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Bremsstrahlung and photon production in thermal QCD
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In this paper, we extend the study of bremsstrahlung photon production in a quark-gluon plasma to the cases
of soft static photons (q50) and hard real photons. The general framework of this study is the effective
perturbative expansion based on the resummation of hard thermal loops. Despite the fact that bremsstrahlung
only comes at two loops, we find that in both cases, it generates contributions of the same order of magnitude
as those already calculated by several other groups at one loop. Furthermore, a new process contained in the
two-loop diagrams dominates the emission of a very hard real photon. In all cases, the rate of real or virtual
photon production in the plasma is appreciably increased compared to the one-loop predictions.
@S0556-2821~98!01418-0#

PACS number~s!: 11.10.Wx, 12.38.Mh
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I. INTRODUCTION

We consider the production of a real photon or of a lep
pair in a quark-gluon plasma. The plasma is assumed to b
equilibrium at temperatureT. The theoretical framework
used in the calculation is that of thermal field theory im
proved by the hard loop resummation@1–6# of Braaten and
Pisarski: in this approach one distinguishes hard moment
order T, from soft momenta, of ordergT, whereg is the
quantum chromodynamics~QCD! coupling constant as
sumed to be small (g!1). After resummation of hard ther
mal loops, one is led to an effective Lagrangian@7,6,8# from
which observables can be evaluated perturbatively.

The production rates of real or virtual photons have
ready been evaluated, at the one loop level, in the effec
theory@9–13#. Concerning soft virtual photons, it was foun
that the rate of production is considerably modified and
hanced compared to the result of the bare theory. In addi
to the usual quark-antiquark annihilation process, there
pear many production mechanisms, in particular proces
with the photon radiated off a~hard! quark in a scattering
process, where the quark is backward scattered in the pla
via soft quark exchange. This is to be contrasted with
result obtained in a semi-classical approximation@14–18#,
where the photon is radiated off fast quarks in scatter
processes mediated by a gluon exchange: we call such
cesses bremsstrahlung emission of a photon. In this stud
reconcile the two approaches and show that the bremss
lung processes favored by the semi-classical approxima
appear at the two-loop level in the effective theory and th
in fact, they contribute at the same order ingT as the pro-
cesses in the one-loop effective theory. Such a result sh
not be a surprise.

Consider the case of a soft virtual photon. The rate
production is related to the imaginary part of the vacu
polarization diagram@19,20#. In the one-loop approximation
of the effective field theory, it involves only effective fe
mion propagators and effective vertices@9#. A dominant con-
tribution to the rate arises when the internal fermion mom
0556-2821/98/58~8!/085003~17!/$15.00 58 0850
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tum is soft and, therefore, all effective propagators a
effective vertices have the same order of magnitude as t
bare counterparts. A close examination of the final res
shows, however, that it has a logarithmic sensitivity to sca
of orderT ~see Sec. III C 2!: this means that such a diagra
also receives a dominant contribution from hard fermion m
menta. When the momentum becomes large, the hard t
mal loop ~HTL! corrections to propagators and vertices a
suppressed by, at least, a factorg with respect to their bare
counterparts. This suppression factorg can easily be com-
pensated by the larger phase space available to a hard
mion „O(T)… compared to soft fermion„O(gT)…, thereby
leading to a contribution of the same order of magnitu
from the soft region and the hard region of phase-spa
Now, when an observable is sensitive to the thermal corr
tions to hard vertices and propagators, it is obvious that
such corrections should be taken into account for the ca
lation to be complete. Some of these thermal corrections
naturally included in the lowest order of the effective theo
via the resummation of hard thermal loops. But, even if
HTL approximation is correct for soft external particles,
does not account for all thermal corrections to hard verti
and hard propagators. For instance, neglecting the exte
momenta as one does in the calculation of the hard ther
loops is no longer justified when these momenta are not s
Besides, equally important may be the contribution aris
from soft gluons in the loop giving the HTL when the exte
nal momenta are hard, due to the Bose enhancement o
soft gluon term. Within the effective theory, both types
additional thermal corrections to a hard propagator or ver
are taken into account by considering a one-loop correc
to this propagator or vertex.

In the calculation of the virtual photon production rate
the effective theory, soft gluon exchange appears in two-lo
diagrams. It will be seen that the bremsstrahlung produc
mechanism is precisely given by these diagrams when
exchanged gluon is space-like. The evaluation of these
grams is discussed below. These contributions are clearly
included in the effective one-loop diagram. This is obvio
© 1998 The American Physical Society03-1
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when looking at the corresponding physical processes an
manifests itself in the result by the calculated rate being p
portional to the square of the thermal gluon massmg , in
contrast to the one-loop result, where only the thermal qu
mass appears@9#. Another important contribution of the two
loop diagrams is associated with time-like gluon exchang
physically this represents QCD Compton scattering a
quark-antiquark annihilation to produce a gluon and a p
ton. To evaluate this properly requires care, since the t
loop diagrams with a hard time-like gluon exchanged
already part of the one-loop diagram with effective propa
tors and vertices. Taking into account the contribution of
appropriate counterterms in the effective Lagrangian w
prevent double-counting and allow the correct evaluation
the soft, time-like, gluon contribution.

The case of soft real photon production follows ess
tially the same pattern, except for the crucial fact that,
external line in the vacuum polarization diagram being ma
less, collinear divergences appear when evaluating the
loop diagrams: the quasi-overlap of two such divergenc
associated with the fermion propagators, leads to an
hancement factor ofO(1/g2) @21,22#. The paradoxical resul
then follows that the one-loop contribution is relatively su
pressed by a factorg2 compared to the two-loop one. Th
latter is entirely dominated by the bremsstrahlung proc
since the kinematical constraints require the gluon to
space-like for the enhancement factor to occur. The Comp
and annihilation mechanisms are sub-dominant.

The case of a hard real photon, of momentum ofO(T),
shares features with both cases above. The one-loop app
mation has a logarithmic sensitivity to the hard fermion m
mentum in the loop@12,13#. The two-loop bremsstrahlun
has a 1/g2 collinear enhancement, as in the real soft pho
case, which, however, is compensated by a factormg

2/q2

;g2, whereq is the photon momentum, leaving the brem
strahlung contribution at the same order ingT as the one-
loop contribution.

Our theoretical framework is the HTL resummed effe
tive theory, and we consider the production rate of real
virtual photons up to two loop order in the perturbative e
pansion of the effective theory. More precisely, we are c
cerned mainly with the bremsstrahlung part of the two-lo
diagrams, and leave the discussion of the Compton and
nihilation processes and their interplay with the counterte
of the effective theory to future work. We do not discuss t
production of soft real photons since this has already b
studied in detail in@21#.

In the next section we derive the general expression
the ~real or virtual! photon production rate at the two loo
level. Then we consider the case of soft virtual photons p
duced at rest in the plasma and derive the leading beha
analytically. We compare to the one-loop results and sh
that the bremsstrahlung contribution is numerically domin
although both contributions are technically of the same or
in g. The semi-classical approach is then discussed and
shown that even though the approximations inherent in
semi-classical approach are not really justified in the cas
soft photon production in a quark-gluon plasma, it leads t
result quite comparable to that obtained in thermal fi
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theory. Turning to the case of hard real photons, it is sho
that the bremsstrahlung mechanism is of the same orde
the already calculated one-loop result. Carrying out a m
detailed comparison with the latter approach, it is found t
the bremsstrahlung process dominates over the one-loo
sult for photon momentum ofO(T), but is relatively sup-
pressed by a logarithmic factor for hard enough photons.
very hard energies, we find that the photon production is
fact dominated by a new process consisting of aqq̄ annihi-
lation, where the quark or antiquark undergoes a scatterin
the medium. We summarize all the thermal field theory
sults concerning real and virtual photon production in a c
cluding section.

The role of counterterms in the application of the effe
tive theory up to two-loops is discussed in a first append
where the problem is also illustrated in a simple example
a second appendix, the importance of phase space facto
thermal calculations is emphasized and the difference w
the zero temperature phase space is made clear.

