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Nonperturbative spectrum of two-dimensional„1,1… super-Yang-Mills theory
at finite and large N

F. Antonuccio, O. Lunin, and S. Pinsky
Department of Physics, The Ohio State University, Columbus, Ohio 43210

~Received 24 March 1998; published 15 September 1998!

We consider the dimensional reduction ofN51SYM211 to 111 dimensions, which has~1,1! supersymme-
try. The gauge groups we consider are U(N) and SU(N), whereN is a finite variable. We implement discrete
light-cone quantization to determine nonperturbatively the bound states in this theory. A careful analysis of the
spectrum is performed at various values ofN, including the case whereN is large ~but finite!, allowing a
precise measurement of the 1/N effects in the quantum theory. The low energy sector of the theory is shown
to be dominated by string-like states. The techniques developed here may be applied to any two dimensional
field theory with or without supersymmetry.@S0556-2821~98!02418-7#

PACS number~s!: 11.10.Kk, 11.15.Tk
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I. INTRODUCTION

Solving for the nonperturbative properties of quantu
field theories—such as QCD—is typically an intractab
problem. In order to gain some insight, however, a num
of lower dimensional models have been proposed as us
laboratories in which to study QCD related phenomena~for a
review see@1#!.

In recent times, the role of low dimensional quantum fie
theories has shifted rather dramatically following the rema
able developments in string orM theory. The present litera
ture on this subject is immense, but a common theme app
to be emerging: there is more interesting physics in Ya
Mills theory than was once thought reasonably possible
addition to the M~atrix! model conjecture, which formulate
M theory in terms of supersymmetric quantum mechan
@2#, there is also a proposal by Maldacena@3# that largeN
super-Yang-Mills theories in various dimensions are rela
to certain supergravity solutions.

All of these developments suggest that it would be de
able to have a better understanding of the non-perturba
properties of super-Yang-Mills theory at large~but finite! N,
and in any dimension. Towards this end, we choose to st
in detail the bound state structure and spectrum of a
dimensional field theory, which may be obtained by dime
sionally reducing 211 dimensionalN51 super Yang Mills.
Such a theory has already been investigated in theN5` ~or
planar! approximation@4#, and is believed to exhibit the
property of screening@5,6#. In this work we will allow the
number of gauge colors,N, to be a finite variable. This
means we will be able to monitor the behavior of the sp
trum asN is varied and made arbitrarily large. Special atte
tion is given to measuring the precise effects on the spect
due to 1/N contributions in the quantum theory.

Although we focus on one particular model in this pap
the techniques we develop here are applicable toany two
dimensional field theory, with or without supersymmetry.

The organization of the paper may be summarized as
lows; in Sec. II, we discuss the relevant features of a~1,1!
super-Yang-Mills theory in 111 dimensions, giving explicit
expressions for the~quantized! light-cone supercharges for
0556-2821/98/58~8!/085009~8!/$15.00 58 0850
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mulated in the light-cone gauge. Formulation of the discr
light-cone quantization~DLCQ! bound-state problem of this
theory is the subject of Sec. III, followed by a detailed ana
sis of the corresponding numerical bound-state solution
Sec. IV. In Sec. V, we conclude with a perspective on futu
applications of non-perturbative finiteN calculations for ar-
bitrary ~super! Yang-Mills theories.

II. „1,1… SUPER-YANG-MILLS THEORY
IN 111 DIMENSIONS

The theory we wish to study is readily obtained by dime
sionally reducingN51 D53 super-Yang-Mills to 111 di-
mensions. The resulting theory has~1,1! supersymmetry, and
can be formulated in the light-cone frame. The details of t
light-cone formulation appear in@4#, to which we refer the
reader for explicit derivations. We simply note here that t
light-cone HamiltonianP2 is given in terms of the super
charge Q2 via the supersymmetry relation$Q2,Q2%
52A2P2, where

Q2523/4gE dx2trH ~ i@f,]2f#12cc!
1

]2
cJ . ~1!

