PHYSICAL REVIEW D, VOLUME 58, 087703

Traversable wormhole with classical scalar fields
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We study Lorentzian static traversable wormholes coupled to quadratic scalar fields. We also obtain solu-
tions of the scalar fields and matter in the wormhole background and find that the minimal size of the
wormhole should be quantized under the appropriate boundary conditions for the positive nonminimal massive
scalar field[S0556-282(98)07018-0

PACS numbd(s): 04.20.Gz, 03.50.Kk

One of the most important issues in making a practically W+ (o)
usable Lorentzian wormhole is the traversability2]. To Guv=Ruy= 59, R=87T,,=8n(T,, +T,5), (4
make a Lorentzian wormhole traversable, one has usually
used exotic matter, which violates the well-known energy, here T%) is the stress-energy tensor of the background

logiont el s ronue oxmtit matior o be tivareapnatter that makes the traversable wormhole. Assuming a
N : spherically symmetric spacetime, one finds the components
and to maintain its shapes]. It is known that the vacuum b y sy P P

W) ; i
energy of the inflating wormhole does not change the sign o?f TM in orthonormal coordinates
the exoticity function. A traversable wormhole in the

14

- . (W) _ (W) _ (W) _
Friedmann-Robertson-WalkeglFRW) cosmological model, T =p(rt), T'=—7(rt), Ty =P(rt), (5
however, does not necessarily require exotic matter at very
early times[4]. wherep(r,t),7(r,t) andP(r,t) are the mass energy density,

In this paper, we investigate the compatibility of a staticradial tension per unit area, and lateral pressure, respectively,
wormhole with a minimal and a positive nonminimal scalaras measured by an observer at a fixed, ¢.
field. We also obtain the solutions to the matter and scalar The metric of the static wormhole is given by
fields in a wormhole background. Furthermore, we find that dr?
the minimum size of a wormhole should be quantized when A q+2 20 102 1 o 2
appropriate boundary conditions are imposed for the non- ds’=—e"dt +1—b(r)/r +r(d6%+sin6dg?).
minimal massive scalar field. (6)
Firstly, we study the simplest case of a static Lorentzian
wormhole with a minimal massless scalar field. The addi-The arbitrary functions\(r) andb(r) are lapse and worm-

tional matter Lagrangian due to the scalar field is given by hole shape functions, respectively. The shape of the worm-
hole is determined bip(r). Besides the spherically symmet-

1 ric and static spacetime, we further assume a zero-tidal-force

L= E\/—_gg"‘"gom(p;,, (1) as seen by a stationary observi(r) =0, to make the prob-
lem simpler. Thus not only the scalar field but also the
matterp,7, and P are assumed to depend only onThe

and the equation of motion fap by components off () in the static wormhole metri¢6) have

the form
Oe=0. (2)
b
The stress-energy tensor feris obtained from Eq(1) as Tit‘")=§< 1- ?) ¢'? (7)
(@) — 1 po 1

T,LV_(P;;/.(P;V_ Eg,uvg P pPio- (3) Tl(f;p)ZE(PrZ, (8)

Now the Einstein equation has an additional stress-energy 1 b
tensor(3) Tf;;;): _ Zrz( 1— F) 2 9)
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where here and hereafter a prime denotes the differentiation Te(1)ocr ~2(1+3PI(1+25) (23
with respect tor. In the spacetime with the metri6) and
A =0, the field equation of becomes 1
b(ryecr¥1+28)  p<— . (24)
¢ 1(1-blr) 2 . b 2

—I+EW+F:0 or r4cp' l_F =C0nSt,
@ Since the scalar field effects change just' by the field

(19 equation(11), the matter is given by
and the Einstein equations are given explicitly by
p~r72(1+3[3)/(1+2,8)+r74, (25)
— 12 _
ﬂ_rz—p(f,t)ﬂLz(P (1 r)’ (12 Fop—21+3B)(14+28) | —4 26)
1, Onceb(r) is known to depend on a specific value ®f we
=T —5e 1=+, (13)  can integrate Eq(11) to obtain
87r r
’ dr
b—b’'r 1 b
- —To2f1-2 @(r)ocf—- (27)
1677-['3 P(r,t) 2§D (l r). (14) r2 | 1_b(r)/r)
By redefining the effective matters by For example, wherb=b3/r, where 3=—1 andb, is the
1 b minimum size of the throat of the wormhole, we obtain that
Peﬁ:P+_¢,2(1__)i (15
2 r b
@=¢p| 1—arccos— (28
r
1, b
Teff =T~ 5 ¢ 1- ik (16 . -
by assuming the boundary condition that>0, <p|r:b0

1 b =¢qy, and lim_.,¢=0. Thus the scalar field decreases
Pe=P— _¢'2( 1— _), (17) monotonically, i.e.¢’ <0, and the matter hgs, 7,Por 4.
2 r Secondly we consider a general quadratic scalar field,

we are able to rewrite the Einstein equations as whose stress-energy tensor is given by

b’ —(1— 1 a
W:peﬁ, (18) T,uv_(l 2§)¢;MQD;V+ 2% 2 g/.LV(P;a(P
1 2
b 2809, 280,900+ & R = 50,R 0
8 r3 = Teffs (19)
a
1
- Engwwz, (29
b—b'r
=Pes. (20
1 3
G where £&=0 for minimal coupling andé=3 for conformal

Thus one sees that the conservation law of the effectivé:OUp“ng' The mass of the field is given by. The field

