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Anti—de Sitter supergravity models are considered in three dimensions. Precise asymptotic conditions in-
volving a chiral projection are given on the Rarita-Schwinger fields. Together with the known boundary
conditions on the bosonic fields, these ensure that the asymptotic symmetry algebra is the superconformal
algebra. The classical central charge is computed and found to be equal to the one of pure gravity. It is also
indicated that the asymptotic degrees of freedom are described by 2D “induced supergravity” and that the
boundary conditions “transmute” the non-vanishing components of the WZW supercurrent into the super-
charges[S0556-282(98)01020-7

PACS numbsgs): 04.65+e, 04.20.Fy, 11.30.Ly

[. INTRODUCTION question were not given. The main object of our paper is to
fill this gap, which appears necessary since otherwise, the
It has been pointed out iri] that the asymptotic symme- discussion of the asymptotic dynamics remains rather for-
try group of anti—de Sitter gravity in three dimensions is themal. We also verify that the given fall-off conditions reduce
conformal group in two dimensions with a central chacge the theory to induced 2D supergravity. The symmetry alge-
=31/2G. The emergence of the conformal group at infinity bra is the super-conformal algebra with unchanged central
can be understood either in terms of the Penrose conform&hargec=31/2G. The boundary conditions involve a chiral
treatment of infinity[2] or by working out explicitly the Projection, in a way very similar to what has been discussed
boundary conditions and solving the asymptotic Killing for Dirac fields in[11].
equationg1]. It is a purely asymptotic phenomenon, in the
sense that the infinite-dimensional conformal group in two II. BOUNDARY CONDITIONS
dimensions is not the isometry group of any 3D background o ) . .
geometry. This is one feature that makes the three- _AdS supergravity in three dimensional spacetime can be
dimensional case particularly interesting and which actuallyvritten as a Chern-Simons theof¥2]. We shall adopt the
allows for a nontrivial central charge in the dynamical real-Chem-Simons point of view from the outset and consider
ization of the asymptotic symmetry algeljrs. almost exclusively thg1,1) theory. The releyant group is
Another interesting feature of three-dimensional gravita-OSH1/2)XOSH(1[2). The (1,1)-supergravity action is
tional theories is that they have no bulk degrees of freedom, o o
so that the role of the boundary degrees of freedom in the LA A Y1=1A Y= 1A ¥] (1)
adS-conformal-field-theor§CFT) correspondenck8—7] can
be investigated more easily. That the boundary degrees afherel[A,y] andI[A,7] are the Chern-Simons actions for
freedom may be quite significant has been stressed recentiiie supergrou®® Sp(1/2),
in [8]. The pure gravitational case has been analyzd@]jin
where it was shown that the boundary dynamics at infinity is k
described by “induced 2D gravity'(Liouville theory) up to I[A,¢]= EJ
terms involving the zero modes and the holonomies that
were not worked out. . o ) ~ ~ a
The purpose of this paper is to extend the analysfa @  (With a similar expression fol{ A, y/]). HereA=(1/2)A%y,
to the supersymmetric context, which is known to play gand th_e symbol Tr stands for the trace in the spinorial repre-
central role in black hole physics. The new non-trivial ingre-S€ntation oSQ(2,1) generated by,=(1/2)y, (our conven-
dient to be fed in is the precise asymptotic behavior of thdiOns are summarized ifL3]). The constank is related to
Rarita-Schwinger fields, which must be compatible with theth® 3D Newton constan® and the anti-de Sitter radids
symmetries. In particular, one must understand how thdhroughk=1/4G. _ _
boundary conditions implement two-dimensional supersym- Assuming that the topology of the three dimensional
metry at infinity. mamfold M is 3 X R, the action(2) can be recast in Hamil-
The supersymmetry properties of 3D black holes werdonian form as
investigated in[10], assuming the existence of asymptotic kel
conditions on the Rarita-Schwinger fields satisfying the re- _ _R€ [ Mabanb i | _pan
quired properties. However, the asymptotic conditions in I_f [ ( ATAT T ¢J) AoYa %S} ®

