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Structure of the graviton self-energy at finite temperature
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Instituto de Fı´sica, Universidade de Sa˜o Paulo, Sa˜o Paulo, 01498 SP, Brazil

~Received 20 March 1998; published 16 September 1998!

We study the graviton self-energy function in a general gauge, using a hard thermal loop expansion which
includes terms proportional toT4, T2 and log(T). We verify explicitly the gauge independence of the leading
T4 term and obtain a compact expression for the subleadingT2 contribution. It is shown that the logarithmic
term has the same structure as the ultraviolet pole part of theT50 self-energy function. We argue that the
gauge-dependent part of theT2 contribution is effectively canceled in the dispersion relations of the graviton
plasma, and present the solutions of these equations.@S0556-2821~98!03018-5#

PACS number~s!: 11.10.Wx
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I. INTRODUCTION

When the temperatureT is high compared with the typica
momentum scale but well below the Planck scale, all
n-graviton thermal Green functions can be computed in
one-loop approximation using the hard thermal loop exp
sion. There have been many investigations where this
proach has been employed@1–6#. An important property
which is now well established is the gauge invariance of
leading high temperature contributions of alln-graviton ther-
mal Green functions. The explicit from of these contributio
can be obtained using the equivalence which exists betw
the formalism of the Boltzmann transport equation and
high temperature limit of the thermal Green functions in fie
theory @7#. Using this approach~which is explicitly gauge
invariant! one can easily show that the leading part of
n-point one-loop thermal Green functions is proportional
T4 @8#. These results have also been obtained by stan
Feynman diagrammatic calculations in the Feynman
Donder gauge for the one- and two-graviton functions@4# as
well as for the three-graviton function@9#.

One of the interesting physical applications of the on
and two-graviton functions is the study of the dispersion
lations @4# which follow from linear response theory@10#.
Since the relevant physical quantities are obtained from
polesof the propagator, it is important to verify the gaug
independence of this procedure. While this is automatic
satisfied by the leading high temperature contributions,
inherently gauge dependentsub-leading contributionsto the
thermal Green functions require a more detailed invest
tion. A similar situation occurs in the case of the Yang-Mi
theory where it is known that a gauge independent se
dispersion relations can be obtained from the gauge de
dent thermal two-gluon function@3,11#. As far as we know,
in contrast with the case of the Yang-Mills theory, a gau
independence proof of the dispersion relations in quan
gravity beyond the leading order is still missing.

The purpose of the present paper is to investigate
problem in the case of gravity using the standard Feynm
diagrammatic approach. We will compute the 1- and
graviton functions to one-loop order up to sub-leading c
tributions, in a class of general gauges.@We have neglected
the corrections associated with the curvature of space, s
these are of magnitude (GT4)(GT2), which are formally of
0556-2821/98/58~8!/085012~11!/$15.00 58 0850
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the same order as the two-loop contributions.# We employ
the imaginary time formalism@12# and express the one-loo
thermal Green functions in terms of on-shell forward scatt
ing amplitudes~the ‘‘Barton amplitude’’! @13#, properly gen-
eralized in order to account for the quadratic denominat
which arises in the free graviton propagator when a gen
gauge fixing term is employed@14# ~see also Appendix A!.
This approach enables us to explore some of the gen
properties of theexactgraviton self-energy without having to
carry out explicitly the nontrivial spatial momentum integr
tions. It is also much more straightforward to perform t
hard thermal loop expansion when we start from the forw
scattering amplitudes. Using this approach we were abl
obtain explicit results for theT2 and logarithmic contribu-
tions to the graviton self-energy.

Unlike the leading high temperature terms, for which t
gauge independence is confirmed by our calculation, the s
leading contributions are gauge dependent. These contr
tions will be employed in the study of the dispersion re
tions for the transverse and traceless gravitational modes@4#.

This paper is organized as follows: In Sec. II we pres
the Lagrangian and the basic definition of the graviton fi
from which the Feynman rules are derived. We also disc
the identities which follows from the gauge invariance of t
theory. In Sec. III the main results of the calculation of t
one- and two-graviton functions up to the logarithmic co
tributions is presented. A very compact expression for theT2

contribution is obtained and we verify that the logarithm
contribution is proportional to the ultraviolet pole part of th
T50 two-graviton function. We also derive the gener
transformation of the two-graviton function under a chan
of graviton representation. In Sec. IV we verify explicit
that the gauge dependent term in the one-loop subleadinT2

contributions to the dispersion relations may be effectiv
neglected, since it is of the same order (G2T6) as the leading
two-loop contributions. We then present the solutions
these equations, which include corrections of orderT2 to the
leadingT4 contributions, describing the physical modes f
the propagation of waves in a graviton plasma.

II. FEYNMAN RULES AND IDENTITIES

The Feynman rules for the graviton propagator and s
interactions vertices are obtained from the following und
lying Lagrangian:
© 1998 The American Physical Society12-1
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k2 A2gR1
1

k2j
hmn~]rA2ggrm!~]sA2ggsn!

1]mxn

dA2ggmn

del hl; k[A32pG, ~2.1!

whereR is the Ricci scalar,G is the Newton constant and th
parameterj defines a family of gauges.~j51 is the Feyn-
man gauge andj50 is the Landau gauge!. The quantitiesxn

and hl are theghost fieldsand the functione(x) is the in-
finitesimal generator of coordinate~gauge! transformations

xm→xm1em~x!. ~2.2!

