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Existence of a confinement phase in quantum electrodynamics
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We show that four-dimensional () gauge theory in the continuum formulation has a confining phase
(exhibiting the area law of the Wilson lopjn the strong coupling region above a critical couplmyg This
result is obtained by taking into account topological nontrivial sectors(l) gauge theory. The derivation is
based on the reformulation of gauge theory as a deformation of topological quantum field theory and a
subsequent dimensional reduction of tH2-dimensional topological quantum field theory to the
(D-2)-dimensional nonlineasr model. The topological quantum field theory part of four-dimensiondl) U
gauge theory is exactly equivalent to the two-dimensior(@) @onlineare model. The confiningr. Coulomb
phase of Y1) gauge theory corresponds to the highdow-) temperature phase of th€2) nonlinears model
and the critical poing, is determined by the Berezinskii-Kosterlitz-Thouless phase transition temperature. The
guark(charge confinement in the strong coupling phase is caused by vortex condensation. Thus the continuum
gauge theory has direct correspondence to the compact formulation of lattice gauge theory.
[S0556-282(198)05718-X

PACS numbeps): 12.38.Aw, 12.38.Lg

[. INTRODUCTION of SU(2) lattice gauge theory is the $2) gauge theory. One
can take the scaling limit of lattice theory at a second order

In this paper we study the phase structure of dom- phase transition point. Hence the scaling limit is taken by
tinuum Abelian U1) gauge theory by including the effect approaching the critical poiff— T, (or g—g,) as the lat-
due to the compactness of thg1) group. The reason for tice spacinga goes to zeroa—0, in such a way that the
taking compactness into account is as follows. From thephysical quantities remain finite.
viewpoint of unified field theory, the Abelian group should In the two-dimensional classical(8) Heisenberg model,
be embedded as a subgroup in the larger non-Abelian gaudke two-point correlation function decays exponentially at
group. In view of this, the Abelian group should be compact.any finite temperature. This corresponds to the claim in four-
Another import aspect of the compactness of the Abeliardimensional lattice S(2) gauge theory that the confinement
gauge group stems from the possibility of explaining thephase survives as long as the coupling consjastpositive,
guantization of charggl]. In noncompact QED there is no even if g<1. Both models have a phase transitionTat0
reason for charge quantization. (g=0), i.e.,, T.=0 (g.=0) which is believed to be second

In this paper we show that four-dimensionally gauge  order.
theory has a confinement phase in the strong coupling region In a previous papdgr], it has been shown that these simi-
g>g. due to the compactneggeriodicity) leading to a non- larities between two models are not merely an accident; ac-
trivial topological configuration. If we neglect the periodic- tually we have proved the exact equivalence between the
ity, we have a free (1) gauge theory which has only one (D-2)-dimensional @) NLSM and theD-dimensional topo-
phase, the Coulomb phase, as expected. This work confirnisgical quantum field theoryTQFT) obtained by removing
the claim made by Polyako\2,3]. However, the claim that the perturbative deformatioftopological trivial sectorfrom
the Abelian gauge theory has a confinement phase soundsdimensional S(2) non-Abelian gauge theoryD(=3).
strange from the conventional wisdom based on the conthis proof is based on the idea of the dimensional reduction
tinuum Abelian gauge theory. We clarify the meaning of thisof Parisi and Sourlag6]. The case ofD=4 is the most
statement in what follows. interesting case of physical reality.

More than twenty years ago, it was pointed out by many What can we say in the Abelian case? For this, recall the
authors that four-dimensional $2) non-Abelian gauge fact that the two-dimensional @) NLSM or XY model un-
theory bears many similarities with a two-dimension&BO  dergoes a phase transition without the appearance of sponta-
nonlinear o model (NLSM). Both theories possess neous magnetization. This absence of an order parameter in
asymptotic freedom, a multiinstantgand antiinstantonso-  two dimensions is consistent with the Coleman-Mermin-
lution, dynamical mass generation and scale invaridnee ~ Wagner (CMW) theorem([7]. The low-temperature phase
no intrinsic scale paramefeisee Ref[4]. (T<T,.) contains massless spin waves. On the other hand,

These similarities can be seen also in the lattice regulathe high-temperature phas@*T.) is completely disor-
ized versions of these models, between spin models and ladlered. For this phase transition, the periodicity of the angular
tice gauge theorielb]. Naively the scaling limit of the clas- variable¢ is quite essential. The model has topological sin-
sical O(3) Heisenberg model is the(@) NLSM, whereas that gularities, called vortices. These vortices condense at high

temperature and disorder the correlation functi8h This
phase transition is called the Berezinskii-Kosterlitz-Thouless
*Email address: kondo@cuphd.nd.chiba-u.ac.jp (BKT) transition[8]. The vortex part is equivalent to the
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neutral Coulomb gas and sine-Gordon theory, see R@fs. deformations. For a review of lattice gauge theory, see, e.g,.
11]. Although the existence of the BKT transition is rather Refs.[23-285.
subtle, it was rigorously proved by Hrlich and Spencer The plan of this paper is as follows. In Sec. Il, we give the
[12]. reformulation of Abelian gauge theory as a deformation of a
In lattice formulation, it is well known that all of these topological quantum field theory. In Sec. lll, using the refor-
properties in two-dimensional Abelian spin models have cormulation of Sec. Il, we evaluate the Wilson loop expectation
respondences in the Abelian gauge theory in four dimenvalue in four-dimensional Abelian gauge theory. In the final
sions. The vortices in two dimensions are closely related t$ection we discuss the renormalization group properties and
magnetic monopoles in four dimensions, see Rif8—15. the extension of our sqheme to other dlmenS|ongI cases.
The condensation of closed loops of magnetic monopole cuMore det_alls about the |_nterp_lay between_the Abelian and
rents leads to quarkcharge confinement in the strongly non-Abelian cases are given in a forthcoming paper.
coupled phase of Abelian gauge theory, since electric flux
cannot easily penetrate such a mediamhich we call the
dual Meissner effegt It is worth remarking that the dual

