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Relationship between the comma theory and Witten’s string field theory
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The comma representation of interacting string field theory is further elucidated. The proof that Witten’s
vertex solves the comma overlap equations is established. In this representation, the associativity of the star
algebra is seen to hold. The relationship of the symmetryK in the standard formulation of Witten’s string field
theory to that in the comma theory is discussed.@S0556-2821~98!07618-8#

PACS number~s!: 11.25.Sq
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I. INTRODUCTION

It has been first suggested by Witten@1# that it is may be
possible to formulate string field theory as an infinite dime
sional local matrix algebra. This suggestion leads to the
mulation of string field theory as more or less a generali
tion of Yang-Mills theory of an extended object, known
the ‘‘comma’’ theory @2#. In @3,4# a Fock space realizatio
~operator construction! of the comma theory was obtained b
writing down the overlap equations that follow from the fo
mulation of the theory in comma language. In the langua
of matrices, vertices were written as traces and the exp
form of Witten’s vertex was regained after integrating o
the midpoint degrees of freedom. However, the ambigu
related to the midpoint1 was not settled. One was not su
how to view the midpoint,x(p/2)„w(p/2)…, since it was
common to both formulations of string field theory~i.e., Wit-
ten’s theory and the comma theory!. Because of this prob
lem, one was not able to show directly that Witten’s vertex
indeed a solution of the comma overlaps and, therefore,
was not clear about the precise nature of the relations
between the two theories. Investigation of other proble
~such as midpoint ghost insertions! required for theK and
Becchi-Rouet-Stora-Tyutin~BRST! symmetries in the origi-
nal theory, were made cumbersome by the need to use
full string formulation at some stages of the investigation.
overcome these problems and to give a direct proof that
Witten’s vertex is indeed a solution of the comma overla
we need to modify the comma definition employed in@3,4#
~more in the line of Ref.@1#!. The modified comma coordi
nates are defined through the relations

x r~s!5H X~s! if r 51,
X~p2s! if r 52,

sPF0,
p

2 D .
~1.1!

*Also at IFIC, Centro Mixto Universitat de Valencia-CSIC.
1Another approach in which the midpoint plays a central role

been discussed in Ref.@5#, although in a different context from
Refs.@3, 4#.
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Note that the only difference between this new definition
the comma and that in Ref.@3,4# is the exclusion of the
midpointx~p/2!. These coordinates are subjected to the c
straint

lim
s→p/2

xL~s!5 lim
s→p/2

xR~s!. ~1.2!

This is in the spirit of the Witten string field theory~WSFT!
developed in Ref.@1#. X(s) are the full string coordinates a
fixed time t50 ~space-time indices will be suppresse
throughout the paper!. In this modified approach to the
comma, the midpoint is excluded from the degrees of fr
dom and is used to constrain the emerging system~i.e., the
comma degrees of freedom!. The Fourier expansion att
50 of the full string coordinateX(s) is given by

X~s!5X01&(
n51

`

Xn cosns, sP@0,p#.

If one expands the comma coordinates~1.1! in a Fourier
series, then they can be related to the full string coordina
The comma boundary conditions are dictated by the bou
ary conditions of the full string and the comma definitio
Choosing an even extension to the interval~p/2,p#, only the
even modes in the Fourier expansions of the comma coo
nates survive. Hence,

x r~s!5x0
r 1&(

n51

`

x2n
r cos 2ns, sP@0,p/2!, ~1.3!

where

x0
r 5X01~2 !r

2&

p (
n51

`
~2 !n

2n21
X2n21 ,

x2n
r 5X2n12~2 !r (

n51

`

B2n 2m21X2m21 , ~1.4!s
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and r 51,2 refers to the left~L! and right ~R! parts of the
string,2 respectively. The change of representation matrix~B!
is given by

Bnm5
~2 !n1m11

p S 1

n1m
2

1

n2mD . ~1.5!

Equation~1.4! can be solved forXn(n>0) with the help of
the identities

(
n51

`

B2n 2k21B2n 2m215
1

4
dkm ,

(
k51

`
2m

2k21
B2n 2k21B2k21 2m52

1

4
dnm . ~1.6!

Hence,

X2n5
1

2 (
r 51

2

x2n
r , n>0,

X2n215(
r 51

2

~2 !r 11 (
m51

`
2m

2n21
B2n21 2mx2m

r , n>1.

~1.7!

However, in the second relation of Eq.~1.7!, there are redun-
dant degrees of freedom. Now, the constraint on the com
modes~1.2! can be explicitly solved and what results are t
modes with no subsidiary condition. Hence, one gets

X2n215
&

p

~2 !n

2n21 (
r 51

2

~2 !rx0
r

1(
r 51

2

~2 !r (
m51

`

B2m 2n21x2m
r , n>1, ~1.8!

for the second equation in Eq.~1.7!. The comma modes
(x2n

r ) have been treated so far as classical objects. There
many ways to quantize a system~of course all of them are
equivalent!. A standard method is to interpret the oscillat
modesx2n

r as q-operatorsand define their conjugate mo
menta,`2n

r 52 i ]/]x2n
r , satisfying

@x2n
r ,`2m

s #5 id rsdnm . ~1.9!

These operators are easily related to the full string opera
ones using Eqs.~1.7!. Thus

2Throughout the paper we will refer to the left and right parts
the string by 1 and 2, respectively; however to make things m
transparent and to avoid confusion, sometimes we may refer to
left and right parts of the string by the lettersL andR, respectively.
When dealing with more than one string, the indices may beco
confusing; therefore indices referring to the parts of the string w
always be written as superscripts, while those labeling the st
will be written as subscripts whenever possible.
08600
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`0
r 5

1

2
p01&

~2 !r

p (
n51

`
~2 !n

2n21
p2n21 ,

`2n
r 5

1

2
p2n1~2 !r (

m51

`

B2n2m21p2m21 , n>1.

~1.10!

They satisfy the desired commutation relations as can
verified using the identities in Eq.~1.6!. The inverse relations
are given by

p2n5(
r 51

2

`2n
r , n>0,

p2n215
2&

p

~2 !n

2n21 (
r 51

2

`0
r

12(
r 51

2

~2 !r (
m51

`

B2m2n21`2m
r , n>1.

