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Existence of a confinement phase in quantum electrodynamics

Kei-Ichi Kondo*
Department of Physics, Faculty of Science, Chiba University, Chiba 263, Japan

~Received 17 March 1998; published 16 September 1998!

We show that four-dimensional U~1! gauge theory in the continuum formulation has a confining phase
~exhibiting the area law of the Wilson loop! in the strong coupling region above a critical couplinggc . This
result is obtained by taking into account topological nontrivial sectors in U~1! gauge theory. The derivation is
based on the reformulation of gauge theory as a deformation of topological quantum field theory and a
subsequent dimensional reduction of theD-dimensional topological quantum field theory to the
(D-2!-dimensional nonlinears model. The topological quantum field theory part of four-dimensional U~1!
gauge theory is exactly equivalent to the two-dimensional O~2! nonlinears model. The confining~r. Coulomb!
phase of U~1! gauge theory corresponds to the high-~r. low-! temperature phase of the O~2! nonlinears model
and the critical pointgc is determined by the Berezinskii-Kosterlitz-Thouless phase transition temperature. The
quark~charge! confinement in the strong coupling phase is caused by vortex condensation. Thus the continuum
gauge theory has direct correspondence to the compact formulation of lattice gauge theory.
@S0556-2821~98!05718-X#

PACS number~s!: 12.38.Aw, 12.38.Lg
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I. INTRODUCTION

In this paper we study the phase structure of thecon-
tinuum Abelian U~1! gauge theory by including the effec
due to the compactness of the U~1! group. The reason fo
taking compactness into account is as follows. From
viewpoint of unified field theory, the Abelian group shou
be embedded as a subgroup in the larger non-Abelian ga
group. In view of this, the Abelian group should be compa
Another import aspect of the compactness of the Abe
gauge group stems from the possibility of explaining t
quantization of charge@1#. In noncompact QED there is n
reason for charge quantization.

In this paper we show that four-dimensional U~1! gauge
theory has a confinement phase in the strong coupling re
g.gc due to the compactness~periodicity! leading to a non-
trivial topological configuration. If we neglect the periodi
ity, we have a free U~1! gauge theory which has only on
phase, the Coulomb phase, as expected. This work confi
the claim made by Polyakov@2,3#. However, the claim tha
the Abelian gauge theory has a confinement phase so
strange from the conventional wisdom based on the c
tinuum Abelian gauge theory. We clarify the meaning of th
statement in what follows.

More than twenty years ago, it was pointed out by ma
authors that four-dimensional SU~2! non-Abelian gauge
theory bears many similarities with a two-dimensional O~3!
nonlinear s model ~NLSM!. Both theories posses
asymptotic freedom, a multiinstanton~and antiinstanton! so-
lution, dynamical mass generation and scale invariance~i.e.,
no intrinsic scale parameter!, see Ref.@4#.

These similarities can be seen also in the lattice regu
ized versions of these models, between spin models and
tice gauge theories@5#. Naively the scaling limit of the clas
sical O~3! Heisenberg model is the O~3! NLSM, whereas that
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of SU~2! lattice gauge theory is the SU~2! gauge theory. One
can take the scaling limit of lattice theory at a second or
phase transition point. Hence the scaling limit is taken
approaching the critical pointT→Tc ~or g→gc) as the lat-
tice spacinga goes to zero,a→0, in such a way that the
physical quantities remain finite.

In the two-dimensional classical O~3! Heisenberg model,
the two-point correlation function decays exponentially
any finite temperature. This corresponds to the claim in fo
dimensional lattice SU~2! gauge theory that the confineme
phase survives as long as the coupling constantg is positive,
even if g!1. Both models have a phase transition atT50
(g50), i.e.,Tc50 (gc50) which is believed to be secon
order.

In a previous paper@4#, it has been shown that these sim
larities between two models are not merely an accident;
tually we have proved the exact equivalence between
(D-2!-dimensional O~3! NLSM and theD-dimensional topo-
logical quantum field theory~TQFT! obtained by removing
the perturbative deformation~topological trivial sector! from
D-dimensional SU~2! non-Abelian gauge theory (D>3).
This proof is based on the idea of the dimensional reduc
of Parisi and Sourlas@6#. The case ofD54 is the most
interesting case of physical reality.

What can we say in the Abelian case? For this, recall
fact that the two-dimensional O~2! NLSM or XY model un-
dergoes a phase transition without the appearance of spo
neous magnetization. This absence of an order paramet
two dimensions is consistent with the Coleman-Merm
Wagner ~CMW! theorem @7#. The low-temperature phas
(T,Tc) contains massless spin waves. On the other ha
the high-temperature phase (T.Tc) is completely disor-
dered. For this phase transition, the periodicity of the angu
variablew is quite essential. The model has topological s
gularities, called vortices. These vortices condense at h
temperature and disorder the correlation function@8#. This
phase transition is called the Berezinskii-Kosterlitz-Thoule
~BKT! transition @8#. The vortex part is equivalent to th
© 1998 The American Physical Society13-1



er

e
o
en

cu

flu

l

e
ou

u

ex
s
on

s

w
ra
-

si

te
e
s
hr

a

tu

tio

e

g
tic
an
s

ve

.g,.

he
f a
r-

ion
al
and
ses.
nd

b-
ory

e

KEI-ICHI KONDO PHYSICAL REVIEW D 58 085013
neutral Coulomb gas and sine-Gordon theory, see Refs.@9–
11#. Although the existence of the BKT transition is rath
subtle, it was rigorously proved by Fro¨hlich and Spencer
@12#.

In lattice formulation, it is well known that all of thes
properties in two-dimensional Abelian spin models have c
respondences in the Abelian gauge theory in four dim
sions. The vortices in two dimensions are closely related
magnetic monopoles in four dimensions, see Refs.@13–15#.
The condensation of closed loops of magnetic monopole
rents leads to quark~charge! confinement in the strongly
coupled phase of Abelian gauge theory, since electric
cannot easily penetrate such a medium~which we call the
dual Meissner effect!. It is worth remarking that the dua
superconductor vacuum of quantum chromodynamics~QCD!
has been derived recently without anyad hoc assumption
@16# from QCD in the continuum formulation.

