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Tools for tunneling from metastable vacua
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If the universe is trapped and cooled in a metastable false vacuum state, that state will eventually decay by
bubble nucleation and expansion. For example, many extensions of the standard model incorporate new scalar
fields J) whose potential has a local minimumdt= 0 but a global minimum elsewhere, to which the vacuum
will eventually tunnel. | calculate the lifetime of the false vacuum, and the field profile of the bubble after
tunneling, for any potential that is approximately a polynomial of degedenear the false vacuum. Essen-
tially exact results are given for a single field; for multiple fields a strict lower bound is placed on the tunneling
rate.[S0556-282(098)06620-X]

PACS numbsgs): 11.15.Ex, 11.15.Tk, 98.80.Cq

Consider a quantum field theory of some scalar figlds course, for many of these contexts the effects of graialy
(grouped for convenience into a Vec)tONhose potentia| and the expanSion Of-the universe, and pOSSlbly of finite tem-
U((Z) has local minima at the origitszo and at some other peraturg 4], mu_st be included, but the techniques developed
- = - S here may readily be extended.
¢= 1. It U($1)<U(0) then the vacuum at the originis a ;¢ previous work on false vacuum decay either as-
false and metastable one. If the universe is in this fals

. umes a thin-wall approximation to derive analytical results,
vacuum at some early epoch, and the temperature is suf

; ) . UGy specializes to a particular model and numerically extrem-
ciently low—as | will assume for the remainder of this .

paper—then quantum fluctuations will eventually initiate a'2€s the action. But the former approach is often only appli-

phase transition from the supercooled initial state to the tru(gable vvhen the _I|fet|me is extremely Iong ar)d hence not. very
vacuum through bubble nucleation and expan&idnA very mterestmg, whllle. the latter can bg intricate and time-
elegant and tractable approach to studying this process W%)nsumlngz requiring a new computation for each model and
introduced by Colemafi2]. The bubble's most likely field ©ften also ingenious methods of extremizatiG. The re-

configuration, called the bounce, is the one which extremizeSUlts presented here yield either a bound on the action or an
the Euclidean action, and the lifetime of the false vacuum i€SSentially exact answer for a very wide class of potentials,
with any choice of parameters and without any computer

proportional to the exponential of this extremal action. The i X ) .
bounce also determines the bubble’s form in Minkowski'€@nalysis. There is nevertheless some overlap with previous

space, after its formation and outside the light cone of it2uthors. For the case of a single scalar figldescaling was
center. used(as | do below to exactly study two limiting-case po-

In this work | calculate the bounce and its Euclidean acfentials[6,7] and a general quartic potentig8,9], though

tion for a wide class of models, namely all those for which most of the latter results are given only graphically and for a

the potential is at least approximately a polynomial of degrediMited range of parameters; in the high-temperature limit the
<4 near the false vacuum. The results are essentially exa@€tion was calculated and presented completely in [R6].

for a single fieldg; with more fields the action and therefore For the case of multiple fieldg, the reduction to a single
the false-vacuum lifetime | calculate are strict upper boundsfield was employed, for example, in Ref8,11]. These were
while the one-dimensional bounce given here may only givédarticular realizations of some of the same techniques used
a qualitative picture of the true field configuration. One clasgh the present work, and, as further emphasized in Ref,

of applications for this work is to extensions of the standardllustrate the usefulness of this approach.

