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Smallest Dirac eigenvalue distribution from random matrix theory
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We derive the hole probability and the distribution of the smallest eigenvalue of chiral Hermitian random
matrices corresponding to Dirac operators coupled to massive quarks in QCD. They are expressed in terms of
the QCD partition function in the mesoscopic regime. Their universality is explicitly related to that of the
microscopic massive Bessel kerng$0556-282(98)03118-X]

PACS numbes): 12.38.Aw, 05.45+b, 12.38.Lg

There has long been the attractive idea that the lowmost convenient to measure the distribution of the smallest
energy physics of a complex system can be described by eigenvalug 2] and compare that to the random matrix pre-
simple effective theory which respects the global symmetriesliction [11,7]. Since the smallest eigenvalue distribution
of the original system. As an example, the quantum spectrdargely consists of the first peak of the microscopic spectral
statistics of a classically chaotic system is believed to belensity(see Fig. 1/=N\), we expect it to be universal. In
described by a random matrix theory belonging to the saméact, the proven universality of the massive kerri@®] of
universality class as the formgt]. One new manifestation (chiral) unitary ensembles of random matrices guarantees the
of essentially the same idea is the recent observation thamiversality of the hole probabilit(s), i.e., the probability
QCD Dirac operator spectra on the scate O(1NV,) (where  that the interval —s,s] is free of eigenvalues, and of the
V, is the space-time volumemeasured in lattice Monte smallest eigenvalue distributid?(s) = —E’'(s) because it is
Carlo simulationg[2] are in excellent agreement with the related to the kernel via the Fredholm determinant formula
predictions from those largd-random matrix theorieg3,4]  [12],
that share the same global symmetries as QCD. The suitably
rescaled(micr_oscopia spe_ctral_ correlz_:\tion fun_ctions thus E(s)=de(1—R). 1)
seem to provide exact finite-size scaling functions for QCD
in a finite volume. Very recently, the microscopic spectral A ) ) )
correlators have been calculated from random matrix theoH€re, K is an integral operator whose kernel is the micro-
ries that include the effect of fermion determinants with SCOPIC massive Bessel kerrié. (17) below or its nonchiral
massesn=0(1N,) [5—7] (see alsd8]). When\ andm are  counterpartover the interval —s,s]. While other universal
measured in units of the mean level spacing at zero virtuaiStatistical quantities such as the number varianés) and
ity, all the random matrix predictions turn out to be univer- the spectral rigidityA;(s) of the eigenvalues in the interval
sal, i.e., insensitive to the details of the random matrix pol —$.s] are directly related to the kernel by integral trans-
tential[4—6]. Although the question of whether or not QCD forms, the techniques required to comp(tg from the ker-
is included in the same universality class cannot be answerdd¢! are rather involved. In the case of the universahss-
by demonstrating the existence of the wide range of univer-
sality within random matrix theories, it provides strong sup- R
port for the former.

From the field-theoretic point of viey9] it would be . \ 3
most surprising if these observables would not also be com- I S N A N - s
putable solely within the framework of finite-volume gener- 03 E
ating functionalgpartition functions for the order parameter

0.4 E— \ p.(() —i

— 0.2 - 3
(). If not, largeN random matrix theory, which in prin- b K 3
ciple is foreign to the pertinent field theory language, would o1 F % P(¢) 3
seem to be a new ingredient required to describe the ob- ]
served spectral correlators. It has recently been shown that a ol L 1 1

. . . .. " (4] 2 4 6 8 10
description entirely in terms of finite-volume partition func- ¢

tions is indeed also possibfé&Q].

