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Bright solitons as black holes

L. Martina,* O. K. Pashaev,† and G. Soliani‡
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2D Jackiw-Teitelboim gravity is represented as a completely integrable nonlinear reaction-diffusion system,
whose Euclidean version leads to the nonlinear Schro¨dinger equation. The solitonlike solutions, called dissi-
patons, to such systems characterize completely the black holes of the considered gravity model~the black hole
horizon, the Hawking temperature, and the causal structure!. The collision of black holes is described in terms
of elastic scattering of dissipatons, which shows a novel transmissionless character, creating a metastable state
with a specific lifetime. Finally, alternative descriptions of the model in terms of other completely integrable
systems are overlooked.@S0556-2821~98!02716-7#

PACS number~s!: 04.70.Dy, 11.10.Lm, 11.15.2q
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I. INTRODUCTION

It is well known that a 2D gravity theory in general can
always locally represented in the conformal gauge. T
naturally leads to the so-called Liouville model of gravit
For example, this is true in the Jackiw-Teitelboim~JT!
model@1,2#, obtained as a dimensional reduction of the 211
Einstein-Hilbert action, or also from a spherical reduction
a 4D dilaton-gravity Einstein-Hilbert-Maxwell action@3#.
Now, the classical Liouville equation is a completely int
grable system and its general solution is provided in term
free fields@4,5#. However, its quantum version is a challen
ing and not completely solved problem~for a recent review,
see, for instance, Refs.@6,7#!. On the other hand, the study o
this low-dimensional gravity model received a great dea
attention recently since black hole~BH! solutions were dis-
covered@8,9#. This allowed one to have available a lowe
dimensional analogue of realistic 4D black holes, for wh
the key features could be exhibited without unnecess
complications. Moreover, the existence of a black hole
plies a nontrivial causal structure, which is related to
Hawking radiation phenomenon@10# and to interesting ther
modynamical properties@3,11–13#. However, the nontrivial
causal structure associated with a BH is hard to describ
the Liouville gauge. Hence, one is encouraged to look
alternative formulations. For instance, in Ref.@14# it is stud-
ied the connection between JT gravity and the sine-Gor
equation. In a more direct approach, we have recently inv
tigated certain noncovariant gauge choices in the contex
the gauge formulation of the JT model@15#. In particular, we
proposed a nonrelativistic gauge choice related to
SO~2,1! Heisenberg model@15#. This choice leads to a com
pletely integrable reaction-diffusion~RD! system for the
Zweibein fields. This multicomponent system admits the d
sipative analogue of the nonlinear Schro¨dinger ~NLS! equa-
tion solitons, which we will call ‘‘dissipatons.’’ The main
goal of the present work is to show that the dissipatons c
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respond to the BH of the JT theory, in the sense that we
describe the horizon position and the causal structure of
solution. This is intimately related to the dissipaton bound
conditions. In its turn, different types of boundary conditio
are admissible in correspondence of different signature of
nonlinear coupling constant, proportional to the cosmolo
cal constantL introduced in the JT model. In particular, i
accordance with Refs.@8,9#, for L,0 from one side the
BH’s correspond to the anti–de Sitter space time and, fr
another side, to the attractive NLS case, as shown in
present paper. Then, BH’s and bright solitons are correla
Secondly, since the dissipaton amplitude scales asL21,
strong nonlinear effects are not longer negligible at su
ciently large scales, also whenL→0. Furthermore, only dis-
sipatons moving at velocities less than a critical value lead
BH solutions. In this sense, the relativistic bound on t
allowed velocities is recovered in the present nonrelativis
picture. Finally, from these preliminaries we will outline th
properties of the RD system, which are nontrivial, although
can be seen as an analytical continuation of the NLS eq
tion.

In Sec. II we review the connection among the RD a
NLS systems and the JT model, giving its explicit reform
lation in this new formalism. In Sec. III we provide the lin
between the one-dissipaton solution and the black hole of
JT gravity. This is made both for the static and for the mo
ing dissipaton, characterizing the set of soliton parame
meaningful in the present context. Section IV is devoted
the analysis of a type of collision of two black holes in term
of elastic scattering of dissipatons. This scattering ha
transmissionless character~in contrast with the reflectionles
solitons! and creates a metastable state of BH’s with a s
cific life time. Section V contains the Euclidean version
the previous treatment, which enables us to compute
Hawking temperature in terms of the NLS soliton para
eters. In Sec. VI we review the connection among the gra
model and certain relevant completely integrable syste
the self-dual s model, the nonlinears model, the
Korteweg–de Vries~KdV! and the modified KdV equation
~MKdV !. All of them are possible alternative representatio
of the JT model, enjoing several nice properties at the c
sical level. Of course, the equivalence of two classical th
ries does not imply the equivalence of the correspond
quantum versions. In the particular case of the JT mo
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there are some indications that classically equivalent form
lations are nonequivalent at the quantum level@16#. But the
quantization of a classically completely integrable model c
be performed also by the quantum spectral transform@17#,
which in the present case may provide a different quan
integrable model of the gravity. Some interesting proper
could arise from the Poisson structure of the RD syste
being the same of the NLS equation, which is simpler th
for the Liouville equation.

II. GAUGE FORMULATION OF THE JT GRAVITY

In order to fix some concepts and the notation, let
overview the gauge formulation of the JT model. The m
idea of a gauge field theory of gravity is that the gene
coordinate transformations are implemented by the ga
ones. These do not act on the original metric tensor, bu
the Vielbein and spin connection. Thus, the local gau
group induces on a base space the space-time metric te
@18#. This approach has been used for the JT model@19–22#,
given by

S5E
M

A2gV0~R2L!dx1dx2, ~2.1!

whereR is the scalar curvature,L the cosmological constan
andV0 is a world scalar Lagrange multiplier, or dilaton fiel
Then, one introduces the ‘‘rotated’’ Zweibein fieldsqa

6

(a51,2), defined by

gab52
4

L
~qa

1qb
21qb

1qa
2! ~2.2!

and a spin connectionVa , taken as independent variable
and combined into the connection one-form

J5Jadxa, ~2.3!

