
PHYSICAL REVIEW D, VOLUME 58, 084030
Spherically symmetric static solution for colliding null dust

László Á. Gergely
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The Einstein equations are completely integrated in the presence of two~incoming and outgoing! streams of
null dust, under the assumptions of spherical symmetry and staticity. The solution is also written in double null
and in radiation coordinates and it is reinterpreted as an anisotropic fluid. Interior matching with a static fluid
and exterior matching with the Vaidya solution along null hypersurfaces is discussed. The connection with
two-dimensional dilaton gravity is established.@S0556-2821~98!01520-3#

PACS number~s!: 04.40.Nr, 04.20.Jb, 04.60.Kz
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I. INTRODUCTION

Null dust represents the high frequency~geometrical op-
tics! approximation to the unidirectional radial flow of unp
larized radiation. This is a reasonable approximation wh
ever the wavelength of the radiation is negligible compa
to the curvature radius of the background. Various exact
lutions of the Einstein field equations were found in the pr
ence of pure null dust~for reviews see@1#, and more recently
@2# and @3#!.

In some scenarios even gravitation behaves as null d
Price @4,5# has shown that a collapsing spheroid radia
away all of its initial characteristics excepting its mass, a
gular momentum and charge.~This result is known as theno
hair theorem.! The escaping radiation then interacts with t
curvature of the background being partially backscatter
Both the escaping and the backscattered radiation can
modeled by null dust@6# as the curvature radius of the bac
ground is larger than the wavelength of the radiation.

Letelier has shown that the matter source composed
two null dust clouds can be interpreted as an anisotropic fl
@7#, giving also the general solution for plane-symmetric a
isotropic fluid with two null dust components. Later Leteli
and Wang@8# have discussed the collision of cylindrical nu
dust clouds. The collision of spherical null dust streams w
discussed by Poisson and Israel@6#. Their analysis yielded
the phenomenon of mass inflation.

However, no exact solution in the presence of two coll
ing streams of null dust with spherical symmetry was kno
until now. Recently Date@9# tackled this problem under th
assumption of staticity, integrating part of the Einstein eq
tions. It is the purpose of the present paper to present
exact solution for the case of two colliding spherically sy
metric null dust streams in equilibrium, in a completely i
tegrated form.

The plan of the paper is as follows. In Sec. II we deri
the field equations and we integrate them. The emerging
act solution is written explicitly in suitable coordinate
adapted to spherical symmetry and staticity. The metric
radiation coordinates and in double null coordinates is a
given. We analyze the metric both analytically and by n
meric plots. In Sec. III we present various possible interp
tations of the solution, including the anisotropic fluid pictu
and dilatonic gravity.

Finally Sec. IV contains the analysis of the interior a
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exterior matching conditions on junctions along timelike a
null hypersurfaces, respectively. We employ the match
procedure of Barrabe`s and Israel@10#. The interior junction
fixes the parameters of the solution in terms of physical ch
acteristics of the central star: the mass and energy densit
the junction. The exterior matching with incoming and ou
going Vaidya solutions@11# leads to the conclusion that n
distributional matter is present at the junction. This feature
in contrast with the exterior matching with the Schwarz
child solution@9#.

II. SOLUTION OF THE EINSTEIN EQUATIONS

The general form of a spherically symmetric, static met
in a spacetime with topologyR23S2 is

ds252h~r !dt21 f ~r !21dr21r 2dV2. ~2.1!

Here t is time, r is the curvature coordinate~e.g., the radius
of the sphere t5const with area 4pr 2), dV25du2

1sin2(u)df2 is the square of the solid angle element. T
functions f (r ) and h(r ) are positive valued. We introduc
the local mass functionm(r ), related to the gravitationa
energy within the sphere of radiusr @12#:

f ~r !512
2m~r !

r
. ~2.2!

The energy-momentum tensor in the region of the cro
flowing null dust is a superposition of the energy-moment
tensors of the incoming and outgoing components:

Tab5
b~r !