In order to confirm by numerical simulations that the low-  FIG. 1. Microscopic spectral densifgolid line, normalized as
lying spectra of QCD Dirac operators can be described alterp(;—)=1/x] and smallest eigenvalue distributigdotted ling
natively by largeN random matrix theories, it is in practice for the quenched chiral unitary ensemble.
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les sine kernel describing the bulk of unitary ensembles, itsvhereV(z?)=2v(z). Hereafter we write

eigenmodes are given by the prolate spheroidal functions

whose eigenvalues are known. However, the massive gener- m’=ym*+s°, (6)
alization of these eigenmodes is difficult to construct. Th
alternative technique of determinirig(s) as a7 function of

a system of integrable partial differential equatipb3] does
not simplify the situation either. Consequently, the explicit
calculation for the massive case has been done so far solely o

for the chiral Gaussian unitary ensempfd. The result con- dH e N VHSSOTT de(H+m;?)
tains an explicit factor of expf{%4) which at first sight is E(@(s;{m})= f
due to the Gaussian potential. Since these results should be '
universal, the identical factor should also arise from a ge-

neric random matrix potential. How this happens is not im-

mediately obvious and will be addressed in the sequel. We

shall provide a concise method to circumvent the difficulty in

explicitly evaluating(1) and to efficiently calculat&(s) for

e\Ne can expresg5) in terms of an expectation value
(--)m with respect to the measure ¥ V(I det(H
+mg?),

J dH e NTVITT de(H+m;?)
0 f

xJ dH e N VTT detH+m;?)
0 f

the massive chiral unitary ensembles with generic potentials. =(e NV (V(H+sz>fV<H>)>m,Z<a>({mr})_ (7)
We define the partition function of the chiral unitary en-
semble In the following we shall show that the two factors in E@)

are piecewise universal in the limiM— o with {=Ns and
« u=Nm fixed finite.
Z(‘”({m}):f dM efN"”(M)H detM+imyg), (2 Due to the largeN factorization of macroscopic correla-
=t tion functions of UN)-invariant operator$, 0’ [14],

whereM is a 2N X 2N block Hermitian matrix 1
00"Y=(0O)0O")+0| —|, 8
0w ( ><><>(N2> ®
the first factor of Eq.(7) is, in the largeN limit, approxi-
dM is the Haar measure &Y, andv (M) is an even analytic mated by
function. The matrixM models the Dirac operator for — @ NH(UN)tr (V(H+52)=V(H))
SU(N.=3) four-dimensional QCD (QCBH in the Weyl ba-
sis, andN can be identified with the spacetime volurvg. — o NASX(IN)tr V' (H))+O(s%) @)

The integerx corresponds to the number of flavors. The case
of nonzero topological charge can be treated by introduc- Since the fermion determinant does not contribute to the

ing |»| massless flavorg3]. One then hase=N;+|v[,  macroscopic correlator in the largelimit, we have dropped

where N; is the number of (massive flavors and the suffixm’.

MN+10 - - N+ = 0. Now we change the picture back td, whose macro-
The (unnormalizedl probability of having no eigenvalues scopic spectral density isp(z)=((1/2N)tr §(z—M))

in the interval[ —s,s] is given by =R(z?) Ja?—Z?, where[ —a,a] is the support of the spec-

trum of M andR(z?) is an analytic function which depends

“ on the details of (M) [4]. We obtain
E@(s;{m})= dMe Nre MO TT de(M +imy). (M) 14]
o1

|eigenvaluels=s B 1 , 1 v’ (M) a v'(2)
(4) Q=<NtrV(H)>=<mtr N >:jad2p(z)T.

It is convenient to change the picture fravh to an NXN (10
positive definite Hermitian matrisd =W'W,

In terms ofp(z), the leading[of order O(N?)] part of the
action in Eq.(2) is written as

E(s;{mh= [ ,dHe NV . .
elgenvalues:s s:f dz p(Z)ZU(Z)—f dzdw p(2)p(W)2P In|z—w].
—a —a
XH de(H+m?) (11)
The second term is the exponentiated Vandermonde determi-
:f dHe Ntr V(H+s?) nant. By substituting the largd-saddle-point equatiofi5]
eigenvalues 0 §S/5p(2) =0, i.e.,
a 1
XH de(H+s?+m?), (5 v’(z)—zf dw p(w)Pﬁ:O, (12
—a
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into Eq. (10), we have That is,
a 1 1 2 N—o 2
QZZJ_adZ de(Z)p(W)PE Pﬁ (13 <e_NU (V(H+s )_V(H))>S,m'|s=§/N — @ (@p(0))) (15)
Using the identity 1/£=ie)=P(1/z)Fiwd(z) and taking which, after the rescaling— ¢/(27p(0)), universally reads
into account thap(z) is even, we finally obtain exp(—£%/4). This answers the question raised in the introduc-
tion how the Gaussian factor arises from a generic potential.
fa 2 We denote the microscopic limit of the partition function
= dz dwp(2)p(W)7d(2)md(z— W)= 0))-.
Q -a p(Dp(W)mo(zZ)m&( )=(mp(0)) Z@my={u/N}) by Z(({u}). Itis related to the micro-