Ja5
i

2
~qa

11qa
2!t12

i

2
~qa

12qa
2!t21

i

4
Vat0 ~2.4!

5
i

4
t0Va1S 0 qa

2

qa
1 0

D ~a51,2!, ~2.5!

where t i ( i 50,1,2) are the basis elements of the sl(2,R)
algebra, satisfying the set of relations

t it j5hi j 1 ic i jktk , ~2.6!

with (hi j )5diag(21,21,1) andci jk52e i j l hlk . This param-
etrization realizes aZ2 graduation of the connection algeb
with isotropy groupO(1,1). In order to keep contact with
more usual notation, we write

P05
i

2
t0 , Pa5~21!a11

i

2
A2

L

2
ta ~a51,2!,

~2.7!
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@P1 ,P2#52
L

2
P0 , @Pa ,P0#5ea

bPb , ~2.8!

wherePa (a51,2) andP0 are the generators of translation
and of the Lorentz transformations, respectively, genera
the de Sitter group SO~1,2!. Our convention for the locally
flat Minkowski metric ishab5diag(21,1). Thus, the metric
tensor~2.2! takes the usual Zweibein form

gab5ea
ceb

dhcd , where qa
65

1

2
A2

L

2
~ea

06ea
1!.

~2.9!

Now, from the vanishing of the curvature two-formF5dJ
1J`J one gets the equation

F125]1J22]2J11@J1 ,J2#

5
i

4
eab~]aVb24qa

1qb
2!t0

1
i

2
eab~Da

2qb
11Da

1qb
2!t1

2
i

2
eab~Da

2qb
12Da

1qb
2!t250, ~2.10!

whereDa
6[]a6(1/2)Va represents the covariant derivativ

and the antisymmetric tensore is given bye1251 . The first
component of Eq.~2.10! provides the curvature of the con
nection~2.5!, while the second and third components dicta
the torsionless condition. Solving them with respect to
spin connectionVa and substituting into the curvature equ
tion we obtain that the scalar curvatureR is equal toL, as
prescribed by Eq.~2.1!. However, Eq.~2.10! can be derived
from the action functional

S5E
M

eabFq0
1Da

1qb
21q0

2Da
2qb

1

1
1

8
V0~]aVb24qa

1qb
2!Gdx1dx2

5E
M

Tr~J0F12!dx1dx2, ~2.11!

whereq0
6 are new Lagrangian multipliers andJ0 is defined

accordingly to Eq.~2.5!. Actions of the form ~2.11! are
known as BF theories, whose classical and quantum iss
have been well studied~see Ref.@23# for a review on the
topic!. In particular, the action~2.11! is invariant with re-
spect to infinitesimal SL(2,R) gauge transformations, whic
are equivalent to general coordinate invariance if the eq
tion of motion are used@24,25#. Moreover, the equation fo
the multiplier J0 is given by DaJ050, where Da5]a
2@Ja ,#. The total set of theO(1,1) gauge invariant equa
tions arising from the variation of the action~2.11! can be
written in the form
5-2
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Dm
7qn

65Dn
7qm

6 ,

]mVn2]nVm54~qm
1qn

22qn
1qm

2!,
~2.12!

with m,n50,1,2 and under the assumption that all the
rivatives ofqa

6 andVa (a51,2) with respect to an auxiliary
variable x0 vanish. Then, Eq.~2.12! is again the zero-
curvature condition in 3D for the connectionJ. Actually, Eq.
~2.12! represents the Euler-Lagrange equation for the Ch
Simons~CS! action on the SL(2,R) group@24,25#, which can
be seen as a subgroup of the corresponding Poincare´ group.
In 2D the local symmetry group identifies with the de Sit
group. Thus, the obtained structure is a relic of the 3D
theory under the effects of the dimensional reduction.
course, the space of all solutions of the classical field eq
tions, modulo SL(2,R) gauge transformations, is finite d
mensional. This is specific of the topological character of
gauge field theory~2.11!. In fact, the general solution of th
system~2.12! can be given in the form of the right-invarian
chiral current Jm5G21]mG, where G is a differentiable
mapping on SL(2,R). But, if we introduce the so-called
moving trihedrals frame$ni% @26,27# by the local adjoint
representation of the algebra expressed by

Gt iG
215ni

ktk , ni5~hj j nj
i !, ~2.13!

one sees that it would satisfy the orthonormal conditions

~ninj !5hi j , ni`nj5ci jknk , ~2.14!

induced by the relations~2.6!. Moreover, the moving frame
changes accordingly to the adjoint representation ofJm , that
is,

]mni5~Jm! ik
~ad!nk , ~2.15!

whereJm
(ad) are matrices in the adjoint representation. Eq

tion ~2.15! can be seen as a linear system for$ni%. Its inte-
grability is assured by the zero curvature condition, satis
by the chiral currentsJm , namely, by Eq.~2.12!. Now, we
assign ton05s the special role of~pseudo!spin variable. It
has the one-sheeted hyperboloid (s,s)521 as phase space
The vector fieldsn1, n2 describe the tangent plane of such
hyperboloid and can be locally rotated, corresponding t
local Lorentz transformation. Indeed, introducing the n
basisn65n16n2 one can perform a local SO~1,1! gauge
transformation generated by an arbitrary real functiona:

s→s,n1→e1an1 ,n2→e2an2. ~2.16!

Furthermore, from Eqs.~2.15! and ~2.14! one can see that

Vm52~n2 ,]mn1!, qm
656

1

2
~s,]mn6!. ~2.17!

The transformation~2.16! for these quantities reads

Vm8 5Vm12]ma, qm
185eaqm

1 , qm
285e2aqm

2 .
~2.18!
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The linear system~2.15!, whose integrability condition is
Eq. ~2.12!, takes the form

Dm
7n6572qm

6s,

]ms5qm
1n22qm

2n1 . ~2.19!

Finally, in establishing the relation between the local trih
drals and the JT metric, we easily find, by using the defi
tion ~2.2! and the relations~2.17!, the expression

gab52~]as,]bs!. ~2.20!

This formula enables us to give a gravitational interpretat
of the s model we are going to discuss.

The idea we follow is to add to Eq.~2.19! a differential
constraint in the (x1,x2) space fors, such that a completely
integrable dynamics is introduced in order to fix partially t
gauge freedom in a controlled fashion and allowing a
sidual local Lorentz covariance. Moreover, for the mome
we forget all that concerns the variablex0 and the currentJ0.
Precisely, we consider as a constraint the classical cont
ous Heisenberg model realized on the SL(2,R)/SO(1,1)
coset space

]2s5 s̀ ­1
2s. ~2.21!

Substitution from Eq.~2.21! into Eq. ~2.19! yields

q2
15D1

2q1
1 , q2

252D1
1q1

2 . ~2.22!

Taking account of these relations, the field equations~2.12!
can be written as

D2
7q1

67~D1
7!2q1

650,

]2V12]1V254]1~q1
1q1

2!. ~2.23!