In the above,f i j 5f i j (x
1,x2) and c i j 5c i j (x

1,x2) are N
3N Hermitian matrix fields representing the physical bos
and fermion degrees of freedom~respectively! of the theory,
and are remnants of the physical transverse degrees of
dom of the original 211 dimensional theory. This is a spe
cial feature of light-cone quantization in light-cone gauge:
unphysical degrees of freedom present in the original
grangian may be explicitly eliminated. There are no ghos

For completeness, we write the additional relati
$Q1,Q1%52A2P1 for the light-cone momentumP1,
where

Q1521/4E dx2tr@f]2c2c]2f#. ~2!
© 1998 The American Physical Society09-1
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The ~1,1! supersymmetry of the model follows from the fa
$Q1,Q2%50. In order to quantizef and c on the light-
cone, we first introduce the following expansions at fix
light-cone timex150:

f i j ~x2,0!5
1

A2p
E

0

` dk1

A2k1
„ai j ~k1!e2 ik1x2

1aji
† ~k1!eik1x2

…; ~3!

c i j ~x2,0!5
1

2Ap
E

0

`

dk1
„bi j ~k1!e2 ik1x2

1bji
† ~k1!eik1x2

…. ~4!

We then specify the commutation relations

@ai j ~p1!,alk
† ~q1!#5$bi j ~p1!,blk

† ~q1!%5d~p12q1!d i l d jk
~5!

for the gauge group U(N), or

@ai j ~p1!,alk
† ~q1!#5$bi j ~p1!,blk

† ~q1!%

5d~p12q1!S d i l d jk2
1

N
d i j dklD ~6!

for the gauge group SU(N).1
iz
t
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For the bound state eigenproblem 2P1P2uC&5M2uC&,
we may restrict to the subspace of states with fixed lig
cone momentumP1, on which P1 is diagonal, and so the
bound state problem is reduced to the diagonalization of
light-cone HamiltonianP2. SinceP2 is proportional to the
square of the superchargeQ2, any eigenstateuC& of P2

with mass squaredM2 gives rise to a natural degeneracy
the spectrum because of the supersymmetry algebra—
four states below have the same mass:

uC&, Q1uC&, Q2uC&, Q1Q2uC&. ~7!

Although this degeneracy is realized in the continuum f
mulation of the theory, this property will not necessarily su
vive if we choose to discretize the theory in an arbitra
manner. However, a nice feature of DLCQ is that it do
preserve the supersymmetry~and hence theexact four-fold
degeneracy! for any resolution. In the context of numerica
calculations, this reduces~by a factor of four! the size of the
DLCQ matrix that needs to be diagonalized.

The explicit expression forQ2, in the momentum repre
sentation is now obtained by substituting the quantized fi
expressions~3! and ~4! directly into the definition of the
supercharge~1!. The result is
Q25
i221/4g

Ap
E

0

`

dk1dk2dk3d~k11k22k3!H 1

2Ak1k2

k22k1

k3
@aik

† ~k1!ak j
† ~k2!bi j ~k3!2bi j

† ~k3!aik~k1!ak j~k2!#

1
1

2Ak1k3

k11k3

k2
@aik

† ~k3!ak j~k1!bi j ~k2!2aik
† ~k1!bk j

† ~k2!ai j ~k3!#

1
1

2Ak2k3

k21k3

k1
@bik

† ~k1!ak j
† ~k2!ai j ~k3!2ai j

† ~k3!bik~k1!ak j~k2!#

1S 1

k1
1

1

k2
2

1

k3
D @bik

† ~k1!bk j
† ~k2!bi j ~k3!1bi j

† ~k3!bik~k1!bk j~k2!#J . ~8!
-
In ordinary DLCQ calculations, one chooses to discret
the light-cone HamiltonianP2. However it was pointed ou
in @4# that supersymmetric theories admit a natural DLC
formulation in terms of discretized supercharges. This
sures thatsupersymmetry is preserved even in the discreti
theory. Before proceeding with the DLCQ formulation of th
bound state problem, we note that for the gauge group U(N),
massless states appear automatically because of the d

1We assume the normalization tr@TaTb#5dab, where theTa’s are
the generators of the Lie algebra of SU(N).
e

