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Pointlike structure for super p-branes

Hyun Seok Yang, Inbo Kim, and Bum-Hoon Lee
Department of Physics, Sogang University, Seoul 121-742, Korea

~Received 17 June 1998; published 21 September 1998!

We present an efficient method to understand thep-brane dynamics in a unified framework. For this purpose,
we reformulate the action for superp-branes in the form appropriate to incorporate the pointlike~parton!
structure of higher dimensionalp-branes and intend to interpret thep-brane dynamics as the collective dynam-
ics of superparticles. In order to examine such a parton picture of superp-branes, we consider various super-
particle configurations that can be reduced from superp-branes, especially a supermembrane, and study the
partonic structure of classicalp-brane solutions.@S0556-2821~98!10320-X#

PACS number~s!: 04.65.1e, 04.50.1h
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I. INTRODUCTION

The eleventh dimensions is the highest dimension
which supergravity theory can exist, with fields carrying sp
J<2 @1#. In fact, it is the only sensible supersymmetr
theory in d511 @2#. It has a membrane as a fundamen
degree of freedom as well as gravitons@3,4#, which may
come from the massless excitations of a supermembrane
cently, it was shown@5,6# that it is the low energy limit of
the eleven dimensional M-theory. M theory is defined as
strong coupling limit of the type IIA string theory@5,6# and
the double dimensional reduction of an eleven dimensio
supermembrane action yields the Green-Schwarz actio
the type IIA superstring@7#. These lead one to wonde
whether a quantum supermembrane provides an intri
definition of M-theory. Moreover, it was shown@8# that the
massless spectrum of a supermembrane ind511 occurring
in the sector of a completely collapsed membrane, i.e.,
perparticle, corresponds to the supergravity multiplet.

But the principal objection to this reasoning is that t
spectrum is continuous@9,10#, which would preclude a par
ticle interpretation. It is known that, unlike string theor
membrane theory encounters new divergences coming f
an infinite number of internal degrees of freedom. In orde
make the supermembrane dynamics well-defined, we nee
have some kind of regularization in a supersymmetric w
Such a regularized description, so-called matrix theory
given in a light-cone gauge byU(N) supersymmetric Yang
Mills quantum mechanics@9# and its underlying spacetim
geometry is noncommutative at short distances. The clas
spacetime geometry is a sensible concept only in a long
tance regime. Thus, the spectrums of short distance phy
may be dramatically changed@11# due to noncommutativity
of spacetime.

The parton model of hadrons in the late 1960s was or
nally developed to describe the properties of high ene
collisions of hadrons and later incorporated into the fabric
the quantum chromodynamics, generally accepted relativ
parton model of hadrons. In an infinite momentum frame
which partons are in extreme relativistic motion, the inter
motions of the partons and the rate at which they inter
with each other are slowed down~frozen! because of the
relativistic time dilatation effect and the Fock space vacu
becomes extremely simple with the nonrelativistic nature
underlying dynamics@12#. The matrix regularization of su
0556-2821/98/58~8!/085018~10!/$15.00 58 0850
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permembrane dynamics attempts to develop the theory b
on the idea that the supermembrane is made of smaller
ties, partons@9#. In addition, the Matrix theory for a com
plete nonperturbative formulation of M theory explicitly in
corporates the parton picture in terms of D0-branes in infin
momentum frame@13,14#. When this is done, the spatial co
ordinates of the N D0-branes are represented byN3N Her-
mitian matrices.

The recent picture of M theory tells us that strings, me
branes and other extendedp-branes hold an equal rank a
nonperturbative spectrums@14,15#. Recently, the ordinary
string theory as a first quantized description was reform
lated as the Matrix string theory, the Matrix theory compa
tified on a tiny circle, where it was shown that it provides
description of the Hilbert space ofsecondquantized string
theory @16#. In analogy with the quark picture that appear
to unify many ‘‘fundamental’’ hadrons, it may be reasonab
to considerp-branes as the composites of smaller entities
is thus desirable to reformulate in a unified framework t
p-brane dynamics as the dynamics for possible constitu
as the Matrix model for M theory@13#.

In this paper, we construct the Barbour-Bertotti-Schild a
tion @17,18# for superp-branes in order to incorporate th
pointlike ~parton! structure of higher dimensionalp-branes
and intend to interpret thep-brane dynamics as the collectiv
dynamics of superparticles. In order to examine the par
picture of superp-branes, we consider various superpartic
configurations that can be reduced from superp-branes, es-
pecially, supermembrane and study the partonic structur
classicalp-brane solutions. Finally, we give some commen
on the matrix formulation of the supermembrane from t
viewpoint of composites of pointlike entities.

