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We calculate instanton corrections to three dimensional gauge theoriel withandN =8 supersymmetry
and SU(n) gauge groups. ThBl=4 results give new information about the moduli spacen &@PS SU(2)
monopoles, including the leading order non-pairwise interaction terms. A few comments are made on the
relationship of theN=8 results to membrane scattering in matrix the¢80556-282(98)03716-3

PACS numbgs): 11.15.Kc, 12.60.Jv, 11.15.Tk

I. INTRODUCTION casg 4], there is a non-cancellation of bosonic and fermionic
modes. However, unlike the situation f8IU(2) instantons,

In the past year a remarkable relationship between threthere existcurves of marginal stabilitf CMS) within the
dimensional gauge theories and monopole moduli spaces hagak coupling regime of the moduli space of vacua upon
been uncovered. Following the work of Seiberg and Wittenwhich certain non-zero modes become zero-modes:; i.e., the
[1], Chalmers and Hananj?] were the first to conjecture instanton moduli space is enlarged. For these modes the
that the moduli space of Bogomol'nyi-Prasad-Sommerfield Gaussian approximation is not sufficient and we treat them
(BPS SU(2) monopoles is equivalent to the vacuum moduliexactly using the method of constrained instantf@is A
space ofSU(n) gauge theory in three dimensions with  potential is introduced on the enlarged instanton moduli
=4 supersymmetry. This proposal found its natural settingspace, reflecting the fact that these configurations are not in
in the work of Hanany and Wittef8], where configurations general solutions to the full equations of motion. We find
of 5 branes and 3 branes in type IIB string theory lead dithat the potential is generated by the norm of thgl) Kill-
rectly to the result. ing vectors of the instanton moduli space.

The SU(2) theory has subsequently been subjected to a In Sec. Ill, we translate these results into the language of
first principles instanton calculatiofd]. In this case the the moduli space oh monopoles ofSU(2) and find the
vacuum moduli space is severely restricted by thapej-  leading order exponentially suppressed corrections to the
symmetries and perturbative sector of the theory, allowingnetric of Gibbons and Mantof6]. The non-cancellation of
for just a one parameter family of metrics. A one instantonthe instanton background fluctuations leads to a structure for
calculation is sufficient to fix this parameter and the resultinghe metric corrections corresponding to non-pairwise interac-
metric is indeed that of the two monopole moduli spacetions between monopoles. These corrections become singular
known as the Atiyah-Hitchin metrigs]. in the limit of co-linear monopoles due to the extra zero

In the following section we considéf=4 SU(n) gauge modes appearing on the CMS. These singularities are re-
theory in three dimensions. The correspondmgionopole  solved by the constrained instanton approach and we find the
SU(2) moduli space is known only for well-separated expected behavior in the limit of co-linearity.
monopoles[6]. We calculate instanton corrections in the  Further applications of three dimensional instantons have
three dimensional theory which correspond to the first expoarisen in the context of matrix theofit0]. Polchinski and
nential corrections to this metric. In three dimensions thePouliot[11] related the dynamics of two membranes scatter-
relevant instantons are BPS monopole configuratiowée  ing with momentum transfer in the longitudinal direction to
review such configurations in higher rank gauge groups withinstantons in three dimension&U(2) gauge theory, this
a Higgs field transforming under a global R symmetry. In thetime with N=8 supersymmetries. Thk-instanton corre-
presence of extra Higgs fields, the zero modes of instantonsponds tdk units of transferred momentum. A one instanton
are fewer than the single Higgs resul®8] in a manner calculation performed ifil1] was found to be in agreement
crucial for the interpretation oh-particle scattering. The with the equivalent eleven dimensional supergravity calcula-
non-zero modes around the background of the instanton at&n. Dorey, Khoze and Mattigl2] later performed the all-
treated in the Gaussian approximation and, as inSh¢2) instanton calculation, retaining agreement with supergravity.

The k-instanton contribution is proportional to the Euler
character of thek-monopole moduli spac€up to certain
*Electronic address: pycf@swan.ac.uk boundary terms which are proposed to vahish Sec. IV,
"Electronic address: pydt@swan.ac.uk we generalize this result t8U(n) gauge groups. The extra
To avoid confusion we will refer to these configurations as “in- supersymmetry means that the background fluctuations now
stantons” with the term “monopole” reserved for the vacuum cancel between bosons and fermions, ensuring that the cor-
moduli space. responding membrane scattering acts in a pairwise manner.
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Il. THREE DIMENSIONAL INSTANTONS where the inverse Cartan matri;, 1, makes an appearance

N=4 supersymmetric gauge theory in three dimensions i€> the metric of the classical sigma model.
persy gaug y In the maximally broken Abelian theory, a surface term is

best viewed as the dimensional reduction of the six dimeni—ncludeol to count the windina of the aaude field at infinit
sional /=1 theory. The bosonic sector contains the thre 9 gaug Y.

efiningn—1 winding numbers,

dimensional gauge field), , with field strengthF,,, and
three scalars¢', i=1,2,3. The scalars transform as a vector 1
under a globaBQ(3), theremanent of the six dimensional naza(Kfl)abf d3e,,,,0,F5, €2, (4

Lorentz group. Followind1] we denote the double cover of
this group asSU(2)y . the surface term is given ls=in,o2. The parametersy®
The Weyl fermion of six dimensions decomposes as four d t=inao™. P oo

X : ) : i can be thought of as Lagrange multipliers for tié1) Bi-
two-component Majorana fermions in three dimensiofls,  anchi identities and, as is clear from Ed), they range from

m=1,..,4,a=1,2. There exists a second R-symmetry, de-g {5 27 Promoting eachr® to a dynamical field, we inte-
noted SU(2)r, under which the scalars are singlets. Thegate out the field strengths in favor of these periodic scalars
fermions transform under both global symmetry groups, ag, optain the dual description of the classical low energy
the 4 of Spin(4)=SU(2)xyXSU(2)r. All fields transform  gffactive action with 40—1) massless scalars and rd(

in the adjoint of the gauge group. —1) massless Majorana fermions,
As is usual in theories with extended supersymmetry, the

scalar potential V(¢)=33; ;[#',¢']%, has flat directions. 2 1 _
The vacuum expectation valY¢EV) of the scalars is taken S= f dBX(Kl)ab(Eé’Mﬁa%(ﬁ'b
to reside inH, the (h—1)-dimensional Cartan subalgebra

