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Instantons, three dimensional gauge theories, and monopole moduli spaces
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We calculate instanton corrections to three dimensional gauge theories withN54 andN58 supersymmetry
andSU(n) gauge groups. TheN54 results give new information about the moduli space ofn BPSSU(2)
monopoles, including the leading order non-pairwise interaction terms. A few comments are made on the
relationship of theN58 results to membrane scattering in matrix theory.@S0556-2821~98!03716-3#
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I. INTRODUCTION

In the past year a remarkable relationship between th
dimensional gauge theories and monopole moduli spaces
been uncovered. Following the work of Seiberg and Wit
@1#, Chalmers and Hanany@2# were the first to conjecture
that the moduli space ofn Bogomol’nyi-Prasad-Sommerfiel
~BPS! SU(2) monopoles is equivalent to the vacuum mod
space ofSU(n) gauge theory in three dimensions withN
54 supersymmetry. This proposal found its natural sett
in the work of Hanany and Witten@3#, where configurations
of 5 branes and 3 branes in type IIB string theory lead
rectly to the result.

The SU(2) theory has subsequently been subjected t
first principles instanton calculation@4#. In this case the
vacuum moduli space is severely restricted by the~super!-
symmetries and perturbative sector of the theory, allow
for just a one parameter family of metrics. A one instant
calculation is sufficient to fix this parameter and the result
metric is indeed that of the two monopole moduli spa
known as the Atiyah-Hitchin metric@5#.

In the following section we considerN54 SU(n) gauge
theory in three dimensions. The correspondingn monopole
SU(2) moduli space is known only for well-separate
monopoles@6#. We calculate instanton corrections in th
three dimensional theory which correspond to the first ex
nential corrections to this metric. In three dimensions
relevant instantons are BPS monopole configurations.1 We
review such configurations in higher rank gauge groups w
a Higgs field transforming under a global R symmetry. In t
presence of extra Higgs fields, the zero modes of instan
are fewer than the single Higgs results@7,8# in a manner
crucial for the interpretation ofn-particle scattering. The
non-zero modes around the background of the instanton
treated in the Gaussian approximation and, as in theSU(2)

*Electronic address: pycf@swan.ac.uk
†Electronic address: pydt@swan.ac.uk
1To avoid confusion we will refer to these configurations as ‘‘i

stantons’’ with the term ‘‘monopole’’ reserved for the vacuu
moduli space.
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case@4#, there is a non-cancellation of bosonic and fermion
modes. However, unlike the situation forSU(2) instantons,
there existcurves of marginal stability~CMS! within the
weak coupling regime of the moduli space of vacua up
which certain non-zero modes become zero-modes; i.e.,
instanton moduli space is enlarged. For these modes
Gaussian approximation is not sufficient and we treat th
exactly using the method of constrained instantons@9#. A
potential is introduced on the enlarged instanton mod
space, reflecting the fact that these configurations are no
general solutions to the full equations of motion. We fi
that the potential is generated by the norm of theU(1) Kill-
ing vectors of the instanton moduli space.

In Sec. III, we translate these results into the language
the moduli space ofn monopoles ofSU(2) and find the
leading order exponentially suppressed corrections to
metric of Gibbons and Manton@6#. The non-cancellation of
the instanton background fluctuations leads to a structure
the metric corrections corresponding to non-pairwise inter
tions between monopoles. These corrections become sing
in the limit of co-linear monopoles due to the extra ze
modes appearing on the CMS. These singularities are
solved by the constrained instanton approach and we find
expected behavior in the limit of co-linearity.

Further applications of three dimensional instantons h
arisen in the context of matrix theory@10#. Polchinski and
Pouliot @11# related the dynamics of two membranes scatt
ing with momentum transfer in the longitudinal direction
instantons in three dimensionalSU(2) gauge theory, this
time with N58 supersymmetries. Thek-instanton corre-
sponds tok units of transferred momentum. A one instant
calculation performed in@11# was found to be in agreemen
with the equivalent eleven dimensional supergravity calcu
tion. Dorey, Khoze and Mattis@12# later performed the all-
instanton calculation, retaining agreement with supergrav
The k-instanton contribution is proportional to the Eul
character of thek-monopole moduli space~up to certain
boundary terms which are proposed to vanish!. In Sec. IV,
we generalize this result toSU(n) gauge groups. The extr
supersymmetry means that the background fluctuations
cancel between bosons and fermions, ensuring that the
responding membrane scattering acts in a pairwise man
© 1998 The American Physical Society01-1
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II. THREE DIMENSIONAL INSTANTONS

N54 supersymmetric gauge theory in three dimension
best viewed as the dimensional reduction of the six dim
sionalN51 theory. The bosonic sector contains the th
dimensional gauge field,Am , with field strength,Fmn , and
three scalars,f i , i 51,2,3. The scalars transform as a vec
under a globalSO(3), theremanent of the six dimensiona
Lorentz group. Following@1# we denote the double cover o
this group asSU(2)N .

The Weyl fermion of six dimensions decomposes as f
two-component Majorana fermions in three dimensions,xa

m ,
m51,...,4,a51,2. There exists a second R-symmetry, d
noted SU(2)R , under which the scalars are singlets. T
fermions transform under both global symmetry groups,
the 4 of Spin(4).SU(2)N3SU(2)R . All fields transform
in the adjoint of the gauge group.

As is usual in theories with extended supersymmetry,
scalar potential,V(f)5 1

2 ( i , j@f i ,f j #2, has flat directions.
The vacuum expectation value~VEV! of the scalars is taken
to reside inH, the (n21)-dimensional Cartan subalgeb
~CSA! of SU(n):2

^f i&5vi
•H; i 51,2,3. ~1!

For maximal symmetry breaking,SU(n)→U(1)n21, we re-
quire ivi

•aiÞ0, for all rootsa wherei denotes the norm o
theSO(3)N vector. This is assumed for the remainder of t
paper.

Unlike the situation with a single Higgs field, for a ge
neric vacua, the VEVs~1! do not pick out a unique set o
simple roots, an observation at the heart of the zero m
structure for instantons in these theories. Although ther

no unique choice, positive rootsaA, A51,...,12 n(n21), may
always be defined by choosing a suitable constant 3-vec
r i , and requiringr ivi

•aA>0. We normalize the roots a
aA

•aA51 ~no sum overA!. Decomposing the fields into th
Cartan-Weyl basis, those residing along the step opera
E6A pick up massesMA5ivi

•aAi by the adjoint Higgs
mechanism. The fields residing in the Cartan subalgebra
main massless. The choice of positive roots defines a se
simple roots,ba, a51,...,n21, which we choose to define
~non-orthogonal! basis for the massless gauge fields:

Am
a 5Tr~Amba

•H!, a51, . . . ,n21, ~2!

with similar definitions for the supersymmetric partners.
Concerning ourselves just with the massless fields

classical approximation to the Euclidean low-energy L
grangian is a free Abelian theory, with bosonic sector

SB5
2p

e2 E d3x~K21!abS 1

4
Fmn

a Fmn
b 1

1

2
]mf ia]mf ibD

~3!

