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Pointlike structure for super p-branes
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We present an efficient method to understandatieane dynamics in a unified framework. For this purpose,
we reformulate the action for supgrbranes in the form appropriate to incorporate the pointljarton
structure of higher dimensionpibranes and intend to interpret théorane dynamics as the collective dynam-
ics of superparticles. In order to examine such a parton picture of guipEmes, we consider various super-
particle configurations that can be reduced from sypbranes, especially a supermembrane, and study the
partonic structure of classicatbrane solutions[S0556-282(98)10320-X]

PACS numbdps): 04.65+¢, 04.50+h

[. INTRODUCTION permembrane dynamics attempts to develop the theory based
on the idea that the supermembrane is made of smaller enti-
The eleventh dimensions is the highest dimension irfies, partong9]. In addition, the Matrix theory for a com-
which supergravity theory can exist, with fields carrying spinPl€t€ nonperturbative formulation of M theory explicitly in-
J<2 [1]. In fact, it is the only sensible supersymmetric corporates the parton picture in terms of DO-branes in infinite
theory ind=11 [2]. It has a membrane as a fundamentalmomentum fram¢13,14). When this is done, the spatial co-

degree of freedom as well as gravitofg4], which may ordinates of the N DO-branes are representedNbyN Her-

come from the massless excitations of a supermembrane Rrg;_itian matrices._ :
' The recent picture of M theory tells us that strings, mem-

cently, it was showris,6] that it is the low energy limit of . 0 o1 other extendeebranes hold an equal rank as

the eleven d@meqsipnal M-theory. M thgory is defined as th'?1onperturbative spectrumd4,15. Recently, the ordinary
strong coupling limit of the type IIA string theof,6] and  gtring theory as a first quantized description was reformu-

the double dlmenS|0_naI r(_aductlon of an eleven dmens_nonqbted as the Matrix string theory, the Matrix theory compac-
supermembrane action yields the Green-Schwarz action @ffied on a tiny circle, where it was shown that it provides a
the type IIA superstring7]. These lead one to wonder description of the Hilbert space sfecondquantized string

whether a quantum supermembrane provides an intrinsigheory[16]. In analogy with the quark picture that appeared
definition of M-theory. Moreover, it was show®] that the  to unify many “fundamental” hadrons, it may be reasonable
massless spectrum of a supermembrand=ti1 occurring to considerp-branes as the composites of smaller entities. It
in the sector of a completely collapsed membrane, i.e., suis thus desirable to reformulate in a unified framework the

perparticle, corresponds to the supergravity multiplet. p-brane dynamics as the dynamics for possible constituents
But the principal objection to this reasoning is that theas the Matrix model for M theor{/13]. _ _
spectrum is continuou®,10], which would preclude a par- In this paper, we construct the Barbour-Bertotti-Schild ac-

ticle interpretation. It is known that, unlike string theory, tion [17,18 for superp-branes in order to incorporate the
membrane theory encounters new divergences coming fromointlike (parton structure of higher dimensiongt-branes

an infinite number of internal degrees of freedom. In order t@nd intend to interpret the-brane dynamics as the collective
make the supermembrane dynamics well-defined, we need fynamics of superparticles. In order to examine the parton
have some kind of regularization in a supersymmetric wayPICture of supep-branes, we consider various superparticle
Such a regularized description, so-called matrix theory, jconfigurations that can be reduced from supdranes, es-
given in a light-cone gauge by (N) supersymmetric Yang- pecially, supermembrane and study the partonic structure of
Mills quantum mechanici9] and its underlying spacetime classicalp-brane solutions. Finally, we give some comments

. ; . ._on the matrix formulation of the supermembrane from the
geometry is noncommutative at short distances. The cIassm@FeWpomt of composites of pointlike entities
spacetime geometry is a sensible concept only in a long dis- '

tance regime. 'I_'hus, the spectrums of short distance_p_hysics Il. SUPER p-BRANE ACTION
may be dramatically changdd1] due to noncommutativity . _ o
of spacetime. For the purpose of illustrating the pointlike structure of

