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Bright solitons as black holes

L. Martina* O. K. PashaeV,and G. Soliari
Dipartimento di Fisica dell’'Universitaand INFN - Sezione di Lecce 73100 Lecce, Italy
(Received 15 January 1998; published 22 September)1998

2D Jackiw-Teitelboim gravity is represented as a completely integrable nonlinear reaction-diffusion system,
whose Euclidean version leads to the nonlinear Stihger equation. The solitonlike solutions, called dissi-
patons, to such systems characterize completely the black holes of the considered gravitifhaddatk hole
horizon, the Hawking temperature, and the causal structlire collision of black holes is described in terms
of elastic scattering of dissipatons, which shows a novel transmissionless character, creating a metastable state
with a specific lifetime. Finally, alternative descriptions of the model in terms of other completely integrable
systems are overlookef50556-282198)02716-7

PACS numbdss): 04.70.Dy, 11.10.L.m, 11.15.q

I. INTRODUCTION respond to the BH of the JT theory, in the sense that we can

describe the horizon position and the causal structure of the

It is well known that a 2D gravity theory in general can be solution. This is intimately related to the dissipaton boundary
always locally represented in the conformal gauge. Thigonditions. Inits turn, different types of boundary conditions

naturally leads to the so-called Liouville model of gravity. &€ admissible in correspondence of different signature of the
For example, this is true in the Jackiw-TeitelboifdT) nonlinear coupling constant, proportional to the cosmologi-

; ; : ; | constantA introduced in the JT model. In particular, in
model[1,2], obtained as a dimensional reduction of thel2 ca . ) '
Einstein-Hilbert action, or also from a spherical reduction Ofaccordance with Refd8,9], for A<0 from one side the

, : . o . BH'’s correspond to the anti—de Sitter space time and, from
a 4D d|Iat0n-g_raV|ty_ Em_stem-H|Ib_ert-l_v|axwell aCt'OEB].' another side, to the attractive NLS case, as shown in the
Now, the classical Liouville equation is a completely inte-

. o : . resent paper. Then, BH’s and bright solitons are correlated.
grable system and its general solution is provided in terms o

. . o econdly, since the dissipaton amplitude scalesAas,
free fields[4,5]. However, its quantum version is a challeng- strong nonlinear effects are not longer negligible at suffi-

ing and not completely solved probleffor a recent review,  ciently large scales, also when—0. Furthermore, only dis-
see, for instance, Reff5,7]). On the other hand, the study of sjpatons moving at velocities less than a critical value lead to
this low-dimensional gravity model received a great deal ofgH solutions. In this sense, the relativistic bound on the
attention recently since black ho{BH) solutions were dis-  allowed velocities is recovered in the present nonrelativistic
covered([8,9]. This allowed one to have available a lower- picture. Finally, from these preliminaries we will outline the
dimensional analogue of realistic 4D black holes, for whichproperties of the RD system, which are nontrivial, although it
the key features could be exhibited without unnecessargan be seen as an analytical continuation of the NLS equa-
complications. Moreover, the existence of a black hole im-tion.
plies a nontrivial causal structure, which is related to the In Sec. Il we review the connection among the RD and
Hawking radiation phenomendi0] and to interesting ther- NLS systems and the JT model, giving its explicit reformu-
modynamical propertieg3,11-13. However, the nontrivial lation in this new formalism. In Sec. lll we provide the link
causal structure associated with a BH is hard to describe ibetween the one-dissipaton solution and the black hole of the
the Liouville gauge. Hence, one is encouraged to look forJT gravity. This is made both for the static and for the mov-
alternative formulations. For instance, in Rgif4] it is stud-  ing dissipaton, characterizing the set of soliton parameters
ied the connection between JT gravity and the sine-Gordomeaningful in the present context. Section IV is devoted to
equation. In a more direct approach, we have recently inveshe analysis of a type of collision of two black holes in terms
tigated certain noncovariant gauge choices in the context ajf elastic scattering of dissipatons. This scattering has a
the gauge formulation of the JT mod@k]. In particular, we  transmissionless charact@n contrast with the reflectionless
proposed a nonrelativistic gauge choice related to th&olitong and creates a metastable state of BH's with a spe-
SQO(2,1) Heisenberg moddll5]. This choice leads to a com- cific life time. Section V contains the Euclidean version of
pletely integrable reaction-diffusiofRD) system for the the previous treatment, which enables us to compute the
Zweibein fields. This multicomponent system admits the disHawking temperature in terms of the NLS soliton param-
sipative analogue of the nonlinear Satiirger (NLS) equa-  eters. In Sec. VI we review the connection among the gravity
tion solitons, which we will call “dissipatons.” The main model and certain relevant completely integrable systems:
goal of the present work is to show that the dissipatons corthe self-dual ¢ model, the nonlineare model, the
Korteweg—de VriegKdV) and the modified KdV equations
(MKdV). All of them are possible alternative representations
*Email address: martina@Ie.infn.it of the JT model, enjoing several nice properties at the clas-
"Permanent address: Joint Institute for Nuclear Research, 14198cal level. Of course, the equivalence of two classical theo-
Dubna, Russia. Email address: pashaev@mainl.jinr.dubna.su ries does not imply the equivalence of the corresponding
*Email address: soliani@le.infn.it quantum versions. In the particular case of the JT model,
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there are some indications that classically equivalent formu- A

lations are nonequivalent at the quantum le\i#]. But the [P1,P2]==5Po, [Pa,Pol= €2°Py, (2.8
guantization of a classically completely integrable model can

be performed also by the quantum spectral transfti,
which in the present case may provide a different quantu
integrable model of the gravity. Some interesting properti
could arise from the Poisson structure of the RD syste
being the same of the NLS equation, which is simpler th
for the Liouville equation.

whereP, (a=1,2) andP, are the generators of translations

"nd of the Lorentz transformations, respectively, generating

®3he de Sitter group S@,2). Our convention for the locally

;nrlat Minkowski metric is#,,=diag(—1,1). Thus, the metric
Iﬁ{ensor(2.2) takes the usual Zweibein form

A

o1
Il. GAUGE FORMULATION OF THE JT GRAVITY Jap=e5eln.y, Wwhere da=5V\ E(egi el).