II. BREMSSTRAHLUNG IN THERMAL FIELD THEORY

A. Topologies involving bremsstrahlung

Let us first recall the relationship between the photon p
duction rate and the imaginary part of the retarded polar
tion tensor of the photon, as given by thermal field theo
~we follow the notations of@23#!. For real photons, this re
lation gives the number of photons emitted per unit time a
per unit volume of the plasma as@19,20#:

dN

dtdx
52

dq

~2p!32qo
2nB~qo!Im PRA

m
m~qo ,q!, ~1!

whereas for the production of a photon of invariant massQ2

decaying into a lepton pair, we have:

dN

dtdx
52

dqodq

12p4

a

Q2 nB~qo!Im PRA
m

m~qo ,q!. ~2!

Basically, the above two formulas differ only by the allowe
phase space for the photon, by an extra QED coupling c
stant when the photon decays into a lepton pair, and by
propagator of a heavy photon. It is worth recalling that the
relations are valid only at first order in the QED couplinga,
since they do not take into account the possible
interactions of the photon on its way out of the plasma n
the simultaneous emission of more than one photon. Ne
theless, they are true to all orders in the strong coupl
constantaS . This should not be a serious limitation from
practical point of view, sincea!aS .

Let us now examine in which topologies the bremsstr
lung can appear. It is worth recalling at this point that t
retarded imaginary part in Eqs.~1! and~2! can be expressed
as a sum over possible cuts through the diagram@24–26#.
Therefore, we need to look for diagrams that will giv
bremsstrahlung processes once cut. A simple inspectio
the processes involved in one-loop contributions~see@9,21#
for instance! shows that bremsstrahlung does not appea
3-2



c

tio

it
r-
th
di

th
a
he
d
an

o
d
or
p

te

TL
a
th

s
o

wh
iv
s
-
n-

w

art
ond

cut

he
loop
cir-

ee
de-
the
ry-

be
rt

cles,
r
at
s a
-

-
r
L
ere-
ted
a-

otic

s as
cal-
of
uts
hich
and
per
on-
c-

2.
r

th
ey
jus
er

ions
ic-

o-
rte

h-
rk of

BREMSSTRAHLUNG AND PHOTON PRODUCTION IN . . . PHYSICAL REVIEW D 58 085003
this order. To see bremsstrahlung processes, one should
sider the two-loop contributions of Fig. 1.

The diagrams have been obtained via a strict applica
of the Feynman rules of the effective theory@3,5#, giving a
priori effective vertices and propagators and diagrams w
counterterms1 in order to avoid any double counting of the
mal corrections already included at the one-loop level via
resummation of hard thermal loops, as outlined in Appen
A. To make the connection with previous works@21,22#
easier, we mention that looking at two loop diagrams in
effective theory is just a more rigorous way of doing wh
we might call ‘‘calculating one-loop diagrams beyond t
HTL approximation.’’ Our present formulation is indee
more rigorous, since it takes care of the counterterms,
also more positive, since it does not assumea priori that one
needs to go beyond the effective theory. Among all the p
sible cuts through the diagrams, those that correspon
bremsstrahlung necessarily cut the gluon propagator. M
over, if L is the gluon 4-momentum, only the Landau dam
ing part (L2,0) gives bremsstrahlung, theL2.0 part rather
giving Compton effect orqq̄-like annihilations@27#. There is
another reason why the regionL2.0 deserves a separa
treatment: in theL2,0 kinematical domain, it is obvious
that we cannot have contributions coming from the H
counterterms, since these counterterms involve only b
gluon propagators that do not have any imaginary part in
space-like region. On the contrary, in theL2.0 region, one
should pay special attention to the counterterm diagram
order to avoid any double-counting. Indeed, when the glu
becomes hard, we have a hard loop that may reproduce
is already included in the one-loop diagram via the effect
vertices and propagators. From now on, we limit ourselve
the region, whereL2,0 and only to the true two-loop dia
grams, leaving theL2.0 region and the discussion of cou
terterms to future work.

Moreover, since our main focus is on bremsstrahlung,

1These counterterms are nothing, but the HTL contribution to
two or three-point function, with the opposite sign. Formally, th
are necessary because one wants the effective theory to be
reordering of the bare perturbative expansion, with the same ov
Lagrangian.

FIG. 1. Two-loop contributions involving bremsstrahlung pr
cesses. A black dot denotes an effective propagator or ve
Crosses are HTL counterterms.
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must retain from the cut quark propagators only the pole p
and reject the Landau damping part, which would corresp
to a different physical process. For the same reason, the
should avoid going through an effective vertex.2

B. General expression of two-loop contributions

In order to obtain a bremsstrahlung contribution of t
same order of magnitude as the already calculated one-
contributions, we need a hard phase space for the quark
culating in the loop, as explained in Appendix B. We will s
later that we have such contributions in the diagrams
picted in Fig. 1. Therefore, at leading order, we can use
hard momentum limit of vertices and propagators eve
where except for the gluon propagator since the gluon can
soft. Since we work in the effective theory, the time-like pa
of propagators corresponds to stable massive quasi-parti
i.e., a hard fermion~or gluon! has a thermal mass of orde
gT, but no width. Of course, we are aware of the fact th
this damping can compete with the asymptotic mass a
regulator for collinear singularities under certain circum
stances@28,29#, but this implies the resummation of an infi
nite series of diagrams@30#, while our purpose in this pape
is to follow strictly a perturbative approach within the HT
effective theory. The diagrams we have to consider are th
fore the simplified versions of the previous ones represen
on Fig. 2 ~in this figure, we represented the quark propag
tors as bare ones, even if they still contain the asympt
thermal mass coming from the HTL resummation!.

In the same figure, we have depicted the relevant cut
well as the arrangement of circlings that enables one to
culate the corresponding contribution in the framework
the thermal cutting rules. We have checked that the two c
represented form a gauge independent set of terms, to w
one should add the symmetric cut for the vertex diagram
a third diagram with the self-energy correction on the up
quark line. Since these two other terms give the same c
tribution as the previous two, we simply take them into a
count by multiplying the final result by an overall factor of

A straightforward application of the cutting rules valid fo
the ‘‘R/A’’ formalism, with the notations of@26#, gives for
the vertex correction:

e

t a
all

2These extra requirements are not a claim that other configurat
of the cut cannot give important contributions as well, but are d
tated by our choice of looking only at bremsstrahlung.

x.

FIG. 2. Simplified two-loop contributions involving bremsstra
lung processes. The circled vertices correspond to the framewo
the cutting rules.
3-3
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Im PRA
m

m~qo ,q! uvertex52Im PAR
m

m~qo ,q! uvertex5
NCF

2 E d4P

~2p!4 E d4L

~2p!4

3eARR~Q,P1L,2R2L !gARR~2P2L,P,L !

3gAAR~R1L,2L,2R!eAAR~R,2P,2Q!

3Tr@gmS AR~P1L !grS ARI ~P!gmSRI A~R!gsSRI A~R1L !#Drs
ARI ~L !

52
NCF

2
e2g2E d4P

~2p!4 E d4L

~2p!4 @DT,L
R ~L !2DT,L

A ~L !#@SR~P!2SA~P!#

3@SR~R1L !2SA~R1L !#„nF~r o!2nF~po!…„nB~ l o!1nF~r o1 l o!…

3S~R!S~P1L !Prs
T,L~L !Tracers

uvertex, ~3!
an

in

n its
where, following@21#, we denote the fermion propagator:

SR,A~P![P”̄ SR,A~P! with P̄[~po ,Ap21M`
2 p̂! ~4!

S~P!R,A[
i

P̄26 ipo«
5

i

P22M`
2 6 ipo«

, ~5!

and the effective gluon propagator in a linear covari
gauge:

2Drs
R,A~L ![Prs

T ~L !DT
R,A~L !1Prs

L ~L !DL
R,A~L !1jLrLs /L2

~6!

DT,L
R,A~L ![

i

L22PT,L~L !
U

R,A

and rT,L~L ![DiscDT,L
R ~L !

~7!
g

i
r

08500
t

PT~L ![3mg
2Fx2

2
1

x~12x2!

4
lnS x11

x21D G ~8!

PL~L ![3mg
2~12x2!F12

x

2
lnS x11

x21D G , ~9!

with Prs
T,L the usual transverse and longitudinal projectors

linear covariant gauges@2,31–34#, M`
2 [g2CFT2/4 @35# the

asymptotic thermal mass of the quark, andmg
2[g2T2@N

1NF/2#/9 the soft gluon thermal mass. In this formula,e is
the electric charge of the quark and therefore depends o
flavor. Likewise, we obtain for the second diagram:
Im PRA
m

m~qo ,q! uself52Im PAR
m

m~qo ,q! uself5
NCF

2 E d4P

~2p!4 E d4L

~2p!4

3eARR~Q,P,2R!gARR~R,L,2R2L !

