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Quantum geometry with intrinsic local causality
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The space of states and operators for a large class of background independent theories of quantum spacetime
dynamics is defined. The SU~2! spin networks of quantum general relativity are replaced by labelled compact
two-dimensional surfaces. The space of states of the theory is the direct sum of the spaces of invariant tensors
of a quantum groupGq over all compact~finite genus! oriented 2-surfaces. The dynamics is background
independent and locally causal. The dynamics constructs histories with discrete features of spacetime geometry
such as causal structure and multifingered time. For SU~2! the theory satisfies the Bekenstein bound and the
holographic hypothesis is recast in this formalism.
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I. INTRODUCTION

In this article we describe a new class of quantum geo
etries that is to be used in developing a theory of quan
gravity. These are natural extensions of the spin netw
states that have been shown to comprise the non-perturb
state space of quantum general relativity@1,2#.1 In this for-
mulation the labeled graphs on which spin networks
based are replaced by 2-manifolds and the invariant ten
of a quantum groupGq associated with them. The motiva
tions for this generalization comes partly from results of no
perturbative quantum gravity and string theory.

This formulation has a kinematical part and a dynami
part. The kinematical part, which is described in the n
four sections, generalizes the spin network states in
ways. The first is that the SU~2! group of the spin network
states of quantum general relativity is replaced by an a
trary quantum groupGq . Within the framework of non-
perturbative, diffeomorphism invariant quantum field the
ries, this is the natural way to extend the degrees of
freedom of the theory to include gauge fields@6# and super-
symmetry@7#. The quantum deformation is motivated fro
physics by three considerations. First, in quantum gen
relativity the introduction of a cosmological constantL re-
quires a quantum deformation of SU~2! with q5e2p/k12 de-
fined by @8,9,10#

k5
6p

G2L
. ~1!

Second, the truncation in the number of representations
q at a root of unity improves the formulation of the dynami
by making the sums involved in the path integral less div
gent. It also introduces new symmetries in the theory wh

*Email address: fotini@phys.psu.edu
†Email address: smolin@phys.psu.edu
1For recent reviews see@3,4#. Spin networks were originally in-

troduced by Penrose@5# as a model of quantum geometry.
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are not present in the classical case whenq→1. These are
analogous to the duality symmetries of perturbative str
theory. As we argue below, this may play a role in the int
pretation of the theory.

The second sense in which our proposal extends the
network states of quantum general relativity is that the sta
are defined intrinsically, without the use of a backgrou
manifold. In quantum general relativity the spin netwo
states are diffeomorphism classes of embeddings of grap
a fixed three-manifoldS @1,2#. We go beyond this to a purely
algebraic definition of the state space which depends on
prior specification of a manifold.

One result of non-perturbative quantum gravity has be
the discovery that geometrical quantities, including a
@11,2#, volume@11,2,12# and length@13# have discrete spec
tra. This is true before the introduction of dynamics or mat
couplings and signals that the combination of diffeom
phism invariance and quantum theory requires that quan
geometry be essentially discrete. At the same time, the
plication of these techniques to the Hamiltonian constrain
general relativity@14,15,16# leads to a theory without a goo
continuum limit@17,18#. Given this, it seems more natural t
construct the theory purely from algebra and combinato
and let continuum notions arise in the classical limit of t
theory.

We may note that the dualities of string theory sugg
that one and the same physical situation may sometime
described in two different ways, which differ in the topolog
and manifold structures of the underlying manifolds@19#.
Other results show that in string theory there are continu
phase transitions whose semiclassical description invo
abrupt changes of the topology of the underlying manifo
@20#. These suggest that the fundamental, non-perturba
description should not be based on fixed topological ma
folds.

But without background manifolds the theory cannot
formulated in terms of the embeddings of surfaces or me
branes. The alternative is to construct the states and oper
that are to represent quantum geometry algebraically, u
only combinatorics and representation theory. This is
main goal of this paper. In@21# and@22# results are presente
© 1998 The American Physical Society32-1
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consistent with the hypothesis@4# that the resulting extensio
of the spin networks formalism may serve as framework
non-perturbative string theory.2

A theory formulated without reference to any backgrou
manifold still requires dynamics and that dynamics sho
have built into it some notion of local causality. Below,
Sec. VII, we show that this can be achieved by an extens
of a formulation of spin network dynamics proposed ear
by one of us@23#. The dynamics is based on discrete his
riesM, which are combinatorial structure which have tw
properties shared by classical spacetime:

~1! Each historyM contains a finite setE of elements that
may be called ‘‘events.’’ This set of events is a partia
ordered set. We thus have the finite element analogue o
points of a Lorentzian spacetime.

~2! Each historyM contains a large number of connect
sets of causally unrelated events, which may be ca
‘‘quantum spacelike surfaces.’’ Each spacelike surface
also a quantum state. Thus, the theory has a discrete
logue of the many-fingered time of general relativity, whi
means that a discrete analogue of spacetime diffeomorph
invariance is built in.

Each history is then given an amplitude which is a pro
uct of factors each associated to a local transition in
quantum geometry. Causality and locality impose restricti
on the choice of these amplitudes which are discussed be
The issue of the choice of dynamics and the related ques
of the continuum limit is discussed in@24,22#.

In the next three sections we introduce the space of st
that we propose extends spin networks and describe us
decompositions of them which are based on 3- and
punctured spheres. Section V introduces an algebra of op
tors that act on the states and the interpretations of som
them, which yields a picture of quantum geometry, is
subject of Sec. VI. The dynamics of the theory is describ
in Sec. VII, while Sec. VIII discusses coarse-grained obse
ables and entropy and their relationship to the holograp
hypothesis and Bekenstein bound. The conclusion is larg
devoted to describing ongoing work that will be reported
other papers.

II. THE SPACE OF STATES

The space of states that we investigate here is both
extension of SU~2! spin networks to a quantum groupGq
and of the spin network states of canonical quantum gra
to the non-embedded case.

Given a quantum groupGq and a compact oriented 2

2In fact the basic idea of the present formulation is rather like
idea behind the transition from quantum field theory to perturba
string theory. Just as Feynman diagrams are replaced by s
worldsheets, the present generalization of quantum general re
ity extends spin network states to 2-dimensional surfaces and
states of field theories defined on the surfaces.
08403
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surfaceS, letVGq

S be the space ofGq invariant tensors onS.3

We then define the space of statesHGq
of Gq quantum grav-

ity to be

HGq
5 %

S
VGq

S ~2!

where the sum is over all compact 2-surfaces of finite gen
EachVGq

S is finite dimensional whenq is at a root of unity.