2We use bold type to denote vectors in the root space and a
perscripti for 3-vectors transforming underSO(3)N .
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where the inverse Cartan matrix,K21, makes an appearanc
as the metric of the classical sigma model.

In the maximally broken Abelian theory, a surface term
included to count the winding of the gauge field at infinit
Defining n21 winding numbers,

na5
1

8p
~K21!abE d3xemnr]mFnr

b PZ, ~4!

the surface term is given bySS5 inasa. The parameters,sa,
can be thought of as Lagrange multipliers for theU(1) Bi-
anchi identities and, as is clear from Eq.~4!, they range from
0 to 2p. Promoting eachsa to a dynamical field, we inte-
grate out the field strengths in favor of these periodic sca
to obtain the dual description of the classical low ener
effective action with 4(n21) massless scalars and 4(n
21) massless Majorana fermions,

S5
2p

e2 E d3x~K21!abS 1

2
]mf ia]mf ib

1
e4

p2~8p!2

1

2
]msa]msb1

i

2
xamgm]mxbmD ~5!

where we take the three dimensional gamma matrices,gm ,
to be the Pauli matrices (s3,2s1,s2).

Let us re-examine the symmetries of the low ener
theory. The VEVs generically spontaneously break
SU(2)N symmetry completely@for the SU(2) gauge group,
there remains an unbrokenU(1)N#. The low energy action,
Eq. ~5!, hasn21 new Abelian symmetries,sa→sa1ca for
any constantsca. Because of the additive nature of this tran
formation, these too are spontaneously broken. At the c
sical level, the vacuum moduli space is (R33S1)n21/Sn21
whereSn21 is the Weyl group ofSU(n). This moduli space
inherits the metric from the low-energy sigma model, clas
cally, the inverse Cartan matrix acting on then21 copies of
R33S1.

The 4(n21) massless scalars~and fermions! remain
massless in the full quantum theory@1#. The Wilsonian low-
energy effective action, obtained by integrating out all m
sive modes, replacesd i j 3Kab

21 with the quantum corrected
metricgaib j , now depending on the vacuum expectation v
ues,~VEVs! of f’s ands’s, with i , j 51,2,3,s. Four super-
symmetries forcegaib j to be hyper-Ka¨hler, while a non-
anomalousSO(3)N global symmetry requiresgaib j to admit
an SO(3) isometry. It is proposed thatgaib j is the metric of
the moduli space ofn BPS monopoles withSU(2) gauge
group@1–3#. This metric is known to be complete, implyin
that the singularities of the classical vacuum moduli sp
arising asMA→0 are resolved by strong coupling quantu
effects.

Perturbatively, theU(1) symmetries shifting thes’s are
respected and corrections to the metric must containn21
Abelian isometries. Chalmers and Hanany@2# have con-
firmed that the perturbative corrections togaib j do indeed
reproduce the asymptotic form of then monopole moduli
space discovered by Gibbons and Manton@6#. In the mono-
pole picture, theU(1) isometries correspond to the conse
u-
1-2
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INSTANTONS, THREE DIMENSIONAL GAUGE . . . PHYSICAL REVIEW D 58 085001
vation of electric charge of each individual dyon. No
perturbatively, theseU(1) symmetries of the field theory ar
violated by instantons, which in the monopole picture lea
to charge exchange between dyons as their cores overlap
now examine these instantons in more detail.

A. Instanton zero modes

For SU(n) we have different species of three dimension
instantons labelled by their winding number~4!, which we
take to define a charge vector in the root lattice,g5naba.
The instantons of interest satisfy the Bogomol’nyi equat
@7,14#

D mf i5lg
i Bm , @f i ,f j #50 ~6!

whereBm5 1
2 emnrFmn andlg

i is given by

lg
i 5

vi
•g

ivi
•gi . ~7!

Solutions of Eqs.~6! have the property that they are annih
lated by half the supersymmetries. The action of such a
lution saturates the Bogomol’nyi bound and is given by

Sg5
8p2

e2 lg
i vi

•g1 inasa. ~8!

The inasa term was first introduced by Polyakov@13# to
incorporate the long range effects of instantons in the di
gas approximation. In the present context it appears thro
the surface term of the action,SS .

A class of explicit solutions can be constructed by emb
ding chargek SU(2) instantons in theSU(2) subgroup as-
sociated withaA:

t15
1

&

~EA1E2A!

t25
1

& i
~EA2E2A!

t35aA
•H ~9!

with a g5kaA instanton solution obtained by

f i5l ifm~v !tm1~vi2~vi
•aA!aA!•H

Am5Am
m~v !tm ~10!

wherefm(v) andAm
m(v) are the solution for BPS monopole

in SU(2) with a single Higgs field of expectation valuev
5ivi

•aAi .3 In fact, we will see that the extra Higgs field
ensure that for generic values of the expectation values

3For a detailed review of BPS monopoles as 3D instantons
Appendix C of@4#.
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instantons are of this form. Below we apply the Callias ind
theorem and will infer that the only solutions of Eqs.~6!
have charge vectorg}aA for some rootaA. This is in con-
trast to the situation with a single Higgs field where insta
tons exist for all charge vectors,g5(amaba, with 4(ama
zero modes@8#. That this is no longer the situation here
known from an analysis of monopoles in four dimensio
@7,14#, and can be anticipated from Eq.~1!; the three VEVs
do not pick out a unique set of simple roots,ba.

Rather than counting directly the number of bosonic z
modes, we determine the number of fermionic zero mode
the background of each instanton. The unbroken supers
metry then pairs fermionic and bosonic zero modes. T
Dirac equation reads

Dmnx
n5~ igmDmdmn2hmn

i f i !xn ~11!

whereh i are the self-dual ’t Hooft matrices and the covaria
derivative is referred to the background field of the instant

Introducing the projection operatorsP65 1
2 (16 ilg

i h i)
acting on theSpin(4) vector space, we take products wi
the adjoint operator:

DD†52DmDm22gmBmP11f if i

D†D52DmDm22gmBmP21f if i . ~12!

Observing thatD†DP1 is positive definite, all zero modes o
D must lie in the eigenspace ofP2 where DD† is itself
positive definite. Let Tr2 be the trace function restricted t
this space, and following Weinberg@8# define

I~m2!5Tr2S m2

D†D1m2D2Tr2S m2

DD†1m2D . ~13!

The number of fermionic zero modes is given by the lim
m2→0 of 2I(m2). We rewritef if i5FF1f̂ if̂ i where

F5lg
i f i , f̂ i5~d i j 2lg

i lg
j !f j . ~14!

Note that the threef̂ i have only two independent degrees
freedom. With the exception of the extra Higgs fields,f̂ if̂ i ,
Eq. ~13! is the same as Weinberg’s function@8#. In Appendix
A we repeat Weinberg’s calculation with this term and fin

I~m2!52(
A

m2lg
i ~vi

•aA!~g•aA!

~ i v̂i
•aAi21m2!~ ivi

•aAi21m2!1/2
.