8pr 2
~vavb1uaub!. ~2.3!

All energy conditions are satisfied forb(r )>0. The same
linear mass density functionb was chosen for both compo
nents as staticity requires no net flow in either of the n
directions. The vector fields

va5
1

A2
S 1

Ah
,Af ,0,0D , ua5

1

A2
S 1

Ah
,2Af ,0,0D

~2.4!
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LÁSZLÓ Á. GERGELY PHYSICAL REVIEW D58 084030
are the tangents to the~future-oriented! outgoing and incom-
ing null congruences, partially normalized such thatvaua5
21. Similarly as for the one-component null dust, here b
null congruences are geodesics@9#.

After eliminating second time derivatives from the no
trivial Einstein equations we have the system:

r
d f

dr
52b2 f 11

r f
dh

dr
5h~b2 f 11!

r f
db

dr
5b~2b1 f 21!. ~2.5!

The solutions withb5const all reduce tob50, meaning
vacuum. They are either the Schwarzschild or the flat so
tion, in accordance with the Birkhoff theorem. Forb
Þconst one of the equations is a relation between the m
densityb(r ) and the metric functionh(r ):

h5
A

b
, ~2.6!

whereA.0 is a constant. This relation can be deduced a
from the energy-momentum conservation@9#. The remaining
equations do not contain the constantA:

f
d ln f

d ln r
52b2 f 11 ~2.7!

f
d ln b

d ln r
52b1 f 21. ~2.8!

Inserting~2.2! in ~2.7! the mass is found to increase with th
radius:dm/dr5b/2.0.

Now we solve the system~2.7!,~2.8!. Following Date@9#,
we eliminatef from ~2.7! by its expression taken from~2.8!:

f 5
11b

12
d ln b

d ln r

. ~2.9!

The resulting second order ordinary differential equation
1/b can be integrated, finding:

d

d ln r S 1

b D5S D2
1

b
22 ln

b

r D 1

11b
. ~2.10!

HereD is an integration constant. Inserting this expression
~2.9!, an algebraic relation between the metric compone
emerges:

~11b!2

2 f b
5 lnS Cr

b D , ~2.11!

whereC5exp((11D)/2).0.
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Then we complete the integration of the syste
~2.7!,~2.8!. The key remark is that none of the equations
this system contains explicitly the independent variable lr.
Thus one can pass to the new independent variableb, in
terms of which an ordinary first order equation can be w
ten:

d f

db
5

f ~b1 f 21!

b~b2 f 11!
. ~2.12!

Introducing the new positive variables

P5~2 f b!1/2, L5
11b

~2 f b!1/2
~2.13!

the equation~2.12! takes the form of a first order linear~in-
homogeneous! ordinary differential equation:

dP

dL
52~12PL!. ~2.14!

The solution is found by integrating first the homog
neous equation, then varying the constant. It is

P52e2L2
FB~L !, FB~L !5B1EL

ex2
dx.0,

~2.15!

whereB is a third integration constant. The functionFB(L)
in ~2.15! can be expressed either in terms of the error fu
tion or in terms of the Dawson function:

FB~L !2B52
iAp

2
erf~ iL !5eL2

Dawson~L !. ~2.16!

For properties of these transcendental functions see@13#.
From Eqs.~2.11!, ~2.13! and ~2.15! both the curvature

coordinater and the metric functionsb and f are found as
functions of the radial variableL:

Cr~L !52eL2
12LFB~L ! ~2.17!

b~L !52112Le2L2
FB~L ! ~2.18!

f ~L !5
2FB

2~L !

eL2
@2eL2

12LFB~L !#
. ~2.19!

Then the mass functionm5m(L) is obtained from~2.2!:

2Cm~L !52eL2
12LFB~L !22e2L2

FB
2~L !. ~2.20!