model containing fieldgh whose vacuum expectation values ~ Consider any potentid) in any number of scalar fields
(VEVs) in the present epoch are phenomenologically rewith a homogeneous false vacuum{ai:o and withU(0)
quired to vanish, for example if they are electrically charged.=0. In the semiclassical approximati$g], the probability
Thus if a lower minimum ofU develops away from the of bubble formation per unit time and volume B&/V
origin, the origin must not only remain a local minimum, but =m?exp(—S:). The prefactor is dimensionally the fourth
must also be sufficiently long-lived that we would probably power of the typical mass scale in the theory and thus can be
still be inhabiting it today. For this type of application the readily estimated. | will concentrate exclusively on the argu-
lifetime is of primary importance. It is hoped that, within ment of the exponential, which is the Euclidean action for
other contexts, the shape of the bounce will be useful inthe bounce solution. However, care should be taken to ac-
calculating various other properties of the decay, for exampleount for any large numerical prefactors, for instafta]
the degree of supercooling, the thickness of the transitiogroup-theoretical factors related to vacuum degeneracy in
region and the distribution of energies within its volume. Of models with spontaneous symmetry breaking.
The requirement that the false vacuum has probably not
decayed in our past light-cone readb/Y)L%<1, whereL
*Email address: sarid@particle.phys.nd.edu is roughly the present size and age of the visible universe.
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Numerically, L~10° yr~10*® Tev'! so Sz>400
+4 In(m/TeV). The bounce is an @)-symmetric[14] solu- i
tion of the Euclidean equations of motion which approaches ;L

the false-vacuum field configuratiofnzo at Euclidean time  500f
7= *o. To calculate it, one must extremize the action with 5,
respect to all possiblaon-trivial paths through field space 100
which satisfy the boundary conditions. This requires some 50}
careful and somewhat time-intensive numerical techniques 2ok
[5], and the results are difficult to generalize. To simplify 10}

0

this task, consider a single, straight-line paﬁh? v ¢ Where el
2
1

5000 f

v is a constant. For example,can be fixed to point towards . . . L
the true vacuum, or towards any other direction where tun- -1 -0.1 001 005 01 015 02
neling is possible(The action can also later be minimized K

with respect ta, or to small perturbations theregn0].) In

any case, the extremum of the true acti&n must be no

larger than the extremum of the actiSf for é restricted to

lie alongv, by a theorem of Colemafi5]. Any model not ~ Thus the general problem has been reduced to extremizing

obeying an actionSg depending on a single parameterTunneling is
possible for any; > k> —; whenx<0 some other mecha-

St >400+4 In(m/TeV) (1)  nism must eventually stabilize the potential, but will not in-

fluence the following if the true potential is well-

will have an even smalleBg and hence its false vacuum approximated byl at all 0<y<y,, wherey, is the escape

would have decayed by today. Constraining a model basegoint defined below.

on Eq.(1) is not as stringent as contraining it based on the  gyiremizing S amounts[2] to solving the equations of

full Sg, but it is certainly much simpler, can be studied in 1otion

general as | do below, and is often sufficient to rule out large

FIG. 1. The rescaled Euclidean acti® as a function of«,
with asymptotes as dashed lines.

regions of parameter space. For instance, Dasdujishas d?y 3dy a(—0) dy
shown for a particular supersymmetric model that most of W+ Xdx- " v ' dx =0, y(»)=0 (6)
the parameter range excluded by an exhausfvextrem- y x=0

ization is already ruled out by the simp# constraint; see for a particle located at positiop as a function of timex

also Ref.[8]. . A .
Thus we consider a potential function of a single figtd =0 and subject to a potentia-U[y(x)] and a time-
in particular, dependent viscous frictional force. The particle starts at some
y(x=0)=y,>0 and slides down the potentialU mono-
U(p)=M3¢?—Mzd®+\ g (2)  tonically towards the origin, withy, chosen soy(x— o)
=0.

