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Late-time singularity inside nonspherical black holes
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It was long believed that the singularity inside a realistic, rotating black hole must be spacelike. However,
studies of the internal geometry of black holes indicate a more complicated structure is typical. While it seems
likely that an observer falling into a black hole with the collapsing star encounters a crushing spacelike
singularity, an observer falling in at late times generally reaches a null singularity which is vastly different in
character to the standard Belinsky, Khalatnikov, and Lifschitz~BKL ! spacelike singularity@V. A. Belinsky, I.
M. Khalatnikov, and E. M. Lifshitz, Sov. Phys. JETP32, 169~1970!#. In the spirit of the classic work of BKL
we present an asymptotic analysis of the null singularity inside a realistic black hole. Motivated by current
understanding of spherical models, we argue that the Einstein equations reduce to a simple form in the
neighborhood of the null singularity. The main results arising from this approach are demonstrated using an
almost plane symmetric model. The analysis shows that the null singularity results from the blueshift of the
late-time gravitational wave tail; the amplitude of these gravitational waves is taken to decay as an inverse
power of advanced time as suggested by perturbation theory. The divergence of the Weyl curvature at the null
singularity is dominated by the propagating modes of the gravitational field, that is,CabgdCabgd;C0C4

;v2(2l 13)e2kv, asv→` at the Cauchy horizon. Here,C0 andC4 are the Newman-Penrose Weyl scalars, and
l>2 is the multipole order of the perturbations crossing the event horizon. The null singularity is weak in the
sense that tidal distortion remains bounded along timelike geodesics crossing the Cauchy horizon. These
results are in agreement with previous analyses of black hole interiors. We briefly discuss some outstanding
problems which must be resolved before the picture of the generic black hole interior is complete.
@S0556-2821~98!04118-6#

PACS number~s!: 04.70.Bw, 04.20.Dw
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I. INTRODUCTION

Spacetime singularities are an inevitable consequenc
the Einstein field equations. They mark the boundary
spacetime, and the limit of our current understanding
gravitational physics. Unfortunately, the powerful techniqu
used to demonstrate the existence of singularities say not
about the character of these physical blemishes@1#.

The classic works of Belinsky, Khalatnikov and Lifschi
~BKL ! @2# address this deficiency by integrating Einstein
equations in the neighborhood of a spacelike singular
They present compelling evidence that the general solu
takes an inhomogeneous Kasner form exhibiting chaotic
cillations of the Kasner axes as a crushing singularity is
proached@2#. The functional genericity of the BKL solution
is widely interpreted as indicating that all physical singula
ties must be of this form.

Nonetheless, studies of the internal geometry of bla
holes suggest a picture involving two distinct regimes. O
servers falling into the black hole with the collapsing s
generally encounter a spacelike singularity~which is presum-
ably of the BKL type!. On the other hand, observers that f
in at late times, when the external geometry has settled d
to an almost stationary state, encounter a weak,
0556-2821/98/58~8!/084034~15!/$15.00 58 0840
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singularity1 of a type similar to the mass-inflation singulari
of Poisson and Israel@3#.

To understand this behavior we must first discuss the
mation of a black hole by the gravitational collapse of
rotating star. At late times, the external gravitational field
believed to settle down to a Kerr-Newman solution. The
solutions have a timelike singularity which is preceded b
Cauchy horizon—a null hypersurface marking the bound
of the domain of dependence for Cauchy data prescribe
the black hole exterior. The Cauchy horizon is non-singu
and the spacetime can be analytically extended throug
The global solution then suggests that black holes ac
tunnels from our asymptotically flat universe to other iden
cal, but distinct, universes. Indeed there is an infinite latt
of universes extending into the past and future of our ow
Furthermore, observers may travel through the ring singu
ity inside these black holes, passing to achronal regions
spacetime.

In the late 1960s Penrose pointed out that the Cau
horizon inside such a black hole is unstable@6#. Time-
dependent perturbations originating outside the black h

1The weakness of the mass-inflation singularity was first elu
dated by Ori in Refs.@4, 5#.
© 1998 The American Physical Society34-1
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get infinitely blueshifted as they propagate inwards nea
the Cauchy horizon, consequently, the energy density a
ciated with these perturbations diverges as measured
free-falling observer attempting to cross through the horiz
Perturbative calculations@7# in Reissner-Nordstro¨m and Kerr
spacetimes have validated Penrose’s original arguments

In general, gravitational collapse is expected to be as
metric, so that gravitational and electro-magnetic waves
emitted by a newly formed black hole as it settles down t
stationary, axisymmetric state. Detailed studies of pertur
tions of black hole geometries show that such gravitatio
wave emission results in wave tails which decay accordin
an inverse power law of time in the exterior of the black ho
@8,9#. Some of this radiation inevitably crosses the event
rizon getting infinitely blueshifted near to the Cauchy ho
zon. For this reason one might expect the internal geom
of a black hole formed by collapse is significantly differe
to that of the exact stationary solutions.

A. Spherical models of black hole interiors

The first attempts to understand the back-reaction of
blueshifted, radiative tail on the internal geometry of bla
holes were restricted to spherical symmetry. Hiscock@10#
argued that Isaacson’s@11# effective stress-energy descrip
tion of high-frequency gravitational waves should be va
near the Cauchy horizon. He considered a charged black
with a directed influx of lightlike dust with stress-energ
tensorTab5r inl al b wherel al a50, and showed that an ob
server dependent singularity forms along the Cauchy hori
in this circumstance.

In reality, some of the infalling radiation is back-scatter
off the curvature inside the event horizon. Poisson and Is
@3# modeled this effect by another flux of lightlike dust mo
ing to the right; they demonstrated, for the first time, th
non-linear effects transform the Cauchy horizon into a sc
curvature singularity. It is worth summarizing the essence
their argument here.

Figure 1 shows the setting for the characteristic init
value problem. Charged ingoing and outgoing Vaidya so
tions in regions II and III, respectively, are matched contin
ously onto region I, which is described by a static Reissn
Nordström solution with massm0 and chargeq. ~The pure
ingoing region, II, was studied by Hiscock.! In region IV the
line element can be written as

ds2522eldudv1r 2~du21sin2 udf2!, ~1.1!

wherer 5r (u,v) andl5l(u,v). The coordinates are cho
sen so thatv is standard advanced time, i.e.v5` at future
null infinity, and the retarded timeu52` on the black hole
event horizon. The stress-energy of cross-flowing null dus

Tab5
L in~v !

4pr 2 l al b1
Lout~u!

4pr 2 nanb , ~1.2!

where l a52]av and na52]au. The luminosity function
L in(v) is fixed by requiring that the flux of stress-ener
across the event horizon decays as an inverse power o
vanced time, thus
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Lin~v !5a~kv !2q, ~1.3!

with q54l 16, wherel is the multipole order of the perturb
ing field, fixed by Price’s analysis@8#. The constanta de-
pends on the luminosity of the star that collapses to form
black hole, andk is taken to be the surface gravity of th
stationary segment of the Cauchy horizon in region II. T
functional form is motivated by our understanding of rad
tive tails in the exterior of the black hole@8#. The outflux is
produced by scattering of ingoing tail radiation inside t
black hole, and consequently also has a power law fo
@7,12–14#

Lout~u!5b~2ku!2q ~1.4!

for large negative values of the coordinateu.
In the limit asv→`, the corresponding solution of Ein

stein’s equations is well approximated by

el.
e2kv

r
~1.5!

r 2.r CH
2 1

2a~kv !2q11

k2~q21!
2

2b~2ku!2q11

k2~p21!
, ~1.6!

