
PHYSICAL REVIEW D, VOLUME 58, 085021
Critical dynamics of symmetry breaking: Quenches, dissipation, and cosmology
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Symmetry-breaking phase transitions may leave behind topological defects with a density dependence on the
quench rate. We investigate the dynamics of such quenches for the one-dimensional, Landau-Ginzburg case
and show that the density of kinks,n, scales differently with the quench time scale,tQ , depending on whether
the dynamics in the vicinity of the critical point is overdamped (n}tQ

21/4) or underdamped (n}tQ
21/3). Either

of these cases may be relevant to the early Universe, and we derive bounds on the initial density of topological
defects in cosmological phase transitions.@S0556-2821~98!01820-7#

PACS number~s!: 05.70.Fh, 11.15.Ex, 67.40.Vs, 98.80.Cq
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The dynamics of symmetry breaking phase transform
tions is of interest in cosmology, condensed matter, and h
energy physics. The recent surge of interdisciplinary inte
has been fueled by the experiments involving creation
topological defects during rapid second order phase tra
tions in superfluids@3–6# and other systems@7#, in a setting
reminiscent of similar cosmological processes@1,8#.

In the cosmological context, topological defects such
cosmic strings may have played a role in seeding struc
formation @1,9#. In high energy physics, accelerator expe
ments may allow one to probe restoration of some of
symmetries~e.g. chiral!, which were originally broken early
in the history of the Universe. The signature of whether su
restoration has occurred will come from the fluctuation
decay products@10,11#, determined by the relevant dynamic
of the order parameter during a quench. In superfluids,
very same process controls the production of topological
fects. The interest in experimental exploration of the criti
dynamics is therefore well justified by its wide-ranging a
plications, which may also come to include in the near fut
the creation of vortices in Bose-Einstein condensates@12#.

These processes span many orders of magnitude in sp
and energetic scales. Yet, a large class of them is w
approximated by the Landau-Ginzburg theory. Therefore,
dynamics of the order parameterw is governed by an equa
tion of the form@13#

ẅ1hẇ2c2¹2w1@bw32m2e~ t !w#/25q~ t,x!. ~1!

Above, h characterizes viscosity, whilec,b andm are con-
stant coefficients, ande(t) is the time-dependent relativ
temperature, assumed to vary with time ase5t/tQ , where
tQ is the quench time scale. The termq(t,x) is noise char-
acterized by its spatial and temporal correlations, as wel
by its amplitude u. We assume: ^q(x,t),q(x8,t8)&
52hud(x82x)d(t82t). Equation~1! can be expressed i
‘‘natural’’ units t→t/m,x→xc/m,h→hm,w→wm/Ab and
u→um3c/b, which leads to

ẅ1hẇ2¹2w1~w32ew!/25q. ~2!
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Thus, in the vicinity of the second-order phase transition,
enormous range of ‘‘bare’’ parameters can be reduced
two: the ‘‘renormalized’’ damping rateh and the noise tem-
peratureu. The quench adds a dependence of the con
quences of critical dynamics on the quench rateė5tQ

21 . The
aim of our study is to investigate the dependence of the c
cal dynamics on the value ofh andtQ , under the assump
tion that u is sufficiently small, so the probability of ther
mally activated symmetry restoration is negligible after t
quench. In this paper we takeu50.1. We focus on creation
of kinks — zero-dimensional topological defects in 1D sy
tems — in the course of rapid quenches.

Evolution generated by Eq.~2! is overdamped whenhẇ

.ẅ. In this regime, the relaxation timetẇ.uw/ẇu scales
with the relative temperaturee as: tẇ.hto

2ueu21

.htQto
2utu21, in the units of Eq.~1! with to5m21 the dy-

namical time scale. In accord with@2#, one expects the initia
sizeĵ of the pieces of the new broken symmetry phase to
set at the timet̂ , when the time to~from! the phase transition
is comparable to the relaxation time scale, and the freeze
of the field evolution occurs; that is, its state cannot keep
with the change of the thermodynamic parameters as a re
of critical slowing down. This freeze-out condition,tẇ( t̂ ẇ)
5 t̂ ẇ yields

t̂ ẇ.to~htQ!1/2 ~3!

ê ẇ.S hto
2

tQ
D 1/2

. ~4!

The correlation lengthĵ, which sets the stage for the defe
formation @1#, is then:

ĵ ẇ.
jo

u ê ẇu1/2
.joS tQ

hto
2D 1/4

, ~5!

where jo5c/m characterizes the low temperature (e50)
healing length.
© 1998 The American Physical Society21-1
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To test these arguments@2#, we have recently carried ou
a numerical study of defect formation@14#, showing that the
density of kinks formed in a quench indeed varies, in
overdamped regime, as

nẇ.
1

f ĵ ẇ

}S hto
2

tQ
D 1/4

~6!

with f .8. A similar study was independently carried out
Lythe @15#, who has estimatedf 52pu lnuu1/4 whenu!1.

