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Anti–de Sitter supergravity models are considered in three dimensions. Precise asymptotic conditions in-
volving a chiral projection are given on the Rarita-Schwinger fields. Together with the known boundary
conditions on the bosonic fields, these ensure that the asymptotic symmetry algebra is the superconformal
algebra. The classical central charge is computed and found to be equal to the one of pure gravity. It is also
indicated that the asymptotic degrees of freedom are described by 2D ‘‘induced supergravity’’ and that the
boundary conditions ‘‘transmute’’ the non-vanishing components of the WZW supercurrent into the super-
charges.@S0556-2821~98!01020-0#

PACS number~s!: 04.65.1e, 04.20.Fy, 11.30.Ly
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I. INTRODUCTION

It has been pointed out in@1# that the asymptotic symme
try group of anti–de Sitter gravity in three dimensions is t
conformal group in two dimensions with a central chargec
53l /2G. The emergence of the conformal group at infin
can be understood either in terms of the Penrose confo
treatment of infinity @2# or by working out explicitly the
boundary conditions and solving the asymptotic Killin
equations@1#. It is a purely asymptotic phenomenon, in th
sense that the infinite-dimensional conformal group in t
dimensions is not the isometry group of any 3D backgrou
geometry. This is one feature that makes the thr
dimensional case particularly interesting and which actu
allows for a nontrivial central charge in the dynamical re
ization of the asymptotic symmetry algebra@1#.

Another interesting feature of three-dimensional grav
tional theories is that they have no bulk degrees of freed
so that the role of the boundary degrees of freedom in
adS-conformal-field-theory~CFT! correspondence@3–7# can
be investigated more easily. That the boundary degree
freedom may be quite significant has been stressed rec
in @8#. The pure gravitational case has been analyzed in@9#,
where it was shown that the boundary dynamics at infinity
described by ‘‘induced 2D gravity’’~Liouville theory! up to
terms involving the zero modes and the holonomies t
were not worked out.

The purpose of this paper is to extend the analysis of@1,9#
to the supersymmetric context, which is known to play
central role in black hole physics. The new non-trivial ingr
dient to be fed in is the precise asymptotic behavior of
Rarita-Schwinger fields, which must be compatible with t
symmetries. In particular, one must understand how
boundary conditions implement two-dimensional supersy
metry at infinity.

The supersymmetry properties of 3D black holes w
investigated in@10#, assuming the existence of asympto
conditions on the Rarita-Schwinger fields satisfying the
quired properties. However, the asymptotic conditions
0556-2821/98/58~8!/085020~6!/$15.00 58 0850
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question were not given. The main object of our paper is
fill this gap, which appears necessary since otherwise,
discussion of the asymptotic dynamics remains rather
mal. We also verify that the given fall-off conditions reduc
the theory to induced 2D supergravity. The symmetry al
bra is the super-conformal algebra with unchanged cen
chargec53l /2G. The boundary conditions involve a chira
projection, in a way very similar to what has been discus
for Dirac fields in@11#.

II. BOUNDARY CONDITIONS

AdS supergravity in three dimensional spacetime can
written as a Chern-Simons theory@12#. We shall adopt the
Chern-Simons point of view from the outset and consid
almost exclusively the~1,1! theory. The relevant group is
OSp(1u2)3OSp(1u2). The (1,1)-supergravity action is

I @A,c;Ã,c̃#5I @A,c#2I @Ã,c̃# ~1!

whereI @A,c# and I @Ã,c̃# are the Chern-Simons actions fo
the supergroupOSp(1u2),

I @A,c#5
k

4pE FTrS AdA1
2

3
A3D1 i c̄`Dc G ~2!

~with a similar expression forI @Ã,c̃#). HereA5(1/2)Aaga
and the symbol Tr stands for the trace in the spinorial rep
sentation ofSO(2,1) generated byJa5(1/2)ga ~our conven-
tions are summarized in@13#!. The constantk is related to
the 3D Newton constantG and the anti–de Sitter radiusl
throughk5 l /4G.