3gAAR~R1L,2L,2R!eAAR~R,2P,2Q!

3Tr@gmS AR~P!gmSRA~R!grSRA~R1L !gsSRA~R!#Drs
AR~L !

52
NCF

2
e2g2E d4P

~2p!4 E d4L

~2p!4 @DT,L
R ~L !2DT,L

A ~L !#

3@SR~P!2SA~P!#@SR~R1L !2SA~R1L !#Prs
T,L~L !Tracers

uself

3„S~R!…2„nF~r o!2nF~po!…„nB~ l o!1nF~r o1 l o!…. ~10!
ap-
are
ver,
In the previous formulas, a factorS(R) without anyR or A
superscript simply denotes the principal part of the propa
tor. In other words, for these factors, theR or A prescription
is irrelevant because the corresponding delta function is
compatible with the other delta functions present and the
fore vanishes.
a-

n-
e-

We may notice the similarity between Eqs.~3! and ~10!.
In particular, the same combination of statistical weights
pear in both formulas, while the expressions in the squ
brackets simply express the cuts on internal lines. Moreo
when plugged into Eq.~1! in order to obtain the production
rate, the sum of Eqs.~3! and~10! gives the more intuitive Eq.
3-4
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~B1! in Appendix B ~to which one should add similar term
to take into account all the processes included in our d
grams!. Therefore, the ‘‘R/A’’ formalism appears just as a
efficient method to reorder the factors of the integrand
order to make it more compact and more convenient for
subsequent integrations. The drawback of this formalism
that it generates less intuitive expressions.

C. Common part of the calculation

The calculation of the Dirac’s traces is of course comm
to both cases. We obtain for the self-energy insertion:

Tracers
uself'24@4R̄2QrR̄s24Q2R̄rR̄s

2grs
„R̄2~R̄22Q2!12R̄2Q•L22Q2R̄•L…#,

~11!

and for the vertex correction:

Tracers
uvertex'24„2R̄2P̄rQs22~P1L !2R̄rQs

12L2~R̄rR̄s1 P̄rP̄s!24Q2R̄rP̄s

1grs$2L2@R̄21~P1L !22Q22L2#%…. ~12!

It is worth recalling that these expressions are obtained
anticipating the use of the relation

LrPrs
T,L~L !50 ~13!

in order to drop anyLr or Ls in the expression of the Dirac’
traces. Since this identity is not true for the gauge depend
part of the gluon propagator, one should not use these
pressions of the traces to check the independence of the
with respect to the gauge parameterj. Moreover, we dis-
carded terms that will be killed later by the delta functio
such as the one contained inSR(P)2SA(P)
52pe(po)d(P22M`

2 ). Since a 4-vector like P̄

5(po ,Ap21M`
2 p̂) is not a linear function of the momentum

P, we used some approximations to simplify the calcu
tions, the effect of which is to neglect only terms that a
always subdominant.3

We also notice that the statistical weights and delta fu
tions present in Eqs.~3! and ~10! are invariant under the
change of variablesP→2R2L, L→L. Therefore, in the
remaining factors of the integrand, we are allowed to d
the parts which are antisymmetric under this transformat
Collecting contributions from the two topologies, this sym
metrization gives:

3For instance:

R̄2P̄5QF11OS M`
2

p~p1q!
D G . ~14!
08500
-

n
e
is

n

y

nt
x-
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-

-

p
n.

S Tracers
uvertex

R̄2~P1L !2
1

Tracers
uself

R̄2R̄2 D
sym

'24H 2L2
R̄rR̄s1 P̄rP̄s

R̄2~P1L !2

22Q2S R̄r

R̄2
1

P̄r

~P1L !2D S R̄s

R̄2
1

P̄s

~P1L !2D
2grsF12

L2~L21Q2!

R̄2~P1L !2
1~L21Q•L !

3S 1

R̄2
1

1

~P1L !2D
1

Q2L2

2 S 1

~R̄2!2
1

1

@~P1L !2#2D G J , ~15!

which will be our starting point in the following sections.

III. CONTRIBUTION TO SOFT STATIC PHOTONS

A. Kinematics

When the 3-momentumq of the emitted photon is zero,
lot of simplifications occur. First of all, since there is on
3-vector less in the problem, we need only one angular v
able which simplifies considerably the angular integratio
Moreover, as shown in@21#, the nonvanishing invariant mas
of the emitted photon regulates all the potential colline
divergences whenQ2/qo

2;1. Therefore, one can simply for
get about the quark asymptotic thermal mass, since the
pose of such a mass is precisely to regularize collinear
gularities. This means that we can everywhere identifyP and
P̄ at this level of approximation, since furthermoreP is hard.

From the identitySR(P)2SA(P)52pe(po)d(P2), we
extract the valuespo56p and r o5qo6p. For the second
cut quark propagator, we have the identitySR(R1L)
2SA(R1L)52pe(r o1 l o)d„(R1L)2

… from which we ex-
tract the cosine of the angleu8 betweenp and l:

cosu85
~r o1 l o!22p22 l 2

2pl
. ~16!

Of course, we must require that this value be in@21,11#,
which will reduce the available phase space.

This requirement leads to the following two inequalitie

~ l o2 l 1po1qo2p!~ l o1 l 1po1qo1p!<0 ~17!

~ l o2 l 1po1qo1p!~ l o1 l 1po1qo2p!>0, ~18!

which lead to a phase space reduction that can be seen in
3, where the region excluded by the requirement cosu8
P@21,11# has been shaded in dark gray. Other regions
excluded also by our choice of looking only at bremsstra
3-5
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lung, i.e., excluding areas, whereL2.0 @27#. Finally, the
only regions we have to consider are the unshaded ones

Having taken these constraints into account, the indep
dent variables we are left with are for instance~the choice is
not unique! r 5p, l o and l , everything else being a functio
of these three. In particular, the denominators appearin
the calculations are

R25qo~qo62p! ~19!

~P1L !252qo~qo12l o62p!, ~20!

FIG. 3. Allowed domains in the (l o ,l ) plane forpo56p. The
area shaded in dark gray is excluded by the delta functions.
region shaded in light gray is above the light-cone~dotted lines!.
The solid curves are the transverse and longitudinal disper
curves of the thermalized gluon. The vertical dotted line is
separation betweene(po)e(r o1 l o)511 and e(po)e(r o1 l o)
521. The value of the thermal mass has been exaggerated in
to make the figure more readable.
n-

in

the 1 sign corresponding topo51p and the2 sign to po

52p.
It is worth examining more closely to which physical pr

cesses the regions I, II and III correspond. This is done
by looking at the signs ofpo and r o1 l o . Examples are
shown in Fig. 4.

Besides the bremsstrahlung present in regions I and
we see a new process in region II. This process correspo
to an annihilation of a quark-antiquark pair, one of the p
ticles having previously undergone a scattering in the m
dium. Since the scale for the quark momentum is given
the temperature„p5O(T)…, and since we are looking here a
soft photons, it is obvious from Fig. 3 that processes I and
have support of orderT2 in the (l o ,l ) plane, while process II
has only support of orderqoT, the integrand being the sam
Therefore, we expect and we have checked that process
suppressed by a factor of orderqo /T!1 compared to brems
strahlung. As a consequence, bremsstrahlung appears
the dominant contribution as far as theL2,0 domain is con-
cerned. In the remaining part of this section, we limit o
study to the regions I and III. We can obtain a further redu
tion of the phase space by noticing that regions I and III g
the same contribution, since they are equivalent by a cha
of variables@indeed, after the symmetrization in Eq.~15!, the
integrands are invariant under the change of variablesP
→2R2L and L→L#. Physically, this means that photon
are produced equally by quarks and by antiquarks. The
fore, we just consider region III~i.e., po.0 andr o1 l o.0!
and multiply the result by an extra factor 2. Hence, the c
tribution of bremsstrahlung is given by

he

n
e

er

FIG. 4. Physical processes included in the diagrams of Fig. 2
the regionL2,0. Region I:po,0, r o1 l o,0: bremsstrahlung with

an antiquark. Region II:po,0, r o1 l o.0: qq̄ annihilation with
scattering. Region III:po.0, r o1 l o.0: bremsstrahlung with a
quark. The particle on which the quark is scattered can also b
gluon.
Im PAR
m

m~qo ,0!'
NCF

~2p!4 e2g2E dpE ldl E dlo@nF~r o!2nF~po!#@nB~ l o!1nF~r o1 l o!#

3 (
a5T,L

ra~L !Prs
a ~L !S Tracers

uvertex

R̄2~P1L !2
1

Tracers
uself

R̄2R̄2 D
po5p

cosu85¯

sym
. ~21!
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B. Extraction of the dominant terms

1. General considerations

Let us now concentrate on the matrix element to be in
grated over the phase space depicted above. In order to
form the contraction of the Dirac’s trace obtained in Eq.~15!
with the longitudinal projectors, we use the following e
pressions@31,32#:

Prs
T ~L !5grs2UrUs1

~Lr2 l oUr!~Ls2 l oUs!

l 2 ~22!
ng
d

ch
s:

-

f

in

A

s

08500
-
er-

Prs
L ~L !52Prs

T ~L !1grs2
LrLs

L2 , ~23!

where U[(1,0) is the 4-velocity of the plasma in its res
frame. An important simplification is obtained in the case
static photons, since we have

QrPrs
T 50. ~24!