In order to fix some concepts and the notation, let us (2.9
overview the gauge formulation of the JT model. The main
idea of a gauge field theory of gravity is that the generalNow, from the vanishing of the curvature two-forfn=dJ
coordinate transformations are implemented by the gauge J/\J one gets the equation
ones. These do not act on the original metric tensor, but on
the Vielbein and spin connection. Thus, the local gauge F12=01J32— 3231 +[J1.,32]
group induces on a base space the space-time metric tensor
[18]. This approach has been used for the JT motie22,

i —
given by :Zfab(ﬁaVb_4q;% )To

[ _ _
Szf J=gVo(R—A)dxidx?, (2.1) +§€ab(Da qg+D;%)Tl
M

i - _
whereR is the scalar curvaturéy, the cosmological constant, ~5¢€an(Da dp —Dadp)72=0, (2.10
andVg is a world scalar Lagrange multiplier, or dilaton field.
Then, one introduces the “rotated” Zweibein fields,

i whereD; =d,* (1/2)V, represents the covariant derivative
(a=1,2), defined by

and the antisymmetric tenseris given bye;,=1 . The first

component of Eq(2.10 provides the curvature of the con-
2.2 nection(2.5), while the second and third components dictate

the torsionless condition. Solving them with respect to the

spin connectiorV/, and substituting into the curvature equa-
and a spin connectiol,, taken as independent variables tion we obtain that the scalar curvatuReis equal toA, as
and combined into the connection one-form prescribed by Eq(2.1). However, Eq(2.10 can be derived
from the action functional

S= f €ap
M

4 - -
Gab= "~ 7 (da Uy + 05 G )

J=J,0%, 2.3

o Dadp +0o Doy

i i o
Ja=5(0a T0) 7175 (0a —Ga )2t 7 Va0 (24

+EV(07V—4+ o) [dxtdx?
_ - g Vo(daVp—40, Q) [dx"dX
i 0 g
=z 7oVat| . a) (a=1,2), (2.5
qa 0 _ 1 2
= Tr(JoF 1) dx dx?, (2.1
M

where 7; (i=0,1,2) are the basis elements of the $R)2,

algebra, satisfying the set of relations whereq, are new Lagrangian multipliers arlg is defined

accordingly to Eq.(2.5. Actions of the form(2.11) are
known as BF theories, whose classical and quantum issues
. ] ) have been well studietsee Ref[23] for a review on the
with (hy;) =diag(—1,— 1,1) andcj;.= — € hy. This param- tgpig). In particular, the actior2.13) is invariant with re-
etrization realizes &, graduation of the connection algebra gpect to infinitesimal SL(R) gauge transformations, which
with isotropy groupO(1,1). In order to keep contact with @ zre equivalent to general coordinate invariance if the equa-

TiTj:hij+iCijkav (26)

more usual notation, we write tion of motion are usefi24,25. Moreover, the equation for
) ) the multiplier Jy is given by D,Jo=0, where D=4,

= :'_ = :(_1)a+1'_ [ é (a=1.2) —[Ja.]. The total set of thed(1,1) gauge invariant equa-
0737 Ta 2 27 e tions arising from the variation of the actig@.11) can be

2.7 written in the form
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Diqf: qui ' The linear systen(2.15, whose integrability condition is
Eq. (2.12), takes the form

V,—d,V,=4(q;q, —q,q, ; .
I NVy,—d,V, (q,uqv qVq.U-)’ (2.12 D;ni::Zq;S’

with x,»=0,1,2 and under the assumption that all the de- 9,5=0Q,N_—q,n, . (2.19
rivatives ofq, andV, (a=1,2) with respect to an auxiliary
variable x° vanish. Then, Eq.2.12 is again the zero-
curvature condition in 3D for the connectidnActually, Eq. : . .
(2.12 represents the Euler-Lagrange equation for the Cherrfion (2.2) and the relation$2.17), the expression

Simons(CS) action on the SL(R) group[24,25, which can _

be seen as a subgroup of th(e c)o?resgonding Poirgrane. Gab=2(9a8pS)- (2.29

In 2D the local symmetry group identifies with the de Sitter rhjs formula enables us to give a gravitational interpretation
group. Thus, the obtained structure is a relic of the 3D CSyf the ¢ model we are going to discuss.

theory under the effects of the dimensional reduction. Of The jgea we follow is to add to Eq2.19 a differential
course, the space of all solutions of the classical field equasgnstraint in the x*,x2) space fors, such that a completely
tions, modulo SL(2R) gauge transformations, is finite di- jntegrable dynamics is introduced in order to fix partially the
mensional. This is specific of the topological character of thegauge freedom in a controlled fashion and allowing a re-
gauge field theory2.11. In fact, the general solution of the sjqual local Lorentz covariance. Moreover, for the moment
system(2.12) can be given in the form of the right-invariant \ye forget all that concerns the variabf®and the currend,,.
chiral currentJ,=G™%9,G, where G is a differentiable  precisely, we consider as a constraint the classical continu-

mapping on SL(ZR). But, if we introduce the so-called g Heisenberg model realized on the SIRRSO(1,1)
moving trihedrals framen;} [26,27 by the local adjoint  ¢oset space

representation of the algebra expressed by

Finally, in establishing the relation between the local trihe-
drals and the JT metric, we easily find, by using the defini-

. d,5=S\&s. 2.2
GTiG_lznika, ni=(hjjn3), (213) 2 ! ( 1)

_ ) N Substitution from Eq(2.2]) into Eq.(2.19 yields
one sees that it would satisfy the orthonormal conditions
9;=D;a;, d;=-Djq;. (2.22

_ ) ) Taking account of these relations, the field equati¢h$?
induced by the relation&.6). Moreover, the moving frame can pe written as

changes accordingly to the adjoint representatiod, afthat - -
IS, D;qi +(D7)%q; =0,

(minp)=hi;,  m/Anj=cjjng, (2.14

3,m=(3,)En, (2.19 91— 0,Vo=4d:(q7 q7). (2.23

whereJ? are matrices in the adjoint representation. EquaDefining the flat connection

tion (2.15 can be seen as a linear system foy}. Its inte-

grability is assured by the zero curvature condition, satisfied A,=V,+4(qiq; —a), A=V, (2.249

by the chiral currentd,, , namely, by Eq(2.12. Now, we

assign ton,=s the special role ofpseudgspin variable. It ~wherea is an arbitrary real constant, and gauging out it by a
has the one-sheeted hyperbologis|= —1 as phase space. local SQ1,1) transformationA;=24;\, gy =q*e** for a
The vector fields;, n, describe the tangent plane of such aregular real function\, we get the nonlinear reaction-
hyperboloid and can be locally rotated, corresponding to aliffusion (RD) system

local Lorentz transformation. Indeed, introducing the new o - .