It is easy to check that bothr and m are monotonously
increasing functions ofL:

d~Cr !

dL
52FB~L !.0 ~2.21!
0-2
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FIG. 1. ~a! The function b
5b(ln r) at parameter valuesB
5C51. The metric is singular at
r 50 and the space-time is not as
ymptotically flat. ~b! Plot of b
5b(ln r,B) for C51 and 0<B
<7.
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d~Cm!

dL
5e2L2

FB~L !@2eL2
12LFB~L !#>0. ~2.22!

In the last relation the equality holds forr 50.
Now we have everything together to write the metric

terms of the new radial coordinateL:

ds25
2AeL2

dt2

2eL2
12LFB~L !

12eL2
@2eL2

12LFB~L !#
dL2

C2

1@2eL2
12LFB~L !#2

dV2

C2
. ~2.23!

There are three parameters in the solution, two of th
restricted to be positive:A andC. Without loss of generality
we can chooseA51 by rescaling the time coordinate. Th
parameterC provides some distance scale. We comment
the third parameter in what follows. BothCr>0 and the
energy conditionsb>0 imply

B>x~L !, x~L !5
eL2

2L
2EL

ex2
dx ~2.24!

valid for all admissible values ofL. The equality B
5x(L0) holds forL5L0 corresponding tor 50. As dx/dL

52eL2
/2L2,0, the functionx(L) is monotonously decreas

ing and the inequality~2.24! will be satisfied for anyL
.L0 . ThusB gives the lower boundaryL0 for the range of
the radial coordinateL.

Next we plot numerically the functionsb(r ), f (r ), and
m(r ) for different values of the parameterB ~Figs. 1–3!.
08403
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As we see from Fig. 3, the mass function vanishes
some radiusr̃ and takes negative values atr , r̃ . We show
here that such a positiver̃ exists irrespective of the choice o
the parametersB and C. By combining ~2.17! and ~2.20!
with the conditionm50 we find r̃ 52FB

2(L̃)/Cexp(L̃ 2).0.

The constantC has a simple scaling effect on the value ofr̃ .
Figure 3~b! shows that in the domain (0,7) the negative ma
region can be extended by increasingB. We emphasize tha
the energy conditions are still satisfied in the negative m
regions. The interpretation of the negative mass function
not immediate and depends on the measuring procedur
the mass in this asymptotically non-flat space-time.

At the end of this section we give the metric in doub
null and radiation coordinates. This requires an additio
integration. We introduce a ‘‘tortoise coordinate’’r * in the
same manner it can be introduced in the Schwarzsc
space-time:

r * 5E r dr8

@ f ~r 8!h~r 8!#1/2
5

A2

C EL

@2ey2
12yFB~y!#dy.

~2.25!

The radial null geodesics aret5t01cr* , with c51 for in-
coming andc521 for outgoing geodesics.

Introducing the null coordinatesx65t6r * the metric
takes the simple form

ds252h~x1,x2!dx1dx21r 2~x1,x2!dV2. ~2.26!
FIG. 2. ~a! The function lnf
5ln f(ln r) at parameter valuesB
5C51. ~b! Same for 0<B<7.
0-3
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FIG. 3. ~a! The mass function
m5m(ln r) at parameter values
B5C51 takes negative value
close tor 50. ~b! The mass func-
tion in the parameter region 0
<B<7. The value ofr where the
mass becomes negative depen
on the parameterB.
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The radial null geodesics are nowx65const. The functions
h(x1,x2)5h(x12x2) andr (x1,x2)5r (x12x2) are con-
tained in implicit form in Eqs.~2.6!, ~2.25!, ~2.17! and
~2.18!.

Finally we cast our static, spherically symmetric soluti
of crossflowing null dust in either the incoming or outgoin
radiation coordinates (v5t1cr* ,r ,u,f). These coordinates
are like the Eddington-Finkelstein coordinates for t
Schwarzschild solution. If the solution was asymptotica
flat, they would be the Bondi-Sachs coordinates.

ds252~ f b!21/2dvF S f

b D 1/2

dv22cdrG1r 2dV2.

