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Neutrino emission via the plasma process in a magnetized plasma
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Neutrino emission via the plasma process using the vertex formalism for QED in a strongly magnetized
plasma is considered. A new vertex function is introduced to include the axial vector part of the weak
interaction. Our results are compared with previous calculations, and the effect of the axial vector coupling on
neutrino emission is discussed. The contribution from the axial vector coupling can be of the same order as or
greater than the vector vector coupling under certain plasma conditions.@S0556-2821~98!09019-5#

PACS number~s!: 13.15.1g, 14.60.Lm, 52.35.2g, 97.10.Ld
nt
is

x
f

r
f
n
n

ne
a
ou
t

l-
lic

nd
av

e
n

an
in

v

n
ct
re
is
rt
e

tiz
e

th
u

pl
a
re

ly

ery
g-
iti-

neu-
ing
on
ly

tic

is
a

es

e
. In

sen

tor
c-
m-
tron

tex
I. INTRODUCTION

The decay of electromagnetic oscillations in a plasma i
neutrinos is of interest as a stellar energy loss mechan
@1,2#. The presence of a plasma allows the refractive inde
be less than unity, which is necessary for the decay o

photon into ann̄ pair. The resulting ‘‘plasma process’’ fo
neutrino emission has been studied in the presence o
unmagnetized plasma@2–5#. There were also calculations i
which the background medium was taken to be the mag
tized vacuum; however, the refractive index for the mag
tized vacuum is always greater than unity, and it was
sumed that the presence of some low density plasma c
lead to an appropriate opening of phase space to allow
process to proceed@6–9#. Here we perform a consistent ca
culation, in which the background plasma is included exp
itly and thus the kinematic condition is not anad hocaddi-
tion.

The decay depends on the properties of the waves, a
magnetized plasma can support a variety of natural w
modes. Canuto, Chiuderi, and Chou@10,11# considered the
plasma process in a magnetized plasma and they consid
several possible wave modes. However, their analysis
glected the axial vector aspect of the weak interaction
they also did not use the exact electron wave functions
magnetic field. These deficiencies raise doubts about the
lidity of their results at high magnetic field strengths.

In this paper we calculate the amplitude for the decayg

→nn̄ in a magnetized gas of electrons toO(GF). We avoid
the weaknesses in@6–8,10,11#, by using the exact electro
wave functions in a magnetic field and including the effe
of the background plasma. In Sec. II, the formalism requi
to treatV2A interactions in a strongly magnetized plasma
summarized and extended. The formalism used is the ve
formalism @12–14#, which allows both a momentum spac
representation for QED in a strong magnetic field and
means to calculate the response tensors of a magne
plasma. In Sec. III the transition rate for the decay of a giv
wave mode is calculated. Wave modes for a plasma wi
cold electron distribution and for a thermal electron distrib
tion are considered. It is shown that the results of@10,11#
may be recovered with suitable approximations. The im
cations of the axial vector aspect of the weak interaction
discussed, and the neutrino emission rates from diffe
plasma modes are compared. Natural units with\5c51 and
0556-2821/98/58~9!/093011~14!/$15.00 58 0930
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Boltzmann’s constantk51 are used throughout, and on
standard neutrinos are considered.

We find that the presence of a magnetic field has v
little effect on neutrino emission relative to that in an unma
netized plasma except for magnetic fields close to the ‘‘cr
cal’’ magnetic field strengthBc5m2/e54.413109 T. At
high magnetic field strengths there is an enhancement of
trino emission due to a large proportion of electrons be
present in their lowest Landau orbital. We derive a criteri
for determining when the axial vector contribution is like
to be important for neutrino emission.

II. V2A INTERACTIONS IN A MAGNETIZED PLASMA

A. Vertex formalism

A systematic development of QED in a strong magne
field was presented by Melrose and Parle@12–14#. A sum-
mary of the electron wave functions and vertex functions
contained in Appendix A. The electron energy levels for
static background magnetic field of magnitudeB parallel to
the three-axis are

Eq5~m21pi
212neB!1/2,

where$q% labels the set of quantum numbers which includ
the parallel momentumpi and the Landau levelsn
50,1,2,... . The ground staten50 is a singlet state and th
statesn.0 are doubly degenerate due to two-spin states
the Landau gauge, the vector potential isA(x)5(0,Bx,0).
The electron wave functionscq

e(x) are eigenfunctions of a
spin operator and the magnetic moment operator is cho
~cf. @15#! as

m̂[ms2 ig1s3@p1eA~x!#, ~1!

wheres denotes the Pauli spin matrices. This spin opera
commutes with both the Hamiltonian and radiative corre
tions to the Hamiltonian, and its eigenfunctions have sy
metry between electron and positron states. Here elec
and positron states are labelled bye; electrons correspond to
e51 and positrons toe521.

To allow a momentum representation, we use a ver

function @gq8q
e8e (k)#m, defined in the following way@12#:

@gq8q
e8e

~k!#m[
1

V E dx exp~2 ik•x!c̄q8
e8~x!gmcq

e~x!, ~2!
©1998 The American Physical Society11-1
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whereV is the normalization volume. The incoming electro
has quantum numbers$e,q%, the outgoing electron has quan
tum numbers$e8,q8%, and the outgoing photon has fou
momentum km5(v,k)5(v,k'cosc,k'sinc,ki). From the
definition of the vertex function, the following symmetr
property is clear:

$@gq8q
e8e

~k!#m%* 5@gqq8
ee8 ~2k!#m. ~3!

Since we also wish to treat the axial vector component of
weak interaction, we define an axial vector~AV ! vertex func-
tion similarly to Eq.~2!, replacinggm with gmg5. The AV

vertex function is denoted by@gq8q
e8e (k)#5

m .
An electron-photon vertex corresponds to the stand

vertex function, and an electron-Z boson vertex correspo
to a combination of the standard vertex function and the
vertex function. TheV2A theory of weak interactions ig
noresZ and W boson propagators and considers only
charged and neutral currents at a point interaction. The n
tral current component of the interaction may be expres
using the standard and AV vertex functions, and hence
charged current component of the interaction may also
expressed in this manner through the use of a Fierz trans
mation ~see, e.g.,@16#!.

