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Smallest Dirac eigenvalue distribution from random matrix theory
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We derive the hole probability and the distribution of the smallest eigenvalue of chiral Hermitian random
matrices corresponding to Dirac operators coupled to massive quarks in QCD. They are expressed in terms of
the QCD partition function in the mesoscopic regime. Their universality is explicitly related to that of the
microscopic massive Bessel kernel.@S0556-2821~98!03118-X#

PACS number~s!: 12.38.Aw, 05.45.1b, 12.38.Lg
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There has long been the attractive idea that the lo
energy physics of a complex system can be described
simple effective theory which respects the global symmet
of the original system. As an example, the quantum spec
statistics of a classically chaotic system is believed to
described by a random matrix theory belonging to the sa
universality class as the former@1#. One new manifestation
of essentially the same idea is the recent observation
QCD Dirac operator spectra on the scalel5O(1/V4) ~where
V4 is the space-time volume! measured in lattice Monte
Carlo simulations@2# are in excellent agreement with th
predictions from those large-N random matrix theories@3,4#
that share the same global symmetries as QCD. The suit
rescaled~microscopic! spectral correlation functions thu
seem to provide exact finite-size scaling functions for QC
in a finite volume. Very recently, the microscopic spect
correlators have been calculated from random matrix th
ries that include the effect of fermion determinants w
massesm.O(1/V4) @5–7# ~see also@8#!. Whenl andm are
measured in units of the mean level spacing at zero virt
ity, all the random matrix predictions turn out to be unive
sal, i.e., insensitive to the details of the random matrix
tential @4–6#. Although the question of whether or not QC
is included in the same universality class cannot be answ
by demonstrating the existence of the wide range of univ
sality within random matrix theories, it provides strong su
port for the former.

From the field-theoretic point of view@9# it would be
most surprising if these observables would not also be c
putable solely within the framework of finite-volume gene
ating functionals~partition functions! for the order paramete

^c̄c&. If not, large-N random matrix theory, which in prin
ciple is foreign to the pertinent field theory language, wou
seem to be a new ingredient required to describe the
served spectral correlators. It has recently been shown th
description entirely in terms of finite-volume partition fun
tions is indeed also possible@10#.

In order to confirm by numerical simulations that the lo
lying spectra of QCD Dirac operators can be described a
natively by large-N random matrix theories, it is in practic
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most convenient to measure the distribution of the smal
eigenvalue@2# and compare that to the random matrix pr
diction @11,7#. Since the smallest eigenvalue distributio
largely consists of the first peak of the microscopic spec
density~see Fig. 1,z[Nl), we expect it to be universal. In
fact, the proven universality of the massive kernels@5,6# of
~chiral! unitary ensembles of random matrices guarantees
universality of the hole probabilityE(s), i.e., the probability
that the interval@2s,s# is free of eigenvalues, and of th
smallest eigenvalue distributionP(s)52E8(s) because it is
related to the kernel via the Fredholm determinant form
@12#,

E~s!5det~12K̂ !. ~1!

Here, K̂ is an integral operator whose kernel is the micr
scopic massive Bessel kernel@Eq. ~17! below or its nonchiral
counterpart# over the interval@2s,s#. While other universal
statistical quantities such as the number varianceS2(s) and
the spectral rigidityD3(s) of the eigenvalues in the interva
@2s,s# are directly related to the kernel by integral tran
forms, the techniques required to compute~1! from the ker-
nel are rather involved. In the case of the universal~mass-

FIG. 1. Microscopic spectral density@solid line, normalized as
rs(z→`)51/p] and smallest eigenvalue distribution~dotted line!
for the quenched chiral unitary ensemble.
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less! sine kernel describing the bulk of unitary ensembles,
eigenmodes are given by the prolate spheroidal functi
whose eigenvalues are known. However, the massive ge
alization of these eigenmodes is difficult to construct. T
alternative technique of determiningE(s) as at function of
a system of integrable partial differential equations@13# does
not simplify the situation either. Consequently, the expli
calculation for the massive case has been done so far s
for the chiral Gaussian unitary ensemble@7#. The result con-
tains an explicit factor of exp(2z2/4) which at first sight is
due to the Gaussian potential. Since these results shou
universal, the identical factor should also arise from a
neric random matrix potential. How this happens is not i
mediately obvious and will be addressed in the sequel.
shall provide a concise method to circumvent the difficulty
explicitly evaluating~1! and to efficiently calculateE(s) for
the massive chiral unitary ensembles with generic potent