~15!

We now see the consequences of the extra Higgs fields
the zero mode structure. For most charges,g, the factor ofm2

in the numerator of Eq.~15! means that there are no ze
modes at all. For a non-zeroI(M2→0), we require

i v̂i
•aAi25~vi

•aA!~vi
•aA!2lg

i lg
j ~vi

•aA!~vj
•aA!50

~16!

for some rootaA ~no sum overA!. For the case of generic
VEV, the only solution isg aligned withaA, sayg5kaA. In
this case we have

ee
1-3
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CHRISTOPHE FRASER AND DAVID TONG PHYSICAL REVIEW D58 085001
lim
m2→0

I~m2!52k
lg

i vi
•aA

ivi
•aAi 52k. ~17!

For g not proportional to a root, Eqs.~6! have no zero mode
and so at most only isolated solutions. Yet a soliton m
have translational zero modes and we infer that, for gen
expectation values, the Bogomol’nyi equation has no so
tions in these sectors.

In certain vacua known as CMS,4 wherelA
i 5lB

i for some
AÞB, Eq. ~16! has more solutions and the moduli space
the corresponding instanton enlarges. In the special cas
lA

i 5lB
i for all rootsaA andaB, Eq. ~15! reduces to Wein-

berg’s expression@8#.
Thus the extra Higgs fields have two effects: enforcin

democracy among roots and removing any off-root solut
to the Bogomol’nyi equations. The former is already w
known from studies of BPS spectra in four-dimension
theories with bothN52 @7# andN54 @14# supersymme-
tries. Thef̂ if̂ i terms punish any deviation from theSU(2)
subgroup~9!, restricting the solution to be of the form~10!.
In @14# this is used to explain how, for a generic VEV, S
duality of the BPS spectrum ofN54 theories with arbitrary
simple gauge group is reduced to the equivalent problem
SU(2), at least for charges proportional to roots. That
BPS solitons exist for charges not aligned with a root co
pletes this argument.5

For the three dimensional case in hand, this null result
the zero modes of instantons with charge not aligned wit
root means the action of any instanton in these sector
raised above the Bogomol’nyi bound and thus the confi
rations break all of the supersymmetries. Acting with the
broken supersymmetries gives rise to too many fermio
zero modes to contribute to the low energy Wilsonian eff
tive action with two derivatives and four fermions. Similarl
on the CMS, instantons in these sectors must have at
eight fermionic zero modes, again too many to contribu
Thus we restrict our attention to charges aligned with roo
g5kaA, and denotelg

i 5lA
i .

Every such instanton has at least four bosonic mod
three corresponding to translations in space and time and
globalU(1) gauge transformation. The contribution of the
modes to the bosonic measure is

E dmB5E d3x

~2p!3/2~JX!3/2E
0

2p/k du

~2p!1/2~Ju!1/2

~18!

4The name derives from studies of spectra in four dimensio
N52 theories where certain solitonic states are at threshold
decay. For gauge groups of rankr>3 the CMS extend into the
weak coupling regime.

5The above argument does not forbid ‘‘middle multiplets’’ wi
electric charge not parallel to magnetic charge. The zero mode
solutions with electric charge require a more delicate handling
the index theorem. We thank T. Hollowood for explaining this.
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whereJX andJu are the Jacobians resulting from the chan
of variables from fields to zero modes. These are calcula
in Appendix C of@4# ~see also@12#! for gauge groupSU(2).
In the present case the instanton is restricted to anSU(2)
subgroup and the calculation of@4# generalizes trivially. For
the instanton with g5aA, JX58p2MA /e2 and Ju
58p2/MAe2.

Similarly, each configuration has at least two fermion
collective coordinates corresponding to broken supersym
try generators. Supersymmetry transformations on the fer
ons with parametersja

m yield

xm52 igmBm~P2!mnj
n. ~19!

For instantons, the required broken supersymmetries havjm

residing in the eigenspace of the projection operatorP2 . If
j1 andj2 are the two eigenvectors ofP2 , the contribution
of these modes to the fermionic measure is

E dmF5E d2j1d2j2~Jj!
22. ~20!

The fermionic Jacobians,Jj516p2MA /e2, are also calcu-
lated in Appendix C of@4#.

The Grassmann integrations of Eq.~20! are saturated by
the insertion of four Fermi fields in the path integral. If th
instanton solution is to contribute to the low energy effect
action at the two derivative and four Fermi field level, a
further fermionic zero modes must be lifted. In Sec. IV, w
will discuss the case of an adjoint massless matter multi
~N58 supersymmetry! where such lifting does indeed occu
@12#. In theN54 theory with no matter multiplets there is n
mechanism for lifting extra fermionic zero modes and t
only instantons that contribute must have the zero mode
equations Eqs.~18! and~20! and no others. Thus we restric
our attention yet again tog5aA for each rootaA. Further
contributions come from perturbative~two-loop! corrections
about the background of these solutions and various num
of instanton–anti-instanton pairs.

B. Instanton non-zero modes

Before integrating over zero modes, we must first d
with the non-zero fluctuations around the background of
instanton. Expanding about the configurations to quadr
order, the Gaussian integrations yield determinants of
quadratic fluctuation operators. In@4# these were found to be
non-trivial for the case ofSU(2) and for higher rank gauge
groups we find even more structure. Choosing the ba
ground gauge,DmdAm2 i @f i ,df i #50, we find that the con-
tribution from the ghost fields cancels the fluctuations arou
f̂ i . Supersymmetry ensures that the remaining bosonic
fermionic fluctuations are related and we find

R5S det~2DmDm1f if i !

det8~2DmDm22gmBm1f if i ! D
1/2

5S det~DD†P21D†DP1!

det8~DD†P11D†DP2! D
1/2

~21!

al
or
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where the operator in the denominator has zero eigenva
and det8 denotes the removal of these from the determina
Although supersymmetry insists the non-zero eigenvalue
the two operators in Eq.~21! are equal, the densities of thes
values are not. This was first noticed by Kaul@15# in the
context of mass renormalization of monopoles. As explain
in @4#, the calculation of this ratio is essentially equivalent
the index calculation of Appendix A. More precisely, for th
instantong5aA, we have

R5 lim
m→0

Fm2 expS E
m

` dn

n
I~n! D G1/2

52MA )
BÞA

F11lA
i lB

i

12lA
i lB

i GaA
•aB

. ~22!

The expression for the determinants clearly diverges as
VEVs approach the CMS i.e.lA

i 5lB
i . This is not unex-

pected. On the CMS the instanton moduli space enlarges
the quadratic fluctuation operators gain extra zero eigen
ues. The singularities are the result of treating these mode
the Gaussian approximation. To make progress we must
these modes exactly. We then expect the instanton calc
tion to yield zero when the VEVs lie on the CMS, for th
instanton will have fermionic zero modes which cannot
saturated in the path integral.

