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Finite size corrections in the massive Thirring model
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We calculate for the first time the finite size corrections in the massive Thirring model. This is done by
numerically solving the equations of periodic boundary conditions of the Bethe ansatz solution. It is found that
the corresponding central charge extracted from theté&fm is around 0.4 for the coupling constantgf
= — /4 and decreases down to zero wlhige — /3. This is quite different from the predicted central charge
of the sine-Gordon model as well as the light cone six vertex m¢86556-282(98)01420-9

PACS numbsgps): 11.10.Kk

I. INTRODUCTION - 1
( ) (1.3
In two dimensional field theory, there is a remarkable
correspondence between the fermionic and bosonic field
theories. This was first recognized by Colenjah and he |y Fig. 1, we summarize the calculated central charge as the
proved that the sine-Gordon field theory and the massiv@nction of the coupling constant for the sine-Gordon model
Thll’rlng model are eqU|Va|.ent to eaf:h other in that the arb|‘by |toyama and Moxhay, and for the massive Thirring model
trary order of the correlation functions turn out to be thepy the present calculations. One can see that the values of the
same. central charge predicted for the two models are very different
Recently, however, Klassen and Mel{gt argue that the  from each other.
equivalence between the sine-Gordon and the massive pyrthermore, Destri and de Veg&0] show that the cen-
Thirring models may be violated at the finite size correction tra| charge of the light cone six vertex model turns out to be
They proved by using the perturbed conformal field theoryynity for the massless limit. Since this light cone six vertex
that these two models are different in finite-volume energymodel is shown to be equivalent to the massive Thirring
levels, for example. model at the continuum lim{t11], it also predicts a different

In this paper, we calculate the finite size corrections to theentral charge from the sine-Gordon and the massive
ground state energy. We solve numerically the equations ofhjrring models.

the periodic boundary condition in the Bethe ansatz solutions
of the massive Thirring mod¢B—5]. The ground state en-

~
ergy can be expressed as ¢ . . . T : .
05 - g 1
mc
Eu:EoL_E""" ; (1.7 04 .
where L denotes the box siz& corresponds to a central 03 { T
charge at the massless linh,7].
The present calculation shows that the corresponding cen 02 L |

tral chargec in the negative coupling constant regiofmo
bound statesis around 0.4 forgy=—w/4 and that it be-
comes zero wheg,= — 7/3. These values can be compared 01 8
with those calculated for the sine-Gordon field the[#)8]. }

The central charge for the sine-Gordon field theory with the

massless limit can be expressed as °r ¢ i
6 -0.1 - 7
c=1-—, (1.2
p(p+1)
02 . . . . ) .
-0.34 -0.32 03 -0.28 -0.26 -0.24
wherep is an integer and is related to the coupling constant
Jdo as coupling constant g /x
FIG. 1. The calculated values of tlt¢g,) (the black diamonds
*Email address: fffujita@phys.cst.nihon-u.ac.jp with error bar$ are plotted as the function of the coupling constant
Te-mail address: htaka@phys.cst.nihon-u.ac.jp do/m. The black circle shows the predictions by Itoyama-Moxhay.
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Il. MASSIVE THIRRING MODEL AND BETHE ANSATZ This leads to the following PBC equations:
SOLUTIONS
Here, we briefly review the massive Thirring model moL sinh gi=2mn;— X $(Bi—B;), (2.9
i

whose Lagrangian density can be written[ 48]

. 1 wheren;’s are integer. Here, we note that we cannot take the
L=(iy,0"—mg)— 5 Joi*i . (2.1  antiperiodic boundary condition since it does not reproduce
the boson spectrum in the positive coupling constant regions

[5].

with the fermion currentj ,= zﬂyMzA Choosing a basis
where vys is diagonal, we write the Hamiltonian as

p

+mo<w1¢2+w£w1>+290¢1¢£¢2¢1] (2.2

IIl. NUMERICAL SOLUTIONS

—i ( i — llfl o l/, ) The parameters we have here are the box lehgthd the
Lo 2 g% particle numbeN. In this case, the density of the systegm
becomes
N
PpP= E (31)

