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In this paper, we extend the study of bremsstrahlung photon production in a quark-gluon plasma to the cases
of soft static photonsg=0) and hard real photons. The general framework of this study is the effective
perturbative expansion based on the resummation of hard thermal loops. Despite the fact that bremsstrahlung
only comes at two loops, we find that in both cases, it generates contributions of the same order of magnitude
as those already calculated by several other groups at one loop. Furthermore, a new process contained in the
two-loop diagrams dominates the emission of a very hard real photon. In all cases, the rate of real or virtual
photon production in the plasma is appreciably increased compared to the one-loop predictions.
[S0556-282(98)01418-0

PACS numbss): 11.10.Wx, 12.38.Mh

[. INTRODUCTION tum is soft and, therefore, all effective propagators and
effective vertices have the same order of magnitude as their
We consider the production of a real photon or of a leptorbare counterparts. A close examination of the final result
pair in a quark-gluon plasma. The plasma is assumed to be shows, however, that it has a logarithmic sensitivity to scales
equilibrium at temperaturd. The theoretical framework of orderT (see Sec. Il C 2 this means that such a diagram
used in the calculation is that of thermal field theory im-also receives a dominant contribution from hard fermion mo-
proved by the hard loop resummatiph-6] of Braaten and menta. When the momentum becomes large, the hard ther-
Pisarski: in this approach one distinguishes hard momenta, ahal loop (HTL) corrections to propagators and vertices are
order T, from soft momenta, of ordegT, whereg is the  suppressed by, at least, a factpwith respect to their bare
guantum chromodynamic$¢QCD) coupling constant as- counterparts. This suppression factprcan easily be com-
sumed to be smallg<1). After resummation of hard ther- pensated by the larger phase space available to a hard fer-
mal loops, one is led to an effective Lagrangjdr6,8 from  mion (O(T)) compared to soft fermiofO(gT)), thereby
which observables can be evaluated perturbatively. leading to a contribution of the same order of magnitude
The production rates of real or virtual photons have al-from the soft region and the hard region of phase-space.
ready been evaluated, at the one loop level, in the effectivblow, when an observable is sensitive to the thermal correc-
theory[9—13]. Concerning soft virtual photons, it was found tions to hard vertices and propagators, it is obvious that all
that the rate of production is considerably modified and ensuch corrections should be taken into account for the calcu-
hanced compared to the result of the bare theory. In additiotation to be complete. Some of these thermal corrections are
to the usual quark-antiquark annihilation process, there amaturally included in the lowest order of the effective theory
pear many production mechanisms, in particular processasa the resummation of hard thermal loops. But, even if the
with the photon radiated off éhard quark in a scattering HTL approximation is correct for soft external particles, it
process, where the quark is backward scattered in the plasnad@es not account for all thermal corrections to hard vertices
via soft quark exchange. This is to be contrasted with theand hard propagators. For instance, neglecting the external
result obtained in a semi-classical approximatjd4—1§, momenta as one does in the calculation of the hard thermal
where the photon is radiated off fast quarks in scatterindoops is no longer justified when these momenta are not soft.
processes mediated by a gluon exchange: we call such pr&esides, equally important may be the contribution arising
cesses bremsstrahlung emission of a photon. In this study wieom soft gluons in the loop giving the HTL when the exter-
reconcile the two approaches and show that the bremsstrahal momenta are hard, due to the Bose enhancement of the
lung processes favored by the semi-classical approximatiosoft gluon term. Within the effective theory, both types of
appear at the two-loop level in the effective theory and thatadditional thermal corrections to a hard propagator or vertex
in fact, they contribute at the same ordergi as the pro- are taken into account by considering a one-loop correction
cesses in the one-loop effective theory. Such a result shoul this propagator or vertex.
not be a surprise. In the calculation of the virtual photon production rate in
Consider the case of a soft virtual photon. The rate othe effective theory, soft gluon exchange appears in two-loop
production is related to the imaginary part of the vacuumdiagrams. It will be seen that the bremsstrahlung production
polarization diagrani19,2d. In the one-loop approximation mechanism is precisely given by these diagrams when the
of the effective field theory, it involves only effective fer- exchanged gluon is space-like. The evaluation of these dia-
mion propagators and effective vertid€3. A dominant con- grams is discussed below. These contributions are clearly not
tribution to the rate arises when the internal fermion momenincluded in the effective one-loop diagram. This is obvious
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when looking at the corresponding physical processes and iheory. Turning to the case of hard real photons, it is shown
manifests itself in the result by the calculated rate being prothat the bremsstrahlung mechanism is of the same order as
portional to the square of the thermal gluon masg, in the already calculated one-loop result. Carrying out a more
contrast to the one-loop result, where only the thermal quarkletailed comparison with the latter approach, it is found that
mass appeaif®]. Another important contribution of the two- the bremsstrahlung process dominates over the one-loop re-
loop diagrams is associated with time-like gluon exchangessult for photon momentum o®(T), but is relatively sup-
physically this represents QCD Compton scattering andPressed by a logarithmic factor for hard enough photons. For
quark-antiquark annihilation to produce a gluon and a phovery hard energies, we find that the photon production is in
ton. To evaluate this properly requires care, since the twofact dominated by a new process consisting @fcpannihi-
loop diagrams with a hard time-like gluon exchanged ardation, where the quark or antiquark undergoes a scattering in
already part of the one-loop diagram with effective propagathe medium. We summarize all the thermal field theory re-
tors and vertices. Taking into account the contribution of thesults concerning real and virtual photon production in a con-
appropriate counterterms in the effective Lagrangian willcluding section.
prevent double-counting and allow the correct evaluation of The role of counterterms in the application of the effec-
the soft, time-like, gluon contribution. tive theory up to two-loops is discussed in a first appendix,
The case of soft real photon production follows essenwhere the problem is also illustrated in a simple example. In
tially the same pattern, except for the crucial fact that, thea second appendix, the importance of phase space factors in
external line in the vacuum polarization diagram being massthermal calculations is emphasized and the difference with
less, collinear divergences appear when evaluating the twahe zero temperature phase space is made clear.
loop diagrams: the quasi-overlap of two such divergences,
associated with the fermion propagators, leads to an en-
hancement factor aP(1/g?) [21,22. The paradoxical result
then follows that the one-loop contribution is relatively sup- A. Topologies involving bremsstrahlung
pressed by a factag? compared to the two-loop one. The

Ia}tter IS ent!rely dqmmated by_ the bremsstrahlung ProCeSH ction rate and the imaginary part of the retarded polariza-
since the kinematical constraints require the gluon to by tengor of the photon, as given by thermal field theory
space-like for the enhancement factor to occur. The ComptoRNe follow the notations of23]). For real photons, this re-

and annihilation mechanisms are sub-dominant. lation gives the number of photons emitted per unit time and
The case of a hard real photon, of momentumdgfT), per unit volume of the plasma 4$9,20:
shares features with both cases above. The one-loop approxi- T

mation has a logarithmic sensitivity to the hard fermion mo- dN dq
mentum in the lood12,13. The two-loop bremsstrahlung dtdx 2m)3 2ng(gy)Im HRA,/‘(OIO'UI)' (h)
2 . . )20,
has a 1g- collinear enhancement, as in the real soft photon
case, which, however, is compensated by a facmétq2
~g?, whereq is the photon momentum, leaving the brems-
strahlung contribution at the same ordergi as the one-
loop contribution. dN dad
Our theoretical framework is the HTL resummed effec- = d0.d9q
tive theory, and we consider the production rate of real or dtdx 127% Q?
virtual photons up to two loop order in the perturbative ex-
pansion of the effective theory. More precisely, we are conBasically, the above two formulas differ only by the allowed
cerned mainly with the bremsstrahlung part of the two-loopphase space for the photon, by an extra QED coupling con-
diagrams, and leave the discussion of the Compton and astant when the photon decays into a lepton pair, and by the
nihilation processes and their interplay with the countertermpropagator of a heavy photon. It is worth recalling that these
of the effective theory to future work. We do not discuss therelations are valid only at first order in the QED couplimg
production of soft real photons since this has already beesince they do not take into account the possible re-
studied in detail if21]. interactions of the photon on its way out of the plasma nor
In the next section we derive the general expression fothe simultaneous emission of more than one photon. Never-
the (real or virtua) photon production rate at the two loop theless, they are true to all orders in the strong coupling
level. Then we consider the case of soft virtual photons proeonstantas. This should not be a serious limitation from a
duced at rest in the plasma and derive the leading behavigractical point of view, sincee<<ag.
analytically. We compare to the one-loop results and show Let us now examine in which topologies the bremsstrah-
that the bremsstrahlung contribution is numerically dominantung can appear. It is worth recalling at this point that the
although both contributions are technically of the same orderetarded imaginary part in Eg€l) and(2) can be expressed
in g. The semi-classical approach is then discussed and it iss a sum over possible cuts through the diagfam-2§.
shown that even though the approximations inherent in th&herefore, we need to look for diagrams that will give
semi-classical approach are not really justified in the case dfremsstrahlung processes once cut. A simple inspection of
soft photon production in a quark-gluon plasma, it leads to @ahe processes involved in one-loop contributigsse[9,21]
result quite comparable to that obtained in thermal fieldfor instanceé shows that bremsstrahlung does not appear at

