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Structure of the graviton self-energy at finite temperature
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We study the graviton self-energy function in a general gauge, using a hard thermal loop expansion which
includes terms proportional 6%, T2 and log{l). We verify explicitly the gauge independence of the leading
T# term and obtain a compact expression for the sublea@ifngontribution. It is shown that the logarithmic
term has the same structure as the ultraviolet pole part of th® self-energy function. We argue that the
gauge-dependent part of tfi@ contribution is effectively canceled in the dispersion relations of the graviton
plasma, and present the solutions of these equati&@®56-282(98)03018-3

PACS numbd(s): 11.10.Wx

I. INTRODUCTION the same order as the two-loop contributigridle employ
theimaginary time formalisnj12] and express the one-loop
When the temperaturBis high compared with the typical _thermal Qreen functions in terms of on-shell forward scatter-
momentum scale but well below the Planck scale, all thdnd amplitudedthe “Barton amplitude’) [13], properly gen-

n-graviton thermal Green functions can be computed in théeralized in order to account for the quadratic denominators

one-loop approximation using the hard thermal loop eXp(,j“.]\_/vhich arises in the free graviton propagator when a general

sion. There have been many investigations where this ap%

proach has been employdd—6]. An important property his approach enables us to explore some of the general

which is now well established is the gauge invariance of théaropertles of the_exactgrawto_n §e|f-ene_>rgy without haymg to
carry out explicitly the nontrivial spatial momentum integra-

leading high temperature contributions of migraviton ther- tions. It is also much more straightforward to perform the

mal Green functions. The explicit from of these contributions .

can be obtained using the equivalence which exists betweef}]ard th_ermal Ioc_)p expansion wh_en we start from the forward
the formalism of the Boltzmann transport equation and thescatt_erlng "’.‘mp"tUdeS' Using t2h|s approac_:h we were _able to
high temperature limit of the thermal Green functions in fieldObtaln explicit results for thd*™ and logarithmic contribu-

: . C .- tions to the graviton self-energy.
theory [7]. Using this approactiwhich is explicitly gauge ) , : .
invarian) one can easily show that the leading part of all Unlike the leading high temperature terms, for which the

n-point one-loop thermal Green functions is proportional tpJauge independence is confirmed by our calculation, the sub-

T4 [8]. These results have also been obtained by Standarlgadlng_contrlbutlons are gauge dependent. .These contribu-
jons will be employed in the study of the dispersion rela-

Feynman diagrammatic calculations in the Feynman—d ions for the transverse and traceless gravitational mptles
Donder gauge for the one- and two-graviton functipfisas . . . 9
This paper is organized as follows: In Sec. Il we present

well as for the three-graviton functid®]. . . - . ’
One of the teretng physical appcatons of the one " LTangan and the asi defiton of e gravcn feld
and two-graviton functions is the study of the dispersion re-, y :

: . . the identities which follows from the gauge invariance of the
lations [4] which follow from linear response theofl0]. ) .
Since the relevant physical quantities are obtained from théheory. In Sec. lll the main results of the calculation of the

plesof e propagator, 15 mportan o very e gauge . 1 M ravion nctons I e ogarte con
independence of this procedure. While this is automaticall)} P ' y P P

satisfied by the leading high temperature contributions, thgontnbunon is obtained and we verify that the logarithmic

inherently gauge dependesiib-leading contributionso the _(I:_()_nglbhtj\}lonrlsvﬁjtronp?crtkor][ialr;to ;[/r\}e ultlrawzlerti\p/)okihpart Or: trr1e|
thermal Green functions require a more detailed investiga- o-graviton function. We aiso derive the genera

tion. A similar situation occurs in the case of the Yang-Mills tr:\nsr;?lri:gﬁu?g ?(;stgr?tz;\t/}lgr-]grﬁ]wtsoenc f'“'lr\]/cs\(l)g \;Jgr?ler(;a)(clrilggge
theory where it is known that a gauge independent set o?h ?th pd nd nt.t min tﬁ ne-l fy bl Eﬁny
dispersion relations can be obtained from the gauge depeﬁ—a € gauge dependent te € one-loop sub'e 9

dent thermal two-gluon functiof8,11]. As far as we know contributions to the dispersion relations may be effectively

. - - 6 -
in contrast with the case of the Yang-Mills theory, a gaugenegleCted’ since it s of the same ord@°("®) as the qudmg
wo-loop contributions. We then present the solutions of

independence proof of the dispersion relations in quantu : o :
b P P d these equations, which include corrections of offfeto the

gravity beyond the leading order is still missing. . A L )
The purpose of the present paper is to investigate thi adingT* contributions, describing the physical modes for
e propagation of waves in a graviton plasma.

problem in the case of gravity using the standard Feynma
diagrammatic approach. We will compute the 1- and 2-
graviton functions to one-loop order up to sub-leading con-
tributions, in a class of general gauggdl/e have neglected The Feynman rules for the graviton propagator and self-
the corrections associated with the curvature of space, sindateractions vertices are obtained from the following under-
these are of magnitudes(T*) (G T?), which are formally of  lying Lagrangian:

Il. FEYNMAN RULES AND IDENTITIES
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2 1 ing tree Ward identity, arising from the invariance of the
L=-7V-gR+ P Nul N —997) (95 —99"") pure Einstein actior8g=2/«?[d*x\/—gR under the trans-
formation given by Eq(2.2),

3\-gg"”
+a, X, —x— 7 k=327G, 2.1
Wed T & X(©), \(K)SOmmara(i) =0, (25

whereRis the Ricci scalarG is the Newton constant and the
parameter¢ defines a family of gauge$é=1 is the Feyn-
man gauge and=0 is the Landau gaug€eThe quantitiesy,,
and " are theghost fieldsand the functione(x) is the in- X (K) =K,y 70+ Ky 7,0 = Ky 700 2.9
finitesimal generator of coordinatgauge transformations

where

is the tensor generated from the transformation of the gravi-
ton field under Eq(2.2) and

XH— X*+ e™(X). (2.2
The calculations in quantum gravity are conveniently per- o K2
formed using thegraviton field H” defined in terms of the Sy )=~ > Mgy Moy,
tensorg”” as
+ n#lvznvluz_ n;tlvl 77,(1,2]/2)
J—gg“"=n*"+ kh*?, (2.3

1
+ 5 (KK, g0, T Ky

M1 M2 vy Tviny

where n*” is the Minkowski metric.

The Feynman rules can be obtained in a straightforward
way substituting(2.3) into (2.1) and performing a perturba- +k”1k"277M1M2+ kvlkuz”sz) 2.7
tive expansion inc. The Oth order terms are quadratic in the
graviton field and yield the following expression for the comes from the quadratic term in the action without the

graviton propagator: gauge fixing term(it is the inverse of the propagator in the
limit ¢—o0).
D(ﬂol)vlwz(k) The tree-like identity which holds for the high tempera-
ture limit of the two-graviton function would be identical to
-1 Eq. (2.5 if the one-graviton functiorithe tadpolé shown in
~oK2 Mgy Mogvy T Moy Mpgvy™ Mugvy Mgy the diagrams in Fig. 1, were zero. The modification intro-
duced by the tadpole changes the right hand side of ES).
. (1;'@;) (2K, k7 42k ko to a nonzero quantity wheﬁi?l)vlﬂ.m(.k) is replaced by the
(k%) Famriiiala — ke 2 T leading high temperature contribution ®f#1"1#2"2(k,u),

B KKk Kk N given by the diagrams in Fig. @i is a timelike normalized
Muyvy Muzvy nafmp My ™ Kvi By Tuyvy four-vector representing the local rest frame of the plasma
This contrasts with the analogous situation in the case of
(2.9 Yang-Mills theories where the antisymmetry of the group
structure constants trivially makes the tadpole to vanish. As a
consequence of the nonvanishing tadpole, the general BRST

In Appendllx B we give all the other relevant Feynman rUIesidentities will not hold for theexactfinite temperature gravi-
employed in this work.

. . ) o . ton self-energy. However, as we will see in the next section,
The choice of the graviton field parametrization given by . L
. the tadpole diagrams can be computdctly yielding a
Eqg. (2.3 restricts the gauge parameter dependence only to : 4 ; .
: I . result proportional to T®. Therefore, if we split
the propagato2.4), since in this case the second term in Eq.H#l,,wz,,Z(k u) as
(2.1) is exactly quadratic in the graviton field This is simi- '
lar to the generallinear gaugesin Yang-Mills theories.
Therefore, the gauge dependence of the Green functions
computed from these Feynman rules can be traced back to
Eq. (2.9).
The leading high temperature contributions of all one- A
particle irreducible thermal Green functions are related to a

each other through treelike Ward identities in the same way ’
k} (IR

B kl“'lkV27]V1”“2_ lesz 7]#1'“2) ’

T#1712°2(k,u) =Hféz”&i’éé”z("’“)*Hg&ngvz(k'u)kz :]

as the basic tree verticd8,5,8. These hard thermal loop

identities have been verified for both Yang-Mills theories [T
and gravity and generalized to any gauge theory whose gen-
erators form a closed algebf@]. For our present purposes it
will be sufficient to consider the identity involving the two-  FIG. 1. Diagrams contributing to the one-graviton function.
point function. A simple example is provided by the follow- Wavy lines represent gravitons and dashed lines represent ghosts.
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FIG. 2. Diagrams contributing to the two-graviton function. Wavy lines represent gravitons and dashed lines represent ghosts.

the BRST identities derived in Appendix C will hold for the i=j=1. Let us first consider the leading high temperature
subleading contributionﬂgjgl“z”z(k,u), so that the follow- behavior of these integrals. In this limit, we can perform a
ing identity is satisfied: hard thermal loop expansion of the integrand such that the
terms withi,j>1 will all be subleading. For the terms with
(0 i,j=1 we use expansions such as

MV A

(kITar 1272k, u) X\, (k) =0. (2.9

HoVpd

This identity is analogous to,k,I19-°=0, wherell 25° is 1 111 K1 (KY)?