FIG. 1. The Poisson-Israel spherical model of the black h
interior. The infalling wave-tail of gravitational radiation, and i
scattered component, are modeled by lightlike dust. The regio
purely ingoing~outgoing! dust is indicated by II~III ! in the figure,
and is described by a charged Vaidya solution. The solutions
regions II and III are matched to a Reissner-Nordstro¨m solution
~region I! along the null raysv5v0 andu5u0 . As usualI1 and
I2 denote future and past null infinity. The inflow causes the
parent horizon~AH! to expand and smoothly approach the eve
horizon ~EH! of the final black hole. The outflow in region IV
causes the, initially static, Cauchy horizon~CH! to contract. This,
together with the fatal blue shift experienced by the inflow, cau
a curvature singularity to develop along CH.
4-2
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LATE-TIME SINGULARITY INSIDE NONSPHERICAL . . . PHYSICAL REVIEW D 58 084034
where r CH is the constant radius of the Cauchy horizon
region II. The square of the Weyl tensor diverges on
Cauchy horizon in this solution, yet the radial function giv
by Eq. ~1.6! is non-zero for sufficiently largeuuu. This indi-
cates that the singularity is not a central (r 50) singularity
with which we are familiar, in fact it is anull singularity.
Spherical symmetry allows the introduction of a mass fu
tion m(u,v) which is directly related to the Weyl curvatur
of the spacetime:

m~u,v !5S 1

2
Cuf

uf r 31q2/r D ~1.7!

——→
v→` abekv

kr 2 ~kv !2q~2ku!2q. ~1.8!

The divergence of this mass function asv→` in region IV
prompted Poisson and Israel to refer to the accompan
scalar-curvature singularity as amass inflationsingularity.

Subsequently, Ori@4# pointed out that physical object
which encounter a mass-inflation singularity experience o
finite tidal distortion, even though the tidal forces acting
the object diverge. In this sense, the mass-inflation singu
ties are weak although the relevance of this point contin
to be debated@15,16#.

A variety of spherical models have now been stud
@17–19#, all of them indicate the presence of a null, sca
curvature singularity at the Cauchy horizon. The numeri
analyses in@18# also demonstrate the slow contraction of t
null generators of the Cauchy horizon to zero radius, and
formation of a spacelike singularity deep inside the bla
hole core.

B. Beyond spherical symmetry

While simplified models argue strongly in favor of wea
null singularities inside black holes, the results are restric
entirely to spherical symmetry. Nevertheless the physics
hind the mass-inflation phenomenon is extremely gene
Perturbations originating in the external universe get in
nitely blueshifted as they propagate close to the Cauchy
rizon resulting in a scalar curvature singularity through no
linear interaction with gravity. Attempts have been made
investigate the problem in less symmetric situations. Ori@5#
has used non-linear perturbation theory to examine ba
reaction of perturbations on the Kerr geometry. His resu
support the existence of a weak, null singularity in this ca
Bonanno@20# matched two radiating Kerr solutions along
null hypersurface and showed, in the limit of small angu
momentum, that the mass-function diverges on a null hyp
surface.

Brady and Chambers@21# demonstrated that weak, nu
singularities are consistent with the Einstein equations o
pair of intersecting null surfaces, and have investigated
rate of divergence of curvature on a null surface crossing
singularity. An important step has also been taken by Ori
Flanagan@22# who argue that the vacuum, Einstein equatio
admit functionally generic solutions containing weak, n
singularities. Their results invalidate local arguments@23#
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that null singularities are always unstable to transformat
into crushing spacelike singularities of the BKL type.

C. Discussion and overview of this paper

In this paper we demonstrate that a null singularity
places the Cauchy horizon inside a black hole formed
gravitational collapse. The method employed in the follo
ing analysis is similar in spirit to that of BKL@2#; we use an
asymptotic expansion to find the leading order behavior
the metric near the Cauchy horizon without making any
sumptions about the symmetry of the spacetime. In this w
we show that the wave tail of gravitational collapse results
the formation of a null curvature singularity at the Cauc
horizon.

Our results should be compared with those obtained us
non-linear perturbation theory. In that context, Ori@5# has
previously argued that a weak, null singularity is prese
along the Cauchy horizon of a generic, rotating black ho
Our analysis, being asymptotic, relies on physical argume
to provide initial data near to the Cauchy horizon; in th
sense, it is a local analysis. Nevertheless, the results
sented below embody all orders of perturbation theory a
lend further support to the claim that the perturbative a
proach captures the essential features of spacetime stru
near the Cauchy horizon singularity inside a realistic, rot
ing black hole@5#.

It is natural to use null coordinates to attack this proble
since the Cauchy horizon is a null hypersurface. To facilit
the analysis we employ a double-null formalism@24# in
which spacetime is decomposed into two families of int
secting null hypersurfaces. This decomposition of the E
stein field equations is reviewed in Sec. II where it is sho
that the most general double-null metric depends on six fu
tions of four variables. Interested readers are referred
Brady et al. @24# for more details.

The main assumption made in this paper is that the res
of scattering on the Kerr background@25# are sufficient to
determine the initial data for the interior problem. This a
sumption and other physical considerations are discusse
Sec. III.

In Sec. IV we present the essential features of our ar
ments in a simplified context where the gravitational fie
has only one dynamical degree of freedom. We carefu
construct the solution in the neighborhood of the Cauc
horizon for this model problem. Moreover, we demonstr
that the solution is characterized by a singularity at which
Weyl curvature diverges like

CabgdCabgd;v2~2l 13!e2kv ~1.9!

asv→` at the Cauchy horizon. We show that the resulti
spacetime is not algebraically special except at the singu
ity, where it becomes asymptotically Petrov type N.

The relevance of the simplified model is made clear
Sec. V where we present the general analysis. By neglec
terms in the field equations which we expect to be expon
tially small near to the Cauchy horizon, it is shown that t
general solution is identical in character to that presente
Sec. IV.
4-3
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PATRICK R. BRADY, SERGE DROZ, AND SHARON M. MORSINK PHYSICAL REVIEW D58 084034
Finally, we discuss the strength of the singularity in S
VI. While tidal forces experienced by an observer diverge
the singularity, the integrated tidal distortion is finite. A
discussed by Ori@4,5#, the singularity is therefore weak. W
emphasize that gravitational shock waves are the only t
of curvature which can be confined to a thin layer in t
absence of matter@15,26#. This suggests that a classical co
tinuation of spacetime beyond the Cauchy horizon is
likely.

We adopt Misner, Thorne and Wheeler curvature conv
tions @27# with metric signature~2111! throughout the
text. Greek indicesa,b,... run from 0 to 3; upper-case Lati
indicesA,B, . . . take values~0,1!; and lower-case Latin in-
dicesa,b, . . . take values~2,3!.

II. DOUBLE NULL FORMALISM

The complexity of the Einstein equations requires
careful selection of a formalism with which to pursue o
goal of understanding the nature of spacetime near null
gularities. In@24# we have developed the necessary mach
ery based on a dual null decomposition of the Einstein fi
equations. In this section we present those details which
necessary for the application at hand. The interested read
referred to@24# for a more complete treatment.

A. Lightlike foliation of spacetime

We suppose that we are given a foliation of spacetime
lightlike hypersurfacesS0 with normal generatorsl (0), and a
second, independent foliation by lightlike hypersurfacesS1

with generatorsl (1) nowhere parallel tol (0). The intersec-
tions of $S0% and $S1% define a foliation of codimension 2
by spacelike 2-surfacesS. ~The topology ofS is unspecified.
All our considerations are local.! S has exactly two lightlike
normals at each of its points, co-directed withl (0) and l (1).

In terms of local charts, the foliation is described by t
embedding relations

xa5xa~uA,ua!. ~2.1!

Here, xa are four-dimensional spacetime co-ordinates;u0

5v andu15u are a pair of scalar fields constant over ea
of the hypersurfacesS0 and S1 respectively. The intrinsic
co-ordinatesua of the 2-spacesS, each characterized by
fixed pair of values (u0,u1), are convected along the vecto
]/]uA.

