PHYSICAL REVIEW D, VOLUME 58, 084030

Spherically symmetric static solution for colliding null dust
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The Einstein equations are completely integrated in the presence dintweoning and outgoingstreams of
null dust, under the assumptions of spherical symmetry and staticity. The solution is also written in double null
and in radiation coordinates and it is reinterpreted as an anisotropic fluid. Interior matching with a static fluid
and exterior matching with the Vaidya solution along null hypersurfaces is discussed. The connection with
two-dimensional dilaton gravity is establish¢&0556-282(198)01520-3

PACS numbd(s): 04.40.Nr, 04.20.Jb, 04.60.Kz

[. INTRODUCTION exterior matching conditions on junctions along timelike and
null hypersurfaces, respectively. We employ the matching
Null dust represents the high frequen@eometrical op- procedure of Barralseand Israe[10]. The interior junction
tics) approximation to the unidirectional radial flow of unpo- fixes the parameters of the solution in terms of physical char-
larized radiation. This is a reasonable approximation whenacteristics of the central star: the mass and energy density on
ever the wavelength of the radiation is negligible comparedhe junction. The exterior matching with incoming and out-
to the curvature radius of the background. Various exact sod0ing Vaidya solution$11] leads to the conclusion that no
|uti0ns Of the Einstein f|e|d equations were found in the presdistributional matter iS present at the junCtion. Th|S feature iS
ence of pure null duifor reviews Seél], and more recenﬂy in contrast with the exterior matching with the Schwarzs-
[2] and[3]). child solution[9].
In some scenarios even gravitation behaves as null dust.
Price [4,5] has shown that a collapsing spheroid radiates Il. SOLUTION OF THE EINSTEIN EQUATIONS
away all of its initial characteristics excepting its mass, an- ) ) ) _
gular momentum and charg@his result is known as theo The gengral form of a spherlcally symmetric, static metric
hair theorem), The escaping radiation then interacts with thein & Spacetime with topologiR*x S? is
curvature of the background being partially backscattered.

Both the escaping and the backscattered radiation can be ds?=—h(r)dt>+f(r) " 'dr’+r?dQ>. 21
modeled by null dust6] as the curvature radius of the back- o _ _ '
ground is larger than the wavelength of the radiation. Heret is time, r is the curvature coordinate.g., the radius

Letelier has shown that the matter source composed off the spheret=const with area 4r?%), dQ?=d6?
two null dust clouds can be interpreted as an anisotropic fluid- sir’(6)d¢é? is the square of the solid angle element. The
[7], giving also the general solution for plane-symmetric an-functionsf(r) and h(r) are positive valued. We introduce
isotropic fluid with two null dust components. Later Letelier the local mass functioom(r), related to the gravitational
and Wand 8] have discussed the collision of cylindrical null energy within the sphere of rading12]:
dust clouds. The collision of spherical null dust streams was
discussed by Poisson and Isr&é]. Their analysis yielded 2m(r)
the phenomenon of mass inflation. f(r)=1-

However, no exact solution in the presence of two collid-

ing_streams of null dust with spherica! symmetry was known e energy-momentum tensor in the region of the cross-
until now. Recently Dat¢9] tackled this problem under the flowing null dust is a superposition of the energy-momentum

assumption of staticity, integrating part of the Einstein equasansors of the incoming and outgoing components:
tions. It is the purpose of the present paper to present the

exact solution for the case of two colliding spherically sym-

metric null dust streams in equilibrium, in a completely in- Tab= A1) (v P+ utuP) 2.3

tegrated form. 8rr2 ' '
The plan of the paper is as follows. In Sec. Il we derive

the field equations and we integrate them. The emerging ex|| energy conditions are satisfied fg8(r)=0. The same

act solution is written explicitly in suitable coordinates |inear mass density functiod was chosen for both compo-

adapted to spherical symmetry and staticity. The metric ithents as staticity requires no net flow in either of the null
radiation coordinates and in double null coordinates is als@jirections. The vector fields