C. Instanton soft modes

Close to the CMS, the modes that become zero modes
soft; that is the eigenvalues of the quadratic fluctuation
erators are small. The existence of these modes is rem
cent of the more familiar situation of four dimensional i
stantons where a self-dual field strength ceases to satisfy
equations of motion when an adjoint scalar has a non-z
VEV and the one-instanton moduli space is lifted, leavi
just the singular point at the origin. However, the self-du
configurations retain their importance in the semi-class
expansion. The correct technique for dealing with su
modes is known as the constrained instanton@9# ~for a de-
tailed account applied to four dimensionalN52 theories see
also @16#!. At short distances the equations of motion a
solved perturbatively ing2r2v2 wherer is the scale size o
the instanton. This allows all self-dual configurations to
treated exactly in the semi-classical expansion. The actio
these configurations gains ar dependence, ensuring that th
contribution of the larger instantons to the path integral
suitably suppressed.

The three dimensional situation is analogous. The VE
of f̂ i lift certain solutions to the equations of motion whic
still remain important in the semi-classical expansion n
the CMS.6 However, the details of the lifting of the instanto

6This correspondence is emphasized further if we trace the t
dimensional theory back to itsN52 four dimensional roots, com
bining Am and F to construct a self-dual gauge field. The two i

dependent degrees of freedom inf̂ i create the complex scalar fiel
and the generic self-dual field strength no longer satisfies the e
tions of motion when this scalar has a VEV.
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moduli spaces are more complicated. A zero VEV for allf̂ i

corresponds to the intersection of all the CMS and
moduli space of solutions is given by the single Higgs resu
of Weinberg@8#. Turning on VEVs forf̂ i generically means
a departure from the CMS and the moduli space is lift
although a non-trivial submanifold may remain. Moreov
by varying the VEVs in special directions along the CM
intermediate situations are possible with submanifolds of
act solutions of varying dimensions.

Employing the constrained instanton, we relax the con
tions on the configurations about which we perform t
semi-classical expansion. Rather than insisting that confi
rations be a minimum of the action, in the short distan
regime,x!1/MA , we solve the equations of motion pertu
batively in an appropriate parameter, generica
e2r 2i v̂i i2/ivi i2 wherer denotes all radial parameters on th
largest instanton moduli space. In the language of Weinb
@8#, for larger , they are the collective coordinates obtain
by separating two ‘‘fundamental’’ instantons.

The approach of solving the equations perturbatively a
applies to the auxiliary fields which we have so far n
glected. There exist three auxiliary fields,Fi , one for each
N51 scalar multiplet. There are no auxiliary fields fro
gauge multiplets in three dimensions. In theN54 theoryFi

satisfy the equation of motion

Fi52 i e i jkf jfk. ~23!

Writing F̂ i5Fi2lA
i lA

j F j , the defining equations for the
constrained instanton at short distance are given by

DmF5Bm ~24!

gmD mxm2@F,xm#50 ~25!

~P2!mnx
n5xm ~26!

DmD mf̂ i2@F,@F,f̂ i ##52hmn
i xmxn ~27!

F̂ i5 i ~lA
i lA

j e jkl2e ikl !fkf l

~28!

lA
i Fi50. ~29!

The bosonic moduli space of such solutions is determi
solely by solutions to Eq.~24!. In the topological sectorg
5aA, the VEV lA

i vi picks auxiliary simple roots,ga such
that aA5(amaga. The moduli space of solutions is of d
mension 4(ama @8#. Notice that the rootsga differ from
sector to sector and need not coincide with theba defined
earlier. This means the relative dimensions of the mod
spaces of Eq.~24! in different sectors do not follow the
simple pattern of the single Higgs boson model. Moreov
in varying thevi it is possible forlA

i vi to cross the wall of a
Weyl chamber without the associated non-maximal symm
try breaking of the single Higgs boson model and thus
moduli space may change discontinuously. However, a
integration over these manifolds, the final instanton calcu
tion will be smooth.

The general moduli space decomposes into the form

ee

a-
1-5
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M5R33
R3M̃d

Z
. ~30!

M̃d are complete hyper-Ka¨hler manifolds with coordinates
Xa and metric g̃ab . For g5aA, M̃d are the Lee-
Weinberg-Yi spaces@17#. M̃d has dimension 4(d21) where
d is the height of the rootaA as measured byga i.e. d

5(ama . In the standard notation,M̃d5M̃(1,1,...,1) where
there ared 1’s in the string. ForaA simple with respect to
lA

i vi (d51), M̃1 is taken to be a single point.
TheR3 factor in Eq.~30! corresponds to space-time tran

lations of the instanton while theR factor is generated by
global U(1) gauge transformations

Q•H5
(a~lA

i vi
•ga!va

•H

(blA
i vi

•gb ~31!

where va are the fundamental weights defined byga
•vb

5 1
2 dab. When the ratios of thelA

i vi
•ga are rational theR

factor collapses toS1 and theZ to the cyclic subgroupZd .
The remainingn22 U(1) gauge transformations gene

ated by elements of the CSA orthogonal toaA result in up to
n22 U(1) isometries ofM̃. We denote asKa the Killing
vector ofM generated byH. If a particular element of the
CSA acts trivially on the configuration, the correspondi
Killing vector is taken to be zero.

Configurations satisfying Eqs.~24!–~29! raise the action
above the Bogomol’nyi bound~8!. Moreover, this action will
have a dependence on the collective coordinates ofM̃d ; we
can consider the action as defining a potential onM̃d . The
bosonic contribution to this potential is

DSboson5
2p

e2 E d3x
1

2
D mf̂ iD mf̂ i1

1

2
FiFi

5
2p

e2 E d3x
1

2
D mf̂ iD mf̂ i2

1

2
@F,f̂ i #2. ~32!

We will now show that this potential is related to theU(1)
Killing vectors on the moduli spaceM. First, consider a
configuration ofAm andF satisfying Eq.~24! and thus cor-
responding to a pointM. Act on these fields with a gaug
transformation parametrized byf̂ i :

d iAm5D mf̂ i , d iF52 i @F,f̂ i #. ~33!

Such transformations clearly satisfy the linearized version
the Bogomol’nyi equation~24!. A global ~large! gauge trans-
formation is generated byv̂i

•H, the VEV of f̂ i , while the
spatially dependent part is a small gauge transformat
However, in order to be true zero modes of the configurat
the transformations must also satisfy a gauge condit
which for the purely bosonic theory is Gauss’ law:

DmdAm2 i @F,dF#50. ~34!
08500
f

n.
,

n,

We see that, up to Fermi bilinears, this equation is inde
satisfied by virtue of Eq.~27!. Thus the gauge transforma
tions above are indeed true zero modes. Moreover, ga
transformations move the configuration infinitesimally alo
the isometries ofM. By constructionaA

• v̂i50 and gauge
transformations~33! correspond to elements of the CSA r
sponsible for generating the Killing vectors onM̃d together
with a VEV dependent shift along theR factor. Thus, the
bosonic part of the action can be rewritten as

DSboson5
4p2

MAe2 iQ• v̂i i1
1

2
g̃ab~ v̂i

•Ka!~ v̂i
•Kb!. ~35!