In lattice gauge theory, charge confinement in the sens
area decay of the Wilson loop is derived in the strong c
pling region by using the strong coupling expansion@5,17#.
Quite remarkably, the quark~charge! confinement in lattice
gauge theory occurs irrespective of the details of the ga
group, as long as it is compact~discrete@18,19# or continu-
ous!, even for the Abelian gauge group. However, one
pects that U~1! lattice gauge theory in four dimension
@U(1)4# has a Coulomb phase in the weak coupling regi
which was proved rigorously by Guth@20# and Fröhlich and
Spencer@21#. Therefore U~1! lattice gauge theory undergoe
a phase transition at a finite nonzero couplinggc . In con-
tinuum gauge theory, such a nontrivial phase structure
suggested to occur due to topological nontrivial configu
tions by Polyakov@2,1#. Actually he has shown the confine
ment phase in three-dimensional U~1! gauge theory for arbi-
trary gauge coupling, in agreement with the lattice analy
In four dimensions, he claimed that the weak coupling U~1!
gauge theory does not confine. Accordingly, it is expec
that U~1! gauge theory in four dimensions has two phas
confinement and deconfinement~Coulomb! phases, wherea
only one phase, i.e., the confinement phase, exists in t
dimensions.

In this paper, we show that continuum four-dimension
U~1! gauge theory has two phases, a~strong coupling! con-
finement phase and a~weak coupling! Coulomb phase,
which have direct correspondence with the high-tempera
and low-temperature phases in O~2! NLSM, respectively.
The phase transition point corresponds to the BKT transi
in the XY model. Therefore, the phase transition pointgc is
determined by the BKT transition temperatureTc . This is
one of the main results of this paper. This result is obtain
as a specific case of the previous paper@4#.

Therefore, in the strong coupling phase (g.gc), con-
tinuum U~1! gauge theory confines quarks and the gau
field becomes massive, in agreement with the result of lat
gauge theory. In the weak coupling phase, on the other h
quarks are liberated and the gauge field remains massles
the weak coupling phase (g,gc), the b function of the
renormalization group@22# is identically zero and 0,g
,gc is the line of fixed points, if we neglect the perturbati
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deformations. For a review of lattice gauge theory, see, e
Refs.@23–25#.

The plan of this paper is as follows. In Sec. II, we give t
reformulation of Abelian gauge theory as a deformation o
topological quantum field theory. In Sec. III, using the refo
mulation of Sec. II, we evaluate the Wilson loop expectat
value in four-dimensional Abelian gauge theory. In the fin
section we discuss the renormalization group properties
the extension of our scheme to other dimensional ca
More details about the interplay between the Abelian a
non-Abelian cases are given in a forthcoming paper.

II. ABELIAN GAUGE THEORY AS A DEFORMATION
OF TQFT AND DIMENSIONAL REDUCTION

Now we reformulate quantum electrodynamics~QED! as
a deformation of topological quantum field theory. It is o
tained as a special case of the non-Abelian gauge the
given in a previous paper@4#.

A. Decomposition into perturbative
and topological nontrivial sectors

QED on theD-dimensional space-time is defined by th
action

SQED
tot 5E dDx~LQED@am ,c#1LGF!, ~2.1!

LQED@am ,c#ª2
1

4
f mn f mn1c̄~ igmDm@a#2m!c,

~2.2!

where

f mn~x!ª]man~x!2]nam~x!, ~2.3!

Dm@a#ª]m2 igam . ~2.4!

The gauge transformation of the U~1! gauge fieldam(x)
and the fermion fieldc is defined by

am~x!→am
U~x!ªam~x!1

i

g
U~x!]mU†~x!, U~x!PU~1!,

~2.5!

c~x!→cU~x!ªU~x!c~x!. ~2.6!

The gauge-fixing termLGF is given by

LGFª2 idBGgf@am ,C,C̄,f#, ~2.7!

using the nilpotent Becchi-Rouet-Stora-Tyupin~BRST!
transformationdB ,

dBam~x!5]mC~x!,

dBC~x!50,

dBC̄~x!5 if~x!,
3-2



a

e

n

e

-

EXISTENCE OF A CONFINEMENT PHASE IN QUANTUM . . . PHYSICAL REVIEW D58 085013
dBf~x!50,

dBc~x!5 igC~x!c~x!,

dBc̄~x!52 igC~x!c̄~x!, ~2.8!

wheref is the Lagrange multiplier field.
The partition function of QED with the source term

SJ@am ,C,C̄,f,c,c̄#

ªE dDx~Jmam1JcC1Jc̄C̄1Jff1h̄c1hc̄!

~2.9!

is given by

ZQED@J#ªE @dam#@dC#@dC̄#@df#@dc#@dc̄#

3exp$ iSQED
tot 1 iSJ%. ~2.10!

To reformulate QED as a deformation of topologic
quantum field theory according to Ref.@4#, we first regard
the U~1! gauge fieldam and the fermion fieldc as the gauge
transformation of the U~1! gauge fieldsvm andC:

am~x!ªvm~x!1vm~x!, vm~x!ª
i

g
U~x!]mU†~x!.

~2.11!

c~x!ªU~x!C~x!. ~2.12!

Here1 vm andC are identified with the field variables in th
perturbative~topological trivial! sector (Q50), whereasvm
belongs to the topological nontrivial sector (QÞ0).

Furthermore we introduce the new ghost fieldg, anti-
ghost field ḡ, and the Lagrange multiplier fieldb in the
perturbative sector. They are subject to a new BRST tra
formation d̃B :

d̃Bvm~x!5]mg~x!,

d̃Bg~x!50,

d̃Bḡ~x!5 ib~x!,

d̃Bb~x!50,

d̃BC~x!5 igg~x!C~x!,

d̃BC̄~x!52 igg~x!C̄~x!. ~2.13!