Assuming that the topology of the three dimension
manifold M is S3R, the action~2! can be recast in Hamil-
tonian form as

I 5E F2
ke i j

4p S hab

2
Ai

aȦj
b1 i c̄ i ċ j D2A0

aGa2c̄0SG ~3!
© 1998 The American Physical Society20-1
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where the constraintsGa and S are given by Ga

[2(ke i j /8p)hab(Fi j
b 2 i c̄ ig

bc j )50, S[2( ik/2p)e i j Dic j

50 and satisfy theOSp(1u2) algebra in the Poisson brack
ets @Ai

a ,Aj
b#5(4p/k)habe i j , $c i

a ,c j
b%5(2p i /k)e i j (g0)ab

which are derived from Eq.~3!. The canonical generator o
the gauge transformations~including the fermionic ones! is
G(la)1S(r) with

G~la!5E
S
laGa1B,S~r!5E

S
r̄S1F. ~4!

The boundary termsB and F must be chosen so that th
generatorsG andS have well-defined functional derivative
@14#, and their precise form depends on the boundary co
tions.

The boundary conditions at infinity on the bosonic fiel
have been given in@1# in the metric representation and the
were reexpressed in the connection representation in@9#.
~See @15,16# for a different approach to the problem o
boundary conditions in the connection representation.! The
bosonic boundary conditions must be supplemented by
propriate boundary conditions on the fermionic fields. W
consider only oneOSp(1u2) copy, the other copy being
treated similarly.

The searched-for boundary conditions can be determ
by following the procedure of@17#: one starts with the
known physical metrics that should be included in t
theory—here, the black hole solutions@18#—and acts on
them with the anti–de Sitter supergroup. This suggests
adopt for the Rarita-Schwinger fields the following bounda
conditions~in the standard orthonormal frames!:

c t;r 21/2@11g1#x~ t,f!, ~5!

cf;r 21/2@11g1#x~ t,f!, ~6!

c r;r 25/2@12g1#x r~ t,f!. ~7!

Apart from an irrelevant replacement ofg1 by 2g1 ~due to
conventions!, the boundary conditions differ from those o
@17# @Eq. ~V.I!# in two respects. First, they involve a slow
rate of decrease at infinity~one less power ofr ). This was to
be expected since we are one dimension lower and also h
for the bosonic fields@1#. Second, they have the same lea
ing order for bothc t and cf . The equality of the leading
orders ofc t andcf is consistent with the fact that the ad
Killing spinors of ~1,0! supergravity depend only ont1f
@10#. The boundary conditions are otherwise identical and
particular, they crucially involve a projection onto th
eigenspaces of the radialg-matrix, which makes the induce
spinors chiral in two dimensions~recall thatg1 appears as
the ‘‘g5’’-matrix on the surface at infinity!. A similar phe-
nomenon is described in@11#.

III. ASYMPTOTIC SYMMETRIES

The algebra of coordinate and supersymmetry transfor
tions that preserves the boundary conditions~‘‘asymptotic
symmetry algebra’’! is the infinite-dimensional super
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Virasoro algebra. To discuss this issue, it is most conven
to work in the superconnection representation where
transformations take a simpler form.

Combining the above boundary conditions on the ferm
ons with those of@1,9# on the bosons, one finds that th
superconnection must satisfy

Av50, cv50, ~8!

Ar5b21] rb, c r50 ~9!

and

lAu5b21S 0 L/k

1 0 D b, lcu5b21S Q/k

0 D ~10!

asymptotically. Here,u5t1 lf, v5t2 lf and L5L(t,w)
andQ5Q(t,w) are arbitrary functions which will be show
to be equal to the generators of the super-Virasoro alge
The group elementb(r ) is equal to

b~r !5S ~r / l !1/2 0

0 ~r / l !21/2D ~11!

and satisfiesbg0b5g0 . Note thatAf5 lAu , cf5 lcu since
Av50, cv50. The otherOSp(1u2) field satisfies analogou
boundary conditions, withu and v interchanged, and de
pends on two additional functionsL̃ and Q̃. For positive
values ofL0 andL̃0 the boundary conditions~10! represent a
black hole. The black hole ground state (M50) is obtained
for L5L̃50. Anti–de Sitter space corresponds toL/k
5L̃/k521/4 and is the only configuration for which th
holonomies are trivial.@Note, however, that becauseA is
written in the spinorial representation, the holonomy~in po-
lar coordinates! is only trivial under a 4p rotation.#

The fact that the second component ofcu is zero just
expresses the chirality condition on the fermion enforced
the boundary conditions~5! and ~6!. One may rewrite the
asymptotic form~10! of the superconnection in terms of su
permatrices as

Gu5b21S 0 L/k Q/~A2k!