The calculations in quantum gravity are conveniently p
formed using thegraviton field hmn defined in terms of the
tensorgmn as

A2ggmn[hmn1khmn, ~2.3!

wherehmn is the Minkowski metric.
The Feynman rules can be obtained in a straightforw

way substituting~2.3! into ~2.1! and performing a perturba
tive expansion ink. The 0th order terms are quadratic in th
graviton field and yield the following expression for th
graviton propagator:

Dm1n1m2n2

~0! ~k!

5
21

2k2 H hm1m2
hn1n2

1hn1m2
hm1n2

2hm1n1
hm2n2

1
~12j!

~k2!2 ~2km1
kn1

hm2n2
12km2

kn2
hm1n1

2hm1n1
hm2n2

k22km1
km2

hn1n2
2kn1

km2
hm1n2

2km1
kn2

hn1m2
2kn1

kn2
hm1m2

!J . ~2.4!

In Appendix B we give all the other relevant Feynman ru
employed in this work.

The choice of the graviton field parametrization given
Eq. ~2.3! restricts the gauge parameter dependence onl
the propagator~2.4!, since in this case the second term in E
~2.1! is exactly quadratic in the graviton fieldh. This is simi-
lar to the generallinear gauges in Yang-Mills theories.
Therefore, the gauge dependence of the Green funct
computed from these Feynman rules can be traced bac
Eq. ~2.4!.

The leading high temperature contributions of all on
particle irreducible thermal Green functions are related
each other through treelike Ward identities in the same w
as the basic tree vertices@3,5,8#. These hard thermal loop
identities have been verified for both Yang-Mills theori
and gravity and generalized to any gauge theory whose
erators form a closed algebra@3#. For our present purposes
will be sufficient to consider the identity involving the two
point function. A simple example is provided by the follow
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ing tree Ward identity, arising from the invariance of th
pure Einstein actionSG[2/k2*d4xA2gR under the trans-
formation given by Eq.~2.2!,

Xm1n1l
~0! ~k!S~0!m1n1m2n2~k!50, ~2.5!

where

Xmnl
~0! ~k!5kmhnl1knhml2klhmn , ~2.6!

is the tensor generated from the transformation of the gr
ton field under Eq.~2.2! and

Sm1n1m2n2

~0! ~k!52
k2

2
~hm1m2

hn1n2

1hm1n2
hn1m2

2hm1n1
hm2n2

!

1
1

2
~km1

km2
hn1n2

1km1
kn2

hn1m2

1kn1
kn2

hm1m2
1kn1

km2
hm1n2

! ~2.7!

comes from the quadratic term in the action without t
gauge fixing term~it is the inverse of the propagator in th
limit j→`!.

The tree-like identity which holds for the high temper
ture limit of the two-graviton function would be identical t
Eq. ~2.5! if the one-graviton function~the tadpole!, shown in
the diagrams in Fig. 1, were zero. The modification intr
duced by the tadpole changes the right hand side of Eq.~2.5!
to a nonzero quantity whenSm1n1m2n2

(0) (k) is replaced by the

leading high temperature contribution ofPm1n1m2n2(k,u),
given by the diagrams in Fig. 2~u is a timelike normalized
four-vector representing the local rest frame of the plasm!.
This contrasts with the analogous situation in the case
Yang-Mills theories where the antisymmetry of the gro
structure constants trivially makes the tadpole to vanish. A
consequence of the nonvanishing tadpole, the general B
identities will not hold for theexactfinite temperature gravi-
ton self-energy. However, as we will see in the next secti
the tadpole diagrams can be computedexactly, yielding a
result proportional to T4. Therefore, if we split
Pm1n1m2n2(k,u) as

Pm1n1m2n2~k,u!5P leading
m1n1m2n2~k,u!1Psub

m1n1m2n2~k,u!,
~2.8!

FIG. 1. Diagrams contributing to the one-graviton functio
Wavy lines represent gravitons and dashed lines represent gho
2-2
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FIG. 2. Diagrams contributing to the two-graviton function. Wavy lines represent gravitons and dashed lines represent gh
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the BRST identities derived in Appendix C will hold for th
subleading contributionsPsub

m1n1m2n2(k,u), so that the follow-
ing identity is satisfied:

Xm1n1l
~0! ~k!Psub

m1n1m2n2~k,u!Xm2n2d
~0! ~k!50. ~2.9!

This identity is analogous tokmknPmn
QCD50, wherePmn

QCD is
the exact gluon self-energy@11#. Since all the gauge param
eter dependence is restricted to the subleading contributi
these identities have an important role in the cancellation
the gauge dependence in the dispersion relations.

III. THE ONE- AND TWO-GRAVITON FUNCTIONS
IN A GENERAL GAUGE

In this section we will present the details of the calcu
tion of the one- and two-graviton functions. Let us first co
sider the contributions from the two tadpole diagrams in F
1. The most involved diagram is the one shown in Fig. 1~a!,
since both the 3-graviton vertex and the general gauge pr
gator are involved. Using Eq.~B4! and the propagator~2.4!,
the straightforward contraction of indices yields a res
which is independent of the parameter (12j). Therefore,
the resulting expression is identical to what is obtained in
Feynman–de Donder gauge involving only the usualqua-
dratic denominators. Using the Eq.~A1! in the simple case
wheni 51 andj 50 the following result for the one-gravito
function is readily obtained:

Gmn52k
1

~2p!3 E
0

` uq
>
u2duq

>
u

2uq
>
u

1

euq> uQ•u/T21
E dV2QmQn

52krE dV

4p
QmQn

5k
r

3
~hmn24umun!; r[

p2

30
T4, ~3.1!

where*dV denotes the angular integral and the four vec
Qm is on-shell with components given byQm5(1,q

>
/uq
>
u).