The parton model of hadrons in the late 1960s was Origip-branes, in_this section, we wiII_ first consider the Green-
nally developed to describe the properties of high energypchwarz actiori19] of a d-dimensional supermembrane and
collisions of hadrons and later incorporated into the fabric ofe€n supep-brane. The action for the supermembrane in flat
the quantum chromodynamics, generally accepted relativistiguPerspace ig3,4]
parton model of hadrons. In an infinite momentum frame in 1
which partons are in extreme relativistic motion, the internal | = _T'V'J d3§[ —g(X,G)—}—isijk(E(?iXM
motions of the partons and the rate at which they interact
with each other are slowed dow({frozen because of the . 1_ . o
relativistic time dilatation effect and the Fock space vacuum X(9;X"=160I'"9;6) — EGF“aiGGFVajG) 0rwak9],
becomes extremely simple with the nonrelativistic nature of
underlying dynamic$12]. The matrix regularization of su- (2.1
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whereX#(¢) and 6(¢) denote the superspace coordinates ofwhere dot means the derivative with respect to the time-like
the membrane parametriZEd in terms of world volume paparameterT and E: e/\/a Here we have introduced the
rameterst’ (i=0,1,2). HereTy is a membrane tension pro- “manifold Poisson brackets"(MPB) using the simplectic
portional tol ;3 and we will take the UniTM =1. The metric Structuresab/\/a on the two manifo|d§::

gij(X, 0) is the induced metric on the world volume

8ab
i=EFE D, 2.2 f,0)=—=0,fd 2.1
Jij i Ej My (2.2 < g> \/a al Jpg (2.10
whereE/ are certain supervielbein components tangential to . ] o )
the world volume defined by for C*(2) functionsf andg. Note that this simplectic struc-
ture on3, which is the cotangent bundles of configuration
EF=a, X —i 6l *5,0 (2.3  space, is uniquely defined by the metric and orientation of

3 [21]. Our definition of the MPB manifestly respects the
andz,, is the flatd= 11 Minkowski metric. The actiofr2.1)  full diffeomorphism group off, Diff(X), and satisfies the
is invariant under spacetime supersymmetric transformationdacobi identity

SXt=iel'*g,  S0=e. (2.4 ((f.9).,h)+((g,h),f)

Note that the above invariance is associated with the crucial +((h,f),g)=0 (2.1

gamma matrix identity - ) .
for C*(2) functionsf, g, andh. The metricG,,, on the

E[lr“lﬁz%lﬂ JW4=0 (2.5 configuration space of the embedding$(c?) and 8(c?) is
a given by
only satisfied ford=4,5,7, and 113,4].
We would like to rewrite the first term represented as the Guv=uvt Mo (212

Nambu-Goto type as the following Schild type actidr8]: whereh.__ is a useful quantity defined as
uv

_f d*¢V=g(X,0)= % f d%e($<siikE#ErEﬁ>2—1 . h.,=(E,. .B°)(E, .E,)=—0"Ea,Ep, (213
le
(2.6) and used the abbreviated notation

Using the equation of motion about the auxiliary field.e., (EL . E)=(X,.X,)—16I ,(6,X,)
e=1/— (1/3) (¢"*E/'E/Ef)?= \—detg;;, it is easy to show
that the original Nambu-Goto type action can be recovered.

We assume that the topology of the membrane is fixed tq'he metrich
be = XR, with = a compact two manifold, so that the three
coordinates of the world volume!, are broken down into

O=7 and £&=¢?, a=1,2! We introduce a two dimen-
sional induced metric ol defined by hah*'=—h", (2.19

+i16T (6,X,)+ 6T ,(6,6)T 0. (2.14

uv and G, inducedby neighboring superpar-
ticles, by the definition of,,, satisfy the following identity,
respectively,

_EMEY ab_ _ _Oab
Qab=EaEbmu,, € e (2.7) GZGiZG;. (2.1

Note that The Eq.(2.16 implies that the metri6G? , indeed, acts as a
£3Pe%=q(q*°q°?—q°°q2Y), (2.9 kind of projection operator in the target spaBéd ' In
addition we have the important identity related with [Xff
where g2° is the inverse ofq,,, i.e., G3°q,=062 and q  constraints generating the reparametrization of the mem-
=detqgap- brane surface
The action(2.6) can then be rewritten as the Barbour-
Bertotti-Schild(BBS) type[17,18 appropriate to incorporat- EaGu=0, (2.17

ing the partonic picture of supermembrane which can be directly derived from the definitig@.12 of

1 _ . G,,. From the Eq.2.17), one can obtain the relatiog,,
lges=7 | drd oqle (X —ior+o) =—E%h,,E}, which is consistent with the E¢2.13.
The action(2.9) is also invariant under the local reparam-
X G, (X"—i16T"§)—¢], (2.9 etrization,7— f(7), provided that the auxiliary field (a sort

