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We consider the dimensional reduction/dt=1SYM,, ; to 1+1 dimensions, which had,1) supersymme-
try. The gauge groups we consider areN)@nd SUQN), whereN is a finite variable. We implement discrete
light-cone quantization to determine nonperturbatively the bound states in this theory. A careful analysis of the
spectrum is performed at various valuesNf including the case wherd is large (but finite), allowing a
precise measurement of theNléffects in the quantum theory. The low energy sector of the theory is shown
to be dominated by string-like states. The techniques developed here may be applied to any two dimensional
field theory with or without supersymmetryS0556-282(98)02418-7

PACS numbgs): 11.10.Kk, 11.15.Tk

I. INTRODUCTION mulated in the light-cone gauge. Formulation of the discrete
light-cone quantizatioftDLCQ) bound-state problem of this

Solving for the nonperturbative properties of quantumtheory is the subject of Sec. llI, followed by a detailed analy-
field theories—such as QCD—is typically an intractablesis of the corresponding numerical bound-state solutions in
prob|em_ In order to gain some insight’ however, a numbesec. IV. In Sec. V, we conclude with a perspective on future
of lower dimensional models have been proposed as usef@pPplications of non-perturbative finit¢ calculations for ar-
laboratories in which to study QCD related phenom@ara  bitrary (supey Yang-Mills theories.
review sed1)).

In recent times, the role of low dimensional quantum field
theories has shifted rather dramatically following the remark-
able developments in string & theory. The present litera-
ture on this subject is immense, but a common theme appears The theory we wish to study is readily obtained by dimen-
to be emerging: there is more interesting physics in Yangsionally reducingh=1 D=3 super-Yang-Mills to #+1 di-

Mills theory than was once thought reasonably possible. Imensions. The resulting theory h@dsl) supersymmetry, and
addition to the Matrix) model conjecture, which formulates can be formulated in the light-cone frame. The details of this
M theory in terms of supersymmetric quantum mechanicdight-cone formulation appear ifd], to which we refer the
[2], there is also a proposal by Maldacdi® that largeN reader for explicit derivations. We simply note here that the
super-Yang-Mills theories in various dimensions are relatedight-cone HamiltonianP™ is given in terms of the super-
to certain supergravity solutions. charge Q~ via the supersymmetry relatiofQ™,Q"}

All of these developments suggest that it would be desir=2v2P~, where
able to have a better understanding of the non-perturbative
properties of super-Yang-Mills theory at lar¢aut finite) N, 1
and in any dimension. Towards this end, we choose to study — 3 N
in detail the bound state structure and spectrum of a two Q=2 gf dx tr[(|[¢,ﬁ¢]+2¢¢)a—1p - @
dimensional field theory, which may be obtained by dimen-
sionally reducing 2-1 dimensional\/=1 super Yang Mills.

Such a theory has already been investigated if\thee (or  In the above,;;= ¢;;(x",x") and ;= ¢;;(x",x") areN
planay approximation[4], and is believed to exhibit the XN Hermitian matrix fields representing the physical boson
property of screening5,6]. In this work we will allow the and fermion degrees of freedaofrespectively of the theory,
number of gauge colord\, to be a finite variable. This and are remnants of the physical transverse degrees of free-
means we will be able to monitor the behavior of the specdom of the original 2-1 dimensional theory. This is a spe-
trum asN is varied and made arbitrarily large. Special atten-cial feature of light-cone quantization in light-cone gauge: all
tion is given to measuring the precise effects on the spectrumnphysical degrees of freedom present in the original La-
due to 1N contributions in the quantum theory. grangian may be explicitly eliminated. There are no ghosts.