Taking into account this simplification, we obtain, after som
algebra,
(
a5T,L

ra~L !Prs
a ~L !S Tracers

uvertex

R̄2~P1L !2
1

Tracers
uself

R̄2R̄2 D
sym

'24H „rT~L !2rL~L !…
4p2~cos2 u821!

R2~P1L !2 S L222
Q2~Q•L !2

R2~P1L !2D12
~Q1L !2

R2~P1L !2 „Q2rL~L !1L2rT~L !…

22rT~L !S 122
~Q•L !2

R2~P1L !2 1
Q2L2

2 F 1

~R2!2 1
1

„~P1L !2
…

2G D J . ~25!
e

the

f

m

n
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It is worth noticing that all the potential poles in 1/L2 @see
Eq. ~23!# have disappeared in this formula. This is nothi
but a consequence of the gauge invariance of the set of
grams we are looking at.

Now, in order to extract the order of magnitude of ea
term in Eq.~25!, we can use the following very rough rule

R2;(P1L)2;2pqo which is correct for our purpose
even if l is hard, sincel is bounded by a quantity propor
tional to p ~see the previous paragraph on kinematics!.

nB( l o);T/ l o which always gives the correct order o
magnitude, even whenl o is hard.

nF(r o1 l o)5O(1).
nF(r o)2nF(po)'qonF8 (p).
12cos2 u85O(1).
The details of thex dependence are irrelevant to obta

the correct order of magnitude.
rT,L( l ,x) behaves likemg

2/( l 21mg
2)2 if one neglects itsx

dependence.
Moreover, using the variablex[ l o / l , we can see

Im PAR
m

m(qo ,0) is a sum of terms such as

e2g2qo
aE dpnF8 ~p!pbE dll g

3E dxF~x!rT,L~ l ,x!S T

l
1O~1! D , ~26!

where F(x) is a dimensionless function and wherea1b
1g53 in order to give the correct overall dimension.
close inspection of Eq.~25! shows thata ranges froma5
21 to a53, taking all the integer values between the
ia-

e

bounds. Equation~25! shows also thatb<0. From the pre-
vious structure and since we can factorize a factormg

2 out of
the spectral functionsrT,L , it is obvious that we can write
the result as

Im PAR
m

m~qo ,0!'e2g2
mg

2T

qo
PS qo

mg
,

qo

T D , ~27!

whereP(•) is a polynomial of two variables, of total degre
4. Under the assumption thatqo!T, we are allowed to trun-
cate this polynomial and keep only terms of degree 0 in
variableqo /T, leaving a polynomial ofqo /mg only. More-
over, the above rules show that the term of Eq.~25! propor-
tional to p2(cos2 u821)L2 contributes to the constant term o
this polynomial, and gives an integral that behaves like*dl/ l
for hard l . This means that a logarithm of order ln(1/g)
shows up in this coefficient. The argument of this logarith
can be written asT2/ f (mg

2 ,qo
2), where f (•) is a function of

dimension two. This function depends on bothqo and mg ,
since there can be a competition betweenqo which appears
as a kinematical infrared cutoff in the integral overdl and
mg which appears inrT,L and can also play the role of a
infrared cutoff for the same integral. Using the same tools
is quite easy to check that all the other coefficients of t
polynomial are of order 1~i.e., do not contain any large
logarithm!.

Therefore, under the assumption thatqo ,mg!T, we can
formally put the result into the compact form:
3-7
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Im PAR
m

m~qo ,0!'Ce2g2
mg

2T

qo
F lnS T2

f ~mg
2,qo

2! D 1QS qo

mg
D G ,
~28!

whereC is a numerical constant andQ(•) is a polynomial.

2. Extraction of the logarithmic behavior

Under some more restrictive assumptions, we can go
ther analytically. More precisely, it is possible to extract an
lytically the constantC in front of the logarithm of Eq.~28!,
th
,
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e
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08500
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as well as the functionf (mg
2 ,qo

2) in the limit qo!mg . The
assumptionqo ,mg!T ~i.e., g!1 and qo!T! ensures that
the argument of the logarithm is large, so that the logarithm
term should be a fairly good approximation of the who
expression.4

As mentioned before, the logarithm we are looking
comes from the term inp2(cos2 u821)L2 in Eq. ~25!. Using
Eq. ~16!, we obtain the following expression for the imag
nary part of the photon polarization tensor:
Im PAR
m

m~qo ,0!'2
4NCFe2g2

~2p!4

T

qo
E

0

1`

dpnF8 ~p!E
21

11 dx

x
~12x2!2E

qo/12x

2p/12x

dll 3
„rT~ l ,x!2rL~ l ,x!…, ~29!
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where

rT,L~ l ,x![
22 Im PT,L~x!

„l 2~12x2!1Re PT,L~x!…21„Im PT,L~x!…2

~30!

is the spectral function in the space-like region. This is
place, where the conditionqo!mg enters the picture. Indeed
if we do not make this assumption, the infrared regulator
the integral overdl will be a complicated combination ofqo
contained in the lower bound andmg contained in the spec
tral functions. On the contrary, whenqo!mg , only the larg-
est regulator~i.e., mg! plays a role, and the argument of th
logarithm is quite simple. The integral overdl is elementary
and yields an arctan function and a logarithm. Keeping o
the latter,5 we obtain:

Im PAR
m

m~qo ,0!

'
NCFe2g2

~2p!4

T

qo
E

0

1`

dpnF8 ~p!

3E
21

11 dx

x
„Im PL~x!2Im PT~x!…lnS p4

mg
4D . ~31!

The terms neglected in that procedure show up only in
polynomial that would accompany the ln(1/g) in a more
complete calculation, and are not tractable analytica
Moreover, for the same reason and because of the statis
weight in thedp integral that will cut off everything above

4To summarize, the conditionqo ,mg!T is essential to have a
large logarithm, whereas the extra inequalityqo!mg is necessary
just to be able to calculate analytically the functionf (mg

2 ,qo
2). Al-

though our calculation of the two loop diagrams of Fig. 2 is p
fectly valid in the limit qo!mg , one may expect that higher orde
contributions become important as soon asqo&g2T @28,30#.

5The arctan term we discarded is convergent when performing
subsequent integration overdx, since the arctan is bounded byp/2.
e

f

y

e

.
cal

p;T, we can replace the remaining logarithm6 by ln(T4/mg
4).

Now, thedx anddp integrals are trivial and give:

Im PAR
m

m~qo ,0!'
3NCFe2g2

8p3

mg
2T

qo
lnS T2

mg
2D . ~32!

The production rate is then given by@see Eq.~2!#:

dN

dtdxU
bremss

'
dqodq

8p6 NCFa2S (
f

ef
2D S mg

qo
D 2

3S gT

qo
D 2

lnS T2

mg
2D , ~33!

where the sum runs over the flavor of the quarks in the lo
(ef is the electric charge of the quark of flavorf , in units of
the electron electric charge!.

A comment is relevant concerning the sensitivity of t
exchanged gluon to the hard scale. Indeed, the discontin
of the effective propagator is used here in the space-
region, and the HTL approximation used to obtain th
propagator may inaccurately reflect the phenomenon of L
dau damping for a hard gluon. The consequence of this
mark is that a loop correction on the gluon propagator m
lead to an important three-loop correction to the pho
emission-rate.