—_ e — J— + J— +. e,
the exact gluon self-enerdit1]. Since all the gauge param- (q+k)? =0 20k 4(a k)" 8(q-k)?

eter dependence is restricted to the subleading contributions, (3.2
these identities have an important role in the cancellation of
the gauge dependence in the dispersion relations. The case=1, j =0 [from the diagram in Fig. @)] is similar
to the tadpole diagram giving an exakt contribution. In
IIl. THE ONE- AND TWO-GRAVITON FUNCTIONS this way, we obtain the following result for the leading be-
IN A GENERAL GAUGE havior of the graviton self-energy:
In this section we will present the details of the calcula- leading
tion of the one- and two-graviton functions. Let us first con- H#1V1M2V2(k’u)
sider the contributions from the two tadpole diagrams in Fig.
1. The most involved diagram is the one shown in Fi@),1 _ 2P j @ leQleﬂzQVz
since both the 3-graviton vertex and the general gauge propa- K2 A k-Q
gator are involved. Using EqB4) and the propagatq®.4),
the straightforward contraction of indices yields a result kleulQuszz kMzQVlQ,U«lQVz
which is independent of the parameter—§). Therefore, + k-Q + k-Q
the resulting expression is identical to what is obtained in the
Feynman—de Donder gauge involving only the usmah- k,,Q,,Q,,Qu, KQ,,Q,.Q,,Q,,
dratic denominatorsUsing the Eq(A1l) in the simple case + : 02
_denominat ; : k-Q (k-Q)
wheni =1 andj =0 the following result for the one-graviton
function is readily obtained: 3.3
5 It is worth mentioning that though a va& power counting
o 1 f” lal*d|q] 1 fdQZQ 0 would allow for a gauge parameter dependence from the
my 2m® Jo 2|q] eldlRuwT_1 wxv third term in the second line of E(R.4), the final resul(3.3)

is gauge independent as one would expect on more general

_ dQ grounds[3]. Combining the Eqs(2.8), (2.9) and (3.3) we
IR Ry Q.Q» obtain the following identity for the exact self-energy:
p 7
=k 3 (mu=4u,u,); p=35TH (3. X, (0T #2v2(k,u) X, (k)
whgrefdQ denotes the angular integral and the four vector =2k2K2pf Z_Q Q,Qs=— 2k, 5, (3.9
Q,, is on-shell with components given I§y,=(19/|ql). w

The diagrams contributing tbl#1"1#2"2(k,u) are shown

in Fig. 2. The contributions associated with each of thesd'here in the last term we have used E8.1). Since the
diagrams will involve integrals like the one shown in Eq. integrand in the right hand side of the above expression is an

(A6). From the structure of the graviton propagator given bySlementary expression without denominators, the same

Eq. (2.4) we can see that the diagram in Figagis such that should be true for its left hand side, up to terms which would
each of its terms will involve integrals with j =1,2, while vanish after integration. Our calculation shows that, in fact,

in the case of the diagram shown in Figh® all the corre- the expression obtained from the diagrams in Fig. 2 is such

; 0 v v 0
sponding integrals have the form of the first term of &g)  that the exact integrand of(), \IT#2"1 #2"2XD) 5 does
with j=0 andi=1,2. In the case of the ghost loop diagram not involve any denominators, being identical to the inte-
shown in Fig. 2c), all the terms will involve integrals with grand in the right hand side of E(B.4).
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TABLE I. A basis of 14 independent tensors.

T‘1‘1V1/‘2”2: previghekit phakiprent
T£‘1V1“2”2: utt(uzptari+ ukeph2t) + ur(uephetL+ uke pak)
ThrHe 2= yrey ety
TZl"l/"Z”z: 7’#21/277#1111
T‘5‘1”1/‘2"2: UMty Lgter24 yk2ye gt
Tgl”ll“Z”Z: u”2(k¥1pHat14 ki pHart) + K 2(uvL et 4 utl phel)

+ uﬂ-z(k”l 77”2#14. k#1 77V2V1) + k#z(u”l 7]”2/-014_ ut1 7]”2”1)
T¢1”1”2”2= kViyM2yP2utt+ kHigteyr2uri+ kP 2uteyMiy v+ kK ey v2utiyre
T’8‘1”1/‘2”2: k¥2kV1pteti4 kPakH1pieri4 k2K 1 P24 kH2ki 1 pPeb
Tor ke 2= krakrigray 2+ kiek 2uky e
Ti‘é”lf‘mz (k¥2u*2+ k#2u¥2) (k¥ 1uk1+ k#1u™1)
T’1‘11”1“2”2= kV2k#1k¥iur2+ k#ekH 1k Py P2+ kF2k P2k P iy sl 4+ kt2k 2k A1y vL
Ti‘zl"l/‘Z”Z: KkH2KkV2KkH1k V1
T‘l’“éVlf‘Z”Z: kH1k i gh2ar2+ kHek 2 gt
Ti‘i”l"‘Z”Z: (K"1uk1+ kH1ut) gHava+ (K 2uke+ k#2u”2) phava

