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Late-time singularity inside nonspherical black holes

Patrick R. Brady
Theoretical Astrophysics 130-33, California Institute of Technology, Pasadena, California 91125

Serge Droz
Department of Physics, University of Guelph, Guelph, Canada N1G 2W1

Sharon M. Morsink
Department of Physics, University of Wiscondifilwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201
(Received 5 February 1998; published 29 September)1998

It was long believed that the singularity inside a realistic, rotating black hole must be spacelike. However,
studies of the internal geometry of black holes indicate a more complicated structure is typical. While it seems
likely that an observer falling into a black hole with the collapsing star encounters a crushing spacelike
singularity, an observer falling in at late times generally reaches a null singularity which is vastly different in
character to the standard Belinsky, Khalatnikov, and LifsctBt£L ) spacelike singularityV. A. Belinsky, I.

M. Khalatnikov, and E. M. Lifshitz, Sov. Phys. JETR, 169(1970]. In the spirit of the classic work of BKL

we present an asymptotic analysis of the null singularity inside a realistic black hole. Motivated by current
understanding of spherical models, we argue that the Einstein equations reduce to a simple form in the
neighborhood of the null singularity. The main results arising from this approach are demonstrated using an
almost plane symmetric model. The analysis shows that the null singularity results from the blueshift of the
late-time gravitational wave tail; the amplitude of these gravitational waves is taken to decay as an inverse
power of advanced time as suggested by perturbation theory. The divergence of the Weyl curvature at the null
singularity is dominated by the propagating modes of the gravitational field, thﬁla'bs},ﬁc“/”“/‘k\lfollf“

~p~ @32k a5y 00 at the Cauchy horizon. Herd,, and¥, are the Newman-Penrose Weyl scalars, and

=2 is the multipole order of the perturbations crossing the event horizon. The null singularity is weak in the
sense that tidal distortion remains bounded along timelike geodesics crossing the Cauchy horizon. These
results are in agreement with previous analyses of black hole interiors. We briefly discuss some outstanding
problems which must be resolved before the picture of the generic black hole interior is complete.
[S0556-282(198)04118-9

PACS numbd(s): 04.70.Bw, 04.20.Dw

[. INTRODUCTION singularity* of a type similar to the mass-inflation singularity
of Poisson and IsragB].
i , » o To understand this behavior we must first discuss the for-

Spacetime singularities are an inevitable consequence ofation of a black hole by the gravitational collapse of a
the Einstein field equations. They mark the boundary ofgiating star. At late times, the external gravitational field is
spacetime, and the limit of our current understanding Ohelieved to settle down to a Kerr-Newman solution. These
gravitational physics. Unfortunately, the powerful techniquessojutions have a timelike singularity which is preceded by a
used to demonstrate the existence of singularities say nOthir@auchy horizon—a null hypersurface marking the boundary
about the character of these physical blemigligs of the domain of dependence for Cauchy data prescribed in

The classic works of Belinsky, Khalatnikov and Lifschitz the black hole exterior. The Cauchy horizon is non-singular,
(BKL) [2] address this deficiency by integrating Einstein'sand the spacetime can be analytically extended through it.
equations in the neighborhood of a spacelike singularityThe global solution then suggests that black holes act as
They present compelling evidence that the general solutiotunnels from our asymptotically flat universe to other identi-
takes an inhomogeneous Kasner form exhibiting chaotic ossal, but distinct, universes. Indeed there is an infinite lattice
cillations of the Kasner axes as a crushing singularity is apof universes extending into the past and future of our own.
proached?2]. The functional genericity of the BKL solutions Furthermore, observers may travel through the ring singular-
is widely interpreted as indicating that all physical singulari-ity inside these black holes, passing to achronal regions of
ties must be of this form. spacetime. _

Nonetheless, studies of the internal geometry of black !N the late 1960s Penrose pointed out that the Cauchy
holes suggest a picture involving two distinct regimes. Ob10rizon inside such a black hole is unstai. Time-
servers falling into the black hole with the collapsing stardependent perturbations originating outside the black hole
generally encounter a spacelike singulatigich is presum-
ably of the BKL typg. On the other hand, observers that fall
in at late times, when the external geometry has settled down'The weakness of the mass-inflation singularity was first eluci-
to an almost stationary state, encounter a weak, nuldlated by Ori in Refs[4, 5].
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get infinitely blueshifted as they propagate inwards near to
the Cauchy horizon, consequently, the energy density asso-
ciated with these perturbations diverges as measured by a
free-falling observer attempting to cross through the horizon.
Perturbative calculatior§] in Reissner-Nordstro and Kerr
spacetimes have validated Penrose’s original arguments.

In general, gravitational collapse is expected to be asym-
metric, so that gravitational and electro-magnetic waves are
emitted by a newly formed black hole as it settles down to a
stationary, axisymmetric state. Detailed studies of perturba-
tions of black hole geometries show that such gravitational
wave emission results in wave tails which decay according to
an inverse power law of time in the exterior of the black hole
[8,9]. Some of this radiation inevitably crosses the event ho-
rizon getting infinitely blueshifted near to the Cauchy hori-
zon. For this reason one might expect the internal geometry
of a black hole formed by collapse is significantly different
to that of the exact stationary solutions.

A. Spherical models of black hole interiors

The first attempts to understand the back-reaction of the ®
blueshifted, radiative tail on the internal geometry of black 5 1 The Poisson-Israel spherical model of the black hole

holes were restricted to spherical symmetry. HiSCOLB]  jqterior. The infalling wave-tail of gravitational radiation, and its
argued that Isaacson[41] effective stress-energy descrip- scattered component, are modeled by lightlike dust. The region of
tion of high-frequency gravitational waves should be validpyrely ingoing(outgoing dust is indicated by Illll) in the figure,
near the Cauchy horizon. He considered a charged black holgd is described by a charged Vaidya solution. The solutions in
with a directed influx of lightlike dust with stress-energy regions Il and Ill are matched to a Reissner-Nordstrsolution
tensorT ,z= pinl 4| 5 Wherel ,1“=0, and showed that an ob- (region ) along the null rays)=vo andu=u,. As usualZ* and
server dependent singularity forms along the Cauchy horizom ~ denote future and past null infinity. The inflow causes the ap-
in this circumstance. parent horizon(AH) to expand and smoothly approach the event

In reality, some of the infalling radiation is back-scatteredhorizon (EH) of the final black hole. The outflow in region IV
off the curvature inside the event horizon. Poisson and Israelauses the, initially static, Cauchy horiz@@H) to contract. This,

[3] modeled this effect by another flux of lightlike dust mov- together with the fatal blue shift experienced by the inflow, causes
ing to the right; they demonstrated, for the first time, thata curvature singularity to develop along CH.

non-linear effects transform the Cauchy horizon into a scalar

curvature singularity. It is worth summarizing the essence of Lin(v)=a(kv)™9, (1.3
their argument here. ) ) )

Figure 1 shows the setting for the characteristic initialWith d=4l+6, wherel is the multipole order of the perturb-
value problem. Charged ingoing and outgoing Vaidya soluing field, fixed by Price’s analysif8]. The constantx de-
tions in regions Il and I1l, respectively, are matched continu-P€nds on the luminosity of the star that collapses to form the
ously onto region I, which is described by a static Reissnerblack hole, andx is taken to be the surface gravity of the
Nordstron solution with massn, and chargey. (The pure statlo_nary segm_ent of_the Cauchy horizon in region Il T_hls
ingoing region, 11, was studied by Hiscogkn region IV the functional form is motivated by our understanding of radia-

line element can be written as tive tails in the exterior of the black ho[@]. The outflux is
produced by scattering of ingoing tail radiation inside the
ds?’=—2eMdudy +r?(d#?+sir? d¢?), (1.)  black hole, and consequently also has a power law form
[7,12-14
wherer=r(u,v) andA=\(u,v). The coordinates are cho-
sen so that is standard advanced time, ize= at future Lou(U)=B(—xu)~ 1 (1.9

null infinity, and the retarded time= — on the black hole

event horizon. The stress-energy of cross-flowing null dust i€r large negative values of the coordinate _
In the limit asv—, the corresponding solution of Ein-