Defining the flat connection

A25V214~q1
1q1

22a!, A15V1 , ~2.24!

wherea is an arbitrary real constant, and gauging out it by
local SO~1,1! transformationAj52] jl, q1

65q6e6l for a
regular real functionl, we get the nonlinear reaction
diffusion ~RD! system

]2q67]1
2q662~q1q22a!q650. ~2.25!

Here only the global SO~1,1! invarianceq6→e6aq6 sur-
vives. Equation~2.25! represents a particular form of a two
component reactive-diffusive system, playing an import
role in synergetics@28–30#. However, the unusual negativ
value for the second diffusion coefficient is crucial for th
existence of Hamiltonian structure and the integrability
the model. In fact, performing the ‘‘Wick rotation’’x2

→ ix2 and assuming thatq6 are complex functions, the sys
tem ~2.25! becomes the NLS equation and its complex co
jugate. However, the appearance of thermodynamical p
erties of the black holes may be related to so
‘‘dissipative’’ features of Eq.~2.25!. Moreover, this system
5-3
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is very similar to the ‘‘fictitious’’ or ‘‘mirror-image’’ sys-
tems withnegative friction, which appear into the thermo
field approach to the damped harmonic oscillator treated
Ref. @31# ~see also Ref.@32# for connections with the CS
theory!. The energy is drained from the ‘‘real’’ oscillator t
its ‘‘image,’’ which mimics inaccessible states hidden in
thermostate. In this way the total energy is conserved and
Lagrangian description is allowed. This analogy works eff
tively when one considers homogeneous configurations
the system~2.25!. Then, it reduces to a system of tw
coupled harmonic oscillators with damping and in the ma
less limit.

The main issues concerning the integrability structures
sociated with the system~2.25! @33,34,15# can be obtained
by a proper treatment of those for the NLS equation. Ho
ever, although most of the algebraic forms are sligthly g
eralized with respect to the NLS case, the analytical asp
are less trivially extended, because of the reality of the fie
q6 and of their boundary conditions. The system~2.25! ad-
mits the Lax pair

L15]11S z q2

q1 2z
D ,

L25]21S 2z22~q1q22a! 2~]122z!q2

~]112z!q1 22z21~q1q22a!
D ,

~2.26!

the Bäcklund transformations

]1~q62q̃6!5A~q12q̃1!~q22q̃2!2m~q61q̃6!,
~2.27!

]2~q62q̃6!56A~q12q̃1!~q22q̃2!2m]1~q61q̃6!

7~q1q21q̃1q̃2!~q62q̃6!, ~2.28!

and it belongs to the bi-Hamiltonian hierarchy of commuti
flows

] 2S q1

q2D 5~LJ21!nS q1

2q2D , ~2.29!

whereL and J are symplectic operators with respect to t
usual bilinear form inLR2

2 defined by

J52 is2 , L5S 2q1Ex1

q1 ]122q1Ex1

q2

]122q2Ex1

q1 2q2Ex1

q2
D ,

~2.30!

with *xf [ 1
2 (*2`

x f dx2*x
1` f dx). Equation ~2.25! is ob-

tained forn52 in Eq. ~2.29!. The Lax pair~2.26! is of the
Zakharov-Shabat type@35#, where a rotation ofp/2 in the
complex plane of the spectral parameter is required. H
ever, we notice that in general the Galilei transformatio
allowed by Eq. ~2.25! x1→x112Vx2, x2→x2, q6
08402
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→e7a(x18,x28)q6(x18,x28), wherea(x1,x2)5V2x21Vx1 do not
preserve the boundary conditions. Then, solutions with n
asymptoticsq6→0 for x1→6` may become unbounded i
reference frames moving at sufficiently high velocity.

In the gauge fixed by Eq.~2.21! the metric tensor~2.2!
takes the form

g005
8

L
]1q1]1q2,

g1152
8

L
q1q2,

g015g1052
4

L
~q2]1q12q1]1q2!. ~2.31!

We observe that the componentsg11 andg01 are densities of
the simplest conserved quantities, i.e., the ‘‘mass’’ and
‘‘momentum,’’ respectively.

By using the Ba¨cklund transformations, one can find se
eral types of solutions@15#. Here we will consider only few
of them. In particular, we will take under consideration t
analogous of the bright soliton solution for the NLS equati
(a50). In a moving frame coordinatej5x12vx21j0, such
a solution is given by

q6~x1,x2!56k exp 6@~k22 1
4 v2!x2

2 1
2 v~j2j0!#sechkj, ~2.32!

depending on the two real parametersk and v. But in con-
trast with the bright soliton of the NLS equation, the abo
solution does not preserve the amplitude for the compon
q6 independently. During the time evolution one of th
fields is exponentially growing, while the other one is deca
ing. At the same time, the productq1q2 has the usual soli-
tonic shape. Since this is similar to the pattern formation
the context of the dissipative structures, for the solut
~2.32! the name of ‘‘dissipaton’’ is suggested. For th
N-dissipaton solution see Ref.@15#. Notice that the param-
eter v corresponds to the real part of the spectrum of
NLS solitons. Furthermore, in the space of the parame
(v,k) there exists the critical valuevcrit52k. For the solution
~2.32! obtained withv,vcrit , at the infinity one hasq6

→0. At the critical value the solution is a steady state in t
moving frameq656ke6kj0(17tanhkj), with constant as-
ymptotics q6→62ke6kj0 for x1→7` and q6→60 for
x1→6`. In the over-critical casev.vcrit , we are led to
q6→6` for x1→7` andq6→60 for x1→6`.

III. DISSIPATON AS BLACK HOLE

Static case

We first analyze the dissipaton~2.32! at rest, which de-
scribes the stationary metric of JT gravity~we will use the
simplest notationx1→x andx2→t)

ds252
8k2

L
cosh22kx@k2tanh2kx~dt!22~dx!2#. ~3.1!
5-4
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This metric is regular everywhere, except for a causal sin
larity at x50 and it is vanishing forx→`. However, one
can promptly check that

G00
0 5G11

0 5G01
1 5G10

1 50, ~3.2!

G01
0 5k

12sinh2kx

sinhkxcoshkx
,

G00
1 5k3

~12sinh2kx!sinhkx

cosh3kx
, G11

1 52ktanhkx,

~3.3!

R5g00R001g11R115
1

g00
R001

1

g11
R115L, ~3.4!

satisfying everywhere the equation provided by the act
~2.1!. Hence, the dissipaton maximum positionx50 has to
be interpreted as the event horizon. If we introduce a n
spacelike coordinate, similar to the ‘‘tortoise’’ coordinate f
the Schwarzschild solution, defined by

x85
1

k
x1

1

k2
lnu12e22kxu, ~3.5!

the metric~3.1! takes the conformal flat form

ds252
8k4

L
cosh22kxtanh2kx@~dt!22~dx8!2#. ~3.6!