~1.11!

We will focus our attention on the orbital part, the treatme
for the ghost part follows the same line. Now the Fock spa
of the comma theory~where the degrees of freedom for le
and right sectors of the string live in different Fock spaces! is
easily constructed. One introduces the operatorsbn

r and
bn

r†(r 51,2,n>1) satisfying

@bn
r ,bm

s†#5d rsdnm . ~1.12!

It is possible to introduce such operators in the usual way
taking the appropriate combinations of the position and m
mentum operators, namely,

b0
r 52 i S x0

r 1
i

2
`0

r D , bn
r 52 iAn

2 S x2n
r 1

i

n
`2n

r D .

~1.13!

The creation operators (bn
r† ,n>0) are given by the same

expressions with (i
2 i ). It can be checked that these o
erators satisfy the required commutation relations. Introd
ing the comma vacuau0& r(r 51,2), satisfying

bn
r u0& r50, r 51,2 and n>1,

one obtains the Fock space3 corresponding to each comm
~half string! by repeated application of the comma creati
operators on the comma vacua. The annihilation and crea
operators in the comma theory (bn

r ,bn
r†) when related to the

conventional annihilation and creation operators (an ,an
†)

give

f
e
he

e
ll
g 3The complete space on which the comma states reside is give
the tensor product~completion!, H1

^H2.
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b0
r 5

1

4
~3a02a0

†!1
~2 !r

2p (
n51

`
~2 !n

~2n21!3/2 $@41~2n21!#a2n212@42~2n21!#a2n21
† %,

bn
r 5

1

&
a2n1

~2 !r 11

)
(

m51

`
2m21

2n
1/2@A2m212na2m212S2m212na2m21

† #, ~1.14!

where

S A2m212n

S2m212n
D5B2m212n7B2n2m21 ,

and b0
r† , bn

r† are given by the same expressions withan
an
† . Now it is important to make sure that these relations

consistent with the constraint in the definition of the commas. Rewriting the constraint, Eq.~1.2!, in the comma annihilation-
creation basis, we have

(
r 51

2

~2 !r 11~b0
r 2b0

r†!522(
n51

`
~2 !n

An
(
r 51

2

~2 !r 11~bn
r 2bn

r†!, ~1.15!

which can be easily verified to hold in the annihilation-creation basis of the full string using the following identity:

c~x!2c~y!5 (
n50

` S 1

y1n
2

1

x1nD ,

and the fact thatc( 1
2 2n)5c( 1

2 1n) for n integer. The inverse relations of Eq.~1.14! are given by

a05(
r 51

2 S 3

4
b0

r 1
1

4
b0

r†D , a2n5
1

&
(
r 51

2

bn
r , n>1,

a2n215
1

&
(
r 51

2

~2 !rS 1

&p

~2 !n

~2n21!3/2 $@~2n21!14#b0
r 2@~2n21!24#b0

r†%

2 (
m51

` S 2n21

2m D 1/2

@A2n212mbm
r 1S2n212mbm

r†# D , ~1.16!

with an
† given by the same expressions withbn

r
bn
r† . It is not hard to see, using the properties of the matrixB and the

commutation relations for the comma operators defined earlier, that the standard commutation relations for the ann
creation operators~a anda†! are indeed satisfied.

II. COMMA VERTICES

In the comma formulation of string field theory, the elements of the theory are defined byd-function type overlaps. TheN
interaction vertex is given by

V@x1
r ,x2

r ,...,xN
r ,w r #5eiQw~f/2!)

i 51

N

)
s50

p/2

d„x i
1~s!2x i 21

2 ~s!…d„w i
1~s!2w i 21

2 ~s!….

The indexi refers to thei th string~it is understood thati 50 andN are identified!. The ghostd function have the same structur
as the coordinates ones andQw is the ghost number insertion. In the oscillator Hilbert space of the comma theory,d
functions, for the coordinates,4 translate into operator overlap equations, namely

@x i
L~s!2x i 21

R ~s!#uVN&50, sP@0,p/2!, ~2.1!

and i 51,2,...,N. In addition, conservation of momentum requires

4The ghost degrees of freedom, in the bosonized representation, have the same structure apart from some mid-point insertions
be addressed later.
086003-3
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A. ABDURRAHMAN AND J. BORDES PHYSICAL REVIEW D58 086003
@` j
L~s!1` j 21

R ~s!#uVN&50. ~2.2!

These are now the overlaps defining equations for
comma vertices. Now we are in position to construct
explicit form of the comma vertices. We will start with th
caseuV1&, since it is the identity vertexuI& with respect to
the * in Witten’s string field theory. ForN51, we have

@x1~s!2x2~s!#uI &50,

@`1~s!1`2~s!#uI &50,

where the superscripts 1 and 2 refer to the left and right p
of the string, respectively. In terms of the oscillator mod
the above overlaps result in

(
r 51

2

~2 !r 11~bn
r 2bn

†r !uI &50,

(
r 51

2

~bn
r 1bn

†r !uI &50.

It is trivial to solve the above equations, assuming thatuI& has
the form

uI &5e2~1/2!~b†uIub†!u0&1u0&2,

then it is clear that

Inm
rs 5~d r 11s1ds11r !dnm

solves the above overlaps. The casesN>2 are simplified if
one rewrites the overlaps in terms of complex coordina
Following Gross and Jevicki@6#, we define

Qk
r ~s!5

1

AN
(
l 51

N

x l
r~s!e2p i lk /N, r 51,2,

and similar ones for the momenta. The corresponding
ation and annihilation operators are defined similarly a
~for N>3! satisfy the commutation relations

@Bn
r ,B2m

s #5d rsdnm , @Bn
r ,B2m

s #50.

The advantage of this new set of variables is that it lead
the separation of degrees of freedom in the overlap eq
tions. For the caseN52, the overlaps now are simply

Q1
L~s!52Q1

R~s!, sP@0,p/2!,

Q2
L~s!5Q2

R~s! , sP@0,p/2!. ~2.3!