~2.27!

Herev5x6 for c561. In these coordinates the radial nu
geodesics are given by one of the equationsv5const and

v5const12cE r S b~r 8!

f ~r 8!
D 1/2

dr8. ~2.28!

Now it is evident that there is no apparent horizon:

dr

d~cv !
5

1

2S f

b D 1/2

.0, ~2.29!

thus no event horizon either. Thus the singularity in the o
gin r 50 is naked. This is very similar to the naked sing
larity of the negative massSchwarzschild solution@9#.

III. INTERPRETATION OF THE SOLUTION

A. 2D dilatonic model

In this subsection we present a dilatonic model which
4D has the interpretation of a spherically symmetric grav
tional field in the presence of two crossflowing null du
streams. This dilatonic model emerges from the action

S5E d2xA2grFR@g#1
1

2
gab¹a ln r¹b ln r1

2

rG
2

1

2E d2xA2ggab¹aw¹bw. ~3.1!

The first term is the Einstein-Hilbert action reduced
spherical symmetry~a surface term was dropped!. The sec-
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ond term in ~3.1! represents a 2D massless scalar field
minimal coupling. The minus sign assures that all 4D ene
conditions are satisfied.r5r 2 is the dilaton andw is the
scalar field. The conformal flatness of the 232 metric gab
5hhab is manifest in the corresponding 4D line eleme
~2.26!. ¹ andR@g# are the covariant derivative and curvatu
scalar, respectively associated with the metricg. Although
the equations emerging from this model are quite similar
the corresponding equations in the Callan-Giddings-Harv
Strominger~CGHS! model @14#, they could not be exactly
integrated in general. For our purposes we take only
equation emerging from variation of the scalar field,
double null coordinates:

w,1250.

Here commas denote derivatives. The equation has
D’Alembert solution

w5w1~x1!1w2~x2!, ~3.2!

showing that the scalar field behaves like our matter sou
of crossflowing null dust. The 4D interpretation of the pa
ticular solution with either leftmoving or rightmoving matte
is the Vaidya solution@11#. Recently Mikovićhas given a
solution @15# for the case where both components a
present, in the form of a perturbative series in powers of
outgoing energy-momentum component.

Our static solution~2.26! represents the first explicit exac
solution for this model, when none of the null dust comp
nents are neglected.

B. Anisotropic fluid

Following Letelier @7# we reinterpret the energy
momentum tensor~2.3! as describing an anisotropic flui
with a pressure component equaling its energy density:

Tab5r~UaUb1xaxb! ~3.3!

2UaUa5xaxa51, Uaxa50. ~3.4!

A straightforward comparison with~2.3! gives

r5
b

8pr 2
, ~3.5!
0-4
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Ua5
1

A2
~va1ua!5

1

Ah
S ]

]t D
a

~3.6!

xa5
1

A2
~va2ua!5Af S ]

]r D
a

.

~3.7!

Thus the solution represents an anisotropic fluid at
with the energy densityr andradial pressurep5r. No tan-
gential pressures in the spheresr 5const are present. Th
fluid is isotropic only about a single point, the origin.

C. Radiation atmosphere

The solution can be interpreted as the outer region o
radiating star, receiving radiation from the surrounding
gion either. If equilibrium is achieved between the two co
ponents, we have the static solution~2.23!. This was the
initial interpretation proposed by Date@9#.

We write the energy-momentum tensor of the static so
tion in the double null coordinate system (x1,x2,u,f). In-
serting the null covectors

va5S 0,2Ah

2
,0,0D , ua5S 2Ah

2
,0,0,0D ~3.8!

in the covariant form of~2.3! and taking account of~2.6! the
energy-momentum tensor becomes

Tabdxadxb5
1

16pr 2
~dx1dx11dx2dx2!, ~3.9!

a superposition of two cross-flowing null dust streams w
equal andconstantmass density functions. However one c
freely rescale the null vectorsva and ua to havearbitrary
mass density functions either. After such a rescaling the m
density function of the incoming null dust depends only
the outgoing coordinatex1 and vice versa, a property pert
nent to the mass functions of the Vaidya solution@11#, char-
acterized by the energy-momentum tensor

Tabdxadxb5
c

4pr 2

dM~V!

dV
dVdV. ~3.10!

