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Baryon magnetic moments in a QCD-based quark model with loop corrections
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We study meson loop corrections to the baryon magnetic moments starting from a QCD-based quark model
derived earlier in a quenched approximation to QCD. The model reproduces the standard quark model with
extra corrections for the binding of the quarks. The loop corrections are necessary to remove the quenching.
Our calculations use heavy baryon perturbation theory with chiral baryon-meson couplings, the quark model
moment couplings, and a form factor characterizing the structure of baryons as composite particles. The form
factor reflects soft wave function effects with characteristic momemt80 MeV, well below the usual chiral
cutoff of ~1 GeV. The resulting model involves only three parameters, the quark momgiatsd ., and a
parameter\ that sets the momentum scale in the wave functions. We find that this approach substantially
improves the agreement between the theoretical and experimental values of the octet baryon magnetic mo-
ments, with an average difference between the theoretical and experimental momentg.Qf. AB%extension
to the decuplet states using the same input predicts a moment of..83t the (1~ hyperon, in excellent
agreement with the measured moment of 2025 w,, . [S0556-282(98)06521-7

PACS numbsd(s): 13.40.Em, 11.30.Rd

I. INTRODUCTION that this approach reduces the average deviation of the cal-
culated moments from experiment to OuQp, a substantial
The simple, nonrelativistic quark modéQM) gives a  improvement, and that the loop corrections are small com-
qualitatively good description of the baryon moments. Undempared to the leading QM terms, suggesting reasonable con-
the assumption that each baryon is composed of three vgergence for the loop expansion.
lence or constituent quarks in a state with all internal orbital A different approach to the moment problem using chiral
angular momenta equal to zero, the moments are given byerturbation theorfChPT) with loop corrections has been

expectation values of the spin moment operators studied recently by a number of authors. Excellent fits to the
data can be obtained for either conventid2at5] or a modi-

MQMZE oG (1.1) fied [6] chiral counting. However, as pointed out elsewhere

g e [7], the general fits are essentially independent of the dy-

namical input, and are best thought of as giving parametri-
leading to the standard expressions zations of the data. In particular, the introduction of the
counterterms needed to eliminate divergences in the loop
QM_E Ao — _ & 1.2 integrals results in the appearance of five new chiral cou-
Kp _3( Pu™ Fa)ios M 2my’ ' plings [2,5,6] at the one-loop level in addition to the two
tree-level[8] couplings. The seven well-measured octet mo-
where the effective quark momenig,= —2uq4 and us can  ments can be fitted exactly using these seven parameters,
be treated as free parameters in attempting to fit the data. Thvehether or not the calculated loop corrections are included
predicted pattern of the signs for the moments agrees witfi7]. The theory is only weakly predictive with respect to the
observation. A least-squares fit to seven measured octet meemaining quantity, th&°A transition moment, which is not
ments(the transition momengyo, is left to be predicted  known precisely. Furthermore, the loop corrections in ChPT
gives a root-mean-square deviation of theory from experiare nearly as large as the tree-level terms, and convergence
ment of 0.12u), about 11% of the average magnitudes ofof the expansion is at best slow, when the divergences are
the moments. Agreement at this level can be regarded as asgularized using dimensional regularization. This problem
outstanding success of the quark model, but the deviations not unexpected, since chiral symmetry is known to be
also give a very sensitive test of baryon structure. There i®adly broken for the baryons. The remaining predictidhs
presently no completely successful first-principles theory o#4] are sum rules that can be motivated by laMyeexpan-
the moments. sions or expansions in the symmetry breaking mass param-
In this paper, we approach the moment problem dynamieter mg in ChPT, but do not depend explicitly on the
cally using a QCD-based quark modél with meson loop  dynamics.
corrections. The model has only three parameters, namely Our intent here is to present a dynamical approach to the
the quark momentg,= —2u4 and ug, and a parametex  baryon moments in which we emphasize the composite na-
that characterizes the momentum scale of meson-baryon idre of the baryons and use a description based on the QM
teractions, with the particles regarded as composite. We finthther than the chiral picture. We begin in Sec. Il by review-
ing briefly the derivation of the QM, with corrections, from
QCD using a Wilson-loop approadii]. The derivation in-
*Electronic address: phuoc@theoryl.physics.wisc.edu volves the suppression of internal quark loapsguench-
"Electronic address: Idurand@theory2.physics.wisc.edu ing” ), an approximation that is likely to account for the de-
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ficiencies of the resulting model. The addition of quark loops Y1 ¥3
necessary to remove the quenching introduces meson loops ; T )
when the theory is viewed at the hadron lef#], and the v2 | time
effect of these loops on the baryon moments must be consid-

ered. We develop our approach to loop effects in Sec. I, world sheet — quark line
where we define the couplings we will use for low momen-
tum meson-baryon and electromagnetic interactions in a cal-
culation based on heavy-baryon perturbation thg@r0].

