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Relationship between the comma theory and Witten’s string field theory
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The comma representation of interacting string field theory is further elucidated. The proof that Witten's
vertex solves the comma overlap equations is established. In this representation, the associativity of the star
algebra is seen to hold. The relationship of the symmiétiy the standard formulation of Witten’s string field
theory to that in the comma theory is discus4&0556-282(98)07618-9

PACS numbsdis): 11.25.Sq

[. INTRODUCTION Note that the only difference between this new definition of
the comma and that in Ref3,4] is the exclusion of the
It has been first suggested by Wittgl] that it is may be  midpoint x(#/2). These coordinates are subjected to the con-
possible to formulate string field theory as an infinite dimen-straint
sional local matrix algebra. This suggestion leads to the for-
mulation of string field theory as more or less a generaliza- lim x“(o)= lim xR(o). (1.2
tion of Yang-Mills theory of an extended object, known as o—ml2 o—ml2
the “comma” theory[2]. In [3,4] a Fock space realization
(operator constructigrof the comma theory was obtained by This is in the spirit of the Witten string field theofyVSFT)
writing down the overlap equations that follow from the for- geveloped in Ref{1]. X(o) are the full string coordinates at
mulation of the theory in comma language. In the languaggixed time r=0 (space-time indices will be suppressed
of matrices, vertices were written as traces and the expliciihroughout the paper In this modified approach to the
form of Witten’s vertex was regained after integrating outcomma, the midpoint is excluded from the degrees of free-
the midpoint degrees of freedom. However, the ambiguityjom and is used to constrain the emerging systeen, the
related to the midpointwas not settled. One was not sure comma degrees of freedomThe Fourier expansion at

how to view the midpointx(7/2)(¢(7/2)), since it was —q of the full string coordinaté (o) is given by
common to both formulations of string field thedrye., Wit-

ten’s theory and the comma theprBecause of this prob- o

lem, one was not able to show directly that Witten's vertex is X(o)=Xo+\f22 X, cosng, oe[07].

indeed a solution of the comma overlaps and, therefore, one Azt " ' '

was not clear about the precise nature of the relationship

between the two theories. Investigation of other problemss gne expands the comma coordinatésl) in a Fourier
(such as midpoint ghost insertionsequired for theK and  serjes, then they can be related to the full string coordinates.
Becchi-Rouet-Stora-TyutitBRST) symmetries in the origi- The comma boundary conditions are dictated by the bound-
nal theory, were made cumbersome by the need to use thgy conditions of the full string and the comma definition.
full string formulation at some stages of the investigation. TOChoosing an even extension to the interyal2,77], only the

overcome these problems and to give a direct proof that thgyen modes in the Fourier expansions of the comma coordi-
Witten’s vertex is indeed a solution of the comma overlapspates survive. Hence

we need to modify the comma definition employed 84]
(more in the line of Ref[1]). The modified comma coordi- w

nates are defined through the relations Xr(U)IXB+\/72 Xby COS Do, ae[0m2), (1.3
n=1

X(o) if r=1,
r X(m—0o) if r=2, where
X (0)= W) (1D
oge|0,=]. 2V) *© (_)n
2 FoX (=) 2 A=)
Xo 0 ( ) T nz]_ 2n—1 2n—1»
*Also at IFIC, Centro Mixto Universitat de Valencia-CSIC. o
*Another approach in which the midpoint plays a central role has szn:X2n+ 2(—)" 2 Bon om—1Xom—1 (1.9
been discussed in Ref5], although in a different context from n=1

Refs.[3, 4].
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andr=1,2 refers to the lef(L) and right(R) parts of the
string? respectively. The change of representation mafjx
is given by

Equation(1.4) can be solved foX,(n=0) with the help of
the identities

(_)n+m+1

1 1

Bam= -
nm n+m n—m

(1.9

aw

- 1
E Bonok-1Bonom-1= 2 Skms
n=1

= 2m 1
kzl 5k—1 B2n %-1B2k-12m=~ 7 dnm- (1.6
Hence,
14
in_zz Xon, N=0,
r=1

S 2m :
21 >p—1 Ban-12mXem, N=1.
1.7

However, in the second relation of E4..7), there are redun-
dant degrees of freedom. Now, the constraint on the comm
modes(1.2) can be explicitly solved and what results are the
modes with no subsidiary condition. Hence, one gets

XZ”_1:21 (=)t

2

> (—)'xb

r=1

V2 ()"
n-17r on—1

> Boman- 1Xoms N=1, (1.8)

2
+2 (=)
r=1 m=1

for the second equation in Eql.7). The comma modes
(x5n) have been treated so far as classical objects. There a
many ways to quantize a systeof course all of them are
equivalent. A standard method is to interpret the oscillator
modes x5, as g-operatorsand define their conjugate mo-
menta,p5,=—i dldx5,, satisfying

[Xon #5m]=16"8m. (1.9

These operators are easily related to the full string operators

ones using Eq91.7). Thus

2Throughout the paper we will refer to the left and right parts of
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(="
on—1 P2n-1,

1 () <
szg Potv2 — nzl

r 1 r <
92n25p2n+(_) 2 Banom-1P2m-1, N=1.
m=1
(1.10
They satisfy the desired commutation relations as can be

verified using the identities in E§1.6). The inverse relations
are given by

2
F:'Zn:rg1 z@an! n=0,
22 ()" &
P2n-1= 7 2n—1 21 I70)

1.1y

We will focus our attention on the orbital part, the treatment
for the ghost part follows the same line. Now the Fock space
of the comma theorywhere the degrees of freedom for left
and right sectors of the string live in different Fock spadgs
Basily constructed. One introduces the operatgfsand
b''(r=1,2n=1) satisfying