M (V) is the mass function and the coordinateV is outgoing
for incoming radiation and incoming for outgoing radiatio

In the next section we will study the interior junction wit
a static star, and the exterior junction with incoming a
outgoing Vaidya solutions.

IV. JUNCTION CONDITIONS

A. Matching with interior spherically symmetric
static solutions

We discuss the junction with an interior solution wi
accent on the anisotropic fluid interpretation given pre
ously. A similar treatment was given in@9#. Both our analy-
08403
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sis and the one in@9# reveals that the junction with a stati
interior matter can be done without a regularizing thin sh
Our treatment is more general, however. We formulate
junction conditions for two generic static spherically sym
metric space-times, following the standard Darmois-Isr
junction procedure@16,17# and we establish a constraint o
the matter pressures implied by the matching conditions.
other improvement over@9# is due to the fact that we dispos
of the exact solution~2.23!, thus the explicit computation o
the the matching conditions with an arbitrary particular in
rior becomes possible.

An orthonormal basis is given by the vectorsU and x
defined by Eqs.~3.6! and ~3.7! together with the spacelike
vectors

E35
1

r

]

]u
, E45

1

r sinu

]

]f
. ~4.1!

Any spherically symmetric static energy-momentum te
sor has the form

Tab5rUaUb1p1xaxb1p2~E3
aE3

b1E4
aE4

b!. ~4.2!

By insertingpi5a i /8pr 2 and r in the form ~3.5! in the
Einstein equations for the metric~2.1! we find

r
d f

dr
52b2 f 11

r f
dh

dr
5h~a12 f 11!

2r f
da1

dr
52a1

21a1~2b1 f 21!

1b~ f 21!14a2f . ~4.3!

The induced metric of the surfacer 5const is

dsS
2 52hdt21r 2dV2. ~4.4!

Without loss of generality we can choose the time coor
nates in both static space-times such that they are contin
on the junction. Then the continuity of the first fundamen
form requires the metric functionh to be continuous.

The extrinsic curvature of the junction surfacer 5const is
defined as

Kab5~d a
c2xcxa!~db

d2xdxb!¹cxd . ~4.5!

The nonvanishing components are

Ktt5
h

2rAf
~2a11 f 21!, Ku

u5Kf
f5

Af

r
. ~4.6!

In the above expressions the derivatives were eliminated
use of Eq.~4.3!.
0-5
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Continuity of the extrinsic curvature across the juncti
hypersurfacer 5r 1 is achieved, provided that the metric an
the function a1 ~thus alsop1) are continuous. We hav
proved the following result:

Any two spherically symmetric static solutions can
matched along hypersurfaces r5const provided the radial
pressures are continuous.This is similar to the theorem
given by Fayos, Jae´n, Llanta and Senovilla@18# for the
matching of the Vaidya solution with a generic spherica
symmetric solution along timelike hypersurfaces. A gene
discussion on matching spherically symmetric space-tim
along thin spherical timelike shells can be found in@19#.

For the double null dust solutiona15b. In consequence
the interior fluid should have a radial pressure equal to
energy density~3.5! of the double null dust solution on th
junction. However, no conditions on the pressures tangen
the spheres emerge.

We see from Eqs.~2.18!, ~2.20! and~3.5! that the integra-
tion constantsB andC appear in the radial pressure and ma
function of the static double null dust solution. Continuity
these functions on the junction fixes the value of the c
stants, once the interior solution is chosen. For a reali
star, the massM1 should be positive. This implies a lowe
boundary for the possible values ofr 1 , as follows from Fig.
3~a!.