Our purpose here is to extend these studies from the
gime where damping dominates~which is most relevant in
condensed matter applications! to the range where the evo
lution is underdamped~as may be the case in cosmology!.
For details of the numerical technique, see Ref.@14#.

In the underdamped case,ẅ will dominate, and the orde
parameter reacts to the quench-induced changes in the e
tive potential on the time scaletẅ.uw/ẅu1/2. Thus, tẅ

.toueu21/2. The freeze-out condition,tẅ( t̂ ẅ)5 t̂ ẅ yields in
this underdamped regime:

t̂ ẅ.to~tQ /to!1/3; ~7!

ê ẅ.~to /tQ!2/3. ~8!

Consequently, the scaling of the characteristic correla
length with the quench ratetQ

21 is expected to change to

ĵ ẅ.
jo

u ê ẅu1/2
.joS tQ

to
D 1/3

. ~9!

Furthermore, the density of the number of kinks is given
this case by

nẅ.
1

f ĵ ẅ

}S to

tQ
D 1/3

, ~10!

althoughf may now be different.
We can therefore draw two related conclusions:~i! In the

overdamped regime, the density of kinks should scale w
h1/4, and should become viscosity independent in the und
damped case.~ii ! Power-law dependence of the density
kinks with the quench time scale should change from}tQ

21/4

in the overdamped case to}tQ
21/3 in the underdamped case

The overdamped scalings should apply when the evolutio
dominated by the first derivative (hẇ.ẅ, i.e. h/tẇ.1/tẅ

2)
at the instant when topological defects ‘‘freeze-out.’’ Th
will happen for:u ê ẇu.u ê ẅu, or — using Eqs.~4! and ~8! —
when

~hto!3.~to /tQ!. ~11!

We identify kinks as zeros of the order parameter. This
be justified only well after the phase transition, whenw has
locally settled into the broken symmetry state. Kinks anni
late, and their number slowly decreases with time. Pre
ously, in the overdamped regime, we were able to confi
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the predicted@2# dependence of the initial number of kink
on tQ from the numerical data by using a fairly straightfo
ward procedure of simply counting zeros at a fixed value
t/tQ @14#. The nature of that dependence did not chan
dramatically even when the counting of kinks was taking a
constant value oft ~although a change on the slope as well
evidence of the saturation in the number of kinks for sm
tQ were noted!. But the nature of critical dynamics and e
pecially the annihilation rate depend onh, which we shall
vary by several orders of magnitude. To compare ‘‘init
densities’’ of kinks now, we therefore need more objecti
procedures independent of the time at which the kinks
counted. We have done this by using whole runs of k
densities~such as the ones shown in Fig. 1! to model anni-
hilation either as a power-lawN.No(t/tQ)2b, or as an ex-
ponential,N.Noexp(2at/tQ), with N the number of zeros o
the order parameter. The actual dependences are usually
ficiently similar to a straight line that both of these proc
dures yield comparable initial kink numbersNo .

The dependence of the initial number of kinksNo on the
damping coefficienth for three different quench rates (tQ
5128, 256, and 512) is shown in Fig. 2. In the regime
large viscosities, critical dynamics is overdamped, in acc
with Eq. ~11!, and leads to the power-law dependence}h1/4,
Eq. ~6!. The spacing between the three lines is also roug
consistent with the one anticipated from that equation. As
damping rate decreases below the value estimated from
~11!, namelyh&0.1, the number of kinks becomes esse
tially independent ofh. Moreover, the spacing between th
~now approximately horizontal! lines of constanttQ is con-
sistent with the underdamped caseNo}tQ

21/3, Eq. ~10!.
We should note, however, that forh<1022, the number

of kinks are small and the annihilation is more efficient. Co
sequently, our results in this range are less reliable. I

FIG. 1. Number of kinksN as a function of time for simulations
with different viscosity parametersh, but with the same quench
time scaletQ5256. Two models for the annihilation rate ar
shown, ~a! exponentialN5Noexp(2at/tQ) and ~b! power-law N
5No(t/tQ)2b. Note the increase of the annihilation rates for sm
h.
1-2
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sense, Fig. 1 indicates a more systematic~and probably more
consistent with the theoretical expectations! trend with the
damping rateh than our estimates of the number of kin
plotted in Fig. 2. Most of the scatter in Fig. 2 stems from o
inability to model annihilation rate in a consistent fashi
over a broad range of parameters, rather than from
‘‘raw’’ data shown in Fig. 1.