These two equations are the same as the overlaps fo
identity vertex ~apart from a ‘‘2’’ sign in the first one!.
Hence, the form of the vertex follows immediately from th
form of the identity vertex. It is simply
08600
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uV2&5e2~1/2!~B2
†uIuB2

†
!1~1/2!~B1

†uIuuB1
†
!)
i 51

2

u0& i
1u0& i

2

or, in the original creation operators (bn
r†),

uV2&5e2( i 51
2 bL

in
† bR

i 21
†

)
i 51

2

u0& i
Lu0& i

R .

Next we consider the caseN53. In the complex coordinates
the overlap conditionsx j

L(s)5x j 21
R (s) for the three string

vertex read

QL~s!5e2p i /3QR~s!, sP@0,p/2!,

Q3
L~s!5Q3

R~s!, sP@0,p/2!,

where Qr(s)[Q1
r (s)5„Q3

r (s)…. For the complex mo-
menta, the overlap conditions̀j

L(s)52` j 21
R (s) translate

into

PL~s!52e2p i /3PR~s!, sP@0,p/2!,

P3
L~s!52P3

R~s!, sP@0,p/2!,

where Pr(s)[P1
r (s)5„P3

r (s)…. The vertex
V3(b1

r† ,b2
r† ,b3

r†), therefore, separates into a product of tw
pieces depending onB3

r† and onBr†5B1
r† , Br†5B2

r† , re-
spectively. The first factor is identical to that inuI&. Thus, one
has

uV3&5expS 2
1

2
~B3

†uIuB3
†!2~B†uHuB†! D)

i 51

3

u0& i
1u0& i

2,

whereI is the same as that foruI& andH is an infinite di-
mensional matrix to be determined. In order to determineH,
we first note that the overlap conditions onQr(s) andPr(s)
imply that their Fourier components satisfy

@Q2n
L 2e2p i /3Q2n

R #uV3&50,n>0

@P2n
L 1e2p i /3P2n

R #uV3&50,n>0. ~2.4!

As well as their complex conjugates. Applying these eq
tions to the three vertex yields

~Hkn
rL2e2p i /3Hkn

rR!1~d rL2e2p i /3d rR!dkn50 n>0, r 51,2,

~Hkn
rL1e2p i /3Hkn

rR!2~d rL1e2p i /3d rR!dkn50, n>0, r 51,2,
~2.5!

and their complex conjugates. These equations are ea
solved for the matrix elements ofH. Thus, one has,

Hnm
rs 5e~2p i /3!~r 2s!~d r 11s1ds11r !dnm

~with HT5H̄!. We have, therefore, the explicit form of th
3-interaction vertex which is of central importance in t
theory, expressed in the complex creation-annihilat
3-4
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comma operator basis. Combining the two pieces of the
tex ~i.e., I andH! and rewriting everything in the origina
creation operators~i.e., bn

r†!, we obtain

uV3&5e2( i 51
3 bL

in
† bR

i 21n
†

)
i 51

3

u0& i
Lu0& i

R .

At this point it is worth comparing this expression to that
the full string given in Refs.@6,7,8,9,10#. Our vertex is ex-
tremely simple, it basically says that one must sew the
half of the stringi to the right half of the stringi 21. In the
case of the full string operator formulation given in th
above mentioned references, this is not obvious from
form of the vertex. Also our expression can easily be gen
alized to higher vertices, while in the case of the full stri
operator formulation, the calculation is quite cumberso
for a general value ofN ~see@11# for the construction of the
general N-vertex!, in fact the general expression in th
comma formulation is simply,

uVN&5e2( i 51
N bL

in
† bR

i 21n
†

)
i 51

N

u0& i
Lu0& i

R , ~2.6!

which can be put in a more formal form as

uVN&5e2~1/2!~b†uHub†!)
i 51

N

u0& i
Lu0& i

R

where

Hin jm
rs 5~d r 11sd i 21 j1ds11rd j 21i !dnm .

Now the interesting question to ask is ‘‘Are these two the
ries equivalent?’’ In other words, do the vertices in the f
string creation-annihilation operator basis solve the ove
equations for the comma theory? And do the two theo
have the same symmetries? We would like to address t
two questions in the next section.

III. FULL STRING VERTICES AND THE COMMA
OVERLAPS

The fact that the Witten’s vertex solves the comma ov
laps only proves that the Witten’s vertex is a solution of t
comma overlaps and not necessarily the only solution.5 If
this turns out to be the case, it will be interesting to see w
other solutions are admitted by the comma formulation; c
tainly, one of them will be the comma vertex itself if one c
show that it is different from the Witten’s vertex~i.e., pos-
sesses different properties from the Witten’s vertex!, these
questions will be addressed later in the paper.

The proof that the operator form of the Witten’s vert
solves the comma overlaps is not a trivial one, since it
volves double infinite sums~the second coming from inte
gratings over the range@0, p/2! in formulating the comma

5This statement is true, since no one has yet proved that Witt
interaction fixes the form of the vertex uniquely.
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theory!. Here the double infinite sums may not converge a
solutely and the convergence may depend on the order o
sums~so the expressions may be ambiguous.! The case of
the full string@6,7,8,9,10# is different, the expression for th
vertices involve absolutely convergent sums. This ambigu
is not an accident, we have seen in@3,4# that Witten’s theory
can be viewed as an infinite dimensional local matrix alg
bra, where the star product ‘‘* ’’ becomes matrix multiplica-
tion over infinite dimensional matrices that does not co
serve associativity. The proof of the casesN51,2 is trivial
due to the simple form of the overlap matrices in the f
string formulation. However for the casesN53 and higher,
the form of the overlap matrices are quite complicated.
though we can show that the Witten’s 3-vertexsatisfies the
comma overlaps directly@12#, it is simpler to use the Wit-
ten’s 4-vertex,uV4

W&, since

uV3
W&5^I 4

WuV4
W&, ~3.1!