Il. ABELIAN GAUGE THEORY AS A DEFORMATION
OF TQFT AND DIMENSIONAL REDUCTION

superconductor vacuum of quantum chromodynar@D) Now we reformulate quantum electrodynami{GED) as
has been derived recently without aayl hocassumption  a deformation of topological quantum field theory. It is ob-
[16] from QCD in the continuum formulation. tained as a special case of the non-Abelian gauge theory

In lattice gauge theory, charge confinement in the sense @fiven in a previous papg#].
area decay of the Wilson loop is derived in the strong cou-
pling region by using the strong coupling expansjéi7]. A. Decomposition into perturbative
Quite remarkably, the quaricharge confinement in lattice and topological nontrivial sectors
gauge theory oceurs |rrespect|v_e of the details of th.e gauge QED on theD-dimensional space-time is defined by the
group, as long as it is compafdiscrete[18,19 or continu- action
ousg, even for the Abelian gauge group. However, one ex-
pects that 1) lattice gauge theory in four dimensions ot 5
[U(1),] has a Coulomb phase in the weak coupling region, SQED:J d"X(Loepla, , ¥1+ Lep), (0
which was proved rigorously by Guf20] and Frdnlich and
Spencef21]. Therefore W1) lattice gauge theory undergoes _
a phase transition at a finite nonzero couplipg In con- Loed @, ,¢]=— Zf,u.vf;/.v+ Y(iy*D  [a]—m)y,
tinuum gauge theory, such a nontrivial phase structure was 2.2
suggested to occur due to topological nontrivial configura-
tions by Polyakoy2,1]. Actually he has shown the confine- where
ment phase in three-dimensionall)) gauge theory for arbi-

trary gauge coupling, in agreement with the lattice analysis. f . (X)=d,a,(x)—d,a,(x), 2.3
In four dimensions, he claimed that the weak coupling)u
gauge theory does not confine. Accordingly, it is expected D,la]:=d,—iga,. (2.9

that W(1) gauge theory in four dimensions has two phases,
confinement and deconfinemei@ouloml phases, whereas  The gauge transformation of the(1) gauge fielda,,(x)
only one phase, i.e., the confinement phase, exists in threand the fermion fieldy is defined by
dimensions.

In this paper, we show that continuum four-dimensional

T r '
U(1) gauge theory has two phasesistrong couplingcon-  2+(X) =@ (X)=a,(x)+ 9 U(x)d,U7(x), Ux)eU(l),

finement phase and &weak coupling Coulomb phase, (2.5
which have direct correspondence with the high-temperature
and low-temperature phases in(2D NLSM, respectively. P(X)— P (X) :=U(X) h(X). (2.6)

The phase transition point corresponds to the BKT transition
in the XY model. Therefore, the phase transition pajptis ~ The gauge-fixing ternqe is given by
determined by the BKT transition temperatufg. This is _
one of the main results of this paper. This result is obtained Lge=—16gGy{a,,C,C, 4], 2.7
as a specific case of the previous pajggr
Therefore, in the strong coupling phasg>g.), con- using the nilpotent Becchi-Rouet-Stora-TyupiBRST)
tinuum U1) gauge theory confines quarks and the gaugdransformationsg,
field becomes massive, in agreement with the result of lattice

gauge theory. In the weak coupling phase, on the other hand, 9ga,,(X)=3,C(x),
quarks are liberated and the gauge field remains massless. In

the weak coupling phaseg&g.), the B8 function of the oC(x)=0,
renormalization group22] is identically zero and €g o

<(g. is the line of fixed points, if we neglect the perturbative 0gC(X)=i(x),

085013-2



EXISTENCE OF A CONFINEMENT PHASE IN QUANTUM ...

ogp(x)=0,
Og(x)=1gC(x) ¥h(x),

Saih(X)=—igC(x) ¥(x), (2.9

where ¢ is the Lagrange multiplier field.
The partition function of QED with the source term

S‘][a#,C,E,(ﬁ,l,b,E]
::f dPx(J#a,+I.C+IC+I s+ np+ 1)
(2.9
is given by
Zoeo[J]:= f [da,][dCI[dCI[d¢][dy][dy]

X expiSSeptiS;}- (2.10

To reformulate QED as a deformation of topological
guantum field theory according to Ré#], we first regard
the U(1) gauge fielda,, and the fermion fields as the gauge

transformation of the (1) gauge fields, and ¥

®,(X) = IaU(x)aMUT(X).
(2.12)
(2.12

a,(X) =0 ,(X) + o, (X),

P(x)=U (X)W (X).

PHYSICAL REVIEW [38 085013

Then the partition function of QED is rewritten as
ZQED[J]=J [dU][dC][dC][d¢]
x f [dv,][dy][dy][dBI[dW][d¥]
Xexp{if d°X(—i 865Gyl @, +v,,C,C,B])
+if d°x(Loed v, ¥ 1—i3sGglv 4,7, 7.8])
+iSjw,+v,,C,C,¢,U¥, YU},

(2.19

where égf is a gauge-fixing functional for the perturbative
(topological trivia) sector.

