli— [N+ (I HAF 3000,
2 £q4&q £qlq
o1 __ €/Pn, n1g n—1
T+EE _E E_(Jv JV*1+‘] ‘]V+1)+_('J 1+‘] JlHrl
q
ie
ngee:_f( (CARRN USRIV V+1)+_(J B 1‘]1/+1]
PP _
T8=31 e+ ([ H2+)7,
£q &
i [ (m?xpp)
Tizee——§’1+v [0 D2=(30 )2,
E !
Tfﬁ:——l ] [an_,an-t4 0l ]+p“ il [J”J” AN L L ]
2 5(1 q’ C]
T2, = - [5“5” L2130 T 3 1JM]
q

wherev=n’—n. The remaining components may be constructed from the Onsager relations, which embody the requirements
of time reversibility, and for a plasma with a static background magnetic field may be written in the form

Hoo(wi_k)|—BOZHOO(w1k)|BOl HOi(wl_k)l—BOZ_Hio(w!k)|B0! Hij(wi_k)|—BOZHji(wik)|BO' (A18)

The components of the three-tensor partldf’ may be constructed using the Onsager relations from the components given
below, and the sum over spin states gives

sT%0=5T= 2[;” Z][(J" H2= @2,
q/

STH= T2 z[:q,‘—][” 0P hA,

a5 R R LINE S SR Jﬂ_l]}.
5ngee:_5{ g;pn [J g+%+~]n lJv 1]+qun [Jn 1JV+1+JHJD 1]J,
T %[ 1t—(m:2p) }[(Jﬂ_l)z—(JZ)z],

!

i|p p
5T12:§[i——][(\3 _)ZH(355D,

5T =—{—[JM J':_lJZ*lh [J“ RUSEESN UA I 1]],

T2 :—{—[JMJ“H” I 1]+ [J“ RUSRERN U U 1]],
=5T%,.. (A19)
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Most of the components of the tensbi:” satisfy the Onsager relations in the form of E#&18), specifically, the
three-tensor components afid" andI12%. However,IT12° does not exhibit the symmetry in EGA18). Physically, the reason
for this is that the axial vector response violates parity. If the failure to satisfy the Onsager relations were due to nonconser-
vation of the axial vector current, one would expect that the components to be affected would be associdtdTithis
not the case, and so we can ascribe the failure to satisfy/8®) to parity violation. The Onsager relations are derived from
time reversibility, but to write them in the form of E¢A18), one also appeals to parity and the reality condition for Fourier
transforms. The tensdil£” was calculated for a magnetized vacuum[8}; and we note that when E®Q2) of [9] is written
in the coordinate system used here, it fails to satisfy the Onsager relations only ﬂ@%lwd Hgo components.

2. Plasma response in the long wavelength limit

When one takes the long wavelength limit of E§), the linear response tensor beconefs[17])

Hllzl—[zz:_es_B i f de (]S, ,—£9) Enr1—En B (m?+ pf)
2 (=0 2m ntl wz_(8n+1_gn)2 En+18n
Ens1tE m?+ pf
+(f +1+fs) n+1 n 2( ( pH
_(5n+1+5n) 5nJrl(‘:/‘n

12 |e3B 2 f dp (0, —0) w 1_(m2+pu2)
n+i 0‘)2_(5n+1_gn)2 Env1én

2 2
o ) (m“+pj)
Flineam f“)w2—<sn+1+5n>2<“ Eoitn )]’
de 5n+1 pf 5n pf
H33:_ f 1— +f5 1- 2
[n+lw2_4gﬁ+1 5ﬁ+1 nw2_45ﬁ g% ,

HOO HOl HOZ HO3 H13 H23 O (AZO)

wherefs=n*(&)+n (&), fR=n"(&)—n" (&), and&,=(m?+p?+2neB)*? noting thatn™ is the electron occupation
number anch™ is the positron occupation number.
Application of the long wavelength limit tbl£” yields

e’B dp Enr1t &y

H sz z J' P 2';_'_ 5 (fn+l fE)!
o 26°B g f dpy 1_(m2+|of) S €n+l _(m?*+pp) ps__En

ST 2 &) 27 &1 "o 45n+1 En "w?-4E7 ]’

2638 & [ dp (m?—p?) £ (m?—p?) &

30 I I s n+1 II S n

= —i| 1+ -1+
5= nZof 277[(1 .1 f”“w?—gﬁﬂ ! g2 f”w2—45ﬁ '
T100= [191= [1%2= [182= 1 18= 1 2= ¥= 0, (A21)

By inspection, it is clear that if the electron and positron distribution functions are even functippstbin thelli* andI12
terms are identically zero. Considering the other two comporigftandI1:°, rearrangement of the sum owershows that
only then=0 term can contribute. The=0 term vanishes identically fdi2>, which means that the only nonzero component
of the axial vector response tensorfIg’.