Although we focus on one particular model in this paper, For completeness, we write the additional relation
the techniques we develop here are applicablany two {Q*,Q+}=2\/§P+ for the light-cone momentumP™*,
dimensional field theory, with or without supersymmetry. where

The organization of the paper may be summarized as fol-
lows; in Sec. Il, we discuss the relevant features @i 4)
super-Yang-Mills theory in 1 dimensions, giving explicit
expressions for théquantized light-cone supercharges for-

II. (1,1) SUPER-YANG-MILLS THEORY
IN 1+1 DIMENSIONS

Q=2 f dxt po_g— pd_ ). )
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The (1,1) supersymmetry of the model follows from the fact ~ For the bound state eigenprobler® 2P~ |¥)=M?2| W),

{Q*,Q7}=0. In order to quantizep and ¢ on the light- we may restrict to the subspace of states with fixed light-

cone, we first introduce the following expansions at fixedcone momentunP™, on whichP™ is diagonal, and so the

light-cone timex " =0: bound state problem is reduced to the diagonalization of the
light-cone HamiltoniarP~. SinceP™ is proportional to the

(a; (k*)e ik*x~ square of the supercharg@ , any eigenstaté¥) of P~

! with mass squaret? gives rise to a natural degeneracy in

the spectrum because of the supersymmetry algebra—all

¢ij(x,00= \/_f\/?

+a;ri(k+)eik+xf); (3)  four states below have the same mass:
Yii(x~,0)= ijdw(b_(w)efik*x*
R N P I . W), QF|¥), Q7|¥), Q'Q7[¥). (7
+bT(k+) iktx~ ) (4)

] ) Although this degeneracy is realized in the continuum for-
We then specify the commutation relations mulation of the theory, this property will not necessarily sur-
a(p).al(at)1={b:(p*).bL(at) =8(p*t—q*)8 8, vive if we choose to discretize the theory in an arbitrary
(2 (P™).21(a7) ]={byj (P).bi(@)}=8(P™ =) it manner. However, a nice feature of DLCQ is that it does
preserve the supersymmetfgnd hence thexactfour-fold
for the gauge group W), or degeneracyfor any resolution. In the context of numerical
calculations, this reducdby a factor of fouy the size of the
[ay;(p” ).al(a)]= {bi(P"). bj(a ")} DLCQ matrix that needs to be diagonalized.
1 The explicit expression fo ", in the momentum repre-
= 5(P+—q+)( S O~ 1y i 5k|) (6)  sentation is now obtained by substituting the quantized field
expressiong3) and (4) directly into the definition of the

for the gauge group SW().! superchargél). The result is
|
_ i2” 1/49 1 k2_k1 t t +
Q =—— fdkldkzdk35(k1+k2 k3) W ks [ajk(kp)ayj(ka)bjj (k) = bjj(ka)aj (ki) ayj(ka) ]
1K2
1 kytks o " "
2k, k2 [ (Ka)ayj(ky)bjj (ko) —aj (k) by (ko) ayj(ka)]
+ Ll 1i(ko)ay; (ka) —a (Ka)bi(ky)ayj(ka) ]
Qi a a
2\/@ kl 2)4ij{R3 ij \R3/Mik\h1)akji”h2
1 1 T T T
+ K, +k_2_ [bii (K1) byj(k2)bij (k3) +bjj (Kz) by (kq) byj(ka) 1 - (8)

In ordinary DLCQ calculations, one chooses to discretizepling of the U(1) and SUY) degrees of freedom that con-
the light-cone Hamiltoniad®~. However it was pointed out stitute U(N). More explicitly, we may introduce the ()
in [4] that supersymmetric theories admit a natural DLCQoperators
formulation in terms of discretized supercharges. This en-
sures thasupersymmetry is preserved even in the discretized 1 1
theory Before proceeding with the DLCQ formulation of the a(kh)= Ntr[a(k*)], B(k™)= Ntr[b(k*)], 9)
bound state problem, we note that for the gauge groug)U(

massless states appear automatically because of the dec%ﬁich allow us to decompose any N) operator into a sum
of U(1) and SUN) operators:

—_— a(k")=a(k") Lyxn+akh),

We assume the normalizatiof T*T?] = 62°, where theT®'s are ~
the generators of the Lie algebra of S( b(k*)=B(k")- Lyxn+b(k™), (10)
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wherea(k™) andb(k*) are tracelesdlx N matrices. If we volve a product of two or more traces couple to these states
now substitute the operators above into the expression for théke 1/N, and are therefore completely decoupled in the limit
supercharge8), we find that all terms involving the @)  N=9°. This gives rise to decoupled sectors that are charac-
factors a(k*),B(k*) vanish—only the SU{) operators terized by the number of traces appearing in each Fock state.
a(k™),b(k™) survive. i.e. starting with the definition of the N addition, color interactions in the light-cone Hamiltonian
U(N) supercharge, we end up with the definition of the(or superchargesimplify when N=c, since splitting or
SU(N) supercharge. In addition, tanticommutation rela- joining interactions occur betweedjacentcolor-contracted
tions [aij(kl) a'(k,)]=0 and {Eij(kl) BT(k)t=0 imply  Partons in a Fock state. This dramatically simplifies the rep-
that this supercharge acts only on the Sl creation opera- rgsentation of any light-cone operator on the Hilbert space of
tors of a Fock state—the (W) creation operators only intro- Single trace Fock states. This property also tremendously
duce degeneracies in the SW(spectrum. Clearly, sinc®~ simplifies the evaluation of inner products. It is sometimes
has no W1) contribution, any Fock state made up of only helpful to think of a single trace state as a closed string made
U(1) creation operators must have zero mass. The non-trividdp of “string bits” [12]. Multiple-trace states are therefore

problem is therefore solving for SBI) bound states. multi-string states, and the string coupling is given bi.1/
For N=oo, these multi-trace states are just free non-
lIl. DISCRETIZED LIGHT-CONE interacting closed “strings.” Splitting and joining of these
QUANTIZATION AT FINITE N strings is only possible wheN is finite.

_ _ Of course, as soon as we alldwto be finite, we have to
In order to implement the DLCQ formulatidiY] of the  give up all of these wonderful simplifications. In computa-
theory, we simply restrict the momerka,k, andkz appear-  tional terms, this usually means that the most time consum-
ing in Eg. (8) to the following set of allowed momenta: jng part of a DLCQ calculation is the evaluation of inner
{PT/K,2P7/K,3P7/K, ...}. Note that we omit the zero products for many parton Fock states, which is relatively
momentum modefB,9], which are not expected to affect the trivial in the N= case. Of course, the processing time in-
massive spectrum. Herl, is some arbitrary positive integer, yolved in calculating the representation of the light-cone

and must be sent to infinity if we wish to recover the con-Hamiltonian relative to the discretized Fock basis is aug-
tinuum formulation of the theory. The integkris called the  mented considerably due to these complications.

harmonic resolutionand 1K measures the coarseness of our  Nevertheless, we feel justified in dealing with these com-
discretizatiorf. Physically, 1K represents the smallest unit plications, since a number of interesting physical properties
of longitudinal momentum fraction allowed for each parton.associated with the dynamics of super-Yang-Mills theory are
As soon as we implement the DLCQ procedure, which isexpected to arise as “l effects” in the quantum theory.
specified unambiguously by the harmonic resolutionthe In practical terms, the complexities cited above simply
integrals appearing in the definition Q™ are replaced by restrict how large the harmonic resolutidf, is allowed to
finite sums, and the eigen-equatic ()?/¥)=\|¥) isre-  be in numerical computations. In the present study, we could
duced to a finite matrix problem. For sufficiently small val- manage onlyK<8 (about 2000 states altogether fé¢
ues ofK (in this case foK<4) this eigen-problem may be =8g), and we expect that higher valueskotould be probed
solved analytically. For valuek=5, we may still compute if more powerful machines and more efficient code were
the DLCQ supercharge analytically as a functionNgfbut  gvailable?
the diagonalization procedure must be performed numeri- Before proceeding to discuss our numerical results, we
cally. point out that one may significantly reduce the computational
The details of how to construct the DLCQ light-cone su-complexity of setting up the DLCQ supercharge by taking
percharges in the model studied here appear in refef@ice advantage of the simple fact that theNJj(and SUQ) su-
A similar model was also studied using this approaciiltl.  percharges are equivalent. From a computational point of
The only modification we make here is that we allow theview, the commutation relations for M) matricesEq. (5)]
number of gauge colordy, to be a finite(algebraig variable.  are simpler than the SB) relations[Eq. (6)], and so it
This complicates things considerably. The reason is rathefould be desirable to work with the M) basis even when
simple. In theN =< formulation, all fockstates may be writ- e are interested in solving for SNJj bound states. It turns

ten as asingletrace of creation operators, out that if one constructs a basis of N)( Fock states, and
. . then discards all states that contain a trace of a single parton,
|W)~trfc’(ky)---c(k,)]|0) (11 then the corresponding spectrum of theN)(theory on this

modified basis yields the same spectrum as the NgU(
[cT(k™) represents either a boson or fermion carrying longi-theory. Of course, constructing the N supercharge re-
tudinal momentunk™®], since individual Fockstates that in-

