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Quantum geometry with intrinsic local causality
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The space of states and operators for a large class of background independent theories of quantum spacetime
dynamics is defined. The $P) spin networks of quantum general relativity are replaced by labelled compact
two-dimensional surfaces. The space of states of the theory is the direct sum of the spaces of invariant tensors
of a quantum grous, over all compact(finite genug oriented 2-surfaces. The dynamics is background
independent and locally causal. The dynamics constructs histories with discrete features of spacetime geometry
such as causal structure and multifingered time. Fof25the theory satisfies the Bekenstein bound and the
holographic hypothesis is recast in this formalism.
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I. INTRODUCTION are not present in the classical case wigenl. These are
analogous to the duality symmetries of perturbative string

In this article we describe a new class of quantum geomtheory. As we argue below, this may play a role in the inter-
etries that is to be used in developing a theory of quantunpretation of the theory.
gravity. These are natural extensions of the spin network The second sense in which our proposal extends the spin
states that have been shown to comprise the non-perturbativetwork states of quantum general relativity is that the states
state space of quantum general relatifity2]." In this for-  are defined intrinsically, without the use of a background
mulation the labeled graphs on which spin networks arénanifold. In quantum general relativity the spin network
based are replaced by 2-manifolds and the invariant tensoggates are diffeomorphism classes of embeddings of graph in
of a quantum groufs, associated with them. The motiva- a fixed three-manifold [1,2]. We go beyond this to a purely
tions for this generalization comes partly from results of non-algebraic definition of the state space which depends on no
perturbative quantum gravity and string theory. prior specification of a manifold.

This formulation has a kinematical part and a dynamical One result of non-perturbative quantum gravity has been
part. The kinematical part, which is described in the nexthe discovery that geometrical quantities, including area
four sections, generalizes the spin network states in tw¢11,2], volume[11,2,19 and lengti13] have discrete spec-
ways. The first is that the SB) group of the spin network tra. This is true before the introduction of dynamics or matter
states of quantum general relativity is replaced by an arbicouplings and signals that the combination of diffeomor-
trary quantum groupG,. Within the framework of non- phism invariance and quantum theory requires that quantum
perturbative, diffeomorphism invariant quantum field theo-geometry be essentially discrete. At the same time, the ap-
ries, this is the natural way to extend the degrees of thelication of these techniques to the Hamiltonian constraint of
freedom of the theory to include gauge fie[@ and super- general relativity14,15,16 leads to a theory without a good
symmetry[7]. The quantum deformation is motivated from continuum limit[17,18. Given this, it seems more natural to
physics by three considerations. First, in quantum generajonstruct the theory purely from algebra and combinatorics
relativity the introduction of a cosmological constahtre-  and let continuum notions arise in the classical limit of the
quires a quantum deformation of &) with q=e?"**2 de-  theory.

fined by[8,9,10 We may note that the dualities of string theory suggest
that one and the same physical situation may sometimes be
67 described in two different ways, which differ in the topology
= (1) and manifold structures of the underlying manifolds].
G“A Other results show that in string theory there are continuous

phase transitions whose semiclassical description involves
Second, the truncation in the number of representations withbrupt changes of the topology of the underlying manifold
g at a root of unity improves the formulation of the dynamics[20]. These suggest that the fundamental, non-perturbative,
by making the sums involved in the path integral less diverdescription should not be based on fixed topological mani-
gent. It also introduces new symmetries in the theory whictfolds.
But without background manifolds the theory cannot be
formulated in terms of the embeddings of surfaces or mem-

*Email address: fotini@phys.psu.edu branes. The alternative is to construct the states and operators

"Email address: smolin@phys.psu.edu that are to represent quantum geometry algebraically, using

For recent reviews se€f®,4]. Spin networks were originally in- only combinatorics and representation theory. This is the
troduced by Penrogé] as a model of quantum geometry. main goal of this paper. I[21] and[22] results are presented
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consistent with the hypothedid] that the resulting extension surfaces, let V2 be the space dB, invariant tensors o3

of the spin networks formalism may serve as framework forye then define the space of statég_of G, quantum grav-

non-perturbative string theofy. ity to be g

A theory formulated without reference to any background

manifold still requires dynamics and that dynamics should

have built into it some notion of local causality. Below, in

Sec. VII, we show that this can be achieved by an extension

of a formulation of spin network dynamics proposed earlier, : -
o ' ~~where the sum is over all compact 2-surfaces of finite genus.

by one of ug23]. The dynamics is based on discrete histo- P J

. ) . . . EachVg is finite dimensional when is at a root of unity.
ries M, which are combinatorial structure which have two _VGq : ] ni ' ! w _q ! unity
properties shared by classical spacetime: HGq is equipped with the natural inner proddsee Eq.(5)

(1) Each historyM contains a finite sef of elements that below] and is a Hilbert space. _
may be called “events.” This set of events is a partially The sense in which these states may be considered to

ordered set. We thus have the finite element analogue of tHegPnstitute an extension of the spin network states of quantum
points of a Lorentzian spacetime. general relativity will be discussed shortly, but we note that

(2) Each historyM contains a large number of connected this is not a new notion. It is known that the quantum defor-

: tion of spin networks requires that their edges be enlarged
sets of causally unrelated events, which may be callef”a. .
“quantum spacelike surfaces.” Each spacelike surface i o ribbons or tube$28,26,27. This is to allow dependence

also a quantum state. Thus, the theory has a discrete an%f- the states on twistings of the edges, necessary for the

logue of the many-fingered time of general relativity, which g-deformed cas¢28,26,30,29 In the next sections we in-
9 Any-fing g . HIVILY, ._vestigate properties of these states that are important for their
means that a discrete analogue of spacetime diffeomorphis