B. Gauge fixing
The Lorentz gauge is given by

Fla]=4d,a*=0. (2.15
The most familiar choice o6
L o
Ggi=C|d,a +§¢ (2.19

yields the familiar form of the gauge-fixing term

i — — a
Heré v, and ¥ are identified with the field variables in the Lcri=—108Gqla,.C,C,¢]=hd,a"+iCi"3,C+ = ¢*.

I

perturbative(topological trivia) sector Q=0), whereasy,

belongs to the topological nontrivial sectd@ ¢0).

Furthermore we introduce the new ghost field anti-
ghost fieldy, and the Lagrange multiplier fiel@ in the
perturbative sector. They are subject to a new BRST trans-

formation g :
v ,(X) =3, (%),
SeY(X)=0,
ey =1B(x),
SeB(x)=0,
W (x)=igy()W(x),

BaW (x)=—igy(x)¥(X).

The decomposition o, a,=v,+ o, , corresponds to the su-
perposition of two independent configuratiop= egy+ @y (Spin

waves and vortex paftin the XY model.

(2.13

(2.1

In this paper we propose to use the choice

(2.18

GytV'=—5g ;ai—#iCE),
WheregB is the anti-BRST transformatig],
8pa,(x)=3,C(x),
8pC()=i¢(x),
55C(X)=0,

Sgh(x)=0,
Si(X)=C(x)¢(x),

d(X)+ ¢(x) =0, (2.19

whereg is defined in the last equation.
Apart from a total derivative term, this choice yields
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%aiJriCE) =—i5g[C(d,a"~ ¢)].
(2.20

Therefore, the choic€.18 corresponds in Eq2.17) to the
choice of the gauge-fixing parameter

Lop=i 5838

a=—2, (2.2))

which has appeared also in the non-Abelian cage The
above choice foGg(" yields the decomposition

Lor=—i8Gy [ w,+v,,C,C,¢] (2.22
:IﬁBéB E(wﬂ-i-vﬂ) +iCC
Lrgrr= Lroertiv MéBEBw,u , (2.23
where we have defined
=1, =
ETQFT:=I5B53 Ewﬂ+ICC . (224)

Here we have used that the action & is trivial in the
perturbative sector,
(2.29

5BUM:0:§BU,U,'

while
8pw,=3,C, dgw,=a,C. (2.2

C. Deformation of topological quantum field theory

Finally, the partition function of QED is cast into the form

ZQED[J]::f [dU[dC][dC][d¢]
xeXF{iSTQFT[CUM,C;E!(ﬁ]
+if d°X[J#w,,+3.C+IC+ 0]

+iW[U;3# 7,71}, (2.2

whereW[U;J*, 7, 7] is the generating functional of QED in

the perturbative sectaPQED given by
WLV m J [dv,][dy][dy][dBI[dW][dW¥]
xexp[ispQEf{v,\If,y,?,Wi f d°X[v,. 7,

+ U+ nxl_fuT]], (2.28

PHYSICAL REVIEW D 58 085013

Snoedv..7.7.81= | 6PH{Loedv. W]

_iFSB’égf(UMI’y’;B)]v (229)

T, =3, +i188850, .

(2.30

The correlation functions of the origindlundamentgl field
a,, ¥,y are obtained by differe_ntiatingQED[J] with respect
to the corresponding sourde, , 7, 7.

All the field configurations are classified according to the
integer-valued topological char@g which is specified later.
The above reformulation of gauge theory is the decomposi-
tion of the original theory into the topological trivial sector
with Q=0 and topological nontrivial sector witQ+ 0. This
corresponds to the decomposition of th& model into a
spin wave partQ=0) and a vortex part@+#0), whereQ is
given by the winding number of the vortex solution. How-
ever, theXY model is not a gauge theory and does not have
any local gauge invariance.

The integration over the fieldsU,C,C,#) in TQFT
should be treated nonperturbatively by taking into account
the topological nontrivial configurations. The deformation
W[U;J* »,n] from the TQFT should be calculated accord-
ing to the ordinary perturbation theory in the coupling con-
stantg. The perturbative expansion around the TQFT means
the integration over the new fields (,y,y,) based on the
perturbative expansion in powers of the coupling consgant

D. Dimensional reduction to Q(2) NLSM

Following the argument given in Ref4] based on the
Parisi-Sourlas dimensional reduction, it turns out that the
D-dimensional TQFTas the topological nontrivial sector of
D-dimensional W1) Abelian gauge theoiywith an action

— (1
STQ,:T[wM,C,C,(ﬁ]:f dDX|5BéB(§w#(X)wM(X)
+iC(x)6(x)) (2.30)

is equivalent to the@-2)-dimensional @2) NLSM with the
action

1
Soz)nesml U] ‘=27Tf dD_ZZE w,(2)w,(2),

(wﬂ(z) ==|§U(z)o7#UT(z)), (2.32
=f dD‘Zzngza#U(z)aMUT(z).
(2.33
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Dimensional reduction is due to a fact that the ac{i2r31)
has a hidden supersymmetry and can be rewritten in the Sv]:= JdD (3,0, d,0,)%+ 25(%0“)
OSpD/2) symmetric form in the superspace formulation, 3.7)
see Ref[4].
For the calculation of the Wilson loop expectatid, is
Il. QUARK CONFINEMENT IN ABELIAN GAUGE taken to be the current along the closed |l@pguch that
THEORY
Now we calculate the Wilson loop expectation i1y j dPxv,,(x)3#(x)=q fﬁv#(x)dx". 3.9

gauge theory based on the reformulation given in the previ-

ous section. In what follows we move to the Euclidean for-It is easy to see that
mulation. . -
eIW[a),J,0,0]: <Wc[l)]e(v/" ’SBﬁBw’u)>pU(1)