HGq
is equipped with the natural inner product@see Eq.~5!

below# and is a Hilbert space.
The sense in which these states may be considere

constitute an extension of the spin network states of quan
general relativity will be discussed shortly, but we note th
this is not a new notion. It is known that the quantum def
mation of spin networks requires that their edges be enlar
to ribbons or tubes@28,26,27#. This is to allow dependence
of the states on twistings of the edges, necessary for
q-deformed case@28,26,30,29#. In the next sections we in
vestigate properties of these states that are important for
physical interpretation.

III. TRINION DECOMPOSITION: BASIS STATES

We begin by reviewing some of the properties of the st
spacesVGq

S that we will need to discuss their role in repr

senting the states of quantum gravity.4 For the purposes o
describing the states and operators onHGq

it will be very

useful to understand the behavior of the states inVGq

S under

decompositions of the surfaceS into a union of punctured
spheres. We begin by discussing the decomposition of a
nusg surfaceS into 3-punctured spheres, or trinions. Give
a surfaceS we may choose a maximal set of non-intersect
elements ofp1@S#, which we shall call circles,ca . Cutting
S along the circlesca decomposes it into a set ofN trinions,
BI

3 , I 51, . . . ,N. The trinions are joined on their puncture
so that each circleca corresponds to the punctures on tw
trinions. @See Fig. 1~a!.# This may be done in several differ
ent ways.@See Fig. 1~b!.#

A trinion decomposition will be callednon-degenerateif
no two trinions meet at more than two circles~see Fig. 2!.

Associated to each trinion decomposition ofS is a class of
bases ofVGq

S , which is constructed as follows.Gq has a list

of irreducible representations, which we will label byj a .
~For theq taken at a root of unity, which we will assume
this is a finite list.! Each of the three circles of a trinionBI

3

may be labeled by a representationj a , a51,2,3. For each
choice of the representationsj a there is a linear spaceVj 1 j 2 j 3

I

of intertwinersm I . The intertwiners are the maps

e
e
ng
iv-
he

3Equivalently this is the space of conformal blocks of the We
Zumino-Witten ~WZW! theory corresponding to levelk on S
@25,26,27# or the space of states ofGq Chern-Simons theory onS,
seen as a spatial slice of some 3-manifold@28#.

4Complete characterizations ofV Gq

S may be found in@25,26#.
2-2
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QUANTUM GEOMETRY WITH INTRINSIC LOCAL CAUSALITY PHYSICAL REVIEW D 58 084032
m I : j 1^ j 2^ j 3→1. ~3!

A choice of a set ofj a on the punctures of a trinion is calle
consistent if the correspondingV j 1 j 2 j 3

I has strictly positive

dimension.
The space of statesVGq

S ~subset ofHGq
) associated with

the surfaceS is constructed by taking direct products of a
the constituent spacesV j 1 j 2 j 3

I and summing over the repre

sentations,

VGq

S 5(
j a

^

I
V $ j %I

I ~4!

whereI labels an arbitrary trinionBI
3 in S with labels$ j % I .

A generic state inVGq

S will be denoteduS,C&. A basis in

VGq

S is then constructed as follows. We choose an orthogo

basis of intertwiners in the spaceV $ j %I

I of each of the trinions,

denotedm I
r . A basis of states inVGq

S is then given by a

choice of j a on each circleca in S and a choice of a basi
elementm I

r on each trinion. These basis states are deno
uS, j a ,m I

r&.
Given a trinion decomposition of every finite genus

surfaceS, the statesuS, j a ,m I
r& provide an orthonormal basi

for the state spaceHGq
. The inner product onHGq

is given
by

^S, j a ,m I
ruS 8, j a8 ,n I

t&5dSS 8)
a

d j a j
a8)I

^m I
run I

t& I ~5!

where the same trinion decomposition is assumed for the
states whenS>S 8 and ^m I

run I
t& I is the inner product in the

space of intertwinersV I on theI -th trinion.

FIG. 1. ~a! A genus 4 surface cut into six trinionsBI
3 by circles

ca . ~b! The same surface in a different trinion decomposition.

FIG. 2. This trinion decomposition is degenerate because
two trinions have two circles in common.
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Note that, given a particular trinion decomposition ofS,
the states in the basisuS, j a ,m I

r& may be thought of as gen
eralized combinatorial trivalent spin networks.~See Fig. 3
but note that forqÞ1 these are quantum spin networks@30#.!
The edgesea of the corresponding graphG are labeled with
the same representationsj a as the corresponding circlesca ,
while the trivalent nodesv I associated to the trinions ar
labeled by the intertwinersm I . Because of this associatio
we sometimes call the basis statesuS, j a ,m I

r& tubular spin
networks.

The assignment of a graphG to the surfaceS depends on
the choice of the trinion decomposition and the same is t
true of the basisuS, j a ,m I

r&. If we choose a different trinion
decomposition ofS, based on a different maximal set o
non-intersecting elements ofp1@S#, we have a different ba-
sis for VS

Gq . The recoupling identities of the representati
theory ofGq @30# then provide the change of basis formula
Alternatively, they may be computed using the modu
transformations of the corresponding rational conformal fi
theory as in@25,26#.

We may note that whenq→1 the spacesVG
S become

infinite dimensional as there are an infinite number of rep
sentationsj a . Then, the Moore-Seiberg operators are
longer well defined unitary operators. Thus, in the limitq
→1 the states inHGq

are the usual combinatorial spin ne
work states of SU~2!.

IV. DECOMPOSITION IN 4-PUNCTURED SPHERES

Just as the trinion decomposition is related to an extens
of trivalent spin networks, we can associate an extension
4-valent spin networks to the bases of states inVS that come
from decomposingS into 4-punctured spheres~from now on
we drop the suffixGq of VGq

S ). To accomplish this we pick

a ~non-maximal! set of non-intersecting circlesca on S that
decompose it into 4-punctured spheresBI

4 . As before we can
label these circles with representationsj a .