1 0 0

0 Q/~A2k! 0
D b ~12!

whereb is now the 333 supermatrix obtained by comple
ing the aboveb by adding 0 in the fermionic positions and
in position ~3,3!. The advantage of the connection represe
tation is that one can completely eliminate ther -dependence
through the gauge transformation generated byb. After this
gauge transformation has been performed, all the asymp
cally relevant components of the fields occur at the sa
order O(1). Furthermore, becauser has dropped out, the
analysis could be carried out in the same way at any fin
value of r . A Virasoro algebra for all values ofr has been
investigated in@16#.
0-2
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The most general supergauge transformations that
serve the boundary conditions~8!, ~9! and ~10! are charac-
terized by gauge parameters (la,r) that must satisfy, to
leading order,

l~u,r !5b21h~u!b, r~r ,u!5b21«~u! ~13!

with

h15
h2L

k
2~1/2!~h2!91

iQe

2k
, ~14!

h152~h2!8 ~15!

«5S 2e81h2Q/k

e D ~16!

where8 denotes derivative with respect to the argument.
have expanded the algebra elementh in the Cartan basish
5h1J11h1J11h2J2 . Equations~14!–~16! imply that the
full residual symmetry can be expressed in terms of t
functions of the lightlike coordinateu, one bosonic (h2)
and one fermionic (e).

Any three-dimensional gauge transformation whose
rameters satisfy Eqs.~14!–~16! asymptotically is called ‘‘an
asymptotic symmetry.’’ Two gauge transformations that te
to the sameh2 ande at infinity should be identified becaus
they differ by a ‘‘proper gauge transformation,’’ which it i
legitimate to quotient out@14,19# ~as will be clear below,
these transformations have in particular the same glo
charges!. The resulting quotient superalgebra is t
‘‘asymptotic symmetry superalgebra.’’

If one computes the graded commutator of two Che
Simons gauge transformations fulfilling the abo
asymptotic conditions and characterized by asymptotic
rameters (h1

2 ,e1) and (h2
2 ,e2), one finds another suc

transformation with asymptotic gauge parameters relate
(h1

2 ,e1) and (h2
2 ,e2) exactly according to the graded com

mutation rules of the super-Virasoro algebra. Hence, after
the quotient by the ideal of the proper gauge transformati
~with h250,e50) is taken, one is left with the supe
Virasoro algebra as asymptotic symmetry superalgebra.
infinite-dimensional algebra containsOSp(1u2) as a subal-
gebra when the fermions are anti-periodic~Fourier modes 0
and61 of h2 and modes6 1

2 of e). Note, in particular, that
the Lie algebra commutator@l1

a ,l2
b# of two bosonic gauge

transformations restricted by~13! and~14! reduces at infinity
to the Lie bracket of the residual functionsh1

2 and h2
2

viewed as vector fields on the circle. A similar stateme
holds for the fermionic sector.

IV. ADS CENTRAL CHARGE

We now turn to the discussion of the canonical realizat
of the asymptotic symmetry algebra. As is known, t
bracket of the canonical generators of the asymptotic s
metries provides a projective representation of the alge
@1,20#. To determine the central charges, one must first w
out the complete form of the generators~4!. This is now
08502
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possible since the asymptotic form of both the fields and
symmetry transformations has been obtained. One finds
with the above asymptotic conditions, the boundary terms
the variation of the generators~4! cancel out if one takes

B5
1

2pE]S
h2L, F5

2 i

2pE]S
eQ ~17!

i.e., the surface terms are preciselyL andQ ~up to numerical
factors!. We have adjusted the constants in the charges
that these vanish for the zero mass black hole, which haL
50. The surface terms~17! are of course equal to the surfac
terms that one would obtain through a more orthodox ‘‘no
Chern-Simons-based’’ approach~see @17# for the four-
dimensional treatment!. In particular, the bosonic pieceB is
equal to the charge~4.11! of @1# written in terms of the
metric, while the fermionic surface term may be re-expres
as

F5
ik

2pE]S
r̄cf . ~18!

Because the componentsL andQ of the connection that
remain at infinity enter the surface terms in the canoni
generators of the asymptotic symmetries, it is useful to kn
how they transform under the asymptotic symmetry gro
The transformation law for the superconnectiondG5DL
yields

dL5~h2L !81~h2!8L2
k

2
~h2!-1S iQe

2 D 8
1 iQe8

~19!

dQ52ke91Le1~h2Q!81
1

2
~h2!8Q. ~20!