1The decomposition ofam , am5vm1vm , corresponds to the su
perposition of two independent configuration,w5wSW1wV ~spin
waves and vortex parts! in the XY model.
08501
l

s-

Then the partition function of QED is rewritten as

ZQED@J#5E @dU#@dC#@dC̄#@df#

3E @dvm#@dg#@dḡ #@db#@dC#@dC̄#

3expH i E dDx~2 idBGgf@vm1vm ,C,C̄,f#!

1 i E dDx~LQED@v,C#2 i d̃BG̃gf@vm ,g,ḡ,b#!

1 iSJ@vm1vm ,C,C̄,f,UC,C̄U†#J , ~2.14!

where G̃gf is a gauge-fixing functional for the perturbativ
~topological trivial! sector.

B. Gauge fixing

The Lorentz gauge is given by

F@a#ª]mam50. ~2.15!

The most familiar choice ofGgf

Ggf5C̄S ]mam1
a

2
f D ~2.16!

yields the familiar form of the gauge-fixing term

LGFª2 idBGgf@am ,C,C̄,f#5f]mam1 iC̄]m]mC1
a

2
f2.

~2.17!

In this paper we propose to use the choice

Ggf
U~1!52 d̄BS 1

2
am

2 1 iCC̄D , ~2.18!

whered̄B is the anti-BRST transformation@4#,

d̄Bam~x!5]mC̄~x!,

d̄BC~x!5 i f̄~x!,

d̄BC̄~x!50,

d̄Bf̄~x!50,

d̄Bc~x!5C̄~x!c~x!,

f~x!1f̄~x!50, ~2.19!

wheref̄ is defined in the last equation.
Apart from a total derivative term, this choice yields
3-3
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LGF5 idBd̄BS 1

2
am

2 1 iCC̄D52 idB@C̄~]mam2f!#.

~2.20!

Therefore, the choice~2.18! corresponds in Eq.~2.17! to the
choice of the gauge-fixing parameter

a522, ~2.21!

which has appeared also in the non-Abelian case@4#. The
above choice forGgf

U(1) yields the decomposition

LGF52 idBGgf
U~1!@vm1vm ,C,C̄,f# ~2.22!

5 idBd̄BS 1

2
~vm1vm!21 iCC̄D

LTQFT5LTQFT1 ivmdBd̄Bvm , ~2.23!

where we have defined

LTQFTª idBd̄BS 1

2
vm

2 1 iCC̄D . ~2.24!

Here we have used that the action ofdB is trivial in the
perturbative sector,

dBvm505 d̄Bvm , ~2.25!

while

dBvm5]mC, d̄Bvm5]mC̄. ~2.26!

C. Deformation of topological quantum field theory

Finally, the partition function of QED is cast into the form

ZQED@J#ªE @dU#@dC#@dC̄#@df#

3expH iSTQFT@vm ,C,C̄,f#

1 i E dDx@Jmvm1JcC1Jc̄C̄1Jff#

1 iW@U;Jm,h̄,h#J , ~2.27!

whereW@U;Jm,h̄,h# is the generating functional of QED i
the perturbative sector~PQED! given by

eiW[U;Jm,h̄,h]
ªE @dvm#@dg#@dḡ #@db#@dC#@dC̄#

3expH iSPQED@v,C,g,ḡ,b#1 i E dDx@vmJm

1h̄UC1hC̄U†#J , ~2.28!
08501
SPQED@v,C,g,ḡ,b#ªE dDx†LQED@v,C#

2 i d̃BG̃gf~vm ,g,ḡ,b!‡, ~2.29!

Jm ªJm1 idBd̄Bvm . ~2.30!

The correlation functions of the original~fundamental! field
am ,c,c̄ are obtained by differentiatingZQED@J# with respect
to the corresponding sourceJm ,h̄,h.

All the field configurations are classified according to t
integer-valued topological chargeQ which is specified later.
The above reformulation of gauge theory is the decomp
tion of the original theory into the topological trivial secto
with Q50 and topological nontrivial sector withQÞ0. This
corresponds to the decomposition of theXY model into a
spin wave part (Q50) and a vortex part (QÞ0), whereQ is
given by the winding number of the vortex solution. How
ever, theXY model is not a gauge theory and does not ha
any local gauge invariance.

The integration over the fields (U,C,C̄,f) in TQFT
should be treated nonperturbatively by taking into acco
the topological nontrivial configurations. The deformatio
W@U;Jm,h̄,h# from the TQFT should be calculated accor
ing to the ordinary perturbation theory in the coupling co
stantg. The perturbative expansion around the TQFT me
the integration over the new fields (vm ,g,ḡ,b) based on the
perturbative expansion in powers of the coupling constang.

D. Dimensional reduction to O„2… NLSM

Following the argument given in Ref.@4# based on the
Parisi-Sourlas dimensional reduction, it turns out that
D-dimensional TQFT@as the topological nontrivial sector o
D-dimensional U~1! Abelian gauge theory# with an action

STQFT@vm ,C,C̄,f#5E dDxidBd̄BS 1

2
vm~x!vm~x!

1 iC~x!C̄~x! D ~2.31!

is equivalent to the (D-2!-dimensional O~2! NLSM with the
action

SO~2!NLSM@U#ª2pE dD22z
1

2
vm~z!vm~z!,

S vm~z!ª
i

g
U~z!]mU†~z! D , ~2.32!

5E dD22z
p

g2]mU~z!]mU†~z!.

~2.33!
3-4
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Dimensional reduction is due to a fact that the action~2.31!
has a hidden supersymmetry and can be rewritten in
OSp(D/2) symmetric form in the superspace formulatio
see Ref.@4#.

III. QUARK CONFINEMENT IN ABELIAN GAUGE
THEORY

Now we calculate the Wilson loop expectation in U~1!
gauge theory based on the reformulation given in the pr
ous section. In what follows we move to the Euclidean f
mulation.