Lin(v) LoudU) stein’s equations is well approximated by
Taﬁ: 477["2 |a B"f‘ 477["2 nanB, (12) e_KU
el= (1.5
wherel ,=—4d,v andn,=—4d,u. The luminosity function r
Li,(v) is fixed by requiring that the flux of stress-energy g+l _q+i
across the event horizon decays as an inverse power of ad- rzzréH+ 2a(kv) B 2B(—ku) 16

vanced time, thus k*(q—1) k*(p—1)
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wherer ¢y is the constant radius of the Cauchy horizon inthat null singularities are always unstable to transformation
region Il. The square of the Weyl tensor diverges on thdnto crushing spacelike singularities of the BKL type.
Cauchy horizon in this solution, yet the radial function given

by Eq.(1.6) is non-zero for sufficiently largéu. ThiS indi— C. Discussion and overview of this paper

cates that the singularity is not a centraE0) singularity In this paper we demonstrate that a null singularity re-

with which we are familiar, in fact it is aull singularity. ; o
Spherical symmetry allows the introduction of a mass func-places the Cauchy horizon inside a black hole formed by

tion m(u,v) which is directly related to the Weyl curvature gravitation.al_coI!apse._The.method employed in the follow-
of the sp;acetime' ing analysis is similar in spirit to that of BK[2]; we use an

asymptotic expansion to find the leading order behavior of
1 the metric near the Cauchy horizon without making any as-
m(u,v)= ECW’M r3+q%r 1.7 sumptions about the symmetry of the spacetime. In this way
we show that the wave tail of gravitational collapse results in

the formation of a null curvature singularity at the Cauchy

v afe g q horizon.
Y (rv) 3= ru) (1.8 Our results should be compared with those obtained using

non-linear perturbation theory. In that context, @&i has
The divergence of this mass function@s> in region IV~ previously argued that a weak, null singularity is present
prompted Poisson and Israel to refer to the accompanyinglong the Cauchy horizon of a generic, rotating black hole.
scalar-curvature singularity asnaass inflatiorsingularity. Our analysis, being asymptotic, relies on physical arguments

Subsequently, Orf4] pointed out that physical objects to provide initial data near to the Cauchy horizon; in this
which encounter a mass-inflation singularity experience onlygense, it is a local analysis. Nevertheless, the results pre-
finite tidal distortion, even though the tidal forces acting onsented below embody all orders of perturbation theory and
the object diverge. In this sense, the mass-inflation singulariend further support to the claim that the perturbative ap-
ties are weak although the relevance of this point continueproach captures the essential features of spacetime structure
to be debatedl15,16. near the Cauchy horizon singularity inside a realistic, rotat-

A variety of spherical models have now been studieding black hole[5].

[17-19, all of them indicate the presence of a null, scalar Itis natural to use null coordinates to attack this problem
curvature singularity at the Cauchy horizon. The numericabince the Cauchy horizon is a null hypersurface. To facilitate
analyses i118] also demonstrate the slow contraction of thethe analysis we employ a double-null formaligi4] in

null generators of the Cauchy horizon to zero radius, and thehich spacetime is decomposed into two families of inter-
formation of a spacelike singularity deep inside the blacksecting null hypersurfaces. This decomposition of the Ein-
hole core. stein field equations is reviewed in Sec. Il where it is shown
that the most general double-null metric depends on six func-
tions of four variables. Interested readers are referred to
S ) Brady et al. [24] for more details.

While simplified models argue strongly in favor of weak,  The main assumption made in this paper is that the results
nuII_ S|ngular|t|es'|n5|de black holes, the results are regtr|cte@f scattering on the Kerr backgroun@5] are sufficient to
entirely to spherical symmetry. Nevertheless the physics bejetermine the initial data for the interior problem. This as-
hind the mass-inflation phenomenon is extremely generakymption and other physical considerations are discussed in
Perturbations originating in the external universe get infi-gec. ||1.
nitely blueshifted as they propagate close to the Cauchy ho- |5 sec. IV we present the essential features of our argu-
rizon resulting in a scalar curvature singularity through nonments in a simplified context where the gravitational field
!mear '|nteract|on with grgwty. Attempts _havg be_en made tohas only one dynamical degree of freedom. We carefully
investigate the problem in less symmetric situations.[8Fi  construct the solution in the neighborhood of the Cauchy
has used non-linear perturbation theory to examine backyorizon for this model problem. Moreover, we demonstrate

reaction of perturbations on the Kerr geometry. His resultghat the solution is characterized by a singularity at which the
support the existence of a weak, null singularity in this casewey| curvature diverges like

Bonanno[20] matched two radiating Kerr solutions along a

B. Beyond spherical symmetry

null hypersurface and showed, in the limit of small angular CapysCoP7o~y (2143 g2rw 1.9
momentum, that the mass-function diverges on a null hyper-
surface. asv—o at the Cauchy horizon. We show that the resulting

Brady and Chamberg21] demonstrated that weak, null spacetime is not algebraically special except at the singular-
singularities are consistent with the Einstein equations on &y, where it becomes asymptotically Petrov type N.
pair of intersecting null surfaces, and have investigated the The relevance of the simplified model is made clear in
rate of divergence of curvature on a null surface crossing th&ec. V where we present the general analysis. By neglecting
singularity. An important step has also been taken by Ori anderms in the field equations which we expect to be exponen-
Flanagar22] who argue that the vacuum, Einstein equationstially small near to the Cauchy horizon, it is shown that the
admit functionally generic solutions containing weak, null general solution is identical in character to that presented in
singularities. Their results invalidate local argumef22§] Sec. IV.
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Finally, we discuss the strength of the singularity in Sec. N =erg ur, (2.3
VI. While tidal forces experienced by an observer diverge at
the singularity, the integrated tidal distortion is finite. As  The pair of Vectorg;(aa), defined from Eq(2.1) by
discussed by Offi4,5], the singularity is therefore weak. We
emphasize that gravitational shock waves are the only type e(“a)=ax“/ﬂaa, (2.9
of curvature which can be confined to a thin layer in the
absence of mattdd5,26. This suggests that a classical con- are holonomic basis vectors tangent3oThe intrinsic met-
tinuation of spacetime beyond the Cauchy horizon is untic g, of Sis determined by their scalar products:
likely.