. . . . sical interpretation.
invariance is built in. Bhy P

Each history is then given an amplitude which is a prod-
uct of factors each associated to a local transition in the  !ll. TRINION DECOMPOSITION: BASIS STATES
quantum geometry. Causah.ty and Ioc'allty impose restrictions \y/e begin by reviewing some of the properties of the state
on the choice of these amplitudes which are discussed beloﬁpacesvé that we will need to discuss their role in repre-

The issue of the choice of dynamics and the related queStiO_Qentin thqe states of quantum aravitFor the purposes of
of the continuum limit is discussed (24,27, g g gravitg: purp

In the next three sections we introduce the space of statedsescnbIng the states and operators?qigq it will be very

that we propose extends spin networks and describe useffeful to understand the behavior of the state}‘i@[} under
decompositions of them which are based on 3- and 4decompositions of the surfacg into a union of punctured
punctured spheres. Section V introduces an algebra of operapheres. We begin by discussing the decomposition of a ge-
tors that act on the states and the interpretations of some #tsg surfacesS into 3-punctured spheres, or trinions. Given
them, which yields a picture of quantum geometry, is thed surfaceS we may choose a maximal set of non-intersecting
subject of Sec. VI. The dynamics of the theory is describectlements of7'{S], which we shall call circlesc, . Cutting

in Sec. VII, while Sec. VIl discusses coarse-grained observ<> along the circles,, decomposes it into a set & trinions,
ables and entropy and their relationship to the holographi®i » ! =1, .. . N. The trinions are joined on their punctures
hypothesis and Bekenstein bound. The conclusion is largel§© that each circle,, corresponds to the punctures on two

devoted to describing ongoing work that will be reported intrinions.[See Fig. 1a).] This may be done in several differ-
other papers. ent ways[See Fig. 1b).]
A trinion decomposition will be calledon-degeneraté

no two trinions meet at more than two circlese Fig. 2
Associated to each trinion decomposition®it a class of
bases on/éq, which is constructed as follow§, has a list

f irreducible representations, which we will label by.
or theq taken at a root of unity, which we will assume,

HG = @Vg (2)
q S q

Il. THE SPACE OF STATES

The space of states that we investigate here is both th
extension of S(2) spin networks to a quantum group, . L . 3
and of the spin network states of canonical quantum gravit;sh's is a finite lisy Each of the thrge circles of a trinids
to the non-embedded case. may be labeled by a representatipp, «=1,2,3. For each

Given a quantum grouf, and a compact oriented 2- choice of the representatiofg there is a linear :~:pa<faé}lj2j3

of intertwinersy, . The intertwiners are the maps

2In fact the basic idea of the present formulation is rather like the
idea behind the transition from quantum field theory to perturbative *Equivalently this is the space of conformal blocks of the Wess-
string theory. Just as Feynman diagrams are replaced by stringumino-Witten (WZW) theory corresponding to levet on S
worldsheets, the present generalization of quantum general relatiy25,26,27 or the space of states &, Chern-Simons theory of,
ity extends spin network states to 2-dimensional surfaces and theeen as a spatial slice of some 3-manifi28].
states of field theories defined on the surfaces. 4Complete characterizations M‘éq may be found in25,26.
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FIG. 3. A trinion decomposition of a genus 5 surface reduced to
(b) a spin network graph.

FIG. 1. () A genus 4 surface cut into six trinior’ by circles Note that, given a particular trinion decomposition&f
C, - (b) The same surface in a different trinion decomposition. {14 states in the bas|s, ], . u{) may be thought of as gen-
o eralized combinatorial trivalent spin networkSee Fig. 3
M J1®]2®)5— 1. (3 but note that fog# 1 these are quantum spin netwofRS].)
The edges, of the corresponding graph are labeled with
the same representatiops as the corresponding circles,,

) . while the trivalent node®, associated to the trinions are
dimension. labeled by the intertwinerg, . Because of this association
The space of stateB‘éq (subset ofHg ) associated with e sometimes call the basis sta{éhj,,u[) tubular spin

the surfaceS is constructed by taking direct products of all networks

the constituent spaceis}lj213 and summing over the repre-  The gssignment.o'f a graghto thgsurface? depends'on

sentations, the choice of the trinion decomposition and the same is thus
true of the basi$S,j,,ul’). If we choose a different trinion
decomposition ofS, based on a different maximal set of

A choice of a set of , on the punctures of a trinion is called
consistent if the correspondimg}1j2j3 has strictly positive

_ |
ng_,z ‘?V{j}l (4) non-intersecting elements af'[S], we have a different ba-
* sis for ng. The recoupling identities of the representation
wherel labels an arbitrary trinio®? in S with labels{j}, . theory of G, [30] then provide the change of basis formulas.

A generic state iVZ_will be denotedS,¥). A basis in  Alternatively, they may be computed using the modular
S - transformations of the corresponding rational conformal field
V. is then constructed as follows. We choose an orthogone% :
a _ _ o eory as in25,26.
basis of intertwiners in the spa@éj}I of each of the trinions, We may note that whem—1 the spaces’S become
denotedu/. A basis of states iV2 is then given by a infinite dimensional as there are an infinite number of repre-
choice ofj, on each circlec, in S and a choice of a basis sentationsj,. Then, the Moore-Seiberg operators are no

element” on each trinion. These basis states are denotelpn9€r well defined unitary operators. Thus, in the limit
18,1 0o 1t —1 the states u‘HGq are the usual combinatorial spin net-
" Ja /-
Given a trinion decomposition of every finite genus 2-Work states of S(2).
surfaceS, the statesS, j, ,uf) provide an orthonormal basis
for the state spac’é(Gq. The inner product oril-[Gq is given IV. DECOMPOSITION IN 4-PUNCTURED SPHERES

by Just as the trinion decomposition is related to an extension
of trivalent spin networks, we can associate an extension of