given. We analyze the metric both analytically and by nu-

(2.2

meric plots. In Sec. Il we present various possible interpre- 1/1
tations of the solution, including the anisotropic fluid picture, vi=—| — Jfool|l uwi=—— —f0 0)
and dilatonic gravity. NARD v NARG vt
Finally Sec. IV contains the analysis of the interior and (2.9
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are the tangents to tHéuture-orientegl outgoing and incom- Then we complete the integration of the system
ing null congruences, partially normalized such tham,= (2.7),(2.8). The key remark is that none of the equations in
— 1. Similarly as for the one-component null dust, here boththis system contains explicitly the independent variable In
null congruences are geodesj&s. Thus one can pass to the new independent varighlén
After eliminating second time derivatives from the non- terms of which an ordinary first order equation can be writ-
trivial Einstein equations we have the system: ten:
df df f(B+f-1
ree=—p-f+1 ar_resi-h ). (2.12
dr dg B(B—f+1)
ot %: h(B—f+1) Introducing the new positive variables
1+8
d P=(2fp)", L=—— (2.13
rf d—[jzﬁ(—ﬁ+f—1). (2.5 (2f B2

) ) ) the equation2.12 takes the form of a first order linedin-
The solutions with3=const all reduce t@=0, meaning homogeneoysordinary differential equation:
vacuum. They are either the Schwarzschild or the flat solu-

tion, in accordance with the Birkhoff theorem. F¢@
#const one of the equations is a relation between the mass —=2(1-PL). (2.19

density 8(r) and the metric functiom(r): dL
A The solution is found by integrating first the homoge-
h= /—3 (2.6 neous equation, then varying the constant. It is
L
whereA>0 is a constant. This relation can be deduced also P=2e ®g(L), ®g(L)=B+ | e“dx>0,
from the energy-momentum conservat{@). The remaining 21
equations do not contain the constant (215
dinf whereB is a third integration constant. The functidrg(L)
fr: -B—f+1 2.7 in (2.195 can be expressed either in terms of the error func-
nr tion or in terms of the Dawson function:
ding .
L — I\
diny - ATI-L (2.8 cI)B(L)—Bz_\/T_erf(iL)=eL2Dawsor@L). (2.16

Inserting(2.2) in (2.7) the mass is found to increase with the . .
radius:dm/dr = 8/2>0. For properties of these transcendental functions| $8g

From Egs.(2.1), (2.13 and (2.15 both the curvature
coordinater and the metric functiong@ andf are found as
functions of the radial variable:

Now we solve the systerf2.7),(2.8). Following Date[9],
we eliminatef from (2.7) by its expression taken froii2.8):

1+

=—4ng (2.9 Cr(L)=—e""+2Ldg(L) (2.17
~dinr
B(L)=—1+2Le ““dg(L) (2.19
The resulting second order ordinary differential equation in
1/B can be integrated, finding: 2d3(L)
(L= 7 . (2.19
d (1 ( 1 B e-[—e +2LdPg(L)]
—| =|=|D-=-2In—|——. (2.10
dinri g B r/1+p Then the mass functiom=m(L) is obtained from2.2):
HereD is an integration constant. Inserting this expression in L2 242
(2.9), an algebraic relation between the metric components 2Cm(L)=—e" +2Ldg(L)—2e = Op(L). (2.20
emerges: )
It is easy to check that both and m are monotonously
(1+B)2 Cr increasing functions of :
2f,8 =1In F , (2.1])
d(Cr)_zq) L)>0 2.2
whereC= exp((1+D)/2)>0. ar 2%sb) (2.2
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FIG. 1. (a The function 8
=pB(Inr) at parameter value8
=C=1. The metric is singular at
r=0 and the space-time is not as-
ymptotically flat. (b) Plot of B
=pB(Inr,B) for C=1 and 0<B

<7.

(a) (b)

d(Cm) L2 L2 As we see from Fig. 3, the mass function vanishes at
dL =e = dg(L)[—e" +2LPg(L)]=0. (2.22 some radiug and takes negative valuesatr. We show

_ _ here that such a positiveexists irrespective of the choice of
In the last relation the equality holds for=0. the parameter® and C. By combining(2.17) and (2.20
Now we have everything together to write the metric in\yiih the conditionm=0 we find?=2c1>§(t)/Cequ~_ 2)>0.

terms of the new radial coordinate . . ~
The constan€ has a simple scaling effect on the valuer of