We adopt Misner, Thorne and Wheeler curvature conven- Uab=V0,s0 ) - (2.5
tions [27] with metric signature(—+++) throughout the
text. Greek indicesy,,... run from 0 to 3; upper-case Latin Lower-case Latin indices are lowered and raised vgip

indicesA,B, . .. take valueq0,1); and lower-case Latin in- and its inversgy®®. Sincel™® is normal to every vector in
dicesa,b, ... take valueg2,3. A we have
|Mea =0 (2.6)
II. DOUBLE NULL FORMALISM a “(a) ’ :

The complexity of the Einstein equations requires the Finally, introducing a pair of shift vectors, tangent taS
careful selection of a formalism with which to pursue our by
goal of understanding the nature of spacetime near null sin-
gularities. In[24] we have developed the necessary machin- ax* 2
ery based on a dual null decomposition of the Einstein field WZI(A>+SAe(a)' 27
equations. In this section we present those details which are
necessary for the application at hand. The interested readerds arbitrary displacememntx® in spacetime is
referred to[24] for a more complete treatment.

dx*=1{y du*+ el (d6*+spdu?). (2.9
A. Lightlike foliation of spacetime

. i , Thus, the final form of the line element used below to dis-
We suppose that we are given a foliation of spacetime by, ,«< the black hole interior is

lightlike hypersurface& ° with normal generators?®, and a

second, independent foliation by lightlike hypersurfads —gg2— e napdUAdUB+g,p(d 62+ s3duP) (d6°+ sBduB).

with generatord ™) nowhere parallel td(®. The intersec- 2.9

tions of {3° and {31} define a foliation of codimension 2

by spacelike 2-surfaces (The topology ofS is unspecified. We will impose further coordinate conditions as the need

All our considerations are localS has exactly two lightlike arises, but it is manifest that E.9) is sufficient to describe

normals at each of its points, co-directed wit® and|®). the most general spacetime admitted as a solution to the
In terms of local charts, the foliation is described by theEinstein field equations.

embedding relations

X“ZXO‘(UA, 6. 2.1) B. 242 decomposition of curvature
Following [24], the components of the Ricci tensor can be

Here, x* are four-dimensional spacetime co-ordinata8; compactly expressed in terms of two dimensionally covariant

=y andu'=u are a pair of scalar fields constant over eachquantities. In passing to these expression we must first intro-

of the hypersurface®® and 3* respectively. The intrinsic duce some notation. The extrinsic curvatureSaie defined

co-ordinatess® of the 2-spaces, each characterized by a by

fixed pair of values ¢°,u?), are convected along the vectors

alau™. 2K pab= e(aa)e(ﬁb)[(‘l)‘cl(A)gaB] =DaQap,  (2.10
It is convenient to effect a partial normalization of the o
lightlike vectorsl® by imposing the condition where g,5=4g,5— " nagl V1P =ePel)g,, is the spa-
e (A (B) o AB tial projection tensor, anéf”ﬁ,(A) is the four dimensional Lie
9l =ty derivative along ). We have also introduced the derivative
=eanti-diag —1,— 1) (2.2 operatord 5 acting on two-dimensional tensorial objects ac-

cording to the rule

for some scalar field (x%), reflecting the freedom to arbi-
trarily rescale a null vector. The superscrig) is used to
indicate four dimensional objects whenever confusion might _ ) ) ) o
arise. We can use”B and its inversey,p to raise and lower Hereﬁsi is the two-dimensional Lie derivativéGenerally
uppercase Latin indices. Furthermore, the vectéts are D, can be defined in a four-dimensionally covariant manner
parallel to the gradients af* allowing us to write by its action on spatial four tensof24];

DAXamb...:(aA_Lsi)Xamb...- (2.11
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DAxa---mee(aa>e(ﬁb)(4)£| (XC"'d...eer(pg))' (2.12 Some simplifying assumptions are required in order to
A make progress against the black-hole interior problem. We
thus providing a complete geometrical interpretatiorDof ~ clarify our approach below.
in terms of Lie derivatives.
The geometric meaning of the extrinsic curvature is illus- A. Physical considerations
trated by Lie propagating a circle dhalongl ). The ex-

pansion rate of the light rays is given by the trace of the The INner Cauchy horlzpn of a statlonary. b[apk hole.|s
o 2 ab unstable to linear perturbations that undergo infinite gravita-
extrinsic curvatureK ,=g*°K,,- The traceless part of the

extrinsic curvature K1y K is the shear of tional blueshift there. The central assumption of our analysis
the null con ruench;ga thAg[thizs??g As is that an asymptotic limit exists in which effects on the
9 ' geometry, inside a black hole formed by gravitational col-

0 =[1,1, 1o ]*=e% erB(Jps? — L g, 52 21 lapse, are dominated by gravitationally blueshifted tail-
U o @€ (7eSa—SepSa) (213 radiation which propagates into the black hole at late times

where e,g is the anti-symmetric tensor densitgq=1). (as measured by external obseryef$he postulated structure
Clearly w® is purely spatial. of spacetime inside the black hole is shown in Fig. 2. On
Finally, the expressions for the Ricci tensor are physical ground$30] one expects that the region between
the event horizon and the three dimensional spacelike sur-
DR = Raﬁe?a)e(ﬁb) face 2 can be adequately described by linear perturbation
o N A A theory—there is no physical mechanism to excite an insta-
=—20ap€ "(DaK"+KAK") bility of the interior before the blueshifting takes hold. We
1 examine the structure of spacetime in the region to the future
+e M —=DAopapt20a0 0 b)) + > 2Rgap of 3 and near to the Cauchy horizon, given initial data con-

sistent with scattering of a test gravitational wave field inside
1 a Kerr black holg 25].
Wawp— N.gp— E)\'a)\'b (2.19 The late-time wave tail of gravitational collapse produces
a flux of radiation across the black-hole event horizon which
decays as an inverse power-law of external advanced time
[29]. Starting from these initial conditions Of25] has ex-

—2\
—- e
2

Ras=Ragl ()| {5)= — D(aKp)— 5KaKp

1 amined the scattering of a test field inside a Kerr black hole.
— T pan0s + KaDg)A — > 7asl (DE+KE)DeA His results indicate that the amplitudes of test fields decay as

an inverse power-law in both retarded and advanced times

—e ol +(e)?,] (2.15 andv near toP in Fig. 2. Ori also argues that the decay of
non-axisymmetric modes is modulated by oscillatory terms

Raa= Raﬁe(“a)lfA) which originate from the rotation of the inner horizon with

respect to infinity, i.e. the oscillations are a direct conse-
guence of frame dragging in the Kerr geometry. Since these
oscillations have no counterpart in spherical symmetry it
seems worthwhile to outline Ori’'s argument here.

The line element for the Kerr spacetime, written in famil-
iar Boyer-Lindquist coordinates, is

b1 1 1
=0pa ;b_E(?aKA_ E(?aDA)\‘i‘ EKA(?a)\

1
+§eABe_)‘[(DB+ KBYw,— w,DB\], (2.1

where @R is the curvature scalar associated with the two- ds?=—(1—2Mr/p?)dt?+ (p?/A)dr?+ p?d6?+[r?+a?
metric , and a semi-colon indicates the two-dimensional . .
Gab +(2Mra?/ p?)sir?6]sirf 6d >

covariant derivative.
—(4Mralp?)sirf6d ¢dt, (3.1
1. ASSUMPTIONS

2,24 42 —2_ 2 _
The mathematical theory of black holes is well estab-v.\’herdep _; +a’ cos andA—r. h2Mr+a .dTEe solu
lished [28]. Indeed, it is widely accepted that the externalllon depends on two parameters: the misissand the angu-

geometry of a black hole formed by the gravitational col-1ar momentum per unit mass. .The equations governing .
lapse of a star is described by a Kerr-Newman solution aperturbatmns of the Kerr spacetime are not fully separable in
late times. The mechanism by which the black hole Semegoordinate spacethis indicates that the evolution of various

down to this stationary state was elucidated by Pigidor ~ Multipoles are coupled. However, Ori argues that the cou-
Jling between multipoles should be weak at late times so that

nearly spherical, uncharged collapse, and his results ha X e ! X
y Sp d D a good first approximation to the fields can be obtained by

been extended to other situations by several autf®g]. q a th h herical h . d solvi
These works provide the initial conditions for the interior @€€OMPOSIng them over the spherical harmonics, and solving

problem by determining the behavior of the radiative tail of

gravitational waves at the event horizon of the black hole: in

particular, the amplitude of the gravitational wave flux gen- 2However, one can separate the equations by Fourier transforming
erally decays as an inverse power of advanced time. the fields with respect tb and then completing the separation.
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Potential
Barrier