(14 scopic kernel by the master formyla0]

Z(a+2) i ,i 7 o a)
KL, Eaiprs - eg) =CN| 18] H ‘/(§i+l’“%)(§§+#%) ((ofl Lo, yn
! Z8N( @y, e ahg)

whereC is a normalization constant. This formula is reminiscent of the very definition of the partition function and the kernel
[16] and is valid in the larg®¥ limit, regardless of whether microscopic or macroscopic eigenvalue and mass variables are kept
finite.

Using the technique of orthogonal polynomials and rescaling/(2mwp(0)), u— u/ (27wp(0)), the left-hand side is shown
to be universally given by5]

: (16)

VIZ1 &l det<i j<a+2Bij({1,¢2:{u})

K(a)(g]JgZ!{/‘l’}):C gz_gz ’ (17)
202 I V(G pD(£5 f) detia o ({e])
A= j_ll ) B.— A” (i=1,...,a),
=k el BT )it ) (=atlat2),
|

whereJ and| denote the Bessel function of real and imagi- J
nary argument, respectively. Therefore, after continuing P(“)(é“;{,u}):—&—gE(“)(&{M})
——iu, we can deriveZ®V({u}) iteratively using Eq.
(16), starting fromz@=1, 2z~ ,1) can be obtained ¢ pdetiai j=aCi ((Wu?+ 8%
by decoupling one of the massesan®”({u}) by sending it =5¢ det_; ;oA ({i]) (20)

to infinity. In this way, one obtains universally

with C;;({u})=p! M. 1(ui) are universal. As explained
above, the general case of nonzero topological charige
obtained by introducingv| massless flavorsa(= N;+|v|).

Except for the Gaussian prefactor the expressidrés
and(20) are explicitly given in terms of a finite-volume field
theory partition function in the mesoscopic scaling regime.
This indicates that also these quantities can be derived di-
rectly from field theory in the mesoscopic scaling regime,
without the bypass through random matrix theptg].

The hole probabilities for the chiral orthogongB£1)
and symplectic $=4) ensembles are also related to the uni-
tary kernelK by formulas analogous to E¢l),

det<j j<.Aij({u})
det<; j<qufi ™

2 ({uh)= (18)

which is identical to the finite-volume QCD patrtition func-
tion as calculated from the chiral Lagrangian in the “meso-
scopic” scaling limit[9,17].

Both factors in Eq.(7) being universal, the normalized
hole probability

ZO{pt+ %)
E(a)( z- —g A 1 .
(L{uh)=e Z D) (19) E,(s)=def’2(1-K,), (213
as well as the smallest eigenvalue distributi@h E4(s)= det’2(1—K,). (21b)
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Here,K,; and K, are 2x2 matrix kernels given in termsigf ~ cause the mapping/—H involves a nontrivial Jacobian,
[18,19. Equations(21) as well as the relationships between (det H)#2~%. This point will be discussed elsewhere.

the kernels hold also in the presence of the fermion determi- . .

nants. Hence, the smallest eigenvalue distributions for these T-W. would like to thank T. Guhr and T. Wilke for useful
ensembles are also guaranteed to be universal. However, efiscussions. S.N. was supported in part by the Nishina Me-
plicit expressions foE;(s) andE,(s) are not known except Mmorial Foundation and by NSF Grant no. PHY94-07194.
for the massless chiral Gaussian/Laguerre ¢a8e¢21. To  P.D. was supported in part by European Community TMR
obtain these quantities for the corresponding massive ergrant no. ERBFMRXCT97-0122. T.W. was supported in part
sembles, our method presented here needs modification bey DFG grant We 655/11-2.
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