(SiiamfS" jovi)= dss' 11 9 j’H (uflv)y,  (5)  4-valent spin networks to the bases of statey frthat come

a e from decomposing into 4-punctured sphergfrom now on

. we drop the suffi fVe). T mplish this we pick
where the same trinion decomposition is assumed for the t\Noe drop the suffixG, 0 VGq) 0 accomplish this we pic

states whes=S" and(uf|»7), is the inner product in the a (non-maximal set of non—mtersectmg circles, on S that
space of intertwinerd' on thel-th trinion. decompose |'F into 4-punctured sphe_B_E,\s As before we can
label these circles with representatigns
It will also be useful to work with generai-punctured
spheres. In general, a 2-sphere withpunctures, denoted

Bl', is labelled by representations, .. .,j, of the group
’ — G4. Given B' and the labelg,, ... ,j,, there is a linear
space of intertwiners]/}1 _____ j.» consisting of the invariant
maps
FIG. 2. This trinion decomposition is degenerate because the
two trinions have two circles in common. m1® .. .9 — L (6)
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FIG. 5. An elementary substitution move.

_ which vyields another surfaceS’ expressed as a non-
FIG. 4. The tubular 4-simple®, a genus 6 surface decomposed gegenerate composition of 4-punctured spher&s

to 5 4-punctured spheres. — ®|m:18|4 where in generam=n.5

. . . _ To define these moves let us now put forward some no-
As in the 3-punctured case, the d|men5|on)qfl ----- in 'S tation. Anelementary local regionL, is a set ofn<4 4-
required to be non-zero otherwise the choicgof. . . .jniS  punctured 2-spheres?,
inconsistent and not allowed. Now, given any decomposition
of S into n-punctured spheres along a set of cirates we n
have representation of the statesWr in terms of triples L=0OB, n<4 ®
|S,jst1). The formulas(4) and (5) still hold.

Returning to the decompositions in terms of 4—puncturedeach pair of which is connected by exactly one tube.

spheres, we may not'e that such decomposition§ may b[ﬁerefore, is a 2-surface with 4 or 6 punctures, their number
made, at least locally, in a surfadeby grouping the trinions

: - oo . : ; given by
in some trinion decomposition into pairs. Finally, as in the
case of trinions, we call a decomposition of a surfadato number of free punctures4n—n(n—1). 9
4-punctured sphereson-degeneratéf no two 4-punctured
spheres share more than one puncture. n has to be at most 4 fdr to have any free punctures. For
n=1,2 the genugnot counting puncturgsof L is 0, forn
A. The tubular 4-simplex =3 itis 1 and forn=4 it is 3.

In fact, a genugy surface always has a non-degenerate _leen these deflnltIOES, na Iogal move is the following.
decomposition into 4-punctured spheres gor6. It is easy ~ CVen a decompositios=0O,_; By, remove an elementary
to see that the smallest number of 4-punctured spheres thi@cal regionL in it and replace it with a new orle” that has
can fit together non-degenerately is 5. These make up a g&l€ same number of punctures and same labels on the punc-
nus 6 surface which may be thought of as a tubular genefures.(See Fig. 5. o .
alization of the 4-simplexsee[23]), as every 4-punctured ~ 1he topology of th/e new local region is determined by
sphereB?, 1=1, . ..,5 isconnected to every other one once. €quiring thatL andL" can be composed along their com-
(See Fig. 4. This surface plays a special role in the dynam-Mon punctures to form the generating surfdésee Fig. 6,
ics. We shall call itP and refer to as thgenerating surface
Together with ten fixed circles;; connectingd;’ andB} that
decompose it into fivg such 4—punctur_ed_ sphe]?ewill be Namely,L’ is the complement of. in P, .6 We call
called thetubular 4-simplexlts q—1 limit is a 4-valent  g,ch 5 syubstitution tubular evolution move(See Figs. 5, 6
graph with 4-valent nodesy for each 4-punctured spheBf  4nq 7. The result is a new 2-manifol§’ which has a de-

of §and an edgey, for each circlec,, . Labeling the circles  composition into 4-punctured spheres that fall into two sets,
¢,y by representation$, and theBy by a basisuf in the  thgse inS—L and those irL".
4

corresponding spaces of intertwine,rg' we have a basis of It is clear that if the original decomposition cﬂ‘_ into
Vol 4-punctured spheres is non-degenerate then so is the new

one. No two 4-punctured spheres-L share more than

one connection because the original decomposition is non-
degenerate. The same is true for the 4-punctured spheres in
B. Tubular evolution moves L’ because every elementary local region is non-degenerate.

Consider a non-degenerate decomposition of a suface
into n 4-punctured spheres,

L,GL:PL’OL- (10)

states|P,j,,uf). Each of these is a coloring of the 4-
simplex.

n SThese moves are a generalization of the Pachner moves from
S=0 B4, (7) combinatorial topology{31] that played an important role in the
=1 evolution of spin networks if23].
®In terms of the vector space representations ahdL’, Eq.(10)
where® denotes the gluing of a pair of punctures with theis the tensor product of the vector spaceloiith the dual vector
same labels. Givess, there is a set of local moves each of space ofL’, V& (V')P.
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FIG. 6. Left: The substitution move seen as a three manifold FIG. 7. The four elementary substitution moves;>4 and
that defines a cobordism fromto L’. Right: Joining theL andL’ 2<3.
together makes a generating surfate
V. TUBE OPERATORS

The non-degeneracy &f implies that there can be at most
one connection between any spheré inand one inS—L.’ We now turn to the operators on the space of st’aigqs