. equation forg is
stress-energy tensarly + T(¢) still obeys the same equa- q ¢

tion: (O-m?—¢R)e=0. (30)

2
Terit T (Tert ™ Peir) =0 (21 For a nonminimal coupling there is a curvature effect of
wormhole background t@,, and¢. The scalar curvature in

We now find the solutions of scalar field and matter. Tothe metric(6) with A=0 is given by
determine the spatial distributions b{r),p(r),=(r),P(r),
and ¢(r), we need one more condition for them such as the 2b’
equation of state, Pgy=Bpeis- With the appropriate =—0
asymptotic flatness imposed we find the effective matter as
functions ofr [4]

- 3D

and the components of the stress-energy tensor for the scalar
pe(r)ocr ~2(LF3BI(A+25) (220 field by
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T =(1-4¢) : 1—E @'2+ 3m2+gb—/ @2 (32
tt 2 r 2 r2 ’
TP= o2y g [1-2 B SR P 33
o thErele— |1+ §r—3 M ¢%, (33
b 1 2b’ b b} 1
() — _ _ T2, 12 ’ 2 2 - I I ) 2
Ty (1 r)[(Zg 2)[‘(,0 2¢ro | +| 2¢r m+§r2)+§(2r 2) 2mr ©°, (39
TY) =Ty sinfo. (35
As in the minimally-coupled case, we are also able to find the redefinition of the effective matter
_ 1 b 12 1 2 , 2
peri=p+(1=48) 5| 1= —|¢""+| 5m +§r—2 ¢, (36)
1, b 4 b\ | b 1 .},
Tet=T—5¢ | 1=/ =& 1= 7] e §r—3+§m ®°, (37
Per=P+|1 b 2 A PRERPL I +|2 24+ 20’ + b o' L2 g2 38
eff = C[|2675]e —Eree §lm+¢ 2 3 o3 o2 2™ [¢ (38

One has the same solution to the equation of the effective To find the exact solution to the scalar field, we rewrite
matter as Eqs(22)—(24) with the same equation of state. the field equatior(39) as
However, one has a more complicated scalar field equation

( b
1_ —
r
where s=[r"2(1-b/r)"Ydr and f(s)=r?(s)(m?
From the wormhole shape functido~rY(*2%) with the  +2¢b’(s)/r%(s)). One may interpret Eqi42) as a Schie
same equation of state.s= Spes, the asymptotic form of dinger equation with zero energy, which is, however, not
the field can be calculated near the throat and at infinity: easy to solve in general. When= ¢=0, the field equation
becomes just the minimal massless case and the solution is

: d’e de
m2+2§?_2)¢_ o TR =S~ f(5)e=0, @42

’
(P//+ 1_9 (PI+_
r r

) I
r

exp km?r 21381+ 26)] @~s, which is given by Eq(27). For the general case, we
¢ r =268 can make use of the analogy with a bounded potential prob-
lem in the regionryo<r<®= or 0<s<s;, whererg is the
exp(km?/ pegr) place of the throat. In this region, we can find the asymptotic
~ FT’ﬁ at r—b values of potentiaf(s) and ¢ as
~e™™  at r—oo, (40) lim f(s)<0, lim ¢~0, (43
r—rgo or s—0 r—rgor s—0

wherek=(1+28)2/[2B(1+38)]b, 2#A*2A)  For the spe-

cial case of=—1, i.e.,,b=b3/r, the scalar field has the lim  f(s)=c0, lim  ¢~0, (44
asymptotic form near the throat r—e ors—sg r— or s—sg
NeXp(kmzf‘l) ot rb 1) if m?+2¢b’(s)/r?<0 near the throat om?r3+2¢b’(0)
@ r2¢ ' <0. Otherwise, there is no solution & The bounded po-

tential shows that one parameter should be quantized. Which
wherek— 1/4b,. The scalar field begins to increase from the parameter is quantized?
throat very rapidly withr, but decreases exponentially at We consider the specific case & b3/r as above. Then
infinity. the field equation becomes
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d?e 2_ ?h2sed _
Eﬂngo—m bgse€(bgs)]¢=0, (45)

wheres= (1/bg)arccosby/r). First, the massless scalar field
has the solution

0= @ocog\2¢bys) = goocos{ J2¢ arcco% %) } . (46)
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with x2=2mb3s? and A= (26— m?b3)/(2mby). The solu-
tion is the harmonic wave functioanze‘xz’an(x), the
Hermite polynomial. From the energy quantization, we get
mby=2n+1++(2n+ 1)?+2¢, wheren is an odd number.
From this result we may conclude thgmg or the minimal
size of the wormhole should be quantized for the nonmini-
mal positive couplingé>0, including the conformal cou-
pling £=1/6.

In this paper we found the solutions of the wormhole with
minimal and nonminimal scalar fields. For a positive non-
minimal massive scalar field case we find that the size of the

Second, in the massive case, however, one has the enerfjyoat, the minimal size of the wormhole, should be quan-

parameterE=2¢b? and the potentiaV=m?b3seé(bgs).
The relationE>V or 2¢£>m?b3 must be satisfied to guaran-
tee a bounded solution. For small that is the region near
the throat, Eq(45) is approximately the harmonic oscillator
problem

d2
(A —x%) =0 47)
dx?

tized in order to have the scalar field solution satisfying the
appropriate boundary conditions. We also find the solutions
to the matter and the scalar field in each case.
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