It will also be useful to work with generaln-punctured
spheres. In general, a 2-sphere withn punctures, denoted
BI

n , is labelled by representationsj 1 , . . . ,j n of the group
Gq . Given BI

n and the labelsj 1 , . . . ,j n , there is a linear
space of intertwiners,V j 1 , . . . ,j n

I , consisting of the invariant

maps

m I : j 1^ . . . ^ j n→1. ~6!
e

FIG. 3. A trinion decomposition of a genus 5 surface reduced
a spin network graph.
2-3
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FOTINI MARKOPOULOU AND LEE SMOLIN PHYSICAL REVIEW D58 084032
As in the 3-punctured case, the dimension ofV j 1 , . . . ,j n
I is

required to be non-zero otherwise the choice ofj 1 , . . . ,j n is
inconsistent and not allowed. Now, given any decomposit
of S into n-punctured spheres along a set of circlesca , we
have representation of the states inVS in terms of triples
uS, j a ,m I&. The formulas~4! and ~5! still hold.

Returning to the decompositions in terms of 4-punctu
spheres, we may note that such decompositions may
made, at least locally, in a surfaceS by grouping the trinions
in some trinion decomposition into pairs. Finally, as in t
case of trinions, we call a decomposition of a surfaceS into
4-punctured spheresnon-degenerateif no two 4-punctured
spheres share more than one puncture.

A. The tubular 4-simplex

In fact, a genusg surface always has a non-degener
decomposition into 4-punctured spheres forg>6. It is easy
to see that the smallest number of 4-punctured spheres
can fit together non-degenerately is 5. These make up a
nus 6 surface which may be thought of as a tubular ge
alization of the 4-simplex~see@23#!, as every 4-punctured
sphereBI

4 , I 51, . . . ,5 isconnected to every other one onc
~See Fig. 4.! This surface plays a special role in the dyna
ics. We shall call itP and refer to as thegenerating surface.
Together with ten fixed circlescIJ connectingBI

4 andBJ
4 that

decompose it into five such 4-punctured spheresP will be
called the tubular 4-simplex. Its q→1 limit is a 4-valent
graph with 4-valent nodesv I for each 4-punctured sphereBI

4

of S and an edgeeIJ for each circlecIJ . Labeling the circles
cIJ by representationsj a and theBI

4 by a basism I
r in the

corresponding spaces of intertwinersV
$ j a%

BI
4

we have a basis o

states uP, j a ,m I
r&. Each of these is a coloring of the 4

simplex.

B. Tubular evolution moves

Consider a non-degenerate decomposition of a surfacS
into n 4-punctured spheres,

S5 (
I 51

n

BI
4 , ~7!

where( denotes the gluing of a pair of punctures with t
same labels. GivenS, there is a set of local moves each

FIG. 4. The tubular 4-simplexP, a genus 6 surface decompos
to 5 4-punctured spheres.
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which yields another surfaceS 8 expressed as a non
degenerate composition of 4-punctured spheresS 8
5( I 51

m BI
4 where in generalmÞn.5

To define these moves let us now put forward some
tation. An elementary local region, L, is a set ofn<4 4-
punctured 2-spheresBI

4 ,

L5 (
I 51

n

BI n<4, ~8!

each pair of which is connected by exactly one tube.L,
therefore, is a 2-surface with 4 or 6 punctures, their num
given by

number of free punctures54n2n~n21!. ~9!

n has to be at most 4 forL to have any free punctures. Fo
n51,2 the genus~not counting punctures! of L is 0, for n
53 it is 1 and forn54 it is 3.

Given these definitions, a local move is the followin
Given a decompositionS5( I 51

n BI
4 , remove an elementary

local regionL in it and replace it with a new oneL8 that has
the same number of punctures and same labels on the p
tures.~See Fig. 5.!

The topology of the new local region is determined
requiring thatL and L8 can be composed along their com
mon punctures to form the generating surface,P ~see Fig. 6!,

L8(L5PL8(L . ~10!

Namely,L8 is the complement ofL in PL8(L .6 We call
such a substitution atubular evolution move. ~See Figs. 5, 6
and 7!. The result is a new 2-manifoldS 8 which has a de-
composition into 4-punctured spheres that fall into two se
those inS2L and those inL8.

It is clear that if the original decomposition ofS into
4-punctured spheres is non-degenerate then so is the
one. No two 4-punctured spheres inS2L share more than
one connection because the original decomposition is n
degenerate. The same is true for the 4-punctured spher
L8 because every elementary local region is non-degene

5These moves are a generalization of the Pachner moves
combinatorial topology@31# that played an important role in th
evolution of spin networks in@23#.

6In terms of the vector space representations ofL andL8, Eq.~10!
is the tensor product of the vector space ofL with the dual vector

space ofL8, V L
^ (V L8)D.

FIG. 5. An elementary substitution move.
2-4
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QUANTUM GEOMETRY WITH INTRINSIC LOCAL CAUSALITY PHYSICAL REVIEW D 58 084032
The non-degeneracy ofL8 implies that there can be at mo
one connection between any sphere inL8 and one inS2L.7

There are four kinds of tubular evolution moves, depe
ing on the number of 4-punctured spheres in the old and
elementary regionsL andL8. As in the case of the Pachne
moves used in@23#, these are denoted the 1→4, 4→1, 2
→3 and 3→2 moves. In terms of the corresponding surfac
one can see from Fig. 7 that these result in a change of g
by 13,23,11 and21 respectively. This means that sta
ing with the tubular 4-simplexP which has genus 6, one ca
make r successive 2→3 moves to reach a surface of an
genusg561r . Therefore, each surface with genusg>6 has
a non-degenerate decomposition into 4-punctured spher

Note also that ifB4 is a 4-punctured sphere with labe
j 1 , j 2 , j 3 , j 4 it may be decomposed along a circlec1 into two
trinions B1

3 andB2
3. If we call the label onc1 by l we have

Vj 1 j 2 j 3 j 4

B4
5(

l
V

j 1 j 2l

B1
3

^V
l j 3 j 4

B2
3

. ~11!

Thus, we see that there are many trinion decompositions
surfaceS that are subdivisions of a decomposition ofS into
4-punctured spheres. In terms of the analogy to spin
works this corresponds to what has been called decompo
a 4-valent node of a spin network in terms of two trivale
nodes and an internal, or ‘‘virtual,’’ edge. In the prese
context all of these are connected by elements of the mod
group @25,26#.