3Maldacena has recently argued that the &ffects for a particu-
2Recently, Susskind has proposed a connection between the hdar class of super-Yang-Mills theories account for Hawking radia-
monic resolution arising from the DLCQ dfl theory, and the tion in a corresponding class of space-time geomef8¢s
integerN appearing in the U{) gauge group for Nhtrix) theory “Numerical calculations were performed using a desk-top PC, and
(namely, they are the samglL0]. the computer code was written for Mathematica version 3.0.
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quires much less computational effort, and we therefore em-MZ
ploy this strategy when solving for SN bound states -5-==
whenK is large. A more thorough discussion of this tech- g N
nique will appear elsewhefd3]. Of course, the DLCQ pro- 33
gram we use can do both SN and UN) independently, 5]~ 77v---..

and the above procedure can be checked explicitlyKor T ~~~~~~~~~~~~~
<6 (it works). This method is expected to play a crucial role 25: :
when solving for SUK) bound states in more complicated ,o{ N T T -
two dimensional theories. TS bbb
Sp I
H
IV. NUMERICAL BOUND STATE SOLUTIONS 10

There are two parameters in the DLCQ formulation of the S
theory; the harmonic resolutidd, and the number of gauge 1
colorsN. This dependence oK is of course an artifact of 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
the light-cone compactification schemxe,=x~ +2=R, and
in practice it is eliminated by extrapolating the results at
finite K to the continuum limitKk=c. Reliable extrapola-
tions require careful analysis of the theorylass steadily any states at smaller resolution. These will signify the onset
increased. From Ed1), one sees that the two dimensional of additional bound states that may also be followedas
Yang-Mills coupling constang factors out in the definition increased. The first appearance of a state at a given resolu-
of the light-cone supercharge, and so the only adjustabléon may be thought of as a “trail head14] of the corre-
coupling constant in the theory is the parametéd.1This  sponding continuum state. At lar§g this procedure of find-
guantity measures the strength of interactions between diing “trails of bound states” is rather straightforward to carry
ferent trace sectors in the Hilbert space, where each sector @t (although tedious For intermediate values—say
characterized by the number of traces in each Fock state. Of=10—the Fock state content of any bound state is compli-
course, in the limitN=<, these sectors are completely de- cated considerably due to the non-trivial mixing between
coupled. It is therefore an interesting physical problem tostates with differing numbers of traces, and the procedure of
investigate the behavior of the theory whidnis allowed to  following the trail of a bound state at different resolutions
be finite and large. Bound states will be a superposition ofnust be administered with care.

Fock states containing any number of traces, but interactions In Fig. 1, we illustrate this procedure for the cale
between different sectors will be weak. =10, where the dashed lines represent trails of particular

Our numerical work involved solving the DLCQ SNJ bound states, and we have extrapolated these curves to esti-
bound state equations for<K =<8, and then extrapolating mate continuumK =) bound state massése move from
the results to obtain estimates for continuum bound stateght to left on these curves &sis increaseq In general, as
masses. Supersymmetry in the DLCQ formulation gives risave increase the resolution, states pick up additional Fock
to an obvious exact two-fold mass degeneracy betweestate contributions with a larger number of partons, but the
bosons and fermions, but there is an additional two-fold deapproximate structure seen at lower resolutions is still clearly
generacy for each massive boson and fermion bound stateisible providedN is large. In order to determine the trails of
We therefore have an exact four-fold degeneracy in the spethese states for intermediate valuedNgfsayN =10, we first
trum of massive bound states. Figure 1 is a summary of theonsider the trail of a state for larde(sayN= 100 or 1000,
low mass spectrunti.e. only eigenvalues less than 30 are and then tune the value ™ down to the desired smaller
plotted that were obtained for8K=8, and forN=10. The  value; this effects a smooth change in wave function ampli-
vertical axis measures the bound state mass sqused tudes, but the type of Fock states in the Fock state expansion

/K

FIG. 1. Bound state mass®%? (in unitsg2N/ ) versus 1K for
N=10.