[b' b3 =56"6m. (1.12
It is possible to introduce such operators in the usual way by

taking the appropriate combinations of the position and mo-
mentum operators, namely,

by= \ﬁ
] n__l E
(1.13

The creation operatorsbKT,nBO) are given by the same
expressions withie= —i). It can be checked that these op-
erators satisfy the required commutation relations. Introduc-
ing the comma vacufd)"(r =1,2), satisfying

r__ H r r
bo=—i X2n+ﬁz@2n

i
XB+§SOB

re

b;|0)'=0, r=1,2 andn=1,

one obtains the Fock spaceorresponding to each comma
(half string by repeated application of the comma creation
operators on the comma vacua. The annihilation and creation
operators in the comma theortag(,b[]*) when related to the

the string by 1 and 2, respectively; however to make things more.gnventional annihilation and creation operatoes, ’@D

transparent and to avoid confusion, sometimes we may refer to th
left and right parts of the string by the lettdrsandR, respectively.

Give

When dealing with more than one string, the indices may become_____

confusing; therefore indices referring to the parts of the string will

always be written as superscripts, while those labeling the string *The complete space on which the comma states reside is given by

will be written as subscripts whenever possible.

the tensor produdicompletion, H*® H?2.
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o]

1 (=) (=)"
bp=7 (3a0—a0)+ 5 - 2 m—qym {4+ (2n=D)Jaz-1—[4=(2n—D)]az, 4,
1 (-)*"1 & 2m-1
bL=‘72a2n 3 mE=1 on 1/2[A2m712na2m71_Sszlma;mfl]! (1.149
where
A2m712n

S, )ZBZm—lmI Bonom-1,
m—12n

and b}, bl" are given by the same expressions with=a'. Now it is important to make sure that these relations are
consistent with the constraint in the definition of the commas. Rewriting the constrain(tl..Bgin the comma annihilation-
creation basis, we have

[

2 n 2
2 r+1(br )__22 (\/_) 2 r+1(br bLT), (1'15)

which can be easily verified to hold in the annihilation-creation basis of the full string using the following identity:

[’

1
«/x(x)—w(y>=n§0

y+n x+n)’

and the fact thaty(3 —n) = (3 +n) for n integer. The inverse relations of Ed..14 are given by

2

3 1
ZZ (Z ro+beOT )

1 2
aop=— bf
2n 1/221

2 ) 1 " 2n—1)+4]b,—[(2n—1)—4]bL'
n-1= 2 (— (Zn—l)slé{[( Jbo—[( 1bg'}

2n—1

_i(

12
) [Azn-12mBin+ Son-12mbin 1 | (1.16

with aE given by the same expressions thhﬁb[,*. It is not hard to see, using the properties of the malriand the
commutation relations for the comma operators defined earlier, that the standard commutation relations for the annihilation-
creation operator& and a') are indeed satisfied.

Il. COMMA VERTICES

In the comma formulation of string field theory, the elements of the theory are definédumgtion type overlaps. Thi
interaction vertex is given by

N /2
VXL XS XN @' ]= e‘Q“’("”Z)il:[l HO S(xH(0) = X2 1(0) 89 () — gP_1(0)).

The indexi refers to theth string(it is understood that=0 andN are identified. The ghosi function have the same structure
as the coordinates ones a@f is the ghost number insertion. In the oscillator Hilbert space of the comma theory, the
functions, for the coordinatéstranslate into operator overlap equations, namely

[xi (o) = x 1()]|V\)=0, oe[0/2), (2.1)

andi=1,2,...N. In addition, conservation of momentum requires

“The ghost degrees of freedom, in the bosonized representation, have the same structure apart from some mid-point insertions which will
be addressed later.
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L R 2
[S{’j(O')+Wj—1(0')]|VN>_O. (2.2 |V2>:e—(l/Z)(Bsz;)‘*'(1/2)(BI|IHBI)H |0>|1|0>|2
These are now the overlaps defining equations for the =1
comma vertices. Now we are in position to construct the
explicit form of the comma vertices. We will start with the
case|V;), since it is the identity verte}{) with respect to )
the* in Witten’s string field theory. FON=1, we have IV,) =e~ =105 b 1H |0)H|0)R.

1 _ 2 | :0, . )
[x*o)=x Aol Next we consider the cad¢= 3. In the complex coordinates,
[oY(o)+p2()]1)=0, the overlap conditiong; (o) = x ;(o) for the three string
vertex read
where the superscripts 1 and 2 refer to the left and right parts

of the string, respectively. In terms of the oscillator modes,
the above overlaps result in

or, in the original creation operatorbn()

O (o)=e*"RoR(¢), oe[0,712),

Q3(0)=0Q5(0), oe[0,m/2),

2 -
S (=) bl —biN|1)=0 where Q'(0)=0Q)(0)=(Q5(c)). For the complex mo-
=1 noon menta, the overlap conditions}(c)=—p ;(0) translate
, into
2, (bj+b[1)=0. P(0)=~"BPR(0), gel0ml2),
r=1

Ps(o)=—"P 0,/2
It is trivial to solve the above equations, assuming thdtas 3(0) 3(0 o e[0ml2),

the form where P (0)=Pi(o)=(P5(a)). The vertex

V4(bi",bh" by, therefore, separates into a product of two
pieces depending o' and onBT=8,", BT=5}", re-
spectively. The first factor is identical to that|li). Thus, one
has

|1y =g~ (1R®7D)0y1|0y2,
then it is clear that

Z:]Sm:(5r+1$+ 5S+1r)5nm 1 o 3
o |v3>=exp( =5 (BY71BY) - (B"1H|5Y | 1] 10)}]0)?,

solves the above overlaps. The cabkes2 are simplified if =1
one rewrites the overlaps in terms of complex coordinates.