Equations~19! and~20! indicate thatL andQ form a super-
Virasoro algebra. More importantly, the transformation la
~19! and ~20! give also the central chargec, equal to
6k(c/125k/2).

By using the general argument of@20,1#, or by direct cal-
culation, one finds that the Poisson brackets of the impro
generators~4! are

@G~l1!,G~l2!#5G~@l1 ,l2# !2
k

4pE]S
h1

2~h2
2!-

~21!

@G~l!,S~r!#5S~lagar! ~22!

$S~r1!,S~r2!%5G~2 i r̄1gar2!1
ik

2pE]S
e1~e2!9.

~23!

The central term is just that of Eqs.~19!, ~20!. The Chern-
Simons formulation of adS supergravity provides a parti
larly efficient derivation of the adS central charge.

The above algebra involves both the proper gauge s
metries and the improper ones@14,19#. The proper gauge
0-3
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symmetries have~weakly! vanishing Poisson brackets wit
all the other generators, i.e., form also an ideal in the Pois
sense. It follows that the generators of the asymptotic s
metries are ‘‘first class’’ and well defined in the reduc
phase space obtained by quotientizing the proper gauge
metries. Using standard terminology, they are ‘‘obse
ables.’’ The Poisson bracket~in the reduced phase space! of
these observables is the same as their Poisson bracket i
original phase space~see e.g.@21#!. That the global charge
at the boundary define observables has been particularly
phasized recently in@22#. The super-Virasoro algebra i
therefore realized in the space of physical observables, w
it is generated byL and Q ~the constraints are zero in th
reduced phase space!. After Fourier transformation, the
asymptotic superalgebra takes the familiar form~using
quantum-mechanical notation and rescalingQ by A2)

@Lm ,Ln#5~n2m!Ln1m1
k

2
n3dn1m,0 ~24!

@Lm ,Qn#5S 1

2
m2nDQm1n ~25!

$Qm ,Qn%52Lm1n12km2dm1n,0 ~26!

with a central charge equal toc56k. A practical way to
factor out the proper gauge symmetries is to fix the gaug
the bulk and use Dirac brackets@19#. In that case, the re
duced brackets in the above algebra would appear as D
brackets.

Note that if we had imposed only the chirality bounda
condition ~8!, as is usually done in the Chern-Simo
→chiral Wess-Zumino-Witten~WZW! reduction, we would
have obtained a current~Kac-Moody! algebra rather than th
super-Virasoro algebra. The key point leading to the sup
Virasoro algebra is the presence of the extra boundary c
ditions ~10! which ‘‘transmute’’ the residual gauge fiel
components functionsL and Q into super-Virasoro charge
@23–27#. These extra boundary conditions express~with the
other boundary conditions given above! adS asymptotics.

From the point of view of the chiral WZW theory, thi
transmutation can be seen explicitly as follows. Let affi
SL(2,R)k be generated byJ6,J1. Impose J251 and J1

50 @see Eq.~10!#. These are second class constraints
cause their Poisson bracket is an invertible matrix. It follo
that J15L satisfies, in the Dirac bracket, the Virasoro alg
bra with c56k. This argument is extended directly to th
supergravity theory and will be given a dynamical interp
tation in the next section.

In Eqs.~24!–~26!, the fermions can be periodic~index on
Q integer-moded! or anti-periodic~index onQ half-integer
moded!. The form of the algebra is adapted to the perio
~‘‘Ramond’’! case, which has the zero mass black hole as
L050 ground state@10#. The central charge vanishes for th
sub-algebra generated by (L0 ,Q0), which corresponds to the
true symmetries of this background. The anti–de Sitter ba
ground hasM521, i.e.L052c/24. It is the ground state o
the anti-periodic~‘‘Neveu-Schwarz’’! sector @10#. If one
shifts L0 by c/24 so thatL0 vanishes on the anti–de Sitte
08502
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solution, one finds that the central charge vanishes
(L61 ,L0 ,Q61/2), which are true@OSp(1u2)# symmetries of
the anti–de Sitter background!.