Equations ~24!–~29! are covariant under supersymmet
transformations parametrized by (P1)mnj

n, ensuring that the
total action of these configurations inherits a supersymm
acting on the collective coordinates. Indeed, we may alw
replace the sum over Killing vectors in the second term
Eq. ~35! by a single Killing vector, g̃ab( v̂

i
•Ka)( v̂i

•Kb)
5g̃ab(V•Ka)(V•Kb), which is the form dictated by super
symmetry@18#. The fermionic part of the action is simply th
supersymmetric completion of Eq.~35!:

DSfermion5
i

2
¹a~V•Kb!cacb ~36!

where¹a is the covariant derivative onM with respect to
the Levi-Civita connection andca are fermionic collective
coordinates.

We turn finally to the measure. As neither the metric n
the integrand depend upon the coordinates associated
theU(1) isometries, the bosonic and fermionic measures
theR33R factor of the moduli space are given~after taking
into account the discrete groupZ! by Eqs. ~18! and ~20!
respectively. This leaves us with the integrations over
multi-cover of the Lee-Weinberg-Yi space,M̃d . Although
expressions for the corresponding zero modes are not kno
the Jacobians depend on the metric,g̃ab only,

E dm̃B5E )
a51

4~d21!

dXa
Adet g̃

~2p!2~d21!

E dm̃F5E )
a51

4~d21!

dca~det g̃!21/2. ~37!

Note that the metric dependences in the bosonic and fe
onic measures cancel.

D. Instanton calculation

Having analyzed the various fluctuations around the ba
ground of the instanton, it is now possible to put all t
pieces together.
1-6
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In each topological sector, defined byaA, we must calcu-
late the height,d, of aA with respect toga. If lA

i vi
•aB50

for some rootaB, the VEV lies on the wall of a Weyl cham
ber; it does not define a unique set ofga and the height ofaA

and hence the moduli spaceM̃d is ambiguous. We will com-
ment on this case at the end of this section. For now
assume that the VEVlA

i vi lies strictly within a Weyl cham-
ber. The integration over soft modes is then given by

Ld~vi !5~2p!2~12d!E
M̃d

dXadca

3exp~2DSboson2DSfermion!. ~38!

For d51 we setL151.
To avoid overcounting, we must divide by the Gauss

approximation for these modes which we have already ta
into account when integrating over non-zero modes~22!. The
recipe for this is to transform to polar coordinates forM̃d
such that in the vicinity ofr 50, the metric is of the form
g̃ab5g̃ab

flat@11O(r 2)# wherer denotes alld21 radial coor-
dinates on the space. The Gaussian approximation requi
truncation of this metric tog̃ab

flat with the corresponding trun
cation to the bosonic potential and fermionic potential. W
will denote this integral asGd , again withG151. Note that
the first term in Eq.~35! is independent of collective coord
nates and will be cancelled after division by the Gauss
approximation.

For d52 the relevant manifold is Taub-NUT~Newman-
Unti-Tamburino! space@19,20#. In Appendix B we calculate
L2 and its Gaussian approximation.

With all zero mode fields now confined to anSU(2) sub-
group the remainder of the instanton calculation for the f
fermion vertex now proceeds as in@4#, with the resulting
correlator related to the Riemann tensor of the monop
metric. We choose instead to calculate instanton contr
tions to the scalar propagator which will provide direct i
formation about the inverse metric. To saturate the fermio
zero modes of the instanton, the scalars must themse
pick up Fermi bilinears. Acting onf i with a finite supersym-
metry transformation, exp(2jmQm), yields

f i→f i2Bmhmn
i jmgmjn. ~39!

For jm, an eigenvector ofP2 , only f̂ i pick up these bilin-
ears.F remains unchanged by the supersymmetry trans
mations. The contributions from theaA instanton are thus

^FaFb&A50

^Faf̂ ib&A50 ~40!

and
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^f̂ iaf̂ jb&A5~ba
•aA!~bb

•aA!
Ld~vi !

Gd~vi !

3 )
BÞA

F11lA
i lB

i

12lA
i lB

i GaA
•aB

^f̂ if̂ j&l ivi
•aA ~41!

where ^f̂ if̂ j&l ivi
•aA is the scalar propagator in anSU(2)

gauge theory with VEVlvi
•aA. It was shown explicitly in

@4# that this scalar propagator reproduces the leading o
exponential corrections to the inverse Atiyah-Hitchin metr

Close to the CMS,Ld /Gd is small and cancels the singu
larities in the product factor. Far from the CMS,Ld /Gd is
exponentially close to unity. Furthermore, in this regim
these exponential deviations from unity are of the same m
nitude as other effects that we have neglected such as
loop perturbation theory around the background of the
stanton and instanton–anti-instanton pairs.

Finally we turn the the situation wherelA
i vi

•aB50 for
some rootaB, i.e.,lA

i vi lies on the wall of a Weyl chamber
In this case the moduli spaceMd is not well defined. How-
ever, this occurs in a regime far from the CMS and th
corrections from the constrained instanton are not impor
here. Nevertheless, it is interesting to note thatLd /Gd does
indeed remain smooth aslA

i vi crosses the wall of the Wey
chamber.

III. MONOPOLE MODULI SPACES

We now translate the results of the previous section i
the metric on the moduli space ofn BPSSU(2) monopoles.
This 4n dimensional space has the form

Mn5R33
S13M̃n

Zn
. ~42!

R3 corresponds to~Euclidean! space-time translations of th
center of mass andS1 to globalU(1) gauge transformations
M̃n is the relativen-monopole moduli space; it has dimen
sion 4(n21), is complete and hyper-Ka¨hler.

The perturbative sector of the three dimensionalSU(n)
gauge theory reproduces the asymptotic metric onM̃n @2#. In
this regime monopoles interact pairwise via velocity dep
dentU(1) electric, magnetic and scalar forces and the me
takes a simple form discovered by Gibbons and Manton@6#:

ds25Mi j dxW i•dxW j1Mi j
21S du i1(

k
WW ik•dxW kD

3S du j1(
l

WW j l •dxW l D ~43!

where
1-7
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Mii 512(
j Þ i

1

r i j
, Mi j 5

1

r i j
~ iÞ j !

WW i i 52(
j Þ i

wW i j , WW i j 5wW i j ~ iÞ j ! ~44!

with the Dirac potential, wW i j , defined by ¹ i3wW i j

5¹ i(1/r i j ). The xW i are the positions of the well-separate
monopoles. This is the metric onMn ; that is it includes the
motion of the center of mass and center of charge of
monopole configuration. This corresponds to the three
mensionalU(n) gauge theory. In order to compare with th
SU(n) results above we must freeze the centers of mass
charge from this metric. For well separated monopoles,
43(n21) coordinates on this space are a basis chosen f
the 43 1

2 n(n21) relative separations and relative charge

rW i j 5xW i2xW j , c i j 5u i2u j . ~45!