The 2+1 splitting corresponds to a gauge fixing to put shift vec- 2The Lorentz indices such as and v are raised and lowered by
tors N? of world volume metric to zer$20]. using the metricy,,, .
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of “metric” along the particle worldling transforms ase ~ Place it was at time O to the place it is at timeFrom this
—3(df/dr) L. This reflects that there is no intrinsic pre- PICtUre, we see that the classical méssf the static mem-

ferred time variable on the membrane. Note that, from théarane is a sum of the mass of constituent superpatrticles: i.e.,
equation of motion with respect to the auxiliary fied

M=T, Ldzo\/a. (2.19

=\~ (X1—iT40)G, (X"~ 6T"0), (218 _ ,
Recall that the Wess-Zumino term in E@.1) generates a

we can easily recover the usual Barbour-Bertotti form for thefemionic gauge symmetry, so-calledsymmetry, which al-

membrane as we[l22,23. lows us to match the Bose and Fermi degrees of freedom.
Let us interpret the BBS actio2.9) as follows. The BBS This fermionic gauge invariance of the supermembrane is

action takes the form of superparticles with unit mass conenly possible for specific number of spacetime dimensions,

tinuously distributed on the two manifold moving in a i.e., ford=4,5,7, and 11. The Wess-Zumino action which

background spacetime meti@,,. We would like to inter- is independent of the world volume metric is rewritten as

pret the supermembrane as the composite of the superpd,4]

ticles bound to each other by the surface tension and influ-

enced by theeffective gravitational potential ¢3,, so, in this 1

sense, the superparticles play a rolg(déssical partons of lwz=— _j d3§8”kEiAE,BEEBCBA, (2.20

supermembrane. Similarly, we may consider the supermem- 6

brane as the configuration of a fluid evolving from a fixed

initial configuration. We can then consider the flow of a non-whereE{*=(E#,E{) with Ef=4;6°. The super 3-fornB is

viscous compressible fluid on the regiBnmoving along the such thaH =dB, with all components off vanishing except

timelike geodesic defined by the metfk;,, . Such afluidis H,,.z=—2i(I',,)4p- The gamma matrix identity of Eq.

described by a curve—g,, where the diffeomorphism, is (2.5 is nothing but the Bianchi identitdH=d?B=0 from

the map which carries every particle of the fluid from thewhich the brane scan comes in. Solving Byrone finds

Buup=0, Buva=i (0T 4)
Buap= (01 1) (ol 01") gy, Bag,=1(61 1) o(61*)4(61"),). (2.21)
|
Since the locak-symmetry eliminates half of thé fermi-  where the “external” fieldll, is defined as follows:

onic modes, it is involved with some kind of the projection
operator3 (1=1T"), where the functiod is defined by

I,=(E®,E)Bcga- (2.24
1 1 Then the full BBS type action of the supermembrane takes
= GKErEPYEP =— _EXEY
I 6e’ EFETEL o 2% E(E" BT the following form
(2.22
and satisfies the relation?=1 on shell. = lf drd2oqle”L(X*—i6r+e)
In terms of the 2-1 splitting, the action2.20 takes the 2

form?® T = A
XG,,(X"—i 61" ~e+EATI\]. (229

|szlf dezU\/aE/SHA. (2.23 Now the above supermembrane action can be interpreted as

2 the collective dynamics of superparticles or the nonviscous
charged fluid composed of the superparticlegich are
charged with respect to the fermiomictransformatiom un-

3We are now taking an analogy with electrodynamics, where th&ler the influence of the “gravitational” fiel@s,, and the

point particle with charge is interacting with one-form potenti@l ~ “external” field IT,. We have seen so far that the fiel@g,
defined on the worldlinel’ of the particle, ie., qfrA andII, which couple to the superparticles are not arbitrary,

=q/rdr(dX*/d7)A,, and electromagnetic one-forsd should  but highly constrained by Dif®) symmetry, supersymme-
satisfy the Bianchi identityd F=d?A=0. try, and k-symmetry.
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Without doing any gauge fixing, we proceed directly to
define the canonical momenta of the variabl¥s,<):

: - S |
PM=5I/5X”=\/a(e‘lGW(X”—iﬁF”a)nLEHM],

= S1186%=—

o —

i\/q[e 1(X —ior 0)G ,,(GF")a
+=II#(6r __I II
2 ( ,u)oz 2

—iPH(0T ) o~ \/7611,1.