whereuI 4
W& is just the identity vertex corresponding to the 4

string. To establish that the Witten’s 4-vertex solves the
commad-function overlaps, we recall that the comma inte
action requires thatx j

L(s)5x j 21
R (s) for sP@0,p/2) and j

51, . . . ,4 ~with j 2150[4!. In complex coordinates, the
overlap equations take the form

QL~s!5 iQR~s!, sP@0,p/2!,

Qj
L~s!5~2 ! j /2Qj

R~s!, j 52,4; sP@0,p/2!,

whereQr(s)[Q1
r (s)5„Q3

r (s)… and similarly another se
for the complex momentaPl

r(s). In the Fourier space of the
comma, the overlaps forQ~s! read

Q2n
L 5 iQ2n

R , n>0,

Qj 2n
L 5~2 ! j /2Qj 2n

R , j 52,4; n>0,
~3.2!

and similar ones6 for P~s!. Now recall that the form of the
full string vertex~Witten’s 4-vertex! in oscillator basis~see
Ref. @6#! is given by

uV4
W&5exp~2 1

2 ~A4
†uCuA4

†!1 1
2 ~A2

†uCuA2
†!

2~A†uVuA†!!)
i 51

4

u0& i , ~3.3!

where Cnm5(2)ndnm and Vnm is an infinite dimensional
matrix @6# constructed from the binomial coefficients (n

21/2).
To verify that the Witten’s 4-vertexsolves the comma over
laps, Eq.~3.2!, we first note that the second equation is t
same as the overlap equation for the identity vertex a
therefore, the proof follows from the form of the verte

’s

6The comma 4-vertex described by the above overlaps isuV4&
5exp(2 1

2B4
†IB4

†1
1
2B2

†IB2
†2B†KB†) P i 51

4 u0& i
1u0& i

2, where Knm
rs

5e2 ip(r 2s)/6Hnm
rs .
3-5
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Hence, we are only left with the first one to verify. With th
help of the change of representation formulas, Eq.~1.14!, we
are able to show that the comma overlaps are satisfied by
full string vertices. To do this, we need to express the com
overlaps, Eq.~3.2!, in terms of the full string Fourier coeffi
cients and show that they are satisfied by the Witten’s
Vertex, i.e., we have to show that

F ~12 i !Q02
2&

p
~11 i ! (

n51

`
~2 !n

2n21
Q2n21G uV4

W&50,

F ~12 i !Q2n22~11 i ! (
m51

`

B2n 2m21Q2m21G uV4
W&50

~3.4!

hold. Similar equations for the complex momentaP2n are
easily established. The proof of the two equations is v
similar, so we only need to consider one of them;7 we do the
harder one~the second equation!. Commuting the annihila-
tion operators in Eq.~3.4! through the creation operators
uV4

W& yields a sum of creation operators acting onuV4
W&,

hence,

2
i

2&
(

m50

`

@ .........#Am
† uV4

W&,

where the expression in the squared bracket is given by

1

A2n
~12 i !~Vm 2n1dm 2n!

22~11 i !(
k51

`
1

A2k21
B2n 2k21~Vm 2k211dm 2k21!.

~3.5!

Since the statesAm
† uV4

W& are linearly independent, the expre
sion in Eq.~3.5! must vanish for all values ofm. Now there
are three cases to considerm50, 2l , 2l 21 (l>1). For m
50, Eq. ~3.5! reduces to
08600
he
a

-

y

S 1

A2n
~12 i !V0 2n22~1

1 i !(
k51

`
1

A2k21
B2n 2k21V0 2k21D . ~3.6!

Using the expression forVnm in Ref. @6#, Eq. ~3.6! becomes

S ~12 i !(V0021D u2n

2n
12i ~11 i !(V0021)

3 (
k51

`

B2n 2k21

n2k21

2k21
.

where

un52k5S 21/2
n/2 D and nn52k215S 21/2

~n21!/2D ~3.7!

are the Fourier coefficients in the expansion of

S 11 iej

12 iejD 1/2

~3.8!

~for more details see Ref.@6#!. The sum in the above equa
tion when carried out gives

(
k51

`

B2n 2k21

n2k21

2k21
5 (

k51

`

B2n 2k21

S 21/2
k21 D

2k21
5

1

2

u2n

2n
,

~3.9!

where we have used the fact that~see Appendix A!

(
k50

`
~2 !k

k1a S 21/2
n D5

G~1/2!G~a!

G~a11/2!
.

This proves that Eq.~3.5! is identically zero form50. The
next case to consider ism52l . Now Eq. ~3.5! becomes
F 1

A2n
~12 i !~V2l 2n1d ln!22~11 i !(

k51

`
1

A2k21
B2n 2k21~V2l 2k211d2l 2k21!G ~3.10!

where

V2l 2n52
~2l !1/2~2n!1/2

2l 12n
u2lu2n2~12V00!

u2lu2n

~2l !1/2~2n!1/2,

7We have checked that indeed both of them are satisfied for the Witten’s vertex.
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V2l 2k2152
~2l !1/2~2k21!1/2

2l 22k11
u2ln2k211 i ~12V00!

u2ln2k21

~2l !1/2~2k21!1/2.

To evaluate the sums, we make use of the identity8

(
k50

` S 1

2n12k11
2

1

2n22k21D n2k11

2l 22k21
5

p

2

~2 !n

2n12l
u2n1

~2 !n

2n

2

u2n
dnl .

Thus

(
k51

`

B2n 2k21

V2l 2k21

~2k21!1/25
i

2 S ~2l !1/2

2n12l
u2lu2n2

1

~2n!1/2 dnl1~12V00!
u2lu2n

~2l !1/2~2n! D .

Substituting in Eq.~3.10!, we get zero. The last case to consider ism52l 21>1. In this case, Eq.~3.5! reduces to

F 1

A2n
~12 i !V2l 21 2n22~11 i !(

k51

`
1

A2k21
B2n 2k21~V2l 21 2k211d lk!G ,

where

Vnm5~2 !n1mVmn

and

V2l 21 2k2152
~2l 21!1/2~2k21!1/2

~2l 21!1~2k21!
n2l 21n2k212~12V00!

n2l 21n2k21

~2l 21!1/2~2k21!1/2.

