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Tools for tunneling from metastable vacua
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~Received 20 April 1998; published 21 September 1998!

If the universe is trapped and cooled in a metastable false vacuum state, that state will eventually decay by
bubble nucleation and expansion. For example, many extensions of the standard model incorporate new scalar

fieldsfW whose potential has a local minimum atfW 50 but a global minimum elsewhere, to which the vacuum
will eventually tunnel. I calculate the lifetime of the false vacuum, and the field profile of the bubble after
tunneling, for any potential that is approximately a polynomial of degree<4 near the false vacuum. Essen-
tially exact results are given for a single field; for multiple fields a strict lower bound is placed on the tunneling
rate.@S0556-2821~98!06620-X#

PACS number~s!: 11.15.Ex, 11.15.Tk, 98.80.Cq
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Consider a quantum field theory of some scalar fieldsfW

~grouped for convenience into a vector! whose potential

U(fW ) has local minima at the originfW 50 and at some othe

fW 5fW 1 . If U(fW 1),U(0) then the vacuum at the origin is
false and metastable one. If the universe is in this fa
vacuum at some early epoch, and the temperature is s
ciently low—as I will assume for the remainder of th
paper—then quantum fluctuations will eventually initiate
phase transition from the supercooled initial state to the
vacuum through bubble nucleation and expansion@1#. A very
elegant and tractable approach to studying this process
introduced by Coleman@2#. The bubble’s most likely field
configuration, called the bounce, is the one which extrem
the Euclidean action, and the lifetime of the false vacuum
proportional to the exponential of this extremal action. T
bounce also determines the bubble’s form in Minkow
space, after its formation and outside the light cone of
center.

In this work I calculate the bounce and its Euclidean
tion for a wide class of models, namely all those for whi
the potential is at least approximately a polynomial of deg
<4 near the false vacuum. The results are essentially e
for a single fieldf; with more fields the action and therefo
the false-vacuum lifetime I calculate are strict upper boun
while the one-dimensional bounce given here may only g
a qualitative picture of the true field configuration. One cla
of applications for this work is to extensions of the stand
model containing fieldsfW whose vacuum expectation value
~VEVs! in the present epoch are phenomenologically
quired to vanish, for example if they are electrically charg
Thus if a lower minimum ofU develops away from the
origin, the origin must not only remain a local minimum, b
must also be sufficiently long-lived that we would probab
still be inhabiting it today. For this type of application th
lifetime is of primary importance. It is hoped that, with
other contexts, the shape of the bounce will be usefu
calculating various other properties of the decay, for exam
the degree of supercooling, the thickness of the transi
region and the distribution of energies within its volume.
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course, for many of these contexts the effects of gravity@3#
and the expansion of the universe, and possibly of finite te
perature@4#, must be included, but the techniques develop
here may readily be extended.

Most previous work on false vacuum decay either
sumes a thin-wall approximation to derive analytical resu
or specializes to a particular model and numerically extre
izes the action. But the former approach is often only ap
cable when the lifetime is extremely long and hence not v
interesting, while the latter can be intricate and tim
consuming, requiring a new computation for each model a
often also ingenious methods of extremization@5#. The re-
sults presented here yield either a bound on the action o
essentially exact answer for a very wide class of potenti
with any choice of parameters and without any compu
reanalysis. There is nevertheless some overlap with prev
authors. For the case of a single scalar fieldf, rescaling was
used~as I do below! to exactly study two limiting-case po
tentials @6,7# and a general quartic potential@8,9#, though
most of the latter results are given only graphically and fo
limited range of parameters; in the high-temperature limit
action was calculated and presented completely in Ref.@10#.
For the case of multiple fieldsfW , the reduction to a single
field was employed, for example, in Refs.@8,11#. These were
particular realizations of some of the same techniques u
in the present work, and, as further emphasized in Ref.@12#,
illustrate the usefulness of this approach.