This form encompasses all renormalizable potentials, but is 1€ above equations are numerically integrated through-
also a good approximation for many nonrenormalizable one8Ut the allowed range fok. The resulting action, from Eq.
which can be expanded as a quartic polynomial near the falsé) or equivalently from Sg=—2#72[{x3U[y(x)]dx, is
vacuum. | assumM§>O to ensure at least metastability of shown in Fig. 1. To better than 1% accuracy this action is fit
the origin, andVl3>0 without loss of generality. By Euclid- by the semiempirical expressions

ean spherical symmetry, the action is 16.5 28

A=2r2 " 1=ax (

St + =Sk thick— 46.14 Sg hint+ 7)

© 1
SEZZWZJO p’ 5 20,9 ¢+ U()|dp )

St =S miod 1+ (Se i/ Se.p) M | H 71 8
wherez is some constant factor resulting from field rescaling

(z=1 is canonical normalizatiorand p= VX2 72, Using a
dimensionless coordinata=(M,/z*)p and field y(x)

where the +(—) subscript indicatesc>0(x<0), éE,thick
=454 (see alsd6]), Sg yin=272/[12(1—4x)%] and S¢ ¢
=272/3 ensure the correct action in the thick wall, thin wall

=(M3/M3) ¢(p), | find Se=(z2"M5/M%)S:, where and Fubini asymptotic limits, respectively, as discussed be-
low.
P = 1 (dy\? . The bounce solutions to the equati f moti lot-
a2 ol £ (9 quations of motion are plo
Se=2m fo P (dx +U(y)|dx ) ted in Fig. 2 for variousk. Perhaps surprisingly, they all fit
quite accurately the simple form
Uy)=y*-y*+xy?, k=\MHM3. (5) Y =Ya(X)=Yo/[1+x7e"2XR)] 9
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FIG. 2. The(rescaledlbouncey(x) for 0.05<x<20 and various 5f
« values:(A) =5, (B) —2, (C) —1, (D) —0.5, (E) —0.25, (F)
—0.1,(G) —0.01,(H) 0.01,(1) 0.1,(J) 0.175,(K) 0.2, (L) 0.22,(M)
0.23,(N) 0.235.

wherey,=y(x=0), while y andR are empirically chosen as s
functions ofk to optimize the fit. Figure 3 showg, and the
best-fit parameterg andR as functions ok. Note that when

k is positive but significantly below its maximal value, say
=<0.15, the shape of the bubble and especially its action ard-8}
very different from the thin-wall results. In particular, the
field tunnels out to a valug, far from the true vacuum value 16}
3k 1+ (1—22k)¥?] shown as the long-dashed gray curve

in Fig. 3@. The fit parameters are themselves well- 1.4
approximated by

2

1.2}
Yo+ =Yomint 1.181—4x)?—1.401—4k)3 (10
Yo~ =Yomict 10.4 IN1+[x]) = 1.67 IN1+«?) FIG. 3. The(rescaledl bounce is well-approximated by (X)
(1D =y, /[1+x7e?=R]: the “initial” value y, and the fit parameters
R and vy are plotted in(a), (b), and(c), respectively.
v, =2—[2—7.2c—11.42—0.72 I 1—4x)] 1 yarep peciivel
(12 . : :
Rinick=0.21 provide a better fit over the entire range of
y_=ye—1[2+4.9«|—1.3«|*] (13) X than the exact solution of Refl6] to the linearized
equations of motion. A more subtle limit is— —oo, dis-
R, =Ryn+0.91(1—4x) 2~ 1.41+ 6.4k 12 (14)  cussed in some detail in Ref$,7]. Then the cubic term in
U becomes irrelevant, sde— || 'Sc¢ where S
R_=0.21-1.13 I(1+ 11 x|**9). (19 =27272x¥ L(dye/dX)2+y2—y?]dx andye=|x|Y?y. This

action can only be extremized asymptotically. Consider the
Here Yo min=2+4(1-4k), Yomiex=5-78, ¥¢=2, andRuin  action of the family of functionsys s=V2BI(B*+x?).
:[‘0(1_4"),]_1 are the asymptotic values described be-\yhen g0, the quadratic terms may be neglected, in which
low. Thev2x in the exponential makeg; tend towards zero  qe they, 5 are exact solution&nown as Fubini instantons
at the corr.ect rate ag—o, and the various expressions [17]) with éﬁ-independent actiod 2. Thus when the com-
(10)—(15) give an excellent fit wherevsf(x) is significantly plete actionASE,F is computed foly. ; with B0, its varia-

different from zero]ys:(X) —y(X)|/yo=1% for all x. . . .
Several limiting cases are of interest. The best-known idion also tends to 0, sp ; becomes an increasingly accept-