Clearly, a given surfaceS has more than one inequivale
decompositions into 4-punctures spheres. As an exam
consider the tubular 4-simplex of Fig. 4. The relationsh
between these different compositions correspond to trans
mations between two bases in which the roles of the re
sentations and the intertwiners are exchanged. This ha
teresting consequences for quantum geometry that we
discuss below, when we describe how the geometrical in
pretation of the theory is constructed.

We will use the tubular evolution rules to define the d
namics of the theory. But first we have to define operators
HGq

that implement them.

7This is an extension of the basic fact that the Pachner mo
applied on aPL triangulation preserves non-degeneracy of trian
lations, i.e. when no two tetrahedra share more than one face.

FIG. 6. Left: The substitution move seen as a three manif
that defines a cobordism fromL to L8. Right: Joining theL andL8
together makes a generating surfaceP.
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V. TUBE OPERATORS

We now turn to the operators on the space of statesHGq
.

The Moore-Seiberg@25# operators are a set of unitary oper
tors that act inside eachVS. However, if our theory is to be
a generalization of spin networks there must be opera
that take us from states in oneVS to states in anotherVS 8 on
a different surfaceS8. We will see here that several usef
sets of operators can be constructed, which will play a role
the interpretation and dynamics of the theory. They
analogous to the loop operators whose algebra defines
loop representation of general relativity@32#. Here, because
the states are defined without any reference to a backgro
manifold, the operators are defined relationally, in terms
decompositions of the surfacesS into pieces.

Let Y denote a genusg compact oriented 2-surface wit
n>1 puncturesj k (k51, . . . ,n). Given a compactS let r I
denote the maps

r I :Y→S ~12!

taking Y homomorphically to a component ofS. In general
there will be a set of such maps; they are distinguished
the indexI .

For eachI the map picks out a set ofn non-intersecting
circles ck

I , k51, . . . ,n in S. Cutting S on these circles de
composes it into the two piecesr I(Y) and (S2r I(Y)). The
space of intertwinersVS decomposes as

VS5(
k
V j 1 . . . j n

Y
^V j 1 . . . j n

~S2r I ~Y!! . ~13!

A stateuS,C&PVS then decomposes to a sum over the re
resentationsj 1 , . . . ,j n of the product of a state inV j k

Y and a

state inV j k

(S2r I (Y)) ,

uS,C&5(
k

uY, j k ,C1& ^ u~S2r I~Y!!, j k ,C2&. ~14!

Using this decomposition we then define three classe
operators. The first two are block diagonal in the decom
sition ~2!, while the third changes the topology of the surfa
S.

es
-

FIG. 7. The four elementary substitution moves, 1↔4 and
2↔3.

d

2-5
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FOTINI MARKOPOULOU AND LEE SMOLIN PHYSICAL REVIEW D58 084032
A. Surface operators

Let F($ j k%) be a symmetric function ofn representation
labels$ j k%. Given such a function and a 2-surfaceY with n

punctures, there is an Hermitian operatorF̂Y that acts inHGq

as follows. On the spacesV j 1 . . . j n

Y , F̂Y is the diagonal op-

erator equal toF($ j k%). Then on a general state

F̂YuS,C&5(
I

(
k

F~$ j k%!uY, j k ,C1&

^ u~S2r I~Y!!, j k ,C2&. ~15!

This operator looks for the instances of the submanifoldY in
each surfaceS and, in each state, measures a property of
boundary separatingY from the remainderS2r I(Y) given
by the functionF($ j a%). The punctured surfaceY can be
thought of as the algebraic representation of a 3-dimensi
regionR in the quantum geometry that a state inVS repre-
sents. The surface operators thus measure propertie
boundaries of regions in space. This interpretation will
developed in the next section, where we will see that
example in the case of SU~2! is given by the area operato
obtained in quantum general relativity@11,2#.

B. Bulk operators

Once a regionR of an abstract quantum geometry h
been identified by a mapr I :Y→S we can also try to mea
sure bulk properties of that region. These will be eigenval
of operators that act on the spaceVj 1 . . . j n

Y and depend on the

topology ofY and hence on dimV j 1 . . . j n

Y . To define such an

operator let us choose, for everyj 1 . . . j n an operator
B̂j 1 . . . j n

on V j 1 . . . j n

Y . The corresponding bulk operato

B̂j 1 . . . j n

Y is defined on the state spaceHGq
as

B̂j 1 . . . j n

Y uS,C&5(
I

(
k

B̂uY, j k ,C1&

^ u~S2r I~Y!!, j k ,C2&. ~16!

Examples of bulk operators are the volume operat
which we will describe in the next section.

C. Substitution operators

In the last section we defined the tubular evolution mov
These are examples of a large class of substitution opera
that take us from one manifoldS to a different manifoldS 8
by cutting out a piece,Y1 of S and replacing it with a dif-
ferent manifoldY2 with the same boundary. The tubula
evolution moves are examples of these. For such subs
tions we can define linear operators that act onHGq

and take

states fromVS to those inVS 8.
Start with two punctured surfaces,Y1 andY2 , each with

an ordered set ofn punctures, with labelsj 1 , . . . ,j n . They
can be represented by vector spacesV j 1 . . . j n

Y1 andV j 1 . . . j n

Y2 .

Note that in general dimV j . . . j
Y1 ÞdimV j . . . j

Y2 . Given two

1 n 1 n

08403
e

al

of
e
n

s

s

s.
ns

u-

vector spaces, we have the space of linear maps from the
to the second, denoted hom(VY1,VY2). A particular
ĉPhom(VY1,VY2) acts on a state,uY1 , j k ,C1&PV j 1 . . . j n

Y1 as

ĉuY1 , j k ,C1&5uY2 , j k ,C2&PV j 1 . . . j n

Y2 , ~17!

giving a state inV j 1 . . . j n

Y2 . Given any suchĉ we construct a

substitution operatorĈY1 ,Y2 ,ĉ , defined by

ĈY1 ,Y2 ,ĉuS,C&5(
I

(
k

u~S2r I~Y1!!, j k ,C1&

^ @ ĉuY1, j k ,C1&]. ~18!

The action ofĈY1 ,Y2 ,ĉ is pictured in Fig. 5.

Note that we may also glueY1 andY2 along their iden-
tical boundaries as in the right hand figure of Fig. 6.