Before comparing this analytical result with numerical e
timates of the unapproximated expression, let us recall
domain in which this expression is expected to be va
Firstly, we need the logarithm to be large in order to
dominant, which requiresqo ,mg!T, i.e., g!1 andqo!T.

-

e

6It is possible to perform analytically thedp integral without this
further approximation. Doing so leads to a result in which the lo
rithm of Eq.~33! is replaced by ln(T2/mg

2)12„ln(p/2)2g…, whereg
is the Euler constant. However, the additional constant is not c
plete, since we have already neglected contributions to it in ea
approximations.
3-8



Eq.

BREMSSTRAHLUNG AND PHOTON PRODUCTION IN . . . PHYSICAL REVIEW D 58 085003
FIG. 5. Comparison of numerical estimates of the complete matrix element with the simple theoretical expression obtained in~33!.
Both plots show the ratio ‘‘Numerical/Theoretical.’’ On the left plot,qo /T is fixed at 1024 and we look at the variations withmg /T ~i.e.,
with g). On the right plot,mg /T is fixed at 1022 and the photon energy varies from ultra-soft energies to hard ones.
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The additionalpurely technicalcondition is thatqo!mg , in
order to keep simple the argument of the logarithm. On
plots of the Fig. 5, we show the ratio ‘‘numerica
theoretical,’’ where ‘‘theoretical’’ is the formula given in Eq
~33!, while ‘‘numerical’’ denotes a numerical evaluation o
the contribution to bremsstrahlung of the complete ma
element as given in Eq.~25!.

The left plot shows thatmg /T must be smaller than 0.1 in
order to have an agreement between our approximations
the complete expression with an accuracy better than 5%
mg /T is not small enough, then the polynomial that com
with the ln(1/g) cannot be neglected anymore. On the seco
plot, we see that the approximations we performed inside
logarithm by assuming the smallness ofqo /mg are in fact
valid far outside their expected domain of validity,7 since we
still have a reasonable accuracy withqo /mg;10.

C. Comparison with other approaches

1. Extrapolation of the quasi-real soft photons results

In a previous paper, we gave asymptotic formulas for
same quantity in the case where the photon invariant m
satisfiesM`

2 /T2!Q2/qo
2!1 @see Eqs.~89!, ~90! and ~93! of

@21##. By extrapolating these estimates outside of their
parent range of validity towards the case of static photons
which Q2/qo

251, we obtain exactly the formula of Eq.~33!.
Such an agreement means that, for a given energyqo , the
formulas established for the production of low invaria
mass photons are very robust, since they remain valid w
extrapolated to the case of heavy photons at rest.

From a technical point of view, this is made possible
the fact that the term that contains the collinear singularity
which we were interested for low mass photons and the t
that develops the logarithm we extracted analytically
heavy photons are the same.

7This is presumably due to the fact that this extra assump
affects only the terms inside a slowly varying logarithm.
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2. Braaten et al. results

At the one loop level in the effective perturbative expa
sion, the production rate of soft static photons has b
evaluated by Braaten, Pisarski, and Yuan~BPY! in @9#. The
purpose of this paragraph is to present an analytic comp
son of their final result@Eq. ~11! of @9## with Eq. ~33!, in the
domainqo!mg;gT!T for which our expression has bee
justified. In this domain, we can retain from the result of@9#
only the terms having the most singular behavior inqo . Such
terms are found only in the ‘‘cut-cut’’ part. Moreover, som
of these terms develop a large logarithm ln(1/g) which is
simple to extract analytically, in a way very similar to th
method leading to Eq.~33!. Applying these approximations
to the BPY result leads to the following estimate for t
one-loop production rate:

dN

dtdxU
1-loop

'
dqodq

12p4 Na2S (
f

ef
2D S mF

qo
D 4

lnS T2

mF
2 D , ~34!

wheremF
25M`

2 /2 is the soft quark thermal mass. Therefo
comparing with Eq.~33!, we obtain the ratio:

dNubremss

dNu1-loop
'

32

3p2

N1NF/2

CF
, ~35!

which for 2 light flavors and 3 colors becomes

dNubremss

dNu1-loop
'

32

p2 ;3.2. ~36!

This ratio is rather large, which means that bremsstrahlun
definitely an essential contribution to the soft static pho
production rate by a hot plasma.

3. Cleymans et al. results

The bremsstrahlung production of a soft virtual phot
has been considered in the context of the semi-classical
proximation by Cleymanset al. In their approach@14#, they
took into account the effect of the multiple scattering of t
n

3-9



e
ly

.
n
tu
te
o
a

on

ct-
to
uc-
d a
be

al

P. AURENCHE, F. GELIS, H. ZARAKET, AND R. KOBES PHYSICAL REVIEW D58 085003
quark in the plasma~Landau-Pomeranchuck-Migdal effect!.
In order to compare with our thermal field theory result, w
need to ‘‘undo’’ the effect of rescattering and consider on
one collision of the~photon emitting! quark in the plasma
Cleymanset al. use several simplifying hypotheses: the e
ergy of quarks or gluons is much larger than the tempera
so that Boltzmann distributions are used for particles en
ing the interaction region and a factor 1 is assigned to th
leaving it. The scattering of quark in the plasma is treated
rk
sio
ho
d
th

uc

e
t
a
e
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te

rd

08500
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re
r-
se
s

in the vacuum, the only modification being the introducti
of a phenomenological Debye massmD to screen the for-
ward singularity of the quark scattering amplitude. Negle
ing furthermore, the virtual photon momentum compared
the momenta of the constituents in the plasma, the prod
tion rate can be factorized into a quark scattering term an
photon emission term so that the lepton pair rate can
written ~see@21# for a similar expression in the case of a re
photon!
dN

dtdx
'

dqodq

24p4

a

Q2 E )
i 51,2

e2pi /T
dpi

~2p!32pi
)

i 51,2

dpi8

~2p!32pi8
~2p!4d~P11P22P182P28!

3uMu2~P1 ,P2 ;P18 ;P28!e2(
pol.«

S P1•«

P1•Q
2

P18•«

P18•QD 2

, ~37!
ons
re
ns.

e

-

whereuMu2 is the square of the matrix element of the qua
scattering process. We have folded in the above expres
the appropriate factor describing the decay of the virtual p
ton of massQ into the lepton pair. With the above mentione
approximations and keeping the most singular term in
t-channel@14#, we have

uMu2~P1 ,P2 ;P18 ,P28!5Cab2g4S 2P1•P2

2P1•P18
D 2

~38!

with Cab54/9 for quark-quark scattering andCab51 for
quark-gluon scattering. We then find for the rate of prod
tion of the pair at rest the following expression:

dN

dtdx
'

dqodq

3p6 a2as
2dfdS (

f
ef

2D T4

qo
4 lnS T2

mD
2 D , ~39!

where df52s33c56 and d5 4
9 232 f32s33c12s38c

5261 2
3 are the degeneneracy factors introduced in@14#.

Comparing with Eq.~33!, we find for two light flavors

dNusemi-class

dNubremss
'

15

p2 , ~40!

i.e., the semi-classical result agrees with the thermal fi
theory result in its functional dependence, but over-estima
the rate of production by about 50%. This difference appe
to be due to the very approximate treatment of thermal
fects of the dynamics of the plasma: for example, the ratio
quark-gluon scattering to quark-quark scattering is estima
to beN/0.5NF53 in thermal field theory~this is the ratio of
the gluon contribution to the quark contribution in a ha
thermal loop! compared to 1.5~taking account of the multi-
plicity factors associated to the quarks and the gluons! in the
semi-classical approach.
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IV. CONTRIBUTION TO HARD REAL PHOTONS

A. Kinematics

Let us now concentrate on the case of hard real phot
(T&qo5q). The kinematics for this situation is much mo
complicated than for static soft photons for two reaso
First, sinceQ is hard, we are no longer allowed to neglectQ
in front of P or R. Moreover, since we are looking this tim
at real photons, we may encounter collinear divergences~like
in the case of soft real photons@21#!, and we must carefully
keep the quark asymptotic thermal massM` in the expres-
sions.

Now, from the identitySR(P)2SA(P)52pe(po)d(P2

2M`
2 ), we extract the valuepo56vp , where we denote

vp[A(p21M`
2 ) and r o5qo6vp . The second delta func

tion constraint provides us with the angleu8 between the
3-vectorsr and l, via the relation:

cosu85
R22M`

2 12r ol o1L2

2rl
. ~41!