The diagrams contributing toPm1n1m2n2(k,u) are shown
in Fig. 2. The contributions associated with each of th
diagrams will involve integrals like the one shown in E
~A6!. From the structure of the graviton propagator given
Eq. ~2.4! we can see that the diagram in Fig. 2~a! is such that
each of its terms will involve integrals withi, j 51,2, while
in the case of the diagram shown in Fig. 2~b!, all the corre-
sponding integrals have the form of the first term of Eq.~A6!
with j 50 andi 51,2. In the case of the ghost loop diagra
shown in Fig. 2~c!, all the terms will involve integrals with
08501
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i 5 j 51. Let us first consider the leading high temperatu
behavior of these integrals. In this limit, we can perform
hard thermal loop expansion of the integrand such that
terms withi , j .1 will all be subleading. For the terms wit
i , j 51 we use expansions such as

1

~q1k!2U
q250

5
1

2

1

q•k
2

1

4

k2

~q•k!21
1

8

~k2!2

~q•k!3 1¯ .

~3.2!

The casei 51, j 50 @from the diagram in Fig. 2~b!# is similar
to the tadpole diagram giving an exactT4 contribution. In
this way, we obtain the following result for the leading b
havior of the graviton self-energy:

Pm1n1m2n2

leading ~k,u!

5k2
r

2 E dV

4p
S km1

Qn1
Qm2

Qn2

k•Q

1
kn1

Qm1
Qm2

Qn2

k•Q
1

km2
Qn1

Qm1
Qn2

k•Q

1
kn2

Qn1
Qm2

Qm1

k•Q
2

k2Qm1
Qn1

Qm2
Qn2

~k•Q!2 D .

~3.3!

It is worth mentioning that though a naı¨ve power counting
would allow for a gauge parameter dependence from
third term in the second line of Eq.~2.4!, the final result~3.3!
is gauge independent as one would expect on more gen
grounds@3#. Combining the Eqs.~2.8!, ~2.9! and ~3.3! we
obtain the following identity for the exact self-energy:

Xm1n1

~0!
l~k!Pm1n1 m2n2~k,u!Xm2n2

~0!
d~k!

52k2k2rE dV

4p
QlQd522k2kGld , ~3.4!

where in the last term we have used Eq.~3.1!. Since the
integrand in the right hand side of the above expression is
elementary expression without denominators, the sa
should be true for its left hand side, up to terms which wou
vanish after integration. Our calculation shows that, in fa
the expression obtained from the diagrams in Fig. 2 is s
that the exact integrand ofXm1n1

(0)
lPm1n1 m2n2Xm2n2

(0)
d does

not involve any denominators, being identical to the in
grand in the right hand side of Eq.~3.4!.
2-3
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TABLE I. A basis of 14 independent tensors.

T1
m1n1m2n25hm2n1hn2m11hm2m1hn2n1

T2
m1n1m2n25um1(un2hm2n11um2hn2n1)1un1(un2hm2m11um2hn2m1)

T3
m1n1m2n25um2un2um1un1

T4
m1n1m2n25hm2n2hm1n1

T5
m1n1m2n25um1un1hm2n21um2un2hm1n1

T6
m1n1m2n25un2(kn1hm2m11km1hm2n1)1kn2(un1hm2m11um1hm2n1)

1um2(kn1hn2m11km1hn2n1)1km2(un1hn2m11um1hn2n1)

T7
m1n1m2n25kn1um2un2um11km1um2un2un11kn2um2um1un11km2un2um1un1

T8
m1n1m2n25kn2kn1hm2m11kn2km1hm2n11km2kn1hn2m11km2km1hn2n1

T9
m1n1m2n25km1kn1um2un21km2kn2um1un1

T10
m1n1m2n25(kn2um21km2un2)(kn1um11km1un1)

T11
m1n1m2n25kn2km1kn1um21km2km1kn1un21km2kn2kn1um11km2kn2km1un1

T12
m1n1m2n25km2kn2km1kn1

T13
m1n1m2n25km1kn1hm2n21km2kn2hm1n1

T14
m1n1m2n25(kn1um11km1un1)hm2n21(kn2um21km2un2)hm1n1
,
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We have extended the hard thermal loop expansion
order to obtain theT2 and the logarithmic contributions
which are yielded respectively by the terms of degree21
and23 in uq

>
u ~terms of degree22 in uq

>
u are absent due to

the symmetryq↔2q) from the expansion of the integran
in expressions like Eq.~A6! in the region of large values o
uq
>
u. After a long computation we have been able to find

following compact expression for theT2 contribution:

Pm1n1m2n2

T2
~k,u!

5
k2T2

12
$4Sm1n1m2n2

~0! 1Sm1n1rs
~0! I F

rsldSldm2n2

~0!

1~12j!@Sm1n1m2n2

~0! 1Sm1n1rs
~0! I G

rsldSldm2n2

~0! #%,

~3.5!

where

I F
rsld[E dV

4p F4QrQshld14QlQdhrs28QrQlhsd

~k•Q!2

2
k2

2

QrQsQlQd

~k•Q!4 G ~3.6!

and

I G
rsld[E dV

4p FQrQshld1QlQdhrs

~k•Q!2 G . ~3.7!