VI. GEOMETRICAL INTERPRETATIONS

So far, we have defined states inHGq
in terms of labelled

2-dimensional manifolds. We shall now interpret them
terms of observables related to 3-dimensional space. Th
arise as natural extensions of the observables of quan
general relativity: the area and volume operators.

The subtlety is that here there is no background manifo
All of the properties of space, including its topological an
metric properties, must be coded into the states. In the
sence of any background manifold to provide surfaces
regions, geometrical observables are constructed relation
from information coded into the states.

Let us begin with the space of statesVS associated to a
given 2-surfaceS. A microscopical geometrical interpreta
tion of these states exists for every decomposition ofS into a
set ofn-punctured 2-spheres,BI

n , with n>3, joined on a set
of circles, ca . Let us consider a basis of states which
~partially! determined by definite values for the represen
tions j a for these circles. This state is of the form,uS, j a ,m I&

with intertwiners m IPV j 1 . . . j n

BI
n

for each of the punctured

spheres.
The geometrical interpretation is constructed as follow

Associated to eachBI
n is a regionRI . These regions have

three kinds of properties:

Surface properties:A surface property of a regionRI is
a functionF( j 1 , . . . ,j n) of the labels on the puncture
of the correspondingBI

n . Surface properties are mea
sured by surface operators~15!.
Bulk properties: A bulk property of a regionRI is mea-
sured by a Hermitian operatorB̂ ~16! in the space of

intertwinersV
j 1 . . . j n

BI
n

.

Shared properties: Two regionsRI andRJ may have
shared properties if they have a set of common punctu
with labels, say,j 1 , . . . ,j k . If this set is non-empty,
2-6
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QUANTUM GEOMETRY WITH INTRINSIC LOCAL CAUSALITY PHYSICAL REVIEW D 58 084032
then j 1 , . . . ,j k is the common boundary ofR I andR J.
A shared property ofR I and R J is then a function
G( j 1 , . . . ,j k).

In the SU~2! case we may import the kinematical stru
ture from quantum general relativity found in@11,2,1# to give
us examples of each kind of observable:

The area ofRI is a surface property. It is given b
F( j 1 , . . . ,j n)5 l Pl

2 (a51
n Aj a( j a11).

The volume of the interior ofBI
n is an example of a bulk

property. As we know from@2,12# the volume operator
is a Hermitian operatorV̂@ j 1 , . . . ,j n# that acts in the

space or intertwinersV
j 1 , . . . ,j n

BI
n

.8

The area also gives an example of a shared propert
BI

n andBJ
m share a set ofk spinsj 1 , . . . ,j k then the area

of the common boundary ofRI and RJ is given by
l Pl
2 (a51

k Aj a( j a11) summed over the common pun
tures of the two regions.

Note that, given a division ofS into punctured spheres
we may simultaneously diagonalize all of the area and v
ume operators on the corresponding regionsRI . Thus, a
common eigenstateuS, j a ,m I& may be called amicroscopic
quantum geometry. It is a set of regions together with~i! an
area for the boundary of each one,~ii ! an area for each com
mon boundary, such that the area of each is the sum o
common boundaries with the others and~iii ! a volume for
each region.

For a generalGq , we expect ageneralized microscopic
quantum geometryto be the maximal set of simultaneou
eigenvalues of surface and bulk observables for a decom
sition ofS into punctured spheres. There is also a notion o
coarse-grained quantum geometry. We will discuss this
Sec. VIII.

A. Duality between edges and intertwiners

The reader may have noticed that the geometrical in
pretations available to the states inVS are not determined by
S. There is a geometrical interpretation for every way
dividing S into punctured spheres. We regard this freedom
an intrinsic and attractive feature of the generalization fr
spin network states to the space of statesHGq

. For example,
in the 4-valent spin networks two kinds of edges appear:
edges connecting the nodes and ‘‘virtual’’ edges that may
used to label the intertwiners of the 4-valent nodes. Thus
the usual spin network formalism they play different role

For example, consider the tubular 4-simplexP and the
two different decompositions into 4-punctured spheres ill
trated in Fig. 4. These may be described in terms of two
of circles ca and ca8 , as shown in Fig. 8.@The full set
(ca ,ca8) make up a maximal set of non-intersecting circ

8Here we take the definition given in@2# that does not require an
assumptions about structure not present in our case such as
relations among tangent vectors at the nodes.
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onP and define a trinion decomposition ofP.# This decom-
position represents statesuP, j (ca),m I)&. If we now read the
decomposition with a different set of circles, includingca8 ,
separating the five 4-punctured spheres, we obtain a diffe
set of basis statesuP, j (ca8 ),m I 8&. This shows that the distinc
tion between spins and intertwiners in this formalism is d
pendent on the choice ofn-punctured spheres. Therefore,
is the geometrical interpretation.

VII. CAUSAL EVOLUTION

We now discuss the evolution of the states inHGq
. The

dynamics of the theory will be based on the evolution mov
defined in Sec. IV B. By composing the moves we produ
sequences of states that we call histories. These discrete
tories share three characteristics of Lorentzian spacetime~i!
There is a set of events which is a discrete partially orde
set with no closed causal loops. This is a discrete analogu
a Lorentzian spacetime.~ii ! There are connected sets of cau
ally unrelated events, the combinatorial analogues of spa
like surfaces.~iii ! A history can be decomposed in man
ways into sequences of spacelike surfaces, leading to a
crete analogue of many fingered time.

A. The evolution operator

The evolution of states is generated by an operator
implements the evolution moves described in Sec. IV B. T
will be a substitution operator of the form defined in Se
V C. To do this letr51,2,3,4 correspond to the four kinds o
Pachner moves 1→4, 2→3, 3→2, 4→1. Then takeLr to be
the elementary local region consisting ofr 4-punctured
spheres, so thatLr8 , the complement ofLr in P consists of
52r 4-punctured spheres. We will callLr the past set and
Lr8 the future set of theP associated with ther→52r move
~see Fig. 7!.