Now, introducing a system of coordinates of the Krusk
Szekeres~KS! type, namely,

2v5ek2~x81t !, 2u52ek2~x82t !, ~3.7!

we get a metric in the form

ds252
8

L

dudv
~12uv !2 . ~3.8!

The metric~3.8! has exactly the form given in Refs.@36,37#.
It suggests to represent the one dissipaton metric~3.1! in the
de Sitter form, with event horizon atx50. In the next sec-
tion we will show that indeed it can be done also for a mo
ing dissipaton solution. In the coordinate system

v5U1V, u5U2V, ~3.9!

where

uv5U22V2, ~3.10!

we have the diagram reported in Fig. 1. The original cons
curved (x,t) space-time corresponds to region I. The solit
maximum positionx50 corresponds to the diagonal coord
nates linesu50 (U5V) andv50 (U52V). It is clear that
the maximally extended KS coordinates admit the phys
singularity atuv51, represented by the past and future h
perbolaU22V251. In the original variables this singularit
corresponds to the analytical extension to the complex
08402
u-

n

w

-

-

nt

l
-

plane. Sinceuv52sinh2kx, one easily finds the singularity
for pure imaginaryx56 i (p/2k). This suggests that singula
solutions of the NLS type equation have a physical interp
tation as singularities in gravitational theories.

Moving case

When we choosevÞ0 in the solution~2.32!, the corre-
sponding components of the metric tensor are

g005
8

L
q1q2Fk2tanh2k~x2vt !2

1

4
v2G ,

g1152
8

L
q1q2, g015

8

L
q1q2

v
2

, ~3.11!

which lead to the line element

ds252
8

L
k2cosh22r

3F S k2tanh2r2
1

4
v2D ~dt!22

1

k2
~dr!22

v
k

drdtG ,

~3.12!

where we have introduced the moving frame coordinate
the solitonr5k(x2vt). In this system of coordinates th
time t cannot be defined globally because of the cross te
drdt. Nevertheless, we can find a ‘‘synchronized’’ system
coordinates, which describe a static~i.e., time translation and
reflection symmetric! spacetime, as in the case of static d
sipaton illustrated above. Indeed, if we consider a new co
dinate system (r,T) defined by

dT5dt2
v

2k~k2tanh2r2v2/4!
dr, ~3.13!

we obtain the metric element

ds252
8

L
k2cosh22rF S k2tanh2r2

1

4
v2D ~dT!2

2
tanh2r

~k2tanh2r2v2/4!
~dr!2G . ~3.14!

FIG. 1. Standard KS diagram for a static BH. The physic
region is I.
5-5
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This metric shows a horizon singularity at

tanhr56
v
2k

only if uvu<2uku[uvmaxu ~3.15!

for the dissipaton velocity. Consequently, a BH cannot mo
faster than the maximal value of the velocityuvmaxu52uku.
We emphasize this phenomenon, which arises in a pu
nonrelativistic treatment, provided by the RD system~2.25!
and the Heisenberg constraint~2.21!. The key point is given
by the the boundary values for the dissipaton. In fact,
above limiting valuevmax coincides with the critical value
vcrit treated at the end of Sec. II. In other words, horiz
singularities exist only when both the components of
Zweibein fieldsq6 go to zero at infinity, or they are bounde
as discussed above for the critical case. If we increase
dissipaton velocity to a valuev.vmax[vcrit , the synchroni-
zation of clocks is still possible, but the metric~3.14! be-
comes regular everywere except aturu→`.

In order to represent the metric~3.14! in a form closer to
a Schwarzschild type form, let us define the spacelike v
able

r 5ukucosh21r, 0,r ,uku. ~3.16!

Then, assuming that Eq.~3.15! is not satisfied, i.e.,k2

,v2/4, we obtain the line element

ds252
8

LF2r 2~r 21r 0
2!~dT!21

~dr !2

~r 21r 0
2!

G , ~3.17!

where r 05(v2/42k2)1/2. Thus, the only singular point isr
50, which corresponds to the asymptoticsr→6`. Any-
how, these points do not represent physical singularity, s
the relationR5L still holds. Furthermore, by performing th
transformation

z5
2r 21r 0

2

r 0
4

, ~3.18!

one finds that the line element takes the Schwarzschild f

ds252
2r 0

4

L F2~r 0
4z221!~dT!21

~dz!2

~r 0
4z221!

G ,

~3.19!

and the spacelike variable runs over the finite interval 1r 0
2

5zmin,z<zmax5(1/r 0
2)@(v214k2)/(v224k2)#, noticing

that nowzmin corresponds tor→6`. We interpret this re-
sult saying that this metric describes the region outside
BH event horizon, while the inside part never can be reac
for v2.4k2.

A much more interesting situation occurs whenk2

.v2/4 @see Eq.~3.15!#. In fact, in terms of the variabler
defined in Eq.~3.16! the metric takes the form

ds252
8

LF2r 2~r 22r H
2 !~dT!21

~dr !2

~r 22r H
2 !

G , ~3.20!
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which is singular atr 5r H5(k22v2/4)1/2. In the moving
frame, this point corresponds to

rH56arccosh@12v2/4k2#21/2 ~3.21!

or

xH5
rH

k
1vt. ~3.22!

These expressions say that forv50 the singularity is located
at r H5r max5uku, namely, atr5x50 as in the static case
discussed before. Increasing the velocity the horizon posi
r H decreases regularly up to the minimal valuer H50, when
the critical valueuvmaxu52uku is reached. Thus, in the vari
able r for v→vmax the horizon goes to infinity, where i
remains as seen in the discussion above.

For the slowly moving dissipaton satisfying Eq.~3.15!,
we can introduce the analogue of the transformation~3.18!

z5
u2r 22r H

2 u

r H
4

. ~3.23!

This new variable runs over the interval

0<z<zmax5
1

r H
2

4k21v2

4k22v2
, ~3.24!

and the singular pointr H corresponds tozH51/r H
2 <zmax.

The metric of the Schwarzschild type reads

ds252
2r H

4

L F2~r H
4 z221!~dT!21

~dz!2

~r H
4 z221!