II. SUPER p-BRANE ACTION

For the purpose of illustrating the pointlike structure
p-branes, in this section, we will first consider the Gree
Schwarz action@19# of a d-dimensional supermembrane a
then superp-brane. The action for the supermembrane in fl
superspace is@3,4#

I 52TME d3jHA2g~X,u!1 i« i jk S 1

2
] iX

m

3~] jX
n2 i ūGn] ju!2

1

6
ūGm] iuūGn] ju D ūGmn]kuJ ,

~2.1!
© 1998 The American Physical Society18-1
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whereXm(j) andu(j) denote the superspace coordinates
the membrane parametrized in terms of world volume
rametersj i ( i 50,1,2). HereTM is a membrane tension pro
portional tol P

23 and we will take the unitTM51. The metric
gi j (X,u) is the induced metric on the world volume

gi j 5Ei
mEj

nhmn , ~2.2!

whereEi
m are certain supervielbein components tangentia

the world volume defined by

Ei
m5] iX

m2 i ūGm] iu ~2.3!

andhmn is the flatd511 Minkowski metric. The action~2.1!
is invariant under spacetime supersymmetric transformat

dXm5 i ēGmu, du5e. ~2.4!

Note that the above invariance is associated with the cru
gamma matrix identity

c̄ [1Gmc2c̄3Gmnc4]50 ~2.5!

only satisfied ford54, 5, 7, and 11@3,4#.
We would like to rewrite the first term represented as

Nambu-Goto type as the following Schild type action@18#:

2E d3jA2g~X,u!5
1

2E d3jeS 1

3!e2
~« i jkEi

mEj
nEk

r!221D .

~2.6!

Using the equation of motion about the auxiliary fielde, i.e.,
e5A2 (1/3!) (« i jkEi

mEj
nEk

r)25A2detgi j , it is easy to show
that the original Nambu-Goto type action can be recover

We assume that the topology of the membrane is fixed
be S3R, with S a compact two manifold, so that the thre
coordinates of the world volume,j i , are broken down into
j05t and ja5sa, a51,2.1 We introduce a two dimen
sional induced metric onS defined by

qab5Ea
mEb

nhmn , «ab52«0ab. ~2.7!

Note that

«ab«cd5q~qacqbd2qbcqad!, ~2.8!

where qab is the inverse ofqab , i.e., qacqcb5db
a and q

5detqab .
The action~2.6! can then be rewritten as the Barbou

Bertotti-Schild~BBS! type @17,18# appropriate to incorporat
ing the partonic picture of supermembrane

I BBS5
1

2E dtd2sAq@ ẽ21~Ẋm2 i ūGmu̇ !

3Gmn~Ẋn2 i ūGnu̇ !2ẽ#, ~2.9!

1The 211 splitting corresponds to a gauge fixing to put shift ve
tors Na of world volume metric to zero@20#.
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where dot means the derivative with respect to the time-
parametert and ẽ5e/Aq. Here we have introduced th
‘‘manifold Poisson brackets’’~MPB! using the simplectic
structure«ab/Aq on the two manifoldS:

^ f ,g&5
«ab

Aq
]af ]bg ~2.10!

for C`(S) functionsf andg. Note that this simplectic struc
ture onS, which is the cotangent bundles of configuratio
spaceS, is uniquely defined by the metric and orientation
S @21#. Our definition of the MPB manifestly respects th
full diffeomorphism group ofS, Diff( S), and satisfies the
Jacobi identity

^^ f ,g&,h&1^^g,h&, f &

1^^h, f &,g&50 ~2.11!

for C`(S) functions f , g, and h. The metricGmn on the
configuration space of the embeddingsXm(sa) andu(sa) is
given by2

Gmn5hmn1hmn , ~2.12!

wherehmn is a useful quantity defined as

hmn5^Em ,Er&^Er ,En&52qabEamEbn ~2.13!

and used the abbreviated notation

^Em ,En&5^Xm ,Xn&2 i ūGm^u,Xn&

1 i ūGn^u,Xm&1 ūGm^u,ū&Gnu. ~2.14!

The metrichmn and Gmn inducedby neighboring superpar
ticles, by the definition ofqab , satisfy the following identity,
respectively,

hmlhln52hm
n , ~2.15!

Gm
l Gl

n5Gm
n . ~2.16!

The Eq.~2.16! implies that the metricGm
n , indeed, acts as a

kind of projection operator in the target spaceRd21,1. In
addition we have the important identity related with Diff~S!
constraints generating the reparametrization of the m
brane surface

Ea
mGmn50, ~2.17!

which can be directly derived from the definition~2.12! of
Gmn . From the Eq.~2.17!, one can obtain the relationqab

52Ea
mhmnEb

n , which is consistent with the Eq.~2.13!.
The action~2.9! is also invariant under the local reparam

etrization,t→ f (t), provided that the auxiliary fieldẽ ~a sort

- 2The Lorentz indices such asm andn are raised and lowered b
using the metrichmn .
8-2
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POINTLIKE STRUCTURE FOR SUPERp-BRANES PHYSICAL REVIEW D58 085018
of ‘‘metric’’ along the particle worldline! transforms asẽ
→ẽ(d f /dt)21. This reflects that there is no intrinsic pre
ferred time variable on the membrane. Note that, from
equation of motion with respect to the auxiliary fieldẽ,

ẽ5A2~Ẋm2 i ūGmu̇ !Gmn~Ẋn2 i ūGnu̇ !, ~2.18!

we can easily recover the usual Barbour-Bertotti form for
membrane as well@22,23#.