(CSA) of SU(n):? et 1 i

‘ . + ;ZW E(?#a'a(?ﬂcrb-i- EXam’ylu&#Xbm (5)
(¢")=V"-H; i=123. (1)
where we take the three dimensional gamma matriggs,
For maximal symmetry breakingU(n)—U(1)"", we re-  to be the Pauli matricess€, — o1, 0?).
quire|v'- af| # 0, for all rootsa where| denotes the norm of Let us re-examine the symmetries of the low energy
the SQ(3)y vector. This is assumed for the remainder of thetheory. The VEVs generically spontaneously break the
paper. SU(2)y symmetry completelyfor the SU(2) gauge group,
Unlike the situation with a single Higgs field, for a ge- there remains an unbrokém(1),]. The low energy action,
neric vacua, the VEV¢1) do not pick out a unique set of Eg.(5), hasn—1 new Abelian symmetriesr®— o+ c? for
simple roots, an observation at the heart of the zero modany constants®. Because of the additive nature of this trans-
structure for instantons in these theories. Although there iformation, these too are spontaneously broken. At the clas-
no unique choice, positive rooté®, A=1,...n(n—1), may  sical level, the vacuum moduli space B} S)""Y/S,_,
always be defined by choosing a suitable constant 3-vectohereS,_ is the Weyl group o8U(n). This moduli space
p', and requiringp'v'- @*=0. We normalize the roots as Inherits the metric from the low-energy sigma model, classi-
a”- o”=1 (no sum oveR). Decomposing the fields into the caglly, }he inverse Cartan matrix acting on the 1 copies of
Cartan-Weyl basis, those residing along the step operatOB XS ) ]
E. pick up masseM,=|V'- o by the adjoint Higgs The 4(n—1) massless scalar&@and ferm_lon};_remam
mechanism. The fields residing in the Cartan subalgebra rébassless in the full quantum thedr/]. The Wilsonian low-
main massless. The choice of positive roots defines a set &hergy effective action, obtained by integrating out all mas-
simple roots 8%, a=1,...n— 1, which we choose to define a Sive modes, replaces; XK, with the quantum corrected

(non-orthogonalbasis for the massless gauge fields: metricg,ipj , NOW depending on the vacuum expectation val-
ues,(VEVs) of ¢'s and ¢’s, with i,j=1,2,3¢. Four super-
AZ=Tr(A B H), a=1 n—1 (2)  Symmetries forceg,p; to be hyper-Kaler, while a non-

anomalousSQ(3)y global symmetry requireg,,;j to admit

anS(Q(3) isometry. It is proposed thak,y; is the metric of
Concerning ourselves just with the massless fields théhe moldug s%z]a_ce oh _BI?SkmonopoIebs W'tISLlj(Z) .gaulgg

classical approximation to the Euclidean low-energy La-9r0UP[1-3l. This metric is known to be complete, implying

grangian is a free Abelian theory, with bosonic sector that_ the singularities of the classical vacuum _modull space
arising asM ,—0 are resolved by strong coupling quantum

2m 1 1 effects. N

Sg=— f ng(Kl)ab(—FayFbﬁ =3,0%9,¢" Perturbatively, theJ(1) symmetries shifting the’s are

e 4 KmURET2 respected and corrections to the metric must contaiil

(3 Abelian isometries. Chalmers and Hanaf8] have con-

firmed that the perturbative corrections dg;,; do indeed
reproduce the asymptotic form of the monopole moduli

2We use bold type to denote vectors in the root space and a s$pace discovered by Gibbons and Manf6h In the mono-

perscripti for 3-vectors transforming und&Q(3)y . pole picture, thdJ(1) isometries correspond to the conser-

with similar definitions for the supersymmetric partners.
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vation of electric charge of each individual dyon. Non- instantons are of this form. Below we apply the Callias index
perturbatively, thes&) (1) symmetries of the field theory are theorem and will infer that the only solutions of E(d$)
violated by instantons, which in the monopole picture leadshave charge vectay=x o for some roota”. This is in con-
to charge exchange between dyons as their cores overlap. Whast to the situation with a single Higgs field where instan-

now examine these instantons in more detail. tons exist for all charge vectorg=>,m, 82, with 4X,m,
zero modeg8]. That this is no longer the situation here is
A. Instanton zero modes known from an analysis of monopoles in four dimensions

[7,14], and can be anticipated from E@,); the three VEVs
do not pick out a unique set of simple roof.

Rather than counting directly the number of bosonic zero
modes, we determine the number of fermionic zero modes in
Nthe background of each instanton. The unbroken supersym-

For SU(n) we have different species of three dimensional
instantons labelled by their winding numb@h, which we
take to define a charge vector in the root lattigesn,8°.
The instantons of interest satisfy the Bogomol'nyi equatio

[7.14 metry then pairs fermionic and bosonic zero modes. The
N i i1— Dirac equation reads
D,¢'=\B,, [ ¢1]=0 (6) :
- AmeX"=(7,D, 0mn— 7 ) X" 11
whereB, = 3¢,,,F*” and\ is given by X" = (17, Dy Oma™ 7 X D
i where' are the self-dual 't Hooft matrices and the covariant
N V-9 @ derivative is referred to the background field of the instanton.

9= IV'-gl Introducing the projection operatorBizé(lii)\igni)

] __acting on theSpin(4) vector space, we take products with
Solutions of Eqs(6) have the property that they are annihi- tne adjoint operator:
lated by half the supersymmetries. The action of such a so-

lution saturates the Bogomol'nyi bound and is given by AA'=-D,D,-2y,B,P.+¢'¢'
87m” | A'TA=-D,D,~2y,B,P_+¢'¢'. 12
Si= g7 \Y -Gt ingo™ ® SRR S

Observing thah AP, is positive definite, all zero modes of

The in 0 term was first introduced by Polyakdd3] to 2 must lie in the eigenspace &7 where AAT is itself

incorporate the long range effects of instantons in the dilut@0Sitive definite. Let Tr be the trace function restricted to

gas approximation. In the present context it appears througifis Space, and following Weinbe{§] define

the surface term of the actioBs. u?
~Aclass of explicit solutions can be constructed by embed- T(u?) :Tr‘(w

ding chargek SU(2) instantons in th&U(2) subgroup as- M

sociated witha*:

2
M
—=Tr_ ( m . (13)

The number of fermionic zero modes is given by the limit
1 w?—0 of 2Z(u?). We rewritedp' ' = DD + ¢ ¢' where
t!= —(EA+E_p)

V2 D=Ngg',  P'=(8 A\ P (14
, 1 Note that the thre@' have only two independent degrees of
= ‘E(EA_ E-a) freedom. With the exception of the extra Higgs fielgég',
Eq. (13 is the same as Weinberg'’s functif]. In Appendix
3= . H 9) A we repeat Weinberg's calculation with this term and find
NI .
with a g=ke”* instanton solution obtained by L(u?)=2 - KNV a/*?(g 7 .
o o A (V- @2+ ) (V- a2+ u?)?
¢'=)\'¢m(v)tm+(v'—(v'~aﬁ)aﬁ)-H (15)