Following Gross and Jevicke], we define whereZ is the same as that fdr) and # is an infinite di-

mensional matrix to be determined. In order to deterntifie

1 N we first note that the overlap conditions (o) andP (o)
Ol(o)= \/__ 2 Xlr(g)eZWilk/N, r=1,2, imply that their Fourier components satisfy
N =1
[Qz,—€°™Q3,1|V3)=0n=0
and similar ones for the momenta. The corresponding cre- . )
ation and annihilation operators are defined similarly and [P5,+e®™RP5 1|V3)=0n=0. (2.9

(for N=3) satisfy the commutation relations ) ) )
As well as their complex conjugates. Applying these equa-

(B, B 1=58"8um, [B.,B5,]1=0 tions to the three vertex yields
H m .
2m/3 rR rL_ 2mi/3 R — —
The advantage of this new set of variables is that it leads to (H Hip) + (87 =€287) 9q=0 n=0, r=12,
the separation of degrees of freedom in the overlap equa-

2mil3qrRY __  orL 2mi/3 orR — —
tions. For the casdl=2, the overlaps now are simply (Hin + €27 Hig) = (8 + 2728 §n=0, n=0, r=1.2,

(2.9
Loy R
Qi(0)=-Qj(0), ge[0,m/2), and their complex conjugates. These equations are easily
solved for the matrix elements @{. Thus, one has,
Q5(0)=0%(0), ae[0,m/2). (2.3
H:]Sm: e(21-ri/3)(rfs)(5r+ls+ 5s+ lr)anm

These two equations are the same as the overlaps for the
identity vertex (apart from a ‘“—" sign in the first one. (with H"= H) We have, therefore, the explicit form of the
Hence, the form of the vertex follows immediately from the 3-interaction vertex which is of central importance in the
form of the identity vertex. It is simply theory, expressed in the complex creation-annihilation
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comma operator basis. Combining the two pieces of the vertheory). Here the double infinite sums may not converge ab-

tex (i.e., Z and H) and rewriting everything in the original solutely and the convergence may depend on the order of the

creation operator§.e., bLT), we obtain sums(so the expressions may be ambigupUdshe case of

the full string[6,7,8,9,10 is different, the expression for the

B bLT RY vertices involve absolutely convergent sums. This ambiguity
|Vg) =g~ Simabtinb"l 1”H 0)F[0)F. is not an accident, we have seer{ @] that Witten’s theory

can be viewed as an infinite dimensional local matrix alge-

At this point it is worth comparing this expression to that of bra, where the star product" becomes matrix multiplica-

the full String given in Refs[6,7,8,9,1q_ Our vertex is ex- tion over infinite dimensional matrices that does not con-

tremely simple, it basically says that one must sew the lefserve associativity. The proof of the cades 1,2 is trivial

half of the stringi to the right half of the string—1. In the  due to the simple form of the overlap matrices in the full

case of the full string operator formulation given in the string formulation. However for the casds=3 and higher,

above mentioned references, this is not obvious from théhe form of the overlap matrices are quite complicated. Al-

form of the vertex. Also our expression can easily be generthough we can show that the Witten’sv8+texsatisfies the

alized to higher vertices, while in the case of the full stringcomma overlaps directlf12], it is simpler to use the Wit-

operator formulation, the calculation is quite cumbersomden’s 4-vertex|Vy'), since

for a general value ol (see[11] for the construction of the W Wi W

general N-vertey, in fact the general expression in the IVa)=(171Va), (3.9

comma formulation is simply,

3

where| IX") is just the identity vertex corresponding to the 4th
string. To establish that the Witten's vertex solves the
[Vy)=e %= FRLMCAE 1"H |0)H[0)R, (2.6)  commads-function overlaps, we recall that the comma inter-
action requires thag; ()= x} 1(o) for oe[0,m/2) and]
which can be put in a more formal form as =1,...,4(with j—1=0=4). In complex coordinates, the
overlap equations take the form

N
V) =e~ (120 HBOTT |0yL|0)R Q'(0)=i1Q%(0), oel0m/2),
=1

Lig) = (—)i2OR =24
where Qi (0)=(=)"Qj (o), j=2,4; oe[0,m/2),
A — (AT A
H'S i (5r+155i71j+5S+lr5jfli)5nm- where Qr(a')=Ql(a')—(Q§(a')) and S|mllarly another set
for the complex moment®&, (o). In the Fourier space of the
Now the interesting question to ask is “Are these two theo-comma, the overlaps fo@(o) read
ries equivalent?” In other words, do the vertices in the full

string creation-annihilation operator basis solve the overlap Q5,=105,, n=0,

equations for the comma theory? And do the two theories

have the same symmetries? We would like to address these Qppn=(—)"2Q%,, j=24; n=0,

two questions in the next section. (3.2

and similar onésfor P(o). Now recall that the form of the
full string vertex(Witten’s 4-vertex in oscillator basigsee
Ref.[6]) is given by

The fact that the Witten’s vertex solves the comma over-

lll. FULL STRING VERTICES AND THE COMMA
OVERLAPS

! ) ; Wy _ T T T i
laps only proves that the Witten's vertex is a solution of the [Va')=exp(—3(A;IC|A}) +3(A3|CIA;)
comma overlaps and not necessarily the only solutit.
this turns o_ut to be the case, it will be interesting to sfee.what _ (AT|V|AT))H |0Y;, (3.3
other solutions are admitted by the comma formulation; cer- i=1

tainly, one of them will be the comma vertex itself if one can
show that it is different from the Witten's vertgke., pos- where Cn=(—)"6pm and V,, is an infinite dimensional
sesses different properties from the Witten’s vextdkese — matrix [6] constructed from the binomial coefficients'(?).
questions will be addressed later in the paper. To verify that the Witten’s 4sertexsolves the comma over-
The proof that the operator form of the Witten’s vertex laps, Eq.(3.2), we first note that the second equation is the
solves the comma overlaps is not a trivial one, since it insame as the overlap equation for the identity vertex and,
volves double infinite sumé&he second coming from inte- therefore, the proof follows from the form of the vertex.
grating o over the rang¢0, #/2) in formulating the comma

