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Finite size corrections in the massive Thirring model
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We calculate for the first time the finite size corrections in the massive Thirring model. This is done by
numerically solving the equations of periodic boundary conditions of the Bethe ansatz solution. It is found that
the corresponding central charge extracted from the 1/L term is around 0.4 for the coupling constant ofg0

52p/4 and decreases down to zero wheng052p/3. This is quite different from the predicted central charge
of the sine-Gordon model as well as the light cone six vertex model.@S0556-2821~98!01420-9#
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I. INTRODUCTION

In two dimensional field theory, there is a remarkab
correspondence between the fermionic and bosonic fi
theories. This was first recognized by Coleman@1#, and he
proved that the sine-Gordon field theory and the mass
Thirring model are equivalent to each other in that the a
trary order of the correlation functions turn out to be t
same.

Recently, however, Klassen and Melzer@2# argue that the
equivalence between the sine-Gordon and the mas
Thirring models may be violated at the finite size correctio
They proved by using the perturbed conformal field the
that these two models are different in finite-volume ene
levels, for example.

In this paper, we calculate the finite size corrections to
ground state energy. We solve numerically the equation
the periodic boundary condition in the Bethe ansatz soluti
of the massive Thirring model@3–5#. The ground state en
ergy can be expressed as

Ev5E0L2
p c̃

6L
1¯ , ~1.1!

where L denotes the box size.c̃ corresponds to a centra
charge at the massless limit@6,7#.

The present calculation shows that the corresponding
tral chargec̃ in the negative coupling constant regions~no
bound states! is around 0.4 forg052p/4 and that it be-
comes zero wheng052p/3. These values can be compar
with those calculated for the sine-Gordon field theory@8,9#.
The central charge for the sine-Gordon field theory with
massless limit can be expressed as

c512
6

p~p11!
, ~1.2!

wherep is an integer and is related to the coupling const
g0 as
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pD . ~1.3!

In Fig. 1, we summarize the calculated central charge as
function of the coupling constant for the sine-Gordon mo
by Itoyama and Moxhay, and for the massive Thirring mod
by the present calculations. One can see that the values o
central charge predicted for the two models are very differ
from each other.

Furthermore, Destri and de Vega@10# show that the cen-
tral charge of the light cone six vertex model turns out to
unity for the massless limit. Since this light cone six vert
model is shown to be equivalent to the massive Thirr
model at the continuum limit@11#, it also predicts a different
central charge from the sine-Gordon and the mass
Thirring models.

FIG. 1. The calculated values of thec̃(g0) ~the black diamonds
with error bars! are plotted as the function of the coupling consta
g0 /p. The black circle shows the predictions by Itoyama-Moxha
© 1998 The American Physical Society11-1
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II. MASSIVE THIRRING MODEL AND BETHE ANSATZ
SOLUTIONS

Here, we briefly review the massive Thirring mod
whose Lagrangian density can be written as@12#

L5c̄~ igm]m2m0!c2
1

2
g0 j m j m ~2.1!

with the fermion currentj m5:c̄gmc:. Choosing a basis
whereg5 is diagonal, we write the Hamiltonian as

H5E dxF2 i S c1
† ]

]x
c12c2

† ]

]x
c2D

1m0~c1
†c21c2

†c1!12g0c1
†c2

†c2c1G . ~2.2!

The Hamiltonian Eq.~2.2! can be diagonalized by the Beth
ansatz wave functionsC(x1 ,...,xN) with N particles

C~x1 ,...,xN!5expS im0( xisinh b i D
3 )

1< i , j <N
@11 il~b i ,b j !

3e~xi2xj !#, ~2.3!

whereb i is related to the momentumki and the energyEi of
i th particle as

ki5m0sinh b i , ~2.4a!

Ei5m0coshb i , ~2.4b!

whereb i ’s are complex variables.
e(x) is a step function and is defined as

e~x!5 H 21,
1,

x,0,
x.0. ~2.5!

l(b i ,b j ) is related to the phase shift functionf(b i2b j ) as

11 il~b i ,b j !

12 il~b i ,b j !
5exp@ if~b i2b j !#. ~2.6!

The phase shift functionf(b i2b j ) can be explicitly written
as

f~b i2b j !522 tan21F1

2
g0tanh

1

2
~b i2b j !G . ~2.7!

From the definition of the rapidity variableb i ’s, one sees
that for positive energy particles,b i ’s are real while for
negative energy particles,b i takes the formip2a i where
a i ’s are real.

Since the Bethe ansatz wave functions diagonalize
Hamiltonian, we demand that they satisfy the perio
boundary conditions~PBC! with the box lengthL @3#,

C~xi50!5C~xi5L !. ~2.8!
08501
e
c

This leads to the following PBC equations:

m0L sinh b i52pni2(
j

f~b i2b j !, ~2.9!

whereni ’s are integer. Here, we note that we cannot take
antiperiodic boundary condition since it does not reprodu
the boson spectrum in the positive coupling constant regi
@5#.

III. NUMERICAL SOLUTIONS

The parameters we have here are the box lengthL and the
particle numberN. In this case, the density of the systemr
becomes

r5
N

L
. ~3.1!

Here, the system is fully characterized by the densityr.
We write the PBC equations for the vacuum which

filled with negative energy particles (b i5 ip2a i):

sinh a i5
2pni

L0
2

2

L0
(
j Þ i

tan21F1

2
g0tanh

1

2
~a i2a j !G ,

~3.2!

where ni50,61,62, . . . ,6N0 with N05 1
2(N21) and L0

5m0L.
In this case, the vacuum energyEv can be written as

Ev52 (
i 52N0

N0

m0cosha i . ~3.3!