(2.26

The phase space Poisson brackets of these canonical vai0]

ables are the following:

{X*o),P,(cd")}_= 5’;52(0'—0’),

{6%(0),Pg(0")} = 856%(0—0"), (2.27)

where the graded Poisson bracket is defined{AyB}.. =
+{B,A}. and the brackets are evaluated at equal times.

Let us collect the canonical constraints imposed on the

phase space of the supermembrg2@:

Fo=P,+iP“(6l )+ %anﬁo, (2.28
Pab=0ab— WMVEQLEEWQ (229)
Va
sanEé‘( P,— 5 1,]~0, (2.30
Va Vg 1
= — _— nv - (A~
o=5|P.— 5 11,6 P,— o 11, |+ 5q~0,
(2.30)
P=51/56~0, (2.3
Pap=01/80a,~0. (2.33

Note that all these constraints directly follow from the defi-

nition of the phase space variables. The constrai2i28

and (2.31) come from the above definition of the conjugate

momenta P, ,P,), where the Eq(2.18) is rendered into the
form of the constraint(2.31). The constraint(2.29 is the
definition of the induced metric on the membrane surface
and(2.30 is the Diff(X)) constraint due to the relatid2.17).

In fact, the constraint§2.29 can be understood as the sec-

ondary constraints of the second class constraih3. On
the other hand, the constrai(®.32 is the first class gener-
ating the reparametrizatioa,—e(df/d7) ~*. Multiplying the
constraints (2.28—-(2.33 with the Lagrange multipliers
3% A% A2 A\, and\?P, respectively, and adding them
to the Hamiltonian, we obtain the total Hamiltonian

PHYSICAL REVIEW D 58 085018

H= f d2o{(P X +P 07— L) +3F 4+ A% 0+ Alg,

+Ap+NP+NTPP)

=fd20'

+AP+N3P,,

e
e

Ja

) ‘P+EaFa+Aab(Pab+Aa(Pa

. (2.39

In Ref.[20], Bergshoeffet al. analyzed the constraint struc-
ture of the eleven dimensional supermembrane and covari-
antly classified the constraint algebra. It was shown in Ref.
that Eqgs. (2.29, (2.33, and 1/2(+TI)(F
+4iPabE§FMab0) (which is an orthogonal part on the
k-transformatiop are second class constraints.

It is generally possible that the Green-Schwarz action for
any p-brane can be rewritten as the BBS action, which takes
that of particles continuously distributed on a p-dimensional
surface moving in a nontrivial external background. The
Green-Schwarz action for suppibrane is[3,4]

I=—Tp+1f dp“f[ V=9(X,6)

iqig---i A1cAr Ap+1
gtz lprIE TE . . ECPTIB
(p+1)! iy Tip ipr1 Ap+1 A

(2.39

where the superspac@{ 1)-form B is the potential for a
closed p+2)-form H=dB. Possible supep-brane theories
exist whenever there is a closed- 2)-form in superspace.

As the case of supermembrane, we assume that the topol-
ogy of thep-brane is fixed to b& X R, with 3 a compact
p-dimensional manifold, so that thep¢ 1) coordinates of
the world volume, &', are split into&®=r and £2=0?, a
=1, --,p. We introduce a p-dimensional induced metric on
3, defined by

Jab=EALEp,, &% %=—g0n% "% (236
Then the following formula can be found
qPabr b2 q21Pp
52182 apebiby by ¢ e q2Pr  g?2h2 220
qa‘pbl qa;)bz apbp
(2.37

where g2° is the inverse ofgy,, i.e., G3q.,=468 and q
=detq,p-

As a result of these formula, we have the BBS action for
superp-brane,
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1 o =
|=§f drdPagle Y(X“—i6r»6)G,, (X" i 6" 6)
—e+ESTI,], (2.38

wheree=e/\/q and the “external” fieldIl, is defined as
follows:

2
HA:a<EA1’EA2’..-’EAp>BAp,"'xA21A1'A' (239)

Here we have introduced the “manifold multiple brackét”
on the manifold® extending the previous MPB

1 oy by f)
fo by fo)= —
< 1,12 P> \/aa(o-llo-z,...,a-p)

(2.40

for C*(X) functionsf,. The metricG,, on the configura-
tion space of the embeddingé'(c?) and 8(o?) is given by

Guv=7nuth,,, (2.41)
whereh ,, is defined as
= _—(—)p(p—1)12 K1 ... Ekp-1
h/u/ ( ) (p_1)|<E,u1E ’ 1E p >
x(EMp_1,~ . ~,EM1,EV>
= —q%°E,,Ep, (2.42

The similar formula for the metrid,,, andG,,, induced by
neighboring superparticles also hold true for supdranes

hah'=—h",
trh"=h,,h’- - -hfh*=(=)"p, Vn=1,
GGy =G,

Vn=1.

trG"=d—p, (2.43

In the next section we will show that-brane solutions al-
ways satisfy these relations.