A. Dimensional reduction of the Wilson loop

—S[v]+ (v, ,dadgw,)
We define the Wilson loop operator for the closed I@p Xf [dv,]e pR, (39

b
y where

WC[a]:eX[{ 1q fcalu(x)dxp'), (31) (U,u ,5BngM)::f dDXU#(X) 5BngM(X)- (3.10

whereq is a test charge. In Abelian gauge theory, the Wilsonrne wilson loop expectation is rewritten as

loop factorizes,
( c[w]elw[w 0 O]>TQFT

(Wc[al) ,  (38.1)
Wc[a]=exp(iq ﬁjwﬂ(x)dx")exp(iq ﬁjvﬂ(x)dx“) ckel/uw = (Wl 000 et
where
::Wc[w]WC[U]. (32)
For theQ=0 sector, we choose the gauge-fixing function €"V1**00=(e(vx ’5B5Bw“)>pu<1)f [dv,Je SPI*(vu d8daen),
¢ (3.12
Ggf:ﬁ 0k 513 ' 3.3 Expanding the exponential
D
with a gauge-fixing parametét For U(1) gauge theory with el 98080,) = g X33 (0,0, () = g °X(Q 31,6, 0}
the action(omitting matter fields (3.13
1 into a power series and using a fact that the vacuum of TQFT
Soulv, 7, v.8]:= 2(%01; d,0,)° |5BGgf! obeys
(3.9 Qgl0)rqrr=0, (3.19
the perturbative part is given by we find that this term does not contribute to the expectation

value(3.11). Therefore, the Wilson loop expectation is com-

Wie — pletely separated into the topological pa@+£0) and the
el ’J'O’O]:J- [dv,Jldy][dy][dB] perturbative partQ=0),

Xexp[ —SpU(l)[U,%;.B]-f-i f dequM]. (Wclal)y)y=(Wc[ @ {Wc[v1)pu1))TorT
=<WC[w]>TQFT<WC[U]>pU(1)- (315

(3.9
This corresponds to the result E40) of Polyakov[2]. This
Integrating out the fields, y, 3 yields property does not hold in the non-Abelian case, which makes
the systematic calculation rather difficult.
w o In order to use the dimensional reduction for calculating
e'Wie.2.00l= J[dv ]exp[ Sv]- fd Xiv ,(X) the topological part, we choose the loBpso thatC is con-
tained in the D — 2)-dimensional space. F@r=4, the loop
= C must be planar. Then the dimensional reduction of the
X[J#(X)+'5B5B‘”#(X)]}’ (3-8 topological part leads to the equivalence of the Wilson loop
expectation value between th2-dimensional W1l) TQFT
where and (D-2)-dimensional @2) NLSM,
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(Welo(2) Drorr, =(Wel o(2) Do@nism, 0 Z€ RP2. using the Haar measutd) on U(1). For the notation of the
(3.16 two-dimensional vector,

if the Wilson loop has its support on th®{2)-dimensional S(x)=[cos ¢(x),sin ¢(x)], (3.29
space on which the NLSM is defined. Hence, the caIcuIatioqhe action reads
of the Wilson loop in the four-dimensional () gauge

theory is reduced to those in the two-dimensionaR)O B
NLSM and the four-dimensional perturbative(ly gauge So<2)[U]:§J d®%29,5(x)-9,8(x).  (3.25
theory

Hence the @) NLSM is regarded as a continuum version of
(Welal)u,=(Wel@)onesmy, {WelvDpuc),- classical planar spin model. In the following, we identiy
(3.17  with the inverse temperature TL/ Hence the high{low-)

o . temperature of the spin model corresponds to stievepk
For large rectangular loop with sidé§ T, the static po-  coypling of the gauge theory.

tential is obtained by It should be remarked that(@ NLSM with the action
(3.22 is not a free scalar field theory, since this theory is

V(R)= lim _—1In(WC[a]>. (3.18 periodic in the angle variable (modulo 27). Of course, if

T T we neglect this periodicity and treat the variabl@s a non-

compact variablep(x) e (—«,+»), we have a trivial
In four dimensions D=4), it is well known[23] that for  theory, i.e., free massless scalar field theory. In this case, the
large Wilson loop(Wc[v])py(1), gives the Coulomb poten- Contour integral is zero,

tial,

2

1
V(R)=— f—w R +const. (3.19

1
ﬁ:wu(z)dz":a jgcaﬂcp(z)dzﬂzo. (3.26

Hence, the Wilson loopV,[ w] is trivial, W [w]=1, and
For a derivation, see, e.g., the Appendix of HEE]. hence the total static; qguark potential comes from the the
In the following, we show thatWg[ w]) exhib- Wilson Ioop expectatioW [v] of perturba‘_uve 1) gauge _

_ _ CL®1/0(2)NLSM, theory and is equal to the Coulomb potential. Thus we obtain
its area law for strong coupling>g. with a finite and non-  he trivial result that the four-dimensional noncompact Abe-
zero v_alue of a c'rl'tlcal pointg.. This confinement- |ign gauge theory fails to confine quartcharges However,
deco_nflnement transition corresponds exactly to the BKTihe periodicity (or compactnegsleads to topological non-
transition. trivial solutions which are seeds for confinement, as shown
below.
B. O(2) NLSM and Wilson loop In the following, we restrict our consideration to tile