Now it is clear that the expression in the square bracket vanishes if one uses the following identity:

(
k51

`

B2n 2k21

V2l 21 2k21

~2k21!1/252~2l 21!1/2n2l 21S 1

2

u2n

2l 2122n
1

B2n 2l 21

~2l 21!n2l 21
D2

1

2
~12V00!

u2nn2l 21

~2l 21!1/2~2n!
,
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which is derived in Appendix A.
This shows that the comma overlaps Eq.~3.2! are satisfied

by the Witten’s 4-vertex. Exactly the same procedure is fo
lowed to prove theP overlaps. They are seen to hold too. A
the sums needed to carry out the proofs can be obta
using the results in Appendix A. To complete the proof,
have to see if the ghost part of the Witten’s 4-vertexsatisfies
~violates! the comma overlaps in exactly the same way as
the standard formulation. The ghost part of the Witten’s
vertexis given by

uV4
f&5e3if~p/2!uV4

f,0&,

where uV4
f,0& has the same form as the orbital part of t

vertex. The ghost factore3if(p/2) corresponding to ghos
number 3 is the right ghost number, since one must req
uV3

f&5^I 4
fuV4

f&. Expanding the phase factor and commuti
the annihilation operator through the creation part of the v
tex results in doubling the creation part of the insertion. Th
one has

8This identity can be easily derived using the results in Appen
A.
08600
ed

n
-

re

r-
s

uV4
f&5expS 3(

n51

`
~2 !n

A2n
D A†

4 2nuV4
f,0&.

The quadratic part of the vertex,uV4
f,0&, satisfies the comma

overlaps, since it has the same structure as the orbital
which solves the comma overlaps as we have seen. Howe
when one includes the ghost insertion, this is no longer
case. To see this, one first observes that the comma ove
for V4 are blind to the phase factor9 ~insertion! apart from

Q4 2n
L 5Q4 2n

R , n>0,

P4 2n
L 52P4 2n

R , n>0.

In fact, the first of these equations is also blind to the ins
tion factor, since it contains only odd modes in th
annihilation-creation operatorsA4 which clearly commute
with the even modes in the phase factor. On the other ha

x 9The reason for this is that the other overlaps describe diffe
strings in the complex coordinates as we have seen before.
3-7
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the second equation contains even modes of the operatoA4
and therefore is not satisfied by the vertex due to the in
tion. To see this notice that

P4 2n
r expS 3(

n51

`
~2 !n

A2n
A4 2n

† D 5expS 3(
n51

`
~2 !n

A2n
A4 2n

† D
3S 2

3

2

~2 !n

A2n
1P4 2n

r D ,

wherer 51,2 refers to the left and right parts of the strin
respectively. Thus commuting the overlaps through the
sertion factor and collecting terms, we obtain

expS 3(
n51

`
~2 !n

A2n
A4 2n

† D S 23
~2 !n

A2n
1P4 2n

L 52P4 2n
R D .

Now it is clear that the overlaps in the square bracket are
satisfied by the quadratic part of the ghost vertex becaus
the presence of ac-number. This is the same violation see
in the operator formulation of Witten’s string field theo
~see Ref.@6#!. Therefore the comma overlaps are satisfi
~violated! by the Witten’s 4-vertex in exactly the same way
as in the case of the standard formulation@7,8,6,9,10#. It
follows from Eq.~3.1! that the Witten’s 3-vertexalso solves
the comma overlaps, since theuI W& and theuV4

W& vertices
solve the comma overlaps. This completes the demonstra
that the Witten’s vertex is a solution to the comma overla
In the next section, we will address the remaining questi
raised earlier. At this stage one cannot help to look at
relationship between the dual model vertex of Canes
Schwimmer, and Veneziano~CSV! and the comma vertex
The CSV vertex@13,14# is given by

^VCSVu5^0,0,0ue~1/2!an
i Mnm

i j am
j
,

where n>1 and m>0 refer to the modes, while thei ( j )
index refers to thei th ( j th) string and take the values 1,2,
The CSV coefficients are given by

Mnm
12 5Mnm

23 5Mnm
31 5~2 !m

1

n S n
mD

and all otherM’s vanish. It is not hard to see, by dire
substitution in Eq.~2.4!, that the CSV vertex does not satis
the comma overlaps and, therefore, is not a solution to
comma theory. To see this in another way, note that the C
vertex is related to the Witten’s vertex bŷVCSVu
5^V3

WuO21, whereO is the conformal operator derived i
Refs. @15,16#. Now it is not hard to see from the explic
form of the conformal operatorO that it fails to commute
with the comma overlaps. It follows that the CSV vertex
not a solution to the comma theory, since the Witten’s ver
is. However, it is worth noticing that there is no se
coupling in either of the comma 3-vertexor the CSV vertex;
therefore it is reasonable to investigate a theory in which
string is made up of two pieces coupled together at two
points and strings are allowed to interact whenever their e
08600
r-

-

ot
of

d

on
.
s
e
i,

e
V

x

e
d

d-

points touch or they overlap as in Witten’s theory. Then o
should study the theory for different values of the coupli
and see if one can get a consistent string theory. It is poss
that Witten’s theory and the dual model emerge as spe
cases of this theory. However, it remains to give a mean
to these formal statements.

IV. SYMMETRIES AND OTHER PROBLEMS

The role of ghosts becomes significant when one con
ers the properties of the theory. The ghost vertices in
bosonized version are of the same form as the coordin
ones apart from some midpoint ghost insertions. First,
would like to consider invariance under reparametrizatio
generated by

Kn5Ln2~2 !nL2n .