A. Dimensional reduction of the Wilson loop

We define the Wilson loop operator for the closed loopC
by

WC@a#5expS iq R
C
am~x!dxmD , ~3.1!

whereq is a test charge. In Abelian gauge theory, the Wils
loop factorizes,

WC@a#5expS iq R
C
vm~x!dxmD expS iq R

C
vm~x!dxmD

5:WC@v#WC@v#. ~3.2!

For theQ50 sector, we choose the gauge-fixing functi

G̃gf5ḡS ]mvm1
j

2
b D , ~3.3!

with a gauge-fixing parameterj. For U~1! gauge theory with
the action~omitting matter fields!

SpU~1!@v,g,ḡ,b#ª
1

4g2 ~]mvn2]mvn!22 i d̃BG̃gf ,

~3.4!

the perturbative part is given by

eiW[v,J,0,0]5E @dvm#@dg#@dḡ #@db#

3expH 2SpU~1!@v,g,ḡ,b#1 i E dDxvmJmJ .

~3.5!

Integrating out the fieldsg,ḡ,b yields

eiW[v,J,0,0]5E @dvm#expH 2S@v#2E dDxivm~x!

3@Jm~x!1 idBd̄Bvm~x!#J , ~3.6!

where
08501
e
,

i-
-

n

S@v#ªE dDxF 1

4g2 ~]mvn2]mvn!21
1

2j
~]mvm!2G .

~3.7!

For the calculation of the Wilson loop expectation,Jm is
taken to be the current along the closed loopC such that

E dDxvm~x!Jm~x!5q R vm~x!dxm. ~3.8!

It is easy to see that

eiW[v,J,0,0]5^WC@v#e~vm ,dBd̄Bvm!&pU~1!

3E @dvm#e2S[v] 1~vm ,dBd̄Bvm!, ~3.9!

where

~vm ,dBd̄Bvm!ªE dDxvm~x!dBd̄Bvm~x!. ~3.10!

The Wilson loop expectation is rewritten as

^WC@a#&U~1!5
^WC@v#eiW[v,J,0,0]&TQFT

^eiW[v,0,0,0]&TQFT

, ~3.11!

where

eiW[v,0,0,0]5^e~vm ,dBd̄Bvm!&pU~1!E @dvm#e2S[v] 1~vm ,dBd̄Bvm!.

~3.12!

Expanding the exponential

e~vm ,dBd̄Bvm!5e*dDxdBd̄B~vmvm!~x!5e*dDx$QB ,d̄B~vmvm!~x!%

~3.13!

into a power series and using a fact that the vacuum of TQ
obeys

QBu0&TQFT50, ~3.14!

we find that this term does not contribute to the expectat
value~3.11!. Therefore, the Wilson loop expectation is com
pletely separated into the topological part (QÞ0) and the
perturbative part (Q50),

^WC@a#&U~1!5^WC@v#^WC@v#&pU~1!&TQFT

5^WC@v#&TQFT̂ WC@v#&pU~1! . ~3.15!

This corresponds to the result Eq.~10! of Polyakov@2#. This
property does not hold in the non-Abelian case, which ma
the systematic calculation rather difficult.

In order to use the dimensional reduction for calculati
the topological part, we choose the loopC so thatC is con-
tained in the (D22)-dimensional space. ForD54, the loop
C must be planar. Then the dimensional reduction of
topological part leads to the equivalence of the Wilson lo
expectation value between theD-dimensional U~1! TQFT
and (D-2!-dimensional O~2! NLSM,
3-5
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^WC@v~z!#&TQFTD
5^WC@v~z!#&O~2!NLSMD22

, zPRD22.
~3.16!

if the Wilson loop has its support on the (D-2!-dimensional
space on which the NLSM is defined. Hence, the calcula
of the Wilson loop in the four-dimensional U~1! gauge
theory is reduced to those in the two-dimensional O~2!
NLSM and the four-dimensional perturbative U~1! gauge
theory

^WC@a#&U~1!D
5^WC@v#&O~2!NLSMD22

^WC@v#&pU~1!D
.

~3.17!

For large rectangular loop with sidesR,T, the static po-
tential is obtained by

V~R!5 lim
T→`

21

T
ln^WC@a#&. ~3.18!

In four dimensions (D54), it is well known @23# that for
large Wilson loop̂ WC@v#&pU(1)4

gives the Coulomb poten
tial,

V~R!52
g2

4p

1

R
1const. ~3.19!

For a derivation, see, e.g., the Appendix of Ref.@26#.
In the following, we show that̂WC@v#&O(2)NLSM2

exhib-

its area law for strong couplingg.gc with a finite and non-
zero value of a critical pointgc . This confinement-
deconfinement transition corresponds exactly to the B
transition.

B. O„2… NLSM and Wilson loop

Defining the angle variablew(z) for U(z)PU(1),

U~z!5eiw~z!, ~3.20!

we obtain

vm~z!5
i

g
U~z!]mU†~z!5

1

g
]mw~z!. ~3.21!

Then the action of O~2! NLSM reads

SO~2!@U#5E dD22zpvm~z!vm~z!

5
b

2E dD22z]mw~z!]mw~z!, b:5
2p

g2 .

~3.22!

The partition function is defined by

ZO~2!@U#5E @dU#exp~2SO~2!@U# !, @dU#5)
x

dw~x!

2p
,

~3.23!
08501
n

T

using the Haar measuredU on U~1!. For the notation of the
two-dimensional vector,

S~x!5@cosw~x!,sin w~x!#, ~3.24!

the action reads

SO~2!@U#5
b

2E dD22z]mS~x!•]mS~x!. ~3.25!

Hence the O~2! NLSM is regarded as a continuum version
classical planar spin model. In the following, we identifyb
with the inverse temperature 1/T. Hence the high-~low-!
temperature of the spin model corresponds to strong~weak!
coupling of the gauge theory.