We have extended the hard thermal loop expansion ihis result can be understood in the context of the BRST
order to obtain theT? and the logarithmic contributions, identities, using the results of Appendix C. It is remarkable
which are yielded respectively by the terms of degrek  that though thisT? contribution is gauge dependent, it is
and —3 in [g| (terms of degree-2 in || are absent due to transversal toX (Orare A
the symmetryg— —q) from the expansion of the integrand It is straightforward to obtain the explicit results for the
in expressions like Eq(A6) in the region of large values of angular integrals in Eq43.3), (3.6) and(3.7) in terms of a
|g|. After a long computation we have been able to find thetensor basis such as the one shown in the Table I. Using the

following compact expression for tHE? contribution: following decomposition:
14

T (K0 f dOfrare(k,Q)=2, ¢(ku T2 (3.9

212
(0) 0) oS . . :
2 {45#1V1M2u2 S( lea'lp Smmzvz where f#171#272(k,Q) is a function of degree 2 or 0 iQ
respectively for the leading* or the T? contributions, the
+(1—§)[S§?1)V1M2V2+ Sﬂlylpgl p”"‘SS}\,SMZ,,Z 1, coefficientsc;(k,u) are obtained contracting both sides of

Eq. (3.9 with each of the 14 tensors of Table I. The solution
B9 of the resulting linear system of 14 equations is given in
terms of integrals likefdQ(k-Q)", which can be easily

where evaluated.
In the case of the logarithmic contributions the resulting
dQ [4Q°Q7 7+ 4Q Q%P7 — 8QPQ* 70 angular integralg'dQ) can all be parametrized in leorentz
P f v { K-Q)2 covariantway in terms of the 5 tensofg1"1#2"2, T41"1#2"2,

Tpisez TNk TIMK2"2 The result can be expressed

_ k_2 QP QUQ'Q’ (3.6) in terms of theT =0 graviton self-energj15] in the follow-
2 (k-Q)* ' ing way:
and e, (kw=logMI:, (K,  (3.10
pono_ [ 99 QPQ PN+ QMNQoyr” wherelI}, , , , (K) is the residue of the ultraviolet diver-
! =f 4n (k-Q)? .7 gentT=0 contrlbutlon which is obtained from the calcula-

tion in n=4-—2¢ dimensions. The fact that both the @g(
Using Eq.(2.5) and the structure of Eq3.5) we immedi- and the ultraviolet divergent contributions have the same
ately conclude that structure has been also verified for the two- and four-point
functions in QED[16] and for the two- and three-point func-
tions in Yang-Mills theorie§17]. These results are special

(0)pivy A T2
X Aol examples of the rather general arguments presentgtBin

KV M2V2

(k,u)=0. (3.9
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From the results for the thermal one- and two-gravitoncomplicated Feynman rules where the gauge fixing term
functions we can write the following expression for ther-  from Eq.(2.1) would contribute to all the-graviton vertices.
mal effective action

IV. THE GRAVITON DISPERSION RELATIONS

Sterm[g]zrwh“"(o)Jrf d*kh#1"1(k) The thermal graviton self-energy has been employed in
order to investigate the propagation of gravitational waves in
XLy o, (KON#272(=K) -+ . (3.1D)  a plasmd4]. This can be done studying the poles of the full

graviton propagatofdispersion relationswhich is obtained
Here we will use Eq(3.11) in order to derive the expressions from the effective action
for the new one- and two-graviton functions which arise
when one uses the graviton representation

S9]1=Sclg]+ Stix[ 9]+ Siernl 9] (4.9)
Qur= 7]/”,-1— 5g,w. (3-12)

) ) . i whereSg[g] is the Einstein action$;,[ 9] is the gauge fix-
The cprrespondlng_expressmns vy|ll be gmployed in thq‘ng term andSi.,,{g] is given by Eq.(3.1D. In this section
analysis performed in the next section. Using E@s3) and  \ye shall apply the results for the graviton self-energy up to
(3.12 one obtains the following relation for the graviton {he subleadingl'? contributions in order to investigate the
fields in the two representations: gauge dependence of the dispersion relations.

Since the tadpole contribution 8.,/ g] yields a non-

1 . 1 . N zero energy-momentum tensor in the Einstein equation
Kh,u,V: - 5g,u,v+ E 5ga77,uv_ E 5gaég,u,v+ 5g/.¢agv

o3g] _
5g,uv

I
+ g (5ga) Nuv™ Z 5ga 5gﬂa77p,v+' . 0, (42)

(3.13
. ) ) a self-consistent calculation of the full graviton propagator
Inserting Eq.(3.13 into Eq. (3.11) and using the traceless has to take into account@urved backgroundo that
property ofl",, [cf. Eq.(3.1)], we obtain

_ ~(0)
~ g v_g 1/+ 59 v (43)
Sterrl 91=T,,,69*"(0) + J d*kagr1i(k) aeTen e

- whereg() is the solution of the Einstein equati¢4.2) and

MoVo( e
XH“l"l“zvz(k) 9" (k) -, (314 89, is themetric fluctuation From the corresponding sec-
ond order variation of the effective action
where
[p=-T,, (3.19 .
o #Sl91=— 5 [ ¢TI0y, Presg, .,