We also introduce the form factor needed to account for the
extended structure of the baryons and mesons viewed as
composite particles. We present our final expression for the FIG. 1. World sheet picture for the structure of a baryon in the
octet moments, the results of our numerical analysis, and ouWilson-loop approach.

conclusions in Sec. IV. Finally, we give the detailed results

needed to evaluate the formal expressions for the moments WhereAg is the color gauge field. The Wilson lines sweep

1 z2
Wilson line

two appendices. out a three-sheeted world sheet of the form shown in Fig. 1
as the quarks move from their initial to their final configura-
Il. BARYON MOMENTS IN A QCD-BASED QUARK tions.
MODEL By making an expansion in powers ofni{ using the

Foldy-Wouthuysen approximation, and considering only for-
ward propagation of the quarks in time, Brambilaal. were

In previous work 1], we analyzed the QM for the baryon able to derive a Hamiltonian and ScHinger equation for
moments in the context of QCD. Our approach was based offie quarks, with an interaction which involves an average
the work of Brambillaet al.[11], who derived the interaction over the gauge field. That average was performed using the
potential and wave equation for the valence quarks in aninimal surface approximation in which fluctuations in the
baryon from QCD using a Wilson-line construction. Their world sheet are ignored, and the geometry is chosen to mini-
basic idea was to construct a Green’s function for the propamize the total area of the world sheet subject to the motion of
gation of a gauge-invariant combination of quarks joined bythe quarks. The short-distance QCD interactions were taken
path ordered Wilson-line factors into account explicitly. Finally, the kinetic terms could be

resummed. The result of this construction is an effective

A. Background

_ . Hamiltonian[11] to be used in a semirelativistic Schlinger
u=p exp|gf Ag-dX, 2.0 equationHV =EWV:
2 ag 1 o 1 ag ag
H:Z Vpi+mi+0(r1+r2+r3)_2 §rf_ﬁ_51‘(r1><p1)+_251' (r1oXp1) 3 +(risXp1) -z
I i<i ij mifa 3mjg BP) s
2 1 o y 2 1 o ot 27
§mr—fi~251'flz P2 §mr—$351'f13 P3 : 2.2

Hererj;=x;—X; is the separation of quarksandj, r; is the  Isgur[13], who proposed it on the basis of reasonable physi-
distance of quark from point at which the sum;+r,+r;  cal arguments, but did not give formal derivations from
is minimized, andp; and s are the momentum and spin QCD.

operators for quark. The parametes is a “string tension” The presence of the quark momemgain the Thomas-
which specifies the strength of the long range confining infyPe spin-dependent interactions in H@.2) suggests that
teraction, and; is the strong coupling. The terms hidden in N€W contributions to the magnetic moment operator could
the ellipsis include tensor and spin-spin interactions whictiS€ in & complete theory through the minimal substitution
will not play a role in the analysis of corrections to the mo-

ment operator, and the terms that result from permutations of Pi—Pi— €iAen(Xi), 2.3

the particle labels. The full Hamiltonian is given jd1].

This Hamiltonian, including the terms omitted here, gives awith A (X;) the electromagnetic vector potential associated
good description of the baryon spectrum as shown by Carlwith an external magnetic field. We have therefore redone
son, Kogut, and Pandharipan@i&2] and by Capstick and the calculation of Brambillat al. with the gauge interaction
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TABLE I. The values in GeV of the matrix elementsind, defined in Eqs(2.9) and(2.10. The matrix
elements were evaluated fat=0.39, 0=0.18 GeV, m,=my=0.343 GeV, andn,=0.539 GeV.

’

3

EI

Baryon € € € S
N 0.014 0.014 0.014 0.062 0.062 0.062
py 0.014 0.018 0.012 0.061 0.069 0.046
E 0.016 0.012 0.018 0.053 0.046 0.068
Q 0.016 0.016 0.016 0.052 0.052 0.052

quarks 1 and 2, letn;=m,=m, and take 3 as the odd-mass
quark if there is one. With this labeling, the spatial matrix
elements of the new operators can be reduced to a small set,

extended to includé\.,,. After reorganizing the calculation
to keep the presence &, explicit throughout, and then
expanding to first order iR,A., in the baryon rest frame

with and the correction terms become
Agn=3BXXx,, B=con 2.4 [e+e’ 1(e, e3~| Z+3’
em™ 2 a const, 24 Aul=p, e e ,
. . o . 2m e \m 3 2m
we can identify the modified magnetic moment operator ;
through the relation . e+e 1lle, es~| S+3
Apz=pr T et o€ ;
AH=—pu-B. (2.5 | 2m e\ m 3 2m
The new moment operatop= pOM+ A 4P involves ' X e lete 3
the leading corrections to the quark-model operator associ- Aps=ps3 mte m ol (2.8
L3 3 3

ated with the binding interactionau can in fact, be read
off from Fhe terms in Eq(2.2) Wh'c.h depend.o_n both th? where thee's and X's are ground state radial matrix ele-
guark spins and momenta by making the minimal subs'utu—mentS
tion in Eq. (2.3. For example, the term which depends on '