A, =AM(p)t" (10) We now see the consequences of the extra Higgs fields for
oo the zero mode structure. For most charggeshe factor ofu?
in the numerator of Eq(15) means that there are no zero

where¢™(v) andA(v) are the solution for BPS monopoles 5 ‘
4 modes at all. For a non-zei{M~-—0), we require

in SU(2) with a single Higgs field of expectation valwe

=||V'- o|.% In fact, we will see that the extra Higgs fields S AI2 , N , 3
ensure that for generic values of the expectation values all Iv'- o _(VI"‘A)(VI'M)_)\Q)\Q(VI ‘ aA)(V]'“A)_O(m)

for some roota” (no sum overA). For the case of generic

3For a detailed review of BPS monopoles as 3D instantons se¥EV, the only solution isy aligned witha”*, sayg=ka*. In
Appendix C of[4]. this case we have
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)\;Vi A whereJy and.J, are the Jacobians resulting from the change
lim I(,u2)=2km=2k. (17 of variables from fields to zero modes. These are calculated
u2—0 in Appendix C of{4] (see als¢12]) for gauge grouBU(2).

In the present case the instanton is restricted t&al(2)

For g not proportional to a root, Eq$6) have no zero modes s#:g:ﬁgfaﬁpodnthsvﬁﬁlcﬂaign E?] gesnega'zizztr'\gigy';m

and so at most only isolated solutions. Yet a soliton musf_8 2/M L2 gz, Hx=omMa 0

have translational zero modes and we infer that, for generic ©7” '’ AE". ' . -
Similarly, each configuration has at least two fermionic

expectation values, the Bogomolnyi equation has no SOIUE:ollective coordinates corresponding to broken supersymme
tions in these sectors. p 9 persy

In certain vacua known as CNFSNhereAk=AiE, for some try generators. Supersymmetry transformations on the fermi-

. mo
A+#B, Eq.(16) has more solutions and the moduli space ofo"s with parameterg, yield
the corresponding instanton enlarges. In the special case of
M=\ for all roots o and @®, Eq. (15) reduces to Wein-

berg’s expressiofi8]. For instantons, the required broken supersymmetries #ave

Thus the extra Higgs fields have two effects: enforcmg a}esiding in the eigenspace of the projection oper&or. If
democracy among roots and removing any off-root solution,1 and £2 are the two eigenvectors &, the contribution

to the Bogomol’nyl equations. The forr_ner is already _wellof these modes to the fermionic measure is
known from studies of BPS spectra in four-dimensional

theories with bothW=2 [7] and N'=4 [14] supersymme-
tries. Theg'¢' terms punish any deviation from tH&U(2) f dMF:f VAR (20)
subgroup(9), restricting the solution to be of the forti0).

In [14] this is used to explain how, for a generic VEV, S- The fermionic Jacobiang7,= 16m2M /€2, are also calcu-
duality of the BPS spectrum o¥=4 theories with arbitrary |5ted in Appendix C of4].

simple gauge group is reduced to tr_le equivalent problem in  The Grassmann integrations of HQ0) are saturated by
SU(2), atleast for charges proportional to roots. That nOhe jnsertion of four Fermi fields in the path integral. If the
BPS solitons exist r;or charges not aligned with a root comypstanton solution is to contribute to the low energy effective
pletes this argument. _ _ action at the two derivative and four Fermi field level, any
For the three dimensional case in hand, this null result fog,ither fermionic zero modes must be lifted. In Sec. IV. we
the zero modes of instantons with charge not aligned with | giscuss the case of an adjoint massless matter multiplet
root means the action of any instanton in these sectors ify=g supersymmetiywhere such lifting does indeed occur
raised above the Bogomol'nyi bound and thus the configury2] |y theN=4 theory with no matter multiplets there is no
rations break all of the supersymmetries. Acting with thesgnechanism for lifting extra fermionic zero modes and the
broken supersymmetries gives rise to too many fermionigny jnstantons that contribute must have the zero modes of
zero modes to contribute to the low energy Wilsonian effecyqations Eqs(18) and(20) and no others. Thus we restrict
tive action with two derivatives and four fermions. Similarly, o, attention yet again tg=&” for each roota?. Further
on the CMS, instantons in these sectors must have at leaggributions come from perturbativewo-loop) corrections

eight fermionic zero modes, again too many to contributegpg .t the background of these solutions and various numbers
Thus we restrict our attention to charges aligned with rootsy¢ instanton—anti-instanton pairs.

g=ka’*, and denoter =\

Every such instanton has at least four bosonic modes,
three corresponding to translations in space and time and one
globalU(1) gauge transformation. The contribution of these Before integrating over zero modes, we must first deal
modes to the bosonic measure is with the non-zero fluctuations around the background of the

instanton. Expanding about the configurations to quadratic
order, the Gaussian integrations yield determinants of the

Xm:_iVMBp(P—)mngn- (19

B. Instanton non-zero modes

f q :f d3x (7 )3,2J2””‘ do (T2 quadratic fluctuation operators. [4] these were found to be
- (2m)3 X |y (2w non-trivial for the case o8U(2) and for higher rank gauge

(18  groups we find even more structure. Choosing the back-
ground gaugeD,5A ,—i[ ¢',6¢']1=0, we find that the con-
tribution from the ghost fields cancels the fluctuations around

. . _
“The name derives from studies of spectra in four dimensionaf? - SUPersymmetry ensures that the remaining bosonic and

N=2 theories where certain solitonic states are at threshold fofermionic fluctuations are related and we find
decay. For gauge groups of ramk=3 the CMS extend into the ( de(—DMDM+¢i ¢i) )1,2

weak coupling regime.
5The above argument does not forbid “middle multiplets” with det(-D,D,—2vy,B,+¢'¢')
de(AATP_+ATAP,)\1?

electric charge not parallel to magnetic charge. The zero modes for
(def(AATP++ATAP)

solutions with electric charge require a more delicate handling of =

= (21)
the index theorem. We thank T. Hollowood for explaining this.
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where the operator in the denominator has zero eigenvaluggoduli spaces are more complicated. A zero VEV fordlll
and det denotes the removal of these from the determinantcorresponds to the intersection of all the CMS and the
Although supersymmetry insists the non-zero eigenvalues ahoduli space of solutions is given by the single Higgs results
the two operators in Eq21) are equal, the densities of these of Weinberg[8]. Turning on VEVs for("bi generically means
values are not. This was first noticed by Kddb] in the departure from the CMS and the moduli space is lifted
context of mass renormalization of monopoles. As explaine lthough a non-trivial submanifold may remain. Moreover,
in [4], the calculation of this ratio is essentially equivalent toby varying the VEVs in special directions along the CMS’
Fhe index calculation of Appendix A. More precisely, for the intermediate situations are possible with submanifolds of ex-
instantong=a/*, we have act solutions of varying dimensions.
) © dy V2 Employing the constrained instanton, we relax the condi-
M ex f TI(V) tions on the configurations about which we perform the
g semi-classical expansion. Rather than insisting that configu-