It should be remarked that O~2! NLSM with the action
~3.22! is not a free scalar field theory, since this theory
periodic in the angle variablew ~modulo 2p). Of course, if
we neglect this periodicity and treat the variablew as a non-
compact variablew(x)P(2`,1`), we have a trivial
theory, i.e., free massless scalar field theory. In this case
Contour integral is zero,

R
C
vm~z!dzm5

1

g R
C
]mw~z!dzm50. ~3.26!

Hence, the Wilson loopWc@v# is trivial, Wc@v#[1, and
hence the total static quark potential comes from the
Wilson loop expectationWc@v# of perturbative U~1! gauge
theory and is equal to the Coulomb potential. Thus we obt
the trivial result that the four-dimensional noncompact Ab
lian gauge theory fails to confine quarks~charges!. However,
the periodicity ~or compactness! leads to topological non-
trivial solutions which are seeds for confinement, as sho
below.

In the following, we restrict our consideration to thed
ªD2252 case. The extremum of the classical acti
~3.22! is obtained as a solution of the classical field equat

¹2w50 ~mod 2p!. ~3.27!

The harmonic functionw is constant or has singularities. W
require w be constant at infinity and assume only isolat
singularities around whichw varies by62p as one turns
anticlockwise. Then the solution2 is written as

w~z!5(
i

Qiarctan
~z2zi !2

~z2zi !1
5(

i
Qi Im ln~z2zi !,

zªx11 ix2 . ~3.28!

This denotes a sum of vortex excitations located at po
xiPR2 and of vorticity Qi ~integers!. The solution has the
alternative form

2The two-dimensional Laplace equation is equivalent to
Cauchy-Riemann equation. Hence the solution is given by the
lomorphic function. If one avoids branch cuts, it is a meromorp
function.
3-6
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w~z!5 ln)
i

~z2zi
1!/uz2zi

1u
~z2zi

2!/uz2zi
2u

5(
i

F ln
~z2zi

1!

uz2zi
1u

2 ln
~z2zi

2!

uz2zi
2u G . ~3.29!

This means that vortices of intensity61 are centered at th
points zi

6 and that intensities of higher magnitude are o
tained when severalzi

1(or zi
2) coincide. Note that the angl

w is a multivalued function, buteiw is well defined every-
where, except at the singular points.

The contribution of the solution~3.28! to vm is

vm~z!5
1

g
]mw~z!5

1

g(i
Qiemn

~z2zi !n

~z2zi !
2

5
1

g(i
Qiemn]nlnuz2zi u. ~3.30!

Therefore, the integral of the one-formv:5vmdxm along the
closed loopC is

R
C
vmdxm5 R

C
v5

1

g(i
E

0

2p

dQ i5(
i

2p

g
Qi ,

~3.31!

where the sum runs over all the vortices inside the clo
loop C andQ i is an angle aroundz5zi ,

Q i~z!ªarctan
~z2zi !2

~z2zi !1
. ~3.32!

Note thatv is a closed form,dv50, but it is not an exact
form, that is, a function~zero form! does not exist such tha
v5d f with f being defined everywhere inR22$0%. Domain
of f (z)5Q(z) is restricted toR22R1 , in other words, for
one unit vortex at the origin

vm5emn

xn

x222pu~x1!d~x2!dm2 . ~3.33!

This is analogous to the case of the magnetic monopol
three dimensions where the magnetic field is given by

Hm5
1

2

xm

uxu3
22pd3md~x1!d~x2!u~x3!. ~3.34!

The singular line of Eq.~3.33! in two dimensions does no
contribute to the action, nor does the Dirac string~on the
positiveZ axis! in three dimensions.

In order to calculate the classical action for the singu
configuration~3.28!, we consider a disk of radiusR0 , Di
ª$uz2zi u,R0 ; zPR2% ~centered on each singular pointzi)
which is small with respect to the distances between vortic
Let R be the remaining domain of integration outside t
vortices. The classical action consists of two parts, the s
energy~action! part of the vortices,
08501
-

d

in

r

s.

lf-

S~1!5
b

2(
i
E

uz2zi u,R0

d2z@¹w~z!#2, ~3.35!

and the remaining part

S~2!
ª

b

2ERd2z@¹w~z!#2

522pb(
iÞ j

QiQj lnuzi2zj u1(
i

Qi
2pb ln 1/R0 .

~3.36!

Summing over all vortex sectors leads to the partition fu
tion of the form

ZC5 (
n50

`
zn

~n! !2E )
j 51

n

d2zj

3expF ~2p!2b(
i , j

QiQjD~zi ,zj !G ,
z:5e2S~1!

, ~3.37!

wherez comes from the self-energy~action! part of vortices
and D expresses the two-dimensional inverse Laplac
given by

D~x,0!5
1

2p
ln

R

uxu
. ~3.38!

Therefore the partition function agrees with the tw
dimensional neutral Coulomb gas~i.e., a gas of classica
charged particles with a Coulomb interaction and globa
neutral,( iQi50).

The transition temperature is estimated as follows. T
contribution to the free energy from one vortex pair at d
tancer 12 in a box of linear dimensionL is

F; lnE
uz12z2u.R0

d2z1d2z2exp~22pb lnuz12z2u/R0!

; ln@L4exp~22pb ln L/R0!#

;~422pb!ln L. ~3.39!

The vortices always arise in pairs of opposite Coulom
charges to yield finite energy configurations and each p
forms an elementary dipole~Coulomb dipole gas!. If 2pb
.4 ~the low-temperature or weak coupling phase!, the con-
tribution from the vortex pair is negligible in the limitL
→`. In this phase, charges are bound and one has a die
tric medium. Asb→`, few vortices are present and the
correlation decreases rapidly with the relative distance. T
describes a dielectric medium of neutral bound states. In
regime, the correlation̂U(z)U(z8)& decays polynomially,

^U~z!U~z8!&5uz2z8u2~1/4pb!. ~3.40!
3-7
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KEI-ICHI KONDO PHYSICAL REVIEW D 58 085013
On the other hand, if 2pb,4 ~the high-temperature o
strong coupling phase!, an instability occurs and the creatio
of well-separated vortices is favored and disorder increa
In the high-temperature phase, one has a plasma of
charges. The vortex expectation decays exponentially yi
ing exponential decay of̂U(z)U(z8)&,

^U~z!U~z8!&5uz2z8u2~1/4pb!e2m~b!uz2z8u. ~3.41!