It is convenient to effect a partial normalization of th
lightlike vectorsl (A) by imposing the condition

~4!gabl a
~A!l b

~B!5elhAB

[elanti-diag~21,21! ~2.2!

for some scalar fieldl(xa), reflecting the freedom to arbi
trarily rescale a null vector. The superscript~4! is used to
indicate four dimensional objects whenever confusion mi
arise. We can usehAB and its inversehAB to raise and lower
uppercase Latin indices. Furthermore, the vectorsl (A) are
parallel to the gradients ofuA allowing us to write
08403
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The pair of vectorse(a)
a , defined from Eq.~2.1! by

e~a!
a 5]xa/]ua, ~2.4!

are holonomic basis vectors tangent toS. The intrinsic met-
ric gab of S is determined by their scalar products:

gab5 ~4!gabe~a!
a e~b!

b . ~2.5!

Lower-case Latin indices are lowered and raised withgab

and its inversegab. Since l (A) is normal to every vector in
SA, we have

l a
~A!e~a!

a 50. ~2.6!

Finally, introducing a pair of shift vectorssA
a tangent toS

by

]xa

]uA 5 l ~A!
a 1sA

ae~a!
a , ~2.7!

an arbitrary displacementdxa in spacetime is

dxa5 l ~A!
a duA1e~a!

a ~dua1sA
aduA!. ~2.8!

Thus, the final form of the line element used below to d
cuss the black hole interior is

ds25elhABduAduB1gab~dua1sA
aduA!~dub1sB

bduB!.
~2.9!

We will impose further coordinate conditions as the ne
arises, but it is manifest that Eq.~2.9! is sufficient to describe
the most general spacetime admitted as a solution to
Einstein field equations.

B. 212 decomposition of curvature

Following @24#, the components of the Ricci tensor can
compactly expressed in terms of two dimensionally covari
quantities. In passing to these expression we must first in
duce some notation. The extrinsic curvatures ofS are defined
by

2KAab[e~a!
a e~b!

b @ ~4!Ll ~A!
ḡab#5DAgab , ~2.10!

where ḡab5 (4)gab2elhABl a
(A)l b

(B)5ea
(a)eb

(b)gab is the spa-
tial projection tensor, and(4)Ll (A)

is the four dimensional Lie

derivative alongl (A) . We have also introduced the derivativ
operatorsDA acting on two-dimensional tensorial objects a
cording to the rule

DAXa...
b...5~]A2L s

A
d !Xa...

b... . ~2.11!

HereL s
A
d is the two-dimensional Lie derivative.@Generally

DA can be defined in a four-dimensionally covariant man
by its action on spatial four tensors@24#;
4-4
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LATE-TIME SINGULARITY INSIDE NONSPHERICAL . . . PHYSICAL REVIEW D 58 084034
DAXa...
b...[ea

~a!e~b!
b ~4!Ll ~A!

~Xc...
d...e~c!

a eb
~d!!, ~2.12!

thus providing a complete geometrical interpretation ofDA
in terms of Lie derivatives.#

The geometric meaning of the extrinsic curvature is illu
trated by Lie propagating a circle onS along l (A) . The ex-
pansion rate of the light rays is given by the trace of
extrinsic curvatureKA[gabKAab . The traceless part of th
extrinsic curvature,sAab[KAab2

1
2 gabKA , is the shear of

the null congruence, and the twist is

va[@ l ~1! ,l ~0!#
a5e~a!

a eAB~]BsA
a2sB

b]bsA
a ! ~2.13!

where eAB is the anti-symmetric tensor density (e0151).
Clearly va is purely spatial.

Finally, the expressions for the Ricci tensor are

~4!Rab5Rabe~a!
a e~b!

b

52 1
2 gabe

2l~DAKA1KAKA!

1e2l~2DAsAab12sA(a
dsA

b)d!1
1

2
~2!Rgab

2
1

2
e22lvavb2l ;ab2

1

2
l ,al ,b ~2.14!

RAB5Rabl ~A!
a l ~B!

b 52D (AKB)2
1
2 KAKB

2sAabsB
ab1K (ADB)l2

1

2
hAB@~DE1KE!DEl

2e2lvava1~el! ;a
;a# ~2.15!

RAa5Rabe~a!
a l ~A!

b

5sAa
b

;b2 1
2 ]aKA2

1

2
]aDAl1

1

2
KA]al

1
1

2
eABe2l@~DB1KB!va2vaDBl#, ~2.16!

where (2)R is the curvature scalar associated with the tw
metric gab , and a semi-colon indicates the two-dimension
covariant derivative.

III. ASSUMPTIONS

The mathematical theory of black holes is well esta
lished @28#. Indeed, it is widely accepted that the extern
geometry of a black hole formed by the gravitational c
lapse of a star is described by a Kerr-Newman solution
late times. The mechanism by which the black hole set
down to this stationary state was elucidated by Price@8# for
nearly spherical, uncharged collapse, and his results h
been extended to other situations by several authors@9,29#.
These works provide the initial conditions for the interi
problem by determining the behavior of the radiative tail
gravitational waves at the event horizon of the black hole
particular, the amplitude of the gravitational wave flux ge
erally decays as an inverse power of advanced time.
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Some simplifying assumptions are required in order
make progress against the black-hole interior problem.
clarify our approach below.

A. Physical considerations

The inner Cauchy horizon of a stationary black hole
unstable to linear perturbations that undergo infinite grav
tional blueshift there. The central assumption of our analy
is that an asymptotic limit exists in which effects on th
geometry, inside a black hole formed by gravitational c
lapse, are dominated by gravitationally blueshifted ta
radiation which propagates into the black hole at late tim
~as measured by external observers!. The postulated structure
of spacetime inside the black hole is shown in Fig. 2.
physical grounds@30# one expects that the region betwe
the event horizon and the three dimensional spacelike
face S can be adequately described by linear perturbat
theory—there is no physical mechanism to excite an ins
bility of the interior before the blueshifting takes hold. W
examine the structure of spacetime in the region to the fu
of S and near to the Cauchy horizon, given initial data co
sistent with scattering of a test gravitational wave field ins
a Kerr black hole@25#.

The late-time wave tail of gravitational collapse produc
a flux of radiation across the black-hole event horizon wh
decays as an inverse power-law of external advanced
@29#. Starting from these initial conditions Ori@25# has ex-
amined the scattering of a test field inside a Kerr black ho
His results indicate that the amplitudes of test fields deca
an inverse power-law in both retarded and advanced timeu
andv near toP in Fig. 2. Ori also argues that the decay
non-axisymmetric modes is modulated by oscillatory ter
which originate from the rotation of the inner horizon wi
respect to infinity, i.e. the oscillations are a direct con
quence of frame dragging in the Kerr geometry. Since th
oscillations have no counterpart in spherical symmetry
seems worthwhile to outline Ori’s argument here.