—Aede? dL2 Figure 3b) shows that in the domain (0,7) the negative mass
d32:2—+2eL2[—eL2+ 2LPg(L)]— region can be extended by increaslgWe emphasize that
—el"+2Ldg(L) c? the energy conditions are still satisfied in the negative mass

regions. The interpretation of the negative mass function is
not immediate and depends on the measuring procedure of
the mass in this asymptotically non-flat space-time.
At the end of this section we give the metric in double
There are three parameters in the solution, two of thenmull and radiation coordinates. This requires an additional
restricted to be positiveA andC. Without loss of generality integration. We introduce a “tortoise coordinate® in the
we can choosé=1 by rescaling the time coordinate. The same manner it can be introduced in the Schwarzschild
parametelC provides some distance scale. We comment orspace-time:
the third parameter in what follows. BotBr=0 and the
energy conditiongg=0 imply

2
et 2.2
e 2Lag(L) (223

r dr’ V2 L 2
o T o[-t ayagyoy

B= y(L) (L)=i—fLeX2dx (2.24 [f(r/)h(r’)
T AT ' (2.25

valid for all admissible values ofL. The equality B
= x(Lg) holds forL. =L, corresponding to =0. Asdy/dL  The radial null geodesics ate=t+cr*, with c=1 for in-
=—e"/2L.?<0, the functiony(L) is monotonously decreas- coming andc=—1 for outgoing geodesics.
ing and the inequality2.24) will be satisfied for anyL Introducing the null coordinates™=t=r* the metric
>L,. ThusB gives the lower boundarl, for the range of takes the simple form
the radial coordinaté .

Next we plot numerically the functiong(r), f(r), and

m(r) for different values of the parametBr(Figs. 1-3. ds®=—h(x",x")dx dx +r?(x",x")dQ? (2.26
\:
1In £
1.5
FIG. 2. (@) The function Inf
! =Inf(Inr) at parameter valueB
0.5 =C=1. (b) Same for G&=B<7.
T L

(@) (b)
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FIG. 3. (a) The mass function
m=m(Inr) at parameter values
B=C=1 takes negative values
close tor=0. (b) The mass func-
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The radial null geodesics are now =const. The functions ond term in(3.1) represents a 2D massless scalar field in
h(x™,x")=h(x"—x") andr(x*,x")=r(x"—x") are con- minimal coupling. The minus sign assures that all 4D energy
tained in implicit form in Egs.(2.6), (2.25, (2.17 and conditions are satisfieqo=r? is the dilaton andy is the
(2.18. scalar field. The conformal flatness of the2 metricg,z
Finally we cast our static, spherically symmetric solution=h7,; is manifest in the corresponding 4D line element
of crossflowing null dust in either the incoming or outgoing (2.26. V andR[ g] are the covariant derivative and curvature
radiation coordinatesu(=t+cr*,r,6,®). These coordinates scalar, respectively associated with the metyicAlthough
are like the Eddington-Finkelstein coordinates for thethe equations emerging from this model are quite similar to
Schwarzschild solution. If the solution was asymptoticallythe corresponding equations in the Callan-Giddings-Harvey-
flat, they would be the Bondi-Sachs coordinates. Strominger(CGHS model[14], they could not be exactly
integrated in general. For our purposes we take only the
equation emerging from variation of the scalar field, in

f 1/2
— —-1/2 2 2
ds’=—(18)"*dv (E) dv—2¢dr|+r7dQ% double null coordinates:
(2.27
+ . . (P1+—=0'
Herev=x~ for c==*1. In these coordinates the radial null
geodesics are given by one of the equatiorsconst and Here commas denote derivatives. The equation has the
2 D’Alembert solution
~ (BT
v—consHZcJ o) dr’. (2.28 o= (xH)+ o (X)), 3.2
Now it is evident that there is no apparent horizon: showing that the scalar field behaves like our matter source
of crossflowing null dust. The 4D interpretation of the par-
dr 1/ f\12 ticular solution with either leftmoving or rightmoving matter
d(co) 5( E) 0, (229 s the Vaidya solutiorf11]. Recently Mikovichas given a

solution [15] for the case where both components are
thus no event horizon either. Thus the singularity in the ori-present, in the form of a perturbative series in powers of the
gin r=0 is naked. This is very similar to the naked singu-0utgoing energy-momentum component.

larity of the negative masSchwarzschild solutiofi9]. Our static solutior(2.26) represents the first explicit exact
solution for this model, when none of the null dust compo-
lIl. INTERPRETATION OF THE SOLUTION nents are neglected.