Let us interpret the BBS action~2.9! as follows. The BBS
action takes the form of superparticles with unit mass c
tinuously distributed on the two manifoldS moving in a
background spacetime metricGmn . We would like to inter-
pret the supermembrane as the composite of the supe
ticles bound to each other by the surface tension and in
enced by theeffective gravitational potential Gmn, so, in this
sense, the superparticles play a role of~classical! partons of
supermembrane. Similarly, we may consider the superm
brane as the configuration of a fluid evolving from a fix
initial configuration. We can then consider the flow of a no
viscous compressible fluid on the regionS moving along the
timelike geodesic defined by the metricGmn . Such a fluid is
described by a curvet→gt , where the diffeomorphismgt is
the map which carries every particle of the fluid from t
n

th
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place it was at time 0 to the place it is at timet. From this
picture, we see that the classical massM of the static mem-
brane is a sum of the mass of constituent superparticles:

M5TME
S
d2sAq. ~2.19!

Recall that the Wess-Zumino term in Eq.~2.1! generates a
femionic gauge symmetry, so-calledk-symmetry, which al-
lows us to match the Bose and Fermi degrees of freed
This fermionic gauge invariance of the supermembrane
only possible for specific number of spacetime dimensio
i.e., for d54, 5, 7, and 11. The Wess-Zumino action whi
is independent of the world volume metric is rewritten
@3,4#

I WZ52
1

6E d3j« i jkEi
AEj

BEk
CBCBA , ~2.20!

whereEi
A5(Ei

m ,Ei
a) with Ei

a5] iu
a. The super 3-formB is

such thatH5dB, with all components ofH vanishing except
Hmnab522i (Gmn)ab . The gamma matrix identity of Eq
~2.5! is nothing but the Bianchi identitydH5d2B50 from
which the brane scan comes in. Solving forB, one finds
Bmnr50, Bmna5 i ~ ūGmn!a ,

Bmab52~ ūGmn!~a~ ūGn!b) , Babg5 i ~ ūGmn!~a~ ūGm!b~ ūGn!g) . ~2.21!
kes

d as
ous

ry,
-

Since the localk-symmetry eliminates half of theu fermi-
onic modes, it is involved with some kind of the projectio
operator1

2 (16G), where the functionG is defined by

G5
1

6e
« i jkEi

mEj
nEk

rGmnr52
1

2ẽ
E0

m^En,Er&Gmnr

~2.22!

and satisfies the relationG251 on shell.
In terms of the 211 splitting, the action~2.20! takes the

form3

I WZ5
1

2E dt d2sAqE0
APA , ~2.23!

3We are now taking an analogy with electrodynamics, where
point particle with chargeq is interacting with one-form potentialA
defined on the worldline G of the particle, i.e., q*GA
5q*Gdt (dXm/dt) Am , and electromagnetic one-formA should
satisfy the Bianchi identity,dF5d2A50.
where the ‘‘external’’ fieldPA is defined as follows:

PA5^EB,EC&BCBA . ~2.24!

Then the full BBS type action of the supermembrane ta
the following form

I 5
1

2E dt d2sAq@ ẽ21~Ẋm2 i ūGmu̇ !

3Gmn~Ẋn2 i ūGnu̇ !2ẽ1E0
APA#. ~2.25!

Now the above supermembrane action can be interprete
the collective dynamics of superparticles or the nonvisc
charged fluid composed of the superparticles~which are
charged with respect to the fermionick-transformation! un-
der the influence of the ‘‘gravitational’’ fieldGmn and the
‘‘external’’ field PA . We have seen so far that the fieldsGmn

andPA which couple to the superparticles are not arbitra
but highly constrained by Diff~S! symmetry, supersymme
try, andk-symmetry.

e

8-3
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Without doing any gauge fixing, we proceed directly
define the canonical momenta of the variables (Xm,ua):

Pm5dI /dẊm5AqH ẽ21Gmn~Ẋn2 i ūGnu̇ !1
1

2
PmJ ,

Pa52dI /du̇a52 iAqH ẽ21~Ẋm2 i ūGmu̇ !Gmn~ ūGn!a

1
1

2
Pm~ūGm!a2

i

2
PaJ

52 iPm~ ūGm!a2
Aq

2
Pa . ~2.26!

The phase space Poisson brackets of these canonical
ables are the following:

$Xm~s!,Pn~s8!%25dn
md2~s2s8!,

$ua~s!,Pb~s8!%15db
ad2~s2s8!, ~2.27!

where the graded Poisson bracket is defined by$A,B%65
6$B,A%6 and the brackets are evaluated at equal times.