:=D—-2=2 case. The extremum of the classical action

Defining the angle variable(z) for U(z) e U(1), : X . . . .
g g ¢(2) (2eu(l) (3.22 is obtained as a solution of the classical field equation

U(z)=¢€'¢"?, 3.2
@) (3.20 V2¢=0 (mod 2m). (3.27

we obtain The harmonic functiorp is constant or has singularities. We

i 1 require ¢ be constant at infinity and assume only isolated

w,(2)= —U(z)a”UT(z)= —~d,¢(2). (3.2)  singularities around whickp varies by =27 as one turns

9 9 anticlockwise. Then the solutibiis written as

Then the action of @) NLSM reads (z—-2),
o(2)=2, Qiarctan(z—z)=2 QiIm In(z—z),
i —4i)1 i

50(2)[U]:f d°"*z70,(2) 0,(2) +iX,. (3.28
Z==X1 |X2. .

2
= gj dD’Zz&Mgo(z)(?#cp(z), B:= —727 This denotes a sum of vortex excitations located at points
9 x; € R? and of vorticity Q; (integer$. The solution has the
(3.22  alternative form

The partition function is defined by

de(x) 2The two-dimensional Laplace equation is equivalent to the

Zoo[U]= f [dUJexp(— 50(2)[U]), [dU]= H ' Cauchy-Riemann equation. Hence the solution is given by the ho-
x 2 lomorphic function. If one avoids branch cuts, it is a meromorphic

(3.23  function.
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(z—z")l|z—Z]| 1)_E 2 2
e@ =l s =23 JuyerFATEDT 339
(Z z')  (z-7) and the remaining part
— . 3.2
o0 K= il Pera B

S22 ’gﬁzdzz[V@(Z)]z

This means that vortices of intensityl are centered at the
points z© and that intensities of higher magnitude are ob-
tained when severa] (or z) coincide. Note that the angle 2
¢ is a multivalued function, bue'® is well defined every- :_277'8;]- QiQi|n|zi_ZJ|+§i: QA In 1Ry,
where, except at the singular points. (3.39
The contribution of the solutio(B.28 to w,, is
Summing over all vortex sectors leads to the partition func-
(z Z), tion of the form

2 Qi

1
0= 1,0(2)= 2

z H d?z,
232 Qi€,,d,In|z—z]. (3.30 c” (n')zf !

Xexr{(Zw)zﬂiEJ QiQA(z,7) |,

Therefore, the integral of the one-forin = w ,dx* along the
closed loopC is

s=e%", (3.37)
§ o, dxt= § w——z f de,= —Ql, . .
where{ comes from the self-energgction part of vortices
(3.3) and A expresses the two-dimensional inverse Laplacian
given by
where the sum runs over all the vortices inside the closed
loop C and®; is an angle around=z, 1 R
A(X,0)= =—In—. (3.39
(z-2) 27 |X|
i)2
0i(2): arcta( Z), (332 Therefore the partition function agrees with the two-

dimensional neutral Coulomb gdse., a gas of classical
Note thatw is a closed formdw =0, but it is not an exact charged particles with a Coulomb interaction and globally
form, that is, a functior{zero form) does not exist such that neutral,=;Q;=0).

w=df with f being defined everywhere R?—{0}. Domain The transition temperature is estimated as follows. The
of f(z2)=0(2) is restricted toR>—R, , in other words, for  contribution to the free energy from one vortex pair at dis-
one unit vortex at the origin tancer 1, in a box of linear dimensioh is
XV
©,=€,, 73— 270(X1) 8(X2) 8,5. (3.33 F~Inf d?z,d?z,exp(— 278 In|z;— 2,|/Ry)
X |21 -22>Ro
This is analogous to the case of the magnetic monopole in ~|n[L%exp(— 278 In L/Ry)]
three dimensions where the magnetic field is given by
1 ~(4-2mB)In L. (3.39
X
=+ _
Hu=73 x| 2m03,00x1) 0X) 0(xa). (339 o ortices always arise in pairs of opposite Coulomb

charges to yield finite energy configurations and each pair

The singular line of Eq(3.33 in two dimensions does not forms an elementary dipolé€Coulomb dipole gas If 278
contribute to the action, nor does the Dirac strimgp the >4 (the low-temperature or weak coupling phagbe con-
positive Z axis) in three dimensions. tribution from the vortex pair is negligible in the limit

In order to calculate the classical action for the singular—ce. In this phase, charges are bound and one has a dielec-
configuration(3.28, we consider a disk of radiuR,, D; tric medium. AsB—x, few vortices are present and their
:={|z—z|<Ry; zeR? (centered on each singular poin} correlation decreases rapidly with the relative distance. This
which is small with respect to the distances between vorticeslescribes a dielectric medium of neutral bound states. In this
Let R be the remaining domain of integration outside theregime, the correlatioqU(z)U(z")) decays polynomially,
vortices. The classical action consists of two parts, the self-
energy(action part of the vortices, (U(2)U(2'))=|z—2'| V4P, (3.40
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On the other hand, if 28<4 (the high-temperature or or
strong coupling phagean instability occurs and the creation ,
of well-separated vortices is favored and disorder increases. Oup=€ur0"b. (3.49