S, - r1oX py gives an extra contribution 25 12X as 1
() {2
el as 12 12/ p
PRl C Rt ey (2.6
! 12 2ag I3 X 2a4 13X
I s 12372\ s 113" 1
to m,. There are also possible orbital contributions to the € _< 9 3 >b_< 9 r3; >b’
moments because the Hamiltonian mixes states with nonzero
orbital angular momenta with the ground state. These contri- - [2agraXs 2 T3y Xg
butions proved to be negligible]. e=< 9 T> =< 9 T> ,
The moment of a baryoh is now given by a1 [y s [y
(2.9
,Uvb:% (Mq+AMg)<Uq,z>b:MbQM+% A/-Lg<0'q,z>b’ and
(27) E ag < rlz X1> (o
where the sum is over the quarks in the baryon and we have 6\ r /, 12<r12>b’
guantized alond, taken along the axis. The spin expecta-
tion values are to be calculated in the baryon ground state. .0 [TagX o [T %q
Note that the correctiorA,ug to the moment of quarky X'= §< s > = g< ra > '
depends on the baryoh in which it appears. The final b b
baryon moments depart from the quark model pattern only e o TaX 0 | Tane X
when the ratios ¥/ u, differ in different baryons. S= —< 3 3> = —< 32 3>
6\ ra [, 6\ ras [,
(2.10

B. Results for the octet baryons

The general result for the moment operator given abovén writing these results, we have made the approximation
can be simplified considerably for tHe=0 ground state r;+r,+r3~3(r+rys+rsy), known to be reasonably ac-
baryons. The absence of any orbital angular momentum akurate for the ground state barydri<], and used the corre-
lows us to integrate immediately over angles. Furthermoresponding Thomas spin interaction.
two quarks always have the same mass in each octet or de- We have evaluated the the radial matrix elements above
cuplet baryon, so appear symmetrically in the spatial part ofising Gaussian wave functions obtained in a variational cal-
a flavor-independent wave function. We will label theseculation of the ground state energies for the Hamiltonian in
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FIG. 2. Diagrams with couplings independent of the baryon mo- AN 0T
ments. These diagrams lead to the non-analyﬁ’@ corrections to , N S, Y
the baryon magnetic moments in the conventional ChPT. The hd bd g ; bt
dashed lines denote the mesons, the single and double solid line g g

denote octet and decuplet baryons, respectively. A heavy dot with &
meson line represents a form factefk,v) [Eq. (3.14)], wherek is (C) (d)
the meson momentum.

EqQ. (2.2). The results are given in Table | fer,=0.39 and e N L7
o=0.18 GeV, values taken from fits to the baryon spectrum ® ° : )
[12,13 using the same Hamiltonian. A refitting of the octet é

moments usingu, and ug as adjustable parameters in the

QM contribution to the complete expression in EG.7) (e) (f)
gives only a slight improvement in the results, with an incor-

rect pattern in the corrections relative to those needed.

FIG. 3. Diagrams with couplings that depend on the tree-level
baryon moments. These diagrams lead to non-anatyiin mg cor-
IIl. LOOP CORRECTIONS TO THE MOMENTS rections to the baryon magnetic moments in the conventional ChPT.
Given the failure of the binding corrections to eliminate order chiral couplings to describe the resulting low momen-
the deficiencies in the QCD-based quark model, we hav&im, long distance interactions of the mesons and baryons.
reexamined the approximations used in its derivafibn A~ We will Qiscuss these ingredients separately in the following
key element in the Wilson-loop construction was the use ofubsections.
the quenched approximation in which all internal quark
loops are omitted. As discussed elsewHdieit appears that A. Heavy baryon couplings

this approximation is the one most likely to account for the Heavy baryon perturbation theory was developed in Ref.

difficulty in reproducing the measured moments. In particu-[g] and extended to the chiral context in RE£0]. It has

lar, the introduction of quark loops allows meson loops t0paan used to study a number of hadronic processes at mo-
appear, and these are known to affect magnetic moments,o v m transfers much less than 1 GeV. The key ideas in

The first step in the improvement of the model is therefore,_lBPT involve the replacement of the momentyrt of a
the introduction of meson loop corrections to the QM mo- early on-shell baryon by its on-shell momentamgo” plus

ments. The relevant one-loop Feynman diagrams at the ha “small additional momenturk®, p=mgu +k, and the re-

ronic level are shown in Figs. 2 and 3. Since the ground Statﬁlacement of the baryon field opera®(x) by an operator

L =0 octet and decuplet baryons only differ in their internal (x) constructed to remove the free momentum depen-
spin configurations in the simple QM and the octet—decuples("ence in the Dirac equation

mass differences are small, we must include both sets o
baryon states in the calculation to get a consistent theory. — aimgboPx
Hov}\//ever, we include only the pseud%scalar mesons. g B, (x)=eTe RuB(X). @1
The diagrams in Fig. 2 are independent of the input magin these expressions* is the on-shell four velocity of the
netic moments of the baryons, but modify the final moments.
In contrast, the diagrams in Fig. 3 involve the octet and———
decuplet moments and the octet-decuplet transition moment,
directly. We will specify these in terms of the QM.
We will calculate the contributions of the diagrams in

The difficulties with ChPT in the present context result from the
treatment of the baryons and mesons as point particles in HBChPT.