A. 2D dilatonic model B. Anisotropic fluid

In this subsection we present a dilatonic model which in
4D has the interpretation of a spherically symmetric gravita
tional field in the presence of two crossflowing null dust
streams. This dilatonic model emerges from the action

Following Letelier [7] we reinterpret the energy-
‘momentum tensof2.3) as describing an anisotropic fluid
with a pressure component equaling its energy density:

1 2 Tap=p(UaUp+ xaxp) (3.3
S=fd2x\/— Rg]+ 9%V, InpVzinp+ —
9| Rlgl* 39 PrETPT —UU=xax?=1, Ux?=0. (3.4
1 : : . .
_EJ d2x /—gg"BVach,;go. (3.0 A straightforward comparison witf2.3) gives
The first term is the Einstein-Hilbert action reduced by p:i, (3.5
spherical symmetrya surface term was droppedhe sec- 8mr?
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1 1/g\a sis and the one if9] reveals that the junction with a static
U= —(v3+u?)= —(—) interior matter can be done without a regularizing thin shell.
V2 Vhldt Our treatment is more general, however. We formulate the

(3.6 junction conditions for two generic static spherically sym-
metric space-times, following the standard Darmois-Israel
a_ i a_ya)=\f 9 2 junction procedurg16,17] and we establish a constraint on
X = \/E(v u)= ar the matter pressures implied by the matching conditions. An
(3.77  otherimprovement ovdB] is due to the fact that we dispose
of the exact solutiori2.23, thus the explicit computation of
Thus the solution represents an anisotropic fluid at resthe the matching conditions with an arbitrary particular inte-
with the energy density andradial pressurgp=p. No tan-  rior becomes possible.
gential pressures in the sphenes const are present. The An orthonormal basis is given by the vectddsand y
fluid is isotropic only about a single point, the origin. defined by Eqs(3.6) and (3.7) together with the spacelike
vectors

C. Radiation atmosphere
190 1 J

The solution can be interpreted as the outer region of a Es=——, EBEsf=—————.

- . . ) r de rsing d¢
radiating star, receiving radiation from the surrounding re-
gion either. If equilibrium is achieved between the two com-
ponents, we have the static solutié®.23. This was the
initial interpretation proposed by Dai8].

We write the energy-momentum tensor of the static solu-
tion in the double null coordinate system™(,x ™, 6, ). In-
serting the null covectors

(4.1

Any spherically symmetric static energy-momentum ten-
sor has the form

Ta=pUBUP+ pox2x°+ po(ESES+EZED). (4.2

By insertingp;= «;/87r? andp in the form (3.5 in the

h h Einstein equations for the metri2.1) we find
va= 0~ \/5,00], u,=(-\/=000 (38
2 2
df = f+1
in the covariant form of2.3) and taking account of.6) the far = A~

energy-momentum tensor becomes

dh
rf—=h(a,—f+1)

T p0X2dxP = (dxTdx*+dxdx7), (3.9 dr
16712
d
a superposition of two cross-flowing null dust streams with 2rf % =— ai+ a(—B+f-1)
equal ancconstantmass density functions. However one can r
freely rescale the null vectors® and u® to havearbitrary +B(f—1) +4a,f. 4.3

mass density functions either. After such a rescaling the mass
density function of the incoming null dust depends only on
the outgoing coordinate™ and vice versa, a property perti-
nent to the mass functions of the Vaidya solutidd], char- ds§: —hd+r2d02. (4.9
acterized by the energy-momentum tensor

The induced metric of the surface=const is

¢ dM(V) Without loss of generality we can choose the time coordi-

T 0 xed X0 = dvdv. (3.10 nates in both static space-times such that they are continuous
4mr2 dV on the junction. Then the continuity of the first fundamental
form requires the metric functioh to be continuous.
M(V) is the mass function and the coordinatés outgoing The extrinsic curvature of the junction surface const is

for incoming radiation and incoming for outgoing radiation. defined as

In the next section we will study the interior junction with
a static star, and the exterior junction with incoming and Kap= (85— x°xa) (89— x¥xb) Vexa - (4.5
outgoing Vaidya solutions.

The nonvanishing components are
IV. JUNCTION CONDITIONS

W

h 4
Ki=——=(—ay+f-1), K9=Kﬁ=r. (4.6

2rf
We discuss the junction with an interior solution with
accent on the anisotropic fluid interpretation given previ-In the above expressions the derivatives were eliminated by
ously. A similar treatment was given [8]. Both our analy- use of Eq.(4.3.