In the high-temperature phase, one has a plasma of fre]eh. T ' .
: . . is implies that the fieldsp and ¢ are dual variables.
charges. The vortex expectation decays exponentially yiel _herefofe @2) NLSM is eqlﬁf/alent fg the Coulomb gas and

ing exponential decay dfU(2)U(z')), moreover it is equivalent to the sine-Gordon model when the
PN [ 1|~ (UdmB) a—m(B)|z—2'| charge of the Coulomb gdser vorticity of O(2) NLSM] is
(U@U(z)=|z=7] € - 34D restricted toQ;= = 1. Taking into accoun;>1 will lead to

Hence a naive estimate of the critical temperature is obthe c0sQ¢) term. The above consideration can be trans-

tained: ferred into the lattice formulation, see Rg23].
2 C. Wilson loop and area decay
Bo=—. Ge=m" (3.42 _ - _
™ The Wilson loop expectation is calculated using the

. . . equivalent sine-Gordon model. The generating functional for
This is the phase transition without the appearance of a spo A

taneous magnetization. The phase transition can be inte?—e charge density

preted as a dipole condensation. The critical point separates

the dissociated dipole phase from the condensed phase. p(x):=2 Qid@(x—x) (3.50
In order to calculate the Wilson loop, we use the equiva- !

lence of the Coulomb gas to the sine-Gordon mo@ele s optained as

Appendix A for a proof. The sine-Gordon model is defined

by the action and the partition function Z.d 7]

m:<eifd2Xp(X)n(X)>sez<ei2i Qi’l(xi)>SG' (3.51)
S

1
5(3,6(x))*=h cosp(x)|, (3.43

Sl )=a | d'

1
zd - | [d¢>]exp[—a [ @x(310,0007

ZsG(h):f [dolexd —Ssa( ) ]- (3.44
—h cog &(x)+ 7(x)]

]. (3.52

This is equivalent to the partition function of a globally neu-

tral gas of particles of chargeg; =+ 1 through a Coulomb |n two dimensions, we can introduce the dual vector field
potential ind dimensions:

H,=€,,0,. (3.53
® ZZn n
Ze (=2 — I J dx;ddy; Then the dual field is connected with the charge densiag
n=0(n!)<i=1 follows:
1
Xexp — 3 .2<, [V(Ixi=xD+V(lyi=y;D] fﬁcwﬂ(z)dzﬂ:Lewaﬂwv(z)dzpf d,H,(2)d2z
2
—IEJ V(Ix—y;l) ] (3.49 - Eﬁj p(2)d%z. (3.54)
at temperaturd with the fugacityz, Note that the rotation ok, or the divergence off , ,
1 g2 2@
a:T:m:W’ ah=2z=2{.  (3.49 eﬂva#w,;r?MHM:Ep, (3.59
Note thate 8= 1/(47). It is known that the transition point measures the density of the topological charge. If we identify
of the sine-Gordon model is the right-hand side with the magnetic charge, this implies
1 Dirac quantization condition
=g (3.47 2w .
gm=EQ (Q: intege). (3.56
which is in agreement with E¢3.42). The relation ofy and
¢ is given by The Wilson loop is calculated from the given by
b(x t)=de o(y,1) (3.48 =3 f}; dze,, 2 (3.57
; y yely, : Y g Jc rv(z—x)2" '
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since
= > e (ah/2)[dNL 7(x) ~27m(x)]? J [de]
{m(x)eZ;XERd}
q 3& wﬂdz“=f dpr(x) n(x)=2 Q;7(x;). (3.58 Xeffddx{(a/2)</><x)<f&2+h>¢(x>+ah¢>(x>[n<x>72wm(x)]}
C i
ah d )
Note thatz(x)=0 if the argumenk of z(x) is outside the = X L exn - 7f d%{[ n(x) —27m(x)]
loop, while 7(x)=2mq/g if x is inside the loop. {m(x) eZ;x<R%
In the high-temperature phase, the photon is massive, —h[5(x)—27m(x)](—d*+h)~*

whereas the photon is massless in the low-temperature phase.
This is because in the high-temperature phase, the random
distribution of free vortices with long-range interaction
spoils the correlation. Therefore, in the high-temperature
phase, the Wilson loop expectation is estimated by the steep¥hen =0, the denominator is obtained,

est descent as h
o
zdol= > ex;{—(Zw)Z?f ddx

{m(x) e Z;xe Rd}

X[n(x)—2mm(x)]}|. (3.62

1 2
33,060~ n00 T}

<Wc[w]>sGEeXp[ _af d®x
x{m(x)2—hm(x)(— >+ h) " Im(x)}

]’ (3.59 (3.63

Note that the fieldy(x) has its support 08(9S=C) and has
where ¢ is determined by the Debye equation the value 2r(q/g). If g is an integral multiple ofg (the
elementary chargewe havene2#Z. This is absorbed by
V2 doi(x)— p(x)]=h sin e (X). (3.60  the shift of m. Therefore, in this case, charge confinement
does not occur. This is interpreted as the charge screening.