®The comma 4-vertex described by the above overlapd/i$
SThis statement is true, since no one has yet proved that Witten's-exp(— 38,28} + 3 BYZBS— B'KBY) 117_,|0){|0)?, where K5,
interaction fixes the form of the vertex uniquely. =g Im(r=96yrs |
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Hence, we are only left with the first one to verify. With the

help of the change of representation formulas, @dl4), we (— (1—i)Vgoon—2(1

are able to show that the comma overlaps are satisfied by the Jy2n

full string vertices. To do this, we need to express the comma w

overlaps, Eq(3.2), in terms of the full string Fourier coeffi- ;

cients and show that they are satisfied by the Witten's 4- +I)k21 J2k—1 Banac-1Voz-1]-
Vertex i.e., we have to show that

(3.6

Using the expression fov,,,, in Ref.[6], Eq. (3.6) becomes

o

. 2v2 . (="
(1-0)Qo~ — (1+D) 25— Qon-1|IVi)=0,
™ = 2n— ( 1) (Voo 1] 5+ 2i(1+1) (Vop—1)
(1—1)Qpn—2(1+i) X, 82n2m1Q2m1}IVXV>=0 S Fak-1
{ m=1 34 Xk§=:1 Bonok—1 k=1

hold. Similar equations for the complex momerfta, are ~ Where
easily established. The proof of the two equations is very
similar, so we only need to consider one of thémee do the U ( —12
harder ongthe second equatipnCommuting the annihila- n=2k n/2
tion operators in Eq(3.4) through the creation operators in
[V¥) yields a sum of creation operators acting '),
hence,

—12
(n— 1)/2) 37

are the Fourier coefficients in the expansion of

and vp_p—1=

1+ieé\ 12

[RTS; 3.8

i feel
— > [ ANV, _ _
2v2 m=0 (for more details see Ref6]). The sum in the above equa-

where the expression in the squared bracket is given by tion when carried out gives

—
7~_|
[N
'—‘B
— >
|_\
c
N
=1

(1= )(Vinon+ S an) ¢ Va1 _ 1 Uz
\/ﬁ kzl an 2k—1 2k_1_k21 2n2k—1 2k 1 2 2n ’

- 1
—2(1+|)|Z41 \/ﬁanzk—l(szk—lJr%zk—l)-

where we have used the fact tHaee Appendix A

>
Since the statea VYY) are linearly independent, the expres- K=o K+
sion in Eq.(3.5 must vanish for all values ah. Now there

are three cases to consider=0, 2|, 2l-1 (I=1). Form  This proves that Eq(3.5) is identically zero fom=0. The

—1/2) _T(12r(a)
n | T(a+1/2) -

=0, Eq.(3.5 reduces to next case to consider im=2l. Now Eg. (3.5 becomes
! )(Vay on+ i) —2(1+i Eoo) B (V +5 ) (3.10
— (1—i _ _ _ .
\/ﬁ 2l 2n In &L \/—_1 2n 2k—1\ V2| 2k—1 21 2k—1
where
(21)Y42n)12 Uz Uzp
20~ " " 315 on UgUzn—(1—Voo) (2h 22’

"We have checked that indeed both of them are satisfied for the Witten's vertex.
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(21)Y2(2k—1)*2 Up Vok—1
V2|2k—1:_muz|vzk 1+Hi1(1=Vqo) 2N T22k—1)72

To evaluate the sums, we make use of the idéhtity

i 1 vaer _m (D) ("2
&\ 2n+2k+1 2n—2k—1) 21—2k—1 2 2n+2l “2" o uy, o0t
Thus
Vor k-1 (21)12 1 Uy Uy,
2 Bonak-1 (2k— 1)1/2_2 ont o] Y2ilan~ 2n2 On+(1=Voo 2N 2n) )"

Substituting in Eq(3.10, we get zero. The last case to considemis 2| —1=1. In this case, Eq(3.5) reduces to

%(H)vz.m—zuﬂ)g \/%anzkl(vmlwﬁ‘@k) ,
where
Vam= (=",
and

(21-1)Y(2k—1)Y2 Vol—1Vok—1
Vo117~ (21—1)+(2k=1) “2-1V2k-17 (1-Voo) 2— 1) 2k—1) 72

Now it is clear that the expression in the square bracket vanishes if one uses the following identity:

- 1 u Bona- 1 Upp
21-12%—1 12 + 2n 2n2l—-1 2nV21-1
2 Ban 21 (2k—1)T2~ — (=)o 22I—1—2n+(2l—1)v2|1) 2 (17Voo (21-1)"2(2n)"

which is derived in Appendix A. *
IVe)= exp( ATy VEO).