Another vertex function@Gq8q
e8e (k)#m, which is a gauge-

invariant part of@gq8q
e8e (k)#m, is identified due to the desir

ability of having a gauge-invariant theory. The gaug
invariant part of the AV vertex function is identified a

@Gq8q
e8e (k)#5

m . ~An example of the separation of gaug
dependent and gauge-independent terms is given in Ap
dix A.!

Using the vertex formalism, we obtain a momentum sp
representation of the effectiveV2A interaction Lagrangian
as

Leff52
GF

&
ū~q1!gm~12g5!v~q2!

3$A@Gq8q
e8e

~k!#m1B@Gq8q
e8e

~k!#5
m%, ~4!

wheree,q ande8,q8 label the incoming and outgoing elec
tron states, respectively, andu(q1) and v(q2) are the neu-
trino and antineutrino wave functions, respectively. T
Fermi constant is represented byGF and the constantsA and
B are given byA52 sin2uW1 1

2 and B52 1
2 for electron

neutrinos and byA52 sin2uW2 1
2 andB5 1

2 for muon and
tau neutrinos, whereuW is the Weinberg angle. In the ap
proximation where sin2uW5 1

4 , thenA50 for muon and tau
neutrinos, so that only the axial vector component of
weak interaction contributes to their emission, as noted
@9#.

The gauge-invariant form of the AV vertex function
given in Appendix A. When calculated using magnetic m
ment operator eigenfunctions, it obeys similar symmetry
lations to the standard vertex function. Explicitly these re
tions are
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~@Gq8q
e8e

~k!#5
m!* 5@Gqq8

ee8 ~2k!#5
m , ~5!

@Gq8q
2e82e

~2k!#5
m5~21! l 82 l@Gq8q

e8e
~k!#5

m . ~6!

B. Response tensors

The standard linear response tensor for a plasma,Pmn(k),
when written in covariant notation satisfies the equation

j m~k!5Pm
n~k!An~k!, ~7!

where j m(k) is the induced four-current andAm(k) is the
fluctuating part of the electromagnetic field. In the absen
of a plasma,Pmn(k) is the vacuum polarization tensor. Us
ing the vertex formalism, one can introduce a medium us
the electron occupation numbers, and then with the assu
tion that the occupation numbers of a state are indepen
of spin, the linear response tensor in a magnetic field
comes@14#

Pmn~k!52
e3B

2p (
n8,n50

`

(
e8,e56

3E dpi

2p

H 1

2
~e82e!1enq

e2e8nq8
e8J

v2eEq1e8E q81 i0
Te8e

mn ,

~8!

whereTe8e
mn is the product of vertex functions summed ov

spin states, i.e.,

Te8e
mn

5 (
s8,s56

@Gq8q
e8e

~k!#m@Gq8q
e8e

~k!#n* . ~9!

The result of the summation in Eq.~9! is presented in Ap-
pendix A, the three-tensor form of the response tensor
calculated in@17#, correcting the result of@18#, and the renor-
malized vacuum polarization tensor has been treated u
the vertex formalism@19#. The infinitesimal imaginary term
in the denominator of Eq.~8! arises from the requiremen
that the response tensor be a causal function. Note also
conservation of momentum is implicit through the relati
e8pi85epi2ki .

The matrix element for the decay of a photon into a ne
trino pair contains the product of a standard vertex funct
and an AV vertex function. This allows one to identify a
axial vector response function@9#, which can be generalized
in the same manner as the vacuum polarization tenso
include a medium. Thus we have

P5
mn~k!52

e3B

2p (
n8,n50

`

(
e8,e56

E dpi

2p

3
$ 1

2 ~e82e!1enq
e2e8nq8

e8%

v2eEq1e8E q81 i0 5Te8e
mn , ~10!

with a similar sum over spin states:
1-2
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NEUTRINO EMISSION VIA THE PLASMA PROCESS IN . . . PHYSICAL REVIEW D 58 093011
5Te8e
mn

5 (
s8,s56

@Gq8q
e8e

~k!#m@Gq8q
e8e

~k!#5
n* . ~11!

The axial vector response for a magnetized plasma
not been written down previously to the best of our know
edge; however, there have been calculations ofP5

mn using
the proper time formalism for the magnetized vacuum@8,9#.
The result of the sum over spin states is presented in App
dix A.

III. MATRIX ELEMENT

There are two contributing diagrams to the amplitude
the plasma process for neutrino emission toO(GF

2). These
diagrams and the diagram for the process when regarded
V2A interaction are shown in Fig. 1. For simplicity, on
electron neutrinos are considered here. Using theV2A
theory of the weak interaction, the matrix elements for theW
andZ diagrams contributing to the decay may be expres
in the same form using a Fierz transformation. The ma
element is

M f i52
GF

&e
ū~q1!gn~12g5!v~q2!

3@APmn~k!1BPmn
5 ~k!#Am~k!, ~12!

whereAm is the fluctuating part of the electromagnetic fie
For a magnetized plasma, the only difference in the ma
element, Eq.~12!, from that for an unmagnetized plasma
the form of the electron wave functions.

The decay rate for a plasma mode is taken to be the t
sition probability per unit volume ofx2k space per unit time
for the decay of a quantum of a plasma mode into a neutr
antineutrino pair. Provided that the refractive index of t

FIG. 1. TheW diagram,Z diagram, and theV2A diagram for
the plasma neutrino process
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plasma is close to unity, then the decay rateGM for a mode
M can be written in the well-known form~e.g.,@4,5,10#!

GM5
GF

2RM~k!