Using Eq. ~2.5! and the structure of Eq.~3.5! we immedi-
ately conclude that

X~0!m1n1 l~k!Pm1n1m2n2

T2
~k,u!50. ~3.8!
08501
in

e

This result can be understood in the context of the BR
identities, using the results of Appendix C. It is remarkab
that though thisT2 contribution is gauge dependent, it
transversal toX(0)m1n1 l.

It is straightforward to obtain the explicit results for th
angular integrals in Eqs.~3.3!, ~3.6! and ~3.7! in terms of a
tensor basis such as the one shown in the Table I. Using
following decomposition:

E dV f m1n1m2n2~k,Q!5(
i 51

14

ci~k,u!Ti
m1n1m2n2, ~3.9!

where f m1n1m2n2(k,Q) is a function of degree 2 or 0 inQ
respectively for the leadingT4 or the T2 contributions, the
coefficientsci(k,u) are obtained contracting both sides
Eq. ~3.9! with each of the 14 tensors of Table I. The solutio
of the resulting linear system of 14 equations is given
terms of integrals like*dV(k•Q) r , which can be easily
evaluated.

In the case of the logarithmic contributions the resulti
angular integrals*dV can all be parametrized in aLorentz
covariantway in terms of the 5 tensorsT1

m1n1m2n2, T4
m1n1m2n2,

T8
m1n1m2n2, T12

m1n1m2n2, T13
m1n1m2n2. The result can be expresse

in terms of theT50 graviton self-energy@15# in the follow-
ing way:

Pm1n1m2n2

log ~k,u!5 log~T!Pm1n1m2n2

e ~k!, ~3.10!

where Pm1n1m2n2

e (k) is the residue of the ultraviolet diver

gent T50 contribution which is obtained from the calcula
tion in n5422e dimensions. The fact that both the log(T)
and the ultraviolet divergent contributions have the sa
structure has been also verified for the two- and four-po
functions in QED@16# and for the two- and three-point func
tions in Yang-Mills theories@17#. These results are specia
examples of the rather general arguments presented in@18#.
2-4
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From the results for the thermal one- and two-gravit
functions we can write the following expression for thether-
mal effective action

Sterm@g#5Gmnhmn~0!1E d4khm1n1~k!

3Pm1n1m2n2
~k!hm2n2~2k!1¯ . ~3.11!

Here we will use Eq.~3.11! in order to derive the expression
for the new one- and two-graviton functions which ari
when one uses the graviton representation

gmn[hmn1dgmn . ~3.12!

The corresponding expressions will be employed in
analysis performed in the next section. Using Eqs.~2.3! and
~3.12! one obtains the following relation for the gravito
fields in the two representations:

khmn52dgmn1
1

2
dga

ahmn2
1

2
dga

adgmn1dgmagn
a

1
1

8
~dga

a!2hmn2
1

4
dgabdgbahmn1¯ .

~3.13!

Inserting Eq.~3.13! into Eq. ~3.11! and using the traceles
property ofGmn @cf. Eq. ~3.1!#, we obtain

Sterm@g#5Ǧmndgmn~0!1E d4kdgm1n1~k!

3P̌m1n1m2n2
~k!dgm2n2~2k!1¯ , ~3.14!

where

Ǧmn52Gmn ~3.15!

and

P̌m1n1m2n2~k,u!

5Pm1n1m2n2~k,u!2
1

2 S Pm1n1a
ahm2n2

1Pm2n2a
ahm1n12

1

2
Pa

a
b

bhm1n1hm2n2

1Gm1n1hm2n21Gm2n2hm1n12Gm1m2hn1n2

2Gn1n2hm1m22Gn1m2hm1n22Gm1n2hn1m2D .

~3.16!

We remark that while the derivation of Eq.~3.16! is rather
simple and general, a direct calculation ofP̌m1n1m2n2(k), on
the other hand, would involve the manipulation of mo
08501
e

complicated Feynman rules where the gauge fixing te
from Eq.~2.1! would contribute to all then-graviton vertices.

IV. THE GRAVITON DISPERSION RELATIONS

The thermal graviton self-energy has been employed
order to investigate the propagation of gravitational waves
a plasma@4#. This can be done studying the poles of the f
graviton propagator~dispersion relations! which is obtained
from the effective action

S@g#5SG@g#1Sf ix@g#1Sterm@g# ~4.1!

whereSG@g# is the Einstein action,Sf ix@g# is the gauge fix-
ing term andSterm@g# is given by Eq.~3.11!. In this section
we shall apply the results for the graviton self-energy up
the subleadingT2 contributions in order to investigate th
gauge dependence of the dispersion relations.

Since the tadpole contribution toSterm@g# yields a non-
zero energy-momentum tensor in the Einstein equation

dS@g#

dgmn
50, ~4.2!

a self-consistent calculation of the full graviton propaga
has to take into account acurved backgroundso that

gmn5gmn
~0!1dgmn , ~4.3!

wheregmn
(0) is the solution of the Einstein equation~4.2! and

dgmn is themetric fluctuation. From the corresponding sec
ond order variation of the effective action

d2S@g#52
1

2 E d4xA2g~0!dgm1n1
Pm1n1m2n2dgm2n2

,

~4.4!

the graviton propagator can be obtained taking the invers
Pm1n1m2n2.