It was established in@1# in the bosonic representation an
proved more rigorously using the fermionic operator rep
sentation of the ghosts in@18# thatK symmetry requires spe
cific ghost insertions at the midpoint. Now we have esta
lished that the full string vertices are in fact solutions to t
comma overlaps. Therefore it is important to see if theK
symmetry in the comma representation requires the same
sertions in the comma vertices and if in factK continues to
be a symmetry of the comma theory. For the identity vert
uI&, theKn invariance of the integration requires that

05E KnA5^AuKnuI &,

where Kn5Kn
x1w , uI &5uI x1w& and uI w&5e2 i (3/2)f(p/2)uI 0

w&
~with uI 0

w& having the same form asuI x&!. In fact the action
Kx on uI x& gives 2(D/2)(n/2)(2)n/2dnP2Z . The effect of
the ghost will be to cancel this anomaly when consider
Kx1w. In the comma representation, the phase factor rea

expS 23i

2
f~p/2! D5expS (

n50

`

(
r 51

2

ln
r ~bn

r 2bn
r†!D ,

where

ln
r 5ln5

3

4

~2 !n

A4dn01n
, r 51,2; n>0.

Commuting the annihilation operator through the quadra
form in uI 0

w&, we have

expS 22(
n50

`

(
r 51

2

ln
r bn

r†D . ~4.1!

Now we are ready to compute the effect of commutingKn
w

through the phase factor in Eq.~4.1!. It is not hard to see tha
for n5odd, Kn commutes with the phase factor. On
Kn5even

w contributes to the anomaly. The Virasoro generat
Ln

w for the ghost in the comma theory are given in Append
3-8
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B; here we only recall the pieces that contribute to
anomaly. Thus~using Appendix B! for the phase factor, we
have

1

2 (
N51

M21

A~2M22N!~2N!S 1

&
D 2

(
r ,s51

2

bM2N
r bN

s

→ (
r ,s51

2

(
N51

M21

A~2M22N!~2N!lN
s lM2N

r

5
9

2
~M21!~2 !M.

The linear term inLw is
o

s
in

08600
e
A2M S (

r 51

2

`0
r 23M D 1

&
(
s51

2

bM
s →

9

2
~112M !~2 !M.

It remains to compute the action ofLw on uI 0
w&. This is the

same as the action ofLx on uI x&. But since we have not don
the orbital part here, let us do this one. Now the linear te
does not contribute to this anomaly sinceuI 0

w& is quadratic in
the creation operators. Therefore only

1

2 (
N51

M21

A~2M22N!~2N!S 1

&
D 2

(
r ,s51

2

bM2N
r bN

s

and
1

2 (
N51

M21

A„2M2~2N21!…~2N21!
1

&
(

r ,s51

2

~2 !r 1sS 1

&p

~2 !M2N11

~2M22N11!3/2

3@„~2M22N11!14…b0
r 2„~2M22N11!24…br

0
†#

1 (
k51

` S 2M2~2N21!

2k D 1/2

@A2M2~2N21! 2kbk
r 1S2M2~2N21! 2kb

r
k
†# D

3S 1

&p

~2 !N

~2N21!3/2 @„~2N21!14…b0
r 2„~2N21!24…br

0
†#

1(
l 51

` S 2N21

2l D 1/2

@A2N21 2lbl
r1S2N21 2lb

r
l
†# D
contribute to the anomaly. The first equation when acting
uI 0

w& gives

2
M

2
~2 !MdMP2Z .

The action of the second equation gives a finite piece plu
divergent piece, however the divergent piece cancels aga
n

a
st

another divergent piece coming from the same term inL2M
w †,

which is given by the second equation withbr
br†, making
the difference of the two terms finite. Thus, one gets

2
M

2
~2 !MdMP2Z21 ,

where we have used the identity
(
k51

`
1

2k
~B2n21 2kB2k 2m2~2n21!1B2m2~2n21!2kB2k 2n21!5H 1

2m S 8

p2m221D dm 2n21

S 2

p D 2 m~2 !m11

~2n21!2
„2m2~2n21!…2

, if mÞ2n21.
3-9
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Putting everything together,

K2M
w →

9

2
~M21!~2 !M1

9

2
~2M21!~2 !M

2
M

2
~2 !M5

26

2
M ~2 !M.

Clearly, this cancels the orbital anomaly, thus proving
symmetryK. This shows that the midpoint insertions are t
same in both theories for the identity. Therefore integrat
means the same thing in both theories at this level of rigo10

The 2-vertex is anomaly free in both theories. Both the
bital and ghost parts of the string are invariant under
symmetryK separately. For the 2-vertex in the comma for-
mulation, this is true for the following reason. The Viraso
generators contain terms which are either linear or quadr
in the creation-annihilation operators, the linear term d
not give rise to ac-numberwhen it is commuted through th
quadratic piece. The quadratic term in the Virasoro gene
tors is of the formbi

rbi
s ; the fact that the same string inde

‘‘ i’’ appears in both ‘‘b’s’’ means that, the action of thei th
operator on the exponential will bring down a creation o
erator with index different fromi ~since, in the comma
theory there is no self-coupling in the 2-vertex creation o
erators! which commute with the second operator giving ri
to no c-numberanomaly. This is precisely the reason wh
one does not need any midpoint insertion in the case of
two vertex and therefore theK-symmetryis present not only
in D526, but in any space time dimension~the same remark
is true in the case of the full string 2-vertex!. In fact in the
comma theory theK symmetry does not require any mid
08600
e

n

-
e

tic
s

a-

-

-

e

point ghost insertions for all vertices apart from the ident
vertex ~i.e., uI&! as can be easily seen from the form of t
N-vertexin the comma theory. However, the case for high
vertices is different in the full string theory@6#. At this point
it is worth looking at how the midpoint insertions are seen
the comma theory for higher vertices. To see this, we rec
that, in the comma theory, the ghostN-vertexis given by

uVN
w&5eiQN

wf~p/2!uVN
w,0&.

For uV3
w& the phase factor~insertion! is

expS 3i

2
f~p/2! D5(

j 51

3 S i

2
f~p/2! D

5(
j 51

3

(
r 51

2

(
n50

`

l j n
r ~bj n

r 2bj n
r †!,

~4.2!

wherel j n
r 52 1

3 ln for all r, j andn. Commuting this phase
factor through the creation operators inuV3

w,0&, doubles the
factor of the creation operator in the phase factor. Hence

uV3
w&5F3uV3

w,0&,

where

F352expS (
j 51

3

(
r 51

2

(
n50

`

l j n
r bj n

r †D .