=2P*P~, in units ofg®N/ . remains unchanged. One can therefore be confident that one
At resolution K=2 there are precisely two masslessis tracking the correct state.
SU(N) bound statesone boson and one fermigreach con- There are a number of striking features in the DLCQ

sisting of two partons. AK=3, massive bound states begin spectrum of the theory. First, the low energy spectrum ap-
to appear in the spectrum, and are four-fold degendtai® pears to be dominated by string-like states; each time we
bosons and two fermionslf these solutions signify the pres- increase the resolution, a new massive state appears in the
ence of true bound states in the continuum, one expects thapectrum which is lighter than any of the massive states that
their structure will persist a§ is increased. In order to check appeared at a lower resolution. This can be seen in Fig. 1. In
this, one must look at the Fock state content of a bound stateddition, the average number of partons in these states in-
at different resolutions, and see whether the same approxereases commensurately with the resolutkon So in the
mate structure is preserved as we incredsewvhether the continuumK—c<, one can expect the existence of very light
wave functions begin to converge or not is an indicator ofbound states that have an arbitrarily large number of partons.
whether the continuum bound state might be normalizable oBince the spectrum is bounded from belwy supersymme-
not. Of course, as we continue to incre&senew states will  try), one deduces the existence of an accumulation point in
appear in theédiscretizedl Fock space that are not related to the mass spectrum, which we denote My . Bound states
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FIG. 2. Extrapolated continuum masses of lightest massive FIG. 3. Bound state masses versuk Tor differentN; (a) N
bound states for different resolutiols and forN=10. The verti- =3 (top curvg, (b) N=5 (bottom curve, (c) N=10 (third from
cal axis is the extrapolated continuum mass of the lightest non-zertop) and (d) N=100 (second from top The N=1000 curve is
mass eigenstates that first appear at resolu¢iofihe extrapolation indistinguishable from thél=100 curve.

of these points tdK =« gives an estimate for the accumulation . o
point M2 in the spectrum. DLCQ formulation, the number of Fock states is finite. In

our numerical analysis, however, we observe that the states
are exactly massless ahy resolution; increasing the resolu-