This shows that the comma overlaps E2}2) are satisfied \/_

by the Witten’s 4vertex Exactly the same procedure is fol-

lowed to prove théP overlaps. They are seen to hold too. All

the sums needed to carry out the proofs can be obtainefhe quadratic part of the vertepy), satisfies the comma
using the results in Appendix A. To complete the proof, wegverlaps, since it has the same structure as the orbital part
have to see if the ghost part of the Witten'vdrexsatisfies  which solves the comma overlaps as we have seen. However,
(violateg the comma overlaps in exactly the same way as invhen one includes the ghost insertion, this is no longer the
the standard formulation. The ghost part of the Witten’s 4-case. To see this, one first observes that the comma overlaps
vertexis given by for VV, are blind to the phase facfotinsertion apart from

V=e v,

L R
Qion=%;m, N=0,

where |V$?) has the same form as the orbital part of the

3 p(12) : P on=—P5F,, N=0.
vertex. The ghost factoe corresponding to ghost 42n 4m>
number 3 is the right ghost number, since one must require
IV$)=(14|V$). Expanding the phase factor and commutingln fact, the first of these equations is also blind to the inser-
the annihilation operator through the creation part of the vertion factor, since it contains only odd modes in the
tex results in doubling the creation part of the insertion. Thusannihilation-creation operator8, which clearly commute
one has with the even modes in the phase factor. On the other hand,

8This identity can be easily derived using the results in Appendix °The reason for this is that the other overlaps describe different
A. strings in the complex coordinates as we have seen before.

086003-7



A. ABDURRAHMAN AND J. BORDES PHYSICAL REVIEW D58 086003

the second equation contains even modes of the opekator points touch or they overlap as in Witten's theory. Then one
and therefore is not satisfied by the vertex due to the insershould study the theory for different values of the coupling

tion. To see this notice that and see if one can get a consistent string theory. It is possible
that Witten’s theory and the dual model emerge as special
o ()" o ()" cases of this theory. However, it remains to give a meaning
Paan ex;{ 321 on Agon| =eX 321 J2n Ason to these formal statements.
( 3(—)" o ) IV. SYMMETRIES AND OTHER PROBLEMS
XN =5 = TPam|
2 \2n The role of ghosts becomes significant when one consid-

) _ers the properties of the theory. The ghost vertices in the
wherer=1,2 refers to the left and right parts of the string, posonized version are of the same form as the coordinate
respectively. Thus commuting the overlaps through the inpnes apart from some midpoint ghost insertions. First, we

sertion factor and collecting terms, we obtain would like to consider invariance under reparametrizations
(o) (=) generated by
exp 3>, — Al || —3—=+P50=—Pu].
;{ ngl \/ﬁ 42 \/% 4 42 Kh=Ln—(—)"L_p.

Now it is clear that the overlaps in the square bracket are ndt was established ifl] in the bosonic representation and
satisfied by the quadratic part of the ghost vertex because gfroved more rigorously using the fermionic operator repre-
the presence of a-number This is the same violation seen sentation of the ghosts 18] thatK symmetry requires spe-
in the operator formulation of Witten’s string field theory cific ghost insertions at the midpoint. Now we have estab-
(see Ref[6]). Therefore the comma overlaps are satisfiedished that the full string vertices are in fact solutions to the
(violated by the Witten's 4vertexin exactly the same way comma overlaps. Therefore it is important to see if Ke
as in the case of the standard formulatigh8,6,9,10. It ~ symmetry in the comma representation requires the same in-
follows from Eq.(3.1) that the Witten's 3rvertexalso solves sertions in the comma vertices and if in faCtcontinues to
the comma overlaps, since tH1EW) and the|VX"> vertices be a symmetry of the comma theory. For the identity vertex,
solve the comma overlaps. This completes the demonstratidh, the K, invariance of the integration requires that

that the Witten's vertex is a solution to the comma overlaps.

In the next section, we will address the remaining questions O:f K A=(A[K,|I)

raised earlier. At this stage one cannot help to look at the n nit/

relationship between the dual model vertex of Caneschi,

Schwimmer, and Venezian€SV) and the comma vertex. where K,=KX"¢, |I)=]1X*¥) and |I¥)=e (32472 ¢)

The CSV verte13,14 is given by (with |1€) having the same form g$X)). In fact the action
csv N KX on [IX) gives —(D/2)(n/2)(—)"28,.,7. The effect of
(VeV=(0,0,0e M@ *nMamtm, the ghost will be to cancel this anomaly when considering

. o KX*¢, In the comma representation, the phase factor reads
wheren=1 andm=0 refer to the modes, while thigj)

index refers to théth (jth) string and take the values 1,2,3. —3j © 2
The CSV coefficients are given by ex;{T ¢(7-r/2)) :exp( > > AL —bIT) ],
n=0r=1
1/n
ME=ME =M= ahere
and all otherM’s vanish. It is not hard to see, by direct ro)\ :§ ()" r=1.2 n=0
substitution in Eq(2.4), that the CSV vertex does not satisfy notno4 ,/45no+n’ " '

the comma overlaps and, therefore, is not a solution to the

comma theory. To see this in another way, note that the CS\¢ommuting the annihilation operator through the quadratic
vertex is related to the Witten's vertex bYV°®Y|  formin|ig), we have

=(V¥|0~*, whereO is the conformal operator derived in

Refs.[15,16. Now it is not hard to see from the explicit © 2

form of the conformal operatoD that it fails to commute exp( -2> > )\Lbf). (4.1
with the comma overlaps. It follows that the CSV vertex is n=0r=1

not a solution to the comma theory, since the Witten’s vertex

is. However, it is worth noticing that there is no self- Now we are ready to compute the effect of commutity
coupling in either of the comma @ertexor the CSV vertex; through the phase factor in Egt.1). It is not hard to see that
therefore it is reasonable to investigate a theory in which théor n=odd, K, commutes with the phase factor. Only
string is made up of two pieces coupled together at two endk};_ ¢, CONtributes to the anomaly. The Virasoro generators
points and strings are allowed to interact whenever their end=? for the ghost in the comma theory are given in Appendix
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2

2 1 9
-> bﬁﬂ_i(1+2|v|)(—)“".