The Hamiltonian Eq(2.2) can be diagonalized by the Bethe
ansatz wave function¥(xy,...,xy) with N particles Here, the system is fully characterized by the dengity

We write the PBC equations for the vacuum which is
filled with negative energy particleB(=i7— «;):

W(xl,...,xN)zex;{ imy>, x;sinh B

inh 271-n| 2 tan 1| = gyt hl (@ )
. sinh ¢; an- an i1,
x I [1+ini.8) L LA 9 —
1=<i<j=N 3.2
—X)] 23 where nj=0,£1,+2, ...+ Ny with No=3(N—-1) and L,
whereg; is related to the momentuk and the energ¥; of = mOL.. )
ith particle as In this case, the vacuum energy can be written as
— m.cinh 2. No
ki=mosinh ;. 243 E,=— >, mycosha;. (3.9
=—N
E;=mycoshg;, (2.4b I °
, i In this paper, we have carried out the numerical calculations
whereg;'s are complex variables. of the PBC equations. The numerical method to solve the
€(x) is a step function and is defined as PBC equations is explained in detail in RES).
1 x<0 Now, the calculated vacuum energy can be parametrized
€X=11, x>0 (25 as
. . . 3 7¢(go)
N(Bi,B)) is related to the phase shift functiah( 8, — 8;) as E,=EjL— —— oL +een (3.9
1+iN(Bi.B)) : ~
1B B exdio(Bi—Bj)]. (2.6)  wherec(gy) corresponds to the central charge at the mass-
IN(Bi.B)) less limit. In what follows, we call thig€(g,) as the central

charge even though we are solving the massive field theory.
Here, we take the massless limin{g—0) as we discuss
later. It should be noted that the first term in E8.4) can be

1 1 evaluated analytically by taking the thermodynamic lifik
¢(Bi—Bj)=—2tan* > gotanhz (Bi—B)|- (2.7 Since we can vary the values bfand N, we obtain the
corresponding central char@€g,). Although we have still

From the definition of the rapidity variablg;’s, one sees rather small particle numbem(-10000), we believe that
that for positive energy particless;’s are real while for ~the values extracted for the central charge must be reason-

negative energy particless; takes the formi7—a; where ~ ably reliable. . ~

a;’s are real. Now, we want to obtain the central chargég,) at the
Since the Bethe ansatz wave functions diagonalize théeld theory limit p—cc. In Fig. 2, we show the calculated

Hamiltonian, we demand that they satisfy the periodiccentral charg&(go) as the function of the effective density

The phase shift functios(8;— 8;) can be explicitly written
as

boundary Cond|t|on$PBC) with the box |engtH_ [3] Po= N /LO It is qU|te Intel’eStIng to observe that the calcu-
lated central charge can be well parametrized by the follow-
V(x,=0)=V¥(x;=L). (2.8 ing simple formula13]:
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< limit for any value of the coupling constafit0]. This is also
quite different from the massive Thirring as well as the sine-
Gordon models.