expected to behave like strings made out of an essentiall jon increases the complexity of the Fock state expansions.of
infinite number of string “bits.” Evidently, pair creation of ese massless states, but the Masses are _always precisely
partons seems to be energetically favored. This behavior d£70- SO0me very special cancellations are evidently respon-
rectly contrasts what is observed in many other models stucF—'bI? for protecting these mas_sless states from receiving cor-
ied in the same frameworL]; namely, the mass of a state rections due to the change in resolution. Note that this is
generally increases with the average number of partons in it%gges'uve of some kind of "duality;” namely, fd¢ smal,
Fock state expansion. the proplem is relatively easy to solve, and has a simple
One interesting question that we are unable to answer {deSCription in terms of a small number of degrees of free-
whetherM_ is zero or not. We know that massless states d§om: While forK—ce, the complexity of the DLCQ problem
exist at any resolutiofthere are in fact 1) of them at the = "Creases dramatically, gn_d the precise description of corre-
resolutionK), and it might seem reasonable that these ligh por&dlng ll\Jloundthst?tes Itshm terms of r];nam{ r_nort;: :iegrees of
massive states approach the already existing massless sta om. Nevertheless, the masses of certain states are pre-
in theK— o limit. We see from Fig. 2 that the prediction for served. I.t WOUI(.j be interesting to understand this from an-
M., which is the extrapolation of the points ko=, ap- othSe.r p0||<1|t .Of V|evv|. brai iable i lculati
pears to be very close to zero, if not exactly zero. The hori- INCENN IS an algebraic variable n our caicuiations, we
zontal axis is specified by K/ whereK is the resolution at are able.to mvesﬂga}e the ghanges n th_e masses of states as
which the lightest non-zero mass eigenstate first apgears Nt Its Va;'_e?]' GA‘S an“![IIuTtLatlodr]’, we co&s;d_e;othze TS/SS of a
has a “trail head’), and the vertical axis is its extrapolated Za eFW 'g Tr?s aI ralmea 3m§sio 10_0 'd?ooow' d
continuum mas$.e. where the extrapolation curves in Fig. 1 ©¢¢ 'g'_d' he va ues@Kire A an »an
intersect the vertical axisDue to extrapolation errors, and we CQSS' lerﬁc € ra_nge h <8 al.s uslll;qa.. | i
the low resolutions that were attainable, the uncertainties in Evidently, forN=3, the coupling I is no longer negli-
Fig. 2 are expected to be quite large. glble, and there is an apparent shift in the estimated con-
Another interesting feature of the DLCQ spectrum is thatinium mass of the bound state. RYr>5, convergence to
the extrapolation curveslashed lines in Fig.)lare relatively ~ the largeN limit appears to be rather rapid. The general
flat. This means that by performing a relatively trivial calcu- pehaV|ZCJr atzlargeN WOUIZd be consistent with the interpreta-
lation atK=3 or 4, one is able to estimate the continuum{on M“7/g°N~a—b/N®, wherea andb are positive con-
bound state mass perhaps within ten percent of the actugfants- We do not gaveza term linear ilN1gince one can
continuum value(assuming no pathologies in the DLCQ Show directly thaM“m/g°N is even under the mter_char’?Q_e
spectrum for extremely largé). Of course, for the massless N— —N. ForN=3, itis clear from Fig. 3 that this picture is
states, the curvés perfectly flat, and so we obtain exact NO longer valid, and one would expect relevant contributions
information about the continuum spectriine. that there are &t higher order in the N expansion foM <.
massless statesThere is an additional curious property
about these massless states that appear in the DLCQ spec-
trum. It was shown recentp5] that any normalizable mass-  SRecall that the DLCQ Hamiltonian is an algebraic functioNof
less bound state in this theory is a superposition of an infiniteind so we may analytically continié to non-integer or negative
number of Fock states. Of course, when one works in thénteger values by direct substitution.

with masses ator at least sufficiently nearthis point are
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The multi-particle spectrum is a feature of the DLCQ 2 |
. M pi
spectrum that has only recently become of interest. It wa-5-==
pointed out in[14] that there may be bound states in theg N
DLCQ spectrum at resolutio which may be thought of as 89
two non-interacting bound states; this was verified by deter7o
mining the masseM?(K —n) andM?(n) of bound states at
resolutionsKk —n andn respectively f is positive integral

and showing that the light-cone energy relation for two free50

particles, ' .
M?(K)  M?*(K—n) M?3(n) b 00 e
K  K-n + n ' (12 20
10
was obeyed. It is perhaps surprising that such a spectrum wi .
found in [14], since the calculation was performed fidr 0.05 0.1 0.15 0.2 0.25

=0, where the Hilbert space consists of Fock states that are ;5 4 Single and multi-particle bound state masses Nor

only single fraces of parton creation operators. There is No_ 1009, The solid line represents the trail line of a predominantly

obvious way of identifying single or multi-particle states in sjngle trace bound state. The remaining points represent this state
such a basis. In the case of finite but very laNjeit is easy  pound with a massless bound state. Equatib®) predicts these

to see how the spectrum approaches a many body COmnasses to high precision, and we therefore expect two body con-
tinuum; the basis now consists of multi-trace states, but intinua in the spectrum in the limi— .

teractions between bound states consisting of predominantly

single trace Fock states are suppressed by Tivo body

continuum in the spectrum are therefore obvious in our finite(?stpeczvflly to frgrm tr;ﬁ ?t?l(«serg (';'9[ 3.(¥V;a tfm(\j/ ar” tnieshe
analysis, and we will discuss this in more detail shortly. Ney->'t€s have a mass that IS predicte § to very hig

ertheless, it is tempting to speculate on a possible epran&Z?éﬂoor}' tx\éhftgvsogreczen?:g Ir?] theerizorﬁqtfwedﬁgrgt;;edﬂ-
tion for the presence of these “multi-particle” states in the zation ¢ W y Inuum spectrum. Ve
N=c analysis; namely, following the workl5], one ex- a best fit to the lowest two-body mass at each resolution, and