B; here we only recall the pieces that contribute to the
V2M| X ph—3M
r=1

anomaly. Thugusing Appendix B for the phase factor, we

have
M1 - It remains to compute the action &f on |I§). This is the
1 1 , s same as the action &f* on|I*). But since we have not done
2 NZI V(2ZM—=2N)(2N) 3 rél by - NPy the orbital part here, let us do this one. Now the linear term
' does not contribute to this anomaly sirit§) is quadratic in
2 - the creation operators. Therefore only
- 2 V(2M =2N)(2N)ASAL,
r,s=1 N=
QM1
9 = V(2M —2N)(2N) by nbN
=5 (M=1)(—)". 2 . rszl Mow
The linear term inL® is and

1M 1 1 (_)M—N+1
3 &, V@M-(2N-1)(2N- 1)— Z (-) (m(zm—zmnw

X[((2M —2N+1)+4)b— ((2M —2N+1)—4)b"]]

= [2M—(2N—1)|12 r
+|<21(T) [AzM_(ZN—l)2kbk+82M—(2N—1)2kbrI])
" 1 (=N 5 [((2N—1)+4)b5— ((2N—1)—4)b"}]

V2 (2N—1r 0

* [oN—1\12

|2( ) [AzN—lzb{"'SzN_lzbrr])

contribute to the anomaly. The first equation when acting oranother divergent piece coming from the same terinfipt,
[1€) gives which is given by the second equation with=b'", making
the difference of the two terms finite. Thus, one gets

_7(_)M5MEZZ- "
— 5 () meaz-1,

The action of the second equation gives a finite piece plus a
divergent piece, however the divergent piece cancels againgthere we have used the identity

1 8

C 2m | 7Zm? 1] omana

kzl ﬂ(BZn712k82k2m7(2n71)+Bme(anl)ZkBZKanl): 22 m(—)™+1 ) -
7 2n-1)2@m—(2n-1)2 T MFen-L
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Putting everything together,
9 9
Kau—75 (M —1)(—)M+ 5 (2M —1(—)™

26
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point ghost insertions for all vertices apart from the identity
vertex (i.e., |I)) as can be easily seen from the form of the
N-vertexin the comma theory. However, the case for higher
vertices is different in the full string theof¥]. At this point

it is worth looking at how the midpoint insertions are seen by

_ M (— M=M= the comma theory for higher vertices. To see this, we recall
2 2 ' that, in the comma theory, the ghddtvertexis given by

Clearly, this cancels the orbital anomaly, thus proving the |Vﬁ>:eiQﬁ¢(w/2)|Vﬁ,%.
symmetryK. This shows that the midpoint insertions are the

same in both theories for the identity. Therefore integrationzor |v¢) the phase factofinsertion is
means the same thing in both theories at this level of f§or.

The 2-vertex is anomaly free in both theories. Both the or-

bital and ghost parts of the string are invariant under the exp(
symmetryK separately. For the 2ertexin the comma for-

mulation, this is true for the following reason. The Virasoro 3 o
generators contain terms which are either linear or quadratic = > 7\} n(b; n_bjr W5,

in the creation-annihilation operators, the linear term does i=

not give rise to a&-numberwhen it is commuted through the (4.2)
guadratic piece. The quadratic term in the Virasoro genera-

tors is of the formb{b?; the fact that the same string index where)\Jr .= — 3\, for all r, j andn. Commuting this phase
“i” appears in both ‘b's” means that, the action of thigh  factor through the creation operators|M¢®), doubles the
operator on the exponential will bring down a creation op-factor of the creation operator in the phase factor. Hence,
erator with index different from (since, in the comma

theory there is no self-coupling in the 2-vertex creation op- |V§>=f3|V§‘O>,

eratorg which commute with the second operator giving rise

to no c-numberanomaly. This is precisely the reason why Where

one does not need any midpoint insertion in the case of the 3 2 e

two vertex and therefore thHé-symmetryis present not only _ roar ot

in D= 26, but in any space time dimensitthe same remark Fa= —exp( ,—Z‘l Z‘l z‘o Ajnbjn

is true in the case of the full string \&rtex. In fact in the

comma theory th&k symmetry does not require any mid- Thus, for the phase factor, we have

3i y
> ¢(w/2)>=21 (E ¢(w/2))

1 M-1 1 2 3 2 3 2 M-1 3
2 N§=:l (ZM_ZN)(ZN)(ﬁ) i§=:1 rél b;MbejSN—}jZJl rél N=1 (ZM_ZN)(ZN)MSN)\;MfNZE (M=1)(=)".
I
For the linear term irL ¢, we have 3
2 KfauFa— =5 MY

i 12 135 5
2M '—3M| — b? e MM M= M
V2M2, | 2 o) )le T =~ =7 M(—)M= 5 M(—)M,

1 s or which is precisely what one gets in the standard formulation
- 5 V2M rESJ ANT Ao [6,18] of WSFT. The same procedure can be repeated for the
comma 4-vertex giving

3 3 4
— J2M(2M *u=5 (—)M=9m(—)M. 27 1
i ( )gj Nm=3 () (=) ,—Z‘l KfZMﬂ—)—?M(—)M=§M(—)M(—26—1),

Hence,

1%0ne still needs to check the BRST invariance as well.

which is again the standard result. Although the comma
theory treats the midpoint insertions in the same way as the
standard theory, it does not require them for consistéfory

N=2). The same thing happens when considering the BRST
symmetry. The BRST symmetry requires the same midpoint
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insertions in the comma theory for the identity vertex as inplicitly substituting the oscillator form of the comma 3-
the case of the full string identity vertgd.8]. For higher vertex (derived earlier into Eq. (4.6) and then integrating
vertices (N=3), the BRST symmetry in the comma theory over o. Doing so, one gets

does not require any midpoint insertions for consiste(fioy

details see Ref17]) unlike the case of the standard theory [ —Hiom+ 6781 Som—Higm+ 85+ 82 Somlb | V).