Tr(AdA+ §A3) + iZ/\Dlp} ®)
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where the constraintsG, and S& are given by G,  Virasoro algebra. To discuss this issue, it is most convenient
=—(ké'/8m) Uab(Fﬁ—i%Vblﬁj):O, S=—(iki2m)€eDyy; 1O work in the superconnection representation where the
=0 and satisfy th@©Sp(1]2) algebra in the Poisson brack- ransformations take a simpler form. ,
ets [A?,Ajb]=(4w/k) nabeij , {lﬂf“,wf}:(Zwi/k) eij(,yo)a,B Comblnmg the above boundary condltlons.on the fermi-
ons with those of{1,9] on the bosons, one finds that the

which are derived from Eq3). The canonical generator of _ )
superconnection must satisfy

the gauge transformationscluding the fermionic ongsis
G(A?)+S(p) with

A,=0, ¢,=0, 8
G()\a):J'E)\aga-‘rB,S(p):fsz—FF. (4) Ar:bflarb, #,=0 9
The boundary term® and F must be chosen so that the and
generatorss and S have well-defined functional derivatives
Eitﬂ,s.and their precise form depends on the boundary condi- IAu=b1(2 Lék b, |l/fu:bl( Qék) 10

The boundary conditions at infinity on the bosonic fields
have been given ifil] in the metric representation and they asymptotically. Herep=t+1¢, v=t—I¢ and L=L(t,¢)
were reexpressed in the connection representatiof®In  andQ=Q(t,¢) are arbitrary functions which will be shown

(See[15,16 for a different approach to the problem of g he equal to the generators of the super-Virasoro algebra.
boundary conditions in the connection representatidhe  The group elemen(r) is equal to

bosonic boundary conditions must be supplemented by ap-

propriate boundary conditions on the fermionic fields. We

consider only oneOSH(1|2) copy, the other copy being b(r)z(
treated similarly.

The searched-for boundary conditions can be determined o )
by following the procedure of17]: one starts with the and satisfie®yob=r,. Note thatA,=IA,, ¢,=I4, since
known physical metrics that should be included in theA,=0, #,=0. The otheOSp(1|2) field satisfies analogous
theory—here, the black hole solutiofi$8]—and acts on boundary conditions, withi and v_interchanged, and de-
them with the anti—de Sitter supergroup. This suggests tpends on two additional functionls and Q. For positive

adop.t .for the Rarita—SChWinger fields the fO”OWing bOUndaryvahJeS OfLO and]:o the boundary COﬂditiOﬂ@.O) represent a
conditions(in the standard orthonormal frames black hole. The black hole ground staté &€ 0) is obtained

_ for L=L=0. Anti—de Sitter space corresponds tdk
~r Y1+ t, ), 5 ~
i Tyt ) ©® =L/k=—1/4 and is the only configuration for which the

/| 1/2 0
(rf) ) (11

0 (r/)

Gy~1 "Y1+ y,]x(t, ), (6) holonomies are trivial[Note, however, that because is
¢ written in the spinorial representation, the holonofimypo-
G~T 51—y ], (1, ). 7) lar coordinatesis only trivial under a 4t rotation]

The fact that the second component @f is zero just

Apart from an irrelevant replacement gf by —y; (due to  €xpresses the chirality condition on the fermion enforced by
conventiong the boundary conditions differ from those of the boundary conditiong5) and (6). One may rewrite the
[17] [Eq. (V.1)] in two respects. First, they involve a slower asymptotic form(10) of the superconnection in terms of su-
rate of decrease at infinifpne less power of). This was to ~ Permatrices as

be expected since we are one dimension lower and also holds

for the bosonic field§1]. Second, they have the same lead- 0 Lk  Q/(y2k

ing order for bothy; and ¢, . The equality of the leading I =pb-1 1 0 0 b (12)
orders ofy; and ¢, is consistent with the fact that the adS !