For r51 and 4 theLr and Lr8 each have 4 punctures
which are labeled by representationsj g , g51, . . . ,4. Forr
52,3 there are six punctures andg51, . . . ,6. Foreachr
and sets of 4 or 6 representationsj g we may choose opera

tors ĉr, j g
Phom(V j g

Lr,V
j g

Lr8). The rth move is then imple-

mented by the substitution operator
ear

FIG. 8. A choice of decomposition into 4-punctured sphe
whereca are representations andca8 intertwiners.
2-7
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ĤruS,C&5 ĈLr ,L
r8 ,ĉr

uS,C&

5(
I

(
k51

nr

u~S2r I~Lr!!, j g ,C&

^ @ ĉruLr , j g ,C&]. ~19!

The total evolution operator is then given by

Ĥ5(
r

Ĥr. ~20!

To see how these act, let us start with an initial stateuS,C&
and act on it with one of theHr. If S is large enough, there
will be numerous regions in it homeomorphic toLr . To each
of them there is a mapr I :Lr→S. For eachI we then cut
from S the regionr I(Lr) and replace it byLr8 . This results
each time in a new 2-surface which we callSr,I . The result
of the application ofĤr is then a superposition of the stat
given by the action~19!. The exact map from the old state
to the new states is given by the linear mapsĉr . ~We sup-
press the dependence ofĉr on the representationsj g .)

The operatorH is Hermitian when each of theĉr are
appropriately chosen. In this case a formal unitary evolut
operator may be written down as

Û5eıĤt ~21!

wheret is a parameter having nothing to do with the physi
time ~it just scales the operatorsĉr .) The amplitude for an
initial state u init ial &5uSinit ial ,C init ial & to evolve to a final
stateu f inal&5uSf inal ,C f inal& is formally given by

A@ u init ial &→u f inal&] 5^ f inaluÛu init ial &. ~22!

B. Amplitudes for causal evolution and a discrete path
integral

By decomposing the action ofÛ at each ordern of the
action of (Ĥ)n in terms of 4-punctured spheres produced
the evolution moves, the amplitude~22! can be given in
terms of a sum over a set of histories,M
5$u1&,u2&,u3& . . . .% in which eachuI 11& results from the
previousuI & by the application of one of the four moves. Th
theory gives an amplitude to each transition from an ini
state to one of its successor states. The amplitude is give

A L→L85^L8, j k8 ,m I8uĉ
ruL, j k ,m I&, ~23!

whereuL, j k ,m I
& is a trinion basis state for the initial eleme

tary local region to be cut out anduL8, j k8 ,m I8& is a basis state
on the elementary local region that replaces it.

Consider now an (N21)-step history M
5$u1&,u2&, . . . ,uN&%. Each transition is a generalized evol
tion move which has an amplitudeA I given by ~23! for the
transition fromuI & to uI 11&, I 5$1, . . . ,N21%. The ampli-
tude of the historyM is then given by
08403
n
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l
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A@M#5)
I
A I . ~24!

Let us then have two states,uinitial & and ufinal&. There is an
infinite number of historiesM such that the first state i
equal to uinitial & and the last state is equal toufinal&. By
analogy to the simplical case we may denote this as]M
5u init ial &øu f inal&. The transition amplitude to evolve t
ufinal& given uinitial & is then,

A@ u init ial &→u f inal&] 5 (
Mu]M5u init ial &øu f inal&

A@M#.

~25!

As this is an infinite sum one may first compute the a
plitude for uinitial & to evolve to ufinal& in N steps. This is
given by

AN@ u init ial &→u f inal&] 5 (
Muu1&5u init ial &,uN&5u f inal&

A@M#,

~26!

i.e., the sum over (N21)-step histories that take the initial t
the final state. However, note that while the full amplitu
~22! is formally unitary by construction the same is not t
case for theN step amplitude~26!.

C. The causal structure

We now show that each historyM has defined on it a
discrete causal structure as a result of its construction f
the evolution moves. Each history consists ofN statesuI &
which are elements ofHGq

. Furthermore, the statesuI & come
as labeled spin-tubes. Each one has a set of description
terms of generalized areas and volumes because of its
compositions inton-punctured spheres. Each history may
thought of as consisting of a succession of quantum
geometries. Besides the representations and intertwin
there is another structure defined on the histories: each
tory M is a causal set, whose structure is determined
follows.

Each historyM is also a set of genus-6 elementary sp
tubesPi . EachPi is divided into two partsLi andLi8 corre-
sponding to the elementary local regions that were remo
and inserted. The 4-punctured spheres inLi are thepast set
of Pi . The remaining 4-punctured spheres, which are in
complementLi8 are thefuture setof Pi . Now, consider a
particular 4-punctured spheres in the future setLi8 in some
Pi . Let us assume thats has been acted on by at least o
generalized evolution movePj for j . i . Thens also belongs
to the past subsetL j of Pj . If now s8 is a 4-punctured spher
in the future subsetL j8 of Pj , we will say thats8 is to the
immediate causal futureof s.

Now, consider a sequence ofr 4-punctured spheressi , i
51, . . . ,r , such that for eachsi ,i ,r either~i! si 11 is to the
immediate causal future ofsi , or ~ii ! there is someuI &
[uSI ,C I&PM such thatsi andsi 11 are both in the surface
SI andsiùsi 11Þ0. ~This, is either each 4-punctured sphe
in the sequence is to the immediate causal future of its p
2-8
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QUANTUM GEOMETRY WITH INTRINSIC LOCAL CAUSALITY PHYSICAL REVIEW D 58 084032
decessor, or it and its predecessor overlap in a single sur
associated with a stateuI & in the history.! When this is the
case we will say thatsr is to the causal future ofs1 , sr

.s1 .
It is clear that the relation. is transitive and that given

two 4-punctured spheress1 ands2 , s1.s2.s1 is never the
case. Thus, the 4-punctured spheres in each historyM con-
stitute a causal set, which is defined in@33# to be a partially
ordered set with no closed causal loops which is locally
nite. The latter means that given anys1 ands2 the set con-
tained in the causal past ofs2 and the future ofs1 is finite. As
argued in@33,34# a discrete set that has on it a causal str
ture is a candidate for a discrete model of spacetime.

The 4-punctured spheres of a historyM, defined by the
evolution moves that construct it, are then theeventsof M.
We will call the set of eventsE. By construction,E is a
causal set. It differs from the causal set of Sorkin and c
laborators@33# in that there is additional structure, associat
to a notion of space.