pects even at very largbut finite) N that any predominantly wﬁhsg]ee tr?g[s;hgf ?ﬁ;r?ﬁfelztegr;/:riur?l;:sla/(;dt?c?l?r;rc]j 2:;?2 This
two trace bound state has a contribution from single trac«la of course expected sincep the mass at threshold of a‘ mas-
Fock states. One sees this directly in the DLCQ analysis, of P '

course. This suggests that it might be possible to gpemIVe and massless state is _preC|ser _the mass of the massive
; : _ state. In the DLCQ calculation, one finds that the masses of
multi-trace bound states in tHé=c spectrum(where there .
. . . . these two body states are highly degenerate. The degeneracy
are no multi-trace states in the Hilbert spgbeg virtue of the of the massive state is 4. while the degeneracy of the mass
surviving single trace contributions. A more thorough nu- ' 9 y

merical investigation will need to be carried out before this!ess states is @, whereK is the resolution of the two
question can be properly resolved, since the above argumeRgrton massless states appearing in the two-trace states. The
rests heavily on the dynamical properties of the theory.  total degeneracy is therefore expected to B&?), which is

We now return to the issue of multi-particle bound statesndeed observed in the spectrum. As we increase the resolu-
in the context of our finiteN calculations. For very large tion the density of points will increase and effectively fill the
values ofN, it is straightforward to identify in the bound continuum as a dense subset. What we have presented is an
state spectrum those states that are essentially two looselustrative example, and we in fact find the same pattern for
bound particles; namely, any bound state that is predomiother combinations of states as well, including three body
nantly a superposition of two-trace Fock states are obviouspectra, which all occur at the expected mass.
candidates. Of course, one needs to verify relafit®) be- Of course, the above observations are expected as trivial
fore concluding that the bound state admits such a “tworealizations of the M expansion. What is of interest is the
free-particle” interpretation. A representation of such calcu-modifications in the spectrum due to small but measurable
lations is given in Fig. 4. contributions if we allow IN interactions to become impor-

After solving the DLCQ bound state equations for differ- tant. As we mentioned earlier, studying the trail lings.
ent resolutions, we are able to identify a predominantlytracking a particular state at different resolutions as in Fig. 1
single trace bound state with three partons in the trace. Theecomes increasingly difficult il is not very large. To as-
extrapolated continuum mass is estimated by the solid curveist one in establishing the correct trail lines, it is helpful to
in Fig. 4. One also discerns many massless states consistifigst consider identifying states at larte(sayN=1000, and
of two partons. At resolutiotK =5, one finds a bound state then following the state a is lowered to the desired value.
consisting of two trace Fock states that is readily identifiedn Fig. 5 we perform this procedure, starting with the two
as the two bound states mentioned above that are essentiabpdy spectrum represented in Fig(whereN=1000), and
non-interacting. Its mass is predicted exactly by @@). At then eventually arriving at the spectrum fdr=10. The ob-
resolutionK =6, there are two ways to form the state and atvious difference between Fig. 4 and Fig. 5 is thatNat
resolutionsKk=7 andK=8 there are three and four ways =10, the mass splittings in the spectrum become discernible.

085009-6



NONPERTURBATIVE SPECTRUM OF TWO-DIMENSIONAL ... PHYSICAL REVIEW 58 085009

2 suppressed. String-like states were also found in a theory
M pi . . .. . .
i involving complex adjoint fermions, although their Fock
g N state content was much simpler6,17].
60 This immediately raises a question about the detailed
55 — structure of the spectrum. From supersymmetry, masses are
- bounded from below, and we therefore infer the existence of
50 — an accumulation point in the spectrum. Near this point,
45 f— bound states consist of an arbitrarily large number of par-
= tons. Whether this accumulation point occurs at zero or posi-
40 = tive mass was partly addressed in Fig. 2, and this still re-
35 - f mains an open question. Nevertheless, these results suggest
— - that the fundamental degrees of freedom in the thébey
30 = T the normalizable bound stajamay give rise to a continuous
1/k  Skectrum starting &or close t9 zero mass. Whether this is