Consider any potentialU in any number of scalar fieldsfW

with a homogeneous false vacuum atfW 50 and withU(0)
50. In the semiclassical approximation@2#, the probability
of bubble formation per unit time and volume isG/V
.m4exp(2SE). The prefactor is dimensionally the fourt
power of the typical mass scale in the theory and thus can
readily estimated. I will concentrate exclusively on the arg
ment of the exponential, which is the Euclidean action
the bounce solution. However, care should be taken to
count for any large numerical prefactors, for instance@13#
group-theoretical factors related to vacuum degeneracy
models with spontaneous symmetry breaking.

The requirement that the false vacuum has probably
decayed in our past light-cone reads: (G/V)L4!1, whereL
is roughly the present size and age of the visible unive
© 1998 The American Physical Society17-1
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URI SARID PHYSICAL REVIEW D 58 085017
Numerically, L;1010 yr;1045 TeV21 so SE.400
14 ln(m/TeV). The bounce is an O~4!-symmetric@14# solu-
tion of the Euclidean equations of motion which approac
the false-vacuum field configurationfW 50 at Euclidean time
t56`. To calculate it, one must extremize the action w
respect to all possiblenon-trivial paths through field spac
which satisfy the boundary conditions. This requires so
careful and somewhat time-intensive numerical techniq
@5#, and the results are difficult to generalize. To simpl
this task, consider a single, straight-line path:fW 5vW f where

vW is a constant. For example,vW can be fixed to point toward
the true vacuum, or towards any other direction where t
neling is possible.~The action can also later be minimize
with respect tovW , or to small perturbations thereon@10#.! In
any case, the extremum of the true actionSE must be no
larger than the extremum of the actionSE* for fW restricted to

lie alongvW , by a theorem of Coleman@15#. Any model not
obeying

SE* .40014 ln~m/TeV! ~1!

will have an even smallerSE and hence its false vacuum
would have decayed by today. Constraining a model ba
on Eq. ~1! is not as stringent as contraining it based on
full SE , but it is certainly much simpler, can be studied
general as I do below, and is often sufficient to rule out la
regions of parameter space. For instance, Dasgupta@12# has
shown for a particular supersymmetric model that most
the parameter range excluded by an exhaustiveSE extrem-
ization is already ruled out by the simpleSE* constraint; see
also Ref.@8#.

Thus we consider a potential function of a single fieldf:
in particular,

U~f!5M2
2f22M3f31lf4. ~2!

This form encompasses all renormalizable potentials, bu
also a good approximation for many nonrenormalizable o
which can be expanded as a quartic polynomial near the f
vacuum. I assumeM2

2.0 to ensure at least metastability
the origin, andM3.0 without loss of generality. By Euclid
ean spherical symmetry, the action is

SE52p2E
0

`

r3F1

2
z]mf]mf1U~f!Gdr ~3!

wherez is some constant factor resulting from field rescali

(z51 is canonical normalization! andr5AxW21t2. Using a
dimensionless coordinatex5(M2 /z1/2)r and field y(x)
5(M3 /M2

2)f(r), I find SE5(z2M2
2/M3

2)ŜE , where

ŜE52p2E
0

`

x3F1

2 S dy

dxD
2

1Û~y!Gdx ~4!

Û~y![y22y31ky4, k[lM2
2/M3

2 . ~5!
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Thus the general problem has been reduced to extremi
an actionŜE depending on a single parameterk. Tunneling is
possible for any1

4 .k.2`; whenk,0 some other mecha
nism must eventually stabilize the potential, but will not i
fluence the following if the true potential is well
approximated byÛ at all 0,y<y0 , wherey0 is the escape
point defined below.

Extremizing ŜE amounts@2# to solving the equations o
motion

d2y

dx2 1
3

x

dy

dx
52

]~2Û !

]y
,

dy

dxU
x50

50, y~`!50 ~6!

for a particle located at positiony as a function of timex
>0 and subject to a potential2Û@y(x)# and a time-
dependent viscous frictional force. The particle starts at so
y(x50)[y0.0 and slides down the potential2Û mono-
tonically towards the origin, withy0 chosen soy(x→`)
50.