Each historyM may be foliated by a number of sets
causally unrelated events ofM that we will call the space-
like slicesG. A spacelike slice ofM is a subset$sa% of E
glued together according to the following rules:

~1! No two sa in G may be causally related.
~2! Two eventssa andsb in G may be glued together if ther

is a stateuI &PM in which they are glued along som
circle.

~3! The setG is maximal in that nosa may be added to it
without violating these conditions.

Associated withG is a stateuG&PHGq
given by uSG , j ,ma&.

Here the intertwinersma are fixed becausesaPG are given.
Similarly, each circlecab along which two adjacent 4
punctured spheressa and sb are glued is in fact a circle
labeled by a fixed representationj . Hence the labels on th
stateuG&5uSG , j ,ma& are uniquely determined by the histo
M.

The N original states $u1&,u2&, . . . ,uI &, . . . ,uN&% are
spacelike slices according to this definition. But there
many more sequences which may be constructed given
historyM5$u1&,u2&, . . . ,uI &, . . . ,uN&% that haveu1& as the
initial state andN& as final. We call the set of such stat
WM . One may in general select other sequences of elem
of WM , e.g.M85$u1&,u28&, . . . ,uI 8&, . . . ,uN&%, that have
the property that every event inE is a 4-punctured sphere i
a decomposition of at least oneuI 8&. As far as the local
geometry and causal structure are concerned these
equivalent descriptions of the historyM. Thus, this quantum
theory has a discrete analogue of multi-fingered time.

Thus, a discrete historyM combines discrete analogue
of both the canonical picture of quantum gravity and t
spacetime causal structure. It is the marriage of both kind
structure within a completely discrete approach to quan
gravity that we believe gives this approach its particu
power.
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D. Connection with spin foam and membranes

In a number of recent papers@35–39# a concept Baez calls
‘‘spinfoam’’ has been introduced. These are networks of c
ored 2-surfaces embedded in a four-dimensional space
whose slices by three-manifolds are spin networks. Gu
@40# has shown that the spin foam can be given a Lorentz
formulation by the addition of a causal structure and t
formulation is in a particular sense dual to the formulation
@23#. There is an analogous spacetime foam structure ass
ated with the historiesM, although it has not been so fa
investigated. It can be constructed by noting that each of
evolution moves may be seen as three-dimensional cob
isms between the two surfacesLr and Lr8 ~see Fig. 6!. The
resulting three-manifolds may be joined together to constr
a three-dimensional timelike combinatorial manifold asso
ated to each historyM. This is a non-perturbative, back
ground independent membrane.

VIII. COARSE GRAINING, ENTROPY AND THE
HOLOGRAPHIC HYPOTHESIS

Before closing we make some comments about coa
graining and entropy that will enable us to comment also
the relationship of our proposal to the holographic hypo
esis@41,42# and the Bekenstein bound@43#.

The basic idea is that in addition to the fine grained o
servables discussed previously there are coarse grained
servables that describe statistical information about the st
defined in Sec. II. There are two kinds of course grainin
which are relevant. In the first we retain information abo
the topology of the surfaceS while in the second we retain
only information that can be measured by observers at
boundaries of the regions.

Before describing these we may note that the existenc
coarse grained observables in itself means that the th
genuinely has local observables that are not determined
the values of the coarse grained observables.

A. Coarse graining by topology

We can coarse grain the information in a stateuS,C& by
forgetting the information about the stateCPVS and retain-
ing only statistical information about the surfaceS. This re-
sults in a density matrix which is constructed by tracing ov
the representationsj a and intertwinersm I

r . To each surface
S is then associated a density matrix which isrS5PS , the
projection operator ontoVS. There is an entropy associate
with this coarse graining. Associated to each surfaceS is an
entropyS@S#5 ln(dimVS).

As the dynamics changes the topology an entropy cha
can be associated with the evolution operators defined in
last section. This makes possible a thermodynamic treatm
of the evolution, which will be described elsewhere.
2-9
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FOTINI MARKOPOULOU AND LEE SMOLIN PHYSICAL REVIEW D58 084032
B. Coarse graining by regions

Rather than coarse graining by the topology ofS we can
coarse grain by splitting space into regions and measu
statistical information about each region. To do this we m
take into account what we learned from our discussion
geometrical interpretations, which is that as the topology
geometry of space are defined from the states, the splittin
space into regions must be defined intrinsically in terms
the states. We then define a coarse grained quantum g
etry as a coarse grained interpretation of a quantum s
uS,$ j %,$m%&. Let us then consider a decomposition ofS into
a set of regionsRi alongmi circlescg . Each piece consist
of a component ofS we will call Wi . EachWi is a punctured
surface, punctured by themi labels j g on the circlescg .

To each region we will also associate a puncturedS2,
with mi punctures with the same labels as theSi . Coarse
graining will mean that for each regionRi we forget the
details of the topology of the componentWi . This means
that all observables concerning the region must be repres
able as operators in the space of intertwiners on the ass
ated puncturedS2. There are then two spaces of intertwine

which are relevant,V j g

Wi andV j g
S2

. Coarse graining consists o

replacing a microscopic state, which is a vector inV j g

Wi with

a density matrix inV j g
S2

.

In correspondence with the different notions of propert
we may define acoarse grained surface propertyof the re-
gion Wi to be a function of the labelsj 1 , . . . ,j i m

and a

coarse grained bulk propertyto be an operator inV j g
S2

. Fi-

nally, two regions may share properties when the co
spondingWi ’s are glued along punctures. Moreover, given
full set of labelings on the punctured surfaceWi we have a

state inV j g
S2

by considering theWi as a framed spin networ

embedded in the interior of the surfaceSi in R3.
A coarse grained description of the quantum geometr

then given by a density matrix in the spacesV j g
S2

that corre-

sponds to each of the regionsRi . It corresponds to wha
observers may measure about the world, assuming they
only measure on boundaries.

C. Connection with the holographic hypothesis
and Bekenstein bound

The possibility of describing coarse grained properties
this way also suggests a formulation of the holograp
@42,41# hypothesis that is entirely non-perturbative and ba
ground independent. This arises in the case that we split
universe into two regions, and assume that we can only m
measurements in one of them.