6pe2«0uvM~k!u ~kmkn2k2gmn!Qmn , ~13!

whereRM(k) is the ratio of the electric energy to total en
ergy in the wave, and

Qmn5u@APsm~k!1BPsm
5 ~k!#eM

s ~k!u*

3u@APtn~k!1BPtn
5 ~k!#eM

t ~k!u. ~14!

The power emitted per unit volume for a given wa
mode may be obtained by multiplying the decay rate fo
given mode by the energyvM of a photon in that mode and
the plasmon occupation numberf (vM). Integrating over
momentum space leads to the power emitted per unit volu
by the decay of wave quanta into neutrinos as

QM5E d3k

~2p!3 vMGM f ~vM !. ~15!

To calculate the neutrino emission from given plasm
conditions, one proceeds through the following steps. Fi
the electron distribution function is required to determine
plasma response. Second, the plasma response is used t
the natural wave modes of the plasma. The combined eff
on the wave properties of the vacuum polarization of
magnetized vacuum and of the plasma response was
cussed by@21#, but the vacuum contribution is ignored her
Third, the polarization vector, dispersion relation, and
sponse tensor are used to calculate the decay rate, Eq.~13!,
which is then integrated in Eq.~15! to determine the powe
emitted in neutrinos. The most difficult step in obtaining an
lytic results is solving for the wave modes in a magnetiz
plasma—there are relatively few cases in which the mo
are simple enough to allow computational ease. Howe
given the relatively straightforward procedure to calcula
the power emitted in neutrinos, there is the opportunity
obtain numerical rates for a large range of plasma conditio

A further simplification for computational ease is to ta
the long wavelength limit of the expressions forPmn and
P5

mn . These expressions are presented in Appendix
Rather than using the response four-tensor to determine
wave modes, it is convenient to use the dielectric thr
tensor which is related to the response three-tensor by

Ki
j5d i

j1
1

«0v2 P i
j .

The form of the dielectric tensor is the same as that for a c
plasma@22#:

Ki
j5S S 2 iD 0

iD S 0

0 0 P
D . ~16!
1-3
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A. Neutrino emission from a ‘‘cold’’ plasma

Starting from Eq.~16! for the dielectric tensor for a cold
plasma, the equation for the refractive indexn takes the form

An42Bn21C50, ~17!

with the coefficients

A5S sin2u1P cos2u,

B5~S22D2!sin2u1SP~11cos2u!,

C5P~S22D2!. ~18!

A specific solutionn5nM of Eq. ~17! defines the modeM .
The general expression for the polarization vector of a m
may be expressed as@20#

eM5
KMk1TMt1 ia

~KM
2 1TM

2 11!1/2, ~19!

wherek, t, anda are given by

k5~sinu,0,cosu!, t5~cosu,0,2sinu!, a5~0,1,0!,

~20!

and the coefficientsKM andTM are given by

KM5
~P2nM

2 !D sinu

AnM
2 2PS

, TM5
DP cosu

AnM
2 2PS

.

To calculate the natural modes from the dielectric tens
the wave vector is taken to bek5ukuk5uku(sinu,0,cosu),
whereu is the angle between the wave vector and the m
netic field. Note that the choice of gauge here is the temp
gauge; thus the polarization vector for a modeM takes the
form eM

m 5(0,eM), whereeM is the polarization three-vector
The polarization vectors take simple forms for the caseu
50 andu5p/2. For u50, there can be two circularly po
larized modes~or only one if the other is evanescent!, the
ordinary and extraordinary modes, or only one longitudi
mode, the others being evanescent. For more general a
of propagation, i.e.,uÞ0,p/2 the modes have neither pure
longitudinal or purely transverse polarization. The dispers
relations and polarization vectors for the modes atu50 and
u5p/2 are given in Table I.

A cold plasma electron distribution is

f n
S~En!5

4p2

eB
@n11n2#dn0d~pi!, ~21!

where thene(En) correspond to the number densities of ele
trons and positrons. Equation~21! is a distribution in which
all the electrons are in their lowest Landau orbital. Havi
substituted Eq.~21! into the expression for the dielectric ten
sor, if we then take the classical limit (v!m, eB!m2! and
assume a purely electron plasma, we obtain the dielec
tensor of magnetoionic theory, which is exactly that used
previous investigations of the plasma process in a mag
tized plasma@10,11#.
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Using the notationX5vp
2/v2, Y5Ve /v, wherevp is the

plasma frequency~defined byvp
25e2ne /«0m! andVe is the

electron cyclotron frequency, the magnetoionic theory giv
@20#

K1
15K2

2512
X

12Y2 , K1
252K2

15
2 iXY

12Y2 ,

K3
3512X, Ki

j50 otherwise. ~22!

1. Emission atu50

The longitudinal mode atu50 is independent of the mag
netic field and the decay rate is the same as the known v
for an unmagnetized plasma@2–5#. The power emitted in the
transverse modes atu50 can be written in a particularly
simple way. Takingl51 to label the ordinary mode andl
521 to label the extraordinary mode, the power emitted
unit solid angle is

Ql5
GF

2

384p5a E
vmin

vmax
dvv8nl~12nl

2!3f ~v!, ~23!

wherenl is the refractive index for the model. The frequen-
cies vmin and vmax correspond to the frequencies at whic
the refractive index is 0 and 1, respectively—for a cold cla
sical plasmavmax5`. The frequencies here satisfyv!m,
and so this value is used for the upper cutoff. Integrat
from vmin might appear to contradict the assumption made
deriving Eq.~13!, that the refractive index is close to unity
However, for almost all of the frequency range the refract
index is close to unity and thus the results obtained here
not compromised by this—it is a far less serious approxim
tion than the assumption of a cold plasma. For a plas
described by the magnetoionic theory, Eq.~23! reproduces
the results of@10#.

TABLE I. The natural modes of a cold plasma.