basisn.=n;+n, one can perform a local SO1) gauge 9,97 F 919" +2(q"q” —a)gq*=0. (2.29

transformation generated by an arbitrary real functon ) . N
Here only the global SQ,1) invarianceq™—e~“q~ sur-

s—sn,—e *n, ,n_—e “n_. (2.16 vives. Equation2.25 represents a particular form of a two-
component reactive-diffusive system, playing an important
Furthermore, from Eq92.15 and(2.14 one can see that  role in synergetic$28—30. However, the unusual negative
value for the second diffusion coefficient is crucial for the
existence of Hamiltonian structure and the integrability of
the model. In fact, performing the “Wick rotation’?
—ix? and assuming that™ are complex functions, the sys-
The transformatior§2.16) for these quantities reads tem (2.295 becomes the NLS equation and its complex con-
) ) jugate. However, the appearance of thermodynamical prop-
V,=V,+2d,a, q; :e“q; , 4, =e “q,. ert.ies. of the black holes may be relateq to some
(2.18 “dissipative” features of Eq(2.25. Moreover, this system

L1
Vu=2(nz,9,n), q,=*5(sd,n.).  (2.17
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is very similar to the “fictitious” or “mirror-image” sys-  _,g7at"*)q=(x’ x?), wherea(x*,x2) = V2x2+ Vx! do not
tems withnegatwe friction, which appear into the thermo- preserve the boundary conditions. Then, solutions with nice
field approach to the damped harmonic oscillator treated iRysymptoticsy™ — 0 for x!— % may become unbounded in
Ref. [31] (see also Ref[32] for connections with the CS reference frames moving at sufficiently high velocity.

theory). The energy is drained from the “real” oscillator to In the gauge fixed by Eq2.21) the metric tensor2.2)
its “image,” which mimics inaccessible states hidden in atgkes the form

thermostate. In this way the total energy is conserved and the
Lagrangian description is allowed. This analogy works effec- e
tively when one considers homogeneous configurations of Yoo=3 14" 919,
the system(2.25. Then, it reduces to a system of two
coupled harmonic oscillators with damping and in the mass-
less limit. gu=-70d'd",
The main issues concerning the integrability structures as-
sociated with the systerf2.25 [33,34,19 can be obtained 4
by a proper treatment of those for the NLS equation. How- go1=010= — K(q*ﬁlq*—qﬂ?lq*). (2.3
ever, although most of the algebraic forms are sligthly gen-
eralized with respect to the NLS case, the analytical aspectg/e observe that the componemts andgg; are densities of
are less trivially extended, because of the reality of the fieldshe simplest conserved quantities, i.e., the “mass” and the

g~ and of their boundary conditions. The systé225 ad-  “momentum,” respectively.
mits the Lax pair By using the Baklund transformations, one can find sev-
B eral types of solutiongl5]. Here we will consider only few
L=+ {q of them. In particular, we will take under consideration the
1 + )’ analogous of the bright soliton solution for the NLS equation

(a=0). In a moving frame coordinate=x*—vx2+ &, such

(252—(q+q—a) —(0,-20)q" a solution is given by
L2=d, + _ g2 P J
(071+2§)q 2§ +(q q a)(zza qi(xl,x2)=ik expi[(kz— %UZ)XZ
the Baklund transformations — 3 v(£—&p)]secké, (2.32

v =i -~ i = depending on the two real paramet&randv. But in con-
91(47=q7)= \/(q 9@ —gq)-u@ +q7), trast with the bright soliton of the NLS equation, the above

(227 solution does not preserve the amplitude for the components
. o~ \/ PO . o~ g™ independently. During the time evolution one of the
92(7=0q7)==N(A" =)@ —q )—udi(q”+q~) fields is exponentially growing, while the other one is decay-
i ing. At the same time, the produgt q~ has the usual soli-
(@ a +a7q )" —q%), (228 tonic shape. Since this is similar to the pattern formation in

the context of the dissipative structures, for the solution
(2.32 the name of “dissipaton” is suggested. For the
N-dissipaton solution see Rdfl5]. Notice that the param-
q* q* eterv corresponds to the real part of the spectrum of the
32<q_) =(le)”( q‘)' (2.29 NLS solitons. Furthermore, in the space of the parameters

(v,Kk) there exists the critical valug, ;= 2k. For the solution
whereL andJ are symplectic operators with respect to the

and it belongs to the bi-Hamiltonian hierarchy of commuting
flows

(2.32 obtained withv<vg, at the infinity one hag™
—0. At the critical value the solution is a steady state in the

. 2 .
usual bilinear form inC g, defined by moving frameq™ = *ke* (1 + tantkg), with constant as-
. . ymptotics q* — + 2ke**é for x!— ¥ and qg*— =0 for
2q+fx q* &1—2q+fx q x!—+o. In the over-critical case >vg;, we are led to
J=—ign L g~ — + for x!— ¥ andq™— +0 for x}— + o,
-2 - 1 1 '
d1—29 f q 29 f q lll. DISSIPATON AS BLACK HOLE
(2.30 Static case
with [*f=3(* .fdx— [, ”fdx). Equation (2.25 is ob- We first analyze the dissipatai2.32 at rest, which de-

tained forn=2 in Eq.(2.29. The Lax pair(2.26) is of the  scribes the stationary metric of JT gravifwe will use the
Zakharov-Shabat typE35], where a rotation ofr/2 in the  simplest notatiorx!—x andx2—t)

complex plane of the spectral parameter is required. How- 8K

ever, we notice that in general the Galilei transformations __ 9% k2 2 2 2
allowed by Eq. (2259 x*—x'+2Vvx? x2—x? g~ ds’ A cosh otk tanitkx(dt)*~(dx)*]. 3.1

084025-4
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This metric is regular everywhere, except for a causal singu-
larity at x=0 and it is vanishing fox—. However, one
can promptly check that

Igp=T%=Tg=T1=0, (3.2

1—sinkPkx
sinbkxcostkx’

0 _
01—

5 (1= sintPkx)sintkx
cositkx

I'go=k ,  T';=—ktankkx, _ : :
FIG. 1. Standard KS diagram for a static BH. The physical

(3.3 region is I.

plane. Sincaiv = —sint?kx, one easily finds the singularity
for pure imaginary= *i(/2k). This suggests that singular
solutions of the NLS type equation have a physical interpre-
satisfying everywhere the equation provided by the actionation as singularities in gravitational theories.