Fi > d 3 ; h b turbati th This leads to divergences in loop integrals. Different regularization
19S. an using heavy baryon perturbalion theory, .o naq jead to different results for the integrals, for example, in

(HBPT) in which the_baryon masses are ?Ssumed to be I"’lrg((fi'mensiona[14] and momentuni15] regularization, with the am-
compared to the typical scale set by the internal momenta. |y jities being lumped into the new couplings that must be intro-
will be essential in this respect to take the extended, cOMgyced along with the loop diagrams. The present theory has a natu-
posite structure of the baryons into account, since this exp| cutoff at fairly low momentum imposed by the extended
tended structure naturally limits the momenta that can b&grycture of the hadrons in the QM, and the loop contributions are
absorbed by the baryon as a whole. The resulting momentgite. However, they change the initial structure of the theory, and
are small on the average, well below usual chiral cutoff atprovide in effect a dynamical calculation of what would appear as
~1GeV, and it is therefore reasonable to use the lowestew couplings in ChPT.
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baryon and it is assumed thktv <mg. The perturbation where A, is the photon field. The baryon moment couplings
expansion then involves modified Feynman rules and an exaeeded in the graphs in Fig. 3 do not appear above and
pansion in powers ok/mg. We will work to leading order require a separate treatment.

in this expansion.

The low-momentum couplings of mesons to baryons ap-
pear to be well described as derivative couplings with the i } ] ]
standard chiral structure. We will use these couplings in our AS described above, our starting point for calculating the
analysis, but emphasize that we are not doing the usual mé&aryon moments is the QCD-based quark model. These mo-
mentum expansion of ChPT in the sense that the highefMents play the role of treg—level interactions m_thg loop ex-
order effective couplings of ChPT will be implicit output of Pansion and also appear in the electromagnetic interactions
our dynamical calculation. The Lagrangian for the modifiedof the internal baryons in Fig. 3. As we noted i, the octet
baryon fields depends on the usual matrix of baryon fieldsb@ryon moments can be written in terms of the generaBsU
with B replaced byB,, and on the pseudoscalar pion octetSYMmetry breaking operator in HBChPT given [i3/-6],
normalized as

B. Quark model moment couplings

ESB: £0+ El (36)
0
7T_+ n e K+ where
v2 6
e _
PR R A eI £o= gy (40T BUF 00" {Q.B,}
V2 V2 6 S _
+ueTr B,F,,0""1Q,B,]), (3.7
K- PO
\/E is the leading order moment operator in chiral perturbation

theory parametrized by and ug [8], and

This couples to the baryon fields at low momenta through the
. . e _ —
vector and axial vector currents defined by L= dm F,.(c,Tr B,MQu*"B, +C,TrB,Qo""B, M

V =f"2(dd. d—203 +oe, A =f"1 e _ _
K (6 'u¢ "“d)d)) m ”(]5 (3.3 +c3Tr B,o#*"B,MQ+c,Tr B,Mo*"B,Q

. . +csTr B,o*'B,T 3.8
wheref~93 MeV is the meson decay constant. We will re- CsTr B,o™'B, Tr MQ) 3.9

tain, as indicated above, only leading term in the derivative . . . :
ontains the new couplings,,...,Cs introduced along with

f:hxef)r?nsmn. The Lagrangian for octet and decuplet baryons f[%]e counterterms that are necessary at one [defs. Here
Q=diag(2/3;-1/3,—1/3) is the quark charge matrix and
_ — M=diag(0,0,1) is proportional to the mass matrix used to
L,=i Tr B,(v-D)B,+2D Tr B,Sj{A,.B,} introduce SW3) breaking through the strange-quark mass
mg. The addition toLsg of one further coupling which is

+2F Tr B,S/[A, B, ]—-iT¥(v -D)T,,+ THT,, second order im, 2

+C(TAA,B, +B,A, T#) + 2HTES, AT, ed

Ezzm

+Tr 3M¢§M¢+ (34) Tr BUMQO"U‘VFI“,BUM (39)

where 6 is the decuplet-octet mass difference, ang=4d,  gives a complete basis for the description of the octet mo-
+[V,,] is the covariant chiral derivativeB, is now the  ments[7].

matrix of octet baryon fields, and the Rarita-Schwinger fields The particular choiceug=2up/3=pu, and c;=—5A,

T4 [10] represent the decuplet baryoiis, F, C, andH are  ¢,=0,c3=—A, ¢,=0, andcs=A, d=0 for the parameters
the strong interaction coupling constants. The spin operataabove, withA=(2us+ u,)/2, gives us the QM octet mo-

Sl is defined in Ref[10]. ments
The electromagnetic interactions of the mesons, and the
convection current interactions of the baryons, are intro- om_3 om 4 1
duced into the Lagrangian by making the substitutions Mp~ ToMus Hxs T gHuT ghs, (3.10

D,—D,+ieA,[Q,],

%Since MQ=QM=—§M, the rearrangements of the factors
d,¢p—D,p=3d,0+ieA,[Q,d], MQ and M in Eq. (3.9 give no new contributions t&,, and the
(3.5  form given is the only new invariant.
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w4 1 The evaluation of momentum integrals in the presence of
Mz0 = 3 Hs™ 3 Huy the form factor is straightforward, but involves some new
elements. First, the form factd8.13 is rewritten in covari-
om_ 1 ant form as
wtM= =y, wi? =3 (= ms),
_)\2
F k, =12 1, .2 2 31
1 4 k)= o=l =x (349
ew_= 4+ (QM)
M- 6Mu 3:“5! MA Ms,
The factors in the denominator of a one-loop integrand with
2 1 integration variablek can be combined using the Feynman
M= — JHu— g Hs, parametrization formula to obtain an expression of the form
;3 K2+ a(k-v)?+ B(k-v)+ 7. (3.15
Qw)_ "~
MAEO - 2 My -