Modes atu50, k5(0,0,1)
Mode Dispersion relation Polarization vecto

Longitudinal P50 e5(0,0,1)

Ordinary nM
2 5S1D

e5
1

&
~1,i ,0!

Extraordinary nM
2 5S2D

e5
1

&
~1,2 i ,0!

Modes atu5p/2, k5(1,0,0)

Ordinary nM
2 5P e5(0,0,1)

Extraordinary
nM

2 5
S22D2

S
e5

~D,2 iS,0!

AD21S2
1-4
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2. Neutrino emission from modes atu5p/2

The behavior of the ordinary and extraordinary modes
u5p/2 is less simple than foru50. The axial vector part of
the weak interaction can only couple to modes which hav
component of their polarization vector parallel to the ma
netic field. The ordinary mode has such a component but
extraordinary mode does not. For comparison, the po
emitted by the ordinary mode per unit volume per unit so
angle is presented both with and without the axial vec
coupling. With the axial vector coupling one has

Q05
GF

2

1536p5a E
vmin

vmax
dvv8n0~12n0

2!2~423n0
2! f ~v!,

~24!

and without the axial vector coupling one has

Q05
GF

2

384p5a E
vmin

vmax
dvv8n0~12n0

2!3f ~v!. ~25!

The power emitted in the extraordinary mode is

Qx5
GF

2

384p5a E
vmin

vmax
dvv8nx~12nx

2! ~26!

3F ~S21!21D22
4D2S~S21!

D21S2 G f ~v!.

~27!

As can be seen in Fig. 2, the inclusion of the axial vec
coupling leads to results which differ significantly fro
those obtained when it is ignored. The effects are most p
nounced for lower electron number densities, and ther
only about a 25% increase in emission close to the p
when AV effects are included.

FIG. 2. Comparison of emission from the ordinary mode au
5p/2, both with and without the axial vector coupling. The pow
is in units of W m23 and the electron number density is in units
m23. The temperature is 108 K and the magnetic field is 0.1Bc .
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Using the dispersion relation~17! the plasma resonance
~which correspond ton25`! may be found from the equa
tion A/C50. In magnetoionic theory, the solutions to th
equation are

v6
2 ~u!5

1

2
~vp

21Ve
2!6

1

2
$~vp

21Ve
2!224vp

2Ve
2cos2u%1/2.

~28!

Canutoet al. @11# claimed thatv2
2 (0)5Ve

2 is a mode which
can lead to enhanced neutrino emission at high plasma
sities (r.1011 g cm23). However, the plasma resonanc
does not satisfy the kinematic condition that the refract
index be less than unity, which is required for the plas
process to proceed—hence no energy can be lost through
mechanism. We conclude that there is no such enhan
emission at exceptionally high plasma densities.

B. Neutrino emission from a thermal plasma

To obtain analytic expressions for the energy loss in n
trinos from a thermal magnetized plasma one assumes a
mal form for the electron distribution in the expression f
the response tensor, Eq.~8!. We make either a nonrelativisti
or semirelativistic expansion of the resonant denominato
the tensor to simplify the analysis.

1. Role of the axial vector coupling

For an unmagnetized plasma, it has been shown num
cally that the AV contribution to energy loss via the plasm
process is of the order of 0.01% for temperatures be
1011 K @23#. However, in a magnetized plasma, it is possib
that the AV coupling can have a more significant effect
neutrino emission. Physically this may be seen as follo
the AV coupling cannot affect processes in a system wh
has reflection symmetry; it requires that there be some a
vector in the system to which it can couple. Although there
no such axial vector in a classical magnetized plasma~apart
from the magnetic field, which is not relevant here!, in a
quantum magnetized plasma, the electronic ground state~the
lowest Landau orbital! corresponds to a specific spin stat
unlike all excited states which have two degenerate s
states. A plasma with a significant fraction of its electrons
their lowest Landau orbitals thus has an appropriate a
vector that allows coupling to occur.

Hence we expect the AV component of the weak inter
tion to be important when a significant fraction of the ele
trons are in their lowest Landau level. Consider a Fermi d
tribution of electrons,

f ~Eq!5
gn

exp@~Eq2m!/T#11
, ~29!

wheregn is the degeneracy of thenth energy level,m is the
chemical potential, andT is the temperature. Taking the lim
that T becomes large, Eq.~29! becomes a Maxwell-
Boltzmann distribution

f ~Eq!5gnexp@2~Eq2m!/T#,
1-5
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M. P. KENNETT AND D. B. MELROSE PHYSICAL REVIEW D58 093011
which when normalized in the nonrelativistic limit gives@24#

f ~Eq!5gn

4p2ne

eB

tanh~l/2!

~2pmT!1/2expS 2
pi

2

2mT
2nl D , ~30!

wherel5eB/mT. The normalization that is used is

(
n50

` E dpignf ~Eq!5
4p2ne

eB
. ~31!

The most probable value ofn should be when the energ
associated with parallel motion is of the same order as
associated with perpendicular motion, corresponding to
uipartition of energy. This occurs whenpi

2/2mT5nl. The
condition is

pi
2

2mT
5

neB

mT
. ~32!

If one replacespi
2 by ^pi

2&5mT andn by ^n&, Eq.~32! gives

^n&.
^pi

2&
2e\B

5
mkT

2e\B
.0.06

T

B
, ~33!

whereT is the temperature in kelvin andB is the magnetic
field in tesla. For a young, highly magnetized white dw
star, one might expect the surface values of the magn
field and temperature to beB;105 T andT<106 K, respec-
tively, which gives^n&.0.6; so a sizable proportion of th
electrons are in their lowest Landau orbital. Hot, stron
magnetized white dwarfs or their precursors, and neut
stars, are objects which are likely to have their plasma n
trino emission affected by the presence of a strong magn
field.

If we take^n&<1 to characterize when most of the ele
trons are in their lowest Landau orbital, then a criterion
whether the AV part of the weak interaction is important f
neutrino emission is

S B

TD>0.06S T

KD . ~34!