R=lim
pn—0

IEENANRCATS rations be a minimum of the action, in the short distance
=2M,]] —IA—IE (22)  regime,x<1/M,, we solve the equations of motion pertur-
B4A [1—NaNg batively in an appropriate parameter, generically

The expression for the determinants clearly diverges as the?r2|v!||%/||v/||? wherer denotes all radial parameters on the
VEVs approach the CMS i.e\,,=\y. This is not unex- largest instanton moduli space. In the language of Weinberg
pected. On the CMS the instanton moduli space enlarges arj8], for larger, they are the collective coordinates obtained
the quadratic fluctuation operators gain extra zero eigenvaby separating two “fundamental” instantons.

ues. The singularities are the result of treating these modes in The approach of solving the equations perturbatively also
the Gaussian approximation. To make progress we must treapplies to the auxiliary fields which we have so far ne-
these modes exactly. We then expect the instanton calculglected. There exist three auxiliary fields,, one for each
tion to yield zero when the VEVs lie on the CMS, for the N=1 scalar multiplet. There are no auxiliary fields from
instanton will have fermionic zero modes which cannot begauge multiplets in three dimensions. In tie=4 theoryF'
saturated in the path integral. satisfy the equation of motion

C. Instanton soft modes Fi=—ielkpl gk (23

Close to the CMS, the modes that become zero modes aigriting IA:‘=F‘—>\L)\LFJ', the defining equations for the

soft; that is the eigenvalues of the quadratic fluctuation opronstrained instanton at short distance are given by
erators are small. The existence of these modes is reminis-

cent of the more familiar situation of four dimensional in- D,®=B, (29
stantons where a self-dual field strength ceases to satisfy the

equations of motion when an adjoint scalar has a non-zero YuD X" [P,x"=0 (25
VEV and the one-instanton moduli space is lifted, leaving

just the singular point at the origin. However, the self-dual P)mx"=x" (26)
configurations retain their importance in the semi-classical

expansion. The correct technique for dealing with such i Bi11= — i ,myn

modes is known as the constrained instar{@h(for a de- PuDud-12[.8 ]J TmoX X @0
tailed account applied to four dimensiondl=2 theories see Fi=i(AM\\h el — ek pkgp
also[16]). At short distances the equations of motion are (28
solved perturbatively ig2p?v? wherep is the scale size of ALFi=0 29

the instanton. This allows all self-dual configurations to be

treated exactly in the semi-classical expansion. The action 6fhe hosonic moduli space of such solutions is determined
these co_nﬂguranons ga|n§pajependence, ensuring that the solely by solutions to Eq(24). In the topological sectog
contribution of the larger instantons to the path integral are_ ,A" the VEV )\iAVi picks auxiliary simple rootsy? such

suitably suppressed. _ ; : ; -
; . o that o*=3,m,72. The moduli space of solutions is of di-
The three (.Jllmen5|.onal situation is gnalogous..The V_EVSmension &,m, [8]. Notice that the rootsy? differ from
of ¢' lift certain solutions to the equations of motion which gector to sector and need not coincide with predefined
still remain important in the semi-classical expansion neagarlier. This means the relative dimensions of the moduli
the CMS® However, the details of the lifting of the instanton spaces of Eq(24) in different sectors do not follow the
simple pattern of the single Higgs boson model. Moreover,
in varying theV' it is possible for\,V' to cross the wall of a
®This correspondence is emphasized further if we trace the threé/eyl chamber without the associated non-maximal symme-
dimensional theory back to it/=2 four dimensional roots, com- try breaking of the single Higgs boson model and thus the
bining A, and ® to construct a self-dual gauge field. The two in- moduli space may change discontinuously. However, after
dependent degrees of freedomdh create the complex scalar field integration over these manifolds, the final instanton calcula-
and the generic self-dual field strength no longer satisfies the equ&ion will be smooth.
tions of motion when this scalar has a VEV. The general moduli space decomposes into the form
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RX My We see that, up to Fermi bilinears, this equation is indeed
M=R3X—— (300  satisfied by virtue of Eq(27). Thus the gauge transforma-
z tions above are indeed true zero modes. Moreover, gauge
- B _ . _ transformations move the configuration infinitesimally along
My are complete hyper-Kder manifolds with coordinates e isometries of\t. By constructione- V=0 and gauge
X% and metric g,p. For g= o', My are the Lee- transformationg33) correspond to elements of the CSA re-
Weinberg-Yi spacefl7]. Mgy has dimension 4(—1) where  sponsible for generating the Killing vectors e, together
d is the height of the rool”* as measured by i.e. d  with a VEV dependent shift along th@ factor. Thus, the
=3.m,. In the standard notatlon/\/ld—/\/l(ll 1y Where  bosonic part of the action can be rewritten as

there ared 1's in the string. Fore”* simple with respect to

Ay (d=1), M, is taken to be a single point. 412 a s Leaa
TheR? factor in Eq.(30) corresponds to space-time trans- Asboson:—M e2||Q'V [+ > Jan(V'-K#)(V'-K?). (35
. . . . A
lations of the instanton while thR factor is generated by

globalU(1) gauge transformations i .
Equations (24)—(29) are covariant under supersymmetry

i a. transformations parametrized bR (),,£", ensuring that the
S AWV )@ H i ' X X )
Q-H= — (3D total action of these configurations inherits a supersymmetry
ZphaV Y acting on the collective coordinates. Indeed, we may always

replace the sum over Killing vectors in the second term of
Eq. (35) by a single Killing vector,g,u(V'- K?)(V'-KP)
=§ab(v- K?3)(V-KP), which is the form dictated by super-
symmetry{ 18]. The fermionic part of the action is simply the
supersymmetric completion of E¢35):

where »® are the fundamental weights defined B§- w®
=35%. When the ratios of tha,v'- 9 are rational theR
factor collapses t&' and theZ to the cyclic subgrougy.

The remainingn—2 U(1) gauge transformations gener-
ated by elements of the CSA orthogonald® result in up to
n—2 U(1) isometries ofM. We denote a¥? the Killing
vector of M generated byH. If a particular element of the
CSA acts trivially on the configuration, the corresponding
Killing vector is taken to be zero.