There are four kinds of tubular evolution moves, depend-The Moore-Seiber§25] operators are a set of unitary opera-
ing on the number of 4-punctured spheres in the old and nedrs that act inside eachi®. However, if our theory is to be
elementary regionk andL’. As in the case of the Pachner & generalization of spin networks there must be operators
moves used if23], these are denoted the—4,4—1,2 thattake us from states in ol to states in another®’ on
—3 and 3—2 moves. In terms of the corresponding surfacesa different surfaceS’. We will see here that several useful
one can see from Fig. 7 that these result in a change of gengets of operators can be constructed, which will play a role in
by +3,—3,+1 and—1 respectively. This means that start- the interpretation and dynamics of the theory. They are
ing with the tubular 4-simple® which has genus 6, one can analogous to the loop operators whose algebra defines the
maker successive 2:3 moves to reach a surface of any loop representation of general relativ{ty2]. Here, because
genusy=6-r. Therefore, each surface with gergis 6 has  the states are defined without any reference to a background
a non-degenerate decomposition into 4-punctured spheresmanifold, the operators are defined relationally, in terms of

Note also that ifB* is a 4-punctured sphere with labels decompositions of the surfacésinto pieces.

i1.i2+13.]4 it may be decomposed along a circginto two LetY denotg a genug compact oriented 2-surface with
trinions B> andB3. If we call the label orc, by | we have  n=1 punctureg (k=1,...n). Given a compacs let r,
denote the maps
4 3 3
— 2
])?lj21314 E| Vl-Blﬁzl@Vﬁgul (11) rI Y_>S (12)

Thus, we see that there are many trinion decompositions of &king Y homomorphically to a component &f In general
surfaceS that are subdivisions of a decomposition®fnto  there will be a set of such maps; they are distinguished by
4-punctured spheres. In terms of the analogy to spin nethe indexl.
works this corresponds to what has been called decomposing For eachl the map picks out a set @f non-intersecting
a 4-valent node of a spin network in terms of two trivalentcircles c{(, k=1,...nin S CuttingS on these circles de-
nodes and an internal, or “virtual,” edge. In the presentcomposes it into the two piecegY) and (S—r,(Y)). The
context all of these are connected by elements of the modulajpace of intertwinery’® decomposes as
group[25,26.

Clearly, a given surfac& has more than one inequivalent
decompositions into 4-punctures spheres. As an example, ps=> pY  gpld Tt (13)
consider the tubular 4-simplex of Fig. 4. The relationship ke e
between these different compositions correspond to transfor-
mations between two bases in which the roles of the reprey state|S, V) e VS then decomposes to a sum over the rep-
sentations and the intertwiners are exchanged. This has iTésentati0n$1 ... .jn of the product of a state i#Y and a
teresting consequences for quantum geometry that we will (6ot (’Y)) on Tk
discuss below, when we describe how the geometrical interState inV; Y
pretation of the theory is constructed.

We will use the tubular evolution rules to define the dy-
namics of the theory. But first we have to define operators on 1S, =0 |Y,ji, ¥He[(S—1(Y)),j, ¥2). (14
Heq that implement them. k

Using this decomposition we then define three classes of
"This is an extension of the basic fact that the Pachner movegperators. The first two are block diagonal in the decompo-
applied on &PL triangulation preserves non-degeneracy of triangu-Sition (2), while the third changes the topology of the surface
lations, i.e. when no two tetrahedra share more than one face. S.
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A. Surface operators

Let F({ji}) be a symmetric function of representation
labels{j,}. Given such a function and a 2-surfa¥ewith n

punctures, there is an Hermitian operafgr that acts irIHGq
as follows. On the spacelsle o Fy is the diagonal op-
erator equal td=({j,}). Then on a general state

Alsw)=2 2 FidIY i)

®|(S_rI(Y))!jkiq,2>- (15)

This operator looks for the instances of the submanitioid

each surfac& and, in each state, measures a property of the

boundary separatin’ from the remaindeS—r(Y) given
by the functionF({j,}). The punctured surfac¥ can be

PHYSICAL REVIEW D58 084032

vector spaces, we have the space of linear maps from the first

to the second, denoted hom(t,VY2). A particular
cehom(V¥1,1Y2) acts on a statdY 1 ,j, 1) eV].Yll'__]. as

Y1 W =Yo i W2 eVviz (1D

n
.. . Y . ~
giving a state |nVJ.12 ; - Given any sucft we construct a
n

substitution operatoszylvyz,g, defined by
Cry v, dl S W)= 2 2 [(S=ri(Y0) jie W)

®[c|YLj, ThH]. (18)

thought of as the algebraic representation of a 3-dimensionathe action ofCY Y,.¢ Is pictured in Fig. 5.

regionR in the quantum geometry that a statefi repre-
sents. The surface operators thus measure properties

Note that we may also glu¥, andY, along their iden-
f€al boundaries as in the right hand figure of Fig. 6.

boundaries of regions in space. This interpretation will be

developed in the next section, where we will see that an

example in the case of SP) is given by the area operator
obtained in quantum general relativit¥1,2].

B. Bulk operators

VI. GEOMETRICAL INTERPRETATIONS

So far, we have defined states?iﬂ;q in terms of labelled

2-dimensional manifolds. We shall now interpret them in
terms of observables related to 3-dimensional space. These

Once a regionR of an abstract quantum geometry hasarise as natural extensions of the observables of quantum

been identified by a map :Y—S we can also try to mea-

general relativity: the area and volume operators.

sure bulk properties of that region. These will be eigenvalues The subtlety is that here there is no background manifold.

of operators that act on the spa)zlé N
topology of Y and hence on dimfi-Y i
operator let us choose, for ever]yl

and depend on the
. To define such an
..jn an operator

-n

le"'jn on VY i The corresponding bulk operator
B‘le ...j, Is defined on the state spa’bQ;q as

l%JYl Jn|5,\If>=2| Ek B|Y‘7jk7q}1>

®[(S—r(Y)),jk, ). (16)

Examples of bulk operators are the volume operatorsyith |ntertW|ners,u|eV B/

which we will describe in the next section.