(2.1). Hence, the dissipaton maximum positier 0 has to

be interpreted as the event horizon. If we introduce a new

spacelike coordinate, similar to the “tortoise” coordinate for _ )
the Schwarzschild solution, defined by When we choose #0 in the solution(2.32, the corre-

sponding components of the metric tensor are

00, 11 1 1
R=0"Rpot 9 " Ri1=—Rgpot+ —Ru=A, (3.4
Yoo J11
Moving case

’ 1 1 —2kx|
X =—X+Eln|1—e [, (3.5

8 1
“ goo=Kq+q’ kztanr?k(x—vt)_zv2 ,

the metric(3.1) takes the conformal flat form

8 8 v
8k’ gu=-79'd, gu=704'd 3 (31D
ds?=— Tcoshfzkxtanf?kx[(dt)z— (dx")?]. (3.6

which lead to the line element

Now, introducing a system of coordinates of the Kruskal-

8
SzekeregKS) type, namely, 42— — szcoshfzp
2v:ek2(x’+t), ou= _ekz(X’fU, (3.7)
o 2 1, » 1 2V
we get a metric in the form x| | k’tantfp— 2V (dt)“— P(dp) - Edpdt ,
8 dudv
- (3.12
ds’=—+ T=uw)? (3.8

where we have introduced the moving frame coordinate of
The metric(3.8) has exactly the form given in Refi36,37.  the solitonp=k(x—uvt). In this system of coordinates the
It suggests to represent the one dissipaton mé3i) in the  time t cannot be defined globally because of the cross term
de Sitter form, with event horizon at=0. In the next sec- dpdt. Nevertheless, we can find a “synchronized” system of
tion we will show that indeed it can be done also for a mov-coordinates, which describe a stdie., time translation and

ing dissipaton solution. In the coordinate system reflection symmetricspacetime, as in the case of static dis-
sipaton illustrated above. Indeed, if we consider a new coor-
v=U+V, u=Uu-V, 3.9  dinate systemg,T) defined by
where v
dT=dt— dp, 3.1
uv=U%-V?, (3.10 2k(k?tanttp—v2/4) P (313

we have the diagram reported in Fig. 1. The original constanje gbtain the metric element
curved K,t) space-time corresponds to region |. The soliton

maximum positiorx=0 corresponds to the diagonal coordi- )

nates linesi=0 (U=V) andv=0 (U=—V). Itis clear that ds?=— Kkzcosh* 2p
the maximally extended KS coordinates admit the physical
singularity atuv =1, represented by the past and future hy-
perbolaU?—V2=1. In the original variables this singularity - ar
corresponds to the analytical extension to the compex (K’tantfp—v?/4)

1
kztanth—zfvz)(dT)2

tanttp

(dp)?|. (3.14

084025-5



L. MARTINA, O. K. PASHAEV, AND G. SOLIANI PHYSICAL REVIEW D 58 084025

outside a dissipaton

outside a dissipaton

This metric shows a horizon singularity at

U
tanlp=*+—

o 0] =2/K|= [0

only if (3.15

for the dissipaton velocity. Consequently, a BH cannot move
faster than the maximal value of the veloc|ty,.d = 2|K|.

We emphasize this phenomenon, which arises in a purely
nonrelativistic treatment, provided by the RD syst&rR5

and the Heisenberg constrai221). The key point is given

by the the boundary values for the dissipaton. In fact, the
above limiting valuev 5 coincides with the critical value
vt treated at the end of Sec. Il. In other words, horizon =~ = .
singularities exist only when both the components of thevhich is singular atr=ry=(k’~v?/4)*% In the moving
Zweibein fieldsq™ go to zero at infinity, or they are bounded frame, this point corresponds to

as discussed above for the critical case. If we increase the

FIG. 2. Mapping a moving dissipaton into a black hole.

dissipaton velocity to a value> v m.=vi, the synchroni- pu= +arccoshl—v?/4k?]~ 12 (3.21)
zation of clocks is still possible, but the metii8.14) be-
comes regular everywere except| pt— . or
In order to represent the metri8.14) in a form closer to
a Schwarzschild type form, let us define the spacelike vari- tzpTH+vt, (3.22

able
o<r<|K|.

(3.16

Then, assuming that Eq3.15 is not satisfied, i.e.k?
<v?/4, we obtain the line element

r=|k|cosh p,

These expressions say that for 0 the singularity is located

at ry=rma= k|, namely, atp=x=0 as in the static case
discussed before. Increasing the velocity the horizon position
ry decreases regularly up to the minimal valye=0, when

the critical value|v . =2|k| is reached. Thus, in the vari-
able p for v—uvnax the horizon goes to infinity, where it
remains as seen in the discussion above.

For the slowly moving dissipaton satisfying E@.15),
we can introduce the analogue of the transformattg)

(dr)?

8
ds?=— | —r?(r?+r5)(dT)*+ (r2+r2)

A , (317

wherer o= (v2/4—k?)Y2. Thus, the only singular point is
=0, which corresponds to the asymptotigs» + . Any-

) - . X . 2_ .2
how, these points do not represent physical singularity, since 7= |2re—rg| (3.23
the relationR= A still holds. Furthermore, by performing the rﬁ ' '
transformation
) This new variable runs over the interval
2r2+rg a1
z= , .
ré (319 1 4k?+p?
=7<< -
0<7<Zpuy 2 o (3.29

one finds that the line element takes the Schwarzschild form

and the singular pointy corresponds tczH=1/rﬁszmax.