Let us illustrate the junction with the interior Schwarz
child solution @20# ds252(a2bA12r 2/R2)2dt21(1
2r 2/R2)21dr21r 2dV2, with the energy densityrS53/R2

5const and pressurepS given by

8ppS5

3bA12
r 2

R2
2a

R2S a2bA12
r 2

R2
D . ~4.7!

Several relations among the Schwarzschild parame
a,b,R, radius of the starr 1 and the parametersB and C
emerge from the junction conditions:

2m15
r 1

3

R2
, 2a5

3

Ab1

1
R2

r 1
2
Ab1,

~4.8!

2bA12
r 1

2

R2
5

1

Ab1

1
R2

r 1
2
Ab1.

We have denoted byb1 andm1 the values of the functionsb
and m at the junctionr 5r 1 . The first two relations~4.8!
determine the constantB and the value of the radial coord
nate L1 at the junction in terms ofr 1 /R and a, when
Eqs.~2.17!, ~2.18! and ~2.20! are inserted. Eliminatingb1
from the last two relations of Eq.~4.8!, a constraintb
5b(a,r 1 /R) on the possible values of characteristics of t
interior emerges. Finally Eq. ~2.17! implies C
5C(a,r 1 /R,r 1).
08403
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In the light of the above relations we see that after cho
ing some value forC ~a scale!, the constantB is determined
exclusively by the radius and density~or mass! of the star.

B. Matching with Vaidya solutions

In this subsection we study the junctions with the inco
ing and outgoing Vaidya solutions, which are at the exter
of the static double null dust solution. There are only thr
points ~in fact spheres! in common with exterior Schwarzs
child regions~Fig. 4!, and the matching can be done witho
introducing regularizing thin shells.

The high-frequency approximation to the unidirection
radial flow of spherically symmetric unpolarized radiatio
characterized by the energy-momentum tensor~3.10! is rep-
resented by the Vaidya solution@11#:

ds252dVF S 12
2M ~V!

r DdV22cdrG1r 2dV2. ~4.9!

The radial null geodesics are the linesV5const and the
curves given by

dr

dV
5

c

2S 12
2M ~V!

r D . ~4.10!

We would like to match our static solution with incomin
and outgoing Vaidya solutions along the outgoing, resp
tively incoming radial null geodesics, e.g. along lines of co
stant incoming, respectively outgoing coordinate~Fig. 4!.
These are given by Eq.~4.10! in the Vaidya solution and by
Eq. ~2.28! in the static solution.

A convenient formalism for matching solutions along nu
surfaces, which does not require coordinates that match
tinuously on the shell, was developed by Barrabe`s and Israel

FIG. 4. The intersection of two crossflowing null dust strea
with mass functionsM (V) is the static solution characterized by th
mass functionm(r ). HereV5X6 stands forc561 andX6 are the
advanced~retarded! time in the Vaidya solution. The 2-dust solu
tion touches in three points exterior Schwarzschild regions w
massesM1 and M2 . At the interior junction there is a static fluid
representing a star with massM1 . The mass functionsM (V) of the
Vaidya regions change monotonously fromM1 to M2 .
0-6
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@10#. Their discussion on the particular case of spheri
symmetry requires the metric in both space-times written
the form:

ds252ecdz@ f ecdz22dr#1r 2dV2. ~4.11!

Heref andc depend on bothr andz. The null coordinatez is
always outgoing but it can be either increasing or decrea
with time. Then the junction is done along the null hypers
facesz5const.