These conclusions concerning the transition from ov
damped to underdamped behavior are strengthened by
paring families of simulations corresponding to the sameh
but for varyingtQ ~see Figs. 3 and 4!. As before, we con-
sider two methods for obtaining the initial number of kin
No from the time-dependent data, Fig. 3. In the range of lo
quench time scales they produce similar~but not identical!
power-laws.

According to condition~11!, theh55 and 1 cases in Fig
4 are, for the values oftQ under consideration (2<tQ
<4098), entirely within the overdamped regime. For the
two cases, we find power-laws;tQ

21/4, consistent with Eq.
~6!. On the other hand, for theh51/5 case in accord with
Eq. ~11!, a transition between overdamped and underdam
regimes should occur attQ;125. We find~see Fig. 4! indi-
cation of a change in the power-law dependence, fromNo

}tQ
21/4 to }tQ

21/3 ash decreases.
One obvious case of breakdown of power-laws, Eqs.~6!

and~10!, occurs when the conditionê!1 of applicability of
the theory of Ref.@2# is not satisfied@16#. In that case, the
predicted initial separation of kinks would be comparable
~or even smaller than! the zero-temperature healing leng
jo . This would of course result in a rapid initial annihilatio
so that the density of defects would be set by the annihila
process rather than by the critical dynamics. We have s

FIG. 2. Initial number of kinksNo as a function of the damping
rateh for a fixed quench rate time scales~top to bottomtQ5 128,
256 and 512!. Both exponential~a! and power-law~b! model results
~see Fig. 1! are shown~and are essentially identical!. For h.0.1,
No}hg, where No is obtained from the fittings in Fig 1. Bes
fits yield g5(0.2760.035, 0.2560.029, 0.2760.011) for tQ

5(128, 256, 512), respectively.
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evidence for this behavior for sufficiently smalltQ in Ref.
@14#.

Equations~6! and ~10! for the initial density of topologi-
cal defects can be used in the cosmological setting. Ph
transitions are likely to occur in the radiation dominated e
when the temperatureT of the plasma and the Hubble tim
tH since the big bang are tied with the equationT2tH5 con-
stant. This immediately yields quench time scalestQ52tH
5H21, whereH is the Hubble parameter.

Damping rate is the other important parameter set by c
mology. In the radiation-dominated epochh53H1g,

FIG. 3. Number of kinksN as a function of time for a fixed
viscosityh51 but different quench times calestQ . As with Fig. 1,
~a! corresponds to an exponential fit and~b! to a power-law fit.

FIG. 4. Dependence of the initial number of kinksNo on the
quench time scaletQ for values of the damping rateh55 ~top!, 1
~middle! and 1/5~bottom!. Case~a! is obtained from an exponentia
fitting to the decay of number of kinks and~b! from a power-law fit.
Fittings to No}tQ

2g yield ~from top to bottom! g5(0.23
60.010, 0.2660.011, 0.3360.011) in case ~a! and g5(0.28
60.010, 0.3060.011, 0.3660.010) in case~b!.
1-3
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where 3H is the effective viscosity caused by the Hubb
expansion, whileg is damping due to the coupling with th
other degrees of freedom. Early on, the ‘‘Hubble viscosit
may even dominate.

The nature of the critical dynamics in the immediate
cinity of the phase transition is decided by the inequa
~11!, which now reads

S 3H1g

m D 3

.
H

m
. ~12!

In the overdamped case

t̂.to~31g/H !1/2 ~13!

ê.toH~31g/H !1/2. ~14!

This in turn leads to

ĵ.~joH21!1/2~31g/H !21/4, ~15!

where we have setc51, so jo5m21. Thus the density of
topological defects is principally set by the geometric av
age of the characteristic length scale of the order param
(jo) and the size of the horizon (H21). For small g/H,
damping is dominated by Hubble expansion. In that regim
H/m.1 ~or H21,jo) would be required for the critica
dynamics to be overdamped. This would lead toĵ*H21,
which in effect implies that in this case the density of defe
is set by the size of the horizon.
-

n

.

.
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When the critical dynamics is underdamped,

t̂.to~toH !21/3, ~16!

ê.~toH !2/3. ~17!

This immediately leads to

ĵ.jo~H21/jo!1/3 ~18!

The characteristic distanceĵ is then bigger than the healin
length jo by the third root of the size of the horizon at th
time of the transition measured in the units ofjo .

We conclude by noting that the dependence of the num
of kinks on the viscosity parameter corroborates anticipa
existence of the two regimes in the critical dynamics, ea
with a distinct scaling of the relevant characteristic tim
scale with the relative temperaturee. Overdamped regime
produces kinks with separationsĵ}(tQ /h)1/4, while in the
underdamped caseĵ}tQ

1/3 and is independent of viscosity
The subsequent annihilation rate of the kinks strongly
pends on viscosity, and is much more rapid in the und
damped case. The location of the borderline between the
is consistent with the considerations of@2,16#.
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