[18]. This seems to suggest that both theories are different in o . )
some way not yet obvious to us in spite of the fact that althe expression in th_e_square bracket is zero as can be easily
vertices are solution to the comma overlaps. Now it will beS€€n using the explicit values of the mattixobtained be-
interesting to see what sort of operafirit exists) interpo-  1Or€: , , _

lates between these solutiofis7]. Before concluding this It has been shown ifiL9] that there is an anomaly in the
paper, it will be useful to explore some other features of the?Perator associativity of WSFT which in turn implies an as-
full string theory within the frame work of the comma sociativity _anomalylnthe star algebra of Witten’s string field
theory. Let us recall that in Ref19], translations were theory. This can be seen using the fact

shown to be inner derivations. To prove that the authors of

Ref.[19] had to show that the properties [ PR+ P5o, Xq(7/2) — X5(/2)]= _IE A

L R
+Pg= ) .
Po+Po=Po 4.3 (since the zero modes do not commutdowever, we have

(where P§ and P§ are the integrals of the space-time mo- seen in Ref[19] that

mentum density over the intervale=0—x/2 and 7/2 PR 4PV, =0
. . ( 10 20)| 4>
— a7, respectively, ang is the total center of mass momen-
tum), and and?
(PGAL)* Ag+As* (PGAz) =0 (4.4 [Xy(m/2) = X3(w/2)]|V4)=0

(whereA is a string field hold. The star product of two states Which is a clear violation of the uncertainty principle. These

is given by Gross and Jevicki, anomalies have been discussed bef@@ and are charac-
terized by the failure of the Jacobi identity. This anomaly

[Ar* Ag) = (A|(A,]|V3). arises because of the coupling between the first and the third

strings in the vertex. Now it is not hard to see that the Wit-
Thus to prove Eq(4.4), one only has to show that the inte- ten’s 4-vertex suffers from the same problem when viewed

gration by parts lawW19] is satisfied by the comma theory. To see this, one only needs to notice
that the above two equations are in fact comma equations.
(A[(A|(PT+ P50 V3) =0, (4.5  For the first equation, this is obvious. For the second equa-

tion, recall that from the definition of the comma coordi-
where the indices 1 and 2 refers to string one and string twa)ates; lim_ ., x“(o)=lim,_ ., x*(o) =X (7/2) (whereL

respectively. Equatiofd.5) is a consequence of and R refer to the left and right parts of the string, respec-
tively). However, when one is working fully in the comma
(p§0+ P50)|V3>=0. (4.6) representation, the comma vertices do not seem to suffer

from this particular problem. This is due to the fact that in

It is a straightforward to see that these properties continue t8e comma theory, there is no coupling between the first and
hold in the comma theory. Equatid#.d) is just Eq.(1.11)  third strings or the second and the fourth strings in the ver-
for n=0 which was established earlier in the comma formal-tex. This can easily be proven to be equivalent to the follow-
ism. Equation(4.6) is a consequence of integratidgfrom  ing statement; it is not possible to construct an operator that
o=0— 7/2) the overlap Eq(2.2) defining the comma vertex fails to commute with Pf+ P and at the same time kills
for the particular value§=2 andN=23. This can be easily the comma 4sertex In fact, in the comma theory, this is true
seen by integrating Eq(2.2) from o=0— /2 using the in general for higher verticesN=3). Hence, the above

Fourier expansion of the comma conjugate momepftey), ~ Mentioned anomaly disappears in the comma theory and the
associativity of the star algebra is retained.

r 2 r 2‘/2 - r
soi(a)=;pio+7 21 Pi2n COS Do V. CONCLUSION
“

We have shown that the operator form of the Witten's
Thus, Eq.(4.6) is satisfied by construction in the comma vertex given in[7,8,6,9,10 is indeed a solution to the
theory. One can check the above statement directly by ex-

12Remember that this equation is the statement that the midpoint
110ne must check the convergence of the implicit sums over osis not moved in the oscillators representation of WSFT which is not
cillators, since integrating over corresponds to a second sum. the case in the comma theory.
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comma theory. The question about the equivalence of the® (—)" (_1/2)
n

two theories is discussed. On the level of the one and the twQ, k=127
vertices(i.e., |I) and|V,)), we have seen that both forms of "=° (n )
the vertex(i.e., the comma vertex and the Witten's vepjtex

oo _ n o
possess the same symmetries and in fact can be shown to be — i E =) ( Y 2)
equal using the change of representation formulas derived in 3¢ i< n—¢-12\ n &=k
the Introductiont®> However for higher vertices N=3), B K
while in the full string formulation, theK and the BRST :i (W) =2 L(_llz)_
invariance require some specific ghost insertions at the mid- 3 I'(1-¢) =k 2k—1 k-1

point of the string for consistency, it does not seem to be the
case in the comma formulation. In the comma theory, botHA special case of the above formula is
the orbital and ghost parts of the verticer N=2) are

invariant under th&k and the BRST symmetries separately. )" —-1/2
The associativity anomaly in the star algebra of the standard (2n+ (2n+1)2 ( n )
formulation disappears in the comma theory. Now it seems

to us that the comma formulation of string field theory is

somehow more general than the standard formulation of =—
string field, since beside the comma vertices all the Witten’s 4
vertices are solutions to the comma theory. This seems to

suggest that Witten's interaction does not lead to a uniqu&/Sing Ed. (A1) and the explicit expression for the matrix
solution, but to more than one solution. A challenging task i€/€MentsBnm, it is straightforward to see that

to understand the relationships between these solutions.