2r; (d2)? ) :
ds?=— —| —(rg22—1)(dT)%+ ————|, The metric of the Schwarzschild type reads
A (réz?—1)
(3.19 2r}, dz)?
ds’= — —7| —(r§z2=1)(dT)?+ % ,
and the spacelike variable runs over the finite intervaf 1/ rpzc—1)

= Zmin<Z<Zmax= (1 ) [ (v?+ 4k?)/ (v?>—4k?)],  noticing (3.29
that nowz,,;, corresponds t@— +o. We interpret this re- S .
sult saying that this metric describes the region outside thlé"hICh IS smgul_ar aey but, differently from th(.a cas(=3.19),_
BH event horizon, while the inside part never can be reacheli ¢an be continued for smallez. We could interpret this
for v2> 4K>2. result by saying that foze[0,z,) the metric (3.25 de-

A much more interesting situation occurs whed scribes the region inside the event horizon, while for
>02/4 [see Eq.(3.15]. In fact, in terms of the variable € (Zy,Zmax it describes the outside regi(_)n. In order to'make
defined in Eq(3.16 the metric takes the form more clear our argument we refer to Fig. 2. From this dia-

e gram one can see that the central part of the dissipaton given

8 (dr)2 by | p| < py corresponds to the outside of the BH. Vice versa,
ds?=— | —r’(r?=r{)(dT?+ ———-|, (320  the outside of the dissipaton, i.¢a|>p, gives the inside
A (re=ry) of the BH.
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(=}

2(k;+k
q=(x,t)= iK( kiTkz) (kycoshp,e !+ k,coshy, ek,

wvot e (4.

v/2lkl

where

uv=-1

kit+ky\2
A=cosh(6;+ 65) + cosh{6,— 0,)
ki—kz

\

FIG. 3. Standard KS diagram for a moving BH. The physical
regions are | and II. 4k, k
g +ﬁcosh K2—K2)t, 4.2)
Now we follow closely the treatment of the static dissipa- v
ton, first giving to the BH metri¢3.14) the conformal form
0, =ki(Xx—Xg;), i=1,2. 4.3
cosecR(rZR) for r>ry, =ki(x~Xoi) “.3
—secR(rR) for r<ry,
(3.269  Atany fixed timet this solution is exponentially decaying at
space infinity. If one of the parameters vanishes, $ay,

dsz=%rﬁ[(dT)2—(dR)2]{

where R=(1/2r3)In|1-rZ/r] with —o<R<w. Then, the =0, the solution(4.1) reduces to the ‘“static” dissipaton
metric of the KS type(3.7) is obtained by the change of with amplitudek,, located at the poinky, for t=0.
variables Now, let us put the dissipaton labeled by 1 at the origin of

the coordinate§i.e., xg;=0 in Eq.(4.3)] and the second one
(R-T). (3.27) displaced by a certain amount, sa&y,=d with d>0. Then,
we look at the limitd—< in a fixed bounded domain of
Finally, we get an analogous KS diagram as obtained for th&:1)- Since the solution is exponentially decaying, we ex-
static casdsee Fig. 3, by using again the variablé8.9). pect to obtain a well separated dissipaton for sufficiently
However, some comments are in order. In fact, the diaglarge values ofl. Indeed, from Eq(4.1) we get
onal linesu=0 andv =0 correspond now to the BH horizon
r=ry<|k|. The region | corresponds to the inner part of the

2 2
v=eWR*D " y=sgr(r—ry)eH

2
BH, i.e., for O<r<r, or equivalentlyp>p, . The part of — etk H 1 | ky+kz
the regions 11(IV) below (abové the hyperbolaU?—V2 4 = =Xigoghc x—xg)’ "¢ X0= 7 Mk —ky
=v?/4k? describes the outer region to the BH, withr,; or (4.4
p<py . It approaches the singularity of the KS metric given
by the hyperbolauyv =U2—V?=1, when the dissipaton ve-
locity reaches the critical value | max-. In other words, the dissipaton labeled by 2 goes far apart on
the right, while the first one suffers a negative shift of the
position. As was shown in Sec. lll, this type of solution

IV. METASTABLE STATES OF TWO BLACK HOLES X ) . D
corresponds to a static BH with the horizon at the dissipaton

The integrability of the RD mode(2.25 implies the ex- location. Since the second dissipaton is far apart, it is located
istence ofN-dissipaton solutions, the superposition formulainside the event horizon. However, in this case it cannot
of which is shown in Ref[15]. It is well known[35] that the  escape outside, that is overcome the horizon position. Con-
N soliton is asymptotically decomposed in the individual sequently, the interaction is repulsive. Moreover, it is a long-
solitons whert— *+ oo, Furthermore, the collision of two in- range interaction, which induces a shift of the horizon of the
dividual solitons is elastic and, asymptotically, the only ef-first one. Because of the left-right symmetry, the horizon
fect of the interaction is a shift of phase and position. Weshift of the same amount will occur if the second dissipaton
could expect a similar behavior also for the dissipatons. Buis sent tox— —co, but in the right direction. This situation is
this suggests that the horizon of the individual black holeguite unusual for the solitons. For instar/@5], the fastest
which is related to the dissipaton, will shift as well. A de- soliton of aN-soliton solution of the NLS equation over-
tailed analysis of this problem for general initial data is still comes the slower ones and, asymptotically, it recovers the
under investigation. Actually, the main difficulty is due to original shapd(i.e., that att— — ), suffering only a phase
the nonstationary character of the metric corresponding tand a position shift. In the present case, similarly to the
the colliding dissipatons. This fact makes the synchronizabound states of two off-phase solitons with equal amplitudes
tion problem highly nontrivial. However, in this section we [38,39, two dissipatons start to move frome with oppo-

describe a particular, but interesting situation. site velocitiesv; = —v,=Kk;—Kk, and after a repulsive inter-
We consider the following two-dissipaton solution to Eq. action go back tat . This is evident from the analysis of
(2.25: the mass densitysee Figs. 4-6

084025-7



L. MARTINA, O. K. PASHAEV, AND G. SOLIANI

15

10

-10

-15
-10

10

FIG. 4. Two-dissipaton collision fod=0.

21,2
q'qg =-4 %27 [k2 costf,+ k3 cosi 6,
+2k;k, coshé, cosh#, coshk?—k3)t],
(4.9
where
A =k?coshy, +k? coshy_ + 4k k,coshk?—k3)t,
ki:klikZI 0i=91i 02. (46)

The expressiorn4.5) is symmetric under the time reflec-
tion t——t and the space reflectiom— —X,Xg;— — X
(i=1,2). At large times and distances, say ¥or + >~ and
t— +o0 in a uniformly moving frame with velocity ; =k,
—k,, we have

k2 1
4 cost(k, 12)(X—Xgs —Xo—K_t)

afq ~—
4.7

where the asymptotic position shift is

15
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-10

-15
-10
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FIG. 5. Two-dissipaton collision fod=4.
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FIG. 6. Two-dissipaton collision fod=8.