Configurations sja\tls_fymg Eqg24-(29 raise the_ action whereV, is the covariant derivative oM with respect to
above the Bogomol'nyi boun¢8). Moreover, this action will i, . a - .
) i ~ the Levi-Civita connection ang® are fermionic collective
have a dependence on the collective coordinatestgf we . 4ordinates.

can consider the action as defining a potential\dy. The We turn finally to the measure. As neither the metric nor
bosonic contribution to this potential is the integrand depend upon the coordinates associated with
theU(1) isometries, the bosonic and fermionic measures for
2 s 1 N . the R®X R factor of the moduli space are givéafter taking
ASboson:e_ f d X5 u¢ Du¢ T3 F F into account the discrete group) by Egs. (18) and (20)
respectively. This leaves us with the integrations over the
<m f d3x 1 Dﬂ&ip ;bi_ l[q)';ﬁi]z. (32) multi-coyer of the Lee—Weinbe.rg—Yi spacé}ld. Although
2 expressions for the corresponding zero modes are not known,
the Jacobians depend on the metgg, only,

i
ASfermion:EVa(V' Kp) lﬂalﬁb (36)

We will now show that this potential is related to thig1)

Killing vectors on the moduli spacé. First, consider a ad-1)
configuration ofA, and ® satisfying Eq.(24) and thus cor- f a f 1—[ gxa Vdetg
responding to a pomt\/l Act on these fields with a gauge MB= (2m)2 (27)2d-1)

transformation parametrized bzy
4(d—1)

SA,=D,d, Sb=—i[d¢]. (33 fdﬁF:f TT ayedets) (37

Such transformations clearly satisfy the linearized version of

the Bogomol'nyi equatiori24). A global (large) gauge trans-  Note that the metric dependences in the bosonic and fermi-
formation is generated by'-H, the VEV of ¢', while the  onic measures cancel.

spatially dependent part is a small gauge transformation.

However, in order to be true zero modes of the configuration,

the transformations must also satisfy a gauge condition, D. Instanton calculation

which for the purely bosonic theory is Gauss’ law: Having analyzed the various fluctuations around the back-
ground of the instanton, it is now possible to put all the
D,oA,—i[®,6P]=0. (39 pieces together.
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In each topological sector, defined b, we must calcu- . Lq(Vv)
late the heightd, of &* with respect toy?. If A,v'- @®=0 ($'2p°)a=(B* ) (B°- a?) G,V
for some roota®, the VEV lies on the wall of a Weyl cham- d
ber; it does not define a unique setydfand the height of* 1T+ NAE]7 e

and hence the moduli spade!4 is ambiguous. We will com- T (@' ivi.ar (41

: . : BA | 1= Na\p
ment on this case at the end of this section. For now we
assume that the VEX,V' lies strictly within a Weyl cham-
ber. The integration over soft modes is then given by Where@)i &j))\ivi.aA is the scalar propagator in &U(2)
gauge theory with VEWAV' - &”. It was shown explicitly in
Ld(v‘)=(277)2(1‘d)f~ dxady? [4] that this scalar propagator reproduces the leading order
My exponential corrections to the inverse Atiyah-Hitchin metric.
X eXH — A Syosor A Srermior) - (38) Close to the CMSL 4/Gy is small and cancels the singu-

larities in the product factor. Far from the CMBy /Gy is
exponentially close to unity. Furthermore, in this regime
Ford=1 we setlL,=1. these exponential deviations from unity are of the same mag-
To avoid overcounting, we must divide by the Gaussiannitude as other effects that we have neglected such as two-
approximation for these modes which we have already takelpop perturbation theory around the background of the in-
into account when integrating over non-zero mo@. The ~ stanton and Instanton—anti-instanton pairs. .
recipe for this is to transform to polar coordinates fot, Finally we turn the the situation whewg,v'- &°=0 for

such that in the vicinity of =0, the metric is of the form SOme roota®, i.e., \,V' lies on the wall of a Weyl chamber.

~ _~fla 2 ; In this case the moduli spacety is not well defined. How-
= 1+0O(r herer denotes ald—1 radial coor- . ) ved
Gab gabt[ (r)] w ! eyer, this occurs in a regime far from the CMS and thus

dinates on the space. The Gaussian approximation requirescy . . . .
P ~ flat PP q carrections from the constrained instanton are not important

truncation of this metric tgy;,, with the corresponding trun- here. Nevertheless, it is interesting to note thatG, does

cation to the _bqsonlc potential af?d fe_zrmlonlc potential. Wejpjeeq remain smooth as,V' crosses the wall of the Weyl
will denote this integral a&4, again withG;= 1. Note that chamber

the first term in Eq(35) is independent of collective coordi-
nates and will be cancelled after division by the Gaussian
approximation. L Ill. MONOPOLE MODULI SPACES
For d=2 the relevant manifold is Taub-NU{INewman-
Unti-Tamburing spacg19,20. In Appendix B we calculate We now translate the results of the previous section into
L, and its Gaussian approximation. the metric on the moduli space nfBPSSU(2) monopoles.
With all zero mode fields now confined to &U(2) sub-  This 4n dimensional space has the form
group the remainder of the instanton calculation for the four
fermion vertex now proceeds as 4], with the resulting ~
correlator related to the Riemann tensor of the monopole 3 StX M,
metric. We choose instead to calculate instanton contribu- Mn=R K (42)
tions to the scalar propagator which will provide direct in- "
formation about the inverse metric. To saturate the fermionic
zero modes of the instanton, the scalars must themselvg®® corresponds téEuclidean space-time translations of the
pick up Fermi bilinears. Acting og' with a finite supersym-  center of mass anf' to globalU (1) gauge transformations.
metry transformation, exp(£"Q"), yields M, is the relativen-monopole moduli space; it has dimen-
sion 4(n—1), is complete and hyper-Kéer.
The perturbative sector of the three dimensiogal(n)
gauge theory reproduces the asymptotic metriddn[2]. In
this regime monopoles interact pairwise via velocity depen-
For &™, an eigenvector oP_, only ¢' pick up these bilin- dentU(1) electric, magnetic and scalar forces and the metric
ears.d remains unchanged by the supersymmetry transforiakes a simple form discovered by Gibbons and Maiiédn
mations. The contributions from the® instanton are thus

¢ — ¢ =B, ™y E" (39)

(@a@b>A=O d0i+2k Wik'dxk)

X

(D35, =0 0 daj+2 vvjl.dil) (43

and where
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whereQ”® is non-zero only if the separatiodsandB have
a monopole in common. More precisely, if the relative Car-

tesian separation vectof goes from theé'" to thej" mono-
pole andr® from thek™ to the ™,

1 1
Mi=1-2 —. Mj=— (i#])

i#i T ij

Wii:_;i wij, Wi=w; (i#])

(44)