(4.9

ﬁm”wz"z(k,u)
the graviton propagator can be obtained taking the inverse of
Pl‘-l"l#Z’/Z_
The contributions td?#1”1#2”2 from the first two terms in
Eqg. (4.1) are well known[4,19,20. They involve compo-
nents of the Riemann and Ricci tensors and the scalar curva-
ture. Restricting the analysis to a metric background which is
conformally flat the components of Riemann tensor can be
expressed only in terms of the Ricci tensor and the scalar
curvature. Since EQg.(3.1) yields a traceless energy-
— vz phake—Vike phtave— T H1V2 pl1ke || momentum tensor, the Einstein equati@) (with vanish-
ing cosmological constantmplies that the scalar curvature
(3.16 is zero and that the Ricci tensor is proportional to E1).
Usinggeodesic normal coordinatele thermal contributions
We remark that while the derivation of E(3.16 is rather to P*1*1#2"2 can be obtained from Eq(3.14) After a
simple and general, a direct calculationldf1*1#2"2(k), on  straightforward tensor algebra one obtains the following ex-
the other hand, would involve the manipulation of morepression:

=H#1V1M2V2(k,u)_% IT#171e afy]MZVZ

1
+IIr272%  pHavi— 5 ]‘[aaﬂ ﬁnﬂlVln/’“ZVZ

+ [H1viphava [ H2V2 phiVl— [ H1Kk2 p?1v2

085012-5
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Pravirev2(k u) = [ [ ( 1— %) (pH1v2kVikre— pHivikiekP2) + % 1— 2%5) pH1viyghar2k? — % pH1H2 pr1vek?
1 14 14 14 1 14 12 14
— 87TGP § n 1M2(4u1ulu 2— 77/"“1 2) =+ 6 77’“'1 l(4u1u‘2u 2— 771U‘2 2)

+ (symmetrization undefu,« v,)

+ (symmetrization undetu« vl)} — 1677Gl:["1"1“2”2(k, u,

4.9
|
wherell#1"1#2"2 js given by Eq.(3.16 with the leading and Ca=2Cq
the subleading high-temperature contributions from
[1#171#2%2 given respectively by Eq$3.3) and(3.5).
Because of the coordinate invariance of the problem we k2—(k-u)?
have to impose physical constraints on the metric fluctua- Cg=2|Cy+ e cz) (4.9

tions. The imposition that the spin one and spin zero degrees
of freedom do not propagate constraints the metric perturba-

tions 49, to be transverse and traceless, respectiy2ly 4 K2—(Kk-u)?
These conditions imply that we only have to consider the Cc=2|Ci+5——>—¢C,
transverse and traceless componentssP¢*) 1 in the lin- 3 k

ear response equation 1 (k2= (k-u)?)?

37 9z %)
8 ap= — 16mG(PArY) = 15THY, (4.6 . _ . o
It is interesting to note that the subleading contributions to

the graviton self-energy are independent of the graviton rep-

An eXp|ICIt bf”‘S'S of transverse tracele@s) tensors can be resentation. This property is satisfied because these contribu-
found imposing the TT conditions on a general linear com-, ~

i M1VIMRV, M1VifQV -
bination such as the one on the right hand side of (B®). 222?’;0'1: d;ej d2 ;V:ngelg flrolmz ZE&a\llg trhe:ta;ne;' fﬁgmpt%e
It is also convenient to choose these tensors as being ide ' ’ ' P

potent and orthogonal to each other. This leads to the foIIowr‘?"’ldeISe cont'nbutlonS Wh'ChV ha\V/e an e.xiét behavpr. The
. } terms involving traces dfl #1"1#2"2 gre either proportional to
ing set of TT tensors: N N
n*11 or »#2”2 or both. Such terms have no components
along any of the first 3 tensors of Table I, so that they give
14 no contribution to any of the coefficients, i =1, 2, 3 which
T2 > ¢, Trmera, |=AB,C, (4.7  appearin Egs(4.9).
i=1 ! We have now all the basic quantities which are needed in
order to expres®#171#2”2 in the basis of TT tensors as fol-

where the coefficients;; are given in the Table IL. lows:

This result is in agreement with the one obtained by
Rebhan in Refl4] (except for a small misprint in the 9th line
of the 2nd row in Table ). As a simple checkup of this
result we note that at zero temperature there is only one TT 14
tensor given by +CCT,IZ1V1M2V2+2 CiTill-lVl#zVZ. (41@

i=4

PH1VIH2V2 = CATX1V1M2V2+ CBTX1V1M2V2

7#6‘1”1#2"2: 7;"-1"1#2’/2+ fzgl"l//-z”z_’_/]gl’/ll’-z"z, (48) The inverse

so that in the Table Il the lines 1, 4, 8, 12 and @hich (P"l”l"z’VZ)*l:d,ﬂ}\#1
gives the coefficients of the Lorentz covariant tensors in the

Table ) must add to a Lorentz scalésr a pure numberand

all the other lines must add to zero. Once we know a certain +dc77w1vlnzvz+;4 diTi,u1V1M2V2

set of coefficients; in the basis given by Table | and the

explicit form of the TT tensors given by E(.7) a straight- (4.1
forward calculation gives the following result for the coeffi-

cients in the basis of TT tensors: can be determined from the relation

+dBTA#1

ViMaVa V1MoV

14
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TABLE Il. Components of the transverse traceless tensors.