Let us introduce a splitting of a surfaceS along a set ofp
non-intersecting elements ofp1@S#, which we will call the
cg , g51, . . . ,p. The two halves may be calledS1 andS2;
the ca are in each case their ends. Let us further consid
basis of states in which there are definite representationj g
defined on the surfaces.
08403
g
t
f
d
of
f
m-
te

nt-
ci-

s

-

is

an

n
c
-
he
ke

a

In the absence of a background manifold we will simp
represent the splitting by ap-puncturedS2, labeled by the

j g . Each halfS6 then has on it a space of intertwinersV j g
S 6

.

An elementV j g
S 6

defines what we will call aquantum geom-

etry with boundary. Given a quantum geometry, i.e., a sta
in a VS , there are many ways to split it into two halve
giving two quantum geometries with boundaries. The sp
ting of the world into two parts constitutes a simple coa
graining of it.

Now consider an observer who lives in one half,S1, who
is for some reason unable to measure any information ab
the topology or state ofS in the other halfS2. This might,
for example, arise if the causal structure~which we have
shown makes sense at this, non-perturbative background
dependent level! does not enable him or her to receive a
information from the other half. In this case the observ
effectively lives in a quantum geometry with boundary d

fined by the halfV j g
S 1

.

What information can the observer have about the phy

of the other halfV j g
S 2

? All they can measure is correlation

between measurements they may make at thep ends. This
means that the possible states they may distinguish by t
measurements are given exactly by the space of confor
blocks on thep-puncturedS2 associated with their boundary

This is the spaceV j g
S2

which we described before.

To summarize, the following may be considered anon-
perturbative formulation of the holographic hypothes:
When an observer is unable to measure information co
sponding to the interior of a region of a quantum geome
because of the presence of a causal horizon, or for any o
reason, the information accessible to them by measuring
servables at the boundary of that region is represented

finite dimensional space of statesV j g
S2

for somep-punctured

S2.
This has several further consequences. First, in the SU~2!

case it is known that@8#

ln~dim@V j g
S2

# !<
c

4

A@ j g#

l Planck
2

~27!

for large numbers of punctures, wherec58 ln(2)/). Here
A@ j g# is the area operator of quantum general relativ
@11,2# with eigenvalues(gl Planck

2 Aj g( j g11). Thus, the
Bekenstein bound [43] is automatically satisfied.9

In the case of a generalGq we do not know which ob-

9We may note that the constantc is not equal to one. This is no
surprising given that the quantityl Planck in the area formula is given
by the bare Newton’s constant. Unless the theory has a contin
limit the macroscopic, renormalized Newton’s constant which pla
a role in black hole thermodynamics cannot be defined. This re
suggests then predicts that in those casesGren5cGbare .
2-10
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QUANTUM GEOMETRY WITH INTRINSIC LOCAL CAUSALITY PHYSICAL REVIEW D 58 084032
servable corresponds to the area. It may be any surface p
erty, which means it must be an additive functionA of the
casimers ofGq . The Bekenstein bound gives us a constra
on that definition, which is that

A@ j g#,4l Planck
2 ln~dim@V j g

S2
# !. ~28!

We may note that the Bekenstein bound~28!, together with
certain other assumptions is, as Jacobson has shown@44#,
equivalent to the Einstein equations. Jacobson’s argume
@44# can be interpreted to imply that any finite theory
quantum gravity that has a classical limit such that~a! the
relationship~28! is satisfied on every horizon which exists b
virtue of an observer being accelerated and~b! quantum
fields behave as conventional free fields in the limit of lo
curvatures, then the field equations of general relativity
true to leading order in curvatures as a consequence o
ordinary laws of thermodynamics@44#. This suggests tha
statistical assumptions about the dynamics, together with
~28! may be sufficient to derive the classical limit of th
theory.

IX. CONCLUSION

The general framework introduced here becomes a the
with two inputs: a group or algebraGq , and a choice of the
dynamical operatorsĤr that define the evolution. The mai
question that must be investigated is how these operator
to be chosen. Good choices should lead to a theory wi
good continuum limit which reproduces classical gene
relativity with matter fields. This is currently being invest
gated in several directions.

~1! The algebra of the tube operators introduced here sh
be worked out. It will be interesting to see if there is a s
of local operators that generate the algebra and if t
are related to the loop algebra of quantum gravity@32# in
the q→1 limit.

~2! It appears possible to choose the evolution operatorĉr to
agree with the dynamics generated by the Lorentz
Hamiltonian constraint of Thiemann@16#. A path inte-
gral representation of Thiemann’s Lorentzian constra
along the lines of@36#, may then be possible.
It seems that the evolution generated by Thieman
constraints is ultralocal@17,18#. However we may note
that the evolution generated by the 1→4 and 4→1
moves are ultralocal in the sense that they do not lea
long-range propagation. As suggested already in the
clidean context in@36# it follows that the other moves
are necessary in order to have long-range propagatio
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~3! More generally, the relation of the causal theory to t
Euclidean path integral approaches@35–39# should be
investigated. In this direction, Gupta in@40# has formu-
lated a causal spin foam.

~4! All of the above involve so far only the SU~2! spin net-
works. The extension to other groups is important. T
SO~8! case is of special interest because of its conn
tion to supersymmetry and triality. It is currently und
investigation with Asok. The general case of a sup
group should be investigated.

~5! Two connections with string theory have been inves
gated. In@21#, we takeGq to be the projective group o
the circle. Its representations are parametrized by r
tively prime pairs of integers (p,q). The states in this
case turn out to be combinatorial (p,q) string networks
@45# whose dynamics is a simple case of Sec. VII. S
ond, in@22# perturbations of the SU~2! theory have been
studied which are given by a (111)-dimensional system
with couplings determined byĉr. When the full theory
has a good continuum limit, the action for the 111 sys-
tem is given to leading order by the Nambu action
bosonic string theory. An argument may be given that
for some choice ofGq and ĉr the induced 111 dimen-
sional theory is a consistent perturbative string the
then the continuum limit of the non-perturbative theo
exists.

~6! In @24# we argued that the existence of a continuum lim
can be seen as a critical phenomenon which is analog
to directed percolation. To investigate this we have
vented a set of simple models that have dynamical ca
structure of the type described here@46#. Further, these
models are discrete dynamical systems since evolu
proceeds by discrete local steps. This leads to propo
for the evaluation of the path integrals proposed h
which are discussed in@47#. Finally, given the remarks
in the previous section, one may use statistical mech
ics to make general statements about the evolution of
states based on the entropyS@S#.
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