Lo w al
0A8=2 (84981 5. (49)

with the Dirac potential, w;, defined by V;xw;
=Vi(1/rjj). Thex; are the positions of the well-separated  Tq recover the relative-monopole Gibbons-Manton met-
moqopoles. This is the metric oM,; that is it includes the  ric \we must first pick a linearly independent set rof 1
motion of the center of mass and center of charge of thgeparationg3-vector and chargeLabelling the monopoles
monopole configuration. This corresponds to the three diiy some arbitrary manner, we choose the separations between
mensionall (n) gauge theory. In order to compare with the the jth monopole and thei ¢ 1)™. Labelling this set of lin-
SU(n) results above we must freeze the centers of mass anéiarly independent coordinates with a subscapt(r?, ¢2),

charge from this metric. For well separated monopoles, the i -, i ) i
4% (n—1) coordinates on this space are a basis chosen frofi€ Metric oM, is obtained by pulling back with the map,
the 4x in(n—1) relative separations and relative charges: f;\, relatingr” andr?:”

=Xi—Xj, ;= 06— 0;. (45) rA=fare. (50)
An explicit hyper-Kaler quotient of the Gibbons-Manton Pulling back the flat metric gives the inverse Cartan matrix
metric yields a messy result, essentially because the metric that was the classical metric of E(R),
symmetric in allzn(n—1) of the relative coordinates but is
expressed in only am( 1) dimensional subset of these. To
retain manifest permutation symmetry of the relative-
monopole metric we choose to write it as a metric on a larger
4x 3n(n—1) dimensional manifold, the pullback of which At this stage we need to introduce a dictionary between ob-
yields the required quotient of the Gibbons-Manton metric,jects in three dimensions and the above coordinates on the

S 45K D, (51

We take the relative distances), relative Euler anglesg”®
and ¢*, and relative charges/®, A=1,..2n(n—1) and
write the metric in the form

dszzg 2, P dridrisa®(r) (o7)
+D%(r*)(05)%+cX(r4r®) (0%)° (46)

where all summations have been kept explitita, b andc
take the form

1/2
f(rA)=—(§—2MA)

1/2

22M
ﬁ A

a(r®)=b(rdy=rA

-1/2

(47)

1 1
C(rA;rB)=(%—§ M1,

whereM 5= M;; for A labelling the separatiorij(). The one-
forms of* are defined as

oy =—sin y*d6*+cos y* sin #Adp?

o5 =cos yd @+ sin y* sin #Ad A

2
oh=dyr+ — ; Q"B cos 6Bd B (48)

monopole moduli space. First, we note that the choice of
separations betweem monopoles discussed above is mim-
icked by the root structure afu(n). The mapfg‘ is the map
between simple rootg3?, and rootsa”. Defining the roots
asa’*=(d—€)/v2 anda®= (&~ €)/v2, where€ aren or-
thonormal vectors, thef”B=o”- a®. We must identify the
three scalar VEVs along the” direction of root space with
the vector distance between tHeandj™ monopole®

2
Fa:rai: 77 Vi'ﬂa
ez

1
l[la= E(I’ﬂa (52)

Other expressions from the instanton calculation also have a
simple geometrical meaning. In the topological secor,
=a”, we havex,=r”/r” and

"Pulling back in polar coordinates is extremely messy. The sim-
plest way to see this result is to first add terms corresponding to the
center of mass and charge, change to Cartesian coordinates and pull
back to recover the original Gibbons-Manton metric.

8To retain agreement between E¢®.and(46), the metric should
be premultiplied bye?/16n73. This will not be important in what
follows.
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e?\22
i < B\2
V'V (7877 ) - ; (r7) (53
wherer®' is the component of®' perpendicular ta”'. o

The semi-classical approximation translates to the re-
quirement that the monopoles be well separated; we will find‘_f‘f3 :
the leading order corrections to the Gibbons-Manton metric. )
Geometrically, the curves of marginal stability correspond to
three or more monopoles becoming colinear. In this regime
the corrections from the constrained instant88) will have @ ®
the most impact. The other point of interest is when the VEV
)\'Avi lies on the wall of a Weyl chamber. This corresponds tot
rAlrBi=0 for some separatioB. The form of the corrections
to the metric will be different on each side of this situation

but will meet smoothly on the wall itself. _decouples from the interaction as expected. As monopoles
We are now in a position to recast the instanton contribuyacome colinear, the product factor in EqS6) becomes
tion to the scalar propagat¢41) as the exponential correc- singular, but this singularity is cancelled ty,/G4 and in
tions to then-monopole metric. Corrections to the scalar o5ch case the overall correction to the metric is zero.
propagator equate to corrections to the inverse metric The situation of three monopoles is depicted in Fig. 1. For
the interaction between the first and second monopoles, the
8g2PI=2" (o B (a BO)( P ). (54 moduli space for the constrained instanton jumps discontinu-
A ously when\;,v'- at*@=|\'V/|cos(@/3). In the monopole
picture. this corresponds @,;= 7/2 or ay3= /2. Thus, if
both a,3 and @45 are acute, as in triangl@), the correction

1 1 N from the constrained instantonlis /G, . If either is obtuse
8Gainj= — (K™ ac(K )dbEA (a? B (- B (¢ ')A as in triangle(b), the correction id.;/G,=1.

FIG. 1. For trianglg(a), the height of the root corresponding to
he interaction between the first and second monopoles is 2. For
triangle (b), the root is simple.

To leading order in 1/, the inverse of this is

(55) The product factor of Eq56) is
which can be written simply as the pullback of the diagonal (1+005 as| % 1-cos als) e 57
metric with entries(¢' ), . The first exponential correc- 1—-cosays 1+cosaqg

tions to the functiond, a, b andc are thus given by )
For triangle(a), L,/G, can be read off from EqB9) of

. 2 2 Appendix B,
f(rA;rB,lpB):—(ﬁ—ZMA) PP
2 1/2 1—-(1+ 1_8r12 tan algtan o3
a(r®;re, y®) = rA(— —2MA)
n 1
_4(rA)ZefrAﬁ H 1+COS®AB)“AB Xex;{ 18r12 tan a43 tan a23> . (58
Gy B#A | 1—C0SOpp : ,
As the third monopole is brought between the other two,
12 the singularity in Eq(56) is cancelled by Eq(58) and the
b(rA;FB,wB)er(——ZMA) interaction between the first and second vanishes. As the
n third monopole is taken to infinityg,;=7— a3, the two
aly 1+cos® QAB factprs ir_l Eq.(57) cance_l. The c_orrection_s from the con-
+4(rM2%e " — H —AB) strained instantob8) retain some information about the po-
Gy g#a | 1-C0S0Ox8 sition of the third monopole. However, the window in which
1 such correqtions are to be applied becomes vapishingly small
c(rA'FB wB):(i—l(Ml) ) (56) and the third monopole decouples from the interaction as
v 2n 2 A expected.
Note that for a right angle triangle, E8) is unity and
where® pg=r"r'8, thus we have a smooth transition between the acute and ob-