. ; able semiclassical tunneling solution with an asymptotic
the thin-wall regime[2], when k—1/4 and the two vacua a5 9 . o ymp
approach degeneracy. To leading order indik the equa- extremal aCtIOI’SAEYF—g’JT . Returning to the original prob-
tions of motion may be solved analyticallyyn=Yomn/  l€m, | expect Se— || '(57%) and y—|«| "¢ 5 .0,
{1+exdv2(x—Ruin) 1}. Note that, while in general the solu- which is largely what | find[For exponentially largéx| one

tion is better fit by Eq(9) with finite v, in the thin-wall limit
v becomes entirely immaterial ang;— yin. The opposite
limit, in a sense, is whemx— 0, which | call (as did Ref.
[16]) the thick-wall regime. The valueg/ig=1.5 and

expectsR— — 2~ Yn|«|; but the fitting function of Eq(15)
was chosen to obtain a simple and adequate fit, not to gen-
erate the correct asymptotic behavior in every dase.

The above results allow an easy calculation of the tunnel-
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ing action, and also of the bubble’s field configuration for alluniverse(for a related discussion, see REL9] and refer-
t=0 and|x|=t by using[2] the bounce solution with argu- €nces therein However, such bounds are in general very

ment p= [x2—t2. (Within the lightcone, the field typically model—depen(_jept and, in the latter case, may be subject to
oscillates about the true vacuum: for this post-tunneling evoMmore uncertaintiessee, e.g., Ref20)).

lution, the equations of motion must be solved anew with The results .Of this work provide significant, robu_s,t anq
imaginaryp.) easy to determine bounds on a wide class of models in which
One sample application of these results[18] in the  the acceptable vacuum which we presumably inhabit can be
minimal model of supersymmetric gauge mediation, indestabilized by quantum tunneling. It is true that for such
which the large Higgs VEV hierarchy can generate a newnodels the shape of the bounce, also determined in this
global minimum in the potential of the scalar superpartnersvork, is of only academic interest to us, since we will not
of the tau lepton. The potential in fact involves three fields,survive the tunneling. The analysis of this shape can be use-
two of which are electrically charged and so should not acful, however, in a different class of models: ones in which
quire a VEV. Using the above methods, and restricting to ahe true vacuum is the one we live in, while the phase tran-
straight path connecting the false and true vacua, a signifisition occurred long ago. Then the profile of the bubble de-
cant range of that model's parameters is ruled out on thgermines various properties of the early universe, such as
grounds that tunneling would be too fast. A small span ofhow and where the latent heat was deposited, what was the
parameters remains for which a true multidimensional analyspectrum of the particles produced, and what remnants were
sis would be needed to test whether the lifetime would bgeft pehind. To properly study such a scenario may require

long enough. Note, however, that no vacuum stability studye inclusion of gravity, the time-dependent evolution of the

can establish that a parameter value is definitely allowed;iyerse, and possibly nonzero temperature. The results of
even if it produces a long-lived false vacuum, the evolution,

such studies will quantitatively be quite different from the

of the early universe might put the initial state #fnear the  present work, but hopefully much of the methodology intro-
true vacuum and the model would be unacceptable. Vacuumg,ced here will still be useful.

stability can only rule out parameter values, and the present

analysis does just that. Enlightening discussions with S. Coleman, I. Dasgupta, S.
Somewhat stronger bounds may result not only from tunKusenko, A. Linde and especially R. Rattazzi, who collabo-

neling via other paths through a multidimensional fieldrated in an early stage of this work, are gratefully acknowl-

space, but also from thermal fluctuations in the early, hoedged.
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