-
d

ou-

pling of the U(1) and SU(N) degrees of freedom that con
stitute U(N). More explicitly, we may introduce the U~1!
operators

a~k1!5
1

N
tr@a~k1!#, b~k1!5

1

N
tr@b~k1!#, ~9!

which allow us to decompose any U(N) operator into a sum
of U~1! and SU(N) operators:

a~k1!5a~k1!•1N3N1ã~k1!,

b~k1!5b~k1!•1N3N1b̃~k1!, ~10!
9-2
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NONPERTURBATIVE SPECTRUM OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW D58 085009
whereã(k1) and b̃(k1) are tracelessN3N matrices. If we
now substitute the operators above into the expression fo
supercharge~8!, we find that all terms involving the U~1!
factors a(k1),b(k1) vanish—only the SU(N) operators
ã(k1),b̃(k1) survive. i.e. starting with the definition of th
U(N) supercharge, we end up with the definition of t
SU(N) supercharge. In addition, the~anti!commutation rela-
tions @ ãi j (k1),a†(k2)#50 and $b̃i j (k1),b†(k2)%50 imply
that this supercharge acts only on the SU(N) creation opera-
tors of a Fock state—the U~1! creation operators only intro
duce degeneracies in the SU(N) spectrum. Clearly, sinceQ2

has no U~1! contribution, any Fock state made up of on
U~1! creation operators must have zero mass. The non-tr
problem is therefore solving for SU(N) bound states.

III. DISCRETIZED LIGHT-CONE
QUANTIZATION AT FINITE N

In order to implement the DLCQ formulation@7# of the
theory, we simply restrict the momentak1 ,k2 andk3 appear-
ing in Eq. ~8! to the following set of allowed momenta
$P1/K,2P1/K,3P1/K, . . . %. Note that we omit the zero
momentum modes@8,9#, which are not expected to affect th
massive spectrum. Here,K is some arbitrary positive intege
and must be sent to infinity if we wish to recover the co
tinuum formulation of the theory. The integerK is called the
harmonic resolution, and 1/K measures the coarseness of o
discretization.2 Physically, 1/K represents the smallest un
of longitudinal momentum fraction allowed for each parto
As soon as we implement the DLCQ procedure, which
specified unambiguously by the harmonic resolutionK, the
integrals appearing in the definition ofQ2 are replaced by
finite sums, and the eigen-equation (Q2)2uC&5luC& is re-
duced to a finite matrix problem. For sufficiently small va
ues ofK ~in this case forK<4) this eigen-problem may b
solved analytically. For valuesK>5, we may still compute
the DLCQ supercharge analytically as a function ofN, but
the diagonalization procedure must be performed num
cally.

The details of how to construct the DLCQ light-cone s
percharges in the model studied here appear in reference@4#.
A similar model was also studied using this approach in@11#.
The only modification we make here is that we allow t
number of gauge colors,N, to be a finite~algebraic! variable.
This complicates things considerably. The reason is ra
simple. In theN5` formulation, all fockstates may be writ
ten as asingle trace of creation operators,

uC&;tr@c†~k1
1!•••c†~kn

1!#u0& ~11!

@c†(k1) represents either a boson or fermion carrying lon
tudinal momentumk1], since individual Fockstates that in

2Recently, Susskind has proposed a connection between the
monic resolution arising from the DLCQ ofM theory, and the
integerN appearing in the U(N) gauge group for M~atrix! theory
~namely, they are the same! @10#.
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volve a product of two or more traces couple to these sta
like 1/N, and are therefore completely decoupled in the lim
N5`. This gives rise to decoupled sectors that are cha
terized by the number of traces appearing in each Fock s
In addition, color interactions in the light-cone Hamiltonia
~or supercharge! simplify when N5`, since splitting or
joining interactions occur betweenadjacentcolor-contracted
partons in a Fock state. This dramatically simplifies the r
resentation of any light-cone operator on the Hilbert space
single trace Fock states. This property also tremendou
simplifies the evaluation of inner products. It is sometim
helpful to think of a single trace state as a closed string m
up of ‘‘string bits’’ @12#. Multiple-trace states are therefor
multi-string states, and the string coupling is given by 1/N.
For N5`, these multi-trace states are just free no
interacting closed ‘‘strings.’’ Splitting and joining of thes
strings is only possible whenN is finite.