1. BREMSSTRAHLUNG IN THERMAL FIELD THEORY

Let us first recall the relationship between the photon pro-

whereas for the production of a photon of invariant mags
decaying into a lepton pair, we have:

Ng(do)Im ITRA “(g,,0). (2
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FIG. 2. Simplified two-loop contributions involving bremsstrah-
lung processes. The circled vertices correspond to the framework of
the cutting rules.

o ‘ . must retain from the cut quark propagators only the pole part

FIG. 1. Two-loop contributions involving bremsstrahlung pro- and reject the Landau damping part, which would correspond

cesses. A black dot denotes an effective propagator or vertetq g gifferent physical process. For the same reason, the cut
Crosses are HTL counterterms. should avoid going through an effective verfex.

this order. To see bremsstrahlung processes, one should con-
sider the two-loop contributions of Fig. 1. B. General expression of two-loop contributions

The diagrams have been obtained via a strict application In order to obtain a bremsstrahlung contribution of the

of.th.e Feyn_man ruI.es of the effective thec[Q/,S],_glvmg a  same order of magnitude as the already calculated one-loop
priori effective vertices and propagators and diagrams with

countertermsin order to avoid any double counting of ther- contr_ibut_ions, we need a hafd ph.ase space for the qgark cir-
mal corrections already included at the one-loop level via th ulating in the loop, as explame_d |n.Appe'nd|x B, We will see
resummation of hard thermal loops, as outlined in Appendi a}ter that we have such contrlbut!ons in the diagrams de-
A. To make the connection with previous workg1,22 picted in Fig. 1. Th_er_efore, at !eadlng order, we can use the
easier, we mention that looking at two loop diagrams in thda'd momentum limit of vertices and propagators every-
effective theory is just a more rigorous way of doing whatWhere except for the gluon propagator since the gluon can be
we might call “calculating one-loop diagrams beyond the Soft. Since we work in the effective theory, the time-like part
HTL approximation.” Our present formulation is indeed Of propagators corresponds to stable massive quasi-particles,
more rigorous, since it takes care of the counterterms, ant€., @ hard fermior(or gluon has a thermal mass of order
also more positive, since it does not assianwiori that one  gT, but no width. Of course, we are aware of the fact that
needs to go beyond the effective theory. Among all the posthis damping can compete with the asymptotic mass as a
sible cuts through the diagrams, those that correspond teegulator for collinear singularities under certain circum-
bremsstrahlung necessarily cut the gluon propagator. Morestanceg28,29, but this implies the resummation of an infi-
over, if L is the gluon 4-momentum, only the Landau damp-nite series of diagram{s0], while our purpose in this paper
ing part (L><0) gives bremsstrahlung, thé>0 part rather s to follow strictly a perturbative approach within the HTL
giving Compton effect o g-like annihilationg27]. There is  effective theory. The diagrams we have to consider are there-
another reason why the regidif>0 deserves a separate fore the simplified versions of the previous ones represented
treatment: in theL?<0 kinematical domain, it is obvious on Fig. 2(in this figure, we represented the quark propaga-
that we cannot have contributions coming from the HTLtors as bare ones, even if they still contain the asymptotic
counterterms, since these counterterms involve only barthermal mass coming from the HTL resummajion
gluon propagators that do not have any imaginary part in the In the same figure, we have depicted the relevant cuts as
space-like region. On the contrary, in th8>0 region, one Wwell as the arrangement of circlings that enables one to cal-
should pay special attention to the counterterm diagrams igulate the corresponding contribution in the framework of
order to avoid any double-counting. Indeed, when the gluorihe thermal cutting rules. We have checked that the two cuts
becomes hard, we have a hard loop that may reproduce whegpresented form a gauge independent set of terms, to which
is already included in the one-loop diagram via the effectiveone should add the symmetric cut for the vertex diagram and
vertices and propagators. From now on, we limit ourselves t@ third diagram with the self-energy correction on the upper
the region, wheré.2<0 and only to the true two-loop dia- quark line. Since these two other terms give the same con-
grams, leaving th&2>0 region and the discussion of coun- tribution as the previous two, we simply take them into ac-
terterms to future work. count by multiplying the final result by an overall factor of 2.

Moreover, since our main focus is on bremsstrahlung, we A straightforward application of the cutting rules valid for

the “R/A” formalism, with the notations of26], gives for
the vertex correction:

These counterterms are nothing, but the HTL contribution tothe
two or three-point function, with the opposite sign. Formally, they
are necessary because one wants the effective theory to be just &These extra requirements are not a claim that other configurations
reordering of the bare perturbative expansion, with the same overatif the cut cannot give important contributions as well, but are dic-
Lagrangian. tated by our choice of looking only at bremsstrahlung.
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NCr d*p dL
2 2m* ) 2m*
xeARRQ,P+L,—~R-L)gARR —P—L,P,L)
X g"RR+L,—L,—R)eMRR,—P,-Q)
XTI y*SAR(P+L)y*SAR(P) v, SFAR) y"S®AR+ L) IDIX(L)

NC d'P diL
5T | Go | e AL - AULISP) =S (P)]

Im HRAM'u(qo -q)lvertex: —Im HAR,uM(qo -q)\vertex:

X [SR(R+ L)_SA(R+ L)](”F(ro)_ nF(po))(nB(lo) + nF(ro+|o))
XS(R)S(P+L)P, (L) Trace” | erex, &)

where, following[21], we denote the fermion propagator: x2 x(1-x?) [x+1
_ _ ) My(L)=3m| &+ —5—In| - — ®
SRAP)=PSPAP) with P=(p,,Vp*+MZp) (4)
i [
S(P)R’AE — = 2 2 . ’ (5) X+ 1
P?xipee  PT—Mixipos I (L)=3mZ(1-x?) 1——In P ©)

and the effective gluon propagator in a linear covariant

gauge:

with PT L the usual transverse and longitudinal projectors in

linear covarlant gauge®,31-34, M2=g?C¢T?/4 [35] the

asymptotic thermal mass of the quark, amj g°T?[N

and pr ,_(L)EDiscA-'? (L) + NF/2]/9'the soft gluon thermal mass. In this formudais '

=Ml (L) RA ’ ’ the electric charge of the quark and therefore depends on its
(7 flavor. Likewise, we obtain for the second diagram:

—DE&’*(L)zF>;,<L>A-FF*A<L>+Pt,[,(L)AE“*(L)+§LPL(,/(L62

i

NCe d4p diL
Im IT7%,#(dlo ,0) seir= = IM TIA%, % (o, Q) ser=— f (277)4f (2m)*

X eARRQ,P,—R)gARRR,L,—R-L)
X g"RR+L,—L,—R)e*RR,—P,—Q)
XTI y“S*R(P) y,SFAR) y?SRAR+L) y"SRA R)]Dﬁ§(L)

NCe zf d*p d‘L

:_Teg 2m? ] 2 4[A L(L)_A"IL},L(L)]

X[S¥(P)—SAP)J[SF(R+L)~SAR+L)IP]. (L) Trace” sy
X (S(R)*(Ne(1 o) — NE(Po))(Np(1o) + NE(r o+ 1)) (10