i Ch, Cp, Cc,
1 1 0 0
2
) 1 K 1 K 0
2 (k-u)?—12 - 2(k-u2—K2
3 1 (k2)2 ) (k2)2 3 (k2)2
2((k-u)?—k?)? (kw2 -Kk3)? 2 ((k-u)>~k??
4 _E 0 E
2 6
2 2
5 Lk 0 1_ K
2 (k-u)’—K? 2 (k-u)’—k?
1 k-u 1 k-u
6 _Z - - 0
2 (k-u)®>—k? 2 (k-u)’>—k?
. 1 k%-u ) k?k-u 3 k%-u
T2 [u R ka7 2 [u Ry
1 1 (k-u)?
8 - N2 k21 _Z 0
5 ((kew)*=k% 2 K((k-u)>—K?)
9 1 2(k-u)?—k? ) (k-u)? 1 2(k-u)2+K?
2 ((k-u)?=k?? T (k-u)2-Kk?)? 2 ((k-u)?>~k??
1 k2 1 3(k-u)?+k? 3 (k-u)?
10 - - -7
2 ((k-u)*—k*? 2 ((k-u)*—k?? 2 ((k-u)*~k??
1 1 k-u (k-u)?+kdk-u 1 2(k-u)?>+k?>k-u
T2 (kK7 (k07— K7 T2 Rk 0k
1 (k-u)? 1 4(k-u)*+4(k-u)?k?+ (k?)?
12 Z(K-u)2—K2)~2 I S S
2 ((k-u)*=k?) 2k2((k~u)2—k2)2 (K)2((k-u)2—K2)?
1 1 2(k-u)?+k?
13 — 2 ((k-u)2—k?)1! 0 Z
3 (kW™= 6 (k- W KD)
1 k-u 1 k-u
14 - 0 _z
2 (k-u)2—Kk2 2 (k-u)2—k?
(P,u,lvlpa)—lppa',uzvzz E (5M25V2+ 5”2 5%42) (4 12 d :i
2 THTve T vt ' AT ca
Using the transversality and idempotencebe“B as well as
the identities 1 1 v poap
dB:C_B 1_§d6C6T6 po‘T6 7?3,41,1/013
Ty o TP7P=0 (i=4,..19,
- de=— 11— dici T4 o TP7PTC s | -
quv  Tpoas 0 for i #6, c CC( (5679 AT po Cu B)
B poli #0 for i=6, (4.149

We can now investigate the poles of the TT components
of the propagator from the solution of the equatiaps 0,
I=A,B,C. Using Egs.(4.9 with c;, ¢, andcg determined
from the decomposition of Ed4.5) in the basis of Table I,
the equations associated with the mode$ andC can be
written respectively in the form

TE ,,TP7*F=0 (i=4,8,10,...,1%

T ,,TP7?=0 (i=4,..,14;1=AB,C), (4.13
we obtain the following result:
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Mode A Mode B Mode C
20 - 20 20
L5 LS 15
10 ®10 O 1o
0.5 0.5 0.5
0 o

0 0.5 10 15 20 0.5 10 15 2.0 0.5 10 15 20
k k k
(a) ) ©

FIG. 3. The dispersion relations for the modes A, B and C in units of-@6)/? for real frequencies and wave vectors. The dashed lines
stand for the leadind* contributions and the full lines represent the inclusion of TResubleading corrections fd& T?=0.01. The light

cone is represented by the diagonal.

167Gp 5 1 1
2_ ST a2
k ) 647TGT21 +2rL 6r>
8k? 1 1
R 2 4 2
+772T2(8r L+2rL 6r 4”
167Gp 2 2 101
2_ S opd L 22 T8
1+647TG-|—21 [( 2r L+3r+9r2)
BT (1-9)
8k? 2
_Er2| _ 4, % 2
+;H( 5r“L 2Lr+3r”,
167wGp 8 281
2_ e 4 _ 2, 27—
k . 6477(31-21 +3r°L r+27r2)
~ 15 (1-9
+ 8K 1—6r2L+3Lr*—r? 4.1
71_21-2( r r r ) ’ ( . 5)
where
k2 ko ko+ K|
2 . =_9 ~
T

The Egs.(4.15 reduce to the Eq96.2) of Ref.[4] in the
special case when the subleading terms proportion@l 6
or k?/T? are neglected.

to this order, one would expect on physical grounds a can-
cellation of the above gauge-dependent terms in the disper-
sion relations.

The solution of the one-loop dispersion relations may then
be obtained from Eqs4.15, by setting the denominators
equal to one. These solutions have been obtained in[ REf.
in the leading high temperature approximation. In order to
illustrate the magnitude of th&2 subleading contributions
let us consider the solution of Eqgl.15 for real values of
ko andk. This corresponds to the propagation of waves sup-
ported by the graviton plasma. In Fig. 3, wheke
=ko/(16wGp)Y? and k=|k|/(167wGp)? we show the nu-
merical solutions corresponding to the mode8 andC and
compare the leading results with the contributions which in-
clude the subleading? corrections. We can see from these
diagrams that for all TT modes, the dispersion curves begin
at a common plasma frequenay, and become asymptoti-
cally parallel to the light cone.

The behavior of the dispersion relation can be determined
analytically in the limiting cases of very small and very large
momenta. Wherk— 0, the common form of the dispersion
relations is given by

_ _\Fz . 224 o2
wp|— IS —7—5’77 .