Of course, as soon as we allowN to be finite, we have to
give up all of these wonderful simplifications. In comput
tional terms, this usually means that the most time consu
ing part of a DLCQ calculation is the evaluation of inn
products for many parton Fock states, which is relativ
trivial in the N5` case. Of course, the processing time
volved in calculating the representation of the light-co
Hamiltonian relative to the discretized Fock basis is au
mented considerably due to these complications.

Nevertheless, we feel justified in dealing with these co
plications, since a number of interesting physical proper
associated with the dynamics of super-Yang-Mills theory
expected to arise as ‘‘1/N effects’’ in the quantum theory.3

In practical terms, the complexities cited above simp
restrict how large the harmonic resolution,K, is allowed to
be in numerical computations. In the present study, we co
manage onlyK<8 ~about 2000 states altogether forK
58), and we expect that higher values ofK could be probed
if more powerful machines and more efficient code we
available.4

Before proceeding to discuss our numerical results,
point out that one may significantly reduce the computatio
complexity of setting up the DLCQ supercharge by taki
advantage of the simple fact that the U(N) and SU(N) su-
percharges are equivalent. From a computational poin
view, the commutation relations for U(N) matrices@Eq. ~5!#
are simpler than the SU(N) relations @Eq. ~6!#, and so it
would be desirable to work with the U(N) basis even when
we are interested in solving for SU(N) bound states. It turns
out that if one constructs a basis of U(N) Fock states, and
then discards all states that contain a trace of a single pa
then the corresponding spectrum of the U(N) theory on this
modified basis yields the same spectrum as the SUN)
theory. Of course, constructing the U(N) supercharge re-

ar-

3Maldacena has recently argued that the 1/N effects for a particu-
lar class of super-Yang-Mills theories account for Hawking rad
tion in a corresponding class of space-time geometries@3#.

4Numerical calculations were performed using a desk-top PC,
the computer code was written for Mathematica version 3.0.
9-3
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quires much less computational effort, and we therefore
ploy this strategy when solving for SU(N) bound states
when K is large. A more thorough discussion of this tec
nique will appear elsewhere@13#. Of course, the DLCQ pro-
gram we use can do both SU(N) and U(N) independently,
and the above procedure can be checked explicitly foK
<6 ~it works!. This method is expected to play a crucial ro
when solving for SU(N) bound states in more complicate
two dimensional theories.

IV. NUMERICAL BOUND STATE SOLUTIONS

There are two parameters in the DLCQ formulation of t
theory; the harmonic resolutionK, and the number of gaug
colors N. This dependence onK is of course an artifact o
the light-cone compactification scheme,x25x212pR, and
in practice it is eliminated by extrapolating the results
finite K to the continuum limitK5`. Reliable extrapola-
tions require careful analysis of the theory asK is steadily
increased. From Eq.~1!, one sees that the two dimension
Yang-Mills coupling constantg factors out in the definition
of the light-cone supercharge, and so the only adjusta
coupling constant in the theory is the parameter 1/N. This
quantity measures the strength of interactions between
ferent trace sectors in the Hilbert space, where each sect
characterized by the number of traces in each Fock state
course, in the limitN5`, these sectors are completely d
coupled. It is therefore an interesting physical problem
investigate the behavior of the theory whenN is allowed to
be finite and large. Bound states will be a superposition
Fock states containing any number of traces, but interact
between different sectors will be weak.

Our numerical work involved solving the DLCQ SU(N)
bound state equations for 2<K<8, and then extrapolating
the results to obtain estimates for continuum bound s
masses. Supersymmetry in the DLCQ formulation gives
to an obvious exact two-fold mass degeneracy betw
bosons and fermions, but there is an additional two-fold
generacy for each massive boson and fermion bound s
We therefore have an exact four-fold degeneracy in the s
trum of massive bound states. Figure 1 is a summary of
low mass spectrum~i.e. only eigenvalues less than 30 a
plotted! that were obtained for 3<K<8, and forN510. The
vertical axis measures the bound state mass squaredM 2