An explicit hyper-Kähler quotient of the Gibbons-Manto
metric yields a messy result, essentially because the metr
symmetric in all1

2 n(n21) of the relative coordinates but i
expressed in only an (n21) dimensional subset of these. T
retain manifest permutation symmetry of the relativ
monopole metric we choose to write it as a metric on a lar
43 1

2 n(n21) dimensional manifold, the pullback of whic
yields the required quotient of the Gibbons-Manton met
We take the relative distances,r A, relative Euler angles,uA

and fA, and relative charges,cA, A51,...,12 n(n21) and
write the metric in the form

ds25
1

2 (
A

f 2~r A!drAdrA1a2~r A!~s1
A!2

1b2~r A!~s2
A!21c2~r A;r B!~s3

A!2 ~46!

where all summations have been kept explicit.f , a, b andc
take the form

f ~r A!52S 2

n
22MAD 1/2

a~r A!5b~r A!5r AS 2

n
22MAD 1/2

c~r A;r B!5S 1

2n
2

1

2
~M 21!AD 21/2

~47!

whereMA5Mi j for A labelling the separation (i j ). The one-
forms s i

A are defined as

s1
A52sin cAduA1coscA sin uAdfA

s2
A5coscAduA1sin cA sin uAdfA

s3
A5dcA1

2

n21 (
B

VAB cosuBdfB ~48!
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whereVAB is non-zero only if the separationsA andB have
a monopole in common. More precisely, if the relative C
tesian separation vectorrWA goes from thei th to the j th mono-
pole andrWB from thekth to the l th,

VAB5
1

2
~d ik1d j l 2d i l 2d jk!. ~49!

To recover the relative-monopole Gibbons-Manton m
ric, we must first pick a linearly independent set ofn21
separations~3-vector and charge!. Labelling the monopoles
in some arbitrary manner, we choose the separations betw
the i th monopole and the (i 11)th. Labelling this set of lin-
early independent coordinates with a subscripta, (rWa,ca),
the metric onM̃n is obtained by pulling back with the map
f a

A , relatingrWA and rWa:7

rWA5 f a
ArWa. ~50!

Pulling back the flat metric gives the inverse Cartan ma
that was the classical metric of Eq.~3!,

(
A

f a
Af b

A5
n

2
~K21!ab . ~51!

At this stage we need to introduce a dictionary between
jects in three dimensions and the above coordinates on
monopole moduli space. First, we note that the choice
separations betweenn monopoles discussed above is mim
icked by the root structure ofsu(n). The mapf a

A is the map
between simple roots,ba, and roots,aA. Defining the roots
asaA5(ei2ej )/& andaB5(ek2el)/&, whereei aren or-
thonormal vectors, thenVAB5aA

•aB. We must identify the
three scalar VEVs along theaA direction of root space with
the vector distance between thei th and j th monopole:8

rWa5r ai5
8p2

e2 vi
•ba

ca5
1

2
s•ba. ~52!

Other expressions from the instanton calculation also hav
simple geometrical meaning. In the topological sectorg
5aA, we havelA

i 5r Ai/r A and

vi
•vi5S e2

8p2D 2 2

n (
B

~r B!2

7Pulling back in polar coordinates is extremely messy. The s
plest way to see this result is to first add terms corresponding to
center of mass and charge, change to Cartesian coordinates an
back to recover the original Gibbons-Manton metric.

8To retain agreement between Eqs.~3! and~46!, the metric should
be premultiplied bye2/16np3. This will not be important in what
follows.
1-8
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v̂i
• v̂i5S e2

8p2D 2 2

n (
B

~r'
B!2 ~53!

wherer'
Bi is the component ofr Bi perpendicular tor Ai.

The semi-classical approximation translates to the
quirement that the monopoles be well separated; we will fi
the leading order corrections to the Gibbons-Manton met
Geometrically, the curves of marginal stability correspond
three or more monopoles becoming colinear. In this reg
the corrections from the constrained instanton~38! will have
the most impact. The other point of interest is when the V
lA

i vi lies on the wall of a Weyl chamber. This corresponds
r Air Bi50 for some separationB. The form of the corrections
to the metric will be different on each side of this situati
but will meet smoothly on the wall itself.

We are now in a position to recast the instanton contri
tion to the scalar propagator~41! as the exponential correc
tions to then-monopole metric. Corrections to the scal
propagator equate to corrections to the inverse metric

dgaib j5(
A

~aA
•ba!~aA

•bb!^f if j&A . ~54!

To leading order in 1/r , the inverse of this is

dgaib j52~K21!ac~K21!db(
A

~aA
•bc!~aA

•bd!^f if j&A
21

~55!

which can be written simply as the pullback of the diago
metric with entrieŝ f if j&A

21 . The first exponential correc
tions to the functionsf , a, b andc are thus given by

f ~r A;rWB,cB!52S 2

n
22MAD 1/2

a~r A;rWB,cB!5r AS 2

n
22MAD 1/2

24~r A!2e2r A Ld

Gd
)
BÞA

S 11cosQAB

12cosQAB
D VAB

b~r A;rWB,cB!5r AS 2

n
22MAD 1/2

14~r A!2e2r A Ld

Gd
)
BÞA

S 11cosQAB

12cosQAB
D VAB

c~r A;rWB,cB!5S 1

2n
2

1

2
~M 21!AD 21/2

~56!

whereQAB5 r̂ iAr̂ iB.
Some comments are probably in order. First, the prod

factor in Eqs.~56! corresponds to non-pairwise scattering
monopoles. The interaction between a pair of monopoles
pends on the distances between the pair and all other m
poles. As one monopole is taken to infinity, the correspo
ing part of the product tends towards unity and the monop
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decouples from the interaction as expected. As monop
become colinear, the product factor in Eqs.~56! becomes
singular, but this singularity is cancelled byLd /Gd and in
each case the overall correction to the metric is zero.

The situation of three monopoles is depicted in Fig. 1. F
the interaction between the first and second monopoles,
moduli space for the constrained instanton jumps discont
ously whenl (12)

i vi
•a(12)5ul ivi ucos(p/3). In the monopole

picture. this corresponds toa235p/2 or a135p/2. Thus, if
both a23 anda13 are acute, as in triangle~a!, the correction
from the constrained instanton isL2 /G2 . If either is obtuse
as in triangle~b!, the correction isL1 /G151.

The product factor of Eq.~56! is

S 11cosa23

12cosa23
D 1/2S 12cosa13

11cosa13
D 21/2

. ~57!

For triangle ~a!, L2 /G2 can be read off from Eq.~B9! of
Appendix B,

12S 11
1

18
r 12 tan a13 tan a23D

3expS 2
1

18
r 12 tan a13 tan a23D . ~58!

As the third monopole is brought between the other tw
the singularity in Eq.~56! is cancelled by Eq.~58! and the
interaction between the first and second vanishes. As
third monopole is taken to infinity,a235p2a13, the two
factors in Eq.~57! cancel. The corrections from the con
strained instanton~58! retain some information about the po
sition of the third monopole. However, the window in whic
such corrections are to be applied becomes vanishingly s
and the third monopole decouples from the interaction
expected.