Let us collect the canonical constraints imposed on
phase space of the supermembrane@20#:

Fa[Pa1 iPm~ ūGm!a1
Aq

2
Pa'0, ~2.28!

wab[qab2hmnEa
mEb

n'0, ~2.29!

wa[Ea
mS Pm2

Aq

2
PmD'0, ~2.30!

w[
1

2 S Pm2
Aq

2
PmDGmnS Pn2

Aq

2
PnD 1

1

2
q'0,

~2.31!

P[dI /de8'0, ~2.32!

Pab[dI /dq̇ab'0. ~2.33!

Note that all these constraints directly follow from the de
nition of the phase space variables. The constraints~2.28!
and ~2.31! come from the above definition of the conjuga
momenta (Pm ,Pa), where the Eq.~2.18! is rendered into the
form of the constraint~2.31!. The constraint~2.29! is the
definition of the induced metric on the membrane surfaceS
and~2.30! is the Diff~S! constraint due to the relation~2.17!.
In fact, the constraints~2.29! can be understood as the se
ondary constraints of the second class constraints~2.33!. On
the other hand, the constraint~2.32! is the first class gener
ating the reparametrization,ẽ→ẽ(d f /dt)21. Multiplying the
constraints ~2.28!–~2.33! with the Lagrange multipliers
Sa, Lab, La, L, l, and lab, respectively, and adding them
to the Hamiltonian, we obtain the total Hamiltonian
08501
ari-

e

H5E d2s$~PmẊm1Pau̇a2L!1SaFa1Labwab1Lawa

1Lw1lP1labPab%

5E d2sF S ẽ

Aq
1L D w1SaFa1Labwab1Lawa

1lP1labPabG . ~2.34!

In Ref. @20#, Bergshoeffet al. analyzed the constraint struc
ture of the eleven dimensional supermembrane and cov
antly classified the constraint algebra. It was shown in R
@20# that Eqs. ~2.29!, ~2.33!, and 1/2(12G)(F
14iPabEa

mGm]bu) ~which is an orthogonal part on th
k-transformation! are second class constraints.

It is generally possible that the Green-Schwarz action
anyp-brane can be rewritten as the BBS action, which ta
that of particles continuously distributed on a p-dimensio
surface moving in a nontrivial external background. T
Green-Schwarz action for superp-brane is@3,4#

I 52Tp11E dp11jHA2g~X,u!

1
1

~p11!!
« i 1i 2••• i p11Ei 1

A1Ei 2

A2
•••Ei p11

Ap11BAp11•••A2A1J ,

~2.35!

where the superspace (p11)-form B is the potential for a
closed (p12)-form H5dB. Possible superp-brane theories
exist whenever there is a closed (p12)-form in superspace

As the case of supermembrane, we assume that the to
ogy of thep-brane is fixed to beS3R, with S a compact
p-dimensional manifold, so that the (p11) coordinates of
the world volume,j i , are split intoj05t and ja5sa, a
51,•••,p. We introduce a p-dimensional induced metric
S defined by

qab5Ea
mEbm , «a1a2•••ap52«0a1a2•••ap. ~2.36!

Then the following formula can be found

«a1a2•••ap«b1b2•••bp5q detUqa1b1 qa1b2
••• qa1bp

qa2b1 qa2b2
••• qa2bp

A A � A

qapb1 qapb2
••• qapbp

U
~2.37!

where qab is the inverse ofqab , i.e., qacqcb5db
a and q

5detqab .
As a result of these formula, we have the BBS action

superp-brane,
8-4
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I 5
1

2E dt dpsAq@ ẽ21~Ẋm2 i ūGmu̇ !Gmn~Ẋn2 i ūGnu̇ !

2ẽ1E0
APA#, ~2.38!

where ẽ5e/Aq and the ‘‘external’’ fieldPA is defined as
follows:

PA5
2

p!
^EA1,EA2,•••,EAp&BAp ,•••,A2 ,A1 ,A . ~2.39!

Here we have introduced the ‘‘manifold multiple bracket4

on the manifoldS extending the previous MPB

^ f 1 , f 2 ,•••, f p&5
1

Aq

]~ f 1 , f 2 ,•••, f p!

]~s1 ,s2 ,•••,sp!
~2.40!

for C`(S) functions f a . The metricGmn on the configura-
tion space of the embeddingsXm(sa) andu(sa) is given by

Gmn5hmn1hmn , ~2.41!

wherehmn is defined as

hmn52~2 !p~p21!/2
1

~p21!!
^Em ,Em1,•••,Emp21&

3^Emp21
,•••,Em1

,En&

52qabEamEbn . ~2.42!