G ,

~3.25!

which is singular atzH but, differently from the case~3.19!,
it can be continued for smallerz. We could interpret this
result by saying that forzP@0,zH) the metric ~3.25! de-
scribes the region inside the event horizon, while forz
P(zH ,zmax# it describes the outside region. In order to ma
more clear our argument we refer to Fig. 2. From this d
gram one can see that the central part of the dissipaton g
by uru,rH corresponds to the outside of the BH. Vice vers
the outside of the dissipaton, i.e.,uru.rH , gives the inside
of the BH.

FIG. 2. Mapping a moving dissipaton into a black hole.
5-6
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BRIGHT SOLITONS AS BLACK HOLES PHYSICAL REVIEW D58 084025
Now we follow closely the treatment of the static dissip
ton, first giving to the BH metric~3.14! the conformal form

ds25
2

L
r H

4 @~dT!22~dR!2#H cosech2~r H
2 R! for r .r H ,

2sech2~r H
2 R! for r ,r H ,

~3.26!

where R5(1/2r H
2 )lnu12rH

2 /r2u with 2`,R,`. Then, the
metric of the KS type~3.7! is obtained by the change o
variables

v5er H
2

~R1T!, u5sgn~r 2r H!er H
2

~R2T!. ~3.27!

Finally, we get an analogous KS diagram as obtained for
static case~see Fig. 3!, by using again the variables~3.9!.

However, some comments are in order. In fact, the di
onal linesu50 andv50 correspond now to the BH horizo
r 5r H,uku. The region I corresponds to the inner part of t
BH, i.e., for 0,r ,r H or equivalentlyr.rH . The part of
the regions II ~IV ! below ~above! the hyperbolaU22V2

5v2/4k2 describes the outer region to the BH, withr .r H or
r,rH . It approaches the singularity of the KS metric giv
by the hyperbolauv5U22V251, when the dissipaton ve
locity reaches the critical valueuvumax.

IV. METASTABLE STATES OF TWO BLACK HOLES

The integrability of the RD model~2.25! implies the ex-
istence ofN-dissipaton solutions, the superposition formu
of which is shown in Ref.@15#. It is well known@35# that the
N soliton is asymptotically decomposed in the individu
solitons whent→6`. Furthermore, the collision of two in
dividual solitons is elastic and, asymptotically, the only
fect of the interaction is a shift of phase and position. W
could expect a similar behavior also for the dissipatons.
this suggests that the horizon of the individual black ho
which is related to the dissipaton, will shift as well. A d
tailed analysis of this problem for general initial data is s
under investigation. Actually, the main difficulty is due
the nonstationary character of the metric corresponding
the colliding dissipatons. This fact makes the synchroni
tion problem highly nontrivial. However, in this section w
describe a particular, but interesting situation.

We consider the following two-dissipaton solution to Eq
~2.25!:

FIG. 3. Standard KS diagram for a moving BH. The physic
regions are I and II.
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q6~x,t !56
2

DS k11k2

k12k2
D ~k1coshu2e6k1

2t1k2coshu1e6k2
2t!,

~4.1!

where

D5cosh~u11u2!1S k11k2

k12k2
D 2

cosh~u12u2!

1
4k1k2

~k12k2!2
cosh~k1

22k2
2!t, ~4.2!

u i5ki~x2x0i !, i 51,2. ~4.3!

At any fixed timet this solution is exponentially decaying a
space infinity. If one of the parameters vanishes, say,k2
50, the solution~4.1! reduces to the ‘‘static’’ dissipaton
with amplitudek1, located at the pointx01 for t50.

Now, let us put the dissipaton labeled by 1 at the origin
the coordinates@i.e., x0150 in Eq. ~4.3!# and the second one
displaced by a certain amount, say,x025d with d.0. Then,
we look at the limitd→` in a fixed bounded domain o
(x,t). Since the solution is exponentially decaying, we e
pect to obtain a well separated dissipaton for sufficien
large values ofd. Indeed, from Eq.~4.1! we get

q656k1

e6k1
2t

coshk1~x2x0!
, where x052

1

k1
lnUk11k2

k12k2
U.

~4.4!

In other words, the dissipaton labeled by 2 goes far apar
the right, while the first one suffers a negative shift of t
position. As was shown in Sec. III, this type of solutio
corresponds to a static BH with the horizon at the dissipa
location. Since the second dissipaton is far apart, it is loca
inside the event horizon. However, in this case it can
escape outside, that is overcome the horizon position. C
sequently, the interaction is repulsive. Moreover, it is a lon
range interaction, which induces a shift of the horizon of t
first one. Because of the left-right symmetry, the horiz
shift of the same amount will occur if the second dissipa
is sent tox→2`, but in the right direction. This situation i
quite unusual for the solitons. For instance@35#, the fastest
soliton of a N-soliton solution of the NLS equation over
comes the slower ones and, asymptotically, it recovers
original shape~i.e., that att→2`), suffering only a phase
and a position shift. In the present case, similarly to
bound states of two off-phase solitons with equal amplitu
@38,39#, two dissipatons start to move from6` with oppo-
site velocitiesv152v25k12k2 and after a repulsive inter
action go back to6`. This is evident from the analysis o
the mass density~see Figs. 4–6!

l
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q1q2524
k1

2 k2
2

D̃2
@k1

2 cosh2u21k2
2 cosh2u1

12k1k2 coshu1 coshu2 cosh~k1
22k2

2!t#,

~4.5!

where

D̃5k2
2 coshu11k1

2 coshu214k1k2cosh~k1
22k2

2!t,

k65k16k2 , u65u16u2 . ~4.6!

The expression~4.5! is symmetric under the time reflec
tion t→2t and the space reflectionx→2x,x0i→2x0i
( i 51,2). At large times and distances, say forx→1` and
t→1` in a uniformly moving frame with velocityv15k1
2k2, we have

q1q2;2
k1

2

4

1

cosh2~k1 /2!~x2x012 x̄02k2t !
,

~4.7!

where the asymptotic position shift is

FIG. 5. Two-dissipaton collision ford54.

FIG. 4. Two-dissipaton collision ford50.
08402
x̄05
1

k1
ln

4k1k2

k2
2

. ~4.8!

Performing an analogous computation forx→2`, t→1`
yields

q1q2;2
k1

2

4

1

cosh2~k1 /2!~x2x011 x̄01k2t !
,

~4.9!

but in a reference frame uniformly moving with velocityv2
52v1. Notice that the amplitude of the individual dissip
tons are the same and equal tok1/2.

The momentum density of solution~4.1! is

q1qx
22q2qx

152
4k1

2 k2
2

D̃2
k1k2

3~k1sinhu21k2sinhu1!sinh~k1
22k2

2!t.

~4.10!