[2P1P2, in units ofg2N/p.
At resolution K52 there are precisely two massle

SU(N) bound states~one boson and one fermion!, each con-
sisting of two partons. AtK53, massive bound states beg
to appear in the spectrum, and are four-fold degenerate~two
bosons and two fermions!. If these solutions signify the pres
ence of true bound states in the continuum, one expects
their structure will persist asK is increased. In order to chec
this, one must look at the Fock state content of a bound s
at different resolutions, and see whether the same appr
mate structure is preserved as we increaseK; whether the
wave functions begin to converge or not is an indicator
whether the continuum bound state might be normalizabl
not. Of course, as we continue to increaseK, new states will
appear in the~discretized! Fock space that are not related
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any states at smaller resolution. These will signify the on
of additional bound states that may also be followed asK is
increased. The first appearance of a state at a given res
tion may be thought of as a ‘‘trail head’’@14# of the corre-
sponding continuum state. At largeN, this procedure of find-
ing ‘‘trails of bound states’’ is rather straightforward to car
out ~although tedious!. For intermediate values—sa
N510—the Fock state content of any bound state is com
cated considerably due to the non-trivial mixing betwe
states with differing numbers of traces, and the procedur
following the trail of a bound state at different resolutio
must be administered with care.

In Fig. 1, we illustrate this procedure for the caseN
510, where the dashed lines represent trails of particu
bound states, and we have extrapolated these curves to
mate continuum (K5`) bound state masses~we move from
right to left on these curves asK is increased!. In general, as
we increase the resolution, states pick up additional F
state contributions with a larger number of partons, but
approximate structure seen at lower resolutions is still clea
visible providedN is large. In order to determine the trails o
these states for intermediate values ofN, sayN510, we first
consider the trail of a state for largeN ~sayN5100 or 1000!,
and then tune the value ofN down to the desired smalle
value; this effects a smooth change in wave function am
tudes, but the type of Fock states in the Fock state expan
remains unchanged. One can therefore be confident that
is tracking the correct state.

There are a number of striking features in the DLC
spectrum of the theory. First, the low energy spectrum
pears to be dominated by string-like states; each time
increase the resolution, a new massive state appears in
spectrum which is lighter than any of the massive states
appeared at a lower resolution. This can be seen in Fig. 1
addition, the average number of partons in these states
creases commensurately with the resolutionK. So in the
continuumK→`, one can expect the existence of very lig
bound states that have an arbitrarily large number of parto
Since the spectrum is bounded from below~by supersymme-
try!, one deduces the existence of an accumulation poin
the mass spectrum, which we denote byMc . Bound states

FIG. 1. Bound state massesM2 ~in unitsg2N/p) versus 1/K for
N510.
9-4
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NONPERTURBATIVE SPECTRUM OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW D58 085009
with masses at~or at least sufficiently near! this point are
expected to behave like strings made out of an essent
infinite number of string ‘‘bits.’’ Evidently, pair creation o
partons seems to be energetically favored. This behavio
rectly contrasts what is observed in many other models s
ied in the same framework@1#; namely, the mass of a stat
generally increases with the average number of partons i
Fock state expansion.

One interesting question that we are unable to answe
whetherMc is zero or not. We know that massless states
exist at any resolution~there are in fact 2(K21) of them at the
resolutionK), and it might seem reasonable that these li
massive states approach the already existing massless
in theK→` limit. We see from Fig. 2 that the prediction fo
Mc , which is the extrapolation of the points toK5`, ap-
pears to be very close to zero, if not exactly zero. The h
zontal axis is specified by 1/K, whereK is the resolution at
which the lightest non-zero mass eigenstate first appears~i.e.
has a ‘‘trail head’’!, and the vertical axis is its extrapolate
continuum mass~i.e. where the extrapolation curves in Fig.
intersect the vertical axis!. Due to extrapolation errors, an
the low resolutions that were attainable, the uncertaintie
Fig. 2 are expected to be quite large.