In the previous formulas, a fact@(R) without anyR or A We may notice the similarity between Ed8) and (10).
superscript simply denotes the principal part of the propagak particular, the same combination of statistical weights ap-
tor. In other words, for these factors, tReor A prescription  pear in both formulas, while the expressions in the square
is irrelevant because the corresponding delta function is inbrackets simply express the cuts on internal lines. Moreover,
compatible with the other delta functions present and therewhen plugged into Eq(l) in order to obtain the production
fore vanishes. rate, the sum of Eq$3) and(10) gives the more intuitive Eq.
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to take into account all the processes included in our dia
gramg. Therefore, the “R/A” formalism appears just as an

(B1) in Appendix B(to which one should add similar terms (TraC@”|vertex TfaCé’”|se|f)

R¥(P+L)2  R°R?

efficient method to reorder the factors of the integrand in sym
order to make it more compact and more convenient for the o
subsequent integrations. The drawback of this formalism is —_aloL? RPR7+ PPP7
that it generates less intuitive expressions. T RY(P+L)2
C. Common part of the calculation —2Q2 E+ P _ K+ P” )
R2 2]\ p2 2
The calculation of the Dirac’s traces is of course common R (P+L) R® (P+L)
to both cases. We obtain for the self-energy insertion: LA(L2+Q?) ,
Trace’|se~ — 4[4R°Q’R7— 4Q°RPR” RY(P+L)
— g (RA(R?P— Q%)+ 2RPQ-L—2Q7R- L), Y
(11) R? (P+L)
Q%L?/ 1 1
and for the vertex correction: + 2 | (R?)?2 + [(P+0L)22) || (15
Trace” yere — 4(2R?PPQ7—2(P+L)?RPQC which will be our starting point in the following sections.
+2L%(R°R7+PPP7) — 4Q°R°P” Ill. CONTRIBUTION TO SOFT STATIC PHOTONS
+gpa{_L2[§2+(m)2_Q2_LZ]})_ (12 A. Kinematics

When the 3-momenturg of the emitted photon is zero, a
It is worth recalling that these expressions are obtained bit Of simplifications occur. First of all, since there is one
anticipating the use of the relation -vector less in the problem, we need only one angular vari-
able which simplifies considerably the angular integrations.
Moreover, as shown if21], the nonvanishing invariant mass
LPP - (L)=0 (13)  of the emitted photon regulates all the potential collinear
divergences WheQZ/qgfvl. Therefore, one can simply for-
get about the quark asymptotic thermal mass, since the pur-

traces. Since this identity is not true for the gauge dependerﬂose.c.nc SUCh. a mass is precisely to regulanzg colllpear sin-
part of the gluon propagator, one should not use these e)g__ulantl_es. This means that vye car_1 everywhere |d§rIR|iynd
pressions of the traces to check the independence of the raffedt this level of approximation, since furthermdras hard.
with respect to the gauge parameterMoreover, we dis- From the identity S%(P) — S*(P)=2me(p,) 5(P?), we
carded terms that will be killed later by the delta functionsextract the valuep,==p andr,=q,*p. For the second
such as the one contained inSR(P)—SA(P)  cut quark propagator, we have the identi§*(R+L)
—2me(po) S(P2—M2). Since a 4-ector like P —SANR+L)=2me(ry+1,) 8(R+L)?) from which we ex-

- tract the cosine of the ang¥ betweenp andl:
=(po,VP°+ sz p) is not a linear function of the momentum 9 P

P, we used some approximations to simplify the calcula- (rotly)2—p%—12
tions, the effect of which is to neglect only terms that are cosf' = 2pl . (16)
always subdominarit.

We also notice that the statistical weights and delta func
tions present in Eqs(3) and (10) are invariant under the
change of variable®— —R—L, L—L. Therefore, in the
remaining factors of the integrand, we are allowed to drop
the parts which are antisymmetric under this transformation.
Collecting contributions from the two topologies, this sym-
metrization gives:

in order to drop any.” or L7 in the expression of the Dirac’s

Of course, we must require that this value bd inl,+ 1],
which will reduce the available phase space.
This requirement leads to the following two inequalities:

(Io_|+po+qo_p)(|o+|+po+qo+p)go (17)
(Io_l+po+qo+p)(|o+|+po+qo_p)20a (18)

3Fori which lead to a phase space reduction that can be seen in Fig.
ror instance: 3, where the region excluded by the requirement &os
: } (14) e[—1,+1] has been shaded in dark gray. Other regions are

excluded also by our choice of looking only at bremsstrah-

R-P=Q p(p+9)

1+0O
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I I m
FIG. 4. Physical processes included in the diagrams of Fig. 2, in
the regionL.2<0. Region 1:p,<0, r,+1,<0: bremsstrahlung with
an antiquark. Region 1Ip,<0, r,+1,>0: qq annihilation with
scattering. Region lll:p,>0, r,+1,>0: bremsstrahlung with a
quark. The particle on which the quark is scattered can also be a
gluon.

the + sign corresponding tp,= +p and the— sign top,
=—p.

It is worth examining more closely to which physical pro-
cesses the regions I, 1l and 11l correspond. This is done just
by looking at the signs op, andr,+1,. Examples are

shown in Fig. 4.
Besides the bremsstrahlung present in regions | and I,
-qy-2p -m, -qy Iy we see a new process in region Il. This process corresponds

o to an annihilation of a quark-antiquark pair, one of the par-
FIG. 3. Allowed domains in thel{,1) plane forp,=*p. The ticles having previously undergone a scattering in the me-
area shaded in dark gray is excluded by the delta functions. Thgjym. Since the scale for the quark momentum is given by

region shaded in light gray is above the light-cddetted lines. the temperaturép=O(T)), and since we are looking here at
The solid curves are the transverse and longitudinal dispersion - A .
curves of the thermalized gluon. The vertical dotted line is thesmct photans, it is obvious from Fig. 3 that processes | and |l

2 . .
separation betweene(p,)e(ro+1o)=+1 and e(pg)e(rotly) have support of order- in the (,,l) plane, while process Il

=—1. The value of the thermal mass has been exaggerated in ordB@S only support of ordeg, T, the integrand being the same. _
to make the figure more readable. Therefore, we expect and we have checked that process Il is

suppressed by a factor of ordigy/T<1 compared to brems-
strahlung. As a consequence, bremsstrahlung appears to be
the dominant contribution as far as thé<0 domain is con-
lung, i.e., excluding areas, whet&>0 [27]. Finally, the  cerned. In the remaining part of this section, we limit our
only regions we have to consider are the unshaded ones. study to the regions | and Ill. We can obtain a further reduc-
Having taken these constraints into account, the indepenion of the phase space by noticing that regions | and Il give
dent variables we are left with are for instar{tlee choice is  he same contribution, since they are equivalent by a change
not unique r=p, |, andl, everything else being a function ot yariablegindeed, after the symmetrization in E45), the
of these thr_ee. In particular, the denominators appearing 'ﬂ1tegrands are invariant under the change of varialfles
the calculations are ——R—L andL—L]. Physically, this means that photons
are produced equally by quarks and by antiquarks. There-

R2=(q,(qy+2p) (19 fore, we _just consider region Ili.e., p,>0 andr,+1,>0)
and multiply the result by an extra factor 2. Hence, the con-
(P+L)?=—0q,(qo+2l,*2p), (20 tribution of bremsstrahlung is given by

NC
esea? [ dp [ 11 [ dlne(ro) < ne(po Tne(lo) +ni(ro 1)

Im IR #(q,,0)~

TraCé)g\vertex+ Trace’ syt
R2(P+L)?2 R?R? sym
pofp
cosf' =+

X > pa(L>P;‘U(L)( (21)
a=T,L
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B. Extraction of the dominant terms