The similar formula for the metrichmn andGmn induced by
neighboring superparticles also hold true for superp-branes

hmlhln52hm
n ,

trhn5hmnhr
n
•••hl

shlm5~2 !n
•p, ;n>1,

Gm
l Gl

n5Gm
n ,

trGn5d2p, ;n>1. ~2.43!

In the next section we will show thatp-brane solutions al-
ways satisfy these relations.

We have exactly the same kind of identity as the sup
membrane related with Diff~S! constraints generating th
reparametrization of thep-brane surface

4This multiple bracket was introduced a long time ago by Nam
@24# and the quantization for the generalized Hamiltonian dynam
was considered. And the basic principles of canonical formalism
the Nambu dynamics were presented by Takhtajan@25# and applied
to the relativisticp-brane dynamics by Hoppe@26#.
08501
r-

Ea
mGmn50. ~2.44!

From the Eq.~2.42!, one can also obtain the relationqab

52Ea
mhmnEb

n .
Based on their equivalent canonical structure, it is app

ent that the superp-brane (p>1) action~2.38! will exhibit
the same Hamiltonian structure as the supermembrane a
~2.25!.

III. PARTON CONFIGURATIONS OF SUPER p-BRANES

The parton picture in terms of superparticles is quite d
ferent from those of Matrix theory@13# and string bits model
@27# where partons are described by a matrix transforming
the adjoint representation of some groupG, mainly SU(N)
or SO(N). Nevertheless, the formulation based on the id
that higher dimensional extendedp-branes can be made o
smaller entities, superparticles, is quite useful to understa
ing the dynamics ofp-branes because the dynamics is co
ceptually simple and clear. In this section, we will try
understand thep-branes in viewpoint of composite of supe
particles and study the parton configurations ofp-brane so-
lutions.

A. Superstring and superparticle from supermembrane

First, we consider a double dimensional reduction
eleven dimensional supermembrane, from which the t
IIA superstring propagating ind510 can be obtained, a
shown by Duff et al. @7#, and superparticle ind59 by a
further double dimensional reduction. In the present vie
point, these solutions can be derived from the particular c
figurations of superparticles preserving the supersymmet

The type IIA superstring ind510 considered by Duff
et al. @7# is obtained by a compactification of both the wor
volume and the spacetime on the same circle, letting
membrane tensionTM tend to infinity, but the string tension
T252pR1TM maintain finite. This corresponds to the co
figuration of superparticles whose line mass density alo
the compactified circle tends to infinity, while the mass de
sity along the extended string remains finite. This situat
can be represented by the following ansatz:

X105r, ]rXm5]ru50, m50,1,...,9. ~3.1!

Then the ‘‘parton metric’’hmn , Gmn , qab, and the external
field PA5(Pm ,Pa) induced by the superparticle configur
tion ~3.1! can be found as

hmn5S gmn 0

0 21D , Gmn5S hmn1gmn 0

0 0D ,

u
s
r

8-5
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qab5S Es
mEsm 0

0 1
D , ~3.2!

Pm52
2

Aq
Es

aB10ma5 i
2

Aq
ūG10Gm]su,

Pa5
2

Aq
~Es

mB10ma1Es
bB10ba!

5 i
2

Aq
~ ūG10Gm!a ~]sXm2 i ūGm]su!

2
1

Aq
@~ ūG10Gm!a ūGm]su

2~ ūGm!a ūG10G
m]su#, ~3.3!

wherehmn is a ten dimensional Minkowski metric and th
potentials B10am and B10ba has been determined by Eq
~2.21!. The reduced supervielbeinEs

A and the metricgmn are
given by

Es
A5~Es

m ,Es
a!5~]sXm2 i ūGm]su, ]sua!,

gmn52EsmEsn /q, q5Es
l Es l . ~3.4!

One can check that the solution~3.2! manifestly satisfies the
identities~2.43!, i.e., trhn5(2)n

•2 andtrGn59.
In order to recast the Green-Schwarz action for the t

IIA superstring@19#, the 32 components of Majorana spin
u can be split into two Majorana-Weyl spinors in terms
the ten dimensional chiral matrixG10

u65
1

2
~16G10!u.