7+

FIG. 2. A schematic representation of the spacetime structure of a realistic black hole formed by the collapse of a rotating star. An
observer falling in with the surface of the star encounters a spacelike singularity indicated by the zig-zag line in the figure. Gravitational
radiation, originating from the stellar collapse, gets partially scattered into the black hole; at late times, this flux decays as an inverse power
of external advanced time™9. The radiation which crosses the event horiZ&h) gets scattered once again by the inner gravitational
potential barrierindicated in the figure The result is a flux of gravitational waves irradiating the Cauchy hor{@i) and causing it to
contract. Note that CH is located at= in these coordinates. The inset shows the set up of the characteristic initial value problem solved
in the text. The two initial characteristi&™*: u=uy, andX ~: v=v, are indicated. The shear along these characteristic surfaces has an
inverse power-law dependence on the advanced and retarded times reflecting the behavior of the late time wave tail of gravitational collapse.

the resulting equations while neglecting the coupling comHere F, and F, are functions to be determined, arfl
pletely. One then iterates to obtain better approximations te= $—Q _t. The source of the oscillations in the non-
the solutions. At late times, on a surface of constant coordiaxisymmetric modes is now obvious.
nater outside the event horizon, the field is given approxi- While this argument seems plausible, it is far from rigor-
mately by ous. In order to assess the complete significance of these
non-axisymmetric modes it would be necessary to establish
U, =F(r,)emot~(2+2), (3.2) the_ amplitudes of thesg terms at I_ate times, information
which is currently unavailable. For this reason we focus our
attention on the power-law decay of the wave tail; however,

wherel=|m|, andF is some function of both and 6. The  \ya do indicate where these oscillations might modify the
time dependence of this result has been verified numencallgnawsis_

by Krivan et al. [31]. Now, the coordinatep is badly be-
haved at the black hole event horizon. When the field is
expressed in terms of the regular coordinate= ¢— . t,

whereQ, =a/(2Mr ), and matched to the ingoing solution ~ While the conclusions of our analysis are couched in
at the event horizon=r , , one arrives at terms of physical observables, such as the tidal fofeesd

distortion experienced by observers approaching the singu-
larity inside a black hole, or in terms of curvature scalars, it

is extremely important to understand the coordinates used to
describe the spacetime.

In the final step, this ingoing solution gets matched to the The Cauchy horizon can be thought of as the extension of
solution near to the Cauchy horizédenoted by _) giving  future null infinity inside the black hole; that is, the Cauchy

B. Coordinate conditions

Wim=F,(6)e/M?+emPvy = (272), (3.3

the final expression horizon is located at infinite external advanced time. There-
fore it is convenient to fix the coordinateto be standard,
W, =[F,(§)em-vy=(2+2 e_xternal advanced time as measured by an observer far out-
side the black hole. Since the external geometry settles down
+F (9)emt-uy-@+2)]gimé_ (3.4  to a stationary state at late times, and the strength of the tail
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radiation crossing the black hole horizon decays, we assume A. The asymptotic form of the equations

)\ — K . . . . .
thate®~e ** asv—ce; this is known to hold in non-linear | the coordinates described above, the asymptotic regime
evolution of scalar fields in the spherical case, and is theyt interest is characterized by the exponentially small value
coordinate expression of the infinite gravitational blueshift ¢ o\ This is so because we have tailored our coordinates to
between the external universe and the Cauchy horizon. In thge physical mechanism which underlies the Cauchy horizon
subsequent analysis we will show that this assumption leadgqiapility_the gravitational blueshift. Moreover, the
to a self-consistent picture of the black-hole interior. The,;-,um Einstein equation@.14—(2.16 reduce to

approach adopted here is similar in spirit to that of BKXJ;
we neglect terms in the field equations which are suppressed
by the exponential factore* and solve the resulting —DaKg)=5KaKg= Tpab0s™+ K(aDp)
asymptotic equations.
The coordinateu is chosen so that it goes to negative 1 ELLUE
infinity at the event horizon of the black hole. In this way, it — 5 7a8(DTTKF)DeA=0 (4.4
can be taken to coincide with the natural retarded time coor-
dinate inside a Kerr black hole at late times. 1
Finally, the coordinate§? on the two surfaces of foliation —Epzhab(DAKA+ KaK?) = DAopapt 2008 ,004=0 (4.5
will be fixed as required by the analysis.

and

IV. A SIMPLIFIED MODEL—ALMOST PLANE
SYMMETRY b 1 1 1

) ) O'Aa;b_E&aKA_EaaDA)\"_ EKA&a)\zo, (46)
The goal of the present work is to examine the structure
of spacetime in the neighborhood of the Cauchy horizon of y
black hole formed by the collapse of a rotating star. The
essential features of our analysis are most clearly illustrate
in a slightly simplified context where the Cauchy horizon is
irradiated by gravitational waves of a single polarization—
this interpretation is motivated by the local “almost plane

symmetry” of the spacetime we consider below.

here we have discarded terms in the equations which are
amped by a pre-factar’.

In the following argument Eq4.6) constrains the depen-
dence of each of the dynamical variables @hnear to the
Cauchy horizon; it can be ignored until later. Contracting Eq.
(4.5) with h@° and substituting foK , andD 4 gives

In this section we se$,=0, writing the line element as (p?) 1w=0 4.7
ds?= —2e*dudv + p?h,,d 62d 6°, (4.1  Which is readily solved fop?:
p?=p3(6%)+L(v,6%)+R(u,6%). (4.9

where we allow the remaining metric functiop§ \ andh,,,
to depend on all the coordinatés,v,#%}. In addition, we Here py(6?) is assumed to be non-vanishing almost every-
assume that one may simultaneously choose coordinates where. The functions (v, 6%) and R(u, %) are determined

which the conformal metrib,, is diagonal, and write by the initial data. The precise form depends on the detailed
evolution of the gravitational field between the event horizon
hap d62d gb=e~28dx%+ e?Pdy? (4.2) and. We make some minimal assumptions below.
a . .