L L
PL(L)==Pl (L)+g,o— —5 2
1. General considerations po'( ) po’( ) Yoo L’ @3

Let us now concentrate on the matrix element to be inteyhere U=(1,0) is the 4-velocity of the plasma in its rest
grated over the phase space depicted above. In order to pgfame. An important simplification is obtained in the case of
form the contraction of the Dirac’s trace obtained in Ep) static photons, since we have
with the longitudinal projectors, we use the following ex-

pressiong31,32: Q"P;,=0. (24)
L,—1,U,)(L,—1,U, ing i is simplificati -
PT (L)=g,.—U U(,+( p"lo ,)(2 oUYo) 22) Taking into account this simplification, we obtain, after some
o p P | algebra,
Trace”, Trace?”
E pa(L)Pirr(L)( — ‘Vertex_’_ __|se|f
a=T,L RZ(P+ L)2 R2R2 om

4p?(cog 6'—1 2(Q-L)? +L)2

(Q-L)2 +Q2L2 1, 1 )
R P+L)* " 2 [(RH)® (P+L)?)?|/)

_ZPT(L)<1_2 (29

It is worth noticing that all the potential poles inL#/[see  bounds. Equatioti25) shows also thaB<0. From the pre-
Eq. (23)] have disappeared in this formula. This is nothingvious structure and since we can factorize a fam@rout of

but a consequence of the gauge invariance of the set of dighe spectral functiongr , it is obvious that we can write
grams we are looking at. the result as

Now, in order to extract the order of magnitude of each
term in Eq.(25), we can use the following very rough rules:
R2~(P+L)?~2pq, which is correct for our purpose

even ifl is hard, sincd is bounded by a quantity propor- AR 2.2 meT _(do Qo

tional top (see the previous paragrap)r/\ onqkinemét?csp Im 175,740, 0~e7g q_op<ﬁg T)’ @7
ng(l,)~T/l, which always gives the correct order of

magnitude, even wheh, is hard.
Ne(ro+1,)=0(1). whereP(-) is a polynomial of two variables, of total degree
Ne(ro) —Ne(Po) =~ doNE(P)- 4. Under the assumption tha;<<T, we are allowed to trun-
1—cog ¢'=0(1). cate this polynomial and keep only terms of degree O in the
The details of thex dependence are irrelevant to obtain variableq,/T, leaving a polynomial ofj,/mg only. More-

the correct order of magnitude. over, the above rules show that the term of E2f) propor-
pr.L(1,x) behaves likanZ/(12+m3)? if one neglects itx  tional to p(cog & —1)L? contributes to the constant term of

dependence. this polynomial, and gives an integral that behaves Jidé/|
Moreover, using the variablex=Il,/l, we can see for hard|. This means that a logarithm of order Ing)/

Im 1A% (g, ,0) is a sum of terms such as shows up in this coefficient. The argument of this logarithm

can be written ag?/f(m,q3), wheref(-) is a function of
> 2w , 5 dimension two. This function depends on bathand mg,
eg qof dpne(p)p f di” since there can be a competition betwegnwhich appears
as a kinematical infrared cutoff in the integral ovdir and
I+O(1)> (26) my which appears irpy, and can also play the role of an
I ' infrared cutoff for the same integral. Using the same tools, it
is quite easy to check that all the other coefficients of this
where F(x) is a dimensionless function and whetet 8 polynomial are of order 1i.e., do not contain any large
+y=3 in order to give the correct overall dimension. A logarithm.
close inspection of Eq.25) shows thata ranges froma= Therefore, under the assumption tligt my<T, we can
—1 to =3, taking all the integer values between theseformally put the result into the compact form:

X f dxF(X)pr,.(1,X)

085003-7



P. AURENCHE, F. GELIS, H. ZARAKET, AND R. KOBES PHYSICAL REVIEW B8 085003

2

mgT
Im IR #(q,,0)~Ce’g? qg
[o]

In

T? (qo) as well as the functiori(mj,q2) in the limit g,<mq. The
f(mg,qg) Q ﬁg ' assumptiong,,my<T (i.e., g<1 andq,<T) ensures that
(28) the argument of the logarithm is large, so that the logarithmic
term should be a fairly good approximation of the whole
whereC is a numerical constant ar@(-) is a polynomial.  expressioff.
As mentioned before, the logarithm we are looking at
comes from the term ip?(cog ¢ —1)L? in Eq. (25). Using
Under some more restrictive assumptions, we can go furkq. (16), we obtain the following expression for the imagi-
ther analytically. More precisely, it is possible to extract ana-nary part of the photon polarization tensor:
lytically the constant in front of the logarithm of Eq(28),

2. Extraction of the logarithmic behavior

Im 1148,y 0= — NoEe 8" T [Camnen [ T[T a0 - ma ), @9
m O)~— ———f— — n —(1—-x X)— pL(1,X)),
u (Uo 2m%  a Jo PNe(p X do/1-x pT PL
|
where p~T, we can replace the remaining logarithby In(T*rr).
% —2 Im Iy (X) Now, thedx anddp integrals are trivial and give:
1X =
Pri (2(1=x3)+Re Iy (x))?+(Im Tl (x))? 3NCre?g2 2T (T2
(30 Im AR 4(do,0)~ —5—3— In| —|. (32
8w do myg

is the spectral function in the space-like region. This is the ) ) )
place, where the conditiom,<mj enters the picture. Indeed, The production rate is then given byee Eq(2)]:
if we do not make this assumption, the infrared regulator of

the integral oved! will be a complicated combination af, dN dqoquC a2< S ez) (ﬂ)z
contained in the lower bound amd, contained in the spec- dtdx| . 8 ° F 7 g
tral functions. On the contrary, whep<mg, only the larg- 5 )
est regulatoi.e., mg) plays a role, and the argument of the % (ﬂ) | T_)
X ) 0 ; i n—|, (33
logarithm is quite simple. The integral ovel is elementary do my
and yields an arctan function and a logarithm. Keeping only
the latter’ we obtain: where the sum runs over the flavor of the quarks in the loop
(ef is the electric charge of the quark of flaviyrin units of
Im I1AR #(q,,0) the electron electric charpe
- A comment is relevant concerning the sensitivity of the
_ NCee“g” T J”’d p exchanged gluon to the hard scale. Indeed, the discontinuity
T 2w a 0 Pre(p) of the effective propagator is used here in the space-like

region, and the HTL approximation used to obtain this

propagator may inaccurately reflect the phenomenon of Lan-
dau damping for a hard gluon. The consequence of this re-
mark is that a loop correction on the gluon propagator may
The terms neglected in that procedure show up only in théead to an important three-loop correction to the photon
polynomial that would accompany the In§)/in a more emission-rate.

complete calculation, and are not tractable analytically. Before comparing this analytical result with numerical es-

Moreover, for the same reason and because of the statistictilnates of the unapproximated expression, let us recall the
weight in thedp integral that will cut off everything above domain in which this expression is expected to be valid.

Firstly, we need the logarithm to be large in order to be

dominant, which requireg,,my<T, i.e.,g<1 andq,<T.

4

+1 dx p
X Jil " (Im I (x)—Im HT(X))In(m_g)' (3D

“To summarize, the conditiog, ,my<T is essential to have a
large logarithm, whereas the extra inequalify<m, is necessary
just to be able to calculate analytically the functit(rnng ,g3). Al- 81t is possible to perform analytically thep integral without this
though our calculation of the two loop diagrams of Fig. 2 is per-further approximation. Doing so leads to a result in which the loga-
fectly valid in the limitq,<my, one may expect that higher order rithm of Eq.(33) is replaced by In‘(2/rr§)+2(ln(w/2)— v), wherey
contributions become important as soonggss g°T [28,30. is the Euler constant. However, the additional constant is not com-
5The arctan term we discarded is convergent when performing thelete, since we have already neglected contributions to it in earlier
subsequent integration ovek, since the arctan is bounded by2. approximations.

085003-8



BREMSSTRAHLUNG AND PHOTON PRODUCTIONN.. ..

15

q,/T=10"
14}

13+

12

Lip

" (TL)/(Tolje o

*

.
.

.
.
900000000000

1 P

Numerical / Theoretical

a9k

08

0.7

-7 -6 -5 -4

Numerical ! Theoretical

15

141
13+
1.2

L1t

o9
a8

a7

PHYSICAL REVIEW D 58 085003

T (TeLy/ (Tol)a o
m,/T=10°

s e,
€0 0000000000 0esssesos s

) -3
log (4,/T)

-3
log (m,/T)

FIG. 5. Comparison of numerical estimates of the complete matrix element with the simple theoretical expression obtain@3)in Eq.
Both plots show the ratio “Numerical/Theoretical.” On the left plqt,/T is fixed at 104 and we look at the variations witimg /T (i.e.,
with g). On the right plotm,/T is fixed at 102 and the photon energy varies from ultra-soft energies to hard ones.