APPENDIX B Sec. Il areJ3 andJ?. These have the simple forms
The results required to determine the response of a ther- (u) gu’2, (B1)
mal magnetized plasma are summarized below. The dnly
functions that are required under the assumptions made in Jg(u)= Jue v, (B2)
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which are used below. The “nonresonant” contributions to

the response tensor are

k' Kk?
am? " a2

ot 2

00_
Hnr—sow

Q k2 k2 p2
204, “Ze I 1 L]
Mr=eowy 14 50+ 22 * 28 exr{ 2mT)’
Mpr=0,
2
Pi
02_ 2
I, leowp 5 exp( 2mT)
MP=0,
=0,
k, k p?
13_ 2 RLW L
Har= 200 72 X% 2mT»
k K p?
. 2 BB I
Mo 'Sowpmexp(‘m)= ®9

and for the axial vector response,

1_[gonr: 1_[gsnr: 0,
K P
g, =11%,= —sowéﬁexp< ~omT)’

LKk Pf
M=~ 0 4z B ~ 27

. K Ky pf
ngan—lsowSWeX —m_ s
ki K p?
M=~ 200y 2077+ 47| W ~ 27"
HS nr
m:,=0,
k, P
Hgsnr ISpr m X[{ - m . (54)

Because of the simplifications made in assuming a nonrela-
tivistic nondegenerate plasma, only one type of integral

needs to be evaluated, namely,

PHYSICAL REVIEW D58 093011

| 2
N Py Py _
I,—J_mdpa+_bpexr{ 2mT)’ [=0,1, or 2,

(B5)

whereT is the temperatur@ . = 0w £ Q,, andb=Kk;/m. The
integral in Eq.(B5) may Ee reexpressed in terms of the
plasma dispersion functiog(z) defined in Eq.42), which
allows one to obtain the following forms for the:

V2 — N2mmT —
= (), =z 1],
: (86)
V2
=22 gz - 1), ®7)

wherez.=a. /by2mT.
Using Eg.(Al17), the expressions in the resonant part of
the response tensor may be evaluated:

i Q é(z,) E(z))
00_ 2 L “e o
Mres= 80“’9299( 2m A/ 0+ Q. w-Q,
k2
Qe K\ [dzo) d(z)
1_[rlels Hrzezs _80w2(7+_ w+Qe—w_Qe)

ki
xexp( — FB) ,

33 2 ki {(Qe k\% E(ZJr)

0w+ Qg

k2
exr{ 2e B)

res” ~ #0950 |\ 2m " 4m?

~ Z(z))
0— Q¢

——[¢(Z+) #(z.)]

d(z,)  H(z) k2
H?els—sowp 2 w+Qe+ w—Qe)eX%_ng)'
¢<z+) (z.) k?
l_[?es Isowp 2 1o, Z)_Qe)ex%—ﬁ),
2
e 200 50, [¢(z+> b(z)]
ki ¢<z+>_¢(z>) p(_ﬁ)
amlotQ, w-0, P~ 2eB)
. Q. K |[dz)  dz)
Hrles |80w5(7+4m2 w+Q, w Q.
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e 2o0ham | i CLo(z)+ bz )21 ¢(Q‘e))
k2
Xex;{—ﬁ),
» Ko _
N isow)y (k[¢<z+> #(z)]+ ¢(Q:)

ki
xex;{ - ﬁ) ,

and for the axial vector response,

k¥ 1 Q| —
HOOS res:H335 res:_sow;zjz_ée{k_ 1+ﬁ [o(z4)
—¢(z)]
K[ ¢(z.)  pl(z-) k?
“m —wm;w—ge) eXp(_ﬁ)’ (B9
(z.) (z)
HllS res— =122 5 res Sow kH ¢+Q i )
e A ses)
t 19z - b(z)]|exn — 5.5,
, ki kip(z-)
%% o=~ 2owp 5 - [kl[¢<z+>+¢<z> 2]~ Q}
k2
><exp<—ﬁ3),
11%% o= g0} [¢><z+> #(z)]+ ”d’(;)
k2
xexr{—ﬁ),
k? Qe K\ [ (zo) ¢(z)
HOSMS:SO“’PzQ (’Lﬁ ) 0+ Q. 0-0Q

1 —
+pllorQal#z)-1]

k2
o~ acg).

5(2))

Q
ki
ex —KB s

~(0=Q)[¢(z-)- 1]}

g(z+) _
I 0+ Qe

12 —i
1% res_lsowpz

$(z.)]

O —
+ k_H[¢(Z+)_

)

)
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$(z)  p(z) k
13 _ _ 2 L _ L
™5 res= —800p 2 w+Qe+w—Qe ex 2eB)’
n2e i ¢z )| [ K
5 res 80“’92 0t Q. 0-Q, 2eB)’
30 KE(Qe, K[ d(z0)  @(z)
5 res— 80‘%29 2m ' am?)\ 0+ 0, w—-0Q,
K
Xexr{—ﬁ?’).

Finally, we display the result fofl#” when one makes a
high z.. expansion, corresponding fb<m (the result for
IT£” may be calculated similar}y

ki Kk
1%=e0vy | 32+ Zn?
+—E 1+T+Q +—kf i
w?— Q02 m ' 2m " am?) |¥A T 2eB)
2 Q k2
11_ 1722 2“’_ e I
=M =z0wp w02 " om " am?
k?Q, o — k?
2m( 2—0? 2eB)’
Q. k¥ K
33_, 2 e oy
H Soa)p 1+ 2m+m+ ZEB
K (T Q. K k?
+w2—9§(ﬁ+ﬁ+m &P ~ 2¢8)"
K o k?
P=e00p 202 Xp( 2eB
k k Q G
02:. _L_ L e _ g
1 Isowp{Zm mge)q 2eB)
k k2 Tw G )
03:_ 2 (L . __L
1 Sowpm(wz—ﬂg)[ w?— 02 ex"( 2eB)’
2 2
12 wQe kH _ kl
= leows 2702 1 oma, | ™ 2e8):
k k| 1 1 T(w?+ Q2
H13=—60w2L—H —+ -— 262
Pm |[4m 2(0—Qf) (0 °—QfF)

k?
~ 2eB)’

-
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K k[ 1 1 2Tw( k2
Sl el @ e exr{—ﬁ). (B10)

Pm | 4m ' 2(w0-09  (0?-02)7

Z=igqw
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