Temperature and magnetic field regimes that occur in
interior of neutron stars and white dwarfs are compared w
the criterion, Eq.~34!, in Fig. 3. While there is a larger rang
of B and T conditions available for neutron stars, the ele
trons are almost certainly degenerate, in which case the
fractive index is greater than unity and the plasma proces
forbidden. The white dwarf and neutron star internal con
tions are taken from@1#.

2. Neutrino emission

To calculate the response tensor, start with the distri
tion function, Eq.~30!, and substitute into Eq.~8!. In the
absence of positrons, the response tensor takes the form

Pmn~k!52
e3B

4p2 (
n,n850

` E dpi H f 1~Eq!2 f 1~E q8!

v2Eq1E q81 i0
T11

mn
09301
at
q-

f
tic

n
u-
tic

r

e
h

-
e-
is

i-

-

1
f 1~Eq!

v2Eq2E q81 i0
T21

mn

2
f 1~E q8!

v1Eq1E q81 i0
T12

mn J . ~35!

P5
mn may be found by replacingTe8e

mn by 5Te8e
mn .

In making the nonrelativistic approximation, it is assume
that the thermal energy of the electrons is much less th
their rest mass energy, i.e.,T!m;63109 K @21#. Provided
that one considers a plasma withVe!m and modes such that
v<Ve , so thatEq1E q8>2m@v, the second and third de-
nominators do not vanish. There are three transitions that c
occur in the highly magnetized plasma, all of which must b
taken into account when calculating the plasma respon
There are processes in which an electron remains in the sa
Landau orbital after emission, i.e.,n50, n850, and there is
also cyclotron emission (n51, n850! and cyclotron absorp-
tion (n50, n851!. The first denominator has a zero, called
resonance, corresponding to either cyclotron emission or c
clotron absorption. The resonant term is sensitive to fini
temperature effects, but the two nonresonant terms are
@24#. Hence, for the two nonresonant terms, one may set t
distribution function to be

f ~Eq!5
4p2ne

eB
d~pi!dn0 . ~36!

These ‘‘nonresonant’’ contributions to the response tenso
are shown in Appendix B.

In the resonant terms we use a Maxwellian distribution o
electrons in their lowest Landau orbital:

FIG. 3. Temperature and magnetic field regimes for which th
axial vector coupling is likely to be important in astrophysical ob
jects.
1-6
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f ~Eq!5
1

A2pmT

4p2ne

eB
dn0expS 2

pi
2

2mTD . ~37!

For cyclotron emission the resonant denominator is

v2Eq1E q8.~v1Ve!2
piki

m
, ~38!

and for cyclotron absorption we have

v2Eq1E q8.~v2Ve!2
piki

m
. ~39!

The resonant response tensor becomes

P res
mn~k!52

e2ne

A2pmT
E

2`

`

dpiexpS 2
pi

2

2mTD ~40!

3FT11
mn ~n50, n851!

~v1Ve!2piki /m
2

T11
mn ~n51, n850!

~v2Ve!2piki /m G ,
~41!

with the expression forP5 res
mn obtained by replacingT11

mn by

5T11
mn . This leads naturally to expressing the components

the tensors in terms of the plasma dispersion functionf̄(z),
defined by@20#

f̄~z![
z

Ap
E

2`

`

dt
e2t2

z2t
, ~42!

wherez5(v6Ve)Am/kiA2T. To simplify the expressions
obtained in Appendix B further, one can make use of
asymptotic expansion off̄(z) for largez @20#:

f̄~z!.11
1

2z2 1
3

4z4 1¯2 iApze2z2
, ~43!

taking only the highest order term inz and ignoring the
imaginary part. This leads to Eq.~B10! for the response ten
sor. For waves propagating parallel to the magnetic field,
tensor reduces to the same form as for a cold plasma;
power emitted in the ordinary and extraordinary modes
given by Eq.~23!, and the longitudinal mode is identical t
that for an unmagnetized plasma. Waves which are
propagating parallel to the magnetic field lead to express
for power emission which are more complicated than E
~23!–~25! and may have significant contributions from th
axial vector coupling.

IV. CONCLUSIONS

The calculations in this paper address a number of iss
relating to the neutrino plasma process. First, the plas
09301
f

e

e
he
s

ot
s

s.

es
a

process for neutrino emission has not previously been ca
lated taking into account strong magnetic field effec
plasma effects, and the axial vector part of the weak inter
tion. Our work takes a consistent approach to the inclusion
a plasma and the kinematic conditions under which the n
trino plasma emission process may occur, as opposed to
inconsistencies in previous calculations@6–9#. Second, the
formalism for looking at weak processes in a strongly ma
netized plasma has not previously been able to deal w
diagrams containing electron loops. The axial vector ver
function and axial vector response tensor described here
vide mathematical tools which can be used for such calc
tions. Third, we have produced some analytic approxim
tions to the power emitted in neutrinos from a volume
plasma with a given magnetic field, electron number dens
and temperature. The exact results for the response ten
mean that these can be used to calculate numerical result
magnetic fields greater than the critical magnetic field—t
regime has not been investigated here. We have also sh
that contrary to the case of an unmagnetized plasma,
axial vector coupling can have a role in affecting neutri
emission via the plasma process, and we have sugges
simple criterion with which to estimate whether such ax
vector effects are likely to be important.

The neutrino plasma process is related to neutrino Cˇ eren-
kov radiation by a crossing symmetry~see@9#!, so that the
results obtained here for the response functions can be
to study the Cˇ erenkov process in plasmas with a refracti
index greater than unity.

The magnetic field dependence of the plasma process
allels the results found for neutrino dispersion in a stro
field @25#, in that the results are relatively insensitive to t
magnetic field. The plasma process is only sensitive to
magnetic field forB close toBc—there is a much stronge
dependence on temperature and electron number density
the magnetic field. Hence, unless one considers stron
magnetized plasmas, most of the expressions derived for
magnetized plasmas are adequate.