Using these results, we can obtain the BBS action for
type IIA superstring5

I 5
T2

2 E dt dsAq@ ẽ21~Ẋm2 i ūGmu̇ !

3Gmn~Ẋn2 i ūGnu̇ !2ẽ1E0
APA#, ~3.5!

whereGmn5hmn1gmn andu5(u1 ,u2).
From the double dimensional reduction~3.1!, the Hamil-

tonian formulation of the superstring can be also deriv
from the Eqs.~2.26!–~2.34! and the constraint structure o
the superstring is the same as that of the supermemb

5It can be easily shown that the other 211 splitting from the
supermembrane action~2.1!, j25r, ja5(t,s), a50,1, directly
gives the Nambu-Goto action of superstring. In this case, the
logue of the Eq.~2.25! is involved with the derivative with respec
to r instead oft. Thus, it is sufficient that we consider only term
involved with G1010 andP10.
08501
e

e
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@28#. Note that the string action~3.5! can be rewritten as the
superconformally invariant theory through the Polyakov a
tion even though the membrane action we started from c
not.

Consider a further double dimensional reduction of t
superstring constructed by the Kaluza-Klein truncation~3.1!
of the supermembrane@29#. The string is then wrapping
around another circle of radiusR2. Thus the membrane has
toroidal topology embedded in a spacetimeR93S13S1.
Choosing theS13S1 to be in theX10 andX9 directions and
letting the string tensionT2 tend to infinity, but the static
membrane mass~2.19!, M5(2pR2)(2pR1)TM , maintain
finite,6 the classical solution of this configuration can
taken as the following form

X105r, X95s, ]aXm5]au50,

aP~s,r! and m50,1,•••,8. ~3.6!

This configuration corresponds to a supermembrane that
completely collapsed to a point. In fact, we find the part
metric

hmn5S gmn50 0 0

0 21 0

0 0 21
D , Gmn5S hmn 0 0

0 0 0

0 0 0
D ,

qab5S 1 0

0 1D , ~3.7!

Pm5Pa50. ~3.8!

For these the supermembrane action reduces to that of su
particle with massM and propagating ind59 with N52
supersymmetries7

a-

6The classical mass of the toroidal solution considered her
nonvanishing. This mass can be interpreted as the winding en
of the membrane wrapping around the toroidal surface or that of
string wrapping around theX9-circle. For this reason, the mass
essentially quantized.

7A representation of theG-matrices appropriate to the 115912
split that we are making is:

Gm5gm
^ s3, m50,1,•••,8,

G81a5116^ sa, a51,2,

where the 9-dimensionalg-matrices satisfy

$gm,gn%52hmn.
8-6
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I 5
M

2 E dt@ ẽ21~Ẋm2 i ūAgmu̇A!hmn

3~Ẋn2 i ūBgnu̇B!2ẽ#, ~3.9!

where uA5(u1 ,u2) are two 16 component Majoran
spinors ind59. For the case of the superparticle, the ‘‘e
ternal fields’’hmn andPA disappear in the action. As a wel
known fact, in the case of point particles, there is no need
Wess-Zumino term to realize thek-symmetry@30# as illus-
trated in Eq.~3.8!.

Using the above results, the Hamiltonian formulation
the superparticle@30,32# can be also derived from the Eq
~2.26!–~2.34! where the nontrivial constraints come fro
Eqs. ~2.28!, ~2.31!, and ~2.32!, the other constraints identi
cally ~or strongly! vanish.

B. Pulsating spherical membrane

Consider a periodic pulsating membrane, originally d
scribed by Collins and Tucker@31#, where a spherical mem
brane contracts to a point and expands again with the op
site orientation. This solution was recently reconsidered
the Matrix theory context@33#, where it was argued tha
tia

08501
r

r

-
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upon gravitational collapse, the spherical membrane ha
possibility to form a Schwarzschild black hole and then d
cay quantum mechanically via Hawking radiation. As
simple good example of this formalism, the dynamics o
spherical membrane can be described by theSU(N) Yang-
Mills quantum mechanics in a light-cone gauge@9,10,33#.

First, we introduce a parametrization of a unit sphere
coordinatessa5(x,u) with 21<x<1 and 0<u<2p. The
embedding Cartesian coordinates on the sphere

x15x, x25A12x2sinu, x35A12x2cosu
~3.10!

obey theSU(2) algebra

^xi ,xj&5« i jkxk , i , j , k51,2,3. ~3.11!

The pulsating spherical membrane is described by set

X0~t,sa!5t~t!, Xi~t,sa!5r ~t!xi~sa!,

X45•••5Xd2150, u50. ~3.12!

Using the result~3.11!, the parton metric can be found as
Gi j 5S x2 xA12x2sinu xA12x2cosu

xA12x2sinu ~12x2!sin2u ~12x2!sinu cosu

xA12x2cosu ~12x2!sinu cosu ~12x2!cos2u
D , ~3.13!

qab5S r 2

12x2
0

0 r 2~12x2!
D , q5r 4,
y;
us

ect
where we have explicitly presented only the non-flat spa
components ofGmn . The membrane action~2.25! can then
be reduced to the following simple form:

I 5
4p

2 E dt r 2@ ẽ21~2 ṫ21 ṙ 2!2ẽ#

524pE dt r 2Aṫ22 ṙ 2, ~3.14!

where we find thathmn gives no contribution in the action
~3.14! due to the relationxi

251. The equation of motion
coming from the variationdt is given by

]tS r 2 ṫ

Aṫ22 ṙ 2D 50. ~3.15!
lThe action~3.14! still has the reparametrization symmetr
t→ f (t). Using this freedom, let us choose a synchrono
gauge

t5t. ~3.16!