Another interesting feature of the DLCQ spectrum is th
the extrapolation curves~dashed lines in Fig. 1! are relatively
flat. This means that by performing a relatively trivial calc
lation at K53 or 4, one is able to estimate the continuu
bound state mass perhaps within ten percent of the ac
continuum value~assuming no pathologies in the DLC
spectrum for extremely largeK). Of course, for the massles
states, the curveis perfectly flat, and so we obtain exa
information about the continuum spectrum~i.e. that there are
massless states!. There is an additional curious proper
about these massless states that appear in the DLCQ
trum. It was shown recently@15# that any normalizable mass
less bound state in this theory is a superposition of an infi
number of Fock states. Of course, when one works in

FIG. 2. Extrapolated continuum masses of lightest mass
bound states for different resolutionsK, and forN510. The verti-
cal axis is the extrapolated continuum mass of the lightest non-
mass eigenstates that first appear at resolutionK. The extrapolation
of these points toK5` gives an estimate for the accumulatio
point Mc

2 in the spectrum.
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DLCQ formulation, the number of Fock states is finite.
our numerical analysis, however, we observe that the st
are exactly massless atany resolution; increasing the resolu
tion increases the complexity of the Fock state expansion
these massless states, but the masses are always pre
zero. Some very special cancellations are evidently resp
sible for protecting these massless states from receiving
rections due to the change in resolution. Note that this
suggestive of some kind of ‘‘duality;’’ namely, forK small,
the problem is relatively easy to solve, and has a sim
description in terms of a small number of degrees of fr
dom, while forK→`, the complexity of the DLCQ problem
increases dramatically, and the precise description of co
sponding bound states is in terms of many more degree
freedom. Nevertheless, the masses of certain states are
served. It would be interesting to understand this from
other point of view.

SinceN is an algebraic variable in our calculations, w
are able to investigate the changes in the masses of stat
N is varied. As an illustration, we consider the mass o
state which has a ‘‘trail head’’ mass ofM 2520.25g2N/p.
See Fig. 3. The values ofN are 3, 5, 10, 100 and 1000, an
we consider the range 3<K<8 as usual.

Evidently, forN53, the coupling 1/N is no longer negli-
gible, and there is an apparent shift in the estimated c
tinuum mass of the bound state. ForN.5, convergence to
the largeN limit appears to be rather rapid. The gene
behavior at largeN would be consistent with the interpreta
tion M 2p/g2N;a2b/N2, wherea andb are positive con-
stants. We do not have a term linear in 1/N since one can
show directly thatM2p/g2N is even under the interchange5

N→2N. For N53, it is clear from Fig. 3 that this picture i
no longer valid, and one would expect relevant contributio
at higher order in the 1/N expansion forM2.

5Recall that the DLCQ Hamiltonian is an algebraic function ofN,
and so we may analytically continueN to non-integer or negative
integer values by direct substitution.

e

ro

FIG. 3. Bound state masses versus 1/K for different N; ~a! N
53 ~top curve!, ~b! N55 ~bottom curve!, ~c! N510 ~third from
top! and ~d! N5100 ~second from top!. The N51000 curve is
indistinguishable from theN5100 curve.
9-5
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The multi-particle spectrum is a feature of the DLC
spectrum that has only recently become of interest. It w
pointed out in@14# that there may be bound states in t
DLCQ spectrum at resolutionK which may be thought of as
two non-interacting bound states; this was verified by de
mining the massesM2(K2n) andM2(n) of bound states a
resolutionsK2n andn respectively (n is positive integral!,
and showing that the light-cone energy relation for two fr
particles,

M2~K !

K
5

M2~K2n!

K2n
1

M2~n!

n
, ~12!

was obeyed. It is perhaps surprising that such a spectrum
found in @14#, since the calculation was performed forN
5`, where the Hilbert space consists of Fock states that
only single traces of parton creation operators. There is
obvious way of identifying single or multi-particle states
such a basis. In the case of finite but very largeN, it is easy
to see how the spectrum approaches a many body
tinuum; the basis now consists of multi-trace states, but
teractions between bound states consisting of predomina
single trace Fock states are suppressed by 1/N. Two body
continuum in the spectrum are therefore obvious in our fin
analysis, and we will discuss this in more detail shortly. Ne
ertheless, it is tempting to speculate on a possible expla
tion for the presence of these ‘‘multi-particle’’ states in t
N5` analysis; namely, following the work@15#, one ex-
pects even at very large~but finite! N that any predominantly
two trace bound state has a contribution from single tr
Fock states. One sees this directly in the DLCQ analysis
course. This suggests that it might be possible to ‘‘se
multi-trace bound states in theN5` spectrum~where there
are no multi-trace states in the Hilbert space! by virtue of the
surviving single trace contributions. A more thorough n
merical investigation will need to be carried out before t
question can be properly resolved, since the above argum
rests heavily on the dynamical properties of the theory.