We see that in the infrared limit, this equation gives a sub-
stantial modification of the free dispersion relation due to the

(4.17

In view of the constraints imposed by the important con-collective phenomena in the plasma. However, in this limit
dition (3.8), the gauge dependent denominators in Eqsk?/T? is of orderGT?, so that the magnitude of the sublead-
(4.15 have a very simple structure. Since we assume thahg terms kept in Eq4.15 becomes of the same order as the
GT?<1, the momentum-independent denominators can bgauge-dependent terms which were disregarded. Conse-
expanded perturbatively. We thus see that all the gauge dejuently, one may expect that the leading two-loop contribu-
pendentT? subleading contributions to the dispersion rela-tions [of order (GT*)(GT?)] will modify the subleading

tions give effectively corrections of orderG(T*)(GT?),

terms given in Eq.(4.17. For this reason, the corrections

which are of the same order as the leading two-loop contriobtained to one-loop order in the infrared limit represent
butions which we have neglected. In a complete calculationly an partial result.
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For large momenta such th|a> 1, the asymptotic forms 4 tieto dz t(g;p)
of the dispersion relations become respectively 9 et 27T N(2) (q-9)'(p-p)’ t(ze=2)),
(A1)
5 256 )
wp= kA+ 1-— #GT wherep=q+k, kg=2m=i, m=0,+1,+2,...,q=(z,q) and
18kA 15

i,j=1,2. This is the most general kind of integral which
contributes to the two-point function when the imaginary
_ = \F time formalism is employed. The generalization to higher
wg=Kg+ 18 point functions is straightforward. The numerattq;p)
comes from the graviton vertices and from the numerator of

o - 32 the free propagator.
De=ke+ \57 1+ 1 wGTZ) (4.18 Since the integration in E§A1) is over all values ofy, it

is more convenient to make the change of variatijes

. L i —q in all the terms ¢~ —2) so that
The ultraviolet limit given by the above relations can be -~

understood by noticing that in this case one probes the +iw+s dz t(q;p)
plasma at small distances, where the medium effects on thel =f d® q N(2)| =1 =7 td< —q|.
. . R . . —je+ 68 277' (QQ)(pp)
free dispersion relations are relatively unimportant. (A2)

From the above dispersion relations, one finds for Ahe

2 2 1,2 i
mode a thermal mass” = w”—k* given by Factorizing the denominators in EGA2) we can write

807w Gp 256 +iets d 1 1
mi=—5— |1~ 35 "GT?|. (4.19 Jd qf " % N(2) j
Cimie 2 (z+]al)" (z+ko+[p])!
On the other hand, the asymptotic behavior of the thermal t(q;p) N
massesn3 andmz is given respectively by (z=|a) (z+ ko—pD7 47 9| (A3)
5 1607Gp The zintegration is now readily performed using the Cauchy
M= N9 |kal; theorem and closing the contour in the right hand side plane
where the only poles are located &¢|q| and z=|p|—
YTrE 32 (ko is a pure imaginary quantity at this stage of the calcula-
2_ p o 2 tion). In this way we obtain
m2 57— |1+ g 7GT >||5C|. (4.20
1 &i*l
—f d3q{ lim ——
) ) i =D 4 g 9
These masses increase linearly wih (so that for large oL
momentak?/T?>GT?). The subleading gauge independent N(do) t(q:p) 1 _ gi—1
corrections to the thermal masses are small, as expected, but X @ot a0 (p- p)J) G-11 lim ErN!
their special form could not have been anticipated. In prin- 01z " do—[d—ko 70

ciple, subleading contributions involving some functions of

|k|/T may have been expected. The above restricted form is X

a consequence of the structure of the dispersion relations

(4.15 which give a nontrivial information on how fast the

asymptotic values of the thermal masses are approached. Performing the change of variablgs—q—k in the second
term of Eq.(A4) we can write

N(do) t(g;p)
(Gotkot[pl) (g-@)'

—q} . (A4)

ACKNOWLEDGMENTS

1 &I*l
— 3
We are grateful to CNPQ, Brazil, for a grant. We would 1= f d 9[ (i=D! ¢ —»Id aqy
like to thank Professor J. C. Taylor for a useful correspon- ‘
dence. N(qo) t(q;p)) 1 _ gt
im =
(Aot 1aD" (p-P)) " (=D g -k, 79b ©
APPENDIX A )

Here we show explicitly how to extend the method of
Barton amplitudes in order to account for the contributions
which arises from the quadratic denominators in the general
gauge free propagator. We illustrate this technique by con- +q<—>—q]. (A5)
sidering the following integral:

N(gp)  t(do.q—k:go+ ko,g))
(qotkota)  (a5—Ig—K[?)'
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Finally, using the propertiN(qo+ ko) =N(qp) and the sym- APPENDIX B
metry g+ —q we obtain The Feynman rules are obtained inserting Ej3) and
the corresponding perturbative expansion of the inverse
i—1
|:_f d%:]{ﬁii_l (\/_ggluv)il: 77,uv_Kh,uv+K2h,uahav
~1(—=1)! 9qp
o | — k3, 4N ogh g, + O(k%)
N(do) t(q;p)> 1 9t (B1)
(dot+laD)’ (p-p)')  (J—1)! ogh* into Eq. (2.1). The contributions of order 0 ir yields the
N t—p: graviton propagator given by EQ.4).
(do) t(—p:q) +ge—q . (AB) The third term in Eq(2.1) yields the following expres-
(@otla)! (p-p)' 4.q=0 sions for the ghost propagator and the graviton-ghost-ghost
vertex:
The special case whén=j=1 gives the known result D%hyos'(k)= 7{(,;/ (B2)
d*q t(q;p)+t(—p;q) h K
=~ j m N(|g|)|: (p p) +q<_)_q:| ’ ))?ngizzﬂré,(kl!kZ 1k3): E [nﬂzﬂs(kZ,LleSvl—'_ k3,ulk2vl)
) T A7)