PHYSICAL REVIEW D58 085018

E4G,,=0. (2.49

From the Eq.(2.42, one can also obtain the relatiap,,
=—Efh,,Ep.

Based on their equivalent canonical structure, it is appar-
ent that the supep-brane p=1) action(2.38 will exhibit
the same Hamiltonian structure as the supermembrane action

(2.29.

Ill. PARTON CONFIGURATIONS OF SUPER p-BRANES

The parton picture in terms of superparticles is quite dif-
ferent from those of Matrix theoryl3] and string bits model
[27] where partons are described by a matrix transforming in
the adjoint representation of some gro@p mainly SU(N)
or SO(N). Nevertheless, the formulation based on the idea
that higher dimensional extendgebranes can be made of
smaller entities, superpatrticles, is quite useful to understand-
ing the dynamics op-branes because the dynamics is con-
ceptually simple and clear. In this section, we will try to
understand the-branes in viewpoint of composite of super-
particles and study the parton configurationspdirane so-
lutions.

A. Superstring and superparticle from supermembrane

First, we consider a double dimensional reduction of
eleven dimensional supermembrane, from which the type
IIA superstring propagating il=10 can be obtained, as
shown by Duffet al. [7], and superparticle il=9 by a
further double dimensional reduction. In the present view-
point, these solutions can be derived from the particular con-
figurations of superparticles preserving the supersymmetry.

The type IIA superstring id=10 considered by Duff
et al.[7] is obtained by a compactification of both the world
volume and the spacetime on the same circle, letting the
membrane tensioiy, tend to infinity, but the string tension
T,=27R, Ty maintain finite. This corresponds to the con-
figuration of superparticles whose line mass density along
the compactified circle tends to infinity, while the mass den-
sity along the extended string remains finite. This situation
can be represented by the following ansatz:

XW0=p, ,X"=4,0=0, m=0,1,...9. (3.)

We have exactly the same kind of identity as the super-

membrane related with Diff) constraints generating the

reparametrization of thp-brane surface

Then the “parton metric’h,,,,G,,, ap, and the external
field IT,= (I1,,,,11,) induced by the superparticle configura-
tion (3.1) can be found as

“This multiple bracket was introduced a long time ago by Nambu
[24] and the quantization for the generalized Hamiltonian dynamics

was considered. And the basic principles of canonical formalism for

the Nambu dynamics were presented by Takhtg2&hand applied
to the relativisticp-brane dynamics by Hopde6].

hwz<gmn 0

0 —1)' Crun™

DmnT9mn O
0 0/’
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E"E,m O [28]. Note that the string actio(8.5) can be rewritten as the
qab=( ) (3.2 superconformally invariant theory through the Polyakov ac-
0 1 tion even though the membrane action we started from can-
not.
Consider a further double dimensional reduction of the
superstring constructed by the Kaluza-Klein truncatidri)
of the supermembrang29]. The string is then wrapping

2
=~ \/_aEgBloma:i \/aerlormaaga

2 around another circle of radid,. Thus the membrane has a
I1,=—=(EJBiona+ EXB1gsa) toroidal topology embedded in a spacetiRéx Stx St.
Vo Choosing thes'x St to be in theX!® and X® directions and
5 letting the string tensio, tend to infinity, but the static
=i —= (00 10l 1) o (9, X™—i1 6 ™3,,.6) membrane mas$2.19, M=(27R;)(27R;) Ty, maintain
\/a finite. the classical solution of this configuration can be

taken as the following form
1 _
- _[(arlorm)a armaoa

J_a B XV=p, X°=0, 9, X"=4,6=0,
= (0l ) 01 101,61, 3.3
where 7, is a ten dimensional Minkowski metric and the ae(o,p) and m=01,--8. (3.6

potentials Big,m and Bigg, has been determined by Eqg.
(2.21). The reduced supervielbeE(; and the metrig,,, are  This configuration corresponds to a supermembrane that has
given by completely collapsed to a point. In fact, we find the parton
. metric
EA=(EM,E®)=(3,X"—i6T™3,6, 3,6%),