We define the partition function of the chiral unitary e
semble

Z~a!~$m%!5E dM e2Ntr v~M !)
f 51

a

det~M1 imf !, ~2!

whereM is a 2N32N block Hermitian matrix

M5S 0 W

W† 0 D , ~3!

dM is the Haar measure ofW, andv(M ) is an even analytic
function. The matrix M models the Dirac operator fo
SU(Nc>3) four-dimensional QCD (QCD4) in the Weyl ba-
sis, andN can be identified with the spacetime volumeV4 .
The integera corresponds to the number of flavors. The ca
of nonzero topological chargen can be treated by introduc
ing unu massless flavors@3#. One then hasa5Nf1unu,
where Nf is the number of ~massive! flavors and
mNf11 , . . . ,mNf1unu50.

The ~unnormalized! probability of having no eigenvalue
in the interval@2s,s# is given by

E~a!~s;$m%!5E
ueigenvaluesu>s

dMe2Ntr v~M !)
f 51

a

det~M1 imf !.

~4!

It is convenient to change the picture fromM to an N3N
positive definite Hermitian matrixH5W†W,

E~a!~s;$m%!5E
eigenvalues>s2

dHe2Ntr V~H !

3)
f

det~H1mf
2!

5E
eigenvalues>0

dHe2Ntr V~H1s2!

3)
f

det~H1s21mf
2!, ~5!
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whereV(z2)[2v(z). Hereafter we write

m85Am21s2. ~6!

We can express~5! in terms of an expectation valu
^•••&m8 with respect to the measure e2Ntr V(H)) fdet(H
1mf8

2),

E~a!~s;$m%!5

E
0

`

dH e2Ntr V~H1s2!)
f

det~H1mf8
2!

E
0

`

dH e2Ntr V~H !)
f

det~H1mf8
2!

3E
0

`

dH e2Ntr V~H !)
f

det~H1mf8
2!

5^e2Ntr „V~H1s2!2V~H !…&m8Z
~a!~$m8%!. ~7!

In the following we shall show that the two factors in Eq.~7!
are piecewise universal in the limitN→` with z5Ns and
m5Nm fixed finite.

Due to the large-N factorization of macroscopic correla
tion functions of U(N)-invariant operatorsO,O8 @14#,

^OO8&5^O&^O8&1OS 1

N2D , ~8!

the first factor of Eq.~7! is, in the large-N limit, approxi-
mated by

;e2N2^~1/N!tr „V~H1s2!2V~H !…&m8

;e2N2
„s2^~1/N!tr V8~H !&1O~s4!…. ~9!

Since the fermion determinant does not contribute to
macroscopic correlator in the large-N limit, we have dropped
the suffixm8.

Now we change the picture back toM , whose macro-
scopic spectral density isr(z)[^(1/2N)tr d(z2M )&
5R(z2)Aa22z2, where@2a,a# is the support of the spec
trum of M andR(z2) is an analytic function which depend
on the details ofv(M ) @4#. We obtain

Q[ K 1

N
tr V8~H !L 5 K 1

2N
tr

v8~M !

M L 5E
2a

a

dz r~z!
v8~z!

z
.

~10!

In terms ofr(z), the leading@of order O(N2)] part of the
action in Eq.~2! is written as

S5E
2a

a

dz r~z!2v~z!2E
2a

a

dzdwr~z!r~w!2P lnuz2wu.

~11!

The second term is the exponentiated Vandermonde dete
nant. By substituting the large-N saddle-point equation@15#
dS/dr(z)50, i.e.,

v8~z!22E
2a

a

dw r~w!P
1

z2w
50, ~12!
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into Eq. ~10!, we have

Q52E
2a

a

dz dwr~z!r~w!P
1

z
P

1

z2w
. ~13!

Using the identity 1/(z6 i e)5P(1/z)7 ipd(z) and taking
into account thatr(z) is even, we finally obtain

Q5E
2a

a

dz dwr~z!r~w!pd~z!pd~z2w!5„pr~0!…2.