The line element for the Kerr spacetime, written in fam
iar Boyer-Lindquist coordinates, is

ds252~122Mr /r2!dt21~r2/D!dr21r2du21@r 21a2

1~2Mra2/r2!sin2u#sin2udf2

2~4Mra/r2!sin2udfdt, ~3.1!

wherer25r 21a2 cos2 u and D5r 222Mr 1a2. The solu-
tion depends on two parameters: the massM , and the angu-
lar momentum per unit massa. The equations governing
perturbations of the Kerr spacetime are not fully separabl
coordinate space,2 this indicates that the evolution of variou
multipoles are coupled. However, Ori argues that the c
pling between multipoles should be weak at late times so
a good first approximation to the fields can be obtained
decomposing them over the spherical harmonics, and sol

2However, one can separate the equations by Fourier transform
the fields with respect tot and then completing the separation.
4-5
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FIG. 2. A schematic representation of the spacetime structure of a realistic black hole formed by the collapse of a rotating
observer falling in with the surface of the star encounters a spacelike singularity indicated by the zig-zag line in the figure. Grav
radiation, originating from the stellar collapse, gets partially scattered into the black hole; at late times, this flux decays as an inver
of external advanced timev2q. The radiation which crosses the event horizon~EH! gets scattered once again by the inner gravitatio
potential barrier~indicated in the figure!. The result is a flux of gravitational waves irradiating the Cauchy horizon~CH! and causing it to
contract. Note that CH is located atv5` in these coordinates. The inset shows the set up of the characteristic initial value problem
in the text. The two initial characteristicsS1: u5u0 and S2: v5v0 are indicated. The shear along these characteristic surfaces h
inverse power-law dependence on the advanced and retarded times reflecting the behavior of the late time wave tail of gravitationa
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the resulting equations while neglecting the coupling co
pletely. One then iterates to obtain better approximation
the solutions. At late times, on a surface of constant coo
nater outside the event horizon, the field is given appro
mately by

C lm.F~r ,u!eimft2~2l 12!, ~3.2!

wherel>umu, andF is some function of bothr andu. The
time dependence of this result has been verified numeric
by Krivan et al. @31#. Now, the coordinatef is badly be-
haved at the black hole event horizon. When the field
expressed in terms of the regular coordinatef15f2V1t,
whereV15a/(2Mr 1), and matched to the ingoing solutio
at the event horizonr 5r 1 , one arrives at

C lm.F1~u!eimf1eimV1vv2~2l 12!. ~3.3!

In the final step, this ingoing solution gets matched to
solution near to the Cauchy horizon~denoted byr 2! giving
the final expression

C lm.@Fv~u!eimV2vv2~2l 12!

1Fu~u!eimV2uu2~2l 12!#eimf2. ~3.4!
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Here Fu and Fv are functions to be determined, andf2

5f2V2t. The source of the oscillations in the non
axisymmetric modes is now obvious.

While this argument seems plausible, it is far from rigo
ous. In order to assess the complete significance of th
non-axisymmetric modes it would be necessary to estab
the amplitudes of these terms at late times, informat
which is currently unavailable. For this reason we focus o
attention on the power-law decay of the wave tail; howev
we do indicate where these oscillations might modify t
analysis.

B. Coordinate conditions

While the conclusions of our analysis are couched
terms of physical observables, such as the tidal forces~and
distortion! experienced by observers approaching the sin
larity inside a black hole, or in terms of curvature scalars
is extremely important to understand the coordinates use
describe the spacetime.

The Cauchy horizon can be thought of as the extensio
future null infinity inside the black hole; that is, the Cauch
horizon is located at infinite external advanced time. The
fore it is convenient to fix the coordinatev to be standard,
external advanced time as measured by an observer far
side the black hole. Since the external geometry settles d
to a stationary state at late times, and the strength of the
4-6
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radiation crossing the black hole horizon decays, we ass
that el;e2kv asv→`; this is known to hold in non-linea
evolution of scalar fields in the spherical case, and is
coordinate expression of the infinite gravitational bluesh
between the external universe and the Cauchy horizon. In
subsequent analysis we will show that this assumption le
to a self-consistent picture of the black-hole interior. T
approach adopted here is similar in spirit to that of BKL@2#;
we neglect terms in the field equations which are suppres
by the exponential factorel and solve the resulting
asymptotic equations.

The coordinateu is chosen so that it goes to negati
infinity at the event horizon of the black hole. In this way,
can be taken to coincide with the natural retarded time co
dinate inside a Kerr black hole at late times.

Finally, the coordinatesua on the two surfaces of foliation
will be fixed as required by the analysis.

IV. A SIMPLIFIED MODEL—ALMOST PLANE
SYMMETRY

The goal of the present work is to examine the struct
of spacetime in the neighborhood of the Cauchy horizon o
black hole formed by the collapse of a rotating star. T
essential features of our analysis are most clearly illustra
in a slightly simplified context where the Cauchy horizon
irradiated by gravitational waves of a single polarization
this interpretation is motivated by the local ‘‘almost pla
symmetry’’ of the spacetime we consider below.

In this section we setsA[0, writing the line element as

ds2522eldudv1r2habduadub, ~4.1!

where we allow the remaining metric functionsr2, l andhab
to depend on all the coordinates$u,v,ua%. In addition, we
assume that one may simultaneously choose coordinate
which the conformal metrichab is diagonal, and write

hab duadub5e22bdx21e2bdy2. ~4.2!

The assumption of vanishing shift vectors reduces the
derivative operatorsDA to simple partial derivatives, i.e
DA5]A . As a result, the shear tensor has the simple for

sAab5r2b ,A diag@2e22b,e2b#, ~4.3!

where a comma indicates partial differentiation. Similar
the expansion rates of the null rays orthogonal to the surfa
S are simply KA52r21r ,A , and the twist, given by Eq
~2.13!, vanishes identically.

These additional assumptions reduce the Eqs.~2.14!–
~2.16! to a manageable form in which the central features
our arguments are easily understood. Moreover, relax
these conditions in Sec. V results in equations which
sufficiently similar in structure that only slight modificatio
of the following arguments are required to complete the g
eral analysis.
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A. The asymptotic form of the equations

In the coordinates described above, the asymptotic reg
of interest is characterized by the exponentially small va
of el. This is so because we have tailored our coordinate
the physical mechanism which underlies the Cauchy hori
instability—the gravitational blueshift. Moreover, th
vacuum Einstein equations~2.14!–~2.16! reduce to

2D (AKB)2
1

2
KAKB2sAabsB

ab1K (ADB)l

2
1

2
hAB~DE1KE!DEl.0 ~4.4!

2
1

2
r2hab~DAKA1KAKA!2DAsAab12sA(a

d sb)d
A .0 ~4.5!

and

sAa;b
b 2 1

2 ]aKA2
1

2
]aDAl1

1

2
KA]al.0, ~4.6!

where we have discarded terms in the equations which
damped by a pre-factorel.

In the following argument Eq.~4.6! constrains the depen
dence of each of the dynamical variables onua near to the
Cauchy horizon; it can be ignored until later. Contracting E
~4.5! with hab and substituting forKA andDA gives

~r2! ,uv.0 ~4.7!

which is readily solved forr2:

r2.r0
2~ua!1L~v,ua!1R~u,ua!. ~4.8!

Here r0(ua) is assumed to be non-vanishing almost eve
where. The functionsL(v,ua) and R(u,ua) are determined
by the initial data. The precise form depends on the deta
evolution of the gravitational field between the event horiz
andS. We make some minimal assumptions below.

Substituting Eq.~4.7! into Eq. ~4.5! provides a simple
equation for the shear, which can be expanded to a sec
order equation forb as

rb ,uv1r ,ub ,v1r ,vb ,u.0. ~4.9!

Defining a functionL by

L5l1 ln r, ~4.10!

and contracting Eq.~4.4! with hAB gives

L ,uv.2suabsv
ab , ~4.11!

where the inhomogeneous termsuabsv
ab52b ,ub ,v for the

metric in Eq.~4.2!

B. Initial conditions

Initial data for Eqs.~4.4!–~4.6! is provided on a pair of
characteristic surfaces, one of which crosses the Cauchy
4-7
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rizon as shown in Fig. 2. This is not completely satisfacto
as itassumesthe existence of the Cauchy horizon, at least
one initial characteristic surface. Ideally we would like
place initial data on a spacelike surface, such asS, below the
inner potential barrier, but on the past boundary of the reg
of high blueshift. Unfortunately, this program is impractic
in the present context. Instead we insure that the solution
construct is consistent with such initial data—the solut
could be smoothly matched to that of a stationary black h
background with small perturbations.

The choice of external advanced timev to describe space
time near the Cauchy horizon implies thatel→0 on the
Cauchy horizon. In particular, on the initial characteris
surfaceS1 (u5u0) we write

Lu1.L0~ua!2k~v2v0!1¯ ~4.12!

where L0(ua) is its value on the two surfaceS0

5$S1ùS2%, k is a constant with the dimension of invers
length, and terms which vanish in the limit ofv→` are
indicated by dots. A similar condition is demanded onS2

(v5v0):

Lu2.L0~ua!2k~u2u0!1¯ . ~4.13!