0.9 T T T T T

IV. DISCUSSIONS

07 o T How can we interpret these differences? The first possi-
bility is that the three theoriegsine-Gordon, massive
06 | o . Thirring and light cone six vertex modelare different from
0.’ each other at the finite volume. We do not know whether this
o5k . i difference can show up as the central charge or not. How-
' ever, a simple-minded physical intuition suggests that the
04 F R | central charge which should correspond to the heat capacity
’ o cannot be different if all the correlation functions of the
models are the same with each other. In particular, concern-
L T ing the equivalence between the sine-Gordon and the mas-
- sive Thirring models, we should rather check the conver-
02 8 gence of the perturbation expansions in Coleman’s proof
since it crucially depends on the convergence of the expan-
01 ! . . . . sions. For the negative values of the coupling constant, we
0 0.02 0.04 0.0 0.08 01 0.12 do not know whether this convergence is already verified or
p.-l not.
0 The second possibility is that neither of the calculations
FIG. 2. We show the calculatéi{g,) (white diamondsas the '€ accurate enough to argue the difference between them.
function of pg . The broken line denotes the fit by E§.5. Here, 10 this, we should comment on the accuracy of the present
the coupling constant is @l /7= — 0.305. calculations. Since we have only the limited number of par-
ticles, we always face the criticism that the real natienesn
though 1+ 1 dimensiof must be with the infinite number of
particles. We have varied the number of particles from 1000
to 10000. It seems to us that the extracted central charge may
well be reliable to within a few tens of percents. At least, we
believe that the calculation must be rather reliable for the
whereA, B, and k are constants. Therefore, the field theorycoupling constant around,= — /4 where the extracted
limit can be easily taken since we can |g§ infinity. It  central charge is not very small. On the other hand, the
should be noted that this corresponds to the limifpe$ present calculation may involve somewhat large errors for
with the masany—0 [5]. the coupling constant around or smaller thgg= — /3
In Table I, we show the values &, B, and x for some since the extracted central charge is rather small. This is in
values of the coupling constagt. The central charge be- contrast to the bound state problefbsi4,15 where there is
comesA+ B at the field theory limit. The calculated values some possibility of controlling the accuracy of the numerical
of the central charge are shown as the function of the cousalculations. However, the evaluation of the central charge
pling constanig, in Fig. 1. We also plot the central charge involves rather complicated processes of extracting it since
calculated for the sine-Gordon theory by Itoyama and Mox-we have to obtain it from the term proportional tdlin the
hay[9]. As can be seen from Fig. 1, the two values of thevacuum energy. Therefore, the error bars of the calculations
central charge are quite different from each other. we have shown in Fig. 1 may well be still optimistic num-
At the same time, the calculated central charge of the lighbers.
cone six vertex model is found to be unity at the massless Concerning the central charge of the sine-Gordon model,
we do not know whether the central charge predicted by
Iltoyama and Moxhay can be taken to be exact or not. Here,
we only make a comment on thatring hypothesis in the
massive Thirring model when they employ the thermody-
namic Bethe ansatZ16]. As discussed in Ref$5, 13|, the

C(gg)=A+B exp( - i) , (3.5

Po

TABLE |. We show the values oA, B, and« for some coupling
constantg, together with thét(g,) at the field theory limit.

Qo/m A B K €(9) o . , > . -
string picture in the massive Thirring model in the positive

—1/4 0.941 —0.562 25 0.380.09 values of the coupling constant turns out to be invalid in the
—-0.276 1.06 —0.745 16.5 0.32.0.05 sense that they do not satisfy the PBC equations. However,
—-0.291 1.06 —0.795 16 0.2%0.06 in the negative values of the coupling constant, we do not
—0.305 0.901 —-0.739 25 0.1680.07 know whether there is string-like solution that satisfies the
-0.319 0854 -0.790 30 0.06:0.04 PBC equation$17].

~1/3 0.793 —0.879 40 —0.09+0.10 For the central charge obtained for the light cone six ver-

tex model, it looks reasonable that the central charge of the
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light cone six vertex model turns out to be unity at the massmassless limit. Concerning the zero central charge, we do not
less limit. This is because the central charge of the masslesmow which operators may correspond to it in the massive
Thirring model is known to be unity. However, it is also Thirring model[18].
known that the massless limit in the massive Thirring model
corresponds to a singularity, and thus it may not be so simply
related to the massless limit of the Lagrangian level.
Finally, we comment on the zero central charge. We be- We would like to thank M. Hiramoto, C. Itoi, M. Kato,
lieve that our procedure gi,— should correspond to the and H. Mukaida for helpful discussions and comments.
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