In this paper, we have carried out the numerical calculati
of the PBC equations. The numerical method to solve
PBC equations is explained in detail in Ref.@5#.

Now, the calculated vacuum energy can be parametri
as

Ev5E0L2
p c̃~g0!

6L
1¯ , ~3.4!

where c̃(g0) corresponds to the central charge at the ma
less limit. In what follows, we call thisc̃(g0) as the central
charge even though we are solving the massive field the
Here, we take the massless limit (m0→0) as we discuss
later. It should be noted that the first term in Eq.~3.4! can be
evaluated analytically by taking the thermodynamic limit@3#.

Since we can vary the values ofL and N, we obtain the
corresponding central chargec̃(g0). Although we have still
rather small particle number (N;10000), we believe tha
the values extracted for the central charge must be rea
ably reliable.

Now, we want to obtain the central chargec̃(g0) at the
field theory limit r→`. In Fig. 2, we show the calculate
central chargec̃(g0) as the function of the effective densit
r05N0 /L0 . It is quite interesting to observe that the calc
lated central charge can be well parametrized by the follo
ing simple formula@13#:
1-2
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c̃~g0!5A1B expS 2
k

r0
D , ~3.5!

whereA, B, andk are constants. Therefore, the field theo
limit can be easily taken since we can letr0 infinity. It
should be noted that this corresponds to the limit ofr→`
with the massm0→0 @5#.

In Table I, we show the values ofA, B, andk for some
values of the coupling constantg0 . The central charge be
comesA1B at the field theory limit. The calculated value
of the central charge are shown as the function of the c
pling constantg0 in Fig. 1. We also plot the central charg
calculated for the sine-Gordon theory by Itoyama and M
hay @9#. As can be seen from Fig. 1, the two values of t
central charge are quite different from each other.

At the same time, the calculated central charge of the li
cone six vertex model is found to be unity at the massl

FIG. 2. We show the calculatedc̃(g0) ~white diamonds! as the
function ofr0

21. The broken line denotes the fit by Eq.~3.5!. Here,
the coupling constant is atg0 /p520.305.

TABLE I. We show the values ofA, B, andk for some coupling
constantg0 together with thec̃(g0) at the field theory limit.

g0 /p A B k c̃(g0)

21/4 0.941 20.562 25 0.3860.09
20.276 1.06 20.745 16.5 0.3260.05
20.291 1.06 20.795 16 0.2760.06
20.305 0.901 20.739 25 0.1660.07
20.319 0.854 20.790 30 0.0660.04
21/3 0.793 20.879 40 20.0960.10
08501
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limit for any value of the coupling constant@10#. This is also
quite different from the massive Thirring as well as the sin
Gordon models.

IV. DISCUSSIONS

How can we interpret these differences? The first po
bility is that the three theories~sine-Gordon, massive
Thirring and light cone six vertex models! are different from
each other at the finite volume. We do not know whether t
difference can show up as the central charge or not. H
ever, a simple-minded physical intuition suggests that
central charge which should correspond to the heat capa
cannot be different if all the correlation functions of th
models are the same with each other. In particular, conc
ing the equivalence between the sine-Gordon and the m
sive Thirring models, we should rather check the conv
gence of the perturbation expansions in Coleman’s pr
since it crucially depends on the convergence of the exp
sions. For the negative values of the coupling constant,
do not know whether this convergence is already verified
not.

The second possibility is that neither of the calculatio
are accurate enough to argue the difference between th
To this, we should comment on the accuracy of the pres
calculations. Since we have only the limited number of p
ticles, we always face the criticism that the real nature~even
though 111 dimension! must be with the infinite number o
particles. We have varied the number of particles from 10
to 10000. It seems to us that the extracted central charge
well be reliable to within a few tens of percents. At least, w
believe that the calculation must be rather reliable for
coupling constant aroundg052p/4 where the extracted
central charge is not very small. On the other hand,
present calculation may involve somewhat large errors
the coupling constant around or smaller thang052p/3
since the extracted central charge is rather small. This i
contrast to the bound state problems@5,14,15# where there is
some possibility of controlling the accuracy of the numeric
calculations. However, the evaluation of the central cha
involves rather complicated processes of extracting it si
we have to obtain it from the term proportional to 1/L in the
vacuum energy. Therefore, the error bars of the calculati
we have shown in Fig. 1 may well be still optimistic num
bers.

Concerning the central charge of the sine-Gordon mo
we do not know whether the central charge predicted
Itoyama and Moxhay can be taken to be exact or not. H
we only make a comment on thestring hypothesis in the
massive Thirring model when they employ the thermod
namic Bethe ansatz@16#. As discussed in Refs.@5, 13#, the
string picture in the massive Thirring model in the positiv
values of the coupling constant turns out to be invalid in
sense that they do not satisfy the PBC equations. Howe
in the negative values of the coupling constant, we do
know whether there is astring-like solution that satisfies the
PBC equations@17#.

For the central charge obtained for the light cone six v
tex model, it looks reasonable that the central charge of
1-3



ss
le
o
de
p

be
e

not
ive

,

T. FUJITA AND H. TAKAHASHI PHYSICAL REVIEW D 58 085011
light cone six vertex model turns out to be unity at the ma
less limit. This is because the central charge of the mass
Thirring model is known to be unity. However, it is als
known that the massless limit in the massive Thirring mo
corresponds to a singularity, and thus it may not be so sim
related to the massless limit of the Lagrangian level.

Finally, we comment on the zero central charge. We
lieve that our procedure ofr0→` should correspond to th
v.
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massless limit. Concerning the zero central charge, we do
know which operators may correspond to it in the mass
Thirring model@18#.
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