Note that for a right angle triangle, Eq.~58! is unity and
thus we have a smooth transition between the acute and
tuse triangles. However, we once again emphasize tha
this regime the exponential corrections in Eq.~58! are sub-
leading with respect to other corrections that we have
dealt with.

The functionf (r ) receives no instanton corrections. In th
expansion of the functionsf , a, b andc given in @22#, f has

FIG. 1. For triangle~a!, the height of the root corresponding t
the interaction between the first and second monopoles is 2.
triangle ~b!, the root is simple.
1-9
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exponential corrections of the same order asa andb. How-
ever, the functionf has no invariant meaning and the coo
dinates employed by the authors of@22# differ by exponential
corrections to the coordinates defined by Eqs.~52!. Such
issues are common in dealing with exact results in supers
metry ~SUSY! gauge theories, namely that the vacuu
moduli space is parametrized by coordinates of the low
ergy theory which have a complicated dependence on
coordinates defined in the original Lagrangian. For instan
this behavior is seen to arise in finiteN52 theories in four
dimensions@21#.

It would be gratifying to compare Eqs.~56! with known
metrics on subspaces of the full moduli space. The first s
ation where such metrics are known is the case with mo
poles co-linear and equidistant. For co-linear monopo
there are only interactions between adjacent monop
which are independent of the positions of the others and
corrections are just of the formr exp(2r). If we further im-
pose equidistance, we are left with the leading order cor
tions of the Atiyah-Hithin metric in agreement with@23#.

The one other case in which exact metrics are known
for four monopoles. The metric on the one dimensional s
manifold of tetrahedrally symmetric manifolds has be
computed using Nahm data and is found to have the lea
exponential corrections occurring at exp(22r) @24#. From the
three dimensional perspective, instanton contributions to
metric are of the form̂ FF& and so vanish. Naively, it ap
pears that the two pictures are in agreement, the exp(22r)
term corresponding to an instanton–anti-instanton p
However, the same coordinate problems arise as with
f (r ) term in the Atiyah-Hitchin metric and the conclusion
that, while consistent, agreement between the two rem
ambiguous.

IV. N58, SU„n…

In this final section, we turn our attention to theN58
theory. Dimensionally reducing theN51 ten dimensional
theory to 3 dimensions, the field content of theN54 theory
is augmented by the addition of 4 scalars and 4 Major
fermions. While the algebra has aSpin(8) automorphism
group, only aSpin(7) R-symmetry is manifest in the La
grangian description with the vector transforming in a s
glet, the scalars in7 and the fermions in8 @25#.

In four dimensions, a non-renormalization theorem for
N54 theories prevents instanton corrections to eight Fe
vertices@26,27#. This is no longer the case in three dime
sions and eight Fermi~or four derivative! vertices@26,11,12#.
The counting of zero modes proceeds as in Sec. II;g5kaA

generically has 2k Fermi zero modes whileg not aligned
with a root has none. Instantons in the latter sector ag
break all the supersymmetries and so fail to contribute. Ho
ever, the addition of adjoint massless matter multiplets
hancingN54 supersymmetry toN58 allows for the lifting
of zero modes not protected by supersymmetry and sec
labelled byg5kaA contribute for allk and allaA.

The instanton calculation now proceeds identically to
SU(2) case. The reader is referred to@12# for details. The
lifting of the zero modes is such that integration over th
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yields the volume contribution to the Euler character of t
relative instanton moduli space, which generically forg
5kaA is theM̃k of Eq. ~42!. This can be identified with the
Euler character ofM̃k only up to boundary terms. For th
casek52, the metric is known explicitly and the bounda
terms vanish@28#. For higher charges, the Gibbons-Manto
metric corresponding to well-separated monopoles has
required asymptotic flatness for the boundary term to van
but there may be contributions from ‘‘clustering regions’’
the boundary where at least one pair of monopoles rem
close. As in@12#, we assume that this is not the case and t
the integral over zero modes does indeed yield the E
character.

The Euler characters of the k-monopoleSU(2) relative
monopole moduli spaces are determined to be@29#

x~M̃k!5k. ~59!

Importantly, just as in theSU(2) case, the integration
over non-zero fluctuations about the background of the
stanton, which were ultimately responsible for the no
pairwise interaction of monopoles in theN54 case, now
give unity. The singularities which occurred on the CMS a
no longer there. It is plausible that the extra supersymme
takes care of the soft modes, circumventing the need for
constrained instanton approach of Sec. II, although a proo
this would require knowledge of the Euler characters a
boundary terms of moduli spaces for higher rank gau
groups. Let us see how this might occur.

Suppose we do not use the constrained instanton. The
the CMS the instanton moduli space jumps discontinuou
from M̃k to M̃k(1,1,...,1), that is from anSU(2) to anSU(d),
d<n, moduli space. Unlike theN54 case, the extra fermi
onic zero modes are lifted and the resulting integration
comes the Euler character of the enlarged moduli space~up
to the complication of boundary terms!. The instanton con-
tribution to the correlation function is continuous over t
CMS provided

x~M̃k~1,1,...,1!!5x~M̃k!5k. ~60!

This scenario remains more or less the same if we do use
machinery of the constrained instanton. The integration o
soft modes and zero modes now yields the volume contr
tion to the G-index generalization of the Gauss-Bonnet in
gral @18# and again, up to boundary terms, continuity of t
instanton calculation requires the Euler characters to
given by Eq.~60!.

There are also other instanton contributions which oc
only on the CMS, namely those with charges not prop
tional to a root. Recall, that for the generic situation t
actions of such instantons are lifted above the Bogomol’
bound. On the CMS, the contributions from such solutio
are again proportional to the Euler character of the mod
space. For continuity we require this to vanish. It is intere
ing to note that these spaces are expected to contain
square-integrable harmonic forms. While not a direct pred
tion of S-duality@30#, were these forms to exist, states in t
four dimensionalN54 theory would appear at no point i
1-10
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the moduli space except on the curves of marginal stabi
where they are at their most vulnerable for decay.

Finally we turn to a rather different application of thre
dimensional gauge theories. Polchinski and Pouliot@11# re-
late the dynamics ofN58 SU(2) theory to the scattering o
two membranes in matrix theory. Instanton processes
chargek correspond to scattering with momentum exchan
in the eleventh direction, giving an important test of t
eleven dimensional Lorentz invariance of matrix theory. T
SU(n) theory considered here is of course related to
scattering ofn membranes. The transverse distances and
teractions between branes follow the same pattern as
monopoles in theN54 theory. To model moving mem
branes, the VEVs are allowed time dependence and the
time derivative vertex of the low-energy action become
quartic velocity term in the low velocity effective action fo
interacting membranes. Usually such actions only m
sense up to terms quadratic in the velocity, but for pur
gravitational systems and systems with constant charg
mass ratio, the backreaction from the fields enters at theth

order in the velocities and the expansion may continue
quartic terms~see pp. 165 and 337 of@31#!. Indeed, in the
present context the moduli space of membrane solution
eleven dimensional supergravity is flat and the quadr
terms vanish.