Up to the surfaceS on which effects of gravitational blue
shifting begin to take hold, the evolution of the decayi
wave tail of gravitational collapse is well described by p
turbation theory. To the future of this surface the large bl
shift suggests that geometric optics is valid, and that ingo
gravitational waves will be negligibly scattered by the gra
tational field. Consistent with this picture we write the initi
data for the shear as

b ,vu1.~kv !2q/2@m~ua!1¯#, ~4.14!

b ,uu2.~2ku!2p/2@n~ua!1¯#,
~4.15!

wherem(ua) andn(ua) are unspecified functions on the tw
surfaces which foliate the two initial characteristic hypers
faces. The inverse power-law decay is motivated by the
havior of the tail radiation crossing the event horizon of t
black hole. The precise nature of the outflux is irreleva
although it must decay sufficiently fast asu→2` @14#.
While perturbation theory suggests thatp5q, we allow for
more general behavior. The qualitative picture whi
emerges below remains unchanged providedb ,vu1 decays at
least as fast asv23/2 but not faster thane2kv. In particular,
oscillatory terms which modulate the power-law decay, d
to differential rotation of the event horizon and the Cauc
horizon of a rotating black hole, do not change the import
features of the analysis below. These oscillatory terms
show up as the higher order corrections in Eqs.~4.14! and
~4.15!.

Using Eqs.~4.14! and~4.15! we can now solve Raychau
duri’s equation forr2 on S1 @obtained from Eq.~4.4! by
settingB5A5v#:

~r2! ,vv2~r2! ,vL ,v522r2~b ,v!2. ~4.16!
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This determines the functionL(v,ua), which can be written
as

L~v,ua!.~kv !2q11
2@r0m~ua!#2

k2~q21!
@11O~1/v !# ~4.17!

in the large v limit. The explicit form of R(u,ua) is
unnecessary. It is sufficient to note that]uR(u,ua)→0 asu
→2`.

With this information, it is straightforward to check tha
the curvature diverges asv→` alongS1, and that the be-
havior is consistent with the discussion in Brady and Cha
bers@21#.

C. The evolution

We now examine the solution determined by the init
data constructed in the previous section. The evolution of
gravitational degrees of freedom~the conformal two-metric
hab! is dictated by the linear wave Eq.~4.9!. Therefore the
crucial step in determining the geometry of spacetime n
the Cauchy horizon is to understand the evolution ofb from
which the gravitational shear is directly determined. Ifb was
to diverge the assumptions stated in Sec. III would be v
lated, and our entire analysis would break down.

In this almost plane symmetric model, we can constr
an explicit solution of Eq.~4.9! and demonstrate thatb re-
mains finite, and use it to show thate2L→0 on the Cauchy
horizon for a finite range ofu. For the general case present
in Sec. V we are not afforded the luxury of an exact solutio
therefore we also present a method which provides a us
bound on the shear near to the Cauchy horizon singula
and is applicable in the general case.

The linearity of Eq.~4.9! makes it directly amenable to
Fourier techniques~see Appendix A!, however it is more
illuminating to write the solution as a series

b5b01r21(
i>0

Air
22i@F ~2 i !~V!1G~2 i !~U !# ~4.18!

where V5L(v,ua), and U5R(u,ua). The notationF (2 i )

indicates thei -th integral of the functionF(x)[F (0)(x) with
respect tox. Inserting Eq.~4.18! into Eq. ~4.15! and com-
paring integrals of the same order gives the coefficients

Ai 115Ai

~2i 11!2

4~ i 11!
. ~4.19!

The functionsF(V), G(U) and A0(ua) are determined by
the initial data.

Differentiating Eq.~4.18! with respect tov and compar-
ing with the initial data alongS1 determinesF in the limit
v→` to be given by

F ~1!]vL~v,ua!.
r0~kv !2q/2

2A0
@m~ua!1¯#, ~4.20!

from which one can extract the behavior ofF to be
4-8
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LATE-TIME SINGULARITY INSIDE NONSPHERICAL . . . PHYSICAL REVIEW D 58 084034
F~v,u!.
r0~kv !12q/2

A0k~22q!
@m~ua!1¯#. ~4.21!

Given the solution~4.21! and L(v,ua) in Eq. ~4.17! one
derives the recursion relation

F ~2 i 21!5F ~2 i !
~kv !12q

~ i 11!~12q!112q/2
. ~4.22!

Combining Eqs.~4.22!, ~4.21! and ~4.19! it is easy to check
that the sum overF (2 i ) converges to a finite result provide
q.3—the boundary conditions for the radiative tail at t
event horizon actually implyq>14.

It follows that the leading order term in Eq.~4.18! is
proportional toF sinceF (2 i )(V)@F (2 i 21)(V) for large v.
This shows thatb ,v continues to decay with an invers
power-law form all along the Cauchy horizon provided it h
such a decay on the initial surface. Similar arguments p
vide G.

We can now use Eq.~4.18! to compute the source term i
Eq. ~4.11! and hence determine the evolution ofL to be

L.Lu2~u,ua!2k~v2v0!2E
u0

u

du8E
v0

v
dv8suabsv

ab.

~4.23!

The integrand in Eq.~4.23! is proportional to b ,ub ,v
;(kv)2q/2 as v→`, consequently the integral is finite i
this limit provided q.2 as we have already require
Clearly, L diverges to negative infinity at the Cauchy ho
zon in precisely the same manner as it does along the in
hypersurfaceS1, that is

L;2kv ~4.24!

asv→`. Equation~4.6! provides a final consistency chec
on the solution.

Having determined the approximate solution to E
~4.4!–~4.6! near to the Cauchy horizon we are in a positi
to examine the curvature. It is convenient to consider
Newman-Penrose components of the Weyl tensor on the
sis

$e2l/2l ~0! ,e2l/2l ~1! ,e~a!m
a,e~a!m̄

a%, ~4.25!

where ma is a complex two-vector~called the shear axis!

which satisfiesgab52m(am̄b) . The leading behavior of eac
of the Weyl scalars is presented below:

C05e2l~kv !2q/2@2km~ua!1¯#

C152e2l/2~kv !2q/2@ma]a~mn!~2ku!2p/2111¯#

C25e2l~kv !2q/2@2m~ua!n~ua!~2ku!2p/21¯#

C35e2l/2~kv !2q/211@m̄a]a~mn!~2ku!2p/21¯#

C45e2l~2ku!2p/2@2kn~ua!1¯#. ~4.26!
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Notice thatC1 andC3 are non-zero, this arises because t
spacetime is not exactly plane symmetric. The square of
Weyl curvature CabgdCabgd diverges asv→` at the
Cauchy horizon, and is dominated by the radiative pie
C0C4 on this tetrad. Degeneracy of the roots of the polyn
mial

a4C41a3C31a2C21aC11C050 ~4.27!

determines the Petrov classification of the spacetime@28#.
Brady and Chambers@21# demonstrated a four-fold degen
eracy in the limit thatv→` on S1. Using Eqs.~4.26! one
shows that this statement continues to hold near to
Cauchy horizon but away fromS1, that is, the diverging
curvature is asymptotically Petrov type N. This suggests
intuitive physical picture of the singularity as a gravitation
shock wave propagating along the Cauchy horizon.3 It is
worth noting however that this approach to type N behav
is not characterized by a peeling property as it is at la
distances outside the black hole. Indeeda2

→6A24C0 /C4 asv→` so that all four roots tend to zero
This behavior is indicated schematically in Fig 3.