The contributions toPm1n1m2n2 from the first two terms in
Eq. ~4.1! are well known@4,19,20#. They involve compo-
nents of the Riemann and Ricci tensors and the scalar cu
ture. Restricting the analysis to a metric background whic
conformally flat, the components of Riemann tensor can
expressed only in terms of the Ricci tensor and the sc
curvature. Since Eq.~3.1! yields a traceless energy
momentum tensor, the Einstein equation~4.2! ~with vanish-
ing cosmological constant! implies that the scalar curvatur
is zero and that the Ricci tensor is proportional to Eq.~3.1!.
Usinggeodesic normal coordinatesthe thermal contributions
to Pm1n1m2n2 can be obtained from Eq.~3.14! After a
straightforward tensor algebra one obtains the following
pression:
2-5
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Pm1n1m2n2~k,u!5H F S 12
1

j D ~hm1n2kn1km22hm1n1km2kn2!1
1

2 S 12
1

2j Dhm1n1hm2n2k22
1

2
hm1m2hn1n2k2

28pGrS 1

3
hn1m2~4um1un22hm1n2!1

1

6
hm1n1~4um2un22hm2n2! D

1~symmetrization underm2↔n2!G1~symmetrization underm1↔n1!J 216pGP̌m1n1m2n2~k,u!,

~4.5!
m

w
ua
re
rb

th

m

e
ow

b
e

T

th

ta
e

fi-

to
ep-
ribu-

ts
ive

in
l-
whereP̌m1n1m2n2 is given by Eq.~3.16! with the leading and
the subleading high-temperature contributions fro
Pm1n1m2n2 given respectively by Eqs.~3.3! and ~3.5!.

Because of the coordinate invariance of the problem
have to impose physical constraints on the metric fluct
tions. The imposition that the spin one and spin zero deg
of freedom do not propagate constraints the metric pertu
tions dgmn to be transverse and traceless, respectively@2#.
These conditions imply that we only have to consider
transverse and traceless components of (Pabmn)21 in the lin-
ear response equation

dgab5216pG~Pabmn!21dTmn. ~4.6!

An explicit basis of transverse traceless~TT! tensors can be
found imposing the TT conditions on a general linear co
bination such as the one on the right hand side of Eq.~3.9!.
It is also convenient to choose these tensors as being id
potent and orthogonal to each other. This leads to the foll
ing set of TT tensors:

TI
m1n1m2n25(

i 51

14

cI i
Tm1n1m2n2, I 5A,B,C, ~4.7!

where the coefficientscIi are given in the Table II.
This result is in agreement with the one obtained

Rebhan in Ref.@4# ~except for a small misprint in the 9th lin
of the 2nd row in Table II!. As a simple checkup of this
result we note that at zero temperature there is only one
tensor given by

T0
m1n1m2n25TA

m1n1m2n21TB
m1n1m2n21TC

m1n1m2n2, ~4.8!

so that in the Table II the lines 1, 4, 8, 12 and 13~which
gives the coefficients of the Lorentz covariant tensors in
Table I! must add to a Lorentz scalar~or a pure number! and
all the other lines must add to zero. Once we know a cer
set of coefficientsci in the basis given by Table I and th
explicit form of the TT tensors given by Eq.~4.7! a straight-
forward calculation gives the following result for the coef
cients in the basis of TT tensors:
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e
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cA52c1

cB52S c11
k22~k•u!2

k2 c2D ~4.9!

cC52S c11
4

3

k22~k•u!2

k2 c2

1
1

3

„k22~k•u!2
…

2

~k2!2 c3D .

It is interesting to note that the subleading contributions
the graviton self-energy are independent of the graviton r
resentation. This property is satisfied because these cont
tions toP̌m1n1m2n2 andPm1n1m2n2 have thesameTT compo-
nents. Indeed, we see from Eq.~3.16! that apart from the
tadpole contributions which have an exactT4 behavior. The
terms involving traces ofPm1n1m2n2 are either proportional to
hm1n1 or hm2n2 or both. Such terms have no componen
along any of the first 3 tensors of Table I, so that they g
no contribution to any of the coefficientsci , i 51, 2, 3 which
appear in Eqs.~4.9!.

We have now all the basic quantities which are needed
order to expressPm1n1m2n2 in the basis of TT tensors as fo
lows:

Pm1n1m2n25cAT A
m1n1m2n21cBT A

m1n1m2n2

1cCT A
m1n1m2n21(

i 54

14

ciTi
m1n1m2n2. ~4.10!

The inverse

~Pm1n1m2n2!215dATAm1n1m2n2
1dBTAm1n1m2n2

1dCTAm1n1m2n2
1(

i 54

14

diTim1n1m2n2

~4.11!

can be determined from the relation
2-6
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TABLE II. Components of the transverse traceless tensors.