c . his field d f . il A naive estimate of the rati@sd 7]/Z;d 0] is given
orregtlons t(.)t Is field due to fluctuation are exponer!ua Ywhen ne&27Z in Appendix B. Finally we obtain the area
small in the high-temperature phase. The l@fs placed in decay of the Wilson loop expectation

two-dimensional plane. We can perform the calculation in

—h cos ¢ (x)

the same way as done by Polyalai. (W[ w])se=e™ 77O, (3.64
Instead of repeating a similar calculation to Ref], we
use the Villain form[27] 2 4h 2
o= ( 2779) —= ( 2779> §~efs(l).
g/ 2 g
gl cose_, ol E e—(le)(qs—zwm)? (3.61) (3.69
mez This implies the linear static potential
to estimate the Wilson loop expectation. Then the partition V(R)=0oR (3.66
function is replaced witlfapart from field-independent con- ] ) ) ) )
stant$ between two fixed electric charges and an electric string with

uniform energy densityr which is called the string tension.
Therefore condensation of topological nontrivial configura-
7 (i’?]:f [dd)]efafddx{l/Z[z?M(p(x)]z} H gah cos[p(x) + 7(x)] tion leads to quark confinement. From E@3.17), (3.19,
S

= and(3.66), the total static potential is given by
V(R)=0R g L + 3.6
(R =0 “I-R const. (3.67

:f [dge */dMW2L.4001%

Even the continuum Abelian (@) gauge theory has a con-
<1 > e (@h2)[$(x)+ 7(x)~27m(x)]? finement phase, exhibiting a rich phase structure similar to
xeRI MX)eZ lattice compact (1) gauge theory.

IV. DISCUSSION

= > [deple @/dNL2L-¢007 4]
(m(x) = Z:xe RY In four-dimensional pure (1) gauge theory, we have
g , proved the existence of a strong coupling phase where the
X @~ (a2 JdX($(0) + () =2mm(x)] fractional electric charge is confined by the linear static po-
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Blg) Therefore, 8<g<g. is the line of fixed points. In strong
coupling phased>g.), the beta function behaves é&see
Fig. 1)

1
0 * g B(g)=—B—gc(gz—g§)3’z<0, (9>9c,9=0c), (4.6

which is compatible with the BKT magg.2),

FIG. 1. Renormalization group beta function of Y gauge

B
m(g)=A exp( -
theory. \/gz_gc

tential due to vortex condensation. In the following we dis-with constantsA,B>0. Note thatg(g) is independent oA.

» 9ldc, (4.7)

cuss a few points of perspective. It is worth remarking that a recent lattice computer simu-
lation[28,29 indicates the existence of a non-Gaussian fixed
A. Renormalization group and non-Gaussian fixed point point in four-dimensional pure compact(l) gauge theory.

This should be compared with the old restiB§,31]. In the

The QN) NLSM has the renormalization group beta simulation[28,29 the continuous phase transition was found

function and analyzed according to the power law scaling, although
dg(p) N—2 our investigation suggests a scaling behavior of essential sin-
B(9) T g3+ 0(g®). (4.1)  gularity type and the data do not exclude the essential singu-

larity. It will be rather difficult to specify the essential sin-

At low temperature (& T<T,), therefore, the () NLSM gularity in computer simulations, since the lattice size
has vanishing beta functioﬁ;O (T<1) r;md O=T<T.is available is not yet large enough to confirm this issue. Any-
c way, it will be interesting to find any relationship to fill the

the line of fixed points. This is consistent with the fact that at betw fw h
low temperature, the inverse correlation length or mass gap between two approacnes. . .

—¢ 1 of the Q2) NLSM or XY model vanishes, i.e If the mass scale is generated by dimensional transmuta-
m(T)=0 for all T<T,. The theory is conformal invérién.t, tion, the above results are quite analogous to the situation
= - . : ! o

For high temperatureT>>T.), the renormalization group found for the dynamical fermion mass anql uﬂégnctlon n
study of theXY model shows that the mass behaves as quenched massless QHB2,33. The relationship of these
results with quenched QED is more suggestive using the
method of bosonization or fermionization. The two-
. TLT., (4.2 dimensional sine-Gordon model is equivalent to the massive
¢ Thirring model[34,35 with an action

C
m(T)~exp( - \/T——TC

with a constanC. o

These results established in the two-dimensional model Sy, ¢]=J d?x
would be translated into the four-dimensional Abelian gauge
theory, provided that the two theories have the same
renormalization-grougB function. We assume that in these
two theories the mas®(g) is generated by the dimensional
transmutation in such a way that the beta functig(y) is
related to the mass(g) through the well-known relation 14 E=47Ta, 4.9

— . G )
(4.9

The correspondence between two theories is given by

, 4.3

— uf(g)= _ (.49
m(g)=puf(g)=pun exp{ f Q) . . y -
Yu¥= " 5-€,,0,9P, .

whereB(g) is defined by K’ 27 H
dg(u) f(g) myiy— — ah cos ¢. (4.11

- . 4.9
f'(9) y _
Our result shows that the transition pouwat=1/(87) corre-
In the weak coupling phas@{g.), the gauge field is mass- sponds td.= — 7/2. By making use of this equivalence, the
less,m(g)=0, and the beta function of the renormalization Wilson loop (3.64 in the topological nontrivial sector of

group[22] is identically zero, four-dimensional 1) gauge theory can be calculated in the
two-dimensional massive Thirring model. The details will be
B(g)=0 (0<g<g.). (4.5 given elsewhere.
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B. Lower- and higher-dimensional cases * ah)2n 1 (2n>

_ —afd9%(1/2
Using the equivalence between the TQFT part of (1) _j [dple” el xWaL7.200) Z (2n)! p2n
gauge theory and O(3)., NLSM, we can study other di-
mensional cases. F® =3, the equivalent @) NLSM is

one dimensional, O(2) This is not a field theory model, but xIT | dddy;el¢C0 =it

a quantum-mechanical model of the plane rotor. There is no =1

phase transition in this model. This implies that three- o ah/2)2”
dimensional W1) gauge theory only has a confinement :j [d¢]efafdd><(1/2>[&ﬂ¢<x E

phase. This can be understood as the tunneling effect among n=o0 (n!)?