Then the solution takes the form of energy conservation

ṙ 21
r 4

r 0
4

51, ~3.17!

wherer 0 is the radial position att50. The bosonic partons
perform a pulsating motion by the attractiver 4 potential
@31#. Note that the potential proportional tor 4 comes from
the time-dependent effective mass of parton, Eq.~2.19!, due
to the tension of the membrane.

It is easy to check that the equation of motion with resp
to r is consistent with Eq.~3.17!. Thus the dynamics of the
spherical membrane is fully determined by Eq.~3.17! which
can be solved in terms of elliptic functions@34#.
8-7
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C. Hoppe-Nicolai solution

We will consider more general solutions presented
Hoppe and Nicolai@35# and, in the Matrix theory context, b
Hoppe and Rey@36#, which describes pulsating and rigidl
rotating classical surfaces~of arbitrary dimension! embedded
into Euclidean spheres.

We take a natural ansatz corresponding to the simple
tions of pulsation@described by a radial functionr (t)] and
rotation @described by a time-dependent real orthogonal m
trix D(t)],

X0~t,V!5t~t!, X~t,V!5r ~t!D~t!m~V!,
~3.18!

whereV5(s1,•••,sp) stands for the world volume param
eters of a p-dimensional surface andm(V) is a unit vector

m2~V!51. ~3.19!

Then X(t,V) has the simple interpretation of a rotating
dimensional surface embedded in a sphereSd22 of time de-
pendent radiusr (t).

In this case, the parton metric has the form

qab5r 2]am•]bm[r 2q̃ab , q5r 2pq̃, a, b51,•••,p,

hmn5@Dh̃DT# i j , h̃i j [2q̃ab]ami]bmj ,

i , j 51,•••,d21, ~3.20!

whereq̃ab is the inverse ofq̃ab and q̃5detq̃ab . Taking the
rotation matrix as

D~t!5exp@w~t!A#, ~3.21!

where the matrixA is antisymmetric, the Hoppe-Nicolai so
lution corresponds to the ansatz choosingm(V) to be @35#

A2m~V!521•m~V!, ~3.22!

]amTAm50. ~3.23!

The above equations can be satisfied by choosing

m5~n1 ,n2 ,•••,nk ,0,•••,0!, p11<k<
d21

2
,

~3.24!

and

A5S 0 21 0

1 0 0

0 0 0
D , ~3.25!

where1 is thek3k unit matrix. Then thep-brane action for
the pulsating and rotating surfaces also takes the simple f

I 5
Ap

2 E dt r p@ ẽ21~2 ṫ21 ṙ 21r 2ẇ2!2ẽ#
08501
y

o-

-

m

52ApE dt r pAṫ22 ṙ 22r 2ẇ2, ~3.26!

where Ap5*SdpsAq̃ is the area ofp-dimensional surface
embedded in a (k21)-dimensional unit sphere. In derivin
Eq. ~3.26!, the terms involved withhmn identically vanish
due to the Eq.~3.19!, Eq. ~3.23!, and the orthonormality
relationDT(t)D(t)51.

Notice that the variation ofAp , together with the con-
straint n251, leads to the requirement thatn describes a
minimal surface inSk21 @35#:

¹2n~V!52p n~V!, ~3.27!

where¹25(1/Aq̃) ]aAq̃q̃ab]b .
The equations of motion obtained by the variationsdt and

dw, respectively, are given by

]tS r p ṫ

Aṫ22 ṙ 22r 2ẇ2D 50,

]tS r p12 ẇ

Aṫ22 ṙ 22r 2ẇ2D 50. ~3.28!

Taking into accountt-reparametrization symmetry in the a
tion ~3.26!, the above equations of motion take the form
the energy and the angular momentum conservation, res
tively,

ṙ 21r 2ẇ21a2r 2p51,

r 2ẇ5constant[L, ~3.29!

where a5A12L2/r 0
2/r 0

p and r 0 is the radial position att
50. From Eq.~3.29!, it follows that

ṙ 21
L2

r 2
1a2r 2p51, ~3.30!

which is compatible with the equation of motion determin
by variation dr . For the case ofL50 and p52, the Eq.
~3.30! equals to the Eq.~3.17! for the spherical membrane. I
the case ofL50, there is no need to put the restriction o
m(V) such as Eqs.~3.22! and ~3.23!.