i cAi
cBi

cCi

1
1

2
0 0

2
1

2

k2

~k•u!22k2 2
1

2

k2

~k•u!22k2
0

3
1

2

~k2!2

„~k•u!22k2
…

2 22
~k2!2

„~k•u!22k2
…

2

3

2

~k2!2

„~k•u!22k2
…

2

4 2
1

2
0

1

6

5 2
1

2

k2

~k•u!22k2
0

1

2

k2

~k•u!22k2

6 2
1

2

k•u

~k•u!22k2

1

2

k•u

~k•u!22k2
0

7 2
1

2

k2k•u

„~k•u!22k2
…

2 2
k2k•u

„~k•u!22k2
…

2 2
3

2

k2k•u

„~k•u!22k2
…

2

8
1

2
„~k•u!22k2

…

21 2
1

2

~k•u!2

k2
„~k•u!22k2

…

0

9
1

2

2~k•u!22k2

„~k•u!22k2
…

2 22
~k•u!2

„~k•u!22k2
…

2

1

2

2~k•u!21k2

„~k•u!22k2
…

2

10
1

2

k2

„~k•u!22k2
…

2 2
1

2

3~k•u!21k2

„~k•u!22k2
…

2

3

2

~k•u!2

„~k•u!22k2
…

2

11 2
1

2

k•u

„~k•u!22k2
…

2

„~k•u!21k2
…k•u

k2
„~k•u!22k2

…

2 2
1

2

„2~k•u!21k2
…k•u

k2
„~k•u!22k2

…

2

12
1

2
„~k•u!22k2

…

22 22
~k•u!2

k2
„~k•u!22k2

…

2

1

6

4~k•u!414~k•u!2k21~k2!2

~k2!2
„~k•u!22k2

…

2

13 2
1

2
„~k•u!22k2

…

21 0
1

6

2~k•u!21k2

k2
„~k•u!22k2

…

14
1

2

k•u

~k•u!22k2
0 2

1

2

k•u

~k•u!22k2
nts
~Pm1n1rs!21Prsm2n25
1

2
~dm1

m2dn1

n21dm1

n2 dn1

m2!. ~4.12!

Using the transversality and idempotence ofTI
mnab as well as

the identities

TA
mn

rsTi
rsab50 ~ i 54,...,14!,

TB
mn

rsTi
rsabH 0 for iÞ6,

Þ0 for i 56,

TC
mn

rsTi
rsab50 ~ i 54,8,10,...,14!

TI
mn

rsTi
rsab50 ~ i 54,...,14; I 5A,B,C!, ~4.13!

we obtain the following result:
08501
dA5
1

cA

dB5
1

cB
S 12

1

2
d6c6T6

mn
rsT6

rsabTBmnabD

dC5
1

cC
S 12 (

~ i , j 55,6,7,9!
dicjTi

mn
rsTj

rsabTCmnabD .

~4.14!

We can now investigate the poles of the TT compone
of the propagator from the solution of the equationscI50,
I 5A,B,C. Using Eqs.~4.9! with c1 , c2 andc3 determined
from the decomposition of Eq.~4.5! in the basis of Table I,
the equations associated with the modesA, B andC can be
written respectively in the form
2-7
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FIG. 3. The dispersion relations for the modes A, B and C in units of (16pGr)1/2 for real frequencies and wave vectors. The dashed li
stand for the leadingT4 contributions and the full lines represent the inclusion of theT2 subleading corrections forGT250.01. The light
cone is represented by the diagonal.
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k25
16pGr

12
64p

15
GT2~12j!

F S 5

9
1

1

2
r 4L2

1

6
r 2D

1
8k2

p2T2 S 8r 2L1
1

2
r 4L2

1

6
r 224D G

k25
16pGr

11
64p

15
GT2~12j!

F S 2

9
22r 4L1

2

3
r 21

10

9

1

r 2D

1
8k2

p2T2 S 25r 2L22Lr 41
2

3
r 2D G ,

k25
16pGr

12
64p

15
GT2~12j!

F S 8

9
13r 4L2r 21

28

27

1

r 2D

1
8k2

p2T2 ~126r 2L13Lr 42r 2!G , ~4.15!

where

r 2[
k2

k> •k>
; L[

k0

2uk> u
log

k01uk> u
k02uk> u

21. ~4.16!

The Eqs.~4.15! reduce to the Eqs.~6.2! of Ref. @4# in the
special case when the subleading terms proportional toGT2

or k2/T2 are neglected.
In view of the constraints imposed by the important co

dition ~3.8!, the gauge dependent denominators in E
~4.15! have a very simple structure. Since we assume
GT2!1, the momentum-independent denominators can
expanded perturbatively. We thus see that all the gauge
pendentT2 subleading contributions to the dispersion re
tions give effectively corrections of order (GT4)(GT2),
which are of the same order as the leading two-loop con
butions which we have neglected. In a complete calcula
08501
-
.

at
e
e-
-

i-
n

to this order, one would expect on physical grounds a c
cellation of the above gauge-dependent terms in the dis
sion relations.

The solution of the one-loop dispersion relations may th
be obtained from Eqs.~4.15!, by setting the denominator
equal to one. These solutions have been obtained in Ref@4#
in the leading high temperature approximation. In order
illustrate the magnitude of theT2 subleading contributions
let us consider the solution of Eqs.~4.15! for real values of
k0 andk> . This corresponds to the propagation of waves s
ported by the graviton plasma. In Fig. 3, wherev̄
[k0 /(16pGr)1/2 and k̄[uk> u/(16pGr)1/2, we show the nu-
merical solutions corresponding to the modesA, B andC and
compare the leading results with the contributions which
clude the subleadingT2 corrections. We can see from thes
diagrams that for all TT modes, the dispersion curves be
at a common plasma frequencyv̄pl and become asymptoti
cally parallel to the light cone.

The behavior of the dispersion relation can be determi
analytically in the limiting cases of very small and very lar
momenta. Whenk̄→0, the common form of the dispersio
relations is given by

v̄pl5A22

45 S 12
224

75
pGT2D . ~4.17!