Killing spinors of (1,0) supergravity depend only ont ¢ 0 Q/(\/Ek) 0

[10]. The boundary conditions are otherwise identical and in

particular, they crucially involve a projection onto the Whereb is now the 3x3 supermatrix obtained by complet-
eigenspaces of the radigtmatrix, which makes the induced ing the aboved by adding O in the fermionic positions and 1
spinors chiral in two dimensiongecall thaty, appears as N position(3,3). The advantage of the connection represen-

the “y5”-matrix on the surface at infinity A similar phe-  tation is that one can completely eliminate thdependence
nomenon is described {ri1]. through the gauge transformation generatedbfter this

gauge transformation has been performed, all the asymptoti-
cally relevant components of the fields occur at the same
order O(1). Furthermore, because has dropped out, the

The algebra of coordinate and supersymmetry transformaanalysis could be carried out in the same way at any finite
tions that preserves the boundary conditidhasymptotic ~ value ofr. A Virasoro algebra for all values of has been
symmetry algebra) is the infinite-dimensional super- investigated iff16].

IIl. ASYMPTOTIC SYMMETRIES
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The most general supergauge transformations that prgossible since the asymptotic form of both the fields and the
serve the boundary conditiori8), (9) and (10) are charac- symmetry transformations has been obtained. One finds that
terized by gauge parametera®p) that must satisfy, to with the above asymptotic conditions, the boundary terms in
leading order, the variation of the generato(d) cancel out if one takes

Au,r)=b"1y(u)b, r,u)=b le(u 13 1 —i
(Wn=b"'pwb, p(ru=b"ls(u) (13 S S S a7
with D3 m™J a3
7L iQe i.e., the surface terms are preciselandQ (up to numerical
= ——=(U)( )+ ——, (14) factorg. We have adjusted the constants in the charges so
k 2k that these vanish for the zero mass black hole, whichLhas
1 ., =0. The surface term@7) are of course equal to the surface
7==(n") (15 terms that one would obtain through a more orthodox “non-
. Chern-Simons-based” approactsee [17] for the four-
82( —€+7y Q/k) dimensional treatmehtin particular, the bosonic pied® is
€ equal to the charg€4.11) of [1] written in terms of the
metric, while the fermionic surface term may be re-expressed
where’ denotes derivative with respect to the argument. Weas
have expanded the algebra elemenin the Cartan basig

(16)

=5, + 773, + 7 J_. Equationg14)—(16) imply that the Fo ik [ — 18
full residual symmetry can be expressed in terms of two T on [,Ep Vo (18
functions of the lightlike coordinatel, one bosonic ™)

and one fermionic €). Because the componertsand Q of the connection that

Any three-dimensional gauge transformation whose paremain at infinity enter the surface terms in the canonical
rameters satisfy Eq$14)—(16) asymptotically is called “an generators of the asymptotic symmetries, it is useful to know
asymptotic symmetry.” Two gauge transformations that tenchow they transform under the asymptotic symmetry group.
to the same;™ ande at infinity should be identified because The transformation law for the superconnectiéh =DA
they differ by a “proper gauge transformation,” which it is yields
legitimate to quotient ouf14,19 (as will be clear below, . o€
these transformations have in particular the same global PN ., _n . [1QE€ L,
charges The resulting quotient superalgebra is the oL=(n L)'+ (7 )'L- 5(77 '+ T) Qe
“asymptotic symmetry superalgebra.” (29

If one computes the graded commutator of two Chern-

Simons gauge transformations fulfilling the above " R S

asymptotic conditions and characterized by asymptotic pa- oQ=—ke'+Let+ (7 Q)+ 5(77 )'Q. (20)
rameters @, ,e;) and (i, ,€5), one finds another such

transformation with asymptotic gauge parameters related t&quations(19) and(20) indicate thal. andQ form a super-
(71 ,€1) and (, ,e,) exactly according to the graded com- Virasoro algebra. More importantly, the transformation laws
mutation rules of the super-Virasoro algebrdence, after (19) and (20) give also the central charge, equal to
the quotient by the ideal of the proper gauge transformation§k(c/12=k/2).

(with »~=0,e=0) is taken, one is left with the super- By using the general argument[&0,1], or by direct cal-
Virasoro algebra as asymptotic symmetry superalgebra. Thigulation, one finds that the Poisson brackets of the improved
infinite-dimensional algebra contail®SQ(1|2) as a subal- generatorg4) are

gebra when the fermions alre anti-perio@ourier modes 0 K

and*1 of ~ and modest 5 of €). Note, in particular, that — _ _J' ——\m

the Lie algebra commutatgi2,A5] of two bosonic gauge (G0, C)I=GllA A=)~ 57 s (m2)
transformations restricted k{3) and(14) reduces at infinity (21

to the Lie bracket of the residual functiong, and 7, a
viewed as vector fields on the circle. A similar statement [G(N),S(p)]=S(Ayap) (22)
holds for the fermionic sector.