classical vacua in the sense that the double-well anharmonic n

0§C|Ilatpr is re!ated to the one—dlmen3|0nal Ising model. It [T | dox;ddy,el ¢ -9t

will be interesting to see the agreeméoi disagreemeiiof

the confinement mechanism between our approach and the

Polyakov approacf2,3]. ForD=5, the G2) NLSM is three ~ Note that

dimensional, O(2). The three-dimensional @) NLSM has

two phases on the lattide6]. The phase transition is firs

order. This result is consistent with the mean field study of

five-dimensional lattice (1) gauge theory24]. This theory ::f [dq&]exp{— fj ddx[éﬂ¢(x)]2+f d9%J(x) p(x)

has a finite nonzero critical couplirgy,. In the strong cou- 2

pling phase, quark confinement is expected to occur. How- 1

ever, the phase transition is first order. Therefore, on the —ex;{ fdd fddyJ(x)A(x v)IIY) |,

lattice, it is impossible to take the continuum limit at this 2a

point. In view of this, the construction of continuum(1)

gauge theory from lattice regularized theory will be problem-

atic in five and higher dimensions, unless the action is modi- dp Px=Y)

fied. A(X,y) = f — (A3)
Note added in proofA more recent result of simulations @m)° P

of compact U1) I_a_tticg gauge theory is f_ound i37] _where In particular, forJ(x) =i3q;6(x—x;),

the phase transition is claimed to be first order in contrast

with the results of Refd.28,29. In view of these results, it n " )}

J

(A1)

‘ [[e/dHI06007]

(A2)

whereA(x,y) is the massless scalar field propagator

seems rather difficult to decide the order in the foreseeabl H €

future numerically beyond any doubt.
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where the latter case is a result of invariance under constant

translation of the fieldp(z) — ¢(X) +c. Using this result for
APPENDIX A: EQUIVALENCE BETWEEN COULOMB gi==* 1,
GAS AND SINE-GORDON MODEL

The partition function can be rewritten as S ah/2)2n : dy Ad
p zam= 3, ST [ ataty
_gd - ah)n n
sz(h)zf [dgple «/IX1217,4(0] 2 Xf [dple I el 600 -idiyp)
i=1
n
X f d cos ¢(x) * h/2 2n n
=> (ahi2) fddx dy;
n=0 (nl
“ (ah)® 1
- -~ afaw2a,00025 (M7 1 -
—f[d¢]e sy G2 X ex E[Ax x)+A(yi—y;)]
) ) 2n
X fddx(e'<”(x>+e"f’<x>)} —iEj A(Xi—yj)H- (A5)
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APPENDIX B: ESTIMATE OF SINE-GORDON PARTITION
FUNCTION

Note that the quantity
2

J
e(x)?—he(x)(— &+ h)le(X)=Q(X)mQ(X)
(B1)

is positive, since € d%)/(—d*>+h) is a positive operator.
Therefore,

ef<ah/2><2w>2Jddx{e<x>2fhe<x><faz+h>*1e<x>}
S )

(B2)

e(X)=‘%—m(X)

is monotonically (rapidly) decreasing in{|p(x)|; xeS}.
Therefore, in the partition function,

p)

{m(x)e Z;xe Rd}

ah
Zd n]= EX[{—7(277)2

xf d{e(x)2—he(x)(—a*+h) "te(x)}|,

(B3)

PHYSICAL REVIEW D 58 085013

Z,J0]=1+---. (B4)
For Z;d n], the most dominant contribution comes from a
set of integers{m(x)} whose value is the nearest tgg
wherep (x)=2|g/g—m(x)|. Since the integral part af/g

is absorbed in the shift aih(x), it is sufficient to consider
the case 6g/g<<1 without loss of generality. For the half
integer g/g, i.e., q/g==*=1/2, we see tha{m(x)=0,+1}
gives the smallest value of/gq/g—m(x)| for xe S. For O
<q/g<1/2 (1/<qg/g<1), the most dominant contribution
is given by{m(x)=0} ({m(x)=1}). Thus, the rough esti-
mate, for example, in the case o&k@/g<1/2 leads to

Z.d 7]=e (@IS XH0?-h00 (= +h) a0k
(BS)

A naive estimate of the ratidsd 7]/Zsd 0] is given for
ne2wZ by

Zs
<Wc[w]>s(3:%

= g~ (@[ dy00[1—h(=*+m) no0 4

(B6)

the most dominant contribution comes from a set of configu-

rations{|@(x)|; xe S} which gives the smallest value for
Jd¥x{e(x)2—he(x)(— #*+h) ~te(x)}.

If the argumentx of z(x) is outside the loopC(C
=0S), 7(x)=0, while n(x)=2mq/g if x is inside the loop.
For Z,d 0], {m(x)=0} gives the most dominant contribu-
tion. Hence, we see

Here (—#%+h) (x,y) is the massive scalar propagator
with massm~+/h and hence has an exponential damping
factor e”™M*Y. Therefore, the integralf sd%x5(x)(— ¢
+h)~15(x) converges to a finite value even for larf§eThe
term [ <d°x7(x)? is proportional to the area @&. This term
leads to the area decay of the Wilson loop expectation.
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