C. Substitution operators

All of the properties of space, including its topological and
metric properties, must be coded into the states. In the ab-
sence of any background manifold to provide surfaces and
regions, geometrical observables are constructed relationally,
from information coded into the states.

Let us begin with the space of stat¥s associated to a
given 2-surfaceS. A microscopical geometrical interpreta-
tion of these states exists for every decompositio® ofto a
set ofn-punctured 2-sphereB,', with n=3, joined on a set
of circles, c,. Let us consider a basis of states which is
(partially) determined by definite values for the representa-
tionsj, for these circles. This state is of the forfs,j,, )

for each of the punctured

spheres.
The geometrical interpretation is constructed as follows.
Associated to eacB] is a regionR,. These regions have

In the last section we defined the tubular evolution movesthree kinds of properties:
These are examples of a large class of substitution operations

that take us from one manifolfl to a different manifoldS’
by cutting out a pieceY?! of S and replacing it with a dif-
ferent manifold Y2 with the same boundary. The tubular

evolution moves are examples of these. For such substitu-

tions we can define linear operators that acﬂ-QgL and take

states fromVS to those inVS'.
Start with two punctured surface¥, andY,, each with
an ordered set ofi punctures, with labelg,, . . . ,jn They

can be represented by vector spaﬁ:&%’lsl__ . andV b J

Note that in general dimV\le1 j a&dimVle - leen two
“ttin n

Surface properties: A surface property of a regigR, is

a functionF(j,, . ..,j,) of the labels on the punctures
of the correspondin@®'. Surface properties are mea-
sured by surface operatofs5).

Bulk properties: A bulk property of a regiorRk, is mea-

sured by a Hermitian operatds (16) in the space of

|ntertwmersV By

~dn’
Shared propertles Two regionsR, andR; may have
shared properties if they have a set of common punctures
with labels, say,ji, ...,k. If this set is non-empty,
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thenj,, ....jx is the common boundary 62' andR .
A shared property ofR' and R7 is then a function
G(jlv e vjk)'

In the SU2) case we may import the kinematical struc-
ture from quantum general relativity found[ib1,2,] to give
us examples of each kind of observable:

The area ofR, is a surface property. It is given by
Fiv, i) =15 Z0-1\iallat 1)

The volume of the interior 0By is an example of a bulk FIG. 8. A choice of decomposition into 4-punctured spheres
property. As we know fronj2,12] the volume operator wherec,, are representations any intertwiners.

is a Hermitian operatoN[j,, ....j,] that acts in the

space or intertwinerva' .8 on P and define a trinion decomposition f] This decom-
1

The area also gives an example of a shared property. ROSition represents statB,j(c,),x)). If we now read the
B! andB" share a set df spinsj,, . . . ,jx then the area decomposition with a different set of circles, including,

of the common boundary oR, and R, is given by Separating the five 4-punctured spheres, we obtain a different
122X _1Vja(jo+1) summed over the common punc- S€t of basis statg}@,j(c;)jﬂlr>. This s_howg that the_dist!nc-
tures of the two regions. tion between spins and intertwiners in this formalism is de-
pendent on the choice of-punctured spheres. Therefore, so
Note that, given a division of into punctured spheres, is the geometrical interpretation.
we may simultaneously diagonalize all of the area and vol-
ume operators on the corresponding regidts Thus, a

common eigenstatks,j,,u,) may be called anicroscopic VII. CAUSAL EVOLUTION
guantum geometnjit is a set of regions together with) an
area for the boundary of each org) an area for each com- We now discuss the evolution of the statesH'aq. The

mon boundary, such that the area of each is the sum of itgynamics of the theory will be based on the evolution moves
common_boundaries with the others afiidl) a volume for  gefined in Sec. IV B. By composing the moves we produce
each region. ) . . sequences of states that we call histories. These discrete his-
For a generalS,, we expect ageneralized microscopic tories share three characteristics of Lorentzian spacetiies.
quantum geometryo be the maximal set of simultaneous There is a set of events which is a discrete partially ordered
eigenvalues of surface and bulk observables for a decompQet with no closed causal loops. This is a discrete analogue of
sition of S into punctured spheres. There is also a notion of & | grentzian spacetiméii) There are connected sets of caus-
coarse-grained quantum geometry. We will discuss this iny|ly unrelated events, the combinatorial analogues of space-
Sec. VIII. like surfaces.(iii) A history can be decomposed in many
ways into sequences of spacelike surfaces, leading to a dis-
A. Duality between edges and intertwiners crete analogue of many fingered time.

The reader may have noticed that the geometrical inter-
pretations available to the states\ii are not determined by
S. There is a geometrical interpretation for every way of
dividing S into punctured spheres. We regard this freedom as
an intrinsic and attractive feature of the generalization fro”\mplements the evolution moves described in Sec. IV B. This
spin network states to the space of Std@%' For example, will be a substitution operator of the form defined in Sec.
in the 4-valent spin networks two kinds of edges appear: rea}/ . To do this letp=1,2,3,4 correspond to the four kinds of
edges connecting the nodes and “virtual” edges that may b@gchner moves-44, 2—3,3—2, 4—1. Then takd_, to be
the usual spin network formalism they play different roles. spheres, so thaI;), the complement of , in P consists of

For example, consider the tubular 4-simpf@xand the 5, 4 hunctured spheres. We will cdll, the past set and
two different decompositions into 4-punctured spheres |Ilus]_, the future set of th@ associated with the—5— p move
trated in Fig. 4. These may be described in terms of two sets”

of circles ¢, and c,/, as shown in Fig. 8[The full set (See Fig. 7.