We now return to the issue of multi-particle bound sta
in the context of our finiteN calculations. For very large
values ofN, it is straightforward to identify in the bound
state spectrum those states that are essentially two loo
bound particles; namely, any bound state that is predo
nantly a superposition of two-trace Fock states are obvi
candidates. Of course, one needs to verify relation~12! be-
fore concluding that the bound state admits such a ‘‘t
free-particle’’ interpretation. A representation of such calc
lations is given in Fig. 4.

After solving the DLCQ bound state equations for diffe
ent resolutions, we are able to identify a predominan
single trace bound state with three partons in the trace.
extrapolated continuum mass is estimated by the solid cu
in Fig. 4. One also discerns many massless states consi
of two partons. At resolutionK55, one finds a bound stat
consisting of two trace Fock states that is readily identifi
as the two bound states mentioned above that are essen
non-interacting. Its mass is predicted exactly by Eq.~12!. At
resolutionK56, there are two ways to form the state and
resolutionsK57 and K58 there are three and four way
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respectively to form the state~see Fig. 4!. We find all these
states have a mass that is predicted by~12! to very high
precision. What we are seeing is therefore the discrete re
ization of the two body continuum spectrum. We have ma
a best fit to the lowest two-body mass at each resolution, a
we see that the extrapolated value coincides~within error!
with the mass of the three parton massive bound state. T
is of course expected, since the mass at threshold of a m
sive and massless state is precisely the mass of the mas
state. In the DLCQ calculation, one finds that the masses
these two body states are highly degenerate. The degene
of the massive state is 4, while the degeneracy of the ma
less states is 2(K̃21), where K̃ is the resolution of the two
parton massless states appearing in the two-trace states.
total degeneracy is therefore expected to be 2(K̃11), which is
indeed observed in the spectrum. As we increase the res
tion the density of points will increase and effectively fill th
continuum as a dense subset. What we have presented i
illustrative example, and we in fact find the same pattern f
other combinations of states as well, including three bo
spectra, which all occur at the expected mass.

Of course, the above observations are expected as tri
realizations of the 1/N expansion. What is of interest is the
modifications in the spectrum due to small but measura
contributions if we allow 1/N interactions to become impor-
tant. As we mentioned earlier, studying the trail lines~i.e.
tracking a particular state at different resolutions as in Fig.!
becomes increasingly difficult ifN is not very large. To as-
sist one in establishing the correct trail lines, it is helpful
first consider identifying states at largeN ~sayN51000!, and
then following the state asN is lowered to the desired value
In Fig. 5 we perform this procedure, starting with the tw
body spectrum represented in Fig. 4~whereN51000), and
then eventually arriving at the spectrum forN510. The ob-
vious difference between Fig. 4 and Fig. 5 is that atN
510, the mass splittings in the spectrum become discernib

FIG. 4. Single and multi-particle bound state masses forN
51000. The solid line represents the trail line of a predominan
single trace bound state. The remaining points represent this s
bound with a massless bound state. Equation~12! predicts these
masses to high precision, and we therefore expect two body c
tinua in the spectrum in the limitK→`.
9-6
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NONPERTURBATIVE SPECTRUM OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW D58 085009
Note that there is a discontinuous change in the numbe
degrees of freedom atN5`, since at this point, the boun
states at large but finiteN will dissociate into their constitu-
ent particles atN5`. The presence of multi-particle boun
states for finiteN evidently provides scope for an expone
tial growth in the density of states.