D. Alternative bounds

The most important step in validating the approximati
adopted in this paper is to show thateL→0 asv→` every-
where along the Cauchy horizon. In the simple model spa
time examined above, we have the explicit solution~4.18!
for the metric functionb which determines the shear tenso
through~4.3!. Once the shear tensors are known, the evo
tion of L is given by the integral equation~4.23!. The lin-

3This interpretation is somewhat simplistic since the curvat
scalarCabgdCabgd vanishes identically in the case of a gravit
tional shock wave.

FIG. 3. The complex plane showing a schematic representa
of the roots of Eq.~4.27!. The arrows indicate the evolution of th
roots asv→`. The roots become degenerate in the asympto
limit, but they do not exhibit any peeling like properties. This su
gests that the Cauchy horizon singularity is Petrov Type N, and
be thought of intuitively as a shock wave propagating into the bl
hole.
4-9
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earity of the wave equation~4.9! allows the direct computa
tion of b, and the explicit verification that the integra
appearing in Eq.~4.23! vanishes in the limitv→`.

In a general spacetime, the evolution of the shear ten
are described by a non-linear wave equation for which
exact solution is known. However, it is still possible to pla
bounds on the integral appearing in Eq.~4.23! by using the
field equations, thus verifying thateL→0 as v→`. Al-
though this procedure is unnecessary here, it is instructiv
apply it first to this case before considering the general n
linear problem in the succeeding section.

First define a new functionj which is proportional to the
integrand:

j~u,v,ua!52b ,ub ,v . ~4.28!

Multiplying the wave Eq~4.9! for b by b ,v , it is not difficult
to derive

]u@r2~b ,v!2#52
1

2
~r2! ,vj. ~4.29!

Integrating Eq.~4.29! with respect tou, making use of the
characteristic initial data~4.14! and the solution~4.17! for
the v dependence ofr2, we find

~b ,v!25
@m~ua!r0~ua!#2~kv !2q

kr2~u,v,ua! S k1E
u0

u

jduD
~4.30!

for u.u0 .
Suppose that at a point with coordinatesū, v̄ where ū

P@u0 ,u# and v̄P@v0 ,v#, the largest value of the functionj
occurs such thatj(ū,v̄)5 j̄. We denote the value of an
function evaluated at this point with an overbar. The par
derivative ofb evaluated at this point is bounded by

b̄ ,v
2 <

@m~ua!r0~ua!#2~k v̄ !2q

kr̄2
~k1~ ū2u0!j̄ !. ~4.31!

A similar bound on the square of the partial derivative ofb
with respect tou can be derived,

b̄ ,u
2 <

@n~ua!r0~ua!#2~2kū!2p

kr̄2
~k1~ v̄2v0!j̄ !.

~4.32!

It then follows from these bounds and from the definition
j̄ that the inequality

j̄254b̄ ,v
2 b̄ ,u

2 <4S mnr0
2

kr̄2 D 2

~k v̄ !2q~2kū!2p

3~k1~ ū2u0!j̄ !~k1~ v̄2v0!j̄ ! ~4.33!

must be satisfied if the field equations are satisfied. T
inequality can be rearranged into the form

aj̄22bj̄2c<0 ~4.34!
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where the coefficients are given by

a5124S mnr0
2

kr̄2 D 2

~k v̄ !2q~2kū!2p~ ū2u0!~ v̄2v0!

~4.35!

b54kS mnr0
2

kr̄2 D 2

~k v̄ !2q~2kū!2p~ ū2u01 v̄2v0!>0

~4.36!

c54k2S mnr0
2

kr̄2 D 2

~k v̄ !2q~2kū!2p>0. ~4.37!

Clearly, if the coefficienta in this inequality is negative, then
no bound can be placed on the maximum value ofj. How-
ever, if a is positive, then the upper bound onj̄ is just given
by j̄<b/2a1(b214ac)1/2/2a. Hence, it is important to de
termine the sign of the coefficienta, which will depend on
the relative magnitudes of the two contributions toa.

Now, consider the magnitude of the second term in E
~4.35!. At a fixed value ofū, this term is proportional to
(k v̄)2qk( v̄2v0). In the characteristic diamond~the region
above the characteristicsS1 andS2 in Fig. 2! the advanced
time coordinatesv̄ andv0 satisfy

k v̄>kv0@1.

As a result, (k v̄)2qk( v̄2v0)!1 in the region of interest.
The ū dependence of this term isukūu2pk(ū2u0). Note that
for all points in the characteristic diamond,uuu<v and uūu
,uu0u. It then follows that

k~ ū2u0!<kuu0u<k v̄

so the second term ofa is proportional to

k~ ū2u0!k~ v̄2v0!~k v̄ !2qukūu2p<~k v̄ !2q12ukūu2p!1,
~4.38!

if q>3. The prefactor 4(mnr0
2/kr̄2)2 which multiplies the

expression~4.38! in Eq. ~4.35! is finite, and as a result, th
coefficienta is positive and approximately unity. Hence th
quadratic inequality can be used to place the following lim
on j̄:

j̄<2
mnr0

2

r̄2
~k v̄ !2q/2~2kū!2p/2. ~4.39!

A recent calculation@25# suggests that the correct initia
data forb should be an inverse power law~4.14! modulated
by an oscillatory function of the form cos(kv). Note that the
arguments leading to the bound~4.39! will be unaltered by a
modulation of this sort, since the cosine function is bound
by one.

Given the bound~4.39! on j̄, we are now in a position to
integrate Eq.~4.23! and solve for the metric functionL,
4-10



th
ll

th
w
ri-

o
a
n
tio
fu

ow
c
il

m
,
tr

vi

re
h
or

ns
er
rm
ot

at
s
th

he

al

s
ence
ent

me
e
the

y

null
wist

i-

y
ent
n-
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L~u,v,ua!<Lu2~u,ua!2k~v2v0!2~u2u0!~v2v0!j̄.
~4.40!

Since we have shown thatj̄ is bounded by a vanishingly
small function, the integrated term in Eq.~4.40! is negligible
compared to the homogeneous terms which arise from
initial data. Hence,eL vanishes at the Cauchy horizon for a
u.u0 .

V. THE GENERIC CASE

Our attention so far has focused on the toy model of
interior presented in the previous section. Our approach
to use a metric with only three free functions of four va
ables, and choose initial data motivated by the theory
scattered fields on a stationary background. Although the
most plane symmetric model of the previous section does
have sufficient degrees of freedom to describe the evolu
of generic gravitational perturbations, the model is use
since we were able to write an explicit solution and sh
that a weak, null curvature singularity occurs at the spa
time’s Cauchy horizon. The importance of the toy model w
become apparent in this section where we show that the
ric of a general spacetime near to a Cauchy horizon is
leading order, nearly identical to the almost plane symme
metric.

The metric used to study the generic evolution of gra
tational perturbations is the general 212 metric ~2.9!. As
this metric has eight functions, there exists the gauge f
dom to set two functions to zero. We choose to set the s
vectorsv

a50. As a result, the normal Lie derivative operat
Dv reduces to the partial derivative]v . The general metric
which we use is then

ds2522eldudv1r2hab~dua1su
adu!~dub1su

bdu!.
~5.1!

where the conformal two-metrichab has unit determinanth
5detihabi51 and hence only represents two free functio
In the previous section we set one of these functions to z
but here we will consider the evolution of the general fo
of the conformal two-metric. For the present, we will n
choose any particular representation forhab .

The choice of coordinates and characteristic initial d
are motivated by the discussion presented in Sec. III. A
result of our coordinate conditions, we assume that on
initial characteristicsS1 and S2 the form of the function
L5l1 ln r is given by Eqs.~4.12! and~4.13! as in the plane
symmetric spacetime. The power law initial data for t
gravitational perturbations can be set by specifyinghab on
the initial characteristics or, equivalently, by setting the v
ues of the shear tensors to

svabu1.&~kv !2q/2@mab~ua!1¯#, ~5.2!

suabu2.&~2ku!2p/2@nab~ua!1¯#,
~5.3!

where mab and nab are traceless two-tensors,habmab
5habnab50 and the shear tensors are defined bysAab
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2r

2DAhab. As in the previous section oscillatory term
have been neglected in the initial data because their pres
does not alter the qualitative features of the subsequ
analysis.