Mg

= 7 (L)~ §(112)

1+ Vg
1_VOO ’

Work in this direction is in progress and the result willbe & g . (D)'T(k+1/2)  ux
reported in the future. & ket 1Tnt 1T 5 T(1/2)T(1+K) 2
(A2)
APPENDIX A It is also easy to see that
In this Appendix we give details of the summation formu- * Vons1 1 Uy
las. Many other useful formulas can be found in Refs. 2 Bokon+1 ntrl_ 2 2k (A3)
[6,15,11. First consider n=0
The above formulas can be utilized to show that
- —-1/2 - 1/2 % B __aml
a-1 _\men| — 2k2m+1 2n) —(2m+ 1 Von+1
:on+a )fdtt nEo()t(n> m=o (2m = )
u 1 6 2n u
— |22k, = Ok _ 7 2k (A4)
2 2muy, 2n+2k 2
— -1 1/2—-1
- fo dtt*" S (1-1) ' Another useful sum to consider is
i B Von+1
where we have used the binomial formula +f)2 o 2 (2k+1)+(2/+1)
=3_,t"(3) to sum the series in the integrand. However this 1 1 B
equation defines thB(a,1/2). Hence, Y Yan - 2n2/ -1
(27-1)—12n) 2 2/-1 vy, 4/

To arrive at the above result, we only need to use the fact
I'(1—n)=« for n=1, Eq.(Al) and

c(=)n )_ _T(12)T(a)
2 ial n |7B@Y2=Figs (AL - —1/2)_(—)”F(n+1/2)
“Zn_( n | T(U2T(n+1)
Next we consider
APPENDIX B

Here we state the Virasoro Generators for the ghost sector
3In fact to do this properly, one also needs to derive the relationin the comma annihilation-creation basis. For the even
ship of the full string vacuum to the comma vacua. See Rf4]. modes, we have:
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1 - 2 2 )N
‘ZDMZEZ erélbk bRut 5 2 V(2N-1)(2N+2M - 1>r521( )'re ——r(zﬁ, 1)

(_)N+M

2N—1 1/2
) [Aon—12b] T+ Son-12b]] im (2NT2M—1)%2

X[((2N—1)+4)by — ((2N—1)—4)b5]— Z(

2N+2M—1|12 . o
ok [Aan+2m— 12Dk T Sont om — 1240%]

X[((2N+2M —1)+4)bs— (2N+2M — 1) — 4)bsi]— 2

M

M-1 2
i3 > J2M—-2N)(2N) > b{\,,,NbE—irl > J(2M—2N+1)(2N-1)
4 =1 rs=1 4 N=1

2 M—-N+1

Xrél( )r+s e (2,\(/| )2N+1)3/2[((ZM_2N+1)+4)br0_((2M_2N+1)_4)brg]
i 2M—2N+1|? r . ()N s
& T2 ) [Pem-aniaabi+San-an1aD't] || —— GRmR [(2N-1)+4)bg

2

2
2, (bp+bghH=3M | > by
r=1 s=1

1/2

5 [2N-1 1
—((2N—1)—4)b%] ) 21( ) [A2N712<bﬁ+SZN712<bSl])+5\/m

(B.1)

Whereas the odd modes of the Virasoro generators are given by

(_)N+M

Vim 2N+2M—1

1 o
Liw-1=5 Nzl J(2N)(2N+2M - 1)21 (=)oY 2 [(2N+2M—1)+4)b5

2N+2M—1\%?
—((2N+2M—1)—4)b} - E(—)

[Aon+2m— 12D+ Sone 2m— 12 bET])

i1 > J(2N—1)(2N+2M-2)
281

1 ( )N N—1 1/2 ot
szl( " o Ny [(N=D+4)b5 — (2N~1)~4)bp] - Zl( ) [Aan- 120
1M 1 1 (_)M—N
+Son- 12kbk])b§+M 1tz 2 V(2M—2N— 1)(2N) 2 (\/QW(2M—2N—1)3/2[((ZM_ZN_1)+4)bB

[

1/2
—(2M—-2N-1) 4)b] kzl (W)

[Agm—2n- 120k + Som—2n— 12D} ] ) by,

1 _ S r ( )N S st

ZZ J(2M —2N)(2N— 1)2 )by — N(‘[ W[((ZN 1)+4)bg—((2N—1)—4)bg']

w -1 12 oM—1 /(2 1 —)M

aN- 12D+ Son— 1Py | |+ 0T 0o + iy
-3 [Aon_ 120+ Son_ 12b5'] > | 2, (b+biH—3m 2( e (Zh(,, )1)
k=1
2M—1 1/2

X[(2M—1)+4)b5—((2M—1)— 4)bs*]—21( T ) [Azm— 1205+ Som - 12kbk]> (B.2)

Finally, the zero mode of the Virasoro Generat@rs., the Hamiltonian operatphas the form
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2

© 2 N
+5 2 2 b+ E E (2N-1)(~ ”S( = ﬁm[((zw 1)+4)by — ((2N—1)

N=1rs=1 N 1rs=1

|
ol =
NI =

2
1
L=5 (Zfl (bh+b)

& [2N-1)12 " . (=" s ot
—4)b, _241 (T) [Aon—12b; "+ Son-—12by ] im (2N 1)32[((2N 1)+4)by— ((2N—1)—4)by']
* 2N—1 1/2
k§=:1( ) [Aon—120R+ Son— 1Dk ]) (B.3)

It is tedious, otherwise straightforward, to show that the desired commutation relation for the comma Virasoro generators are
indeed satisfied.
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