The above equations are numerically integrated throu
out the allowed range fork. The resulting action, from Eq
~4! or equivalently from ŜE522p2*0

`x3Û@y(x)#dx, is
shown in Fig. 1. To better than 1% accuracy this action is
by the semiempirical expressions

ŜE,1.ŜE,thick246.11ŜE,thin1
16.5

~124k!2 1
28

124k
~7!

ŜE,2.ŜE,thick@11~ŜE,thick /ŜE,F!1.1uku1.1#21/1.1 ~8!

where the1~2! subscript indicatesk.0(k,0), ŜE,thick

.45.4 ~see also@6#!, ŜE,thin52p2/@12(124k)3# and ŜE,F
52p2/3 ensure the correct action in the thick wall, thin wa
and Fubini asymptotic limits, respectively, as discussed
low.

The bounce solutions to the equations of motion are p
ted in Fig. 2 for variousk. Perhaps surprisingly, they all fi
quite accurately the simple form

y~x!.yfit~x![y0 /@11xge&~x2R!# ~9!

FIG. 1. The rescaled Euclidean actionŜE as a function ofk,
with asymptotes as dashed lines.
7-2
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TOOLS FOR TUNNELING FROM METASTABLE VACUA PHYSICAL REVIEW D58 085017
wherey05y(x50), whileg andR are empirically chosen a
functions ofk to optimize the fit. Figure 3 showsy0 and the
best-fit parametersg andR as functions ofk. Note that when
k is positive but significantly below its maximal value, sa
&0.15, the shape of the bubble and especially its action
very different from the thin-wall results. In particular, th
field tunnels out to a valuey0 far from the true vacuum value
3
8 k21@11(12 32

9 k)1/2# shown as the long-dashed gray cur
in Fig. 3~a!. The fit parameters are themselves we
approximated by

y0,1.y0,thin11.18~124k!221.40~124k!3 ~10!

y0,2.y0,thick110.4 ln~11uku!21.67 ln~11k2!
~11!

g1.22@227.2k211.4k220.72 ln~124k!#21

~12!

g2.gF21/@214.9uku21.3uku1.3# ~13!

R1.Rthin10.91/~124k!1/221.4116.4k1.2 ~14!

R2.0.2121.13 ln~1111uku1.15!. ~15!

Here y0,thin5214(124k), y0,thick.5.78, gF52, andRthin
5@&(124k)#21 are the asymptotic values described b
low. The&x in the exponential makesyfit tend towards zero
at the correct rate asx→`, and the various expression
~10!–~15! give an excellent fit wherevery(x) is significantly
different from zero:uyfit(x)2y(x)u/y0&1% for all x.

Several limiting cases are of interest. The best-known
the thin-wall regime@2#, when k→1/4 and the two vacua
approach degeneracy. To leading order in 124k the equa-
tions of motion may be solved analytically:ythin5y0,thin/
$11exp@&(x2Rthin)#%. Note that, while in general the solu
tion is better fit by Eq.~9! with finite g, in the thin-wall limit
g becomes entirely immaterial andyfit→ythin . The opposite
limit, in a sense, is whenk→0, which I call ~as did Ref.
@16#! the thick-wall regime. The valuesg thick.1.5 and

FIG. 2. The~rescaled! bouncey(x) for 0.05,x,20 and various
k values: ~A! 25, ~B! 22, ~C! 21, ~D! 20.5, ~E! 20.25, ~F!
20.1, ~G! 20.01, ~H! 0.01,~I! 0.1,~J! 0.175,~K! 0.2,~L! 0.22,~M!
0.23, ~N! 0.235.
08501
re

-

-

is

Rthick.0.21 provide a better fit over the entire range
x than the exact solution of Ref.@16# to the linearized
equations of motion. A more subtle limit isk→2`, dis-
cussed in some detail in Refs.@6,7#. Then the cubic term in
Û becomes irrelevant, soŜE→uku21ŜE,F where ŜE,F