Some comments are probably in order. First, the productuse triangles. However, we once again emphasize that in
factor in Egs.(56) corresponds to non-pairwise scattering of this regime the exponential corrections in E§8) are sub-
monopoles. The interaction between a pair of monopoles ddeading with respect to other corrections that we have not
pends on the distances between the pair and all other mondealt with.
poles. As one monopole is taken to infinity, the correspond- The functionf(r) receives no instanton corrections. In the
ing part of the product tends towards unity and the monopol@&xpansion of the function§s a, b andc given in[22], f has
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exponential corrections of the same ordemasndb. How-  vyields the volume contribution to the Euler character of the
ever, the functiorf has no invariant meaning and the coor- relative instanton moduli space, which generically fpr

dinates employed by the authors[@®] differ by exponential  =ka” is the M, of Eq. (42). This can be identified with the
corrections to the coordinates defined by EGS). Such gy character of¥1 only up to boundary terms. For the

issues are common in dealing with exact results in SUPErsyMeasek=2. the metric is known explicitly and the boundary

metry .(SUSY). gauge thgories, namely that the vacuuiMa g vanist 28]. For higher charges, the Gibbons-Manton
moduli space is parametrized by coordinates of the low en

ergy theory which have a complicated dependence on th

Sut there may be contributions from “clustering regions” at
the boundary where at least one pair of monopoles remains

| db . EaS6) with k close. As in[12], we assume that this is not the case and that
t_wou € gratifying to compare 9$5 ) wit nown - the integral over zero modes does indeed vyield the Euler
metrics on subspaces of the full moduli space. The first SitUzharacter

ation wher.e such metrics are known is the_ case With mono-' 5 £ jer characters of the k-monop@&J(2) relative
poles co-linear and equidistant. For co-linear monopolesmonopole moduli spaces are determined td 28
there are only interactions between adjacent monopoles
which are independent of the positions of the others and the (M) =k. (59)

corrections are just of the formexp(—r). If we further im-

pose equidistance, we are left with the leading order correc- |mportantly, just as in théSU(2) case, the integrations
tions of the Atiyah-Hithin metric in agreement wif3]. over non-zero fluctuations about the background of the in-
The one other case in which exact metrics are known i%tanton, which were u|timate|y responsib|e for the non-
for four monopoles. The metric on the one dimensional subpajrwise interaction of monopoles in thé=4 case, now
manifold of tetrahedrally symmetric manifolds has beengive unity. The singularities which occurred on the CMS are
computed using Nahm data and is found to have the leadingo |onger there. It is plausible that the extra supersymmetry
exponential corrections occurring at ex{®) [24]. From the  takes care of the soft modes, circumventing the need for the
three dimensional perspective, instanton contributions to thigonstrained instanton approach of Sec. I, although a proof of
metric are of the forr{®®) and so vanish. Naively, it ap- this would require knowledge of the Euler characters and
pears that the two pictures are in agreement, the-€2)(  boundary terms of moduli spaces for higher rank gauge
term corresponding to an instanton—anti-instanton pairgroups. Let us see how this might occur.
However, the same coordinate problems arise as with the Suppose we do not use the constrained instanton. Then on
f(r) term in the Atiyah-Hitchin metric and the conclusion is the CMS the instanton moduli space jumps discontinuously

that, while consistent, agreement between the two remaing, MktoMk(ll 1), that is from arSU(2) to anSU(d)

.....

ambiguous. d<n, moduli space. Unlike th&l=4 case, the extra fermi-
onic zero modes are lifted and the resulting integration be-

IV. N=8, SU(n) comes the Euler character of the enlarged moduli spage

to the complication of boundary termsThe instanton con-

In this final section, we turn our attention to the=8  (ihytion to the correlation function is continuous over the
theory. Dimensionally reducing th&/=1 ten dimensional cps provided

theory to 3 dimensions, the field content of the=-4 theory
is aqgmented_ by the addition of 4 spalars and 4 Mf_:ljorana X(Mk(l,l _____ D):X(Mk):k_ (60)
fermions. While the algebra has $pin(8) automorphism
group, only aSpin(7) R-symmetry is manifest in the La- This scenario remains more or less the same if we do use the
grangian description with the vector transforming in a sin-machinery of the constrained instanton. The integration over
glet, the scalars i7 and the fermions 8 [25]. soft modes and zero modes now yields the volume contribu-
In four dimensions, a non-renormalization theorem for thetion to the G-index generalization of the Gauss-Bonnet inte-
N=4 theories prevents instanton corrections to eight Fermgral [18] and again, up to boundary terms, continuity of the
vertices[26,27. This is no longer the case in three dimen- instanton calculation requires the Euler characters to be
sions and eight Ferntor four derivative vertices[26,11,13. given by Eq.(60).
The counting of zero modes proceeds as in Seg+ka”" There are also other instanton contributions which occur
generically has R Fermi zero modes whilg not aligned only on the CMS, namely those with charges not propor-
with a root has none. Instantons in the latter sector agaitional to a root. Recall, that for the generic situation the
break all the supersymmetries and so fail to contribute. Howactions of such instantons are lifted above the Bogomol'nyi
ever, the addition of adjoint massless matter multiplets enbound. On the CMS, the contributions from such solutions
hancingN=4 supersymmetry tbl=8 allows for the lifting are again proportional to the Euler character of the moduli
of zero modes not protected by supersymmetry and sectogpace. For continuity we require this to vanish. It is interest-
labelled byg=ka” contribute for allk and all . ing to note that these spaces are expected to contain no
The instanton calculation now proceeds identically to thesquare-integrable harmonic forms. While not a direct predic-
SU(2) case. The reader is referred[tt2] for details. The tion of S-duality[30], were these forms to exist, states in the
lifting of the zero modes is such that integration over themfour dimensional\/=4 theory would appear at no point in

this behavior is seen to arise in finité=2 theories in four
dimensiond 21].
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the moduli space except on the curves of marginal stabilityywhereA is defined in Eq(11) and the explicit matrix in Eq.

where they are at their most vulnerable for decay. (A2) refers to the last of the three direct products. We now
Finally we turn to a rather different application of three rewrite Eq.(13) as

dimensional gauge theories. Polchinski and Poulldi re-

late the dynamics diil=8 SU(2) theory to the scattering of

two membranes in matrix theory. Instanton processes of

chargek correspond to scattering with momentum exchange

in the eleventh direction, giving an important test of the =—Tr<P r i

eleven dimensional Lorentz invariance of matrix theory. The - (T'-A)%+ pu?