The points in Fig. 5 are the values predicted by Eq.~12! at
Nc510. Most of the states are below the threshold indicat
that at Nc510 the interaction that mixes the various tra
sectors is attractive and we consider these states to be b
states. Some of the states are above the threshold imp
that they are candidate continuum states. The mass split
introduced by 1/N interactions may push states above and
below threshold, depending on the details of the interactio
and so determining the number of bound states in a theo
finite N is a highly non-trivial dynamical question.

At this point, we remark that the additional interactio
we introduce as a result of working with finiteN are sugges-
tive of a system of weakly interacting hadrons; the caseN
5` is analogous to a system of non-interacting colorl
bound states, while the 1/N effects introduce the many subt
interactions that arise between colorless hadrons.

V. DISCUSSION

To summarize, we find that the low energy spectrum
~1,1! SU(N) super-Yang-Mills theory in 111 dimensions is
dominated by string-like states. This followed from the o
servation that increasing the DLCQ resolution introduc
new lighter states that have on average more partons in
Fock state expansion than states at smaller resolutions. T
is also strong numerical evidence that these states are
malizable, since one can keep track of these solutions as
resolution is increased, and we find that the Fock state
plitudes converge rapidly~see Fig. 1!. It is therefore clear
that pair creation of partons in this theory is not energetica

FIG. 5. Mass splittings for multi-particle bound states forN
510. The horizontal lines are bound state masses, and the p
are masses predicted by the two free particle formula~12!. One sees
the formation of bound states, suggesting that for very large~but
finite! N, the asymptotic degeneracy of the spectrum could be q
complicated.
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suppressed. String-like states were also found in a the
involving complex adjoint fermions, although their Foc
state content was much simpler@16,17#.

This immediately raises a question about the deta
structure of the spectrum. From supersymmetry, masses
bounded from below, and we therefore infer the existence
an accumulation point in the spectrum. Near this po
bound states consist of an arbitrarily large number of p
tons. Whether this accumulation point occurs at zero or p
tive mass was partly addressed in Fig. 2, and this still
mains an open question. Nevertheless, these results su
that the fundamental degrees of freedom in the theory~i.e.
the normalizable bound states! may give rise to a continuou
spectrum starting at~or close to! zero mass. Whether this i
the signature of an additional hidden dimension, as was
cussed in@11# in the context of the non-critical superstring
211 dimensions, or the manifestation of screening@5,6#, is
still unclear. Nevertheless, it is clear that the model exhib
remarkably complicated low energy dynamics.

One of the main goals of this work was to go beyond t
N5` ~or planar! approximation of gauge theories in order
study 1/N effects~e.g see Fig. 3!. In the present context, th
quantity 1/N plays the role of a coupling constant, and me
sures the strength of interactions between sectors in the
bert space that are characterized by the number of color
traces in each Fock state. ForN large~but finite!, it is easy to
identify two ‘‘loosely bound’’ particles in the spectrum
since it will be made up of predominantly two trace Fo
states. We showed that the same strategy adopted in@14# to
calculate the mass of two freely interacting bound states
the DLCQ spectrum applies equally well in the present c
text. Figure 4 illustrates the manifestation of such ‘‘tw
body’’ continua in the DLCQ spectrum.

For intermediate values ofN, it is possible to measure th
effects of 1/N interactions, and we have presented an illu
tration of the mass splittings that occur in Fig. 5. It is
dynamical question whether an attractive force will deve
between particles that freely interact in theN5` limit. Evi-
dently, the formation of bound states is favored in the pres
model, and we are therefore faced with the interesting pr
lem of counting the asymptotic degeneracies in the spect
if N is made arbitrarily large~but finite!. We were unable to
address this question here. Note that the presence of
light string-like states suggests that the quantity 1/N plays
the role of a string coupling constant@12#. It would be inter-
esting to pursue these ideas further in the context of a
dimensional super-Yang-Mills realization of the ten dime
sional critical string@18#.

Finally, it has become evident recently that the propert
of low dimensional super-Yang-Mills theory may provide
nonperturbative formulation of quantum theories with gra
ity. It would be interesting to explore this connection furth
by performing the sort of nonperturbative analyses presen
here.

The authors would like to thank S. Tsujimaru for his i
volvement at earlier stages in this work, and I. Klebanov
helpful discussions.
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