A. Matching with interior spherically symmetric
static solutions

084030-5
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Continuity of the extrinsic curvature across the junction
hypersurface =r, is achieved, provided that the metric and
the function a; (thus alsop;) are continuous. We have ° =
proved the following result: L L

Any two spherically symmetric static solutions can be
matched along hypersurfaces=rconst provided the radial tatio
pressures are continuoughis is similar to the theorem interior
given by Fayos, Jae Llanta and Senovilld18] for the M,
matching of the Vaidya solution with a generic spherically
symmetric solution along timelike hypersurfaces. A generic
discussion on matching spherically symmetric space-times
along thin spherical timelike shells can be found 19].

For the double null dust solutios; = 8. In consequence
the interior fluid should have a radial pressure equal to the
energy density3.5 of the double null dust solution on the
junction. However, no conditions on the pressures tangent to F|G. 4. The intersection of two crossflowing null dust streams
the spheres emerge. with mass function$/ (V) is the static solution characterized by the

We see from Eq92.18), (2.20 and(3.5) that the integra-  mass functiom(r). HereV=X"* stands forc= =1 andX* are the
tion constant® andC appear in the radial pressure and massadvancedretarded time in the Vaidya solution. The 2-dust solu-
function of the static double null dust solution. Continuity of tion touches in three points exterior Schwarzschild regions with
these functions on the junction fixes the value of the conmassesM; andM,. At the interior junction there is a static fluid
stants, once the interior solution is chosen. For a realisticepresenting a star with mabs,; . The mass functions! (V) of the
star, the mas#1, should be positive. This implies a lower Vaidya regions change monotonously fravh to M.
boundary for the possible values iof, as follows from Fig.

3(@. In the light of the above relations we see that after choos-

Let us illustrate the junction with the interior Schwarzs- ing some value foC (a scalg, the constanB is determined
child solution [20] ds?=—(a—by1-r%/R??3dt?+(1  exclusively by the radius and densityr mas$ of the star.
—r2/R?) " dr2+r2dQ?, with the energy densitps=3/R?
=const and pressurgs given by B. Matching with Vaidya solutions

In this subsection we study the junctions with the incom-
r2 ing and outgoing Vaidya solutions, which are at the exterior
3b\/1- —,~a of the static double null dust solution. There are only three
R 4.7 points (in fact spheresin common with exterior Schwarzs-
5\ ' child regions(Fig. 4), and the matching can be done without
R2| a—b 1— — introducing regularizing thin shells.

R2 The high-frequency approximation to the unidirectional
radial flow of spherically symmetric unpolarized radiation,
l%haracterized by the energy-momentum ten8at0 is rep-
resented by the Vaidya solutigal]:

87TpS:

Several relations among the Schwarzschild paramete
a,b,R, radius of the star,; and the parameter8 and C

emerge from the junction conditions: 2M(V)
ds2=—dv[(1— )dv— 2cdr|+r2d02. (4.9
3 2
ri 3 R
2m=—, 2a=-—+— , . . )
Y R? VB1 rf\/E The radial null geodesics are the lin®s=const and the
(4.8  curves given by
2 2
in_1 R dr ¢/ 2M(V)
2b\/1- == —+ —VB1. _ _
We have denoted bg; andm; the values of the functiong We would like to match our static solution with incoming

and m at the junctionr=r;. The first two relationg4.8) and outgoing Vaidya solutions along the outgoing, respec-
determine the constai® and the value of the radial coordi- tively incoming radial null geodesics, e.g. along lines of con-
nate L, at the junction in terms of,/R and a, when stant incoming, respectively outgoing coordindtgg. 4).
Egs(2.17), (2.18 and (2.20 are inserted. Eliminating3; These are given by E@4.10 in the Vaidya solution and by
from the last two relations of Eq(4.8), a constraintb Eq. (2.28 in the static solution.