Here a, B, andy are quantities independent of the loop mo-

mentumk, and the photon momentum has been set equal

Since the one loop corrections involve both intermediateto zero in the denominators. A change of the variable of
octet and decuplet baryon states, we also need thﬁ]tegration to '

Lagrangians for the QM decuplet magnetic moment cou-
plings and the QM octet-decuplet transition magnetic mo-
ment couplings. These are given, respectively, by

k'=k+(xy1l+a—1)v(k-v) (3.1

o 3¢ — iy then brings Eq(3.15 to the standard form
H TV
‘C( ):_IﬂTgileijj F,u,w (31])
B
k'2x———(k"-v)+7, 3.1
and \/m( ) Y ( 7)
2e .
L£0OY=—i—F, (xQ|B ST+ H.c), and the loop integral is easily evaluated. Note that the Jaco-
My (3.12 bian of the transformation of variables in E(3.16 is
' 11+ a.
wherei, j, k, I, andm are SU3) flavor indices and®
=diag(uy, — wy/2,us). IV. BARYON MAGNETIC MOMENTS

] A. Expressions for the octet baryon moments
C. Meson wave function effects: The form factor . . )
We can now give our expressions for the baryon magnetic

The baryons in the QM are composite states, and capyoments including the loop corrections from the diagrams

absorb only limited recoil momentum, while remaining in shown in Figs. 2 and 3. In units of nuclear magnetons, the
their ground states. This must be taken into account in &,oment of baryori is

dynamical model. In the absence of a detailed theory of the

interactions of composite mesons and baryons, we will Mi:Mi(O)+/~Li(l/2)+ﬂi(3/2)! 4.1
model the wave function effects using a form factor at each

meson—baryon vertex. In keeping wi_th the heavy baryon picyyhere the leading termi(O) includes the QM moments plus
ture, we will define the form factor in the rest frame of the correctionsA uQ™ obtained in the QCD-based QM,
baryon where it can depend only &3, the square of the '
three momentum of the meson. A form factor of this type
automatically respects crossing, since a change—k cor-
responding to a shift of a meson between the initial and fin

while ©*? and u*? are the contributions from the one-
loop graphs with intermediate octet and decuplet baryon
a§tates, respectively. We find that

states does not change the form factor.
o O — 5+ A M 4.2

We have chosen for simplicity to use an one-parameter i ARk .

form factor
2 m_ 3 my A B
A M= T o452y 3P
FK)= 7 (3.13 xSk 24mf (N+my)
. . - 1

normalized at chiral limitk=0. The parametex character- + 100 _ 93 %) 4 VLo (M \
izes the natural momentum scale, expected to be much below X:;,K,n 167721‘2(7' " aibo(mxh),
1 GeV. With the introduction of this form factor, all the 4.3
diagrams in Figs. 2 and 3 are finite and no arbitrary subtrac-
tions need to be introduced into the theory. and
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my -~ _ TABLE Il. The magnetic moments from the naive quark model
,ui(3/2)= E Py F(mx,5,)\),6’i<x) (QM) and the QCD-based QM with loop corrections. The root-
=7 8f mean-square deviations from experimental values are about 0.11
and 0.05 for the QM and the QCD-based QM with loop corrections,
2 1 respectively. All moments and deviations are given in unitgQf

_|._ R
X=rk.n 32m°f?

M“B QM QCD QM+loops Experiment
A _ o\ (X)
XLy 2N ai)La(my, 6,0) p 2.728 2.720 2.7980.000
+;i2(x)|—2(mx15a)\)], (4.4) n . —1.818 —1.946 —1.913+0.000
3 2.618 2.519 2.4580.010
where a;=u{®™ . The coupling coefficientss®, BX, ?; _(1)'3(1)3 _10171005 —1.160-0.025
(X) L5 (X) . . . . . . -
)\., +\™ are ldentlcaI. t.o those m .ReIIZ]l, )e(1nd~V\l/|I)I( not be 0580 0608 —0.6130.004
given heré® The remaining coefficients; ™, %, and  zo —1.380 1316 1250:0.014
72X depend explicitly onu, and us, and have not ap- =- —0.470 ~0.582 ~0.651+0.003
peared elsewhere. We list those coefficients in Appendix A. 394 1.575 1.559 +1.610+ 0.08
To connect the various terms to the loop graphs in Figs. 2 1.818 2.083 —
and 3, we note thgg{®, BX), H1X) L0 720 1\ (X)) s ~0.580 —0.656 -
and\®) are the coefficients of the graphs 2a, 2b, 3a, 3b, 3¢ \ (in MeV) - 407 -

(or 30, 3e and 3f, respectively.