We see that in the infrared limit, this equation gives a su
stantial modification of the free dispersion relation due to
collective phenomena in the plasma. However, in this lim
k2/T2 is of orderGT2, so that the magnitude of the sublea
ing terms kept in Eq.~4.15! becomes of the same order as t
gauge-dependent terms which were disregarded. Co
quently, one may expect that the leading two-loop contrib
tions @of order (GT4)(GT2)# will modify the subleading
terms given in Eq.~4.17!. For this reason, the correction
obtained to one-loop order in the infrared limit represe
only an partial result.
2-8
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For large momenta such thatuk>̄ u@1, the asymptotic forms
of the dispersion relations become respectively

v̄A5 k̄A1
5

18k̄A
S 12

256

15
pGT2D

v̄B5 k̄B1A 5

18

v̄C5 k̄C1A 7

27 S 11
32

15
pGT2D . ~4.18!

The ultraviolet limit given by the above relations can
understood by noticing that in this case one probes
plasma at small distances, where the medium effects on
free dispersion relations are relatively unimportant.

From the above dispersion relations, one finds for theA
mode a thermal massm25v22k> 2 given by

mA
25

80pGr

9 S 12
256

15
pGT2D . ~4.19!

On the other hand, the asymptotic behavior of the ther
massesmB

2 andmC
2 is given respectively by

mB
25A160pGr

9
uk>Bu;

mC
2 5A448pGr

27 S 11
32

15
pGT2D uk>Cu. ~4.20!

These masses increase linearly withuk> u ~so that for large
momentak2/T2@GT2). The subleading gauge independe
corrections to the thermal masses are small, as expected
their special form could not have been anticipated. In pr
ciple, subleading contributions involving some functions
uk> u/T may have been expected. The above restricted form
a consequence of the structure of the dispersion relat
~4.15! which give a nontrivial information on how fast th
asymptotic values of the thermal masses are approache
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APPENDIX A

Here we show explicitly how to extend the method
Barton amplitudes in order to account for the contributio
which arises from the quadratic denominators in the gen
gauge free propagator. We illustrate this technique by c
sidering the following integral:
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I 5E d3q
> E

2 i`1d

1 i`1d dz

2p i
N~z!F t~q;p!

~q•q! i~p•p! j 1~z↔2z!G ,
~A1!

wherep[q1k, k052mp i , m50,61,62,..., q5(z,q
>
) and

i , j 51,2. This is the most general kind of integral whic
contributes to the two-point function when the imagina
time formalism is employed. The generalization to high
point functions is straightforward. The numeratort(q;p)
comes from the graviton vertices and from the numerato
the free propagator.

Since the integration in Eq.~A1! is over all values ofq
>
, it

is more convenient to make the change of variablesq
>
↔

2q
>

in all the terms (z↔2z) so that

I 5E d3q
> E

2 i`1d

1 i`1d dz

2p i
N~z!F t~q;p!

~q•q! i~p•p! j 1q↔2qG .
~A2!

Factorizing the denominators in Eq.~A2! we can write

I 5E d3q
> E

2 i`1d

1 i`1d dz

2p i
N~z!F 1

~z1uq
>
u! i

1

~z1k01up
>
u! j

3
t~q;p!

~z2uq
>
u! i~z1k02up

>
u! j1q↔2qG . ~A3!

Thez integration is now readily performed using the Cauc
theorem and closing the contour in the right hand side pl
where the only poles are located atz5uq

>
u and z5up

>
u2k0

(k0 is a pure imaginary quantity at this stage of the calcu
tion!. In this way we obtain

I 52E d3q
> H 1

~ i 21!!
lim

q0→uq
>
u

] i 21

]q0
i 21

3S N~q0!

~q01uq
>
u! i

t~q;p!

~p•p! j D 1
1

~ j 21!!
lim

q0→up
>
u2k0

] j 21

]q0
j 21

3S N~q0!

~q01k01up
>
u! j

t~q;p!

~q•q! i D 1q↔2qJ . ~A4!

Performing the change of variablesq
>
→q

>
2k> in the second

term of Eq.~A4! we can write

I 52E d3q
> H 1

~ i 21!!
lim

q0→uq
>
u

] i 21

]q0
i 21

3S N~q0!

~q01uq
>
u! i

t~q;p!

~p•p! j D 1
1

~ j 21!!
lim

q0→uq
>
u2k0

] j 21

]q0
j 21

3S N~q0!

~q01k01uq
>
u! j

t~q0 ,q
>
2k> ;q01k0 ,q

>
!

~q0
22uq

>
2k> u2! i D

1q↔2qJ . ~A5!
2-9
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Finally, using the propertyN(q01k0)5N(q0) and the sym-
metry q↔2q we obtain

I 52E d3q
> H 1

~ i 21!!

] i 21

]q0
i 21

3S N~q0!

~q01uq
>
u! i

t~q;p!

~p•p! j D 1
1

~ j 21!!

] j 21

]q0
j 21

3S N~q0!

~q01uq
>
u! j

t~2p;q!

~p•p! i D 1q↔2qJ
q•q50

. ~A6!

The special case wheni 5 j 51 gives the known result

I 52E d3q
>

2uq
>
u

N~ uq
>
u!F t~q;p!1t~2p;q!

~p•p!
1q↔2qG

q•q50

,

~A7!

where the expression inside the bracket is a typical contr
tion to the on-shell forward scattering amplitude. Althou
the derivatives in the general expression~A6! makes it much
more difficult to be handled, it is straightforward to deal wi
such kind of expressions using acomputer algebra program.
08501
u-

APPENDIX B

The Feynman rules are obtained inserting Eq.~2.3! and
the corresponding perturbative expansion of the inverse

~A2ggmn!215hmn2khmn1k2hmahan

2k3hmahabhbn1O~k4!
~B1!

into Eq. ~2.1!. The contributions of order 0 ink yields the
graviton propagator given by Eq.~2.4!.