Hence a naive estimate of the critical temperature is
tained:

bc5
2

p
, gc

25p2. ~3.42!

This is the phase transition without the appearance of a s
taneous magnetization. The phase transition can be in
preted as a dipole condensation. The critical point separ
the dissociated dipole phase from the condensed phase

In order to calculate the Wilson loop, we use the equi
lence of the Coulomb gas to the sine-Gordon model~see
Appendix A for a proof!. The sine-Gordon model is define
by the action and the partition function

SsG~f!ªaE ddxF1

2
„]mf~x!…22h cosf~x!G , ~3.43!

ZsG~h!ªE @df#exp@2SsG~f!#. ~3.44!

This is equivalent to the partition function of a globally ne
tral gas of particles of chargesQi561 through a Coulomb
potential ind dimensions:

ZC,61~h!5 (
n50

`
z2n

~n! !2 )
i 51

n E ddxid
dyj

3expH 2
1

TF(
i , j

@V~ uxi2xj u!1V~ uyi2yj u!#

2(
i , j

V~ uxi2yj u!G J ~3.45!

at temperatureT with the fugacityz,

a5T5
1

4p2b
5

g2

8p3 , ah52z52z. ~3.46!

Note thatab51/(4p2). It is known that the transition poin
of the sine-Gordon model is

ac5
1

8p
, ~3.47!

which is in agreement with Eq.~3.42!. The relation ofw and
f is given by

f~x,t !5E
x

`

dyẇ~y,t ! ~3.48!
08501
s.
ee
d-

-

n-
r-
es

-

or

]mw5emn]nf. ~3.49!

This implies that the fieldsw and f are dual variables.
Therefore, O~2! NLSM is equivalent to the Coulomb gas an
moreover it is equivalent to the sine-Gordon model when
charge of the Coulomb gas@or vorticity of O~2! NLSM# is
restricted toQi561. Taking into accountQi.1 will lead to
the cos(Qf) term. The above consideration can be tran
ferred into the lattice formulation, see Ref.@23#.

C. Wilson loop and area decay

The Wilson loop expectation is calculated using t
equivalent sine-Gordon model. The generating functional
the charge densityr

r~x!:5(
i

Qid
~2!~x2xi ! ~3.50!

is obtained as

ZsG@h#

ZsG~0!
5^ei *d2xr~x!h~x!&sG5 Kei(

i
Qih~xi !L sG, ~3.51!

ZsG@h#5E @df#expH 2aE d2xF1

2
@]mf~x!#2

2h cos@f~x!1h~x!#G J . ~3.52!

In two dimensions, we can introduce the dual vector fie

Hm5emnvn . ~3.53!

Then the dual field is connected with the charge densityr as
follows:

R
C
vm~z!dzm5E

S
emn]mvn~z!d2z5E ]mHm~z!d2z

5
2p

g E r~z!d2z. ~3.54!

Note that the rotation ofvm or the divergence ofHm ,

emn]mvn5]mHm5
2p

g
r, ~3.55!

measures the density of the topological charge. If we iden
the right-hand side with the magnetic charge, this impl
Dirac quantization condition

gm5
2p

g
Q ~Q: integer!. ~3.56!

The Wilson loop is calculated from theh given by

h~x!5
q

g R
C
dzmemn

~z2x!n

~z2x!2 , ~3.57!
3-8
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since

q R
C
vmdzm5E ddxr~x!h~x!5(

i
Qih~xi !. ~3.58!

Note thath(x)50 if the argumentx of h(x) is outside the
loop, whileh(x)52pq/g if x is inside the loop.

In the high-temperature phase, the photon is mass
whereas the photon is massless in the low-temperature ph
This is because in the high-temperature phase, the ran
distribution of free vortices with long-range interactio
spoils the correlation. Therefore, in the high-temperat
phase, the Wilson loop expectation is estimated by the st
est descent as

^WC@v#&sG>expH 2aE d2xF1

2
$]m@fcl~x!2h~x!#%2

2h cosfcl~x!G J , ~3.59!

wherefcl is determined by the Debye equation

¹2@fcl~x!2h~x!#5h sin fcl~x!. ~3.60!

Corrections to this field due to fluctuation are exponentia
small in the high-temperature phase. The loopC is placed in
two-dimensional plane. We can perform the calculation
the same way as done by Polyakov@3#.

Instead of repeating a similar calculation to Ref.@3#, we
use the Villain form@27#

eJ cosf→eJ (
mPZ

e2~J/2!~f22pm!2
~3.61!

to estimate the Wilson loop expectation. Then the partit
function is replaced with~apart from field-independent con
stants!

ZsG@h#5E @df#e2a*ddx$1/2[]mf~x!] 2% )
xPRd

eah cos[f~x!1h~x!]

5E @df#e2a*ddx$~1/2![ ]mf~x!] 2%

3 )
xPRd

(
m~x!PZ

e2~ah/2![f~x!1h~x!22pm~x!] 2

5 (
$m~x!PZ;xPRd%

E @df#e2a*ddx~1/2![ 2f~x!]2f~x!]

3e2~ah/2!*ddx[f~x!1h~x!22pm~x!] 2
08501
e,
se.
m

e
p-

y

n

n

5 (
$m~x!PZ;xPRd%

e2~ah/2!*ddx[h~x!22pm~x!] 2E @df#

3e2*ddx$~a/2!f~x!~2]21h!f~x!1ahf~x![h~x!22pm~x!] %

5 (
$m~x!PZ;xPRd%

expF2
ah

2 E ddx$@h~x!22pm~x!#2

2h@h~x!22pm~x!#~2]21h!21

3@h~x!22pm~x!#%G . ~3.62!

Whenh50, the denominator is obtained,

ZsG@0#5 (
$m~x!PZ;xPRd%

expF2~2p!2
ah

2 E ddx

3$m~x!22hm~x!~2]21h!21m~x!%G .
~3.63!