_ The expressions for the functionsLo(mx.A), 4, u, and\ are summarized in Table Il. We find root-
F(my,d8,N), Li(my,d,N), and L,(my,d,N) are given in  mean-square deviation of the predicted values from the ob-
Appendix B. These functions result from the loop integra-servation of 0.05%, . This is a substantial improvement on
tions, and depend on the meson masses, the decuplet-octeé naive quark model which gives an average deviation of
mass differences, and the natural wave function cutaff ~ 0.12uy. The transition momentso, was not included in
We emphasize that the loop integrations are all finite, andhe fit, but was left as a prediction. The result obtained,
that the wave function parametersets the natural momen- <o, =1.559u,, differs from the experimental value
tum scale in graphs that are divergent for point particles. o0, =1.610-0.08 uy, by 0.05uy, a value within the ex-
perimental uncertainty and one that does not affect the over-

B. Fits to the data all fit.

We hav d the foreqoing exoressions o fit the experi A detailed breakdown of the contributions of the loop
€ have used the loregoing expressions to € expe integrals to the fitted magnetic moments of the octet baryons

95 given in Table lll. The results in this table shows that the
. Iboop contributions are small in comparison to the leading
. ) M contributions, suggesting reasonably rapid convergence
Ap™ given in Egs.(2.7) and (2.8) from the QCD-based ¢ e loop expansion. This is in marked contrast to the re-
QM using the matrix elements given in Table | and quarkgjts obtained in HBChPT, where the loop contributions cal-
massesn, =my=0.343 GeV andn,=0.539 GeV chosen t0 ¢ ated using dimensional regularization are comparable in
give the best fit to the octet magnetic moments in the Naivge 1q the leading terms in the chiral expandih It is also
QM. The strong interaction couplings, D, andC were  qoqr from the table that the binding correctiag @™ found
chosen to satisfy the S relationsF=2D/3,C=—2D ex- i, jhe QCD-based derivation of the Q] are important. It

pected in the QM, with the valugs=0.5,D=0.75, andC g ot possible to obtain as good a fit to the data as given in
=—1.5 chosen so th&+D~|ga/gy|=1.26. The decuplet T4pje 1| when these are omitted.

coupling7¢ does not appear. The decuplet-octet mass differ- A rther interesting point involves the importance of the
ence was taken ag=250 MeV; the results are fairly insen- e plet intermediate states for the octet moments. It is easy
sitive to this choice. Finally, we used the valués (g check that the contributions from the graphs involving
=93 MeV andf=f,=1.2f [2]. _ decuplet states, that is, the sum of the contributions from the
The results of an equal we|ghtlleast square fit to the SeVePraphs 2b, 3b, 3c, 3d, and 3f, are substantial. For most of the
well-measured octet moments using the three free parametefsyons, those contributions are larger than those from the
graphs which involve only the intermediate octet states. This
result is insensitive to the value used for the octet-decuplet
3The tadpole graph 2b in RdR] is absent in our model. Since the mass difference. We conclude that the decuplet must be re-
chiral symmetry is broken in the QM, we do not include chiral garded as a set of light baryon states as in the QM, and not,
corrections to the baryon moment operators as in that referencas in[5] as a set of heavy states. The present method for
The elementaryBB$¢.A, vertex connected with spin operator obtaining the loop corrections to the QM moments should
therefore does not appear, but the inclusion of higher mass baryoriberefore apply to the decuplet moments as well. That calcu-
in the intermediate states would lead to effective vertex with thislation has been carried out elsewh¢i] using the same
structure. values ofu,, us, andA as obtained here, and gives a pre-
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TABLE lIl. Detailed breakdown of the contributions of the loop integrals to the fitted magnetic moments of the octet faryogs
Those contributions are evaluatedmat 0.5, D=0.75,C= —1.5. As shown in Table I, a best fit is obtainedugt=2.083, us= —0.656 and
the natural cutoffi\ =407 MeV. A ug stands for a deviation from the experimently measured value. The supersbhpasd (A) are used
to indicate that the intermediate baryon states are octet and decuplet, respectively.

I M, trs Ay mg/ ™ In m{ mg/%) In m® Loops I Aug

p 3.124 —0.500 0.416 —0.729 0.057 0.353 0.096 2720 -0.072

n —2.083 0.427 —0.381 0.409 —0.067 —0.253 —0.291 —1.946 —0.033

3 2.995 —0.428 0.273 —0.536 —0.002 0.217 —0.048 2.519 0.061

7 —1.170 0.139 —-0.217 0.188 0.021 —0.072 —0.080 —1.110 0.050

30 0.913 —0.145 0.028 —-0.174 0.010 0.073 —0.064 0.705

A —0.656 0.085 —0.028 0.073 —0.010 —0.073 —0.037 —0.608 0.005

= —1.569 0.271 —0.043 0.128 —0.043 —0.059 —0.017 —1.316 —0.066

= —0.528 —0.056 —0.048 0.061 0.033 —0.044 0.002 —0.582 0.069

3OA 1.804 —0.378 0.229 —0.268 0.058 0.114 0.134 1559 —0.051
diction uq-=—1.97 uy in striking agreement with the mea- of higher-mass mesons and baryons. The contributions of the
sured value-2.02+0.05 uy, and much better than the pre- ground state vector mesons would be expected to be as im-
diction of the naive QMuqg-=—1.74 uy. portant as the contributions from the pseudoscalar mesons

except for the suppression of high mass intermediate states
C. Conclusions and prospects by the momentum cutoff imposed by the wave functions.