The third term in Eq.~2.1! yields the following expres-
sions for the ghost propagator and the graviton-ghost-gh
vertex:

Dmn
ghost~k!5

hmn

k2 , ~B2!

Vm1n1m2m3

ghost ~k1 ,k2 ,k3!5
k

2
@hm2m3

~k2m1
k3n1

1k3m1
k2n1

!

2~hm1m2
k1n1

1hn1m2
k1m1

!k2m3
#.

~B3!

All the graviton self-couplings are generated only fro
the first term in Eq.~2.1!. The corresponding Feynman rule
for the three- and four-graviton couplings are given resp
tively by the following expressions:
Vm1n1m2n2m3n3

3 ~k1 ,k2 ,k3!

5
k

4
@24k2m3

k3n2
hm1m2

hn1n3
2k2•k3hm1m3

hn1n3
hm2n2

12k2•k3hm1n2
hn1n3

hm2m3

12k2•k3hm1m2
hn1m3

hn2n3
22k2m1

k3n1
hm2m3

hn2n3
2k2•k3hm1m2

hn1n2
hm3n3

1k2m1
k3n1

hm2n2
hm3n3

1„symmetrization under~m1↔n1!, ~m2↔n2!, ~m3↔n3!…#

1permutations of~k1 ,m1 ,n1!, ~k2 ,m2 ,n2!, ~k3 ,m3 ,n3!, ~B4!

Vm1n1m2n2m3n3m4m4

4 ~k1 ,k2 ,k3 ,k4!5
k2

4
@22k3m2

k4n2
hm1n3

hn1m4
hm4m3

1k3m2
k4n2

hm1m3
hn1n3

hm4m4

2k3•k4hm1m3
hn1n2

hm4m4
hm2n3

24k3m4
k4n3

hm1m3
hn1n2

hm2m4

12k3•k4hm1n3
hn1n2

hm4m3
hm2m4

2k3•k4hm1m3
hn1n3

hm4m2
hn2m4

12k3•k4hm1m3
hn1m4

hm2n3
hn2m4

1k3m2
k4n2

hm1m4
hn1m4

hm3n3

2k3•k4hm1m4
hn1n2

hm2m4
hm3n3

22k3m2
k4n2

hm1m3
hn1m4

hn3m4

12k3•k4hm1m3
hn1n2

hm4m2
hn3m4

1„symmetrization under~m1↔n1!, ~m2↔n2!, ~m3↔n3!, ~m4↔m4!…#

1permutations of~k1 ,m1 ,n1!, ~k2 ,m2 ,n2!, ~k3 ,m3 ,n3!, ~k4 ,m4 ,m4!. ~B5!
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As usual, we have energy-momentum conservation at
vertices, where all momenta are defined to be inwards.

APPENDIX C: GRAVITATIONAL ’t HOOFT IDENTITIES

The imaginary time formalism at finite temperature fo
lows closely the corresponding formalism atT50. Conse-
quently, the ’t Hooft identities at finiteT would be similar to
the ones atT50, were it not for the presence of 1-partic
tadpole contributions~such terms vanish atT50 in the di-
mensional regularization scheme!. However, since the tad
pole terms are proportional toT4, they do not affect the
identities involving the subleading contributions. To deri
these, we start from the action

I 5E d4xd4yhmn~x!Ssub
mnab~x2y!hab~y!

1E d4xd4yJmn~x!Xmnl~x2y!hl~y!1¯ . ~C1!

Here Ssub
mnab denotes the subleading contributions to t

graviton 2-point function andXmnl represents the tensor ge
erated by a gauge transformation of the graviton field wh
is given to lowest order by Eq.~2.6! in the momentum space
Jmn is an external source,hl represents the ghost field an
¯ stand for terms which are not relevant for our purpo
The ’t Hooft identity involving the graviton self-energy func
tion is a consequence of the Becchi-Rouet-Stora-Tyu
~BRST! invariance of the actionI:

E d4x
dI

dJmn~x!

dI

dhmn~x!
50. ~C2!

To lowest order, Eq.~C2! is equivalent to the relation Eq
~2.5!. In general, Eq.~C2! implies the generalized ’t Hoof
identity
ys

e
J.

D

08501
e

h

.

n

XmnlSsub
mnab50, ~C3!

which can be written to second order as

Xmnl
~0! Psub

mnab52Xmnl
~1! S~0!mnab. ~C4!

Using Eq.~2.5!, we see that Eq.~C4! leads immediately to
the ’t Hooft identity ~2.9!.

In order to derive Eq.~3.8!, we shall need to evaluate th
tensorXmnl

(1) which appears in Eq.~C4!. This tensor may be
represented by the diagram shown in Fig. 4, where the gh
graviton-source vertex is given in the Appendix A of Re
@15#. Using the forward scattering amplitude method, we o
tain the following structure for theT2 contributions toXmnl

(1) :

Xmnl
~1!T2

5Xmn
~0!gk2

T2

48p

52j

4

3E dVS 2hgl1
kgQl1Qgkl

k•Q
2

k2QgQl

~k•Q!2 D .

~C5!

Using this form and Eq.~2.5!, it is clear thatXmnl
(1)T2

is or-
thogonal toS(0)mnab, so that the relation~3.8! follows at
once from the identity~C4!.

FIG. 4. The source-ghost Feynman diagram. The full/wave l
on the left represents the external source.
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