The cancellation of the non-zero mode fluctuations
sures that the four derivative term is just the sum over p
of membranes. Unlike the monopole case, the longitud
scattering of membranes in matrix theory occurs pairwise
would be interesting to see if this behavior is reproduced
supergravity.
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APPENDIX A: INSTANTON ZERO MODES

In this appendix we calculate the number of zero mo
of the Dirac equation in the background of an instanton w
several Higgs fields. We follow Weinberg@8# closely, con-
centrating on points that differ from the original calculatio
First, we define a set of 16316 6-dimensional gamma ma
trices~this unconventional representation arises from usin
Hooft matrices,h i , rather than Pauli matrices,s i!

Gm51,2,352gm ^ 1^ s2 , G i 54,5,652 i ^ h i
^ s1

~A1!

and G7512^ 1^ s3 . Writing DM as the 6-dimensional co
variant derivative

GMDM5S 0 D

2D† 0 D ~A2!
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whereD is defined in Eq.~11! and the explicit matrix in Eq.
~A2! refers to the last of the three direct products. We n
rewrite Eq.~13! as

I ~m2!52Tr2S G7

m2

2~G•D!21m2D
52TrS P2G7

m2

2~G•D!21m2D . ~A3!

Using

P2lg
i h i5l ih i P2 , P2~h i2lg

i lg
j h j !5~h i2lg

i lg
j h j !P1

~A4!

and tracing liberally overh andg matrices, it may rewritten
as

I ~m2!5E d3x tr P2G7GmDm^xu~G•D1m!21ux&

~A5!

1E d3x tr
i

2
P2G7G i^xuf̂ i~G•D1m!21ux&

~A6!

where tr denotes the trace over group and~6-dimensional!
spinor indices only. The second term differs from Wei
berg’s calculation and is due to the extra Higgs fields. W
multiply on top and bottom by2G•D1m, take spinor traces
and move this term to the left hand side of the equation
arrive at

2TrS P2G7

m21f̂ if̂ i

2~G•D!21m2D
52E d3x tr@P2G7Gm]m^xu~G•D1m!21ux&#. ~A7!

At this point it is important to note that although we ha
traced over spinor indices extensively, the derivation of E
~A7! does not rely on the trace over group or spatial indic
allowing us to divide by the numerator of the left hand sid
Integration by parts then yields

I ~m2!5E
S`

d2Sm trS P2G7

m2

f̂ if̂ i1m2
Gm

1

G•D1m D ~A8!

2E d3x trF P2G7GmDmS m2

f̂ if̂ i1m2D 1

G•D1mG .

~A9!

The second term vanishes usingD mf̂ i50. The first term is
very similar to the corresponding expression in Weinbe
Again multiply top and bottom by2G•D1m and perform
the trace over the spinor indices. The presence ofP2 in the
numerator destroys all but theF term in D. Expanding,
1-11
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1

2~G•D!21m2 5
1

2D 21f if i1m2 1
1

2D 21f if i1m2

32gmBmS P1 0

0 P2
D 1

2D 21f if i1m2

1 ¯ ~A10!

and keeping terms ofO(1/x2), evaluation of this first term
now proceeds as in Weinberg. Tracing over group indi
indeed yields Eq.~15! as claimed.

APPENDIX B: INTEGRATION OVER TAUB-NUT SPACE

If aA is of height 2, sayaA5g11g2, the relevant moduli
spaceM̃(1,1) is Taub-NUT space@19,20#. Defining the re-
duced mass,m5(lA

i vi
•g1)(lA

j vj
•g2)/MA , the metric is

given by

ds25
8p2

e2 S mV~r !dr21
1

4
m21V~r !21~dc1cosudf!2D

~B1!

where 0<c<4p and

V~r !511
1

2mr
. ~B2!

The Killing vector ]c is generated by (g12g2)•H/3. Thus
the action of the constrained instanton configurations par
etrized by this space is raised by

1

2
g̃ab~ v̂i

•Ka!~ v̂i
•Kb!5

2p2

3e2 v̂i
• v̂i

r

112mr
~B3!

together with theiQ• v̂i i term of Eq. ~35!. Note that this
potential flattens out asr→`. This is a generic feature of a
potentials on Lee-Weinberg-Yi spaces generated by
U(1) Killing vectors. Because the Lee-Weinberg-Yi spac
are non-compact, the integral over this potential alone w
diverge. The integral is rendered finite by the correspond
integration over fermionic coordinates. In the present c
there is only one Killing vector on the moduli space and
potential is already in the form (V•Ka)(V•Kb) with V•V
5 v̂i

• v̂i . The fermionic potential is given by

(
i

i

2
¹a~V•Ka!cacb5

2ip2

)e2

~ v̂i
• v̂i !1/2

~112mr !2

3@cosuc rcf1c rcc

2r sin u~112mr !cucf#.

~B4!

Using the measures of integration Eqs.~37!, the integra-
tion over fermionic coordinates brings down two facto
08500
s

-

e
s
ll
g
e

e

of the fermionic potential, isolating thec rcccucf

term and leaving us with the following expression forL̃2

5L2 exp(14p2iQ• v̂i i /MAe2):

L̃25
p2

3e2 v̂i
• v̂iE drdfdudcr ~112mr !23

3sin u expF2
2p2

3e2 v̂i
• v̂i

r

112mr G
5

12

v̂i
• v̂i

F12S 11
2p2

3e2

v̂i
• v̂i

2m
D exp2S 2p2

3e2

v̂i
• v̂i

2m
D G .

~B5!

Notice that for smallv̂i
• v̂i , L2;( v̂i

• v̂i)2.
In order not to integrate over these modes twice, we m

divide by the Gaussian approximation toL2 . The coordinate
system used in Eq.~B1! has a coordinate singularity at th
origin, r 50. In order to present a metric that is smooth at t
origin, we transform to the coordinate,R, wherer 5 1

2 mR2.
In this basis, the metric is

ds25
8p2m

e2 F ~11m2R2!dR2

1
1

4
R2~11m2R2!~du21sin2 udf2!

1
1

4
R2~11m2R2!21~dc21cosudf2!G . ~B6!

Note that to leading order inR, this is the flat metric onR4

in Euler angle coordinates. The recipe for the Gaussian
proximation is to truncate the Taub-NUT metric~B6! to the
flat metric and repeat the calculation above using this. T
Gaussian approximation to the bosonic potential is thus

p2m

3e2 v̂i
• v̂iR2 exp2S 4p2iQ• v̂i i

MAe2 D ~B7!

and the fermionic counterpart

2ip2m

)e2
~ v̂i

• v̂i !1/2S R cosucRcf1RcRcc

2
1

2
R2 sin ucucfD . ~B8!

Once more performing the integrations, we deduceG2

512/(v̂i
• v̂i)exp(24p2iQ•Hi /MAe2) and, thus,

L2

G2
512S 11

p2~ v̂i
• v̂i !

3e2m
D expF2

p2~ v̂i
• v̂i !

3e2m
G . ~B9!
1-12
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