=b(a,r,/R) on the possible values of characteristics of the A convenient formalism for matching solutions along null
interior emerges. Finally Eq. (2.179 implies C surfaces, which does not require coordinates that match con-
=C(a,r1/R,rq). tinuously on the shell, was developed by Barsabad Israel

084030-6
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[10]. Their discussion on the particular case of spherical 2c zeyz[—ey2+2yCI>B(y)]dy
symmetry requires the metric in both space-times written in V(z)=const+ Il D
the form: a(y) 4.15

= — ¥ ¥ — + 2 2
ds’=—e’dZ fe’dz—2dr]+r*d0* (4.19 The relations(4.14) and (4.15 contain in implicit form the
Heref andy depend on both andz. The null coordinateis ~ dependence of the mass functibhof the Vaidya solution

always outgoing but it can be either increasing or decreasing" the radiation coordinaté. Despite the complicated de-
with time. Then the junction is done along the null hypersur-PendenceM (V) itis straightforward to check thall satisfies

facesz= const. the required monotonicity condition:

To apply this formalism it would be desirable to express )
the Vaidya solution in the other set of radiation coordinates 5 dM  Dx(2) 0 41
[U(V,r),r,0,¢] in which Eq. (4.10 takes the formU d(cVv) 27 =0. (4.16

=const. However, this is possible only when double null

coordinates are found. It was demonstrated[2] that  Finally Egs.(4.12 and(4.15 give v =0v(2):
double null coordinates exist when the mass iknaar or

exponentiafunction of the advanced or retarded tide We 2.2¢ (2 ,

argue in what follows that the mass function of that particu- v(z)=const+ Tf [—e¥ +2ydg(y)]dy.
lar Vaidya solution, which is matching continuously to the 417
static solution has a more complicated dependence. A further '
inconvenience is that there is no obvious choice for the in- oW we express both metrics in terms of the coordinates
trinsic coordinates in terms of the space-time coordinates ir@ r(L),0,¢). They take the form4.11) with

the null junction hypersurface. For these reasons we proceeé' AR '

as follows. First we find coordinates that match continuously 2m(L) 2 gl?
— b=

on the junction and in terms of which the metric is continu- f=1——"-, _[_ez2+ 2704(2)]

ous. Then we employ the Barrabésrael junction formalism r(L) C Pg(L)

to find the distributional stress-energy tensor on the junction. (4.18
As a radial variable of both metrics we chodsdy ex- )

tending the expressiof®2.17) of r=r(L) to the Vaidya re- 2M(2z) v 2 € 2

gions too. An appropriate null coordinatés defined by the v=1- T © =c m[—e +2z0g(2)].

values ofL=L; on the junction. In these coordinates the (4.19

junction hypersurfaces are characterized by the null geodesic

equationsz=L in both space-times. We proceed in deriving Here the indexV refers to the Vaidya solution and the ex-

the expressions of the coordinatesandV and of the mass pressions (L), m(L), andM(z) are given by Egs(2.17),

function M in terms of the coordinate. (2.20 and (4.14), respectively. We have completed the task
Identifying the corresponding part of E(3.9) with Eq.  of writing both metrics in coordinates which are continuous

(3.10, we find the relation between the null coordina¥és on the junction and in terms of which the metric is continu-

andv, valid on the junction: ous.
" It is immediate to check the continuity of the induced
[ dM(V) metric given bydsZ=r2dQ2. The other junction condition
dv=2|c dv. 412 . . ) -
dv is a somewhat subtle issue as the conventional extrinsic cur-

vature tensor for null hypersurfaces carries no transversal
Then we extend this relation over both the static and thenformation.
Vaidya regions. We define a pseudo-orthonormal bg€1g] (n,N,Ez,E,),
The null geodesic equatiof2.28 of the static solution, whereE; andE, are given in Eq(4.1) and
evaluated on the junctiofwherez=L) gives
9 fo d
dz ¢ dMm n=e 45— N=——. (4.20
av™ 22 dz (4.13
The vectom? is orthogonalland also tangeinto the hyper-
Inserting Eq.(4.13 in the null geodesic equatiof#.10 of  surfacesfe’dz—2dr=0, along which the two space-times
the Vaidya solution we find its mass function in terms of theare glued together. The vectd® is the other radial null
new null coordinatez: vector, transversal to these surfaces. They are related to the
previously introduced vectors® andu? as follows. For the
2CM(z)=—e¥+22dg(2)— 26 Z®2%(z). (4.14  junction with the incoming Vaidya regios?= (2/f)"?n? and
ud=(f/2)¥2N2, while for the junction with the outgoing
Thus the mass function is continuous at the junction. Thé&/aidya regionu®= — (2/f)¥n? andv?= — (f/2)¥2N?2.
geodesic equatio¥.13 together with(4.14) gives the rela- The projector to these null hypersurfaces with tangent
tion between the null coordinat&andz: space spanned Wy;,E, andn is