=—EymEon/d, =E E, . 3.4
gmn m n q q | ( ) gmn_o O nmn 0 0
One can check that the soluti¢B.2) manifestly satisfies the hu= 0 -1 0],G,=( 0 0 0],
identities(2.43), i.e.,trh"=(—)".2 andtrG"=9. 0 0 -1 0 0 0
In order to recast the Green-Schwarz action for the type
IIA superstring[19], the 32 components of Majorana spinor
6 can be split into two Majorana-Weyl spinors in terms of 10
the ten dimensional chiral matrik, Qab=| g 4] 3.7
0 L 1+ 0
==5(12T00. ,,=1,=0. (3.9

Using these results, we can obtain the BBS action for the )
type IIA superstring For these the supermembrane action reduces to that of super-

particle with massM and propagating id=9 with N=2
supersymmetriés

T .
|:72f drdoygle {(X™—iermp)

X Gy X" =i 6I'"0) — e+ E§IIA], (3.5 ®The classical mass of the toroidal solution considered here is

nonvanishing. This mass can be interpreted as the winding energy

whereG,,= 7mn+ Omn @and 6= (6. ,6_). of the membrane wrapping around the toroidal surface or that of the
From the double dimensional reductié® 1), the Hamil-  String wrapping around thi®-circle. For this reason, the mass is

tonian formulation of the superstring can be also derivedeisemi‘""”y quantized. . .
from the Egs.(2.26—(2.34) and the constraint structure of A representation of th&-matrices appropriate to the +B+2
the superstring is the same as that of the supermembraif@lit that we are making is:

I'=9y"g g3, m=0,1,--,8,

SIt can be easily shown that the other2 splitting from the
supermembrane actiof2.1), £2=p, £&2=(r,0),a=0,1, directly ré*a=1,@0% a=12,
gives the Nambu-Goto action of superstring. In this case, the ana- ) ) ) )
logue of the Eq(2.25 is involved with the derivative with respect Where the 9-dimensionat-matrices satisfy
to p instead ofr. Thus, it is sufficient that we consider only terms
inVOlVed W|th GlOlO andHlo. {’ym, ’yn}: 277mn.
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M ~ . .
= ?J drfe” }(X™—i 0"y™0™) pmn
X (X"—i6By"6B) —e], (3.9

where #*=(6,,0_) are two 16 component Majorana

spinors ind=9. For the case of the superparticle, the “ex-

ternal fields”h ,, andII, disappear in the action. As a well-

PHYSICAL REVIEW D58 085018

upon gravitational collapse, the spherical membrane has a
possibility to form a Schwarzschild black hole and then de-
cay quantum mechanically via Hawking radiation. As a
simple good example of this formalism, the dynamics of a
spherical membrane can be described bySt#N) Yang-
Mills guantum mechanics in a light-cone gaUl@e10,33.

First, we introduce a parametrization of a unit sphere by
coordinatesr®=(x, §) with —1<x<1 and O<#<27. The

known fact, in the case of point particles, there is no need foembedding Cartesian coordinates on the sphere

Wess-Zumino term to realize the-symmetry[30] as illus-
trated in Eq.(3.9).

Using the above results, the Hamiltonian formulation for
the superparticl¢30,32 can be also derived from the Egs.
(2.26—(2.34 where the nontrivial constraints come from

Egs. (2.28), (2.31), and(2.32, the other constraints identi-
cally (or strongly vanish.

B. Pulsating spherical membrane

Consider a periodic pulsating membrane, originally de-

scribed by Collins and TuckeB1], where a spherical mem-

brane contracts to a point and expands again with the oppo-

X1=X,  Xp;=v1—x%sinf,  xz=+1—x%cosé
(3.10
obey theSU(2) algebra
<Xi!Xj>:8iijk1 i,j,k:1,2,3. (311)

The pulsating spherical membrane is described by setting

Xo(r,0®)=t(7), Xi(r,0%)=r(7)Xi(c?),

6=0.