Thus, for the phase factor, we have
1

2 (
N51

M21

A~2M22N!~2N!S 1

&
D 2

(
j 51

3

(
r ,s51

2

bj M 2N
r bj N

s →(
j 51

3

(
r ,s51

2

(
N51

M21

A~2M22N!~2N!l j N
s l j M 2N

r 5
3

2
~M21!~2 !M.
ion
the

ma
the

ST
int
For the linear term inLw, we have

A2M (
j 51

3 S (
r 51

2

` j 0
r 23M D 1

&
(
s51

2

bj M
s

→
1

&
A2M(

rs j
4l j M

s l j 0
r

1
3

&
A2M ~2M !(

s j
l j M

s 5
3

2
~2 !M29M ~2 !M.

Hence,

10One still needs to check the BRST invariance as well.
(
j 51

3

K j 2M
w F3→2

15

2
M ~2 !M

52
13.5

32 M ~2 !M2
5

2.32 M ~2 !M,

which is precisely what one gets in the standard formulat
@6,18# of WSFT. The same procedure can be repeated for
comma 4-vertex giving

(
j 51

4

K j 2M
w F4→2

27

2
M ~2 !M5

1

2
M ~2 !M~22621!,

which is again the standard result. Although the com
theory treats the midpoint insertions in the same way as
standard theory, it does not require them for consistency~for
N>2!. The same thing happens when considering the BR
symmetry. The BRST symmetry requires the same midpo
3-10
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insertions in the comma theory for the identity vertex as
the case of the full string identity vertex@18#. For higher
vertices (N>3), the BRST symmetry in the comma theo
does not require any midpoint insertions for consistency~for
details see Ref.@17#! unlike the case of the standard theo
@18#. This seems to suggest that both theories are differen
some way not yet obvious to us in spite of the fact that
vertices are solution to the comma overlaps. Now it will
interesting to see what sort of operator~if it exists! interpo-
lates between these solutions@17#. Before concluding this
paper, it will be useful to explore some other features of
full string theory within the frame work of the comm
theory. Let us recall that in Ref.@19#, translations were
shown to be inner derivations. To prove that the authors
Ref. @19# had to show that the properties

P0
L1P0

R5p0 ~4.3!

~where P0
L and P0

R are the integrals of the space-time m
mentum density over the intervalss50→p/2 and p/2
→p, respectively, andp is the total center of mass mome
tum!, and

~P0
RA1!* A21A1* ~P0

LA2!50 ~4.4!

~whereA is a string field! hold. The star product of two state
is given by Gross and Jevicki,

uA1* A2&5^A1u^A2uuV3&.

Thus to prove Eq.~4.4!, one only has to show that the inte
gration by parts law@19# is satisfied

^A1u^A2u~P10
R 1P20

L !uV3&50, ~4.5!

where the indices 1 and 2 refers to string one and string t
respectively. Equation~4.5! is a consequence of

~P10
R 1P20

L !uV3&50. ~4.6!

It is a straightforward to see that these properties continu
hold in the comma theory. Equation~4.3! is just Eq.~1.11!
for n50 which was established earlier in the comma form
ism. Equation~4.6! is a consequence of integrating11 ~from
s50→p/2! the overlap Eq.~2.2! defining the comma vertex
for the particular valuesj 52 andN53. This can be easily
seen by integrating Eq.~2.2! from s50→p/2 using the
Fourier expansion of the comma conjugate momenta,` j

r(s),

` i
r~s!5

2

p
` i0

r 1
2&

p (
n51

`

` i2n
r cos 2ns.

Thus, Eq.~4.6! is satisfied by construction in the comm
theory. One can check the above statement directly by

11One must check the convergence of the implicit sums over
cillators, since integrating overs corresponds to a second sum.
08600
in
ll

e

f

o,

to

-

x-

plicitly substituting the oscillator form of the comma 3
vertex ~derived earlier! into Eq. ~4.6! and then integrating
over s. Doing so, one gets

@2H10im
Rs 1dRsd1id0m2H20im

Ls 1dLs1d2id0m#br
im
† uV3&.

The expression in the square bracket is zero as can be e
seen using the explicit values of the matrixH obtained be-
fore.

It has been shown in@19# that there is an anomaly in th
operator associativity of WSFT which in turn implies an a
sociativity anomaly in the star algebra of Witten’s string fie
theory. This can be seen using the fact

@P10
R 1P20

L ,X1~p/2!2X3~p/2!#52
i

2
uV4&

~since the zero modes do not commute!. However, we have
seen in Ref.@19# that

~P10
R 1P20

L !uV4&50

and12

@X1~p/2!2X3~p/2!#uV4&50

which is a clear violation of the uncertainty principle. The
anomalies have been discussed before@20# and are charac-
terized by the failure of the Jacobi identity. This anoma
arises because of the coupling between the first and the
strings in the vertex. Now it is not hard to see that the W
ten’s 4-vertex suffers from the same problem when view
by the comma theory. To see this, one only needs to no
that the above two equations are in fact comma equatio
For the first equation, this is obvious. For the second eq
tion, recall that from the definition of the comma coord
nates; lims→p/2 xL(s)5 lims→p/2 xR(s)5X(p/2) ~whereL
and R refer to the left and right parts of the string, respe
tively!. However, when one is working fully in the comm
representation, the comma vertices do not seem to su
from this particular problem. This is due to the fact that
the comma theory, there is no coupling between the first
third strings or the second and the fourth strings in the v
tex. This can easily be proven to be equivalent to the follo
ing statement; it is not possible to construct an operator
fails to commute with (P10

R 1P20
L ) and at the same time kills

the comma 4-vertex. In fact, in the comma theory, this is tru
in general for higher vertices (N>3). Hence, the above
mentioned anomaly disappears in the comma theory and
associativity of the star algebra is retained.