~14!
gi-

-
o

d
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That is,

^e2Ntr „V~H1s2!2V~H !…&s,m8us5z/N →
N→`

e2„pr~0!z…2 ~15!

which, after the rescalingz→z/„2pr(0)…, universally reads
exp(2z2/4). This answers the question raised in the introd
tion how the Gaussian factor arises from a generic poten

We denote the microscopic limit of the partition functio
Z(a)($m%5$m/N%) by Z (a)($m%). It is related to the micro-
scopic kernel by the master formula@10#
kernel
re kept
K ~a!~z1 ,z2 ;m1 , . . . ,ma!5CAuz1z2u )
f

A~z1
21m f

2!~z2
21m f

2!
Z ~a12!~ i z1 ,i z2 ,m1 , . . . ,ma!

Z ~a!~m1 , . . . ,ma!
, ~16!

whereC is a normalization constant. This formula is reminiscent of the very definition of the partition function and the
@16# and is valid in the large-N limit, regardless of whether microscopic or macroscopic eigenvalue and mass variables a
finite.

Using the technique of orthogonal polynomials and rescalingz→z/„2pr(0)…,m→m/„2pr(0)…, the left-hand side is shown
to be universally given by@5#

K ~a!~z1 ,z2 ;$m%!5C
Auz1 z2u

z1
22z2

2

det1< i , j <a12Bi j ~z1 ,z2 ;$m%!

)
f

A~z1
21m f

2!~z2
21m f

2! det1< i , j <aAi j ~$m%!

, ~17!

Ai j 5m i
j 21I j 21~m i !, Bi j 5H Ai j ~ i 51, . . . ,a!,

~2z1,2!
j 21Jj 21~z1,2! ~ i 5a11,a12!,
d
e.
di-
e,

ni-
whereJ and I denote the Bessel function of real and ima
nary argument, respectively. Therefore, after continuingz
→2 im, we can deriveZ (2n)($m%) iteratively using Eq.
~16!, starting fromZ (0)51. Z (2n21)($m%) can be obtained
by decoupling one of the masses inZ (2n)($m%) by sending it
to infinity. In this way, one obtains universally

Z ~a!~$m%!5
det1< i , j <aAi j ~$m%!

det1< i , j <am i
2~ j 21!

, ~18!

which is identical to the finite-volume QCD partition func
tion as calculated from the chiral Lagrangian in the ‘‘mes
scopic’’ scaling limit @9,17#.

Both factors in Eq.~7! being universal, the normalize
hole probability

E~a!~z;$m%!5e2z2/4
Z ~a!~$Am21z2%!

Z ~a!~$m%!
~19!

as well as the smallest eigenvalue distribution@7#
-

P~a!~z;$m%!52
]

]z
E~a!~z;$m%!

5
z

2
e2z2/4

det1< i , j <aCi j ~$Am21z2%!

det1< i , j <aAi j ~$m%!
~20!

with Ci j ($m%)5m i
j 21I j 11(m i) are universal. As explained

above, the general case of nonzero topological chargen is
obtained by introducingunu massless flavors (a5Nf1unu).

Except for the Gaussian prefactor the expressions~19!
and~20! are explicitly given in terms of a finite-volume fiel
theory partition function in the mesoscopic scaling regim
This indicates that also these quantities can be derived
rectly from field theory in the mesoscopic scaling regim
without the bypass through random matrix theory@10#.

The hole probabilities for the chiral orthogonal (b51)
and symplectic (b54) ensembles are also related to the u
tary kernelK by formulas analogous to Eq.~1!,

E1~s!5det1/2~12K̂1!, ~21a!

E4~s!5 det1/2~12K̂4!. ~21b!
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Here,K̂1 and K̂4 are 2x2 matrix kernels given in terms ofK
@18,19#. Equations~21! as well as the relationships betwee
the kernels hold also in the presence of the fermion dete
nants. Hence, the smallest eigenvalue distributions for th
ensembles are also guaranteed to be universal. Howeve
plicit expressions forE1(s) andE4(s) are not known excep
for the massless chiral Gaussian/Laguerre case@20,21#. To
obtain these quantities for the corresponding massive
sembles, our method presented here needs modification
et

ak
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cause the mappingM°H involves a nontrivial Jacobian
(det H)b/221. This point will be discussed elsewhere.
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