: . . ) For p=1 and 4 theL, and L’ each have 4 punctures,
(c,.C,r) make up a maximal set of non-intersecting circles_, . P p.- B
which are labeled by representations y=1, ... ,4. Forp

=2,3 there are six punctures and=1, ...,6. Foreachp
and sets of 4 or 6 representationswe may choose opera-

A. The evolution operator

The evolution of states is generated by an operator that

8Here we take the definition given [&2] that does not require any
assumptions about structure not present in our case such as lin
relations among tangent vectors at the nodes. mented by the substitution operator

~ L L’ X .
Jors Cp.j, € hom(ij,Vj;’). The pth move is then imple-
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HASW)=C 11 & |SW) ALM=]IT A" (24)
|
np
=> > [(S=ri(Lp))i, . ¥) Let us then have two statgiiitial) and [final). There is an
Pok=1 infinite number of historiesM such that the first state is
SI&IL, .J W)] (19 equal tolinitial) and the last state is equal tbinal). By
pl=prlys .

analogy to the simplical case we may denote this)A4
The total evolution operator is then given by =linitial )U|final). The transition amplitude to evolve to
[final) given |initial) is then,

= p
: ; A" 0 Allinitial )—|final)] = > A[M].

Mg rm=|initialyul finaly

To see how these act, let us start with an initial sk&fé’) (25
and act on it with one of thel”. If Sis large enough, there
will be numerous regions in it homeomorphicltg. To each
of them there is a map, :L ,—S. For eachl we then cut
from S the regionr,(L,) and replace it by_,’J. This results
each time in a new 2-surface which we c8Jl, . The result N )
of the application oH” is then a superposition of the states AM[initial)—|final)] :M| _ 2 , ALM],
given by the actior(19). The exact map from the old states =it =[final) (26)

to the new states is given by the linear maﬁgs (We sup- o o
i.e., the sum overN —1)-step histories that take the initial to

press the dependence of on the representatiors,.) the final state. However, note that while the full amplitude

The operatorH is Hermitian when each of the, are (39 is formally unitary by construction the same is not the
appropriately chosen. In this case a formal unitary evolutlor}:aSe for theN step amplitude26).

operator may be written down as

As this is an infinite sum one may first compute the am-
plitude for |initial) to evolve tolfinal) in N steps. This is
given by

= e'ﬁt 1) C. The causal structure
We now show that each histooy! has defined on it a
wheret is a parameter having nothing to do with the physicaldiscrete causal structure as a result of its construction from

time (|t just scales the operatoﬁ ) The amp"tude for an the evolution moves. Each hIStOI’y COHSIStSN)fStateS||>
initial state|initial )=|Snital » initial) t0 €volve to a final which are elements dHGq. Furthermore, the statél come
state|final)=|Ssina» Ytinal) is formally given by as labeled spin-tubes. Each one has a set of descriptions in
terms of generalized areas and volumes because of its de-
Allinitial )—|final)] =(final|{f/initial). (220  compositions int;-punctured spheres. Each history may be
thought of as consisting of a succession of quantum 3-
geometries. Besides the representations and intertwiners,
there is another structure defined on the histories: each his-
tory M is a causal set, whose structure is determined as

By decomposing the action @f at each orden of the  follows.

action of (4)" in terms of 4-punctured spheres produced by Each historyM is also a set of genus-6 eleme,ntary spin-
the evolution moves, the amplitud@2) can be given in tubesP;. EachP, is divided into two partd; andL; corre-
terms of a sum over a set of historiesM sponding to the elementary local regions that were removed

={|1),12),3) ... } in which each|l +1) results from the and inserted. Th_e _4-punctured sphereg irare th_epast set
previous| ) by the application of one of the four moves. The f 7i. The remaining 4-punctured spheres, which are in the
theory gives an amplitude to each transition from an initialcomplementL; are thefuture setof ;. Now, consider a
state to one of its successor states. The amplitude is given Warticular 4-punctured sphegein the future set; in some

P;. Let us assume tha has been acted on by at least one

A =(L"j o 1€ L), (23)  generalized evolution movg; for j>i. Thens also belongs

to the past subsét; of ;. If now s’ is a 4-punctured sphere
where|L,j ,u|> is a trinion basis state for the initial elemen- in the future subseltj’ of P;, we will say thats’ is to the
tary local region to be cut out antl’,j, ,u|) is a basis state immediate causal futuref s.

B. Amplitudes for causal evolution and a discrete path
integral

on the elementary local region that replaces it. Now, consider a sequence pf4-punctured spheres, i
Consider now an N-—1)-step history M =1, ... r, such that for each; ,i<r either(i) s;, 1 is to the

={[1),]2), ... ,IN)}. Each transition is a generalized evolu- immediate causal future of;, or (ii) there is somell)

tion move which has an amplitudé' given by (23) for the =|S,,¥,) e M such thats; ands;, ; are both in the surface

transition from|l) to |[I+1),1={1,... N—1}. The ampli- S, ands;Ns;,,#0. (This, is either each 4-punctured sphere

tude of the historyM is then given by in the sequence is to the immediate causal future of its pre-
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decessor, or it and its predecessor overlap in a single surface D. Connection with spin foam and membranes
associated with a staf¢) in the history) When this is the

case we will say thas, is to the causal future of,, s In a number of recent papeii35-39 a concept Baez calls
>s,. “spinfoam” has been introduced. These are networks of col-