The other solutions of Eq.~3.30! are obtained by straight
forward integration

t5
1

2E dz

Az2a2zp112L2
, ~3.31!

wherez5r 2. For p51,

r ~t!5 ~1/A2a!A112aa sin~2at1u0!,

where a5A1/4a22L2. For p52, 3, the solutions can be
also solved by elliptic functions@34#. They describe the mo
tion of partons pulsating byr 2p potential with angular mo-
mentumL. Note that, forLÞ0 and finite energy, the pulsat
8-8
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ing and rotatingp-branes need not collapse to a point, that
there is a nonzero minimum radiusr min determined by Eq.
~3.30!.

IV. DISCUSSION

The aim of this paper is to understandp-brane dynamics
in terms of superparticles. Although the parton picture
terms of superparticles is quite different from those of Mat
theory and string bits model, we have found that the su
p-brane dynamics can be understood by the collective
namics of superparticles in a unified framework. Here
summarize our formulation and add some comments on
matrix formulation of the supermembrane.

The Matrix formulation of supermembrane was co
structed according to the following scheme. In light-co
gauge, the residual reparametrization symmetry reduce
an area preserving diffeomorphism,SDiff( S). According to
the relation between the representation ofsdiff( S) and the
N→` limit of some Lie algebra@37#, the light-cone super-
membrane is mapped to aphysically equivalentsystem with
the corresponding gauge symmetry. Here,physically equiva-
lent means that the physical degrees of freedom and t
Hilbert space structure exactly match with each other. In
estingly, such a system exists and is given by a supers
metric Yang-Mills quantum mechanics@9#. When this is
done, the embedding coordinatesXm(t,sa) andu(t,sa) are
mapped to matricesXIJ

m (t) and u IJ(t) transforming in the
adjoint representation of the Lie groupG. The
S-dependences ofX andu are transformed to matrix degree
of freedom. That is, the matrix coordinatesX andu are the
collective variables describing the many pointlike parton
grees of freedom. The important point is that the mat
regularization of membrane dynamics is performed in a
persymmetric way.

It is the recent picture of Matrix theory@13,14# that some
spectrums of M-theory in infinite momentum frame can
understood as the collective excitations of D0-partic
whose dynamics is given by a matrix quantum mechanics
the BBS action of supermembrane in terms of superpartic
theS-dependences are collected into the form of the ‘‘effe
tive potentials,’’ Gmn and PA , between superparticles an
summed over all constituent superparticles. The Diff~S!
t.

lt-

tt.
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symmetry restricts the form of the effective potentials.
other words, they should be given by the Diff~S!-invariants
such as the MPB. Moreover, thek-symmetry determines the
‘‘gauge potentials’’PA coupled to the superparticles. The
potentials determine an effective background about super
ticle dynamics. Speculatively, the full matrix formulation o
supermembrane may reduce to a problem to encode the
fective background geometry determined by the potent
Gmn and PA into the collective~matrix! coordinates of su-
perparticles.

The possibility of a covariant~in the sense of the targe
space! matrix formulation rests on whether or not we ca
find aphysically equivalentsystem with supersymmetric ma
trix regularization that the dynamical degrees of freedom a
their Hilbert space structure exactly match with each oth
As pointed out by Smolin@22#, the onlySDiff( S) is linearly
realized by the Poisson algebra~2.10!, which is mapped to
the Lie algebra of a gauge group in light-cone gauge. T
area non-preserving part, Diff(S)/SDiff( S), is non-linearly
realized by the Poisson algebra. If we want to have a co
riant matrix formulation of membrane, we should find a m
trix realization~regularization! of the full Diff( S) @22,23#. It
is desirable in the practical sense that the matrix formulat
would provide the linear realizations on the Diff(S),
k-symmetry and supersymmetry. Unfortunately, it see
that there is no definite recipe for the above issues at
moment.

We think that, if the full matrix formulation of supermem
brane should be incorporated with all the recent pictures
peared in the nonperturbative string theory and M-the
@14,15#, e.g., noncommutative spacetime geometry, ho
graphic principle, andp-brane democracy, it will need a fun
damental unit defining spacetime quanta, bits of informati
and partons ofp-brane. We hope, in this sense, that the
formulation of p-brane dynamics by smaller entities pr
sented in this paper will be helpful to understanding the n
perturbative dynamics of the supermembrane.

ACKNOWLEDGMENTS

This work was supported by the Korea Science and En
neering Foundation through Center for Theoretical Phys
and by the Korean Ministry of Education~BSRI-98-2414!.
ld

ev.
@1# W. Nahm, Nucl. Phys.B135, 149 ~1978!.
@2# E. Cremmer, B. Julia, and J. Scherk, Phys. Lett.76B, 409

~1978!.
@3# E. Bergshoeff, E. Sezgin, and P. K. Townsend, Phys. Let

189, 75 ~1987!; Ann. Phys.~N.Y.! 185, 330 ~1988!.
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