SU(n) theory considered here is of course related to the

scattering ofn membranes. The transverse distances and inYsing

teractions between branes follow the same pattern as th o T NN

monopoles in theN=4 theory. To model moving mem- %‘)‘IQ”IZ)‘I”IP—' P_(7'=Xhgn) = (7' =g )P

branes, the VEVs are allowed time dependence and the four (Ad)

time derivative vertex of the low-energy action becomes a

quartic velocity term in the low velocity effective action for and tracing liberally ovet; and y matrices, it may rewritten

interacting membranes. Usually such actions only makes

sense up to terms quadratic in the velocity, but for purely

gravitational systems and systems with constant charge to _

mass ratio, the backreaction from the fields enters at the 5 I('“Z):f dx tr P_I7LuDu(X|(T- A+ p) %)

order in the velocities and the expansion may continue to (A5)

quartic terms(see pp. 165 and 337 ¢81]). Indeed, in the _

resent context the moduli space of membrane solutions in I ~i _

gleven dimensional supergra[l)vity is flat and the quadratic +f d’ trEP*F7Fi<X|¢I(F'A+’“) )

terms vanish. (AB)
The cancellation of the non-zero mode fluctuations en-

sures that the four derivative term is just the sum over pair§vhere tr denotes the trace over group d6etimensional

of membranes. Unlike the monopole case, the longitudina$Pinor indices only. The second term differs from Wein-

scattering of membranes in matrix theory occurs pairwise. [Perg’s calculation and is due to the extra Higgs fields. We

would be interesting to see if this behavior is reproduced ifmultiply on top and bottom by-I"- A+ u, take spinor traces

MZ
l(Mz):_Tr—(r7_(FA)2+M2

2
. (A3)

supergravity. and move this term to the left hand side of the equation, to
arrive at
ACKNOWLEDGMENTS Tr( b T M2+ ("ﬁia)i
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At this point it is important to note that although we have
APPENDIX A: INSTANTON ZERO MODES traced over spinor indices extensively, the derivation of Eq.
A7) does not rely on the trace over group or spatial indices,
llowing us to divide by the numerator of the left hand side.
Integration by parts then yields

In this appendix we calculate the number of zero mode
of the Dirac equation in the background of an instanton with
several Higgs fields. We follow Weinbef@] closely, con-
centrating on points that differ from the original calculation.
First, we define a set of 2616 6-dimensional gamma ma- |(M2)=f d2s# tr( P_I';
trices(this unconventional representation arises from using 't 2o
Hooft matrices,s', rather than Pauli matrices;)

u?

r
a)i&iJer MF'AJFM

(A8)

P_I',I',D,

L — | d3% tr
[uc125=—7u®1l®0,, Tisyse=—i®7'®0; f
(AL)

u? 1
ddi+u T-A+u
(A9)
andI';=1,®1®03. Writing Ay as the 6-dimensional co- .
variant derivative The second term vanishes usify,¢'=0. The first term is
very similar to the corresponding expression in Weinberg.
Again multiply top and bottom by-T'-A+ « and perform

(A2) the trace over the spinor indices. The presencP ofin the

0 A
) numerator destroys all but thke term in A. Expanding,

FMAM:(_
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1 1 1 of the fermionic potential, isolating they "y
—(T-A)%+u? Y ¢|¢|+Mz+ —DZ+ ¢ P+ u? term and leaving us with the following expression fos
=L, exp(+473|Q-VI[|/M ,€?):
P, 0 1 2 exp( Q- V'[[/M 5&%)
XZ’YMB/.L 0 P _D2+ ¢I¢I+M2 - 71.2 o .
Lzzﬁ v'-v'f drdepdodyr (1+2ur)
4o (A10)
. . L GV
and keeping terms oD (1/x?), evaluation of this first term X sin ex;{ — lz vy }
now proceeds as in Weinberg. Tracing over group indices 3e 1+2pr
indeed yields Eq(15) as claimed. 12 . (1+ 22 Vi ~\7‘> (2772 Ry
=== |1 7 A |eXP— |57 5 |-
APPENDIX B: INTEGRATION OVER TAUB-NUT SPACE Vv 3e” 2u 3e” 2u
If o is of height 2, say*= y'+ 42, the relevant moduli (BS)

space/\?l(l,l) is Taub-NUT spacg¢19,2(. Defining the re- ) N i cive
duced massy=(\svi- P)(Nsvi-92)/M,, the metric is votice that for small-v!, Lo~ (v-V)~.

In order not to integrate over these modes twice, we must

given by divide by the Gaussian approximationltg. The coordinate
872 1 system used in EqB1) has a coordinate singularity at the
d82=? pV(r)dr?+ Z,u_lV(f)_l(dlﬁJr cos 6d¢p)? origin, r=0. In order to present a metric that is smooth at the
origin, we transform to the coordinat®, wherer =3 uR?.
(B1) In this basis, the metric is
where O<y=<47 and 872
45?=— | (1+ p?R%)dR?
1
=1+-—.
V(r)=1 2 (B2)

1
+ ZR2(1+M2R2)(d02+ sir? #d¢?)
The Killing vector d,, is generated by ' —9?)-H/3. Thus

the action of the constrained instanton configurations param- 1

etrized by this space is raised by + ZR2(1+,u2R2)’1(d¢//2+ cos8d¢p?)|. (B6)
16 (VK3 (V- KP)= 27 v (B3)  Note that to leading order iR, this is the flat metric oiR*
2 Jab 3e? 1+2ur ;

in Euler angle coordinates. The recipe for the Gaussian ap-
proximation is to truncate the Taub-NUT met(ig6) to the
flat metric and repeat the calculation above using this. The
gaussian approximation to the bosonic potential is thus

together with thel|Q-V/|| term of Eq.(35). Note that this
potential flattens out as— . This is a generic feature of all
potentials on Lee-Weinberg-Yi spaces generated by th
U(1) Killing vectors. Because the Lee-Weinberg-Yi spaces

! . ) . TN 47%|Q- V|
are non-compact, the integral over this potential alone will — 2V VR? exp— | ——p— (B7)
diverge. The integral is rendered finite by the corresponding 3e M e
integration over fermionic coordinates. In the present case o
there is only one Killing vector on the moduli space and theand the fermionic counterpart
potential is already in the form\{- K?)(V-K) with V-V ,
=v.v ioni ial is gi ik ST
v'-v'. The fermionic potential is given by ‘Ge;“(v._v.)l,z( R cos 0yRy+ RyRy”
S v kg
4 5 Va *Na = 119,02 1
T2 v3e? (1+2pur) - ER2 sin 0(//61//¢). (B8)

X[cos 8y P+ ' ¥

—rsin 601+ 2ur) ). Once more performing the integrations, we deduge

=12/(V'- V') exp(—47?|Q- H|/M xe?) and, thus,

(B4)
Using the measures of integration Eq87), the integra- 2—1— N w2 (V- V) extl — w2 (V' -V (89)
tion over fermionic coordinates brings down two factors G, 3e7,u 3ez,u ’
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