Again, we must enforce the requirement21<cosu8<1,
which implies the following set of inequalities:

~r o2r 1 l o1 l !~r o1r 1 l o2 l !>M`
2 ~42!

~r o2r 1 l o2 l !~r o1r 1 l o1 l !<M`
2 , ~43!

and leads to a reduction of the allowed domain in the (l o ,l )
plane.

The above two inequalities may be rewritten as

A~r 2 l !21M`
2 < l o1r o or l o1r o<2A~r 2 l !21M`

2

~44!
3-10
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2A~r 1 l !21M`
2 < l o1r o<A~r 1 l !21M`

2 . ~45!

The result of these inequalities is shown in Fig. 6, where
regions excluded by the requirement cosu8P@21,11# are
shaded in dark gray. In order to make the comparison ea
with the case of static photons, we have also reproduced
boundaries of the allowed region for that case~i.e., the fron-
tiers that one obtains in the limitM`→0). One can see tha
the old boundaries are asymptotes for the news ones. Ag
we have three regions allowed by the above two inequali
for L2<0. Again, regions I and III give the same contrib
tion, as can be seen by the change of variablesP→2R2L
performed at an earlier stage of the calculation. From n
on, we will drop region I and multiply by a factor 2 th
contribution of region III. We start the discussion with th
study of region III~bremsstrahlung processes! and then turn
to region II (qq̄ annihilation with scattering in the plasma
see Fig. 4!. As will be seen, this region can no longer b
neglected, contrary to the case of soft photon production

B. Bremsstrahlung

Since the delta functiond(P22M`
2 ) makes more conve

nient the choice ofp[ipi as an independent variable~in-
stead ofr ), the quantities2r o6v r that appear on the pre

FIG. 6. Allowed domains in the (l o ,l ) plane forpo56vp . The
area shaded in dark gray is excluded by the delta function c
straints. The areas shaded in light gray are above the light-c
~dotted lines!. The light curves are the transverse and longitudi
mass shells of the thermalized gluon. The vertical dotted line is
separation betweene(po)e(r o1 l o)511 and e(po)e(r o1 l o)
521.
08500
e

ier
he

in,
s

w

vious figure are to be understood as functions ofp and the
angleu betweenp and q. Therefore, this restriction of the
allowed phase space is in fact a constraint that relates
independent variablesp, u, l andl o . In the following, doing
the integration overu first will prove to be convenient since
due to collinear divergences, the result of this angular in
gral controls the order of magnitude of the result. Ifu[1
2cosu is the variable over which we integrate first, then t
bounds onu depend on the other variablesl ,l o and p be-
cause of the identities of Eqs.~44! and~45!. In particular, the
inequality Eq.~44! can be written in terms ofu[12cosu:

u<
~p1q!22@A~r o1 l o!22M`

2 2 l #2

2pq
, ~46!

which gives if one assumes thatl o and l are soft

u<S l

p
1

l

qD ~12x!, ~47!

where we denotex[ l o / l . As a consequence, since the re
evant values of the momentuml are controlled by therma
masses of ordergT, this upper bound is of orderg.

It is now worth giving expressions for the denominato
that enter in the rate, since they are potentially danger
when the photon is emitted collinearly to the quark. To th
purpose, we need also another angular variable, which is
unconstrained by the previous considerations. This varia
can be the azimuthal anglef betweenq andl when projected
on a plane orthogonal tor. Therefore, if we denoteu9 the
angle betweenq and l, we can calculate this angle by

cosu95cosu r cosu81sin u r sin u8 cosf, ~48!

whereu r is the angle betweenr andq. This last angle is not
independent ofu, to which it can be related by

r sin u r5p sin u ~49!

r cosu r5p cosu1q; ~50!

so that Eq.~48! can be rewritten as

cosu95
p

r
~cosu cosu81sin u sin u8 cosf!1

q

r
cosu8.

~51!

Using only the variablesu512cosu, p, l andx5 l o / l , we
can write@21#

R22M`
2 '2pqS u1

M`
2

2p2D , ~52!

and

n-
ne
l
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E
0

2p df

~P1L !22M`
2 '

2p~p1q!

2qp2@~u1M`
2 /2p21L2/2p2!22~L2/p2!~M`

2 /p2!#1/2, ~53!
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where we performed the integration overf at this stage,
since this denominator is the only place wheref appears at
the dominant order. As one can see, the first formula rem
exactly the same as in the case of soft real photons@21#,
while the second one is only slightly modified by an ex
(p1q)/p factor. As a consequence, the discussion mad
@21# concerning the enhancement that one gets when
forming theu integral is still valid. In particular, the term
where both denominators are present are enhanced by a
tor of order p2/M`

2 , while those where only one of them
appear will get only a logarithm of this quantity.

Again, our starting point is Eq.~15!. The order of magni-
tude of each term is evaluated by taking into account the
that the momentumQ is now hard, as well as the quar
momentum. Moreover, we must take into account the
hancement by a factor of order 1/g2 for terms having two
denominators. Since the emitted photon is assumed to
real, we haveQ250. Therefore, one can check that only o
term dominates in this matrix element:

28L2
R̄rR̄s1 P̄rP̄s

R̄2~P1L !2
, ~54!

which is again the same as in the case of soft real photo
Since the relevant values ofu are of orderM`

2 /p2;g2,
we have

r o2v r'
pq

p1q S u1
M`

2

2p2D for po51vp . ~55!

Therefore, one can see in Fig. 6 that the extra requirem
L2<0 does not restrict significantly region III due to E
~55! ~this is a result already obtained in@21# according to
which the kinematics confines the phase space to theL2<0
region in the collinear limit ifL is soft!.

Since the term to consider is the same, and since the
nominators have very similar expressions, it is complet
straightforward to reproduce the calculation8 that has been
performed in@21#. The only minor difference lies in the con
traction of R̄rR̄s1 P̄rP̄s with the projectors, which gives a
factorp21r 2 approximated byp21(p1qo)2 in the collinear
limit. Introducing the dimensionless quantities:

8As seen earlier, the kinematics gives an upper bound of ordg
for the variableu. Since we are considering enhanced angular
tegrals for which the relevant values ofu are of orderM`

2 /p2

;g2, this upper bound does not appear in the result of theu inte-
gral.
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2L2

M`
2 ~56!

Ĩ T,L~x![
Im PT,L~x!

M`
2 , R̃T,L~x![

Re PT,L~x!

M`
2 , ~57!

we find

Im PAR
m

m~Q!'
e2g2NCF

p4 ~JT2JL!
T

qo
2 E

0

1`

dp„p21~p

1qo!2
…@nF~p!2nF~p1qo!#, ~58!

where we denote

JT,L[E
0

1 dx

x
Ĩ T,L~x!

3E
0

1`

dw
Aw/w14 tanh21 Aw/w14

„w1R̃T,L~x!…21„Ĩ T,L~x!…2
. ~59!

As one can see, the integral overx andw can be factorized
out of the expression and is the same as in the case of
real photons@21#. In this previous work, we noticed that th
integral over the gluon momentum could potentially be s
gular when the gluon is transverse, but is regularized by
quark thermal mass instead of the gluon thermal mass as
might expect. The interpretation of this result is in fact rath
simple. Indeed, a close look at kinematics shows that
delta functionsd(P22M`

2 ) and d„(R1L)22M`
2
… become

incompatible in the limitL→0 if M`
2 .0. Therefore, the

quark thermal mass prevents an infrared divergence by
ducing to zero the region of phase space, where this di
gence can occur. The only major difference with@21# con-
cerns the integral overp, because of the fact thatqo is now
hard. Nevertheless, we can still give a rather compact exp
sion for this integral in terms of poly-logarithms:

E
0

`

dp„p21~p1qo!2
…@nF~p!2nF~p1q0!#

5T3F3z~3!1
p2

6

qo

T
1S qo

T D 2

ln~2!

14Li3~2e2uqou/T!12
qo

T
Li2~2e2uqou/T!

2S qo

T D 2

ln~11e2uqou/T!G , ~60!

where the poly-logarithm functions are defined via

-

3-12
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Lia~z![ (
n51

1`
zn

na . ~61!