Substituting Eq.(4.7) into Eq. (4.5 provides a simple
equation for the shear, which can be expanded to a second
The assumption of vanishing shift vectors reduces the Ligyrder equation fop as
derivative operatord, to simple partial derivatives, i.e.
Da=da. As a result, the shear tensor has the simple form PB.utpPuBytp.uB.u=0. 4.9

. _ Defining a functionA b
Tnab=p2B a diad —e~ 2, e?F], 4.3 g y
A=\+Inp, (4.10

where a comma indicates partial differentiation. Similarly, d . ith .
the expansion rates of the null rays orthogonal to the surfacgdd contracting Eqi4.4) with 7ag gives

S are simply KA=2p_1p’A, and the twist, given by Eq. - ab
(2.13, vanishes identically. A o™~ Ouano ™ (.17
These additional assumptions reduce the H@sl4d-  \yhere the inhomogeneous term, o, 0= 28 .8, for the

(2.16 to a manageable form in which the central features oty atric in Eq.(4.2
our arguments are easily understood. Moreover, relaxing

these conditions in Sec. V results in equations which are

sufficiently similar in structure that only slight modification

of the following arguments are required to complete the gen- Initial data for Eqs.(4.4—(4.6) is provided on a pair of
eral analysis. characteristic surfaces, one of which crosses the Cauchy ho-

B. Initial conditions
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rizon as shown in Fig. 2. This is not completely satisfactory,This determines the function(v, #%), which can be written
as itassumeshe existence of the Cauchy horizon, at least onas

one initial characteristic surface. Ideally we would like to

place initial data on a spacelike surface, such aselow the _qs12Lpom( 62)]?

inner potential barrier, but on the past boundary of the region L(v,6%)=(xv)"" W[H' O(1hv)] (4.17)
of high blueshift. Unfortunately, this program is impractical

in the present context. Instead we insure that the solution Wg, he large v limit. The explicit form of R(u,6%) is
construct is consistent with such initial data—the S°|Uti°nunnecessary. It is sufficient to note thgR(u, 6%)—0 asu
could be smoothly matched to that of a stationary black hole | _

backgrounql with small perturbations: , With this information, it is straightforward to check that
The choice of external advanced timéo describe space- the curvature diverges as— along3.*, and that the be-

time near the Cauchy horizon implies thelt—0 on the ;o is consistent with the discussion in Brady and Cham-
Cauchy horizon. In particular, on the initial character|stlcbers[21]_

surfaceX ™ (u=ugy) we write

Al =Ao(6%) = k(v—vg)+-+- (4.12 C. The evolution

We now examine the solution determined by the initial
data constructed in the previous section. The evolution of the
gravitational degrees of freedofthe conformal two-metric

where Ay(6%) is its value on the two surfaces’
={3"NX7}, kis a constant with the dimension of inverse

!en_gth, and terms Wh',Ch, vanish n thg limit of— oo are  h,,) is dictated by the linear wave E@.9). Therefore the
indicated by dots. A similar condition is demanded BN (rucial step in determining the geometry of spacetime near
(v=wvo): the Cauchy horizon is to understand the evolutioggdfom
_ a which the gravitational shear is directly determineds Mvas
Al-=Ao(67) ~ r(u=ug)+-+- . @13 diverge the assumptions stated in Sec. Ill would be vio-
Up to the surface, on which effects of gravitational blue- lated, a_nd our entire analysis WO.UId break down.
shifting begin to take hold, the evolution of the decaying In th[s_almosfc plane symmetric model, we can construct
wave tail of gravitational collapse is well described by per-an 'expl'|c!t solution Of. Eq(4.9 and dimonstrate thed re-
turbation theory. To the future of this surface the large blueMamns finite, gnq use it to show thel °—0 on the Cauchy
shift suggests that geometric optics is valid, and that ingoing/©fizon for a finite range ai. For the general case presented
gravitational waves will be negligibly scattered by the gravi- n Sec. V we are not afforded the luxury .Of an exact solution,
therefore we also present a method which provides a useful

tational field. Consistent with this picture we write the initial bound he <h h hv hori - aulari
data for the shear as ound on t_ e shear near to the Cauchy horizon singularity
and is applicable in the general case.

Bols=(xkv) " (6% +--], (4.14 The linearity of Eq.(4.9 makes it directly amenable to
Fourier techniquegsee Appendix A however it is more
Bl =(—xu) P 1(6%) +-] illuminating to write the solution as a series
' (4.15

=Bo+p 1> Ap A[FD(V)+G (U 4.1
wheren(6%) andv(6?) are unspecified functions on the two B=Fote ig'o e V) (D] 418

surfaces which foliate the two initial characteristic hypersur-

faces. The inverse power-law decay is motivated by the bewhere V=L(v,6%), and U=R(u,6?). The notationF(~"
havior of the tail radiation crossing the event horizon of theindicates the-th integral of the functiorF (x)=F(©)(x) with
black hole. The precise nature of the outflux is irrelevantrespect tox. Inserting Eq.(4.18 into Eq. (4.15 and com-
although it must decay sufficiently fast as——c [14].  paring integrals of the same order gives the coefficients
While perturbation theory suggests that q, we allow for

more general behavior. The qualitative picture which (2i+1)2

emerges below remains unchanged proviged, decays at Air1=A A0+ (4.19
least as fast as~ %2 but not faster thae™ . In particular,

oscillatory terms which modulate the power-law decay, du : a ;

to differential rotation of the event horizon and the Cauch%k‘eei:]ﬁgtggtzlz(v)’ G(U) andAq(¢7) are determined by
horizon of a rotating black hole, do not change the importan . o .

features of the analysis below. These oscillatory terms will Differentiating Eq.(4.18 with respect ta and compar-

. . ; ing with the initial data alon@ ™ determines in the limit
show up as the higher order corrections in E@s14 and p—c 10 be given by

(4.15.
Using Egs.(4.14) and(4.15 we can now solve Raychau- —qp2
duri’s equation forp? on " [obtained from Eq(4.4) by F(l)&vL(v,Ga)zM[u(aawr---], (4.20
settingB=A=v]: 2A
(p?) o= (p%) oA = —2p%(B,)>. (4.1  from which one can extract the behaviorBfto be
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po( kv)t~ 2

P 0= 2=q)

[ (6%)+--]. (4.21)

Given the solution4.21) andL(v,6?) in Eq. (4.17) one
derives the recursion relation
(kv)*td
(i+1)(1—q)+1—q/2’

FOImD=p(-) (4.22

Combining Eqs(4.22), (4.21) and(4.19 it is easy to check
that the sum oveF (" converges to a finite result provided
g>3—the boundary conditions for the radiative tail at the
event horizon actually implg=14.

It follows that the leading order term in E@4.18 is
proportional toF since F(™)(V)>F(1-1(v) for largev.
This shows thatg , continues to decay with an inverse

power-law form all along the Cauchy horizon provided it has
such a decay on the initial surface. Similar arguments pro

vide G.
We can now use Ed4.18 to compute the source term in
Eq. (4.11) and hence determine the evolution ®fto be

u v
A:A|,(u,0a)—f<(v—vo)—j du'f dv’ oyano, 2.
Uo vo
4.23
The integrand in EQ.(4.23 is proportional to 8,8,
~(kv) %2 asv—o, consequently the integral is finite in

this limit provided q>2 as we have already required.
Clearly, A diverges to negative infinity at the Cauchy hori-
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FIG. 3. The complex plane showing a schematic representation
of the roots of Eq(4.27). The arrows indicate the evolution of the
roots asv—o. The roots become degenerate in the asymptotic
imit, but they do not exhibit any peeling like properties. This sug-
gests that the Cauchy horizon singularity is Petrov Type N, and can
be thought of intuitively as a shock wave propagating into the black

hole.

Notice that¥, andW¥; are non-zero, this arises because the
spacetime is not exactly plane symmetric. The square of the
Weyl curvature Caﬁyth"ﬁV‘s diverges asv—x at the
Cauchy horizon, and is dominated by the radiative piece
VoV, on this tetrad. Degeneracy of the roots of the polyno-
mial

a*¥,+av,+a’¥,+av;+¥,=0 4.27

zon in precisely the same manner as it does along the initial

hypersurfaces, *, that is
(4.24

A~—kv

asv—o0. Equation(4.6) provides a final consistency check
on the solution.

Having determined the approximate solution to Egs.