X0:

1 4kgky
—In 2

K, . 4.8

Performing an analogous computation for> —oo, t— +©
yields

Q'q ~-— s !
4 cost(k, 12)(X—Xgs + X+ K_t)’
(4.9

but in a reference frame uniformly moving with velocity
= —v,. Notice that the amplitude of the individual dissipa-
tons are the same and equalkto/2.

The momentum density of solutidd.1) is

970, —q 0=~ —=5—

X (ksinhd_+k_sinhd, )sinh(k?— k3)t.
(4.10

By integrating this expression, we obtain the vanishing of the
total momentumP=[”_(q*q, —qq,)dx=0. In Figs.
4—6 we consider a dissipaton-dissipaton collision for a par-
ticular choice of the amplitude parametéss=2 andk,=1.
In this case we always hawve=k_<2k=k, . Then, we can
apply the discussion at the end of the previous section.
particular, we can compute the position of the horizaps
by Eq. (3.22, at least in the asymptotids— *. Our pa-
rameters are chosen in an interval in whigh< 1/k, where
the latter quantity estimates the coherence length of the dis-
sipaton. This means that the horizon is located very close to

the dissipaton central positioiss=Xg+ = (Xg+k_t). More-
over, since we defined the BH interior By>|x, —Xgisd, the
horizon surface is now given by two disconnected parts,
which never can overcome each other. This is a sort of hard
core interaction, which drastically changes the dissipatons
interaction. Furthermore, in Fig. 4—6 we recognize the be-
havior of the position shift described by E@.8).

In
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Finally, another interesting and completely new phenomsystem describing the admissible transformations of the
enon appears, as is evident from the same pictures. Indeemhoving frame §,n,,n_), is now
after reaching a minimal distaneed the dissipatons form a

metastable bound state, with the lifetime dependingdon D.n.=—2ky,s
Then, after this period the metastable state decays on the _
original two dissipatons. This is similar to what happens for d,s=¢,n_+4,n,, (5.2

a resonance in the elementary particle physics. However, in ) ) _ o

the present case the involved “particles” are well separatedvhereD ,=d,—1/2V,, is the U1) covariant derivative. Its
and preserve their individual structure during the interactionintegrability condition reads

as a result of the long-range character of the interaction. To

estimate this lifetime we compute the solutighl) on the Dathp=Dpia,
positionx, given by Eq.(4.4), with x9;=0, X¢,=d, and for — —
t>0. Then the density mag4.5) becomes a quite simple [D2,D1]=2k(ip1o— hath1). (5.3

rational function of cosh€—ks)t. Comparing the values of
this function with the involved coefficients and in the limit of
larged, one obtains the duration of the metastable state

The gauge fixing constrain®.21) reads formally the same,
recalling that nows belongs taS? or to St Hence, in the
tangent plane formalism one has

$=iD1¢, (5.9

where for simplicity we have pup,= .
Using these relations into the systéfm3) and eliminating

This formula is in a good agreement with computer calculatne residual local () symmetry, one obtains the NLS equa-
tions represented in Figs. 4—6. Whenr->«, the metastable tjon

state approaches the stable one, describing isolated dissipa-
tons. P9+ 02+ 2k|9]?=0, (5.5

ki(ki—K3)

2K, (4.11

AT~— | k,d+1In
<ki—k§>( ?

where we sek;—x andx,— 7. As is well known[35], for

V. EUCLIDEAN GRAVITY AND BLACK HOLE . . . . ) .
k=1 this equation admits the “bright” soliton solution

TEMPERATURE
The analytical continuation of the previous black hole e (VA iV
space times is important to understand the quantum and ther- Y=k costk(x—Vr) ' (5.6

modynamical aspects of the proposed 2D gravity theory.

This is now more relevant because of the strict relation withyherek andV are real quantities, such that= —V/2+ik
some well-known completely integrable systems. Indeed, ipjays the role of the spectral parameter in the inverse spectral
order to build up the Euclidean version of the JT gravity, Wetransform method. But, by comparison with the dissipaton
need to replace the de Sitter group SLR2 jnto the orthogo-  solution(2.32, we see that its analytical continuation is pro-
nal SA3). The corresponding isotropy subgro@f1,1) on  vided by Eq.(5.6) through

the tangent plane is replaced by the real rotations group

0O(2). Consequently, the construction developed in Sec. I t=ir, v=—iV, ¢=iq", y¢=iq . (5.7)

can be repeated with small changes. Indeed, instead of Eq.

(2.5 theZ, graduation of the connection one-fothis given  In this sense the bright soliton can be considered as the Eu-

by clidean version of the dissipaton. As we saw in the previous
sections, the dissipaton admits an interpretation in terms of

_ Kga) gravitational BH in the pseudo-Euclidean metric. Therefore,

Ja=ildo3V,+ , (5.1) the bright soliton can be considered as the BH in the corre-

Pa 0 sponding Euclidean gravity, usually interpreted as the gravi-

tational instanton. This is a complete nonsingular positive
wherex=*1 for su2) or su1,1) and, is a complex func-  definite metric solution of the vacuum Einstein equation.
tion. Then, one can introduce the moving trihedral frgdmé Moreover, those metrics which are asymptotically flat in spa-
as in Egs(2.13—(2.15. Furthermore, thé¢pseudgspin vari-  tial directions and periodic in the imaginary time direction,
ables=n, satisfies the constrain,6) =1, which means that contribute to the thermal canonical ensemble and are rel-
it belongs to the two-dimensional sphe$é, or to the pseu- evant for the thermodynamical properties of the Bt9,41.
dosphereS', depending on the chosen isotropy group. TheBelow, we show that the bright solitof5.6) defines an as-
two vector fields Q11,n,) form a basis in the tangent plane to ymptotically constant curvature gravitational instanton of the
s(X1,X), enjoying the local (1) symmetry, in contrast to JT gravity.
the SA1,1) invariance shown in Eq2.16. Again the quan- First let us consider the static bright solitp=0 in Eq.
tities V, and ¢, can be formally expressed as in Eg.17), (5.6)]. One easily sees that it is a periodic function in the
which transform as a (1) gauge field and a complex matter time, with period T=2#/k?. Moreover, the corresponding
field, respectively. The analogue of E@.19, that is, the metric
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dx? In the particular cas& =0 we recover the previous result
ds§=§§d7-2+ = (5.12. Finally, the features of the dissipaton collisions out-
lined above should imply a sort of temperature conservation
K> ) ) in the scattering of two BHs.
=~y cosh “kx(k tanttkx(d7)?+(dx)?] (5.8 Now let us keep a more strict contact with the JT action