Note that the fieldh(x) has its support onS(]S5C) and has
the value 2p(q/g). If q is an integral multiple ofg ~the
elementary charge!, we havehP2pZ. This is absorbed by
the shift of m. Therefore, in this case, charge confineme
does not occur. This is interpreted as the charge screen

A naive estimate of the ratioZsG@h#/ZsG@0# is given
when h¹2pZ in Appendix B. Finally we obtain the are
decay of the Wilson loop expectation

^WC@v#&sG>e2sA~C!, ~3.64!

s5S 2p
q

gD 2 ah

2
5S 2p

q

gD 2

z;e2S~1!
.

~3.65!

This implies the linear static potential

V~R!5sR ~3.66!

between two fixed electric charges and an electric string w
uniform energy densitys which is called the string tension
Therefore condensation of topological nontrivial configu
tion leads to quark confinement. From Eqs.~3.17!, ~3.19!,
and ~3.66!, the total static potential is given by

V~R!5sR2
g2

4p

1

R
1const. ~3.67!

Even the continuum Abelian U~1! gauge theory has a con
finement phase, exhibiting a rich phase structure simila
lattice compact U~1! gauge theory.

IV. DISCUSSION

In four-dimensional pure U~1! gauge theory, we have
proved the existence of a strong coupling phase where
fractional electric charge is confined by the linear static p
3-9



is

ta

a

,
.

d
g
m
e

al

-
n

u-
ed

nd
gh
sin-
gu-
-
ze
y-

e

uta-
tion

the
o-
ive

e
f
e

be
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tential due to vortex condensation. In the following we d
cuss a few points of perspective.

A. Renormalization group and non-Gaussian fixed point

The O~N! NLSM has the renormalization group be
function

b~g!ªm
dg~m!

dm
52

N22

8p2 g31O~g5!. ~4.1!

At low temperature (0,T,Tc), therefore, the O~2! NLSM
has vanishing beta functionb[0 (T!1) and 0,T,Tc is
the line of fixed points. This is consistent with the fact that
low temperature, the inverse correlation length or massm
5j21 of the O~2! NLSM or XY model vanishes, i.e.
m(T)[0 for all T,Tc . The theory is conformal invariant
For high temperature (T.Tc), the renormalization group
study of theXY model shows that the mass behaves as

m~T!;expS 2
C

AT2Tc
D , T↓Tc , ~4.2!

with a constantC.
These results established in the two-dimensional mo

would be translated into the four-dimensional Abelian gau
theory, provided that the two theories have the sa
renormalization-groupb function. We assume that in thes
two theories the massm(g) is generated by the dimension
transmutation in such a way that the beta functionb(g) is
related to the massm(g) through the well-known relation

m~g!5m f ~g!5m expS 2Eg dg

b~g! D , ~4.3!

whereb(g) is defined by

b~g!ªm
dg~m!

dm
52

f ~g!

f 8~g!
. ~4.4!

In the weak coupling phase (g,gc), the gauge field is mass
less,m(g)[0, and the beta function of the renormalizatio
group @22# is identically zero,

b~g![0 ~0,g,gc!. ~4.5!

FIG. 1. Renormalization group beta function of U~1! gauge
theory.
08501
-

t

el
e
e

Therefore, 0,g,gc is the line of fixed points. In strong
coupling phase (g.gc), the beta function behaves as~see
Fig. 1!

b~g!52
1

Bgc
~g22gc

2!3/2,0, ~g.gc ,g>gc!, ~4.6!

which is compatible with the BKT mass~4.2!,

m~g!5A expS 2
B

Ag22gc
2D , g↓gc , ~4.7!

with constantsA,B.0. Note thatb(g) is independent ofA.
It is worth remarking that a recent lattice computer sim

lation @28,29# indicates the existence of a non-Gaussian fix
point in four-dimensional pure compact U~1! gauge theory.
This should be compared with the old results@30,31#. In the
simulation@28,29# the continuous phase transition was fou
and analyzed according to the power law scaling, althou
our investigation suggests a scaling behavior of essential
gularity type and the data do not exclude the essential sin
larity. It will be rather difficult to specify the essential sin
gularity in computer simulations, since the lattice si
available is not yet large enough to confirm this issue. An
way, it will be interesting to find any relationship to fill th
gap between two approaches.

If the mass scale is generated by dimensional transm
tion, the above results are quite analogous to the situa
found for the dynamical fermion mass and theb function in
quenched massless QED@32,33#. The relationship of these
results with quenched QED is more suggestive using
method of bosonization or fermionization. The tw
dimensional sine-Gordon model is equivalent to the mass
Thirring model@34,35# with an action

S@c,c̄#5E d2xF c̄~ igm]m1m!c2
G

2
~ c̄gmc!2G .

~4.8!

The correspondence between two theories is given by

11
G

p
54pa, ~4.9!

c̄gmc52
1

2p
emn]nf, ~4.10!

mc̄c→2ah cosf. ~4.11!

Our result shows that the transition pointac51/(8p) corre-
sponds toGc52p/2. By making use of this equivalence, th
Wilson loop ~3.64! in the topological nontrivial sector o
four-dimensional U~1! gauge theory can be calculated in th
two-dimensional massive Thirring model. The details will
given elsewhere.
3-10
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B. Lower- and higher-dimensional cases

Using the equivalence between the TQFT part of U(1D
gauge theory and O(2)D22 NLSM, we can study other di-
mensional cases. ForD53, the equivalent O~2! NLSM is
one dimensional, O(2)1 . This is not a field theory model, bu
a quantum-mechanical model of the plane rotor. There is
phase transition in this model. This implies that thre
dimensional U~1! gauge theory only has a confineme
phase. This can be understood as the tunneling effect am
classical vacua in the sense that the double-well anharm
oscillator is related to the one-dimensional Ising model
will be interesting to see the agreement~or disagreement! of
the confinement mechanism between our approach and
Polyakov approach@2,3#. For D55, the O~2! NLSM is three
dimensional, O(2)3 . The three-dimensional O~2! NLSM has
two phases on the lattice@36#. The phase transition is firs
order. This result is consistent with the mean field study
five-dimensional lattice U~1! gauge theory@24#. This theory
has a finite nonzero critical couplinggc . In the strong cou-
pling phase, quark confinement is expected to occur. H
ever, the phase transition is first order. Therefore, on
lattice, it is impossible to take the continuum limit at th
point. In view of this, the construction of continuum U~1!
gauge theory from lattice regularized theory will be proble
atic in five and higher dimensions, unless the action is mo
fied.