There are several highly magnetized astrophysical e
ronments where the plasma process may be of importa
These are in the cooling of giant stars with highly magn
tized cores, in the early stages of the evolution of a
magnetized white dwarf. The process may also be of imp
tance for neutrino emission from neutron stars. The enhan
neutrino emission due to the axial vector coupling in regio
of a stronger than average magnetic field might contribute
an anisotropic neutrino luminosity which has been sugges
as a possible mechanism for the large proper motions
many pulsars.
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APPENDIX A

The electron wave functions determined using the magnetic moment operator have been determined by@12#; we display
them here for convenience:
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cq
e~x,t !5e2 i eEqtcq

e~x!, ~A1!

where

cq
e~x!5

exp~ i epyy1 i epiz!

$4EqE q
0~Eq1E q

0!~E q
01m!%1/2 ~A2!

~A3!

3H de,1F ds,1S ~Eq1E q
0!~E q

01m!vn21~j!

2 ipnpivn~j!

pi~E q
01m!vn21~j!

ipn~Eq1E q
0!vn~j!

D 1ds,21S 2 ipnpivn21~j!

~Eq1E q
0!~E q

01m!vn~j!

2 ipn~Eq1E q
0!vn21~j!

2pi~E q
01m!vn~j!

D G ~A4!

1de,21F ds,1S pi~E q
01m!vn21~j!

2 ipn~Eq1E q
0!vn~j!

~Eq1E q
0!~E q

01m!vn21~j!

ipnpivn~j!

D 1ds,21S ipn~Eq1E q
0!vn21~j!

2pi~E q
01m!vn~j!

ipnpivn21~j!

~Eq1E q
0!~E q

01m!vn~j!

D G J , ~A5!

where the quantitiespn , E q
0, andEq are given by

pn5~2neB!1/2, E q
05~m21pn

2!1/2, Eq5~E q
021pi

2!1/2. ~A6!

In Eq. ~A2!, s is the spin quantum number which takes the values61 for spin up and spin down, respectively, ande is the
sign of the energy. Ifpi is thez component of momentum for an electron (e51), thenpi represents minus thez component
of momentum for a positron (e521). The functionsyn(j) are normalized simple harmonic oscillator wave functions of
form

vn~j![

Hn~j!expS 2
1

2
j2D

~p1/22nn! !1/2 ,

whereHn(j) is thenth Hermite polynomial and

j[~eB!1/2~x1epy /eB!.

The separation of the vertex function into gauge-dependent and gauge-independent terms was given in@12# for several
choices of electromagnetic gauge. We write down their result for the Landau gauge:

@gq8q
e8e

~k!#m5$~2p!2/V~eB!1/2%exp@ ikx~epy1e8py8!/2eB#d~epy2e8py82ky!d~epz2e8pz82kz!@Gq8q
e8e

~k!#m. ~A7!

A similar separation may be made for the AV vertex function. One may write out the gauge-invariant vertex function
magnetic moment operator eigenfunctions as

@Gq8q
e8e

~k!#m5Cq8
* Cq„ds8s$aq8q

e8e
~Jl 82 l

l
1rn8

8 rnJl 82 l
l 1s

!,ebq8q
e8e

@2rnexp~ isc!Jl 82 l 2s
l 1s

2rn8
8 exp~2 isc!Jl 82 l 1s

l
#,

i esbq8q
e8e

@rnexp~ isc!Jl 82 l 2s
l 1s

2rn8
8 exp~2 isc!Jl 82 l 1s

l
#,hq8q

e8e
~Jl 82 l

l
1rn8

8 rnJl 82 l
l 1s

!%

2esds82s$aq8q
e8e

@2rnexp~ isc!Jl 82 l 2s
l 1s

1rn8
8 exp~ isc!Jl 82 l 2s

l
#,ebq8q

e8e
@Jl 82 l

l
2rn8

8 rnexp~2isc!Jl 82 l 22s
l 1s

#,

i esbq8q
e8e

@Jl 82 l
l

1rn8
8 rnexp~2isc!Jl 82 l 22s

l 1s
#,dq8q

e8e
@2rnexp~ isc!Jl 82 l 2s

l 1s
1rn8

8 exp~ isc!Jl 82 l 2s
l

#%…, ~A8!

where the argument of theJ functions is the same as in Eq.~A14!, and with the coefficients

aq8q
e8e

5de8e~11r i8r i!1sde82e~r i81r i!, bq8q
e8e

5de8e~12r i8r i!1sde82e~r i82r i!, ~A9!

hq8q
e8e

5de8e~r i81r i!1sde82e~11r i8r i!, aq8q
e8e

5de8e~r i81r i!2sde82e~11r i8r i!,

bq8q
e8e

5de8e~r i82r i!2sde82e~12r i8r i!, dq8q
e8e

5de8e~11r i8r i!2sde82e~r i81r i!,
093011-8
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and the abbreviations

Cq[S ~Eq1E q
0!~E q

01m!

4EqE q
0 D 1/2

$ i exp~ ic!% l ,

Cq8[S ~E q81E q8
0

!~E q8
0

1m!

4E q8E q8
0 D 1/2

$ i exp~ ic!% l 8, ~A10!

r i[pi /~Eq1E q
0!, r i8[pi8/~E q81E q8

0
!, rn[pn /~E q

01m!, rn8
8 [pn8 /~E q8

0
1m!. ~A11!

As noted by@12#, the gauge-invariant vertex function satisfies symmetry properties similar to Eq.~3!, provided that the
magnetic moment operator eigenfunctions are used. These symmetry properties are

~@Gq8q
e8e

~k!#m!* 5@Gqq8
ee8 ~2k!#m, ~A12!