X4=---=Xy4-1=0, (3.12

site orientation. This solution was recently reconsidered in

the Matrix theory contex{33], where it was argued that,

Using the resul{3.11), the parton metric can be found as

X2 Xy1—x°siné Xy1—x?cosé
Gij=| xV1-x%sing  (1-x*sird  (1-x?)singcoso (3.13
xy/1—x2cosf® (1—x?)sinfcosd  (1—x?)coso
r2
0
Jab= 1_X2 ) q:r4v
0 r?(1-x?

where we have explicitly presented only the non-flat spatiallhe action(3.14) still has the reparametrization symmetry;

components of5,,,. The membrane actiof2.25 can then
be reduced to the following simple form:

4 - o~
TWJ dr rffe Y{(—t?+r?)—e]

=—47rf dr r2\t2—r2?, (3.14

where we find thah,,, gives no contribution in the action
(3.14 due to the relatiorb(i2=1. The equation of motion
coming from the variatiordt is given by

r2t
2| ———|=0.
t2_ 2

r

(3.19

7—f(7). Using this freedom, let us choose a synchronous
gauge

t=r.

(3.1

Then the solution takes the form of energy conservation

(3.17

wherer is the radial position at=0. The bosonic partons
perform a pulsating motion by the attractivé potential
[31]. Note that the potential proportional té¢ comes from
the time-dependent effective mass of parton, dqL9), due
to the tension of the membrane.

It is easy to check that the equation of motion with respect
to r is consistent with Eq(3.17). Thus the dynamics of the
spherical membrane is fully determined by E8.17) which
can be solved in terms of elliptic functiof34].
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C. Hoppe-Nicolai solution — -
:_APJ' dr rPyVt2—r2—r2¢?, (3.26

We will consider more general solutions presented by
Hoppe and Nicolaj35] and, in the Matrix theory context, by
Hoppe and Rey36], which describes pulsating and rigidly whereAp:fEdpa\fa is the area ofp-dimensional surface
rotating classical surfacéef arbitrary dimensionembedded embedded in ak—1)-dimensional unit sphere. In deriving
into Euclidean spheres. Eqg. (3.26, the terms involved witth ,, identically vanish

We take a natural ansatz corresponding to the simple madue to the Eq.3.19, Eqg. (3.23, and the orthonormality
tions of pulsationdescribed by a radial function(7)] and  relationD"(7)D(7)=1.
rotation[described by a time-dependent real orthogonal ma- Notice that the variation ofA,, together with the con-
trix D(7)], straint n=1, leads to the requirement thatdescribes a

minimal surface inS*~* [35]:
Xo(r,Q)=t(7),  X(7,Q)=r(7)D(m)m(Q),
(3.18 V2n(Q)=—-pn(Q), (3.27

=(gt ... oP - -
whereQ)= (o, - -,0P) stands for the world volume param whereV2=(1/\/a) r?a\/aqabé’b-

eters of a p-dimensional surface amd() is a unit vector The equations of motion obtained by the variati@hsnd

m2(Q)=1. (3.19 d¢, respectively, are given by

Then X(7,Q) has the simple interpretation of a rotating p- rPt B
dimensional surface embedded in a spt#te? of time de- dr Jiﬁ =0,
pendent radius(7). t=ri=rve

In this case, the parton metric has the form P 2

- 3, —=—=1|=0. (3.28

Qab="r20am-dpm=r?q.,, q=r?"q, a,b=1,--,p, Vt2—r2—r2y?
hW:[D”ﬁDT]H , Fij — —aabﬁamiﬁbmj , Taking into account-reparametrization symmetry in the ac-

tion (3.26), the above equations of motion take the form of
i,j=1,--,d—1, (3.20 :Rlzlinergy and the angular momentum conservation, respec-

whereq?” is the inverse ofy,, andq=detq,,. Taking the 2. 2
rotation matrix as ret+rep“+arf=1,
r2¢=constart=L, (3.29

D(m)=exd ¢(7)A], (3.21
where a=1—L?/r2/rP andr, is the radial position at
where the matribA is antisymmetric, the Hoppe-Nicolai so- -0 Fr(:)m Eq.(3 29)0 itofollowsothat P

lution corresponds to the ansatz choosm(() to be[35]
2

AZm(Q)=—1-m(), (3.22 SR Y (3.30
r
d,m"Am=0. (3.23
which is compatible with the equation of motion determined
The above equations can be satisfied by choosing by variation 6r. For the case oL =0 andp=2, the Eq.
(3.30 equals to the E(q3.17 for the spherical membrane. In
B d-1 the case oL =0, there is no need to put the restriction on
m=(n;.nz, N0 -.0),  prisks——, m(Q) such as Eqs3.22 and (3.23.
(3.29 The other solutions of Eq3.30 are obtained by straight-
forward integration
and
1 dz
0 10 T= EJ —m (3.3)
A=| 1 O 0O (3.29
0 0 0 wherez=r2, Forp=1,