To apply this formalism it would be desirable to expre
the Vaidya solution in the other set of radiation coordina
@U(V,r ),r ,u,f# in which Eq. ~4.10! takes the formU
5const. However, this is possible only when double n
coordinates are found. It was demonstrated in@21# that
double null coordinates exist when the mass is alinear or
exponentialfunction of the advanced or retarded timeV. We
argue in what follows that the mass function of that partic
lar Vaidya solution, which is matching continuously to th
static solution has a more complicated dependence. A fur
inconvenience is that there is no obvious choice for the
trinsic coordinates in terms of the space-time coordinate
the null junction hypersurface. For these reasons we proc
as follows. First we find coordinates that match continuou
on the junction and in terms of which the metric is contin
ous. Then we employ the Barrabe`s-Israel junction formalism
to find the distributional stress-energy tensor on the junct

As a radial variable of both metrics we chooseL by ex-
tending the expression~2.17! of r 5r (L) to the Vaidya re-
gions too. An appropriate null coordinatez is defined by the
values ofL5L j on the junction. In these coordinates th
junction hypersurfaces are characterized by the null geod
equationsz5L in both space-times. We proceed in derivin
the expressions of the coordinatesv andV and of the mass
function M in terms of the coordinatez.

Identifying the corresponding part of Eq.~3.9! with Eq.
~3.10!, we find the relation between the null coordinatesV
andv, valid on the junction:

dv52S c
dM~V!

dV D 1/2

dV. ~4.12!

Then we extend this relation over both the static and
Vaidya regions.

The null geodesic equation~2.28! of the static solution,
evaluated on the junction~wherez5L) gives

dz

dV
5

c

2r 2

dM

dz
~4.13!

Inserting Eq.~4.13! in the null geodesic equation~4.10! of
the Vaidya solution we find its mass function in terms of t
new null coordinatez:

2CM~z!52ez2
12zFB~z!22e2z2

FB
2~z!. ~4.14!

Thus the mass function is continuous at the junction. T
geodesic equation~4.13! together with~4.14! gives the rela-
tion between the null coordinatesV andz:
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V~z!5const1
2c

C Ezey2
@2ey2

12yFB~y!#dy

FB~y!
.

~4.15!

The relations~4.14! and ~4.15! contain in implicit form the
dependence of the mass functionM of the Vaidya solution
on the radiation coordinateV. Despite the complicated de
pendenceM (V) it is straightforward to check thatM satisfies
the required monotonicity condition:

2
dM

d~cV!
5

FB
2~z!

e2z2 .0. ~4.16!

Finally Eqs.~4.12! and ~4.15! give v5v(z):

v~z!5const1
2A2c

C Ez

@2ey2
12yFB~y!#dy.

~4.17!

Now we express both metrics in terms of the coordina
(z,r (L),u,f). They take the form~4.11! with

f 512
2m~L !

r ~L !
, ec5

2

C

eL2

FB~L !
@2ez2

12zFB~z!#

~4.18!

f V512
2M ~z!

r ~L !
, ecV5

2

C

ez2

FB~z!
@2ez2

12zFB~z!#.

~4.19!

Here the indexV refers to the Vaidya solution and the e
pressionsr (L), m(L), and M (z) are given by Eqs.~2.17!,
~2.20! and ~4.14!, respectively. We have completed the ta
of writing both metrics in coordinates which are continuo
on the junction and in terms of which the metric is contin
ous.

It is immediate to check the continuity of the induce
metric given bydsS

2 5r 2dV2. The other junction condition
is a somewhat subtle issue as the conventional extrinsic
vature tensor for null hypersurfaces carries no transve
information.

We define a pseudo-orthonormal basis@22# (n,N,E3 ,E4),
whereE3 andE4 are given in Eq.~4.1! and

n5e2c
]

]z
1

f

2

]

]r
, N52

]

]r
. ~4.20!

The vectorna is orthogonal~and also tangent! to the hyper-
surfacesf ecdz22dr50, along which the two space-time
are glued together. The vectorNa is the other radial null
vector, transversal to these surfaces. They are related to
previously introduced vectorsva andua as follows. For the
junction with the incoming Vaidya regionva5(2/f )1/2na and
ua5( f /2)1/2Na, while for the junction with the outgoing
Vaidya regionua52(2/f )1/2na andva52( f /2)1/2Na.

The projector to these null hypersurfaces with tang
space spanned byE3 ,E4 andn is
0-7
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Pb
a5E3

aEb
31E4

aEb
42naNb5db

a1Nanb . ~4.21!