By integrating this expression, we obtain the vanishing of
total momentumP5*2`

` (q1qx
22q2qx

1)dx50. In Figs.
4–6 we consider a dissipaton-dissipaton collision for a p
ticular choice of the amplitude parametersk152 andk251.
In this case we always havev5k2,2k5k1 . Then, we can
apply the discussion at the end of the previous section
particular, we can compute the position of the horizonsxH
by Eq. ~3.22!, at least in the asymptoticst→6`. Our pa-
rameters are chosen in an interval in whichxH!1/k, where
the latter quantity estimates the coherence length of the
sipaton. This means that the horizon is located very clos
the dissipaton central positionxdiss5x016( x̄01k2t). More-
over, since we defined the BH interior byx.uxH2xdissu, the
horizon surface is now given by two disconnected pa
which never can overcome each other. This is a sort of h
core interaction, which drastically changes the dissipat
interaction. Furthermore, in Fig. 4–6 we recognize the
havior of the position shift described by Eq.~4.8!.

FIG. 6. Two-dissipaton collision ford58.
5-8
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BRIGHT SOLITONS AS BLACK HOLES PHYSICAL REVIEW D58 084025
Finally, another interesting and completely new pheno
enon appears, as is evident from the same pictures. Ind
after reaching a minimal distance;d the dissipatons form a
metastable bound state, with the lifetime depending ond.
Then, after this period the metastable state decays on
original two dissipatons. This is similar to what happens
a resonance in the elementary particle physics. Howeve
the present case the involved ‘‘particles’’ are well separa
and preserve their individual structure during the interacti
as a result of the long-range character of the interaction.
estimate this lifetime we compute the solution~4.1! on the
positionx0 given by Eq.~4.4!, with x0150, x025d, and for
t.0. Then the density mass~4.5! becomes a quite simpl
rational function of cosh(k1

22k2
2)t. Comparing the values o

this function with the involved coefficients and in the limit o
larged, one obtains the duration of the metastable state

DT'
2

~k1
22k2

2!
S k2d1 ln Fk1~k1

22k2
2!

2k2
G D . ~4.11!

This formula is in a good agreement with computer calcu
tions represented in Figs. 4–6. Whend→`, the metastable
state approaches the stable one, describing isolated dis
tons.

V. EUCLIDEAN GRAVITY AND BLACK HOLE
TEMPERATURE

The analytical continuation of the previous black ho
space times is important to understand the quantum and
modynamical aspects of the proposed 2D gravity theo
This is now more relevant because of the strict relation w
some well-known completely integrable systems. Indeed
order to build up the Euclidean version of the JT gravity,
need to replace the de Sitter group SL(2,R) into the orthogo-
nal SO~3!. The corresponding isotropy subgroupO(1,1) on
the tangent plane is replaced by the real rotations gr
O(2). Consequently, the construction developed in Sec
can be repeated with small changes. Indeed, instead of
~2.5! theZ2 graduation of the connection one-formJ is given
by

Ja5 i /4s3Va1S 0 2kc̄a

ca 0
D , ~5.1!

wherek561 for su~2! or su~1,1! andca is a complex func-
tion. Then, one can introduce the moving trihedral frame$ni%
as in Eqs.~2.13!–~2.15!. Furthermore, the~pseudo!spin vari-
ables[n0 satisfies the constraint (s,s)51, which means tha
it belongs to the two-dimensional sphereS 2, or to the pseu-
dosphereS 1,1, depending on the chosen isotropy group. T
two vector fields (n1 ,n2) form a basis in the tangent plane
s(x1 ,x2), enjoying the local U~1! symmetry, in contrast to
the SO~1,1! invariance shown in Eq.~2.16!. Again the quan-
tities Va andca can be formally expressed as in Eq.~2.17!,
which transform as a U~1! gauge field and a complex matte
field, respectively. The analogue of Eq.~2.19!, that is, the
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system describing the admissible transformations of
moving frame (s,n1 ,n2), is now

Dmn1522kcms,

]ms5cmn21c̄mn1 , ~5.2!

whereDm[]m2 i /2Vm is the U~1! covariant derivative. Its
integrability condition reads

Dacb5Dbca ,

@D2 ,D1#52k~c̄c122c̄2c1!. ~5.3!

The gauge fixing constraint~2.21! reads formally the same
recalling that nows belongs toS 2 or to S 1,1. Hence, in the
tangent plane formalism one has

c25 iD 1c, ~5.4!

where for simplicity we have putc15c.
Using these relations into the system~5.3! and eliminating

the residual local U~1! symmetry, one obtains the NLS equ
tion

i ]tc1]x
2c12kucu250, ~5.5!

where we setx1→x andx2→t. As is well known@35#, for
k51 this equation admits the ‘‘bright’’ soliton solution

c5 ik
e2 i ~V2/42k2!t1 iVx/2

coshk~x2Vt!
, ~5.6!

wherek and V are real quantities, such thatl52V/21 ik
plays the role of the spectral parameter in the inverse spe
transform method. But, by comparison with the dissipa
solution~2.32!, we see that its analytical continuation is pr
vided by Eq.~5.6! through

t5 i t, v52 iV, c5 iq1, c̄5 iq2. ~5.7!

In this sense the bright soliton can be considered as the
clidean version of the dissipaton. As we saw in the previo
sections, the dissipaton admits an interpretation in term
gravitational BH in the pseudo-Euclidean metric. Therefo
the bright soliton can be considered as the BH in the co
sponding Euclidean gravity, usually interpreted as the gra
tational instanton. This is a complete nonsingular posit
definite metric solution of the vacuum Einstein equatio
Moreover, those metrics which are asymptotically flat in sp
tial directions and periodic in the imaginary time directio
contribute to the thermal canonical ensemble and are
evant for the thermodynamical properties of the BH@40,41#.
Below, we show that the bright soliton~5.6! defines an as-
ymptotically constant curvature gravitational instanton of t
JT gravity.