The additionalpurely technicalkcondition is thatg,<mg, in 2. Braaten et al. results
order to keep simple the argument of the logarithm. On the At the one loop level in the effective perturbative expan-

plots of the Fig. 5, we show the ratio “numericall gjon the production rate of soft static photons has been
theoretical,” where “theoretical” is the formula given in EQ. o\ 51uated by Braaten, Pisarski, and YU&®Y) in [9]. The
(33), while “numerical” denotes a numerical evaluation of ,;h6se of this paragraph is to present an analytic compari-
the contrlbutl_on to bremsstrahlung of the complete matrixson of their final resulfEq. (11) of [9]] with Eq. (33), in the
element as given in Ed25). _ domaing,<my~gT<T for which our expression has been
The left plot shows tham, /T must be smaller th_an 0_'1 N justified. In this domain, we can retain from the resul{@f
order to have an agreement between our approximations a ly the terms having the most singular behaviogqn Such
the co'mplete expression with an accuracy be.tter than 5%. lcferms are found only in the “cut-cut” part. Moreover, some
mng is not small enough, then the polynomial that comesyf these terms develop a large logarithm lgjlivhich is
with the In(14) cannot be neglected anymore. On the second;mpje 1o extract analytically, in a way very similar to the
plot, we see that the approximations we performed inside thF'nethod leading to Eq(33). Applying these approximations

logarithm by assuming the smallness qf/m, are in fact 4 the BPY result leads to the following estimate for the
valid far outside their expected domain of vallthymce we one-loop production rate:

still have a reasonable accuracy wif/mg~ 10.

dN dg,dg )

didk|, " 12" 2
-loop

C. Comparison with other approaches ) (34

me\4 (T2
“ | =
Qo Mg

1. Extrapolation of the quasi-real soft photons results

) . wherem2=M2/2 is the soft quark thermal mass. Therefore,
In a previous paper, we gave asymptotic formulas for thecomparing with Eq(33), we obtain the ratio:
same quantity in the case where the photon invariant mass '

satisfiesM2/T?<Q?/q3<1 [see Eqs(89), (90) and (93) of dN|premss 32 N+Ng/2

[21]]. By extrapolating these estimates outside of their ap- dN]| ~3727 ¢ ) (35
parent range of validity towards the case of static photons for 1-loop F
which Q%/q2=1, we obtain exactly the formula of E3).  which for 2 light flavors and 3 colors becomes
Such an agreement means that, for a given engggythe
formulas established for the production of low invariant dN|premss 32

- Co e T 3.2, (36)
mass photons are very robust, since they remain valid when dN|1—Ioop T

extrapolated to the case of heavy photons at rest.
From a technical point of view, this is made possible byThis ratio is rather large, which means that bremsstrahlung is

the fact that the term that contains the collinear singularity indefinitely an essential contribution to the soft static photon

which we were interested for low mass photons and the termroduction rate by a hot plasma.

that develops the logarithm we extracted analytically for

heavy photons are the same. 3. Cleymans et al. results

The bremsstrahlung production of a soft virtual photon
has been considered in the context of the semi-classical ap-
"This is presumably due to the fact that this extra assumptiofproximation by Cleymanst al. In their approacti14], they
affects only the terms inside a slowly varying logarithm. took into account the effect of the multiple scattering of the
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quark in the plasm#Landau-Pomeranchuck-Migdal effgct in the vacuum, the only modification being the introduction
In order to compare with our thermal field theory result, weof a phenomenological Debye mass, to screen the for-
need to “undo” the effect of rescattering and consider onlyward singularity of the quark scattering amplitude. Neglect-
one collision of the(photon emitting quark in the plasma. ing furthermore, the virtual photon momentum compared to
Cleymanset al. use several simplifying hypotheses: the en-the momenta of the constituents in the plasma, the produc-
ergy of quarks or gluons is much larger than the temperaturéon rate can be factorized into a quark scattering term and a
so that Boltzmann distributions are used for particles enterphoton emission term so that the lepton pair rate can be
ing the interaction region and a factor 1 is assigned to thoseritten (see[21] for a similar expression in the case of a real
leaving it. The scattering of quark in the plasma is treated aphoton

dN dqodq @ dp, dp/ . , ,
dth 24/77_4 QZ H (27T) 2p| Il_j[Z (277)32p, (277) 5(Pl+ P2_P1_P2)
Pl'S PiE)
X | M|3(Py,P,; P Py)e? I 3
| M[2(Py,P2;P;P)) p;s <P1'Q ) (37)

where| M|? is the square of the matrix element of the quark IV. CONTRIBUTION TO HARD REAL PHOTONS
scattering process. We have folded in the above expression,
the appropriate factor describing the decay of the virtual pho-
ton of mas<Q into the lepton pair. With the above mentioned ~ Let us now concentrate on the case of hard real photons

approximations and keeping the most singular term in thd T=d,=0). The kinematics for this situation is much more
t-channel[14], we have complicated than for static soft photons for two reasons.

First, sinceQ is hard, we are no longer allowed to negl€xt
op..P.\2 in front of P or R. Moreover, since we are looking this time
2 D D 4 12 at real photons, we may encounter collinear diverge(des
| MI%(Py,P2iPy1,P2) =Can2g (2P1- Pi) (38) in the case of soft real photofi21]), and we must carefully
keep the quark asymptotic thermal mads in the expres-
with C,,=4/9 for quark-quark scattering an@d,,=1 for  sions.
quark-gluon scattering. We then find for the rate of produc- Now, from the identity S}(P)— SA(P)=2me(p,) 8(P?
tion of the pair at rest the following expression: —M2), we extract the valug,= *w,, where we denote

wa\/(p2+ Mi) andr,=(,*w,. The second delta func-

A. Kinematics

4 2 tion constraint provides us with the angl® between the
dN_ daydq a?a?d d(E e? In( ) (39 3-vectorsr andl, via the relation:
~R 6 N, - . .
dtdx 3w st gl \mg
where d;=2,x3,=6 and d=32X2;X2,X3.+2,X8, ,_Rz—l\/IiJrZrolowLL2 AT
=26+35 are the degeneneracy factors introduced id]. cos ¢ = 2rl ' (42)

Comparing with Eq(33), we find for two light flavors

Again, we must enforce the requirementl<cos6' <1,
dN| | 15 which implies the following set of inequalities:
semi-class

d N| bremss - ?’ (40)

(ro—r+lo+D(rg+r+l,—H=M2 (42
e., the semi-classical result agrees with the thermal field
theory result in its functional dependence, but over-estimates
the rate of production by about 50%. This difference appears (ro—=r+lo=D(rg+r+l,+H<M2, (43
to be due to the very approximate treatment of thermal ef-
fects of the dynamics of the plasma: for example, the ratio ohnd leads to a reduction of the allowed domain in thel{
quark-gluon scattering to quark-quark scattering is estimateg|ane.
to be N/0.5N|:=3 in thermal field theor;(this is the ratio of The above two inequa"’[ies may be rewritten as
the gluon contribution to the quark contribution in a hard
thermal loop compared to 1.5taking account of the multi-

plicity factors associated to the quarks and the gluam¢he (r=D2+MZi<lo+r, or lg+ro=—+/(r—1)>2+ Mi
semi-classical approach. (44)
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vious figure are to be understood as functiongpadnd the
angle 6 betweenp and q. Therefore, this restriction of the
allowed phase space is in fact a constraint that relates the
independent variablgs, 6, | andl,. In the following, doing
the integration ovep first will prove to be convenient since,
due to collinear divergences, the result of this angular inte-
gral controls the order of magnitude of the resultuk1
—cos@ is the variable over which we integrate first, then the
bounds onu depend on the other variabléd, and p be-
cause of the identities of Eq&l4) and(45). In particular, the
inequality Eq.(44) can be written in terms afi=1—cosé:

(p+Q)2_[ \/(ro+|o)2_Moc_|]2
us

, 46
2nq (46)
which gives if one assumes thigtand| are soft
+I (1-x) (47)
us|—+=|(1—x),
P q

where we denot&=I1,/l. As a consequence, since the rel-
: L evant values of the momentulmare controlled by thermal
e = To+ @ I, masses of ordeg T, this upper bound is of orde.
It is now worth giving expressions for the denominators

FIG. 6. Allowed domains in thel{,1) plane forp,=+w,. The  that enter in the rate, since they are potentially dangerous
area shaded in dark gray is excluded by the delta function conwhen the photon is emitted collinearly to the quark. To that
straints. The areas shaded in light gray are above the light-congurpose, we need also another angular variable, which is left
(dotted lines. The light curves are the transverse and longitudinalynconstrained by the previous considerations. This variable
mass shells of the thermalized gluon. The vertical dotted line is theggn be the azimuthal angiebetweerg andl when projected
separation betweene(po)e(rotlo)=+1 and e(po)e(rotlo)  on a plane orthogonal to Therefore, if we denot@” the
=-1 angle betweeiy andl, we can calculate this angle by

-ry- -m

—Jr+D2+ME<I +r < (r+1)2+M2. (45

The result of these inequalities is shown in Fig. 6, where thQNheregr is the angle betweenandgq. This last angle is not

regions excluded by the requirement ¢éb&[—1,+1] are  jndependent of, to which it can be related by
shaded in dark gray. In order to make the comparison easier

with the case of static photons, we have also reproduced the

boundaries of the allowed region for that c4ie., the fron- r sin 6, =p sin g (49
tiers that one obtains in the limi_,—0). One can see that
the old boundaries are asymptotes for the news ones. Again,
we have three regions allowed by the above two inequalities
for L2<0. Again, regions | and Ill give the same contribu-
tion, as can be seen by the change of variaBles—R—L
performed at an earlier stage of the calculation. From now

on, we will drop region | and multiply by a factor 2 the p _ _ q
contribution of region Ill. We start the discussion with the €0S¢"=-(c0os 6 cos 6’ +sin 6 sin ' cos¢)+ - coso'.
study of region lll(bremsstrahlung processemd then turn (51)
to region Il (gq annihilation with scattering in the plasma,

see Fig. 4 As will be seen, this region can no longer be Using only the variables=1-cos#, p, | andx=1,/1, we
neglected, contrary to the case of soft photon production. can write[21]

cos#’'=cos 6, cosf’ +sin , sin §' cos¢p, (48

r cosé,=p cosé+aq; (50

so that Eq.(48) can be rewritten as

B. Bremsstrahlung 2
2_ M2 *
Since the delta functiod(P2—M2) makes more conve- R*=M:~2pgq| u+ 2p?) (52

nient the choice op=|p| as an independent variabia-
stead ofr), the quantities—r,* w, that appear on the pre- and
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jzw d¢ 2m(p+0q) 53
o (P+L)*=MZ  2qp’[(u+MZ/2p*+L%2p%)%~ (L% p*)(M2/p?)]">!

|
where we performed the integration ovér at this stage, —L2
since this denominator is the only place wheér@ppears at W= M2 (56)
the dominant order. As one can see, the first formula remains *
exactly the same as in the case of soft real phof@is,
while the second one is only slightly modified by an extra Tro(x)= m Ry (x)= Re_HTZ'ﬂ, (57)
(p+q)/p factor. As a consequence, the discussion made in M2 MZ

[21] concerning the enhancement that one gets when per-

forming theu integral is still valid. In particular, the terms We find

where both denominators are present are enhanced by a fac-

tor of order p?/M2, while those where only one of them Im TTAR #(Q)~

appear will get only a logarithm of this quantity. a
Again, our starting point is Eq15). The order of magni-

tude of each term is evaluated by taking into account the fact +00)2)[Ne(P) —Ne(p+do)], (58

that the momentun@ is now hard, as well as the quark where we denote

momentum. Moreover, we must take into account the en-

hancement by a factor of ordergf/for terms having two 1

denominators. Since the emitted photon is assumed to be JTLEJ _XTT L(X)

real, we haveQ?=0. Therefore, one can check that only one ' '

term dominates in this matrix element:

e?g’NC T

F tee
(3= — dp(p?+
o (Ir L)qg fo p(p=+(p

(59

XIHOd Vw/w+4 tanh t Vw/w+4
w .
RPR”+ PPP° 0 (W+Ry L))+ (T7,L(X))?
—8L———, (54)

R2(P+L)>2 As one can see, the integral oveandw can be factorized

out of the expression and is the same as in the case of soft

C . . real photong21]. In this previous work, we noticed that the
which is again the same as in the case of soft real photon b 321 P

Since the relevant values of are of orderM?2/p?~g?,

Sntegral over the gluon momentum could potentially be sin-
gular when the gluon is transverse, but is regularized by the

we have quarkthermal mass instead of the gluon thermal mass as one
might expect. The interpretation of this result is in fact rather

M2
u-+ 7) for po=+w,. (55  delta functionss(P>*—MZ) and 8((R+L)2—M2) become
P incompatible in the limitL—0 if MZ2>0. Therefore, the

pq
p+q

lo— W™

simple. Indeed, a close look at kinematics shows that the

quark thermal mass prevents an infrared divergence by re-
Therefore, one can see in Fig. 6 that the extra requiremeriucing to zero the region of phase space, where this diver-

L2<0 does not restrict significantly region Ill due to Eq. gence can occur. The only major difference wigti] con-
(55 (this is a result already obtained j21] according to  cerns the integral ovep, because of the fact that, is now

which the kinematics confines the phase space td.the0 hard. Nevertheless, we can still give a rather compact expres-

region in the collinear limit ifL is soff. sion for this integral in terms of poly-logarithms:
Since the term to consider is the same, and since the de-

nominators have very similar expressions, it is completely [~
straightforward to reproduce the calculafiahat has been 0
performed in21]. The only minor difference lies in the con-

traction of R°R”+ P?P“ with the projectors, which gives a 7™ 0y (%o
factorp?+r?2 approximated byp?+ (p+q,)? in the collinear =T3[3§(3)+ 5T +(?
limit. Introducing the dimensionless quantities:

dp(p?+(p+0o) DNE(P) —N(P+ o) ]

2
In(2)

+4Li3(—e—‘%‘”)+2$ Li o — e~ 19%l/Ty

8As seen earlier, the kinematics gives an upper bound of arder 2
for the variableu. Since we are considering enhanced angular in- _ (%) |n(1+e—|qo|/T)
tegrals for which the relevant values of are of orderM?/p?
~g?, this upper bound does not appear in the result ofutliete-
gral. where the poly-logarithm functions are defined via

: (60)
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Feoon wherex=l,/l. Therefore, the integral ovérandx gives the
Lig(2)=>, a (61) same factod;—J_ as before. The integral overin Eq. (58)
n=1 is now to be replaced by
Equation(60) simplifies in the limit of extremely hard pho- do 2q3
tonsq,>T: fo dp(p2+(qo—p)2)=T°, (65)

+oo which leads to the following asymptotic contribution for the
JO dp(p2+(p+q0)2)[nF(p)_nF(p+q0)] ~ q(2)T In(Z) region 1l

qo>T
(62 dN
dtdx

2 dq ( )
~ = —<NCraa E e?
“qO>T3 a5 CFAas| 2 €

Therefore, in this asymptotic regime, we find for the produc-

tion rate of hard real photons:
Qo —qorr
X_e qo (‘]T_JL) (66)

[o]

dN
dtdx

dg
~ 2—=NC e? , _ _
bremsslo>T m° Faas(g f) Therefore, it appears that region Il dominates over brems-

5 strahlung in the asymptotic regime.