(4.4—(4.6) near to the Cauchy horizon we are in a position

determines the Petrov classification of the spacefig8.
Brady and Chamber21] demonstrated a four-fold degen-
eracy in the limit thaty — on 3 ™. Using Eqgs.(4.26) one
shows that this statement continues to hold near to the
Cauchy horizon but away froly ™, that is, the diverging
curvature is asymptotically Petrov type N. This suggests the
intuitive physical picture of the singularity as a gravitational
shock wave propagating along the Cauchy horizdhis

to examine the curvature. It is convenient to consider thevorth noting however that this approach to type N behavior

Newman-Penrose components of the Weyl tensor on the b
sis

—}\/2|(

{e M) .e 1),€aM?, €M, (4.29

wherem? is a complex two-vectofcalled the shear axis

which satisfies_]abZZm(aﬁb). The leading behavior of each
of the Weyl scalars is presented below:

Vo=e Mxv) Y —ku(6)+--]
Wy =—e M ko) VMg pur)(—ru) PP 4]
Wo=e"Mwv) V[ — (6% v(6%)(— ku)P2+--]
Wa=e M (ko) VMg, (puy)(— ku) PR+ ]

V= M= ku) P —kv(6?)+--].

(4.2

46 not characterized by a peeling property as it is at large

distances outside the black hole. Indeedh?
—* =4V, /¥, asv— so that all four roots tend to zero.
This behavior is indicated schematically in Fig 3.

D. Alternative bounds

The most important step in validating the approximation
adopted in this paper is to show thelt—0 asv— o every-
where along the Cauchy horizon. In the simple model space-
time examined above, we have the explicit solut{dil8
for the metric functionB which determines the shear tensors
through(4.3). Once the shear tensors are known, the evolu-
tion of A is given by the integral equatiof@®.23. The lin-

3This interpretation is somewhat simplistic since the curvature
scalarcaﬂy(sC“ﬂy‘s vanishes identically in the case of a gravita-
tional shock wave.
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earity of the wave equatio(.9) allows the direct computa- where the coefficients are given by
tion of B, and the explicit verification that the integral
appearing in Eq(4.23 vanishes in the limiv — oo, 2 — — —

In a general spacetime, the evolution of the shear tensors 2= 174 (k0) %= &) ~P(u=Uo) (v = vo)
are described by a non-linear wave equation for which no (4.35
exact solution is known. However, it is still possible to place

2
/wp

bounds on the integral appearing in E4.23 by using the /WP(Z) 2 o .
field equations, thus verifying tha—0 asv—x. Al- b=4x( = ) (kv) U —ku) P(u—up+v—vg)=0
though this procedure is unnecessary here, it is instructive to kp
apply it first to this case before considering the general non- (4.39
linear problem in the succeeding section.

First define a new functiog which is proportional to the c=ax? ©L PO (Kv) 9~ k)~ P=0. 437
integrand: Kp? '

§(up,0%)=2B 8. (428 Clearly, if the coefficient in this inequality is negative, then

Multiplying the wave Eq4.9) for Bby B, , itis not difficult no boynq can be placed on the maX|mum_v.aIl.Je§.dﬂ9W-
to derive ’ ever, ifa is positive, then the upper bound gns just given

by é<b/2a+ (b%+4ac)Y42a. Hence, it is important to de-
termine the sign of the coefficielat, which will depend on
the relative magnitudes of the two contributionsato

Now, consider the magnitude of the second term in Eq.
(4.395. At a fixed value ofu, this term is proportional to
(kv) "9 (v—vg). In the characteristic diamon(the region
above the characteristi®" andX ~ in Fig. 2) the advanced

1
au[pz(ﬁ,v)z]:_i(pz),vg' (429)

Integrating Eq.(4.29 with respect tou, making use of the
characteristic initial datd4.14 and the solution4.17) for
thev dependence g2, we find

[ (63 po(6)]%(kv) T u time coordinates andv, satisfy
(B,)?= &du
) sz(u,v,ea) " .
(430) KU?KU()>1.
for u>ug. As a result, ((U) qK(U vo)<<1 in the reg|on of interest.

Suppose that at a point with coordinatesv whereu  Theu dependence of this term igu] ~Px(u— uo). Note that
e[ug,u] andv. €[vo.v], the largest value of the functiogh  for all points in the characteristic diamonjl|<v and |ul

occurs such that(u,v)=¢. We denote the value of any <|ug|. It then follows that
function evaluated at this point with an overbar. The partial

derivative of 8 evaluated at this point is bounded by K(U—Ug) < k|Ug| < kv
[ (6% po( ga)]Z(KU_)fq _ _ so the second term @ is proportional to
Bi= = (k+(U-up§). (430 B o B B
Kp k(U—Ug) k(v —vo)(kv) 9 ku| "P<(kv) 9"2|ku| P<1,

A similar bound on the square of the partial derivativegof (4.39

with respect tau can be derived, if q=3. The prefactor 4¢vp2/«xp?)? which multiplies the

[1(6%)p (aa)]Z(_Ka)fp - . expression4.38 in Eq. (4.35 is finite, and as a result, the
B = 0 = (k+(v—vp)é). coefficienta is positive and approximately unity. Hence the
’ Kp quadratic inequality can be used to place the following limit
(4.32 oné
I_tthen follows from these bounds and from the definition of o2
¢ that the inequality £<2 M_pO(KU_)_q/Z( —ku) P2, (4.39
_2_ _2 _2 /'L pO q p . H H'H
§&=4p, B <4 (kv)~9(—xu)~ A recent calculatiof25] suggests that the correct initial
Kp data forB should be an inverse power la#.14 modulated
X (k+ (U= Ug) &) (k+ (0 —v0) E) (4.33 by an oscillatory function of the form cogf). Note that the

arguments leading to the bou@l39 will be unaltered by a
must be satisfied if the field equations are satisfied. Thignodulation of this sort, since the cosine function is bounded

inequality can be rearranged into the form by one. o
L Given the bound4.39 on ¢, we are now in a position to
ag’—bé—c=<0 (4.39) integrate Eq(4.23 and solve for the metric function,
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A(u,v,ea)s/\l_(u,aa)—K(v—vo)—(u—uo)(v—vo)g =2pDphgp. As in thg prev_io.u_s section osciIIatory terms
(4.40 have been neglected in the initial data because their presence
does not alter the qualitative features of the subsequent
Since we have shown that is bounded by a vanishingly analysis.
small function, the integrated term in E@.40 is negligible The analysis of the generic case is performed in the same
compared to the homogeneous terms which arise from th@Pirit as in the “almost plane” case, and follows closely the

initial data. Hencee” vanishes at the Cauchy horizon for all Steps taken in the last section. As before, the solution of the
u>ug. metric functionp on au=const characteristic is found by

solving Raychaudhuri’s equation,
V. THE GENERIC CASE (pz),vv_(pz),vA,v: _P2|0'u|21 (5.4)