First let us consider the static bright soliton@V50 in Eq.
~5.6!#. One easily sees that it is a periodic function in t
time, with periodT52p/k2. Moreover, the correspondin
metric
5-9



a
m
n

b

e

ni

in
B

t

s

lt
t-

tion

on

, but

mo-
g.

hile
el.
ear
e

on
on-

ical

be-

nt

n
n

ial
r-

ruc-
he
m
c-

ider

L. MARTINA, O. K. PASHAEV, AND G. SOLIANI PHYSICAL REVIEW D 58 084025
dsE
25jE

2dt21
dx2

P

52
8k2

L
cosh22kx@k2tanh2kx~dt!21~dx!2# ~5.8!

defines the Euclidean BH spacetime with the horizon fixed
x50. As in Ref.@40# we introduce the proper distance fro
the Euclidean horizonl , which is defined by the equatio
dl5dx/P1/2 and in our case takes the explicit form

l 54A 2

uLu Farctanekx2
p

4 G . ~5.9!

Then, near the horizon the metric is approximately given

dsE
2'k2l 2dt21dl2, ~5.10!

where the so-called surface gravity

k5 lim
l→0

P1/2
dj

dx
5k2 ~5.11!

has been computed for the bright soliton metric. Furth
more, the Euclidean time is ranging overtP(0,2p/k), and
the Hawking temperature of the black hole is

TH5
k2

2p
. ~5.12!

Thus, the static soliton amplitude square takes the mea
of BH temperature.

Now we consider the moving dissipaton withvÞ0. In
this case the solution~5.6! is not periodic in time and the
off-diagonal term for the metric is nonvanishing. Then,
order to get the Hawking temperature we have to use the
metric ~3.25!. For imaginary timeTE52 iT andz.1/r H

2 this
metric is positive definite. By using the new coordinatey
5(r H

4 z221)21/2 it becomes of the de Sitter form

dsE
252

2

Lr H
2 ~sinh2ydt21dy2!, ~5.13!

wheret5r H
2 TE . Following Hawking@42#, we can see tha

the apparent singularity in the (y,t) plane aty50 is similar
to the singularity of the plane metric in polar coordinate
Indeed, for smally!1 one has

dsE
2'2

2

Lr H
2 ~y2dt21dy2!, ~5.14!

where we are interpretingy as a radius andt as an angle.
This means thatTE is a defined modulo of period 2p/r H

2 ,
then the Hawking temperature is

TH5
r H

2

2p
5

k22V2/4

2p
. ~5.15!
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In the particular caseV50 we recover the previous resu
~5.12!. Finally, the features of the dissipaton collisions ou
lined above should imply a sort of temperature conserva
in the scattering of two BHs.

Now let us keep a more strict contact with the JT acti
~2.1!, in order to express it in terms of thec variable. This
can be achieved repeating the procedure sketched above
considering as gauge conditionV150 and putting k
52L/8 . Then, by recalling@1,2# that the scalar curvature
in the Zweibein formalism is given by R
5eab]aVb /det(eab), where eab is defined in Eq.~2.9! in
terms of theqa , one easily sees that

R52i
]2V12]1V2

c̄c22c̄2c
5L. ~5.16!

From the above consideration we conclude that the cos
logical constant plays the role of the nonlinear couplin
When L50 we have the linear Schro¨dinger equation with
the wave function as coordinate in the tangent plane, w
the time variable is the Euclidean time of the gravity mod
The nonvanishing cosmological term leads to the nonlin
modification of the Schro¨dinger equation. The de Sitter spac
with positive cosmological constantL.0 corresponds to the
repulsive ~defocusing! NLS equation, whileL,0 for the
anti–de Sitter space and we have the attractive~focusing!
NLS model. Moreover, since the amplitude of the solit
solutions of the NLS equation depends on the coupling c
stantk as uku21/2, in our case it scales as 2/uLu1/2. Thus, in
the considered gauges also small values of the cosmolog
constant provide nontrivial solutions.

VI. FORMULATION OF THE JT GRAVITY IN TERMS
OF OTHER INTEGRABLE SYSTEMS

KdV and MKdV hierarchies

In the previous sections we studied the deep relation
tween the 2D JT gravity and the RD system~2.25!. Equa-
tions ~2.29!–~2.30! tell us that there exist infinitely many
completely integrable PDE’s, which correspond to differe
higher order gauge conditions of the type~2.21!. These equa-
tions have in common the family of the integrals of motio
in involution, being themselves fluxes in commutatio
@33,34#. In particular, we are going to show that for spec
reductions the MKdV and KdV equations, and their hiera
chies, naturally appear. It becomes clear that all these st
tures are relevant in lineal gravity, which also occur in t
context of the matrix model formulation of 2D quantu
gravity @43#. For instance, it turns out that the partition fun
tion of topological gravity is a tau-function for the KdV
equation@44–47#.

By using Eqs.~2.29! and~2.30! for n53 one easily finds
the system

]2q652]1
3q616q1q2]1q6. ~6.1!

Because of the symmetry of these equations, we can cons
the reduction
5-10
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q15q2[u. ~6.2!

Then we get the MKdV equation

]2u52]1
3u16u2]1u. ~6.3!

On the other hand, the nonsymmetric reduction

q1[u, q251, ~6.4!

leads to the KdV equation

]2u52]1
3u16u]1u. ~6.5!

These two reductions imply that the properly reduced
hierarchy should contain the MKdV and KdV hierarchie
Indeed, taking only the odd members of the RD hierarc
~2.29! with n52k11 one sees that the reduction~6.2! is
allowed for anyk. Then we can write a unique scalar equ
tion of the form@33,34#

]2u5RMKdV
k ~]1u!5S ]1

224u224~]1u!Ex1
u~x!dxD k

~]1u!.

~6.6!

Following the same procedure as in the previous case we
get the KdV hierarchy by observing that for all odd memb
of the RD hierarchy~2.29! the reduction~6.4! is allowed.
Then, one arrives at the set of scalar differential equati
@33,34#

]2u5RKdV
k ~]1u!5S ]1

224u22~]1u!Ex1
dxD k

~]1u!.

~6.7!

The self-dual s model

In the previous sections we analyzed in detail the use
special gauge for the JT gravity in the BF formulation~2.11!.
However, since the key point resides in Eq.~2.21!, one could
consider different integrable nonlinears models as the
gauge fixing conditions. Thus, besides the usually confor
flat metric, leading to the Liouville equation, we will stud
other types of metrics related to completely integrable h
archies of equations.

The self-duality equation for the unitary spin vectors
(s2521) is

]2s2 s̀ ]1s50. ~6.8!

We remind the reader that a similar equation, but with co
pact O(3) phase space, was obtained in Ref.@48# for the
description of the 1D antiferromagnets in the long wave
proximation. In light cone coordinates this equation becom

]1s2 s̀ ]1s50, ]2s1 s̀ ]2s50, ~6.9!

where]65]26]1. By introducing the stereographic proje
tion

s65
2j6

11j1j2
, s35

12j1j2

11j1j2
, ~6.10!
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of the one-sheet hyperboloid to the real planeR 2, the evo-
lution equation ~6.8! takes the form of the hyperbolic
Cauchy-Riemann relations

]2j152]1j2 , ]1j152]2j2 . ~6.11!