. . .__The contributions of higher mass baryons in the intermediate
In this paper, we have considered the one-loop COrreCt'onitates are also suppressed. However, there are low-mass mul-
to the octet baryon magnetic moments in the Q(;D-ba;e particle intermediate states such as those with one baryon
QM. It is necessary to.mclud.e these as a first step in geting g two pions that could be important. A possible approach
away from the quenching of internal quark loops used in th,, e estimation of their effects is through the use of the

derivation of the QM. X . . . _
Lo sideways or mass dispersion relations proved by Bifitél
Our approach to the calculation is based on HBPT. We "y remark; finally, that we believe that this work demon-

use thef dherlvatlve dCOUPII'ngS for the I(_)vr\]/-rrr]]ombentum |r}terac-s rates the importance of getting beyond the quenched ap-
goncs:hopg € pdseufoscafar mesoni with € ar:yons avor€fioximation in lattice QCD if one is to understand the finer
y » and a form factor to characterize the compositeyeqiis of hadron structure from first principles.

structure of baryons. The loop diagrams are all finite, and no
counterterms need to be introduced to absorb divergences.
We are, in fact, making a dynamical calculation of the extra
couplings or counterterms encountered in HBChPT in the This work was supported in part by the U.S. Department
sense that our expressions for the eight octet moments can be Energy under Grant No. DE-FG02-95ER40896. One of
parametrized exactly7] in terms of the eight chiral cou- the authorgL.D.) would like to thank the Aspen Center for
plings defined in Eqs(3.7), (3.8) and(3.9). Physics for its hospitality, while parts of this work were
The results from our fits to the octet baryon momentsdone.

using the QCD-based QM with loop corrections are very
good, with an average deviation of the theoretical moments
from theory of 0.05uy, significantly better than the QM
results. The contribution from each loop graph is small com- In this appendix, the coupling coefficients are explained
pared to the leading terms, suggesting convergence of thend presented explicitly. For simplicity, the superscrig) (

loop expansion. The parametemwhich sets the momentum g suppressed. Oys;, and B; are identical, respectively, to

scale in the meson-baryon interaction or wave function ispe coefficients3; and 8/ in Ref.[2]. The sum of our coef-
about 400 MeV, a value consistent with the expectations. . ~ . ' = -
deduced from the observed transverse momentum distrib icients; andA; is equal to the coefficiert; defined in[2]:
tions in pion production. This value is closer to the kaon -~ —

mass than to the pion mass. As a result, the wave function At Ai=A. (A1)

effects suppress the short-distance contributions from kaon

and 7-loops, but affect the more reliable long-distance part>ince the couplings associated with graphs which involve
of the pion loop contributions relatively little. We conclude NIy octet intermediate states are independent of those for

that it is crucial to take the effects of compositeness intod"@Phs which involve decuplet intermediate states, it is easy
account if one is to have a controllable perturbation theoryio separaté; and\; from the combined coefficient given in
for hadrons at low momentum. [2].

A question which arises at this point concerns the extent The values of the coupling factoné evaluated from the
to which the theory can be further improved by the inclusiongraphs in Fig. &) are
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APPENDIX A: THE COUPLING COEFFICIENTS
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1
7 =7 (DFF) ey,

== (D+F)

2
'y/l\(ﬁ)z § Dz(ﬂs_ M),

2
ys7'=3[(3DF ~5F%)p,
+(2F?=D?) g,
(A2)
-2 5[ 2Fuy+ (2F=D?)ps,
Y= [(—3DF+F2),LLU
+(2F?=D?) g,
720 =~ 2(F=D)%us,
- 2 7(F~D)%(y—8u),

1() 1
Yas0= 73D(4F— D) sy

for the pion loops,

y5"'=(F=D)(D—3F)uy+

1
3D2—2DF—F2)MS,

Y =2F(F—D)uy+

1
§D2—2DF—F2),U,S,

1
yi=— 18(D2+12DF+9F2),LLU——(D 3F)2us,

1K) _ 7

2 22 2 4 2
Vs + _g D _7DF+F Mu_g(D+F) Ms

(A3)

1 4
738'= = 5(D?=4DF+F?)uy~ 5(D+F)?ps,

5 14 4
ya == 5 ( D~ T DF+F?|uy— 5(D+F)’us,

1
yao'=—2D(D+F)u,+ 3(D?+6DF —3F?) us,

1K) _

2 1 2 2
y2'= (D2~ F?)py+ 5(D?*+6DF ~3F?) ug,

PHYSICAL REVIEW D 58 093008

1
1(K) _ 2 2
=——(3D2+4DF—9F

YAs0 2‘/3( ) My
for the kaon loops, and

1
¥ 7=~ 7(3F=D)%uy,

yﬁ<”>——<3F—D>2uu,

71(7])__ 3D2l‘LS!
2
7' == gDXApu—uy),
(Ad)

1(n) 2 2
vso =~ gD (mumay),

2
= gD 2yt u9),
1(7n) 1 2
Yz0' = 18(D+3F) (py—4us),
y2 == 2= (D+3F)(py+8puy),
E 36

1
1
YA(;)_‘/_gDZIU«u

for the 7 loops.