Equation~60! simplifies in the limit of extremely hard pho
tonsqo@T:

E
0

1`

dp„p21~p1qo!2
…@nF~p!2nF~p1qo!# '

qo@T
qo

2T ln~2!.

~62!

Therefore, in this asymptotic regime, we find for the produ
tion rate of hard real photons:

dN

dtdxU
bremss

'
qo@T

2
dq

p5 NCFaaSS (
f

ef
2D

3
T2

qo
e2qo /T~JT2JL!ln~2!, ~63!

whereef is the electric charge of the quark of flavorf ex-
pressed in units of the electron charge.

Besides this simple asymptotic result, it is worth addi
that Eqs.~58! and~60! provide a generalization of the analo
gous formula of@21#. Indeed, the result we provide in th
present paper for the bremsstrahlung contribution to
photon production is valid over the whole range of phot
energies, and in particular reduces to Eq.~55! of @21# in the
limit of soft qo .

C. qq̄ annihilation with scattering

The discussion of the contribution of region II can
carried out in a similar way. We recall thatpo52vp,0 so
that Eq.~52! becomes

R22M`
2 '22pqS v1

M`
2

2p2D , ~64!

with the notationv[11cosu. For hard enoughqo , the sta-
tistical weight nF(po)2nF(po1qo) is equal to 1 for2qo
<po<0 and equals 0 everywhere else.9 Therefore, we can
restrict to the range 0<p<qo and we check that Eq.~53!
remains valid except for the changesu→v and q1p→q
2p. The enhancement mechanism in the terms that con
the two denominators goes through as before due to t
behavior nearv;g2.

Such terms are dominated by the region, wherev;g2,
which enables us to obtain2r o2v r'22(qo2p) and
2r o1v r;O(g2T). As a consequence, the boundaries in
( l o ,l ) plane are21<x<1 and 0< l<2(q2p)/(12x),

9The transition between 0 and 1 takes place in a range of widT
in the variablepo . These side-effects are negligible if the conditio
qo@T is satisfied since they provide corrections of relative or
T/qo .
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wherex[ l o / l . Therefore, the integral overl andx gives the
same factorJT2JL as before. The integral overp in Eq. ~58!
is now to be replaced by

E
0

qo
dp„p21~qo2p!2

…5
2qo

3

3
, ~65!

which leads to the following asymptotic contribution for th
region II:

dN

dtdxU
II

'
qo@T

2

3

dq

p5 NCFaaSS (
f

ef
2D

3
qoT

qo
e2qo /T~JT2JL!. ~66!

Therefore, it appears that region II dominates over brem
strahlung in the asymptotic regime.

D. Comparison with previous results

The production rate of hard real photons has already b
calculated at the one-loop order in@12,13# as an application
of the effective theory based on the resummation of h
thermal loops. We now compare the contribution of brem
strahlung obtained above with their result. For hard real p
tons, the predictions of@12# are

dN

dtdxU
1-loop

'
qo@T

dq

8p2 NCFaaSS (
f

ef
2D

3
T2

qo
e2qo /T lnS cqo

aSTD , ~67!

with the constantc'0.23.
It is worth recalling here that the quantitiesJT,L that ap-

pear in Eqs.~63! and ~66! are functions of the ratioM` /mg
when Q250, i.e., depend only onN and NF . For N53
colors andNF52 light flavors, we can evaluate numerical
JT'4.45 andJL'24.26. Figure 7 shows a comparison
bremsstrahlung,qq̄ annihilation with scattering, and one
loop contributions.

In Fig. 7, the bremsstrahlung contribution is taken fro
Eq. ~58!; for the region II, we use the asymptotic result o
tained for largeqo ,10 and the one-loop result is a numeric
evaluation of the diagrams considered in@12#. The value
used here for the coupling constant isg50.5. We can see
that the bremsstrahlung is the dominant contribution for
smaller valuesqo , whereas the region II becomes domina
for hard enoughqo . For intermediate photon energie
~aroundT), the three contributions have equivalent orders
magnitude. For higher values of the coupling constantg, the

r

10This asymptotic estimate may be incorrect for smaller values
qo . Nevertheless, we expect it to decrease likeqo since its support
in the (l o ,l ) plane decreases likeqo , so that region II is certainly
subdominant forqo&T. Therefore, the asymptotic result is suffi
cient in this comparison.
3-13
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relative importance of the one-loop contribution tends to
crease. We can also see that the sum of the three cont
tions is significantly above the one-loop contribution cons
ered alone.

V. CONCLUSIONS AND PERSPECTIVES

We have discussed the production of a real photon or
lepton pair in a hot quark-gluon plasma in thermal equil
rium. We assumed that the plasma is described by ther
quantum chromodynamics and we worked in the framew
of the effective theory obtained after resummation of h
thermal loops. We have shown that, at leading order ingT, it
is necessary to include the one-loop as well as the two-l
diagrams. The one-loop diagrams of the effective theory c
rectly account for the contribution of soft fermion momen
in the loop, whereas in the two-loop diagrams hard mome
play a dominant role.

Many physical processes are contained in the effec
theory calculated up to two-loop order. To simplify, it can
said that, at one-loop, scattering processes mediated by~soft!
fermion exchanges are of paramount importance for
emission of the photon. The corresponding photon prod
tion rate consequently strongly depends on the soft ferm
thermal massmF . On the other hand, the two-loop topolo
gies account, among other possibilities, for bremsstrahl
processes, where the photon is emitted by a hard quark
tering in the plasma via a~space-like! gluon exchange: in
that case the rate is proportional to the square of the gl
massmg . We have calculated the contribution of such pr
cesses.

For the production a soft virtual photon (qo;gT, q50),
the bremsstrahlung processes largely dominate over the
loop result in the rangeqo&mF . For the case of real photo
production, an interesting enhancement phenomenon oc
in the bremsstrahlung processes. Because of the vanis
photon mass, the fermion propagators become infinite w
a quasi forward-scattered quark emits a collinear photon:
singularities are regularized by an interplay between the t
mal masses of the fermion and the gluon. It was seen be
that this leads to an enhancement by a factor 1/g2 of the
bremsstrahlung contributions to the real soft photon rate
that the two-loop diagrams entirely dominate over the o
loop contribution. On the other hand, the bremsstrahlu
production of a hard real photon occurs at the same orde
g as the one-loop result. A rather simple analytic express
valid for soft, hard and ultra-hard photon has been deriv
For ultra-hard photons, another process becomes domin
consisting ofqq̄ annihilation, where one of the fermions un
dergoes a scattering in the medium. In all cases, the ca
lated two-loop contributions considerably increase the rat
photon or lepton pair emission. Our results can easily
numerically extended to cover, on the one hand, the cas
a soft lepton pair at non-vanishing momentum, and on
other hand, the case of lepton pairs produced at large
mentum with a small invariant mass. All the features of t
present results should survive in these more general s
tions.

Our study does not cover all the physical processes
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cluded in the two-loop diagrams. In particular, the contrib
tion with a time-like gluon should be added. However, su
processes when the gluon is hard are already contained in
one-loop diagram: counterterms should therefore be
cluded. To do this will be a very interesting practical exe
cise in the use of the effective theory up to two-loop.

A word of caution should be given concerning the brem
strahlung contribution to the soft virtual photon rate. T
result shows a sensitivity to a hard space-like gluon a
therefore one may suspect that the extrapolation of the ef
tive gluon propagator in the hard region is not complete:
be consistent may require taking into account three-loop
grams in very much the same way two-loop diagrams w
needed besides the one-loop diagram with a hard space
fermion propagator. On the contrary, for the case of a r
photon emission, the bremsstrahlung rate is sensitive onl
soft gluon momenta, and no such problem exists.

There are several other reasons why higher loop diagr
are worth considering. In the effective theory, the therma
generated mass is resummed, but not the width: the effec
the latter is treated perturbatively. However, it was seen
some cases that the resummed width can have an eq
important effect as the resummed mass@28,29#. This sug-
gests that higher loop diagrams may give leading contri
tions. Another point concerns the possible reduction of p
ton emission due to multiple scattering of quarks in t
plasma~LPM effect! @14–18# pointing again to the impor-
tance of higher order diagrams.
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APPENDIX A: HARD THERMAL LOOPS
AND COUNTERTERMS

When using effective theories based on the summation
hard thermal loops at higher orders, there is potentiall
possibility to have multiple counting of thermal correctio
that should be there only once.