XT_eiq(’/T(JT_JL)'n(Z), (63 . . )
Jdo D. Comparison with previous results

] ) The production rate of hard real photons has already been

wheree is the electric charge of the quark of flavbrex-  cajculated at the one-loop order[it2,13 as an application

pressed in units of the electron charge. ~ of the effective theory based on the resummation of hard
Besides this simple asymptotic result, it is worth addingthermal loops. We now compare the contribution of brems-

that Eqs(58) and(60) provide a generalization of the analo- siranjung obtained above with their result. For hard real pho-
gous formula off21]. Indeed, the result we provide in the tons the predictions dfl2] are

present paper for the bremsstrahlung contribution to real

photon production is valid over the whole range of photon dN dg s
energies, and in particular reduces to Esf) of [21] in the Jtdx ~ g2NCraas Z ef
limit of soft q . 1-loopdo>T
T? cq
— X — 7q0/T _0
C. qq annihilation with scattering Jdo © In( asT)’ 67

The discussion of the contribution of region Il can be
carried out in a similar way. We recall that= — »,<0 so
that Eq.(52) becomes

with the constant~0.23.

It is worth recalling here that the quantitids _ that ap-
pear in Eqs(63) and(66) are functions of the ratid/../my
M2 when Q2?=0, i.e., depend only omN and Nr. For N=3
—2> (64) colors andNg=2 light flavors, we can evaluate numerically
2p J;~4.45 andJ, ~ —4.26. Figure 7 shows a comparison of

, ) bremsstrahlunggqg annihilation with scattering, and one-
with the notatiorv =1+ cosé. For hard enougly,, the sta- loop contributions.

tistical weightng(po) —Nne(pPot0o) is equal to 1 for—q, In Fig. 7, the bremsstrahlung contribution is taken from
<p,=0 and equals 0 everywhere efs&herefore, we can gq. (58); for the region II, we use the asymptotic result ob-
restrict to the range € p=q, and we check that Eq53)  tained for largeg,,® and the one-loop result is a numerical
remains valid except for the changas-v andq+p—q  eyaluation of the diagrams considered[i2]. The value
—p. The enhancement mechanism in the terms that contaifjsed here for the coupling constantgs-0.5. We can see
the two denominators goes through as before due to thejht the bremsstrahlung is the dominant contribution for the

R*-MZ~—2pg|v+

; 2 ; .

behavior neav~g-. _ _ 5 smaller valuesy,, whereas the region Il becomes dominant
Such terms are dominated by the region, whereg®,  for hard enoughq,. For intermediate photon energies

which enables us to obtain-r,—w~—-2(d,—p) and  (aroundT), the three contributions have equivalent orders of

—ro+ o~ O(g?T). As a consequence, the boundaries in themagnitude. For higher values of the coupling constarthe
(Io,1) plane are—1=<x=<1 and 0<I=<2(gq—p)/(1—x),

1%This asymptotic estimate may be incorrect for smaller values of
%The transition between 0 and 1 takes place in a range of Width Jo - Nevertheless, we expect it to decrease tikesince its support
in the variablep, . These side-effects are negligible if the condition in the (,,l) plane decreases likg,, so that region Il is certainly
g,>T is satisfied since they provide corrections of relative ordersubdominant forq,<T. Therefore, the asymptotic result is suffi-
T/q, - cient in this comparison.
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relative importance of the one-loop contribution tends to de<€luded in the two-loop diagrams. In particular, the contribu-
crease. We can also see that the sum of the three contribtien with a time-like gluon should be added. However, such
tions is significantly above the one-loop contribution consid-processes when the gluon is hard are already contained in the
ered alone. one-loop diagram: counterterms should therefore be in-
cluded. To do this will be a very interesting practical exer-
cise in the use of the effective theory up to two-loop.

A word of caution should be given concerning the brems-

We have discussed the production of a real photon or of atrahlung contribution to the soft virtual photon rate. The
lepton pair in a hot quark-gluon plasma in thermal equilib-result shows a sensitivity to a hard space-like gluon and
rium. We assumed that the plasma is described by thermaherefore one may suspect that the extrapolation of the effec-
guantum chromodynamics and we worked in the frameworkive gluon propagator in the hard region is not complete: to
of the effective theory obtained after resummation of hardbe consistent may require taking into account three-loop dia-
thermal loops. We have shown that, at leading ordgyTinit  grams in very much the same way two-loop diagrams were
is necessary to include the one-loop as well as the two-loopeeded besides the one-loop diagram with a hard space-like
diagrams. The one-loop diagrams of the effective theory corfermion propagator. On the contrary, for the case of a real
rectly account for the contribution of soft fermion momentaphoton emission, the bremsstrahlung rate is sensitive only to
in the loop, whereas in the two-loop diagrams hard momentaoft gluon momenta, and no such problem exists.
play a dominant role. There are several other reasons why higher loop diagrams

Many physical processes are contained in the effectivare worth considering. In the effective theory, the thermally
theory calculated up to two-loop order. To simplify, it can be generated mass is resummed, but not the width: the effect of
said that, at one-loop, scattering processes mediatésdfiy  the latter is treated perturbatively. However, it was seen in
fermion exchanges are of paramount importance for theome cases that the resummed width can have an equally
emission of the photon. The corresponding photon producimportant effect as the resummed m&88,29. This sug-
tion rate consequently strongly depends on the soft fermiogests that higher loop diagrams may give leading contribu-
thermal massn:. On the other hand, the two-loop topolo- tions. Another point concerns the possible reduction of pho-
gies account, among other possibilities, for bremsstrahluntpn emission due to multiple scattering of quarks in the
processes, where the photon is emitted by a hard quark scatlasma(LPM effec) [14—18 pointing again to the impor-
tering in the plasma via &space-likg¢ gluon exchange: in tance of higher order diagrams.
that case the rate is proportional to the square of the gluon
massm,. We have calculated the contribution of such pro-
cesses.

For the production a soft virtual photon{~gT, q=0), We thank R. Baier for useful discussions. The work of
the bremsstrahlung processes largely dominate over the ong-k was supported by the Natural Sciences and Engineering

loop result in the rangg,=mg . For the case of real photon Research Council of Canada. We also acknowledge support
production, an interesting enhancement phenomenon OCCURY NATO under grant CRG. 930739.

in the bremsstrahlung processes. Because of the vanishing

photon mass, the fermion propagators become infinite when

a quasi forward-scattered quark emits a collinear photon: the APPENDIX A: HARD THERMAL LOOPS
singularities are regularized by an interplay between the ther- AND COUNTERTERMS

mal masses of the fermion and the gluon. It was seen before ) _ , _
that this leads to an enhancement by a factaf Tf the When using effective theories based on the summation of

bremsstrahlung contributions to the real soft photon rate s§ard thermal loops at higher orders, there is potentially a
that the two-loop diagrams entirely dominate over the onebossibility to have multiple counting of thermal corrections
loop contribution. On the other hand, the bremsstrahlungat should be there only once. _ .

production of a hard real photon occurs at the same order in A4S @ first illustration of this problem in a trivial context,

g as the one-loop result. A rather simple analytic expressioH,e;‘ us use the example of a massless real scalar field with a
valid for soft, hard and ultra-hard photon has been derived® ¢~ interaction in four dimensions. The Lagrangian of such

For ultra-hard photons, another process becomes dominart,model is

consisting ofgq annihilation, where one of the fermions un-

dergoes a scattering in the medium. In all cases, the calcu-

lated two-loop contributions considerably increase the rate of L=

photon or lepton pair emission. Our results can easily be

numerically extended to cover, on the one hand, the case of

a soft lepton pair at non-vanishing momentum, and on théfter the calculation of the one-loop tadpole, one realizes

other hand, the case of lepton pairs produced at large mdhat this diagram—a hard thermal loop in the terminology of

mentum with a small invariant mass. All the features of the[3]—generates a thermal mass= AT+/24 that can be im-

present results should survive in these more general situgortant for the phenomenology of soft modes. Therefore, the

tions. idea of the HTL resummation is to include this thermal mass
Our study does not cover all the physical processes inin an effective Lagrangian

V. CONCLUSIONS AND PERSPECTIVES
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which is a perturbative correction to the thermal mass found

. One-loop o
147 ® . . JM: : at the previous step, as it should be. When this counterterm is
2 ° -, .. Towal o taken properly into account, the effective theory is nothing
“T o e, . g=05 more than a reordering of the perturbative expansion, since
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the overall Lagrangian remains unmodified.