The analysis of the generic case is performed in the sa
spirit as in the ‘‘almost plane’’ case, and follows closely th
steps taken in the last section. As before, the solution of
metric functionr on a u5const characteristic is found b
solving Raychaudhuri’s equation,

~r2! ,vv2~r2! ,vL ,v52r2usvu2, ~5.4!

where we have defined the norm of a two-tensor to be

usAu25sAa
bsAb

a. ~5.5!

Given the assumptions~4.12! and ~5.2! for the behaviors of
L andsvab on S1, we find asymptotically,

r2u1~v,ua!5r0
2~ua!1L~v,ua!, ~5.6!

whereL(v,ua) is the same function~4.17! found in the plane
symmetric spacetime.

A. The shift and twist vectors

The non-vanishing shift means that the congruence of
rays undergoes some twist. Given our gauge choice, the t
is related to the shift by

va52]vsu
a . ~5.7!

The vacuum field equationRva50 ~2.16! specifies the be-
havior of the twist on a constantu hypersurface:

~]v1Kv2]vl!va5el j a ~5.8!

where

j a52~sv
b

a;b2 1
2 ]aKv2 1

2 ]a]vl1 1
2 Kv]al! ~5.9!

is independent ofva. We can formally integrate Eq.~5.8! to
get

va5
el

r2 Fv0
a~u,ua!1E

v0

v
dv8r2 j aG , ~5.10!

where the functionv0
a(u,ua) is determined by the initial data

on S2. On S1, thev dependence of the functionsj au1 are
known to be inverse power laws, so the integral in Eq.~5.10!
vanishes asymptotically and the twist behaves like

vau15
el

r2 v0
a~u0 ,ua!→exp~2kv !, v→`. ~5.11!

Hence the twist vector is exponentially suppressed onS1.
In our problem, we still have the freedom to fix coord

nates along one hypersurface of constantv @24#. A natural
choice is to ask that given coordinatesua at one point on the
Cauchy horizon, they stay constant when Lie convected bl u
along the Cauchy horizon. This is equivalent to the statem
thatsu

a50 on the Cauchy horizon. Given this boundary co
4-11
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dition, and a solution for the twist, the shift vector can
found by integrating Eq.~5.7!. On S1 the shift vector be-
haves as

su
au1;exp~2kv !, v→`. ~5.12!

On the initial characteristicS1 the shift vector is also expo
nentially suppressed.

The behavior of the shift and twist vectors on later hyp
surfaces will depend on the behavior of the functionsj a, and
hence of the shear and the metric functionsr andL on later
hypersurfaces. In the next part of our analysis, we will
sume that the shift and twist vectors are exponentially s
pressed on later hypersurfaces, solve the resulting equat
and show that this assumption is self-consistent. The ef
of this assumption is that to leading order inel, the shift and
twist vectors drop out of the vacuum evolution equatio
The field equation(4)Rabg

ab50 reduces to Eq.~4.7! for r.
As in the plane symmetric spacetime, the general solu
for r is r25r0

21L(v,ua)1R(u,ua). The field equation
Ruv50 reduces to Eq.~4.11! for L. The formal solution for
L on later hypersurfaces is again given by the integral eq
tion ~4.23!.

B. The evolution of the shear

The most significant difference between the general lig
like geometry and the model in Sec. IV is the form of t
shear tensors,sAab . In Sec. IV we assumed that the she
tensors have a simple diagonal form, which resulted i
propagation equation~4.9! linear in shear. As a result, it wa
fairly simple to show that regular power law initial data f
the shear evolves via the field equations to a regular solu
on later hypersurfaces which also decays as an inverse p
law. In this section we allow a general~non-diagonal! form
for the shear tensors. Although the resulting wave equa
describing the evolution of the shear is non linear the ar
ment presented in the last section can still be used to pla
limit on possible divergences of the shear.

The evolution of the shear tensors is governed by

05 ~4!Ra
b2

1

2
da

b
~4!Rd

d

5e2l~DAsA
a

b1KAsA
a

b!1O~1!, ~5.13!

where we have made use of the fact that the twist and s
vectors are exponentially suppressed in our approxima
scheme. Although Eq.~5.13! is linear in the shear tensor,
should be noted thatsAa

b5 1
2 hac]Ahac which is non-linear in

the conformal two-metric. Thus Eq.~5.13! is a non-linear
wave equation for the two-metric.

It is useful to introduce the following matrix:

tAB5
1

8p S sAa
bsBb

a2
1

2
hABsDa

bsD
b

aD
5

1

8p
diag~ usuu2,usvu2! ~5.14!
08403
-

-
-

ns,
ct

.

n

a-

t-

r
a

n
er

n
-
a

ift
n

with positive definite entries, and the norm of a two tens
usAu2 was defined in Eq.~5.5!. The divergence oftAB is

]BtA
B5

1

8p
~sBb

a]AsA
a

b12sA
b

a] [AsB]a
b!. ~5.15!

The anti-symmetric derivative of the shear occurring in t
second term of Eq.~5.15! is related to the twist as has bee
shown in Appendix B of Ref.@24# and is thus exponentially
small compared to the first term of Eq.~5.15!. Substituting
the vacuum field Eq~5.13! into Eq. ~5.15! we find the fol-
lowing evolution law for the components oftAB :

1

r2 ]B~r2tA
B!52

1

16p
KAsDa

bsD
b

a1O~el!. ~5.16!

The quantity

j52
1

2
sDa

bsD
b

a5sua
bsvb

a ~5.17!

on the right hand side of this equation is the same quan
appearing in Eq.~4.11! for the metric functionL. By placing
bounds onj, using Eq.~5.16!, we can show that the func
tional form of the initial dataLu1 on S1 is a good approxi-
mation for the form ofL on later hypersurfaces.

First note that the definition~5.17! for j reduces to Eq.
~4.28! in the case of the plane wave metric~4.1!. In compo-
nent form the field equations~5.16! are

]u~r2usvu2!52]vr2j ~5.18!

]v~r2usuu2!52]ur2j ~5.19!

which are reminiscent of Eq~4.29!. In fact, sincej satisfies
the Schwartz inequality,uju2<usvu2usuu2, the argument en-
capsulated in Eqs.~4.29!–~4.40! hold for the general double
null metric given the assumption made in Sec. III.

C. Solution of the initial value problem

As mentioned before the dynamical degrees of freed
are encoded in the shear tensors. Once we have fixed a g
and know the dynamic evolution for the shear we can
principle calculate all the metric functions. Initial data for th
shear is supplied onS6 in the form of a pair of traceless
tensorssvab(v,ua)u1 andsuab(u,ua)u2 given by Eqs.~5.2!
and ~5.3!. Since the evolution equations for the shear a
non-linear we do not expect to find a closed form solutio
however we can construct an approximate solution along
lines of Eq.~4.18!. Write the conformal metric explicitly as

hab5S e22b coshg sinh g

sinh g e2b coshg D . ~5.20!

The equations for the functionsb andg are then

@r cosh~g!b ,v# ,u1@r cosh~g!# ,vb ,u.0 ~5.21!

~rg ,v! ,u1r ,vg ,u.2 sinh~2g!b ,vb ,u ,
~5.22!
4-12
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where we have neglected the terms involving the shift wh
is exponentially suppressed according to the argum
above. It is reasonable to assume that (r coshg),v should be
weakly dependent onu, so that we can integrate Eq.~5.21!
for b and obtain

b.
Bin~v,xa!1Bout~u,xa!

r coshg
. ~5.23!