0.12 0.14 0.16 0.18 0.2 0.22 0.24 the signature of an additional hidden dimension, as was dis-

FIG. 5. Mass splittings for multi-particle bound states for ~ cussed if11]in the context of the non-critical superstring in
=10. The horizontal lines are bound state masses, and the poingt1 dimensions, or the manifestation of screeniBg], is
are masses predicted by the two free particle fornil®. One sees  still unclear. Nevertheless, it is clear that the model exhibits
the formation of bound states, suggesting that for very ldbgg  remarkably complicated low energy dynamics.
finite) N, the asymptotic degeneracy of the spectrum could be quite  One of the main goals of this work was to go beyond the
complicated. N=co (or planaj approximation of gauge theories in order to

study 1N effects(e.g see Fig. B In the present context, the

Note that there is a discontinuous change in the number ajuantity 1N plays the role of a coupling constant, and mea-
degrees of freedom &=, since at this point, the bound sures the strength of interactions between sectors in the Hil-
states at large but finitdl will dissociate into their constitu- pert space that are characterized by the number of colorless
ent particles aN=o. The presence of multi-particle bound {races in each Fock state. Rerarge (but finite), it is easy to
;tates for fi_niteN evide_ntly provides scope for an exponen- identify two “loosely bound” particles in the spectrum,
tial growth in the density of states. _ since it will be made up of predominantly two trace Fock

The points in Fig. 5 are the values predicted by B) at  gate5. We showed that the same strategy adoptEtiirto
N.=10. Most of the states are below the threshold indicating,,|c|ate the mass of two freely interacting bound states in

thatt atNC:tltO t?e mteéactlon th"?‘é m|t>;]es thet \t/arl?usb trgceth DLCQ spectrum applies equally well in the present con-
Sectors 1S attractive and we consider these stales 1o be DOURd. Figure 4 illustrates the manifestation of such “two

states. Some of the states are above the threshold implyi ” : .
. . o dy” continua in the DLCQ spectrum.
that they are candidate continuum states. The mass splittings ) . o .
For intermediate values ®f, it is possible to measure the

introduced by IN interactions may push states above and/or ff FAN | : d h d i
below threshold, depending on the details of the interaction</ects of 1N interactions, and we have presented an illus-

and so determining the number of bound states in a theory &2tion of the mass splittings that occur in Fig. 5. It is a

finite N is a highly non-trivial dynamical question. dynamical question whether an attractive force will develop
At this point, we remark that the additional interactions Petween particles that freely interact in tNe=co limit. Evi-

we introduce as a result of working with finiié are sugges- dently, the formation of bound states is favored in the present

tive of a system of weakly interacting hadrons; the chise model, and we are therefore faced with the interesting prob-

= js analogous to a system of non-interacting coIorIess‘_.em of counting the asymptotic degeneracies in the spectrum

bound states, while the N/effects introduce the many subtle if N is made arbitrarily largebut finite). We were unable to
interactions that arise between colorless hadrons. address this question here. Note that the presence of very

light string-like states suggests that the quantityi plays
the role of a string coupling constdfit2]. It would be inter-
V. DISCUSSION esting to pursue these ideas further in the context of a two
Pimensional super-Yang-Mills realization of the ten dimen-
sional critical string18].
Finally, it has become evident recently that the properties

To summarize, we find that the low energy spectrum o
(1,9 SU(N) super-Yang-Mills theory in 1 dimensions is

dominated by string-like states. This followed from the ob-mc low dimensional super-Yang-Mills theory may provide a

servation that increasing the DLCQ resolution Intro(.jum:"shonperturbative formulation of quantum theories with grav-
new lighter states that have on average more partons in the|

Fock state expansion than states at smaller resolutions. Thed" It would be interesting to explore this connection further
. P . ) - e performing the sort of nonperturbative analyses presented
is also strong numerical evidence that these states are nqt:

) . . ere.
malizable, since one can keep track of these solutions as the

resolution is increased, and we find that the Fock state am- The authors would like to thank S. Tsujimaru for his in-
plitudes converge rapidlysee Fig. L It is therefore clear volvement at earlier stages in this work, and I. Klebanov for
that pair creation of partons in this theory is not energeticallyhelpful discussions.
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