Our attention so far has focused on the toy model of the
interior presented in the previous section. Our approach wa¥
to use a metric with only three free functions of four vari-
ables, and choose initial data motivated by the theory of
scattered fields on a stationary background. Although the algiven the assumption@.12 and(5.2) for the behaviors of
most plane symmetric model of the previous section does not ando,,, on =", we find asymptotically,
have sufficient degrees of freedom to describe the evolution
of generic gravitational perturbations, the model is useful p?| 1 (v,6%)=p3(6%)+L(v,6%), (5.6
since we were able to write an explicit solution and show ] ) )
that a weak, null curvature singularity occurs at the spaceWhereL(v,6°) is the same functiof4.17) found in the plane
time’s Cauchy horizon. The importance of the toy model will SYmmetric spacetime.
become apparent in this section where we show that the met-
ric of a general spacetime near to a Cauchy horizon is, to A. The shift and twist vectors

leading order, nearly identical to the almost plane symmetric - The pnon-vanishing shift means that the congruence of null

metric. _ _ _ _rays undergoes some twist. Given our gauge choice, the twist
The metric used to study the generic evolution of gravi-is related to the shift by

tational perturbations is the genera#-2 metric (2.9). As
this metric has eight functions, there exists the gauge free- 0?=—9,s. (5.7
dom to set two functions to zero. We choose to set the shift

vectors®=0. As a result, the normal Lie derivative operator The vacuum field equatioR,,=0 (2.16 specifies the be-
D, reduces to the partial derivative,. The general metric havior of the twist on a constant hypersurface:

which we use is then

here we have defined the norm of a two-tensor to be

|oal?= o oan™ (5.9

(9,+K,—d,\)wid=e"j? (5.8

ds?=—2eMdudy + p2h,,(d 82+ s?du)(d6°+ sPdu).
e"dudv +p ab( Sy U)( Sy U)(5.1) where

ja_— b 1 1 1
where the conformal two-metria,, has unit determinart 1°=2(0, ap= 204K, = 3020, A + 3K, 92N) - (5.9
= deflh,|=1 and hence only represents two free functions, independent of?. We can formally integrate E@5.8) to
In the previous section we set one of these functions to zerg

but here we will consider the evolution of the general formget

of the conformal two-metric. For the present, we will not et v

choose any particular representation Igy, . wi=— wg(u,ea>+f dv’p?j a}, (5.10
The choice of coordinates and characteristic initial data p vo

are motivated by the discussion presented in Sec. Ill. As a . a o . A
result of our coordinate conditions, we assume that on thgvhere the functionwg(u, 6%) is determined by the initial data

- n N
initial characteristics,* and >~ the form of the function onx”. OnE_ , thev dependence of thg funct|0|_]|§|+ are
A=\+In pis given by Eqs(4.12 and(4.13 as in the plane known to be inverse power laws, so the integral in &qL0

symmetric spacetime. The power law initial data for thevanlshes asymptotically and the twist behaves like

gravitational perturbations can be set by specifyimg on e
the initial characteristics or, equivalently, by setting the val- 0, == wf(Uy, %) —exp —kv), v—e. (5.11)
ues of the shear tensors to P
~v2 —q/2 02) +- -], 52 Hence the twist vector is exponentially suppresse&dn
Tvasl+ (rcv) " pan %) | ®2 In our problem, we still have the freedom to fix coordi-
Tuatl - =V2(— kW) P vp(67)+- -], nates along one hypersurface of constari4]. A natural

choice is to ask that given coordinatésat one point on the
(5.3 . |
Cauchy horizon, they stay constant when Lie convectelq, by
where u,, and v,, are traceless two-tensor$)?®u,,  along the Cauchy horizon. This is equivalent to the statement
=hp,,=0 and the shear tensors are defined dyy,, thatsi=0 on the Cauchy horizon. Given this boundary con-
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dition, and a solution for the twist, the shift vector can bewith positive definite entries, and the norm of a two tensor
found by integrating Eq(5.7). On 3" the shift vector be- |0 4% was defined in Eq(5.5). The divergence of,g is
haves as

1
B_ a A b A a b
53|+"’exq_KU), v—s00. (512 aBtA —87T(O'Bb (9A0' a +20 b &[AUB]a ) (515)

On the initial characteristi¥ * the shift vector is also expo- The anti-symmetric derivative of the shear occurring in the
nentially suppressed. second term of Eq5.15 is related to the twist as has been
The behavior of the shift and twist vectors on later hyper-shown in Appendix B of Ref{24] and is thus exponentially
surfaces will depend on the behavior of the functiphsand ~ small compared to the first term of E¢p.15. Substituting

hence of the shear and the metric functiprend A on later ~ the vacuum field Ed5.13) into Eq. (5.19 we find the fol-
hypersurfaces. In the next part of our analysis, we will asdowing evolution law for the components ofg:
sume that the shift and twist vectors are exponentially sup- 1 1
pressed on later hypersurfaces, solve the resulting equations, il 2 By _ _— b D a A
and show that this assumption is self-consistent. The effect p° I8(p7ta") = ~ 75, Kaga o 7p" + O(€7). (5,16
of this assumption is that to leading ordergh the shift and ,
twist vectors drop out of the vacuum evolution equations.!N€ quantity
The field equation¥R,,g*°=0 reduces to Eq(4.7) for p. 1
As in the plane symmetric spacetime, the general solution &=— E,;Dl,ﬂbnga: g'uab()'vba (5.17
for p is p?=p3+L(v,60%)+R(u,6%). The field equation
Ry, =0 reduces to Eq4.11) for A. The formal solution for o, the right hand side of this equation is the same quantity
/_\ on later hypersurfaces is again given by the integral €qU35pnearing in Eq(4.11) for the metric functiom. By placing
tion (4.23. bounds on¢, using Eq.(5.16), we can show that the func-
tional form of the initial dataA|, on3* is a good approxi-
B. The evolution of the shear mation for the form ofA on later hypersurfaces.
The most significant difference between the general light- First note that the definitiot5.17) for ¢ reduces to Eq.
like geometry and the model in Sec. IV is the form of the (4.28 in the case of the plane wave metfi1). In compo-
shear tensorsya,. In Sec. IV we assumed that the shearnent form the field equation$.16 are

tensors have a simple diagonal form, which resulted in a 2 12— _ 9 2
propagation equatio®.9) linear in shear. As a result, it was Pl 9P"¢ (.18
fairly simple to show that regular power law initial data for d,(p2| |2 = — a,p2¢ (5.19

the shear evolves via the field equations to a regular solution

on later hypersurfaces which also decays as an inverse poWghich are reminiscent of E¢.29. In fact, since¢ satisfies

law. In this section we allow a generalon-diagonaiform  the Schwartz inequality&|?<|c,|? 0|2, the argument en-
for the shear tensors. Although the resulting wave equatiogapsulated in Eq$4.29—(4.40 hold for the general double-
describing the evolution of the shear is non linear the arguny|| metric given the assumption made in Sec. Ill.

ment presented in the last section can still be used to place a
limit on possible divergences of the shear.

. . C. Solution of the initial value problem
The evolution of the shear tensors is governed by P

As mentioned before the dynamical degrees of freedom

_@pa 1 @ d are encoded in the shear tensors. Once we have fixed a gauge
0=""R%— §5ab R and know the dynamic evolution for the shear we can in
principle calculate all the metric functions. Initial data for the
=e N Dpc? P+ Kao?,P)+0(1), (5.13  shear is supplied o~ in the form of a pair of traceless

tensorso, ap(v, 6%)| + and oyan(U, 6%)| - given by Egs(5.2)
where we have made use of the fact that the twist and shifind (5.3). Since the evolution equations for the shear are
vectors are exponentially suppressed in our approximatioRon-linear we do not expect to find a closed form solution,
scheme. Although Eq5.13 is linear in the shear tensor, it however we can construct an approximate solution along the
should be noted that,,?= :ha%9,h,. which is non-linear in  lines of Eq.(4.18. Write the conformal metric explicitly as

h f I - ic. Thus Eq5.13 i -li .
the conformal two-metric us Ed5.13 is a non-linear =28 coshy sinh

wave equation for the two-metric. hop = (5.20
It is useful to introduce the following matrix: ab sinh y e?# coshy/’ '
1 ) 1 b b The equations for the function and y are then
tae= g | Tra Oy 5 ABTDa O b
[p cosliy)B,,]ut[p cosliy)],B,,=0 (5.21
1 o
= di 2512 (PYo)utpoyu=2sinl2y)B B .,
- diag|o|%]0,]%) (5.19 v v v (5,22