What we have done for oneOSp(1u2) factor can be re-
peated for the otherOSp(1u2) factor. The corresponding
spinor fields are projected on the other chirality and one fi
another copy of the super-Virasoro algebra, this time
pending onv5t2 lf, with same central charge. The tw
super-Virasoro algebras give the conformal superalgebra

V. DYNAMICS AT INFINITY

As anticipated above, the emergence of the sup
conformal algebra at infinity with a non-vanishing centr
charge can be understood at the dynamical level, in the l
of Polyakov’s discovery of the ‘‘hiddenSL(2,R) symme-
try’’ of 2D gravity @23–27#. The argument runs as follow
@9#. As shown by@3,4#, the Chern-Simons theory under th
boundary condition~8! induces the chiral Wess-Zumino
Witten model at the boundary. The corresponding Ka
Moody currents are just thef-components of the connection
Combining the two chiral WZW models of opposite chira
ties obtained from eachSL(2,R)-factor, one finds a non-
chiral SL(2,R) WZW theory ~modulo zero modes and ho
lonomies not discussed here because they affect neithe
asymptotic symmetry nor the central charge!. The constraints
on the Kac-Moody currents arising from the anti–de Sit
asymptotics lead then to 2D-gravity@9#.

In a similar way, the further constraint that the compone
of the Kac-Moody current along the fermionic generatorf
vanishes@see Eq.~10!# turns out to be precisely the con
straint that reduces the WZW theory based on the superg
OSp(1u2) to chiral 2D supergravity@24,28–30#. Although
the OSp(1u2)-WZW theory is not superconformal, the re
sulting theory is. What happens is that the other compon
~along e) of the fermionic Kac-Moody supercurrent i
‘‘transmuted’’ into the super-Virasoro generator since
transformation law becomes Eq.~20! once the gauge param
eters are restricted by Eqs.~14! and ~16!. From the WZW
point of view, supersymmetry on the worldsheet arises the
fore in a non-trivial way. It is rather interesting that the
features are in fact all contained in the 3D boundary con
tions expressing anti–de Sitter asymptotics, thus the a
CFT correspondence is explicit in this context. Bringing
the other OSp(1u2) factor leads to the non-chiral~1,1!-
supergravity, which is described, in the 2D super-conform
gauge, by super-Liouville theory. We have explicit
checked, using the Gauss decomposition forOSp(1u2) and
following the same lines as in@9#, that the 3D supergravity
action~1! yields the super-Liouville action~up to zero modes
and holonomies that we have not explicitly worked out!.

VI. CONCLUSIONS

We have shown in this paper that the anti–de Sit
boundary conditions in~1,1! 3D-supergravity theory lead to
an asymptotic symmetry algebra which is~twice! the super-
Virasoro algebra with a central charge equal to 6k. The pre-
cise boundary conditions given here on the spinors involv
0-4
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chiral projection and legitimate the assumptions of@10#.
The appearence of the Virasoro algebra as the boun

symmetry algebra of anti–de Sitter space is purely kinem
cal in the sense that the only ingredients that enter the d
vation of both the symmetry algebra and the central cha
in Eq. ~24! are ~i! the asymptotic boundary conditions th
dictate the approach to anti–de Sitter; and~ii ! the fact that
the surface terms at infinity in the Virasoro generators
volve only the~bosonic! gravitational variables, i.e., the tri
ads and the spin connection. Any theory with these featu
will have the same central charge in the commutator invo
ing two Ln’s. In particular the extended (p,q)-supergravity
models fulfill these properties and have as asymptotic s
metry algebra the relevant graded extension of the confor
group with Virasoro algebra satisfying Eq.~24! with same
c53l /2G. The triads, spin connection and spinor fields ob
the same asymptotic conditions as above, while
SO(N)-connectionAm

i j fulfills Av
i j 505Ar

i j , Au
i j 5Ti j (t,f).

Of course, since the generators in these extended supe
formal algebras contain, besides the Virasoro genera
only the N supercharges of conformal spin 3/2 and t
SO(N)-currents of conformal spin 1, with no generator
lower conformal spin, the supersymmetric extensions
question are those described in@31–33#. These algebra clos
quadratically in theSO(N)-currents, except forN52 and
N54 @with boundary conditions breakingSO(4) to one of
its SU(2) subgroups#, for which one recovers the linear a
,
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gebras of@34#. The Hamiltonian reduction of the correspon
ing WZW models has been analyzed in@35,36#.

As observed in@37# the degeneracy of states for a confo
mal field theory with this central charge gives rise to, und
appropriate conditions, exactly the Bekenstein-Hawking
tropy for the 211 black hole~see also@38#!. An earlier sta-
tistical description of the 211 black hole entropy was given
by Carlip @39# in terms of horizon degrees of freedom. F
further work in these directions, see@16,40–46#. In view of
the relevance of the 211 black hole to higher dimensiona
ones@47,48#, this question clearly deserves further study.
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