@Gq8q
2e82e

~2k!#m5~2 ! l 82 l@Gq8q
e8e

~k!#m, ~A13!

with the symmetry property, Eq.~A13!, holding for suitably chosen phase factors.
The gauge-invariant form of the AV vertex function is

@Gq8q
e8e

~k!#5
m5Cq8Cq* „ds8s$fq8q

e8e
~Jl 82 l

l
2rn8

8 rnJl 82 l
l 1s

!,pq8q
e8e

@2rnexp~ isc!Jl 82 l 2s
l 1s

1rn8
8 exp~2 isc!Jl 82 l 1s

l
#,

i espq8q
e8e

@rnexp~ isc!Jl 82 l 2s
l 1s

1rn8
8 exp~2 isc!Jl 82 l 1s

l
#,uq8q

e8e
~Jl 82 l

l
2rn8

8 rnJl 82 l
l 1s

!%

2esds82s$ f q8q
e8e

@2rnexp~ isc!Jl 82 l 2s
l 1s

2rn8
8 exp~ isc!Jl 82 l 2s

l
#,egq8q

e8e
@Jl 82 l

l
1rn8

8 rnexp~2isc!Jl 82 l 22s
l 1s

#,

i esgq8q
e8e

@Jl 82 l
l

2rn8
8 rnexp~2isc!Jl 82 l 22s

l 1s
#,hq8q

e8e
@2rnexp~ isc!Jl 82 l 2s

l 1s
2rn8

8 exp~ isc!Jl 82 l 2s
l

#%…, ~A14!

wherel 5n2 1
2 (s11) ands561 is the spin eigenvalue~note that for the ground state spin singletn50, the spin eigenvalue

is s521!. TheJ functions have argumentk'
2 /2eB, and are related to the generalized Laguerre polynomials~e.g.,@26#! via the

relation

Jn
n~x![S n!

~n1n!! D
1/2

e2x/2xn/2Ln
n~x!5~2 !nJ2n

n1n~x!. ~A15!

The properties of these functions have been summarized previously@12#. The coefficients for the AV vertex function are

fq8q
e8e

5sde8e~r i81r i!1de82e~11r i8r i!, pq8q
e8e

5sde8e~r i82r i!1de82e~12r i8r i!,

uq8q
e8e

5sde8e~11r i8r i!1de82e~r i81r i!, f q8q
e8e

52sde8e~11r i8r i!1de82e~r i81r i!,

gq8q
e8e

52sde8e~12r i8r i!1de82e~r i82r i!, hq8q
e8e

52sde8e~r i81r i!1de82e~11r i8r i!. ~A16!

1. Response tensors

The sum over spin states for the linear response tensor and the vector axial response are presented below:

T6ee
00 5

1

2 H 16
~m26pi8pi!

E q8Eq
J @~Jn

n!21~Jn
n21!2#6

pnpn8
E q8E q

Jn
nJn

n21 , ~A17!

T6ee
11 5

1

2 H 17
~m26pi8pi!

E q8Eq
J @~Jn21

n !21~Jn11
n21!2#6

pnpn8
E q8E q

Jn21
n Jn11

n21 ,

T6ee
22 5

1

2 H 17
~m26pi8pi!

E q8Eq
J @~Jn21

n !21~Jn11
n21!2#7

pnpn8
E q8E q

Jn21
n Jn11

n21 ,
093011-9
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T6ee
33 5

1

2 H 17
~m27pi8pi!

E q8Eq
J @~Jn

n!21~Jn
n21!2#7

pnpn8
E q8E q

Jn
nJn

n21 ,

T6ee
01 52

e

2 H pn

Eq
~Jv

n21Jn21
n 1Jv

nJn11
n21!6

pn8
E q8

~Jn
nJn21

n 1Jn
n21Jn11

n21!J ,

T6ee
02 52

i e

2 H pn

Eq
~Jv

n21Jn21
n 2Jn

nJn11
n21!6

pn8
E q8

~Jn
nJn21

n 2Jn
n21Jn11

n21!J ,

T035
1

2 H pi8

E q8
1

pi

Eq
J @~Jn

n21!21~Jn
n!2#,

T6ee
12 52

i

2 H 17
~m26pi8pi!

E q8Eq
J @~Jn11

n21!22~Jn21
n !2#,

T6ee
13 52

e

2 H pnpi8

EqE q8
@Jn21

n Jn
n211Jn11

n21Jn
n#6

pn8pi

EqE q8
@Jn

nJn21
n 1Jn

n21Jn11
n21#J ,

T6ee
23 52

i e

2 H pnpi8

EqE q8
@Jn21

n Jn
n212Jn11

n21Jn
n#6

pn8pi

EqE q8
@Jn

nJn21
n 2Jn

n21Jn11
n21#J ,

wheren5n82n. The remaining components may be constructed from the Onsager relations, which embody the requi
of time reversibility, and for a plasma with a static background magnetic field may be written in the form

P00~v,2k!u2B0
5P00~v,k!uB0

, P0i~v,2k!u2B0
52P i0~v,k!uB0

, P i j ~v,2k!u2B0
5P j i ~v,k!uB0

. ~A18!

The components of the three-tensor part ofP5
mn may be constructed using the Onsager relations from the components