084034-12



LATE-TIME SINGULARITY INSIDE NONSPHERICAL . .. PHYSICAL REVIEW D 58 084034

where we have neglected the terms involving the shift which 2eh
is exponentially suppressed according to the arguments dSZZK—VdUdV+ p?hap(d6?+s3du)(d6°+sidu).
above. It is reasonable to assume thatfshy) , should be P 6.1)
weakly dependent on, so that we can integrate E(p.21)
for g and obtain Combining Eqs(4.24 and(4.8) with the definition ofV it is
clear that*g,, is bounded as/—0, i.e., at the Cauchy
Bin(v,X%) 4+ Bou U, x?) horizon.
B= p coshy : (5.23 What is the relevance of this coordinate system to obser-

vations? This is somewhat clarified by re-stating the result;

Notice that this reduces to the leading term in the seried€reé exists a coordinate system in which twice integrating
solution for 8 presented in Eqi4.18 when y=0. Since the the_: curvature with respect to the new adv_anced thgives
shear is bounded and small according to the arguments f finité result. It turns out that the proper timeneasured by
Sec. V B, we further expect that the non-linear term in Eq.2n observer crossing the Cauchy horizon satisfies/, so
(5.22) can be treated as a source, that is, we assumeytisat t_he tlc_igl acce_leratlon experl_enced _by_thls observer diverges
slowly varying in the region of interest to us. Moreover, this ke 7~ “(In|7)™" as the null singularity is approached, where
term involves the producg , 3, which is effectively qua- n=2|+3. The tidal distortion is given by twice integrating
dratic in the luminosity of the infalling gravitational wave this acceleration along the worldline of the observer, and it is
tail, and therefore less important than the boundary termdinite all the way up to the singularity. This rough argument

Thus we have suggests that the regularity of the metric, when written in
terms of the coordinat®¥/, indicates that the singularity at
V=0 is weak, in the sense that tidal distortion of an ex-
Gin(v, X%+ Ggufu,x? o
~ in(, X5+ Gouf ), (5.24  tended object is finite there.
p The interpretation of this result is somewhat unclear. One

might be tempted to think about the singularity along the
Finally, we fix the four free functions which appear in this Cauchy horizon as an “impulsive” singularity—while an
solution by reference to the initial data in Ed$.3) and infinite force is exerted, it acts only for a very short time.
(5.2. The validity of these approximations has been con-Sych a viewpoint has been adopted by some authors and
firmed by Droz by numerically integrating the equationstaken to indicate that a classical continuation of spacetime
[32]. beyond the Cauchy horizon singularity might exi5]. Un-

For vanishing shifts Eqg4.4)—(4.6) continue to hold as fortunately, this point of view seems problematic since clas-
no assumptions about the form of the shear have been madgal physics provides no mechanism by which to regulate
in their derivation. The analysis proceeds along the samehe curvature once it diverges: orpyre gravitational shock
lines as in the previous section, except that the source to thgaves can be confined to a thin layer in classical general
wave-equation(4.11) has a more complicated functional relativity [15]. Indeed, we know that quantum effects are
form, but it is still small and decaying. We therefore recoverimportant in the description of spacetime near the Cauchy
the result in Eq.(4.24 for A. Similarly the functionp® is  horizon singularity (see, for example, the discussions in

recovered from integrating Raychauduri’s equations. [33,34)), and may dramatically change the classical picture.
It is now straightforward to check that the asymptotic be-

havior of the Weyl scalars is of the same form as in Egs.
(4.26—the terms inside the square brackets are different for
the general case, however the scalingiiandv are identi- Our results strongly indicate that a wide class of initial
cal. Hence the intuitive picture of the singularity as a gravi-data can lead to the formation of a weak, null curvature
tational shock propagating along the Cauchy horizon continsingularity inside a black hole formed by gravitational col-
ues to be valid in the generic case. Thus, we havédapse. The analysis, which is valid at late times near to the
demonstrated that the generic structure of the Cauchy horgingularity, demonstrates that the null character of the singu-
zon singularity is qualitatively captured by the almost planelarity is independent of the initial data provided the flux of
symmetric model of Sec. IV, and the Cauchy horizon singu+adiation entering the black hole at late times falls off more
larity occurs for generic perturbatiortas long as the initial quickly thatv ~3, that is the sheaw,,,0,2° decays at least

VII. CONCLUSION

data is not too singuldr32)). this fast along the event horizon. Moreover, our approximate
solution depends on 22 functions (o,a5(Ug,v),
VI. STRENGTH OF THE SINGULARITY 0pan(U,00), tr oaap="0) corresponding to the physical de-

grees of freedom of the gravitational field, and we can there-
One of remarkable things about the mass-inflation singufore claim that the null singularity is generic amibt an

larity inside charged, spherical black holes is that it is wealartifact of special symmetry.
in the sense that a coordinate system exists in which the It is important to compare our results to those of previous
spacetime metric is regular at the singulafiy5]. A similar  analyses. Ori has investigated the singularity inside a realis-
result holds in the context of the approximate solution pretic, rotating black hole using non-linear perturbation theory
sented in the previous section. By introducing a new coordif5]. The picture of a weak, null singularity that emerges from
nateV=—e  **, the asymptotic form of the line element is our work is in agreement with the results of his analysis.
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Furthermore, our results lend support to Ori’s claim that theworked out by Yurtsevel35]. For completeness, we present

perturbative approach captures the essential features bfs derivation here and clarify why the isomorphism between

spacetime structure in the neighborhood of the Cauchy horithe internal geometries of rotating black holes and colliding

zon singularity. plane wave spacetimes does not imply that singularities in-
Some work remains to be done, however. In sphericakide black holes are generically spacelike. See [B&f.for a

models, the null Cauchy horizon singularity is a precursor ofrelated argument.

a strong spacelike singularity deep inside the black hole core Equation(4.7) for the conformal factop? can be viewed

[18,36. A similar result presumably holds for realistic rotat- as an integrability condition for a coordinate transformation

ing black holes, however little is known about this situation.from the null coordinatesu,v) to new coordinatesd y)

We have also seen in Sec. Il A that linearized perturbationslefined by

of the Kerr black hole may be modulated by terms which s 2 . .

oscillate infinitely many times as—o; it is important to a=p“=pytL(v,6%)+R(U,6% (A1)

determine how significant these oscillations are for the varia- a a

tion of curvature as measured by an observer approaching x=L(v,6%)—=R(u,6%. (A2)

the Cauchy horizon singularity. Two approaches seem WortNotice thata is a time coordinate since we are inside the

lpursumg :O gurt'yhertﬁxplorg ;]h's |ssu(a:).(lj|near and NON” — event horizon of the black hole. In terms of these coordinates
Inéar perturbation eori(l )l Can provide an answer, Iy, 5y equatiod.9) for B becomes
principle, however it requires the difficult computation of the

relative amplitudes of all the terms in the perturbation series; Ba
(i) an alternative approach is provided by numerical tech- Baa= Byt =
niques, similar to those used in the spherical ¢ag¢ While

double null formulations of numerical relativity encounter  Since Eq.(A3) is manifestly independent of time, we
serious problems when caustics form along the characteristieliminate y using a Fourier transform. The result is Bessel's
surfaces used in the evolution, we have in this problem a&quation ina so that the solution is

well understood regime in which such coordinate difficulties

can Surely be overcome. B:,BO+ jdk ék)( [C(k)Yo(“(la)+d(k)J0(|k|a)]

—=o0. (A3)
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