Following @10# we define the transverse or oblique extrins
curvature tensor with the aid of the transverse vectorN:

Kab5Pa
cPb

d¹cNd . ~4.22!

The only nonvanishing components of the transverse ex
sic curvature tensor1 are

Kzz5
1

2
ec] r~ f ec!5

C

2
ec

dL

d~Cr !
]L~ f ec!,

~4.23!

Ku
u5Kf

f52
1

r
.

Thus when matching any two metrics of the form~4.11! on
the null hypersurfaces f ecdz22dr50, the jump in the ex-
trinsic curvature is given by the jump in] r( f ec), provided
the metric is continuous across the junction.

A straightforward computation employing~4.18! and
~4.19! gives on the junction hypersurfaces of the sta
double null dust region with the Vaidya regions

]L~ f ec!5]L~ f VecV!

5
4eL j

2
@2eL j

2
12L jFB~L j !2e2L j

2
FB

2~L j !#

C@2eL j
2
12L jFB~L j !#

.

~4.24!

In conclusion the extrinsic curvature is also continuous
the junction. There is no need for a thin regularizing sh
separating the two domains of the space-time, in contras
the exterior junction proposed in@9#.

V. CONCLUDING REMARKS

We have integrated the Einstein equations in the prese
of cross-flowing null dust under the assumptions of spher
symmetry and staticity and analyzed various aspects rel
to the properties of the emerging exact solution~2.23!. The
solution has dilatonic gravity connections and it can be re
terpreted as an anisotropic fluid with radial pressure equa
its energy density and no pressures along the spherr
5const. This can be a radiation atmosphere for a star with

1The components of the extrinsic curvature tensor defined in@10#
are found fromKab by contracting with the three basis vecto
E3 ,E4 andn tangent to the hypersurface.
lt,
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radial pressure equal to the energy density of the atmosp
on its surface. No constraint on the pressures along
spherical junction surface was found. On the exterior,
study of the matching conditions with the Vaidya solutio
revealed no thin shells on the junction.

As a byproduct, we have derived general conditions
the junction of two spherically symmetric solutions. Matc
ing of two static space-times~2.1! along r 5const hypersur-
faces is assured by the continuity of the metric functions a
of the radial pressure. Matching of generic spherically sy
metric space-times~4.11! along the null hypersurface
f ecdz22dr50 is possible whenever the metric and] r( f ec)
are continuous.

The negativity of the mass function in some neighborho
of the r 50 singularity raises the possibility of matching th
solution to a negative mass core. This may be difficult due
the nontrivial topology of the known negative mass bla
hole solutions@23#. Despite the lack of experimental ev
dence for negative mass objects, presumably of quantum
gin @9#, their microlensing effect@24# on radiation from Ac-
tive Galactic Nuclei was shown to produce features sim
to some observed Gamma Ray Bursts@25#.

Equally interesting would be to introduce dynamics in t
picture by an interior matching with a collapsing star. W
defer this topic to a forthcoming study.

An intriguing open question remains whether exact so
tions describing the collision of spherically symmetric nu
dust streams, which have not reached equilibrium, can
found.

Note added.After the submission of this paper a releva
work in the subject was published by Kramer@26#. The so-
lution presented there is the particular case of the me
~2.23! with the parameter valuesB50 andC5Ae. Our met-
ric functions h and f , radial variableL and transcendenta
function 2eL2

12LFB correspond toe2n,e22l,A112j and
Ae(112j)J, respectively of this paper, when the paramet
valuesB50 andC5Ae are chosen. Keeping the paramete
arbitrary enabled us in Sec. IV A to match the solution~2.23!
with an interior Schwarzschild solution witharbitrary mass
and radius. In contrast with our analysis relying on t
Barrabès-Israel matching procedure, in@26# the junction with
the Vaidya space-time was discussed by imposing the co
nuity of the four-metric on the junction.
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