- ( ﬂ#1M2k1V1+ 77Vl,uzkl,u,l) k2,u,3] .

where the expression inside the bracket is a typical contribu- (B3)

tion to the on-shell forward scattering amplitude. Although  All the graviton self-couplings are generated only from
the derivatives in the general expressi@6) makes it much the first term in Eq(2.1). The corresponding Feynman rules
more difficult to be handled, it is straightforward to deal with for the three- and four-graviton couplings are given respec-
such kind of expressions usingcamputer algebra program  tively by the following expressions:

(ky,kz,k3)

K1ViKoVoH3V3

K
- Z [_ 4k2,u3k3112 7’;/,1,4/,2 7]1/11/3_ k2' k3 7],41,1;;3771/111377;/,21/2—’_ 2k2 k377;L1V2 7]V1V377,LL2;L3

+ 2k2 . k3 77,u1,u.2 771/1/1,3 77V2V3 - 2k2,ulk3vl 77}.L2,LL3 771)21/3_ k2 . k3 77,U,1p.z 771/11/2 7];/,31/3 + k2/.le3V1 77/.LZV2 77,(1,31/3
+ (symmetrization undeu;—v1), (n2ov2), (Hz—v3))]

+permutations of(Ky,i1,v1), (Ko, pz,v5), (Kg,u3,v3), (B4)

2
Y s K1 K2 K Ka) = S [ 2K, K, T o Mg K Ka T o g
=K Ka s Moy Mgpng Myry ™ 2R3, Kawg My i Moy, Mty
+ 2K Ka 0 o0y Migpng Mginy ™ K3 Ka Mg Moy g Mty Mgy
+ 2K3 K g Mo g Mo Moy T K30, K0y Wity Moy iy Mg
=K Ka T Mo vy Mgy Mg ™ 2K300, K, sy i Moy iy Mgy
+ 2Kz KMy Moy vy Mgy Moy
+ (symmetrization unde ;< v1), (o va), (m3—v3), (R4 ua))]

+permutations of(ky,uq,v1), (Ko, po,v2), (Kz,ps,v3), (Ka,pta,pta). (B5)
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As usual, we have energy-momentum conservation at the q+k

vertices, where all momenta are defined to be inwards. v o et T e
W )
APPENDIX C: GRAVITATIONAL 't HOOFT IDENTITIES q

The imaginary time formalism at finite temperature fol-  FIG. 4. The source-ghost Feynman diagram. The full/wave line
lows closely the corresponding formalism B&0. Conse-  on the left represents the external source.
guently, the 't Hooft identities at finit& would be similar to
the ones alf =0, were it not for the presence of 1-particle X, StsP=0, (ox)
tadpole contributiongsuch terms vanish at=0 in the di-
mensional regularization scheméiowever, since the tad-
pole terms are proportional t®*, they do not affect the
identities involving the subleading contributions. To derive

which can be written to second order as

0 vaf _ 1 va,
these, we start from the action X\ ML= — X1, SOmvab, (C4
1= | d*%d*vh A7 By —\)h Using Eq.(2.5), we see that Eq(C4) leads immediately to
f XY N0 Seup™ (X =Yl ) the 't Hooft identity (2.9).

In order to derive Eq(3.8), we shall need to evaluate the
+f d* Ay IF (X)X, n (X—Y) 7N (y)++ . (CL)  tensorX(), which appears in EqC4). This tensor may be
represented by the diagram shown in Fig. 4, where the ghost-
graviton-source vertex is given in the Appendix A of Ref.
[15]. Using the forward scattering amplitude method, we ob-

ain the following structure for th&? contributions toX 1) :

Here S/2# denotes the subleading contributions to the
graviton 2-point function an¥X ,,, represents the tensor gen-
erated by a gauge transformation of the graviton field whicH
is given to lowest order by E@2.6) in the momentum space.
J*¥ is an external source;* represents the ghost field and (1)T2_ (0)y 2 T2 5—¢
--+ stand for terms which are not relevant for our purpose. pon =Ky K 487 4
The 't Hooft identity involving the graviton self-energy func-

tion is a consequence of the Becchi-Rouet-Stora-Tyutin q k,Q\+Q,k,  k*Q,Q,
(BRST) invariance of the actiot: X | dQ| 27+ k-Q (k-Q)2 )
f fo 0! ", - (C5)
X 53#(x) oh,(x) (€2

. . .o 2,
To lowest order, Eq(C2) is equivalent to the relation Eq. Using this form and Eq(2.5), it is clear thatX()l" is or-
(2.5). In general, Eq(C2) implies the generalized 't Hooft thogonal toSOxral 5o that the relation(3.8) follows at
identity once from the identitfC4).
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