_ ik
{S(p1),S(p2)}=G(—ip1¥?p2) "'ZLE €1(€r)".
(23

IV. ADS CENTRAL CHARGE

We now turn to the discussion of the canonical realization
of the asymptotic symmetry algebra. As is known, theThe central term is just that of Eq&l9), (20). The Chern-
bracket of the canonical generators of the asymptotic symSimons formulation of adS supergravity provides a particu-
metries provides a projective representation of the algebrkarly efficient derivation of the adS central charge.
[1,20]. To determine the central charges, one must first work The above algebra involves both the proper gauge sym-
out the complete form of the generata@y. This is now metries and the improper on¢$4,19. The proper gauge
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symmetries havéweakly) vanishing Poisson brackets with solution, one finds that the central charge vanishes for
all the other generators, i.e., form also an ideal in the PoissofL .. ;,Lq,Q-1/), Which are trud OSp(1|2)] symmetries of
sense. It follows that the generators of the asymptotic symthe anti—de Sitter background
metries are “first class” and well defined in the reduced What we have done for on®@Sp(1|2) factor can be re-
phase space obtained by quotientizing the proper gauge symeated for the othe©Sp(1|2) factor. The corresponding
metries. Using standard terminology, they are “observ-spinor fields are projected on the other chirality and one finds
ables.” The Poisson brackén the reduced phase spacd  another copy of the super-Virasoro algebra, this time de-
these observables is the same as their Poisson bracket in thending onv=t—I¢, with same central charge. The two
original phase spacgee e.g[21]). That the global charges super-Virasoro algebras give the conformal superalgebra.
at the boundary define observables has been particularly em-
phasized recently irf22]. The super-Virasoro algebra is
therefore realized in the space of physical observables, where
it is generated by andQ (the constraints are zero in the  As anticipated above, the emergence of the super-
reduced phase spgceAfter Fourier transformation, the conformal algebra at infinity with a non-vanishing central
asymptotic superalgebra takes the familiar forfusing charge can be understood at the dynamical level, in the light
quantum-mechanical notation and rescal@dy 2) of Polyakov's discovery of the “hiddeiBL(2,R) symme-
try” of 2D gravity [23—-27. The argument runs as follows
[9]. As shown by[3,4], the Chern-Simons theory under the
boundary condition(8) induces the chiral Wess-Zumino-
Witten model at the boundary. The corresponding Kac-
1 Moody currents are just thé-components of the connection.
[Lm'Qn]:(Em_n)Qmm (25 Combining the two chiral WZW models of opposite chirali-
ties obtained from eaclL(2R)-factor, one finds a non-
{Qm,Qn}=2L psnt 2km25m+n,o (26) chiral SL(2,R) WZW theory (modulo zero modes and ho-
lonomies not discussed here because they affect neither the
with a central charge equal to=6k. A practical way to asymptotic symmetry nor the central chgrgehe constraints
factor out the proper gauge symmetries is to fix the gauge ion the Kac-Moody currents arising from the anti—de Sitter
the bulk and use Dirac brackef&9]. In that case, the re- asymptotics lead then to 2D-gravit9].
duced brackets in the above algebra would appear as Dirac In a similar way, the further constraint that the component
brackets. of the Kac-Moody current along the fermionic generator
Note that if we had imposed only the chirality boundary vanishes[see Eq.(10)] turns out to be precisely the con-
condition (8), as is usually done in the Chern-Simons straint that reduces the WZW theory based on the supergroup
— chiral Wess-Zumino-WittefWZW) reduction, we would OSp(1|2) to chiral 2D supergravity24,28—3Q. Although
have obtained a currefiKac-Moody) algebra rather than the the OSp(1]|2)-WZW theory is not superconformal, the re-
super-Virasoro algebra. The key point leading to the supersulting theory is. What happens is that the other component
Virasoro algebra is the presence of the extra boundary corfalong e) of the fermionic Kac-Moody supercurrent is
ditions (10) which “transmute” the residual gauge field “transmuted” into the super-Virasoro generator since its
components functions andQ into super-Virasoro charges transformation law becomes E@0) once the gauge param-
[23-27. These extra boundary conditions exprésih the  eters are restricted by Eg&l4) and (16). From the WZW
other boundary conditions given abg\aS asymptotics. point of view, supersymmetry on the worldsheet arises there-
From the point of view of the chiral WZW theory, this fore in a non-trivial way. It is rather interesting that these
transmutation can be seen explicitly as follows. Let affinefeatures are in fact all contained in the 3D boundary condi-
SL(22R), be generated by, J!. ImposeJ =1 andJ! tions expressing anti—de Sitter asymptotics, thus the adS/
=0 [see EQ.(10)]. These are second class constraints beCFT correspondence is explicit in this context. Bringing in
cause their Poisson bracket is an invertible matrix. It followsthe otherOSp(1|2) factor leads to the non-chirdll,1)-
thatJ* =L satisfies, in the Dirac bracket, the Virasoro alge-supergravity, which is described, in the 2D super-conformal
bra with c=6k. This argument is extended directly to the gauge, by super-Liouville theory. We have explicitly
supergravity theory and will be given a dynamical interpre-checked, using the Gauss decomposition®@p(1|2) and
tation in the next section. following the same lines as if9], that the 3D supergravity
In Egs.(24)—(26), the fermions can be periodimdex on  action(1) yields the super-Liouville actiofup to zero modes
Q integer-modegor anti-periodic(index onQ half-integer and holonomies that we have not explicitly worked)out
moded. The form of the algebra is adapted to the periodic
(“Ramond”) case, which has the zero mass black hole as the
L,=0 ground stat¢10]. The central charge vanishes for the
sub-algebra generated bly{,Q,), which corresponds to the We have shown in this paper that the anti—-de Sitter
true symmetries of this background. The anti—de Sitter backboundary conditions iri1,1) 3D-supergravity theory lead to
ground hasM = —1, i.e.Ly= —c/24. It is the ground state of an asymptotic symmetry algebra which(isice) the super-
the anti-periodic(“Neveu-Schwarz’) sector[10]. If one  Virasoro algebra with a central charge equal ko he pre-
shifts Ly by c/24 so thatlL, vanishes on the anti—de Sitter cise boundary conditions given here on the spinors involve a