The coefficientsy! evaluated from the graphs 3b are
given, up to a factor of-5C?/2, by

~ 16 ~1(a 1
y,l)(”):—g,uu, ’Y§(+):_2_7(5Mu+4lus)y

4
~(m) _
V= g Ms»

9

4 2 (A9
~ 1w

T =gk ')’2(0):_2_7(:“u+2:“s)-
w1
715(—)=_§(Mu+4,“s)1
~ 1 ~1m 1
7}\(7):_§(Mu+2ﬂ*s)a 7’;(*):2_7(”%_4:“5)!
Tam__ 2
Yaso0 3‘/_,(Lu,

for the pion loops, by
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1 2
yé(K)_—§(3,LLU+2,LLS), ’}/2-!-0: 2_7(23/uu+41us)1
~1(K) 1
Y=o =_§(3Mu+14ﬂ“s)a

(A6)
1
yﬁ(K)——(Mu— 2us), 730 =-— 57(13uu+8py),
= 5 (14,
~1(K) 1 ~ 1(K)
A= glmutBus), vt = 7(5Mu_2Ms)v
Tyl(KO):_iM
A3 3v3 us
for the kaon loops, and by
2 ~ 2
’yl(n) 0, 'yz :—§(2,u,u+,u,s), 715(077):_§(Mu+2/1’s)y
(A7)
- - 1
7n"'=0, yé(o")=—§(uu+2us) 753’)——(%—4#5),

~ ) 0

1
YiP=0, W= S (pu—pe), Y=

COII\)

for the » loops.

The coefficientsy? evaluated from the graphs 3or 30d)
are given, up to a factor of@ by

2w _ ~2(m) _

8 2
Yo =~ 3(DFF)uy, 5 =~ 5 (3D +5F)uy

—8Fus),

~m 4
725(0):§(F_D)M31

(A8)
~ 8 o 4
YoM =3(D+F)uy, 72 =~ gF(ua—4ns),
~2() 2
= =§(D_F)(5/-Lu_2/-Ls):
- 2 ~
YT =3 D=4, y§<_>——(<SD+qu+8FMS>,

B (D+6F)u
A 3v3 u

for the pion loops, by
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~2(K) 4
Vp :_§[D/~Lu+(F_D)Ms]a
yﬁ“)— 3L(D+F)uy+2(D—F)usl,

~2(K
7A( )=

2
5 (3F D)y~ 4pso),

7= —[(F 5D) syt 2(D +F) g,
(A9)
2
Yae)=— 5 (D+F)(ku—4us),
7= [(2D F) gt (D+F) g,
~ 2
720 = 3L(D+3F)uy—2(D+F)psl,
~ 4
YeY == S[Fuy+ (D+F)ugl,
9=~ 2 (2p+3
'yAEO__%( D+3F)uy,
for the kaon loops, and by
~2(7n) ~2(n) 8
Yo =0, Vs+ =—§D(,LLU—,LLS),
72 = —<D+:«=F><Mu o),
(A10)
~ ~ 2
Ve 7=0, %"=~ g D(su—4us),
~2(n) 2
Y=- T §(D+3F)(Mu+2ﬂ’s)y
4 1
77=0, RB"= g D(kut2uy), Yave=— ‘/_§DMU,
for the 7 loops.
APPENDIX B: THE EXPRESSIONS FOR Lg, F, Lq,
AND L,
Let us introduce the following notation
- Jm?—a?[ w/2— arctarfa/ ym’—a?)], m=a,
m,a) =
o(ma) =1 _ vaz—m? In[(a+ vya?—m?)/m], m<a,
(B1)
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wherea is an arbitrary parameter. Hereafter, the subscript N4 ) ) )
(X) is ignored. The functiorLy(m,\) obtained from the Ll(mvév)\):m (N°+2m"—26%)
Feynman integral for the graph 3ar 3¢ is then given by
)\2
—ON(M,ON) = 17— 5
A4 1 2
_ T2 2
Lo(m,N) (N2—m?)2 3()\ +2m*) + xz_szo(m,)\))- N N
(B2) (M =m*)(\*—m?+ 57
_ X | BmM2(A%2—m?)—6\26°
The functionF(m, §,\) obtained when calculating a Feyn-
man integral for the graph 1b is 2)\2—3m?
+—)\2_—m2—64)F0(m,)\) s (BS)
and
- A4
THMON = e [N(m"”) La(m,5.0)
5NZ+2m?  NZ+2m? 5 B 2\! (2 SVEAm. S o 1
e St ey 30— mer g7y 2T )R om0 i
NO A+2m
2 2 S AN 2y _ 2
+ ==+ &) (3(2)\ +3m°) + 200m) (N“+Am+4m°) T m )
X(A2=m?)—2(\2—6m?) 5 A2(N2—m?+ 6°) A
- 7_ 2 2_ 22
3m2 AT—m (Ae—m°)
+m54 Fo(m,)\) s (83)
X[3m2(A2—m?)— (2\?—3m?) 82]F o(m,\) |. (B6)
where When 6=0, Eq.(B3) gives
~ 4
F(m,0N)=— 30Fme’ (B7)
1
N(m,8,\)= =T ) [7A(A%+3m?—367) and it follows from Eqs(B5) and (B6) that
L oM=L 0N)=2L A
_2(3)\2+m2_§2)|:0(m,5)]' (B4) 1(m1 -)\) z(m, -)\) O(mv )
224 5 )
:m ()\ +2m )
Similarly, the functionsL,(m,8,\), and L,(m,d,\) arise )
from the Feynman integrals for the graphs(8b 3f) and 3c + 3Am Fo(mA) (B8)
(or 3d), respectively. We have AZ—m?2 OV
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