It is clear that the relation> is transitive and that given ored 2-surfaces embedded in a four-dimensional spacetime
two 4-punctured spheres ands,, s;>5s,>s, is never the Whose slices by three-manifolds are spin networks. Gupta
case. Thus, the 4-punctured spheres in each histérgon-  [40] has shown that the spin foam can be given a Lorentzian
stitute a causal set, which is defined[88] to be a partially —formulation by the addition of a causal structure and that
ordered set with no closed causal loops which is locally fi-formulation is in a particular sense dual to the formulation of
nite. The latter means that given asyands, the set con- [23]. There is an analogous spacetime foam structure associ-
tained in the causal past sf and the future o, is finite. As ~ ated with the histories\1, although it has not been so far
argued in[33,34 a discrete set that has on it a causal strucinvestigated. It can be constructed by noting that each of the
ture is a candidate for a discrete model of spacetime. evolution moves may be seen as three-dimensional cobord-

The 4-punctured spheres of a histoky, defined by the isms between the two surfaces andL,, (see Fig. 6. The
evolution moves that construct it, are then thentsof M. resulting three-manifolds may be joined together to construct
We will call the set of events. By construction,£ is a @ three-dimensional timelike combinatorial manifold associ-
causal set. It differs from the causal set of Sorkin and colated to each histonM. This is a non-perturbative, back-
laboratord33] in that there is additional structure, associateddround independent membrane.
to a notion of space.

Each historyM may be foliated by a number of sets of
causally unrelated events g# that we will call the space-
like slicesT’. A spacelike slice ofM is a subse{s,} of £
glued together according to the following rules:

VIIl. COARSE GRAINING, ENTROPY AND THE
HOLOGRAPHIC HYPOTHESIS

(1) No two s, in I" may be causally related. Before closing we make some comments about coarse
(2) Two eventss, ands, in I" may be glued together if there graining and entropy that will enable us to comment also on
is a state|l) e M in which they are glued along some the relationship of our proposal to the holographic hypoth-

circle. esis[41,42 and the Bekenstein bourjd3].
(3) The setl’ is maximal in that ncs, may be added to it The basic idea is that in addition to the fine grained ob-
without violating these conditions. servables discussed previously there are coarse grained ob-

servables that describe statistical information about the states
defined in Sec. Il. There are two kinds of course grainings
which are relevant. In the first we retain information about
the topology of the surfac§ while in the second we retain
only information that can be measured by observers at the
boundaries of the regions.

Associated withl is a statdT") eHGq given by|Sr,j,pa)-

Here the intertwinerg., are fixed becausg, e I" are given.
Similarly, each circlec,, along which two adjacent 4-

Fin?t'“gebd spfhercejsa and sbtatr.e_ gll_iued 'Str:n If agtla cmt::]e Before describing these we may note that the existence of
a; teer _y; Ixed representa I?md (i,['nce. %S fhs cr)]r_]t € coarse grained observables in itself means that the theory
state|l")=|Sp., ua) are uniquely determined by the history genuinely has local observables that are not determined by

M. - the values of the coarse grained observables.
The N original states{|1),|2), ... I}, ... |N)} are

spacelike slices according to this definition. But there are

many more sequences which may be constructed given the

history M={[1),2), ... |I), ... [N)} that have|1) as the A. Coarse graining by topology

initial state andN) as final. We call the set of such states

W,. One may in general select other sequences of elements We can coarse grain the information in a stiel) by

of Wy, e.g. M'={|1),]2"), ... Jl"), ... IN)}, that have forgetting the information about the statee V¥ and retain-

the property that every event &is a 4-punctured sphere in ing only statistical information about the surfaeThis re-

a decomposition of at least orj¢’). As far as the local sults in a density matrix which is constructed by tracing over

geometry and causal structure are concerned these affee representations, and intertwinersuf. To each surface

equivalent descriptions of the historyl. Thus, this quantum S is then associated a density matrix whichpig=P;, the

theory has a discrete analogue of multi-fingered time. projection operator ont®°. There is an entropy associated
Thus, a discrete historgt combines discrete analogues with this coarse graining. Associated to each surfdég an

of both the canonical picture of quantum gravity and theentropyS[ S]=In(dimV?).

spacetime causal structure. It is the marriage of both kinds of As the dynamics changes the topology an entropy change

structure within a completely discrete approach to quantunean be associated with the evolution operators defined in the

gravity that we believe gives this approach its particularlast section. This makes possible a thermodynamic treatment

power. of the evolution, which will be described elsewhere.
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B. Coarse graining by regions In the absence of a background manifold we will simply

Rather than coarse graining by the topologySofve can represent the splitting by p-puncturedS?, labeled by Ehe
coarse grain by splitting space into regions and measuringy, . Each halfS= then has on it a space of intertwinef%*.

statistical information about each region. To do this we mus

. ) i Pn elementy? " defines what we will call guantum geom-
take into account what we learned from our discussion o ) Iy ) .
geometrical interpretations, which is that as the topology an§tY With boundary Given a quantum geometry, i.e., a state
geometry of space are defined from the states, the splitting of & Vs there are many ways to split it into two_halves,
space into regions must be defined intrinsically in terms ofViNg tWo quantum geometries with boundaries. The split-
the states. We then define a coarse grained quantum geofif?d Of the world into two parts constitutes a simple coarse
etry as a coarse grained interpretation of a quantum staf@@ining of it o
|S,{j},{x}). Let us then consider a decomposition®ito Now consider an observer who lives in one half,, yvho
a set of regions; alongm; circlesc,,. Each piece consists is for some reason unable to measure any information about

of a component of we will call W; . EachW, is a punctured ]Ehe topolo?y or ,Stati Qﬁ in the o;[her halis _h', Thhis nght’
surface, punctured by the; labelsj,, on the circlesc,,. or example, arise if the causal structuthich we have
To each region we will also associate a punctugd shown makes sense at this, non-perturbative background in-

with m; punctures with the same labels as e Coarse _defpendﬁnt vagﬂd?ﬁs n?r: ensbllfe Ihlr’rlhq her tot;]ecelg/e any
graining will mean that for each regioR; we forget the information from the other haff. In this case the observer

details of the topology of the componeWt, . This means gffec‘uvely lives mSzil quantum geometry with boundary de-
that all observables concerning the region must be represeriined by the haij :
able as operators in the space of intertwiners on the associ- What information can the observer have about the physics

ated puncture®?. There are then two spaces of intertwiners of the other halﬂ)f_? All they can measure is correlations
Y