This problem also arises in effective gauge theories,
where the situation is a bit more complicated, since we need
there an infinite series—one for each hard thermal loop—of
non-local counterterms. These counterterms are defined to be
the opposite of the HTL contribution to the corresponding
function. Then, to a given diagram obtained in the effective
theory, one should add the diagrams obtained by collapsing
each loop in turn and replacing it by the corresponding coun-
terterm. In order to be more definite, let us consider the ex-

2 ample of the two-loop diagram of Fig(H). In the Fig. 8, we
have represented next to the one-loop contribution to the
polarization tensor of the photon some of its two-loop cor-
rections.

It should be clear from the figure that when the boldface
loop of the second diagram carries a hard momentum, then
this loop reproduces the HTL part of the effective vertex in
the dotted box already included at one-loop, plus new sub-
dominant perturbative corrections. The purpose of the third
diagram is precisely to subtract a quantity equal to the HTL
which is the Lagrangian of a real scalar field of mass contribution to this vertex, so that what remains constitutes

Let us assume now that one uses this effective theor@nly new contributions. The net effect of this procedure is

instead of the bare one to calculate the same tadpole di&Us to reorder the terms of the perturbative expansion.
gram. The result would be Let us now explain why, despite their conceptual impor-

tance, the counterterms do not contribute in the case of

FIG. 7. Comparison of various contributions to Ii}(Q) for a
hard real photon. The comparison is made for3 colors and
Ne=2 flavors. The value taken for the coupling constantgis
=0.5.

2

La= 53,00 b= 3P~ » (A2)
eff— 2 %n 2 47"

22 2 bremsstrahlung. As said in Sec. Il, the contributions of
AT 3m 3 [m m .
= = |=| In|=]|+- bremsstrahlung to photon production come from two-loop
24 T 27"\ T T diagrams in which the gluon propagator is cut, and where
=m2(1+O0\)), (A3) one retains only the Landau damping parf€0) of the cut

gluon propagator. Technically, the gluon included in the 3-
oint HTL that appears on the third diagram of Fig. 8 is a

2 : g are one, and therefore its discontinuity has support totally
m”, the resummation of the self-enerbywould |ead us to a included in the time-like region. As a consequence, the dia-

propagator with a squared massi1+O())), approxi- .gram with counterterms contributes only in the region of

matlelytrfwms larger tlrt1an_ the dcor;ect tlr;_erlmal mzta_ss. Oﬂﬂ hase-space, whete=0, and cannot contribute to brems-
ously, the above result anses due to multiple countings o trahlung. Even if they are not a worry in the case of brems-

same thermal correction. Stated differently, this is a Conseétrahlung, it was important to discuss the potential effect of

quence of dth? fatht?ﬁt thlstefLecf[t'lve theory 1S m%r?hth%n %ounterterms since, having shown that the second diagram
mere reordering of the perturbative expansion ol the ar%]ives an important contribution, it is not enough to conclude

theory since its L_agranglan is different. To solve this prob-that the two-loop order is important, as it may be canceled by
lem, one must write

counterterms.

and since we start now from a propagator with squared ma

L= Lo+ Loy With Lo=3m?¢?, (A4) APPENDIX B: PHASE SPACE CONSIDERATIONS

The purpose of this appendix is to emphasize the impor-

and treat the counterterf),; as an interaction term, just like S .
D J tance of being in a thermal bath in order to have a hard phase

N2¢*141. The effect of this counterterm is of course to sub-
tract at higher order the thermal corrections that had already
been included at the tree level via the effective Lagrangian, e
in order to avoid multiple countings. For instance, in the ~~
above example, the correct answer for the tadgbleshen

one takes care of the counterterm is

FIG. 8. Some corrections to the one-loop contributilait dia-

A2T2 3m 3 (m? [m ’ gram to the photon polarization tensor. A black dot denotes an
1= 24 |7 7T 2#22\T In T teomm effective propagator or vertex. Crosses are HTL counterterms. The
boldface loop may reproduce what is already included in the one-
=0O(Am?) (A5) loop diagram when its momentum is hard.
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space for the quark loop. This is indeed crucial in the calcuby a thermal bath, we were looking at bremsstrahlung photon
lations performed in the previous sections, since this featurproduction inp-p collisions (i.e., the two scattering quarks

of the diagrams considered in this paper enables them to gome from protons in colliding beamshe statistical factors

of the same order of magnitude as one-loop diagrams. 18f incoming quarks would have to be replatebly structure
order to make the following discussion more intuitive, let usfunctions® of a quark inside a proton, and the statistical
first transform the bremsstrahlung photon production rate inveights of outgoing quarks would be replaced by 1. This
a way that separates more clearly the phase space from théfference is precisely the point which makes the thermal
amplitude of the process producing the photon. The tools t§ath dramatically different from the-p collision. Indeed, in

do that have already been presented2t (see the section the case of the thermal bath, the statistical functions have a

devoted to the comparison with semi-classical methosts ~ SUPPOIt which is three-dimensional, since the plasma is an
that we only give the result hefe: isotropic medium. On the other hand, the structure function

of the quark inside protons of the beam is vanishing if the
quark has a direction different from that of the beam. This

dN _ dq d*P d*K d*L will make a difference when one performs the integral over
dtde |, - (2m)32¢, J (2m)2 ) (2m)* ) (2m)* the momentump. Indeed, if one has something like
o Jdpp'f(p) in the case of the thermal bath, the integral
Rel hd 5 2 would befdpp"~?f(p) for the case op-p collisions. As a
X + consequence, the integral over the quark momentum is more
K K+ likely to be sensitive to hard momenta in the case of the
. thermal bath. Therefore, even if it is not a rigorous proof,
x2n6(P? — M2)2m§((R+ L) — M2) these considerations show why some higher order processes
which are not dominant at zero temperature may become
szs(}(? - Mgo) 2nd((K + L)2 — Mgo) dominant in a plasma, due to a bigger size for their phase
space.
X1 (To + L) (ko)[1 = np(Po)][1 = 7p (ko + 1)), Moreover, Eq(B1) may help to understand why two-loop

contributions may be as important as one-loop ones. Indeed,
(B1) it shows that the final order of magnitude of a contribution

results from a competition between two effects. The first one
whereR=P+Q. This formula tells us that in order to cal- js the order of magnitude of the amplitude, which usually
culate the contribution of some process to the photon probecomes smaller when the number of loops increases since
duction rate, we just have to integrate the amplitude squareghe number of coupling constants increases also. The second
of this process over the phase space of unobserved particlggpect of the problem is the size of the phase space, since it
(here, the incoming and outgoing quarke/hen doing this may happen that due to kinematical constraints, the one-loop
integration, the external particles are put on their mass shellghase space is much smaller than the two-loop one. Both
and accompanied by the appropriate statistical weight. Theffects can compensate so that two-loop diagrams contribute
main advantage of this formula is that it exhibits a clearalso at the dominant level. This is precisely what happens in
separation in two factors: the amplitude squared of the prothe case of photon production by a plasma: the one-loop
cess producing the photon, and the phase space of thghase space is soft due to kinematical constraints, while the
quarks. Therefore, this formula can be used to separate th@o-loop thermal phase space can be héd explained
estimation of the order of magnitude of the diagram in twoabove, this is possible because we are in an isotropic me-
steps: the order of magnitude of the amplitude, and the sizgjum). Therefore, the smallness of the two-loop amplitude is
of the phase space over which it must be integrated. compensated by the size of the two-loop phase space.

Looking at this formula, it is clear that the effect of the

thermal bath appears only in the phase space. Indeed, the——
amplitude that appears in E¢B1) is nothing, but a zero
temperature onét does not contain any statistical weight
Stated differently, if, instead of looking at photon production

12T understand the analogy between the two situations, one may
see a proton beam as a dense medium containing quarks and gluons,
with distributions related to the structure functions of quarks and
gluons inside the proton. Such a medium is highly anisotropic, since
all the partons go in the direction of the beam.

UThis formula is given here for the production of real photons by **More exactly, to obtain the correctly normalized photon produc-
bremsstrahlung. For other processes, analogue formulas still holtipn rate, one should also multiply by the proton densities in the
in which the amplitude squared has to be appropriately modified. beams.
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