(2.1), in order to express it in terms of thg variable. This
defines the Euclidean BH spacetime with the horizon fixed a¢an be achieved repeating the procedure sketched above, but
x=0. As in Ref.[40] we introduce the proper distance from considering as gauge conditiok;=0 and putting «
the Euclidean horizot, which is defined by the equation =—A/8 . Then, by recalling1,2] that the scalar curvature

dl=dx/PY2 and in our case takes the explicit form in the Zweibein formalism is given by R
= €39,V /det(e,p), Wheree,, is defined in Eq.(2.9) in

2 T terms of theg,, one easily sees that
| =4~/ | arctane*— —|. (5.9
Al 4
R=2i V1= 391V, A (5.16
. - . . A e — . .
Then, near the horizon the metric is approximately given by Do — ot
~ 1212d 2+ d|? ) . .
dsc~i*1%dr* +d1?, (510 From the above consideration we conclude that the cosmo-
: logical constant plays the role of the nonlinear coupling.
where the so-called surface gravit . - ) )
g y When A=0 we have the linear Schadimger equation with
dé the wave function as coordinate in the tangent plane, while
k=lim Pl’zd— =k? (5.1  the time variable is the Euclidean time of the gravity model.
-0 X The nonvanishing cosmological term leads to the nonlinear

. ) . modification of the Schidinger equation. The de Sitter space
has been computed for the bright soliton metric. Furtheryyiih positive cosmological constaAt>0 corresponds to the
more, the Euclidean time is ranging ovee (0,27/x), and  yopyisive (defocusing NLS equation, whileA<0 for the
the Hawking temperature of the black hole is anti—-de Sitter space and we have the attractfeeusing

2 NLS model. Moreover, since the amplitude of the soliton
:k__ (5.12) solutions of the NLS equation depends on the coupling con-
2m stantx as|«| 2 in our case it scales as|&/¥2 Thus, in

] ) ] _the considered gauges also small values of the cosmological
Thus, the static soliton amplitude square takes the meaningpnstant provide nontrivial solutions.

of BH temperature.

Now we consider the moving dissipaton with#0. In
this case the solutiokb.6) is not periodic in time and the V1. FORMULATION OF THE JT GRAVITY IN TERMS
off-diagonal term for the metric is nonvanishing. Then, in OF OTHER INTEGRABLE SYSTEMS
order to get the Hawking temperature we have to use the BH KdV and MKdV hierarchies
metric(3.25. For imaginary timélg= —iT andz> 1/r'f| this
metric is positive definite. By using the new coordingte
=(r},z2—1) 2 it becomes of the de Sitter form

Ty

In the previous sections we studied the deep relation be-
tween the 2D JT gravity and the RD systéth25. Equa-
tions (2.29-(2.30 tell us that there exist infinitely many
5 completely integrable PDE’s, which correspond to different

- T e 2 2 higher order gauge conditions of the ty{®21). These equa-
dsé 2(5mi’?ydr +ay’), .13 tions have in common the family of the integrals of motion
in involution, being themselves fluxes in commutation

where r=r#Te. Following Hawking[42], we can see that [33,34. In particular, we are going to show that for special
the apparent Singu|arity in th@,(T) p|ane aty=0 is similar reductions the MKdV and KdV equations, and their hierar-
to the singularity of the plane metric in polar coordinates.chies, naturally appear. It becomes clear that all these struc-
Indeed, for smaly<1 one has tures are relevant in lineal gravity, which also occur in the
context of the matrix model formulation of 2D quantum
2 gravity [43]. For instance, it turns out that the partition func-
dsﬁw— —2(y2d72+ dy?), (5.149  tion of topological gravity is a tau-function for the KdV
Arg equation[44—47.
, . , By using Egs(2.29 and(2.30 for n=3 one easily finds
where we are interpreting as a radius and as an angle. e system
This means thafl¢ is a defined modulo of periodra’rﬁ,

then the Hawking temperature is d>q

MH

*

=—-339"+6097q 9,9~ (6.0

TR K2-Vv24

H™om 2

Because of the symmetry of these equations, we can consider
the reduction

(5.19
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qt=q =u. (6.2 of the one-sheet hyperboloid to the real plaRé, the evo-
. lution equation (6.8) takes the form of the hyperbolic
Then we get the MKdV equation Cauchy-Riemann relations
du=— d3u+6uayu. (6.3 6+ =—016-, 016.=—dx¢_. (6.11)
On the other hand, the nonsymmetric reduction The general solution to this system can be written as
q*=u, q =1, (6.4

1
_ §+:§[F(X2_X1)+G(X2+X1)],
leads to the KdV equation

_ _ 93
72U T AT Ou ©9 £ =5[F0ex)-Gletx], (62

These two reductions imply that the properly reduced RD

hierarchy should contain the MKdV and KdV hierarchies. for arbitraryF andG.

Indeed, taking only the odd members of the RD hierarchy |n the tangent space representation one again introduces
(2.29 with n=2k+1 one sees that the reducti¢6.2) is  thev; andq’* variables as defined in E(.17) which, prop-
allowed for anyk. Then we can write a unique scalar equa-erly combined in the forng s =q; +q; ,0-=q; *£q; , pro-

tion of the form[33,34 vide g© =0, =0 [the analogue of Eq2.22] and the hy-

X, k perbolic self-dual Chern-Simons model
Au=RE gy (d1U) = a§—4u2—4((91u)f u(x)dx) (d1u). L
(6.6) D=q-=0,
Following the same procedure as in the previous case we can d_V,—d,V_=-4qiq_, (6.13

get the KdV hierarchy by observing that for all odd members . ]
of the RD hierarchy(2.29 the reduction(6.4) is allowed. the analogue of systef2.23. Expressingv.. from the first

Then, one arrives at the set of scalar differential equation§duation in terms off’s,

33,3 _

(33,34 V_=24_Inq}, V,=-24,Inq", (6.19
k

(d1u). and substituting into the last one, we obtain the hyperbolic
(6.7) Liouville equation

X
du=RE 4/ (91U) = af—4u—2(&1u)f "dx

=2e?
The self-dual & model 9+9- =287, 619

In the previous sections we analyzed in detail the use of whereqiq-=e’.
special gauge for the JT gravity in the BF formulati@nl1). However, Eq.(6.13 can be left in a two component sys-
However, since the key point resides in E2.21), one could ~ tem of first order equations, by introducing the new irrota-
consider different integrable nonlinear models as the tional gauge potential
gauge fixing conditions. Thus, besides the usually conformal .
flat metric, leading to the Liouville equation, we will stud_y AzIVZ—ZJ atq”, A=V, (6.16
other types of metrics related to completely integrable hier-
archies of equations.