Note added in proof. A more recent result of simulation
of compact U~1! lattice gauge theory is found in@37# where
the phase transition is claimed to be first order in contr
with the results of Refs.@28,29#. In view of these results, i
seems rather difficult to decide the order in the foreseea
future numerically beyond any doubt.
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APPENDIX A: EQUIVALENCE BETWEEN COULOMB
GAS AND SINE-GORDON MODEL

The partition function can be rewritten as

ZsG~h!5E @df#e2a*ddx~1/2![ ]mf~x!] 2

(
n50

`
~ah!n

n!

3F E ddx cosf~x!Gn

5E @df#e2a*ddx~1/2![ ]mf~x!] 2

(
n50

`
~ah!2n

~2n!!

1

22n

3F E ddx~eif~x!1e2 if~x!!G2n
08501
o
-

ng
ic
t

he

f

-
e

-
i-

st

le

5E @df#e2a*ddx~1/2![ ]mf~x!] 2

(
n50

`
~ah!2n

~2n!!

1

22nS 2n

n D
3)

i 51

n E ddxid
dyie

if~xi !2 if~yi !

5E @df#e2a*ddx~1/2![ ]mf~x!] 2

(
n50

`
~ah/2!2n

~n! !2

3)
i 51

n E ddxid
dyie

if~xi !2 if~yi !. ~A1!

Note that

†@e*ddxJ~x!f~x!#‡

ªE @df#expF2
a

2E ddx@]mf~x!#21E ddxJ~x!f~x!G
5expF 1

2aE ddxE ddyJ~x!D~x,y!J~y!G , ~A2!

whereD(x,y) is the massless scalar field propagator

D~x,y!ªE ddp

~2p!d

eip~x2y!

p2
. ~A3!

In particular, forJ(x)5 i ( jqjd(x2xj ),

FF)
j 51

n

eiq jf~xj !GG
55 expF2

1

2a(
j ,k

qjqkD~xj ,xk!G for (
j

qj50,

0 for (
j

qjÞ0,

~A4!

where the latter case is a result of invariance under cons
translation of the fieldw(z)→w(x)1c. Using this result for
qj561,

ZsG~h!5 (
n50

`
~ah/2!2n

~n! !2 )
i 51

n E ddxid
dyi

3E @df#e2a*ddx~1/2![ ]mf~x!] 2

)
i 51

n

eif~xi !2 if~yi !

5 (
n50

`
~ah/2!2n

~n! !2 )
i 51

n E ddxid
dyi

3expH 2
1

2aF(
i , j

@D~xi2xj !1D~yi2yj !#

2(
i , j

D~xi2yj !G J . ~A5!
3-11
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APPENDIX B: ESTIMATE OF SINE-GORDON PARTITION
FUNCTION

Note that the quantity

%~x!22h%~x!~2]21h!21%~x!5%~x!
2]2

2]21h
%~x!

~B1!

is positive, since (2]2)/(2]21h) is a positive operator
Therefore,

e2~ah/2!~2p!2E
S

ddx$%~x!22h%~x!~2]21h!21%~x!%,

%~x!5Uh~x!

2p
2m~x!U ~B2!

is monotonically ~rapidly! decreasing in$ur(x)u; xPS%.
Therefore, in the partition function,

ZsG@h#5 (
$m~x!PZ;xPRd%

expF2
ah

2
~2p!2

3E ddx$%~x!22h%~x!~2]21h!21%~x!%G ,
~B3!

the most dominant contribution comes from a set of confi
rations $u%(x)u; xPS% which gives the smallest value fo
*ddx$%(x)22h%(x)(2]21h)21%(x)%.

If the argumentx of h(x) is outside the loopC(C
5]S), h(x)50, whileh(x)52pq/g if x is inside the loop.
For ZsG@0#, $m(x)[0% gives the most dominant contribu
tion. Hence, we see
n

08501
-

ZsG@0#511•••. ~B4!

For ZsG@h#, the most dominant contribution comes from
set of integers$m(x)% whose value is the nearest toq/g
where%(x)52puq/g2m(x)u. Since the integral part ofq/g
is absorbed in the shift ofm(x), it is sufficient to consider
the case 0,q/g,1 without loss of generality. For the ha
integer q/g, i.e., q/g561/2, we see that$m(x)[0,61%
gives the smallest value of 2puq/g2m(x)u for xPS. For 0
,q/g,1/2 (1/2,q/g,1), the most dominant contribution
is given by$m(x)[0% ($m(x)[1%). Thus, the rough esti-
mate, for example, in the case of 0,q/g,1/2 leads to

ZsG@h#5e2~ah/2!*Sd
dx$h~x!22hh~x!~2]21h!21h~x!%1•••.

~B5!

A naive estimate of the ratioZsG@h#/ZsG@0# is given for
h¹2pZ by

^WC@v#&sG5
ZsG@h#

ZsG@0#

5e2~ah/2!*Sd
dxh~x![12h~2]21h!21]h~x!1•••.

~B6!

Here (2]21h)21(x,y) is the massive scalar propagat
with massm;Ah and hence has an exponential dampi
factor e2mux2yu. Therefore, the integral*Sddxh(x)(2]2

1h)21h(x) converges to a finite value even for largeS. The
term *Sd2xh(x)2 is proportional to the area ofS. This term
leads to the area decay of the Wilson loop expectation.
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