084030-7
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2= ESEﬁJr E‘ZE@— n®N,= 62+ N2ny, . 4.21) radial pressure equal to the energy density of the atmosphere
on its surface. No constraint on the pressures along the
Following [10] we define the transverse or oblique extrinsicspherical junction surface was found. On the exterior, the
curvature tensor with the aid of the transverse vebtor study of the matching conditions with the Vaidya solution
revealed no thin shells on the junction.
Kap= pgpgchd, (4.22 As a byproduct, we have derived general conditions for

the junction of two spherically symmetric solutions. Match-
The only nonvanishing components of the transverse extrining of two static space-time®.1) alongr =const hypersur-
sic curvature tensbmre faces is assured by the continuity of the metric functions and

of the radial pressure. Matching of generic spherically sym-

1 C dL metric space-times(4.11) along the null hypersurfaces
Kzz:§e¢‘9r(fe¢) = Eewd(Cr) a(fe?), fe’dz—2dr=0 is possible whenever the metric andfe’)
are continuous.
1 (4.23 The negativity of the mass function in some neighborhood
Kz: Kﬁ: — of ther =0 singularity raises the possibility of matching this
r solution to a negative mass core. This may be difficult due to

, . the nontrivial topology of the known negative mass black
Thuswhen matching any two metrics of the fothll) on  poje solutions[23]. Despite the lack of experimental evi-
the null hypersurfaces felz—2dr=0, the jump in the ex- dence for negative mass objects, presumably of quantum ori-
trinsic curvature is given by the jump i (fe’), provided  gin [9], their microlensing effedi24] on radiation from Ac-
the metric is continuous across the junction. tive Galactic Nuclei was shown to produce features similar
A straightforward computation employing4.18 and to some observed Gamma Ray Buiss].
(4.19 gives on the junction hypersurfaces of the static Equally interesting would be to introduce dynamics in the

double null dust region with the Vaidya regions picture by an interior matching with a collapsing star. We
defer this topic to a forthcoming study.
d(feh)y =g, (f e"v) An intriguing open question remains whether exact solu-
) ) 2 tions describing the collision of spherically symmetric null
_4eLj[_eLj+2qu)B(Lj)_eichDé(Lj)] dust streams, which have not reached equilibrium, can be

found.
Note addedAfter the submission of this paper a relevant
(4.249  work in the subject was published by Krani@6]. The so-
. o . . lution presented there is the particular case of the metric
In conclusion the extrinsic curvature is also continuous N5 23 with the parameter valud@=0 andC= ye. Our met-

the junction. There is no need for a thin regularizing She"ric functionsh and f, radial variableL and transcendental
separating the two domains of the space-time, in contrast t . 12 ' 2y 2
the exterior junction proposed [i9]. Punctlon —e- +2L®g correspond t@e<”,e” 1+ 2¢ and

ve(l+2¢&)J, respectively of this paper, when the parameters
valuesB=0 andC= \/e are chosen. Keeping the parameters
arbitrary enabled us in Sec. IV A to match the solutigr23d
We have integrated the Einstein equations in the presencgith an interior Schwarzschild solution withrbitrary mass
of cross-flowing null dust under the assumptions of sphericaénd radius. In contrast with our analysis relying on the
symmetry and staticity and analyzed various aspects relatdgarrabe-Israel matching procedure, ig6] the junction with
to the properties of the emerging exact soluti@23. The the Vaidya space-time was discussed by imposing the conti-
solution has dilatonic gravity connections and it can be reinnuity of the four-metric on the junction.
terpreted as an anisotropic fluid with radial pressure equal to
its energy density and no pressures along the spheres ACKNOWLEDGMENTS
=const. This can be a radiation atmosphere for a star with itS the author is grateful to JiBicak, Gyula Fodor, Karel
Kucharand Zolfan Perjes for discussions on the subject and
helpful references. This work has been supported by OTKA
The components of the extrinsic curvature tensor defingddh ~ no. W015087 and D23744 grants. The algebraic packages
are found fromK,, by contracting with the three basis vectors REDUCE and MAPLEV were used for checking computations

Cl—e"i+2L®g(L))]

V. CONCLUDING REMARKS

E;,E, andn tangent to the hypersurface. and numerical plots.
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