Notice that this reduces to the leading term in the se
solution forb presented in Eq.~4.18! wheng50. Since the
shear is bounded and small according to the argument
Sec. V B, we further expect that the non-linear term in E
~5.22! can be treated as a source, that is, we assume thag is
slowly varying in the region of interest to us. Moreover, th
term involves the productb ,vb ,u which is effectively qua-
dratic in the luminosity of the infalling gravitational wav
tail, and therefore less important than the boundary ter
Thus we have

g.
Gin~v,xa!1Gout~u,xa!

r
. ~5.24!

Finally, we fix the four free functions which appear in th
solution by reference to the initial data in Eqs.~5.3! and
~5.2!. The validity of these approximations has been co
firmed by Droz by numerically integrating the equatio
@32#.

For vanishing shifts Eqs.~4.4!–~4.6! continue to hold as
no assumptions about the form of the shear have been m
in their derivation. The analysis proceeds along the sa
lines as in the previous section, except that the source to
wave-equation~4.11! has a more complicated function
form, but it is still small and decaying. We therefore recov
the result in Eq.~4.24! for L. Similarly the functionr2 is
recovered from integrating Raychauduri’s equations.

It is now straightforward to check that the asymptotic b
havior of the Weyl scalars is of the same form as in E
~4.26!—the terms inside the square brackets are different
the general case, however the scaling inu andv are identi-
cal. Hence the intuitive picture of the singularity as a gra
tational shock propagating along the Cauchy horizon con
ues to be valid in the generic case. Thus, we h
demonstrated that the generic structure of the Cauchy h
zon singularity is qualitatively captured by the almost pla
symmetric model of Sec. IV, and the Cauchy horizon sin
larity occurs for generic perturbations~as long as the initial
data is not too singular@32#!.

VI. STRENGTH OF THE SINGULARITY

One of remarkable things about the mass-inflation sin
larity inside charged, spherical black holes is that it is we
in the sense that a coordinate system exists in which
spacetime metric is regular at the singularity@4,5#. A similar
result holds in the context of the approximate solution p
sented in the previous section. By introducing a new coo
nateV52e2kv, the asymptotic form of the line element i
08403
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e
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ds25
2eL

krV
dudV1r2hab~dua1su

adu!~dub1su
bdu!.

~6.1!

Combining Eqs.~4.24! and~4.8! with the definition ofV it is
clear that (4)gab is bounded asV→0, i.e., at the Cauchy
horizon.

What is the relevance of this coordinate system to obs
vations? This is somewhat clarified by re-stating the res
there exists a coordinate system in which twice integrat
the curvature with respect to the new advanced timeV gives
a finite result. It turns out that the proper timet measured by
an observer crossing the Cauchy horizon satisfiest;V, so
the tidal acceleration experienced by this observer diver
like t22(lnutu)2n as the null singularity is approached, whe
n>2l 13. The tidal distortion is given by twice integratin
this acceleration along the worldline of the observer, and
finite all the way up to the singularity. This rough argume
suggests that the regularity of the metric, when written
terms of the coordinateV, indicates that the singularity a
V50 is weak, in the sense that tidal distortion of an e
tended object is finite there.

The interpretation of this result is somewhat unclear. O
might be tempted to think about the singularity along t
Cauchy horizon as an ‘‘impulsive’’ singularity—while a
infinite force is exerted, it acts only for a very short tim
Such a viewpoint has been adopted by some authors
taken to indicate that a classical continuation of spacet
beyond the Cauchy horizon singularity might exist@4,5#. Un-
fortunately, this point of view seems problematic since cl
sical physics provides no mechanism by which to regul
the curvature once it diverges: onlypure gravitational shock
waves can be confined to a thin layer in classical gen
relativity @15#. Indeed, we know that quantum effects a
important in the description of spacetime near the Cau
horizon singularity ~see, for example, the discussions
@33,34#!, and may dramatically change the classical pictu

VII. CONCLUSION

Our results strongly indicate that a wide class of init
data can lead to the formation of a weak, null curvatu
singularity inside a black hole formed by gravitational co
lapse. The analysis, which is valid at late times near to
singularity, demonstrates that the null character of the sin
larity is independent of the initial data provided the flux
radiation entering the black hole at late times falls off mo
quickly thatv23, that is the shearsvabsv

ab decays at leas
this fast along the event horizon. Moreover, our approxim
solution depends on 232 functions ~suab(u0 ,v),
svab(u,v0), tr sAab50! corresponding to the physical de
grees of freedom of the gravitational field, and we can the
fore claim that the null singularity is generic andnot an
artifact of special symmetry.

It is important to compare our results to those of previo
analyses. Ori has investigated the singularity inside a rea
tic, rotating black hole using non-linear perturbation theo
@5#. The picture of a weak, null singularity that emerges fro
our work is in agreement with the results of his analys
4-13
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Furthermore, our results lend support to Ori’s claim that
perturbative approach captures the essential feature
spacetime structure in the neighborhood of the Cauchy h
zon singularity.

Some work remains to be done, however. In spher
models, the null Cauchy horizon singularity is a precursor
a strong spacelike singularity deep inside the black hole c
@18,36#. A similar result presumably holds for realistic rota
ing black holes, however little is known about this situatio
We have also seen in Sec. III A that linearized perturbati
of the Kerr black hole may be modulated by terms wh
oscillate infinitely many times asv→`; it is important to
determine how significant these oscillations are for the va
tion of curvature as measured by an observer approac
the Cauchy horizon singularity. Two approaches seem w
pursuing to further explore this issue:~i! linear and non-
linear perturbation theory@13,5# can provide an answer, in
principle, however it requires the difficult computation of th
relative amplitudes of all the terms in the perturbation ser
~ii ! an alternative approach is provided by numerical te
niques, similar to those used in the spherical case@18#. While
double null formulations of numerical relativity encount
serious problems when caustics form along the character
surfaces used in the evolution, we have in this problem
well understood regime in which such coordinate difficult
can surely be overcome.
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APPENDIX A: EXACT PLANE-SYMMETRIC SOLUTION

Yurtsever has proved that singularities which form in c
liding plane wave spacetimes are generically spacelike@35#.
In this context, the exact solution to Eq.~4.9! was also
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worked out by Yurtsever@35#. For completeness, we prese
his derivation here and clarify why the isomorphism betwe
the internal geometries of rotating black holes and collid
plane wave spacetimes does not imply that singularities
side black holes are generically spacelike. See Ref.@37# for a
related argument.

Equation~4.7! for the conformal factorr2 can be viewed
as an integrability condition for a coordinate transformati
from the null coordinates (u,v) to new coordinates (a,x)
defined by

a5r25r0
21L~v,ua!1R~u,ua! ~A1!

x5L~v,ua!2R~u,ua!. ~A2!

Notice thata is a time coordinate since we are inside t
event horizon of the black hole. In terms of these coordina
the wave equation~4.9! for b becomes

b ,aa2b ,xx1
b ,a

a
50. ~A3!

Since Eq.~A3! is manifestly independent of time, w
eliminatex using a Fourier transform. The result is Besse
equation ina so that the solution is

b5b01Edk eikx @c~k!Y0~ ukua!1d~k!J0~ ukua!#

~A4!

whereJ0 andY0 are Bessel functions of the first and seco
kinds, and the two functionsc(k) and d(k) are determined
by the initial conditions onS in Fig. 2. The function
Y0(ukua) diverges asa→0, but sincea is always larger then
zero inside a black hole~at least up to early portion of the
Cauchy horizon! b should remain regular for all physicall
relevant values ofa andx inside black holes.

In contrast to the black hole case, the Cauchy horizon
colliding plane wave spacetimes is ata50 and consequently
the gravitational shear generically diverges there; this cau
the catastrophic focusing of ingoing lightrays to a spacel
singularity. Arguments demonstrating that spacelike sin
larities are generic in colliding plane wave spacetimes can
be directly generalized to the black hole interiors.
-
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