The general solution to this system can be written as

j15
1

2
@F~x22x1!1G~x21x1!#,

j25
1

2
@F~x22x1!2G~x21x1!#, ~6.12!

for arbitraryF andG.
In the tangent space representation one again introd

theVi andqi
6 variables as defined in Eq.~2.17! which, prop-

erly combined in the formq6
15q2

16q1
1 ,q6

25q2
26q1

2 , pro-
vide q2

150,q1
250 @the analogue of Eq.~2.22!# and the hy-

perbolic self-dual Chern-Simons model

D7
7q6

650,

]2V12]1V2524q1
1q2

2 , ~6.13!

the analogue of system~2.23!. ExpressingV6 from the first
equation in terms ofq’s,

V252]2lnq1
1 , V1522]1lnq2

2 , ~6.14!

and substituting into the last one, we obtain the hyperbo
Liouville equation

]1]2f52ef, ~6.15!

whereq1
1q2

25ef.
However, Eq.~6.13! can be left in a two component sys

tem of first order equations, by introducing the new irro
tional gauge potential

A25V222Ex

q1
1q2

2 , A15V1 . ~6.16!

Performing a suitable SO~1,1! gauge transformation, we find

]2q6
656]1q6

66q6
6Ex

q1
1q2

2 . ~6.17!

This nonlinear evolution equation can be considered as a
of ‘‘square root’’ of the Liouville equation. In fact, it is eas
to see that the combinationq1

1q2
25ef fulfills the Liouville

equation~6.15!, with conformally flat metric tensor

g115g2250, g125g2152
4

L
ef. ~6.18!

Nonlinear s model

The same procedure can be applied to the nonlineas
model
5-11
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]1]2s2~]1s,]2s!s50, ~6.19!

which contains the model~6.13! above as a Bogomolniy
limit. In contrast with the compact case, the model~6.19!
admits two types of the nonlinear spin wave solutions. T
hyperbolic waves are s35const and s65s16s25

6As3
221exp@6(kx12s3k

2x2)#. The elliptic type waves are
expressed bys25const ands15s11 is35As2

211exp@i(kx1

1s2k
2x2)#.

The zero curvature field equations read

D1
2q2

15D2
2q1

1 , D2
1q1

25D1
1q2

2 , ~6.20!

]2V12]1V254~q2
1q1

22q1
1q2

2!, ~6.21!

and must be supplied with the additional constraints

D2
2q1

150,D2
1q1

250. ~6.22!

The resulting system

]2q6
656]1q1

16q6
6Ex1S q1

1q2
22

U1U2

q1
1q2

2 D dx18 ,

~6.23!

where U25q2
1q2

2 ,U15q1
1q1

2 satisfies the equation
]1U250,]2U150, is gauge equivalent to thes model
~6.19!. The quantityq1

1q2
25expf obeys the conformal hy

perbolic sinh-Gordon equation

]1]2f52~ef2U1U2e2f!, ~6.24!

which reduces to the usual sinh-Gordon equation w
U1U251.

In order to give a gravitational interpretation of the abo
equations, we resort to Eq.~2.20!. Without any restriction on
thes model, the stereographic projections~6.10! in the light
cone variables yield

g115
8

L

]1j1]1j2

~11j1j2!2
, g225

8

L

]2j2]2j1

~11j1j2!2
,

~6.25!

g125g215
4

L

]1j1]2j21]2j1]1j2

~11j1j2!2
. ~6.26!

We notice that the componentsg12 and g21 are equal to
the Lagrangian density for thes model g125g21

52(2/L)]1s]2s52(4/L)(ef1U1U2e2f).
In terms of the conformal sinh-Gordon model~6.24! the

metric tensor components are

g005S 2
2

L D ~U11U21ef1U1U2e2f!, ~6.27!

g115S 2
2

L D ~U11U22ef2U1U2e2f!, ~6.28!
08402
e

n

g015S 2
2

L D ~U12U2!. ~6.29!

Two particular special cases arise for~i! U151,U251,
leading to the sinh-Gordon metric

g005S 2
8

L D cosh2
f

2
, g1152S 2

8

L D sinh2
f

2
, g0150

~6.30!

and ~ii ! U151,U2521, providing

gaa5S 2
4

L D sinhfhaa , g015S 2
4

L D , ~6.31!

related to the cosh-Gordon equation

]1]2f54coshf. ~6.32!

The last two models are no longer conformal invariant, b
still completely integrable systems. We note that the BH
lution in the sine-Gordon context was studied recently
Ref. @14#.

VII. CONCLUSIONS

We have investigated the JT model of gravity in the co
text of a gauge field formulation. The JT model, despite
simplicity, is remarkably similar and is the most appropria
two-dimensional analogue of Einstein theory in higher
mensions. Although the gravity theory is local in itself, the
are nontrivial global effects, such as the existence of
event horizon of a BH. This implies a nontrivial causal stru
ture, which in turn generates interesting nontrivial thermod
namical behaviors. This makes gravity in 2D a potentia
useful model for obtaining new insight and understand
into higher-dimensional gravity.

At first sight the conditions of gauge fixing~2.22! we
chose may not appear very natural, however, they surely
to wide classes~hierarchies of countable many equations! of
completely integrable systems. In particular, we have stud
a sort of NLS equation, whose solitonlike solutions, dissip
tons, can be interpreted as BH’s. Among several cases,
most interesting is given by the moving soliton with a lim
ited velocity. In such a case the metric associated with
dissipaton describes the inner and the outer part of a BH
compact space. The position of the event horizon is de
mined in terms of the two dissipaton parameters. Furth
more, the interaction of two dissipatons has been rein
preted in terms of scattering of the event horizons of the t
BH’s. Finally, the surface gravity and the Hawking tempe
ture within the Euclidean version of the theory have be
related to the soliton parameters. Thus, the novelty of
RD reformulation is the possibility to describe analytica
not only the one BH solution, which was known before, b
to derive explicitly theN-BH solutions and to study collision
of two BH’s of equal mass. As a result, we get two ne
phenomena:~a! the shift of the BH horizon and~b! the BH
metastable state formation. The analogy with a fo
5-12
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dimensional BH may be used as a simple model in orde
study the processes involving real BH’s. As is well know
the collisions of two BH’s is considered to be one of t
most promising sources of gravitational waves@49#. How-
ever, it has been shown that the standard numerical calc
tions encounter great difficulties, due to the coordinate s
gularities and the numerical instabilities@50#. This is why
any exact analytical results are important.
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