V. DYNAMICS AT INFINITY

k
[I—m1|—n]:(n_m)|—n+m+§n35n+m,0 (24)

VI. CONCLUSIONS

085020-4



ANTI-de SITTER-CFT CORRESPONDENCE IN THREE- ... PHYSICAL REVIEWSB 085020

chiral projection and legitimate the assumptiong 1. gebras of 34]. The Hamiltonian reduction of the correspond-
The appearence of the Virasoro algebra as the boundaiyg WZW models has been analyzed[B86,36.

symmetry algebra of anti—de Sitter space is purely kinemati- As observed irf37] the degeneracy of states for a confor-

cal in the sense that the only ingredients that enter the derimal field theory with this central charge gives rise to, under

vation of both the symmetry algebra and the central charggppropriate conditions, exactly the Bekenstein-Hawking en-

in Eq. (24) are (i) the asymptotic boundary conditions that tropy for the 2+1 black hole(see alsd38]). An earlier sta-

dictate the approach to anti—de Sitter; &fidl the fact that tistical description of the 21 black hole entropy was given

the surface terms at infinity in the Virasoro generators in, carlip [39] in terms of horizon degrees of freedom. For

volve only the(bosonig gravitational variables, i.e., the tri- ¢ her work in these directions, s€&6,40—48. In view of

ads and the spin connection. Any theory with these featureg,o rejevance of the 21 black hole to higher dimensional

W'" have tbe same c_entral charge in the commutator 'r.'VOIV'ones[47,4Eﬂ, this question clearly deserves further study.
ing two L,’s. In particular the extendedp(q)-supergravity

models fulfill these properties and have as asymptotic sym-
metry algebra the relevant graded extension of the conformal
group with Virasoro algebra satisfying E4) with same

c=23I/2G. The triads, spin connection and spinor fields obey Useful discussions with Bernard Julia and Steve Carlip
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