below, and the sum over spin states gives

5T0055T335
1

2 H pi8

E q8
1

pi

Eq
J @~Jn

n21!22~Jn
n!2#,

5T1155T225
1

2 H pi8

E q8
2

pi

Eq
J @~Jn21

n !22~Jn11
n21!2#,

5T6ee
01 5

e

2 H pi8pn

E q8Eq
@Jn

nJn11
n212Jn

n21Jn21
n #7

pipn8
E q8Eq

@Jn
n21Jn11

n212Jn
nJn21

n #J ,

5T6ee
02 52

i e

2 H pi8pn

E q8Eq
@Jn

nJn11
n211Jn

n21Jn21
n #7

pipn8
E q8Eq

@Jn
n21Jn11

n211Jn
nJn21

n #J ,

5T6ee
03 5

1

2 H 16
~m26pi8pi!

E q8Eq
J @~Jn

n21!22~Jn
n!2#,

5T125
i

2 H pi8

E q8
2

pi

Eq
J @~Jn21

n !21~Jn11
n21!2#,

5T6ee
13 5

e

2 H pn

Eq
@Jn11

n21Jn
n2Jn21

n Jn
n21#7

pn8
E q8

@Jn
n21Jn11

n212Jn
nJn21

n #J ,

5T6ee
23 5

i e

2 H pn

Eq
@Jn11

n21Jn
n1Jn21

n Jn
n21#7

pn8
E q8

@Jn
n21Jn11

n211Jn
nJn21

n #J ,

5T6ee
30 55T7ee

03 . ~A19!
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Most of the components of the tensorP5
mn satisfy the Onsager relations in the form of Eq.~A18!, specifically, the

three-tensor components andP5
01 andP5

02. However,P5
03 does not exhibit the symmetry in Eq.~A18!. Physically, the reason

for this is that the axial vector response violates parity. If the failure to satisfy the Onsager relations were due to non
vation of the axial vector current, one would expect that the components to be affected would be associated withkn. This is
not the case, and so we can ascribe the failure to satisfy Eq.~A18! to parity violation. The Onsager relations are derived fro
time reversibility, but to write them in the form of Eq.~A18!, one also appeals to parity and the reality condition for Fou
transforms. The tensorP5

mn was calculated for a magnetized vacuum by@9#, and we note that when Eq.~22! of @9# is written
in the coordinate system used here, it fails to satisfy the Onsager relations only for theP5

03 andP5
30 components.

2. Plasma response in the long wavelength limit

When one takes the long wavelength limit of Eq.~8!, the linear response tensor becomes~cf. @17#!

P115P2252
e3B

2p (
n50

` E dpi

2p H ~ f n11
S 2 f n

S!
En112E n

v22~En112En!2 S 12
~m21pi

2!

En11En
D

1~ f n11
S 1 f n

S!
En111E n

v22~En111En!2 S 11
~m21pi

2

En11En
D J ,

P125
ie3B

2p (
n50

` E dpi

2p H ~ f n11
D 2 f n

D!
v

v22~En112En!2 S 12
~m21pi

2!

En11En
D

1~ f n11
D 2 f n

D!
v

v22~En111En!2 S 11
~m21pi

2!

En11En
D J ,

P33524
e3B

2p (
n50

` E dpi

2p H f n11
S En11

v224En11
2 S 12

pi
2

En11
2 D 1 f n

S E n

v224E n
2 S 12

pi
2

E n
2D J ,

P005P015P025P035P135P2350, ~A20!

where f n
S[n1(En)1n2(En), f n

D[n1(En)2n2(En), andEn[(m21pi
212neB)1/2, noting thatn1 is the electron occupation

number andn2 is the positron occupation number.
Application of the long wavelength limit toP5

mn yields

P5
115P5

225
e3B

2p (
n50

` E dpi

2p
pivS En111En

En11En
D ~ f n11

D 2 f n
D!,

P5
035

2e3B

2p (
n50

` E dpi

2p H S 12
~m21pi

2!

En11
2 D f n11

S En11

v224En11
2 2S 12

~m21pi
2!

E n
2 D f n

S E n

v224E n
2 J ,

P5
305

2e3B

2p (
n50

` E dpi

2p H S 11
~m22pi

2!

En11
2 D f n11

S En11

v22En11
2 2S 11

~m22pi
2!

E n
2 D f n

S E n

v224E n
2 J ,

P5
005P5

015P5
025P5

125P5
135P5

235P5
3350. ~A21!

By inspection, it is clear that if the electron and positron distribution functions are even functions ofpi , then theP5
11 andP5

22

terms are identically zero. Considering the other two componentsP5
03 andP5

30, rearrangement of the sum overn shows that
only then50 term can contribute. Then50 term vanishes identically forP5

03, which means that the only nonzero compone
of the axial vector response tensor isP5

30.
he
ly
e

APPENDIX B

The results required to determine the response of a t
mal magnetized plasma are summarized below. The onJ
functions that are required under the assumptions mad
09301
r-

in

Sec. III areJ0
0 andJ1

0. These have the simple forms

J0
0~u!5eu/2, ~B1!

J1
0~u!5Aue2u/2, ~B2!
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which are used below. The ‘‘nonresonant’’ contributions
the response tensor are

Pnr
005«0vp

2F ki
2

4m2 1
k'

2

4m2GexpS 2
pi

2

2mTD ,

Pnr
115Pnr

225«0vp
2F11

Ve

2m
1

ki
2

4m2GexpS 2
pi

2

2mTD ,

Pnr
335«0vp

2F11
Ve

2m
1

ki
2

4m2 1
k'

2

2eBGexpS 2
pi

2

2mTD ,

Pnr
0150,

Pnr
025 i«0vp

2 k'

2m
expS 2

pi
2

2mTD ,

Pnr
0350,

Pnr
1250,

Pnr
1352«0vp

2 k'ki

4m2 expS 2
pi

2

2mTD ,

Pnr
235 i«0vp

2 k'ki

4m2 expS 2
pi

2

2mTD , ~B3!

and for the axial vector response,
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Because of the simplifications made in assuming a nonr
tivistic nondegenerate plasma, only one type of integ
needs to be evaluated, namely,
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whereT is the temperature,a65v6Ve , andb5ki /m. The
integral in Eq. ~B5! may be reexpressed in terms of th
plasma dispersion functionf̄(z) defined in Eq.~42!, which
allows one to obtain the following forms for theI l :
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wherez65a6 /bA2mT.
Using Eq.~A17!, the expressions in the resonant part

the response tensor may be evaluated:
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and for the axial vector response,
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Finally, we display the result forPmn when one makes a
high z6 expansion, corresponding toT!m ~the result for
P5

mn may be calculated similarly!:
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