[2p2*0
`x3@ 1

2 (dyF /dx)21yF
22yF

4 #dx andyF[uku1/2y. This
action can only be extremized asymptotically. Consider
action of the family of functionsyF,b5&b/(b21x2).
Whenb→0, the quadratic terms may be neglected, in wh
case theyF,b are exact solutions~known as Fubini instantons
@17#! with a b-independent action23 p2. Thus when the com-
plete actionŜE,F is computed foryF,b with b→0, its varia-
tion also tends to 0, soyF,b becomes an increasingly accep
able semiclassical tunneling solution with an asympto
extremal actionŜE,F5 2

3 p2. Returning to the original prob-

lem, I expect ŜE→uku21( 2
3 p2) and y→uku21/2yF,b→0 ,

which is largely what I find.@For exponentially largeuku one
expectsR→2221/2lnuku; but the fitting function of Eq.~15!
was chosen to obtain a simple and adequate fit, not to g
erate the correct asymptotic behavior in every case.#

The above results allow an easy calculation of the tunn

FIG. 3. The~rescaled! bounce is well-approximated byyfit(x)
5y0 /@11xge&(x2R)#; the ‘‘initial’’ value y0 and the fit parameters
R andg are plotted in~a!, ~b!, and~c!, respectively.
7-3
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URI SARID PHYSICAL REVIEW D 58 085017
ing action, and also of the bubble’s field configuration for
t>0 anduxW u>t by using@2# the bounce solution with argu

ment r5AxW22t2. ~Within the lightcone, the field typically
oscillates about the true vacuum; for this post-tunneling e
lution, the equations of motion must be solved anew w
imaginaryr.!

One sample application of these results is@18# in the
minimal model of supersymmetric gauge mediation,
which the large Higgs VEV hierarchy can generate a n
global minimum in the potential of the scalar superpartn
of the tau lepton. The potential in fact involves three fiel
two of which are electrically charged and so should not
quire a VEV. Using the above methods, and restricting t
straight path connecting the false and true vacua, a sig
cant range of that model’s parameters is ruled out on
grounds that tunneling would be too fast. A small span
parameters remains for which a true multidimensional an
sis would be needed to test whether the lifetime would
long enough. Note, however, that no vacuum stability stu
can establish that a parameter value is definitely allow
even if it produces a long-lived false vacuum, the evolut
of the early universe might put the initial state offW near the
true vacuum and the model would be unacceptable. Vacu
stability can only rule out parameter values, and the pres
analysis does just that.

Somewhat stronger bounds may result not only from t
neling via other paths through a multidimensional fie
space, but also from thermal fluctuations in the early,
l.
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universe~for a related discussion, see Ref.@19# and refer-
ences therein!. However, such bounds are in general ve
model-dependent and, in the latter case, may be subje
more uncertainties~see, e.g., Ref.@20#!.

The results of this work provide significant, robust a
easy to determine bounds on a wide class of models in wh
the acceptable vacuum which we presumably inhabit can
destabilized by quantum tunneling. It is true that for su
models the shape of the bounce, also determined in
work, is of only academic interest to us, since we will n
survive the tunneling. The analysis of this shape can be u
ful, however, in a different class of models: ones in whi
the true vacuum is the one we live in, while the phase tr
sition occurred long ago. Then the profile of the bubble d
termines various properties of the early universe, such
how and where the latent heat was deposited, what was
spectrum of the particles produced, and what remnants w
left behind. To properly study such a scenario may requ
the inclusion of gravity, the time-dependent evolution of t
universe, and possibly nonzero temperature. The result
such studies will quantitatively be quite different from th
present work, but hopefully much of the methodology intr
duced here will still be useful.

Enlightening discussions with S. Coleman, I. Dasgupta
Kusenko, A. Linde and especially R. Rattazzi, who collab
rated in an early stage of this work, are gratefully acknow
edged.
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