As a first illustration of this problem in a trivial contex
let us use the example of a massless real scalar field w
l2f4 interaction in four dimensions. The Lagrangian of su
a model is

L[
1

2
]mf]mf2

l2

4!
f4. ~A1!

After the calculation of the one-loop tadpole, one realiz
that this diagram—a hard thermal loop in the terminology
@3#—generates a thermal massm5lTA24 that can be im-
portant for the phenomenology of soft modes. Therefore,
idea of the HTL resummation is to include this thermal ma
in an effective Lagrangian
3-14
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Leff[
1

2
]mf]mf2

1

2
m2f22

l2

4!
f4, ~A2!

which is the Lagrangian of a real scalar field of massm.
Let us assume now that one uses this effective the

instead of the bare one to calculate the same tadpole
gram. The result would be

P5
l2T2

24 F12
3

p

m

T
2

3

2p2 S m

T D 2

lnS m

T D1¯ G
5m2

„11O~l!…, ~A3!

and since we start now from a propagator with squared m
m2, the resummation of the self-energyP would lead us to a
propagator with a squared mass 2m2

„11O(l)…, approxi-
mately twice larger than the correct thermal mass. Ob
ously, the above result arises due to multiple countings of
same thermal correction. Stated differently, this is a con
quence of the fact that this effective theory is more tha
mere reordering of the perturbative expansion of the b
theory since its Lagrangian is different. To solve this pro
lem, one must write

L5Leff1Lct with Lct[
1
2 m2f2, ~A4!

and treat the countertermLct as an interaction term, just like
l2f4/4!. The effect of this counterterm is of course to su
tract at higher order the thermal corrections that had alre
been included at the tree level via the effective Lagrang
in order to avoid multiple countings. For instance, in t
above example, the correct answer for the tadpoleP when
one takes care of the counterterm is

P5
l2T2

24 F12
3

p

m

T
2

3

2p2 S m

T D 2

lnS m

T D1¯ G2m2

5O~lm2! ~A5!

FIG. 7. Comparison of various contributions to ImPm
m(Q) for a

hard real photon. The comparison is made forN53 colors and
NF52 flavors. The value taken for the coupling constant isg
50.5.
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which is a perturbative correction to the thermal mass fou
at the previous step, as it should be. When this counterter
taken properly into account, the effective theory is nothi
more than a reordering of the perturbative expansion, si
the overall Lagrangian remains unmodified.

This problem also arises in effective gauge theori
where the situation is a bit more complicated, since we n
there an infinite series—one for each hard thermal loop—
non-local counterterms. These counterterms are defined t
the opposite of the HTL contribution to the correspondi
function. Then, to a given diagram obtained in the effect
theory, one should add the diagrams obtained by collaps
each loop in turn and replacing it by the corresponding co
terterm. In order to be more definite, let us consider the
ample of the two-loop diagram of Fig. 1~b!. In the Fig. 8, we
have represented next to the one-loop contribution to
polarization tensor of the photon some of its two-loop c
rections.

It should be clear from the figure that when the boldfa
loop of the second diagram carries a hard momentum, t
this loop reproduces the HTL part of the effective vertex
the dotted box already included at one-loop, plus new s
dominant perturbative corrections. The purpose of the th
diagram is precisely to subtract a quantity equal to the H
contribution to this vertex, so that what remains constitu
only new contributions. The net effect of this procedure
thus to reorder the terms of the perturbative expansion.

Let us now explain why, despite their conceptual impo
tance, the counterterms do not contribute in the case
bremsstrahlung. As said in Sec. II, the contributions
bremsstrahlung to photon production come from two-lo
diagrams in which the gluon propagator is cut, and wh
one retains only the Landau damping part (L2,0) of the cut
gluon propagator. Technically, the gluon included in the
point HTL that appears on the third diagram of Fig. 8 is
bare one, and therefore its discontinuity has support tot
included in the time-like region. As a consequence, the d
gram with counterterms contributes only in the region
phase-space, whereL2>0, and cannot contribute to brems
strahlung. Even if they are not a worry in the case of brem
strahlung, it was important to discuss the potential effect
counterterms since, having shown that the second diag
gives an important contribution, it is not enough to conclu
that the two-loop order is important, as it may be canceled
counterterms.

APPENDIX B: PHASE SPACE CONSIDERATIONS

The purpose of this appendix is to emphasize the imp
tance of being in a thermal bath in order to have a hard ph

FIG. 8. Some corrections to the one-loop contribution~left dia-
gram! to the photon polarization tensor. A black dot denotes
effective propagator or vertex. Crosses are HTL counterterms.
boldface loop may reproduce what is already included in the o
loop diagram when its momentum is hard.
3-15
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space for the quark loop. This is indeed crucial in the cal
lations performed in the previous sections, since this fea
of the diagrams considered in this paper enables them t
of the same order of magnitude as one-loop diagrams
order to make the following discussion more intuitive, let
first transform the bremsstrahlung photon production rate
a way that separates more clearly the phase space from
amplitude of the process producing the photon. The tool
do that have already been presented in@21# ~see the section
devoted to the comparison with semi-classical methods!, so
that we only give the result here:11

~B1!

whereR[P1Q. This formula tells us that in order to ca
culate the contribution of some process to the photon p
duction rate, we just have to integrate the amplitude squa
of this process over the phase space of unobserved par
~here, the incoming and outgoing quarks!. When doing this
integration, the external particles are put on their mass sh
and accompanied by the appropriate statistical weight.
main advantage of this formula is that it exhibits a cle
separation in two factors: the amplitude squared of the p
cess producing the photon, and the phase space of
quarks. Therefore, this formula can be used to separate
estimation of the order of magnitude of the diagram in t
steps: the order of magnitude of the amplitude, and the
of the phase space over which it must be integrated.

Looking at this formula, it is clear that the effect of th
thermal bath appears only in the phase space. Indeed
amplitude that appears in Eq.~B1! is nothing, but a zero
temperature one~it does not contain any statistical weight!.
Stated differently, if, instead of looking at photon producti

11This formula is given here for the production of real photons
bremsstrahlung. For other processes, analogue formulas still h
in which the amplitude squared has to be appropriately modifie
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by a thermal bath, we were looking at bremsstrahlung pho
production inp-p collisions ~i.e., the two scattering quark
come from protons in colliding beams!, the statistical factors
of incoming quarks would have to be replaced12 by structure
functions13 of a quark inside a proton, and the statistic
weights of outgoing quarks would be replaced by 1. T
difference is precisely the point which makes the therm
bath dramatically different from thep-p collision. Indeed, in
the case of the thermal bath, the statistical functions hav
support which is three-dimensional, since the plasma is
isotropic medium. On the other hand, the structure funct
of the quark inside protons of the beam is vanishing if t
quark has a direction different from that of the beam. T
will make a difference when one performs the integral ov
the momentum p. Indeed, if one has something lik
*dppnf (p) in the case of the thermal bath, the integr
would be*dppn22f (p) for the case ofp-p collisions. As a
consequence, the integral over the quark momentum is m
likely to be sensitive to hard momenta in the case of
thermal bath. Therefore, even if it is not a rigorous pro
these considerations show why some higher order proce
which are not dominant at zero temperature may beco
dominant in a plasma, due to a bigger size for their ph
space.

Moreover, Eq.~B1! may help to understand why two-loo
contributions may be as important as one-loop ones. Ind
it shows that the final order of magnitude of a contributi
results from a competition between two effects. The first o
is the order of magnitude of the amplitude, which usua
becomes smaller when the number of loops increases s
the number of coupling constants increases also. The se
aspect of the problem is the size of the phase space, sin
may happen that due to kinematical constraints, the one-l
phase space is much smaller than the two-loop one. B
effects can compensate so that two-loop diagrams contri
also at the dominant level. This is precisely what happen
the case of photon production by a plasma: the one-l
phase space is soft due to kinematical constraints, while
two-loop thermal phase space can be hard~as explained
above, this is possible because we are in an isotropic
dium!. Therefore, the smallness of the two-loop amplitude
compensated by the size of the two-loop phase space.

ld,
.

12To understand the analogy between the two situations, one
see a proton beam as a dense medium containing quarks and gl
with distributions related to the structure functions of quarks a
gluons inside the proton. Such a medium is highly anisotropic, si
all the partons go in the direction of the beam.

13More exactly, to obtain the correctly normalized photon produ
tion rate, one should also multiply by the proton densities in
beams.
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