. Wi 2 .. .
which are relevann/jy' andey. Coarse graining consists of petween measurements they may make atpttends. This
replacing a microscopic state, which is a vectoflfi}afi with ~ means that the possible states they may distinguish by their
Y measurements are given exactly by the space of conformal

y blocks on thep-puncturedS? associated with their boundary.
In correspondence with the different notions of propertie

) . SThis is the spacé/-sz which we described before.
we may define a&oarse grained surface propertf the re- Ty ) ]
gion W, to be a function of the label§, , ji_and a To summarize, the following may be consideredan-

. AP perturbative formulation of the holographic hypothesis
coarse grained bulk propertio be an operator iV . Fi-  \when an observer is unable to measure information corre-
nally, two regions may share properties when the corresponding to the interior of a region of a quantum geometry,

spondingW;’s are glued along punctures. Moreover, given apecause of the presence of a causal horizon, or for any other
full set of labelings on the punctured surfadé we have a  reason, the information accessible to them by measuring ob-
state inV]-Sy by considering th&\V' as a framed spin network servables at the boundary of that region is represented by a

. .. 2
a density matrix inV;”.

embedded in the interior of the surfaBein R®. finite dimensional space of stat@’f2 for somep-punctured
A coarse grained description of the quantum geometry isg2 7
. . o 2 :
then given by a density matrix in the spadé% that corre- This has several further consequences. First, in th2SU

sponds to each of the regiom. It corresponds to what case it is known thafi8]

observers may measure about the world, assuming they can AL
i c

only measure on boundaries. In(dim[Vij]KZ . Jly 27)

Planck

C. Connection with the holographic hypothesis
and Bekenstein bound for large numbers of punctures, whete:8 In(2)A/3. Here

The possibility of describing coarse grained properties ifALi,] is the area operator of quantum general relativity
this way also suggests a formulation of the holographid11,2 with eigenvaluess 13 ,nc/i (i, +1). Thus, the
[42,41] hypothesis that is entirely non-perturbative and back-Bekenstein bound [43] is automatically satisffed
ground independent. This arises in the case that we split the In the case of a gener&, we do not know which ob-
universe into two regions, and assume that we can only make
measurements in one of them.

Let us introduce a splitting of a surfacealong a set op %We may note that the constantis not equal to one. This is not
non-intersecting elements af'[S], which we will call the  syrprising given that the quantity,cin the area formula is given
¢y, y=1,...p. The two halves may be callefl” andS~; by the bare Newton’s constant. Unless the theory has a continuum
thec, are in each case their ends. Let us further consider @mit the macroscopic, renormalized Newton’s constant which plays
basis of states in which there are definite representafipns a role in black hole thermodynamics cannot be defined. This result
defined on the surfaces. suggests then predicts that in those ca8g$=CGpqre-
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servable corresponds to the area. It may be any surface prof8) More generally, the relation of the causal theory to the

erty, which means it must be an additive functidnof the
casimers oG, . The Bekenstein bound gives us a constraint
on that definition, which is that

We may note that the Bekenstein boui@8), together with
certain other assumptions is, as Jacobson has shdédin
equivalent to the Einstein equations. Jacobson’s argument in
[44] can be interpreted to imply that any finite theory of
guantum gravity that has a classical limit such ttatthe
relationship(28) is satisfied on every horizon which exists by
virtue of an observer being accelerated &l quantum
fields behave as conventional free fields in the limit of low
curvatures, then the field equations of general relativity are
true to leading order in curvatures as a consequence of the
ordinary laws of thermodynamidsi4]. This suggests that
statistical assumptions about the dynamics, together with Eq.
(28) may be sufficient to derive the classical limit of the
theory.

The general framework introduced here becomes a theorgle)

Euclidean path integral approachggs—39 should be
investigated. In this direction, Gupta j40] has formu-
lated a causal spin foam.

All of the above involve so far only the SB) spin net-
works. The extension to other groups is important. The
SQ(8) case is of special interest because of its connec-
tion to supersymmetry and triality. It is currently under
investigation with Asok. The general case of a super-
group should be investigated.

Two connections with string theory have been investi-
gated. In[21], we takeG, to be the projective group of
the circle. Its representations are parametrized by rela-
tively prime pairs of integersg(,q). The states in this
case turn out to be combinatorigh,q) string networks
[45] whose dynamics is a simple case of Sec. VII. Sec-
ond, in[22] perturbations of the S@2) theory have been
studied which are given by a (11)-dimensional system
with couplings determined bg’. When the full theory
has a good continuum limit, the action for the-1 sys-
tem is given to leading order by the Nambu action of
bosonic string theory. An argument may be given that if,
for some choice of5, andc® the induced % 1 dimen-
sional theory is a consistent perturbative string theory
then the continuum limit of the non-perturbative theory
exists.

In [24] we argued that the existence of a continuum limit
can be seen as a critical phenomenon which is analogous

(4)

AL 1< 4 Branedn(@in[ V) ]). (28

®)

IX. CONCLUSION

with two inputs: a group or algebi@,, and a choice of the
dynamical operatorél” that define the evolution. The main

to directed percolation. To investigate this we have in-
vented a set of simple models that have dynamical causal

guestion that must be investigated is how these operators are
to be chosen. Good choices should lead to a theory with a
good continuum limit which reproduces classical general
relativity with matter fields. This is currently being investi-
gated in several directions.
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