V. CONCLUSION

We have shown that the operator form of the Witten
vertex given in @7,8,6,9,10# is indeed a solution to the

s-

12Remember that this equation is the statement that the midp
is not moved in the oscillators representation of WSFT which is
the case in the comma theory.
3-11



th
tw
f

x
to
d

i
th
ot

ly
a
m
is

n
s
qu

i
on
e

u-
fs

hi

ix

fact

ctor
enion

A. ABDURRAHMAN AND J. BORDES PHYSICAL REVIEW D58 086003
comma theory. The question about the equivalence of
two theories is discussed. On the level of the one and the
vertices~i.e., uI& and uV2&!, we have seen that both forms o
the vertex~i.e., the comma vertex and the Witten’s verte!
possess the same symmetries and in fact can be shown
equal using the change of representation formulas derive
the Introduction.13 However for higher vertices (N>3),
while in the full string formulation, theK and the BRST
invariance require some specific ghost insertions at the m
point of the string for consistency, it does not seem to be
case in the comma formulation. In the comma theory, b
the orbital and ghost parts of the vertices~for N>2! are
invariant under theK and the BRST symmetries separate
The associativity anomaly in the star algebra of the stand
formulation disappears in the comma theory. Now it see
to us that the comma formulation of string field theory
somehow more general than the standard formulation
string field, since beside the comma vertices all the Witte
vertices are solutions to the comma theory. This seem
suggest that Witten’s interaction does not lead to a uni
solution, but to more than one solution. A challenging task
to understand the relationships between these soluti
Work in this direction is in progress and the result will b
reported in the future.

APPENDIX A

In this Appendix we give details of the summation form
las. Many other useful formulas can be found in Re
@6,15,11#. First consider

(
n50

`
~2 !n

n1a S 21/2
n D5E

0

1

dtta21(
n50

`

~2 !ntnS 21/2
n D

5E
0

1

dtta21~12t !1/221,

where we have used the binomial formula (11t)a

5(n50
` tn(n

a) to sum the series in the integrand. However t
equation defines theB(a,1/2). Hence,

(
n50

`
~2 !n

n1a S 21/2
n D5B~a,1/2!5

G~1/2!G~a!

G~a11/2!
. ~A1!

Next we consider

13In fact to do this properly, one also needs to derive the relat
ship of the full string vacuum to the comma vacua. See Ref.@3, 4#.
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d-
e
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e
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s.

.

s

(
n50

`
~2 !n

~n2k21/2!2 S 21/2
n D

5
]

]j (
n50

`
~2 !n

n2j21/2 S 21/2
n DU

j5k

5
]

]j S G~1/2!G~1/22j!

G~12j! D U
j5k

52p
~2 !k

2k21 S 21/2
k21 D .

A special case of the above formula is

(
n50

`
~2 !n

~2n11!2 S 21/2
n D5

p

4
„c~1!2c~1/2!…

5
p

4 S 11V00

12V00
D .

Using Eq. ~A1! and the explicit expression for the matr
elementsBnm , it is straightforward to see that

(
n50

`

B2k2n11n2n1152
1

2

~2 !kG~k11/2!

G~1/2!G~11k!
52

u2k

2
.

~A2!

It is also easy to see that

(
n50

`

B2k2n11

n2n11

2n11
5

1

2

u2k

2k
. ~A3!

The above formulas can be utilized to show that

(
m50

`

B2k2m11

2m11

~2n!2~2m11!
n2n11

5S u2k

2
1

1

2p

dnk

u2n
2

2n

2n12k

u2k

2 D . ~A4!

Another useful sum to consider is

(
k50

`

B2n2k11

n2n11

~2k11!1~2l 11!

5S 2
1

~2l 21!2~2n!

u2n

2
2

1

2l 21

B2n2l 21

n2l 21
D .

To arrive at the above result, we only need to use the
G(12n)5` for n>1, Eq. ~A1! and

u2n[S 21/2
n D5

~2 !nG~n11/2!

G~1/2!G~n11!
.

APPENDIX B

Here we state the Virasoro Generators for the ghost se
in the comma annihilation-creation basis. For the ev
modes, we have:
-

3-12



RELATIONSHIP BETWEEN THE COMMA THEORY AND . . . PHYSICAL REVIEW D 58 086003
L2M
w 5

1

2 (
N51

`

A~2N12M !~2N! (
r ,s51

2

bN
r †bN1M

s 1
1

2 (
N51

`

A~2N21!~2N12M21! (
r ,s51

2

~2 !r 1sS 1

&p

~2 !N

~2N21!3/2

3@„~2N21!14…b0
r†2„~2N21!24…b0

r #2(
l 51

` S 2N21

2l D 1/2

@A2N212lbl
r†1S2N212lbl

r # D S 1

&p

~2 !N1M

~2N12M21!3/2

3@„~2N12M21!14…b0
s2„~2N12M21!24…bs

0
†#2 (

k51

` S 2N12M21

2k D 1/2

@A2N12M212kbk
s1S2N12M212kb

s
k
†# D

1
1

4 (
N51

M21

A~2M22N!~2N! (
r ,s51

2

bM2N
r bN

s 1
1

4 (
N51

M

A~2M22N11!~2N21!

3 (
r ,s51

2

~2 !r 1sS 1

&p

~2 !M2N11

~2M22N11!3/2 @„~2M22N11!14…b0
r 2„~2M22N11!24…br

0
†#

2(
l 51

` S 2M22N11

2l D 1/2

@A2M22N112lbl
r1S2M22N112lb

r
l
†# D S 1

&p

~2 !N

~2N21!3/2 @„~2N21!14…b0
s

2„~2N21!24…bs
0
†# D 2 (

k51

` S 2N21

2k D 1/2

@A2N212kbk
s1S2N212kb

s
k
†#)1

1

&
A2M S (

r 51

2

~b0
r 1b0

r†!23M D (
s51

2

bM
s .

~B.1!

Whereas the odd modes of the Virasoro generators are given by
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Finally, the zero mode of the Virasoro Generators~i.e., the Hamiltonian operator! has the form
086003-13
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It is tedious, otherwise straightforward, to show that the desired commutation relation for the comma Virasoro genera
indeed satisfied.
ys
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