The self-duality equation for the unitary spin vector

($=-1)is

Performing a suitable S@,1) gauge transformation, we find

X
9,0 =*d,0>*q5 | 9Tq-. 6.1
9,5—5\d;5=0. (6.9 20 19 q*f 9+ (612
We remind the reader that a similar equation, but with com-This nonlinear evolution equation can be considered as a sort
pact O(3) phase space, was obtained in Re#g] for the  of “square root” of the Liouville equation. In fact, it is easy
description of the 1D antiferromagnets in the long wave apto see that the combinatian; q-=e? fulfills the Liouville
proximation. In light cone coordinates this equation becomesgquation(6.15, with conformally flat metric tensor

d,5—N\d,s=0, J_s+sN\d_s=0, (6.9 4 s
9++=9--=0, g+-=g-,=—1e” (618
whered.. = d,=* d4. By introducing the stereographic projec-
tion

Nonlinear o model

28 ﬁ (6.10 The same procedure can be applied to the nonlimear

Sy S3= 1
ST+ & model

T1vE €
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d40_5—(0,50_9s=0, (6.19

which contains the model6.13 above as a Bogomolniy

limit. In contrast with the compact case, the model19

PHYSICAL REVIEW D 58 084025

2

_K>(U+_U)' (6.29

Jo1=

Two particular special cases arise foy U, =1U_=1,

admits two types of the nonlinear spin wave solutions. Thgading to the sinh-Gordon metric

hyperbolic waves are sz=const and s.=S;£ts,=
* \/332—1ex;{i(kx+—ssk2x_)]. The elliptic type waves are
expressed bg,=const ands, =s;+is3= \/522+ Llexgi(kx,
+5,k2x)].

The zero curvature field equations read

D.q’=D_q;, D’q;=Diq_, (6.20
I_V,—3d,.V_=4(qq;—-qiq0), (6.21)

and must be supplied with the additional constraints
D-qf=0D7q;=0. (6.22

The resulting system

+ o [ X+ UL uU_ ,
azq;=iamiiqu (qm_— i)dx+,
q.9-
(6.23
where U_=q'q-,U,=qiq;
d,U_=0,0_U,=0, is gauge equivalent to the model

(6.19. The quantityq’q- =exp¢ obeys the conformal hy-
perbolic sinh-Gordon equation

d.0_¢p=2(e?—U,.U_e 9, (6.29

satisfies the equations

8 ¢ 8\ .
goo:(_X)COSHEy 911:_(_K>S|nhz§a 901=0

(6.30
and(ii) U, =1U_=—1, providing

4\ 4
gaa:( - X) Sinhe 744, 901:( - X) ) (6.31)

related to the cosh-Gordon equation

d,d_¢p=4coshp. (6.32

The last two models are no longer conformal invariant, but
still completely integrable systems. We note that the BH so-
lution in the sine-Gordon context was studied recently in
Ref.[14].

VII. CONCLUSIONS

We have investigated the JT model of gravity in the con-
text of a gauge field formulation. The JT model, despite its
simplicity, is remarkably similar and is the most appropriate
two-dimensional analogue of Einstein theory in higher di-
mensions. Although the gravity theory is local in itself, there
are nontrivial global effects, such as the existence of the
event horizon of a BH. This implies a nontrivial causal struc-

which reduces to the usual sinh-Gordon equation wheture, which in turn generates interesting nontrivial thermody-

u,u_=1.

namical behaviors. This makes gravity in 2D a potentially

In order to give a gravitational interpretation of the aboveuseful model for obtaining new insight and understanding

equations, we resort to E(R.20. Without any restriction on
the o model, the stereographic projectiof@10 in the light
cone variables yield

8 0.E.0,E 8 taé
Y TN are e TN re e
(6.25
B0, E O E 0 ErdiE
g+—:g—+:X (1+£.£ )2 (6.26

We notice that the componengs. _ andg_, are equal to
the Lagrangian density for ther model g, _=g_,
=—(2/A)d,sd_s=—(4IA)(e*+U . U_e 9.

In terms of the conformal sinh-Gordon modél24 the
metric tensor components are

2 . Ly
Goo=| — 1 |(Us+U_+e?+U U e ?), (6.27)

2 s )
gu=| — 1](U++U-—e’~U,U_e™%), (6.29

into higher-dimensional gravity.

At first sight the conditions of gauge fixin2.22 we
chose may not appear very natural, however, they surely lead
to wide classeshierarchies of countable many equatipo$
completely integrable systems. In particular, we have studied
a sort of NLS equation, whose solitonlike solutions, dissipa-
tons, can be interpreted as BH's. Among several cases, the
most interesting is given by the moving soliton with a lim-
ited velocity. In such a case the metric associated with the
dissipaton describes the inner and the outer part of a BH in
compact space. The position of the event horizon is deter-
mined in terms of the two dissipaton parameters. Further-
more, the interaction of two dissipatons has been reinter-
preted in terms of scattering of the event horizons of the two
BH'’s. Finally, the surface gravity and the Hawking tempera-
ture within the Euclidean version of the theory have been
related to the soliton parameters. Thus, the novelty of our
RD reformulation is the possibility to describe analytically
not only the one BH solution, which was known before, but
to derive explicitly theN-BH solutions and to study collision
of two BH’s of equal mass. As a result, we get two new
phenomenafa) the shift of the BH horizon an¢b) the BH
metastable state formation. The analogy with a four-
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