_ . . _ r(m)=(12a)J1+2aasin2ar+ 6p),
wherel is thek Xk unit matrix. Then thg-brane action for
the pulsating and rotating surfaces also takes the simple fornvhere a= \1/4a?—L2. For p=2,3, the solutions can be
A also solved by elliptic function34]. They describe the mo-
_ e Pra-l/ 1245024 2.2\ % tion of partons pulsating by?” potential with angular mo-
I 2 f dr rife (-t riariet) —e] mentumL. Note that, forL #0 and finite energy, the pulsat-
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ing and rotatingp>-branes need not collapse to a point, that is,symmetry restricts the form of the effective potentials. In
there is a nonzero minimum radiug,;, determined by Eq. other words, they should be given by the DHf-invariants
(3.30. such as the MPB. Moreover, thesymmetry determines the
“gauge potentials”II, coupled to the superparticles. These
IV. DISCUSSION potentials determine an effective background about superpar-
) ) ) ) ticle dynamics. Speculatively, the full matrix formulation of
_ The aim of this paper is to understapebrane dynamics g, permembrane may reduce to a problem to encode the ef-
in terms of superparticles. Although the parton picture infective background geometry determined by the potentials
terms of superparticles is quite different from those of Matrixg and 11, into the collective(matrix) coordinates of su-
theory and string bits model, we have found that the SUpeﬁgrparticles.
p-brane dynamics can be understood by the collective dy- The possibility of a covariantin the sense of the target
namics of superparticles in a unified framework. Here Wegpace matrix formulation rests on whether or not we can
summarize our formulation and add some comments on thg,q aphysically equivalensystem with supersymmetric ma-
matrix formulation of the supermembrane. trix regularization that the dynamical degrees of freedom and
The Matrix formulation of supermembrane was con-heir Hilbert space structure exactly match with each other.
structed according to the following scheme. In light-conepg pointed out by Smolifi22], the onlySDiff( 3) is linearly
gauge, the residual reparametrization symmetry reduces {Qgjized by the Poisson algebf2.10, which is mapped to
an area preserving diffeomorphis@Diff(X). According to  the Lje algebra of a gauge group in light-cone gauge. The
the relation between the representationsdfff(%) and the  area non-preserving part, Dif(/SDiff(3), is non-linearly
N—ce limit of some Lie algebrd37], the light-cone super-  reajized by the Poisson algebra. If we want to have a cova-
membrane is mapped topdysically equivalensystem with  jant matrix formulation of membrane, we should find a ma-
the corresponding gauge symmetry. Hemysically equiva- iy realization(regularization of the full Diff(3) [22,23. It
lent means that the physical degrees of freedom and thefg gesiraple in the practical sense that the matrix formulation
Hilbert space structure exactly match with each other. Intery,q g provide the linear realizations on the DB,
estingly, such a system exists and is given by a SUPersym;_symmetry and supersymmetry. Unfortunately, it seems
metric Yang-Mills quantum mechanid®]. When this is  hat there is no definite recipe for the above issues at the
done, the embedding coordinaté$(7,0°) and6(7,0°) are  oment.
mapped to matriceX{;(7) and 6,,() transforming in the We think that, if the full matrix formulation of supermem-
adjoint representation of the Lie groupG. The prane should be incorporated with all the recent pictures ap-
>.-dependences of and ¢ are transformed to matrix degrees peared in the nonperturbative string theory and M-theory
of freedom. That is, the matrix coordinat¥sand ¢ are the  [14,15, e.g., noncommutative spacetime geometry, holo-
collective variables describing the many pointlike parton degraphic principle, ang-brane democracy, it will need a fun-
grees of freedom. The important point is that the matrixdamental unit defining spacetime quanta, bits of information,
regularizatio_n of membrane dynamics is performed in a suand partons op-brane. We hope, in this sense, that the re-
persymmetric way. formulation of p-brane dynamics by smaller entities pre-
It is the recent picture of Matrix theorjt 3,14 that some  sented in this paper will be helpful to understanding the non-
spectrums of M-theory in infinite momentum frame can bEperturbative dynamics of the Supermembrane_
understood as the collective excitations of DO-particles
whose dynamics is given by a matrix quantum mechanics. In ACKNOWLEDGMENTS
the BBS action of supermembrane in terms of superparticles,
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