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2D induced gravity as an effective WZNW system

M. Blagojević* and B. Sazdovic´†

Institute of Physics, 11001 Belgrade, P.O. Box 57, Yugoslavia
~Received 30 April 1998; published 17 September 1998!

We introduce a dynamical system given by a difference of two simpleSL(2,R) Wess-Zumino-Novikov-
Witten actions in 2D, and define the related gauge theory in a consistent way. It is shown that gauge symmetry
can be fixed in such a way that, after integrating out some dynamical variables in the functional integral, one
obtains the induced gravity action.@S0556-2821~98!03218-4#

PACS number~s!: 04.60.Kz, 11.10.Kk, 11.15.2q
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I. INTRODUCTION

Two-dimensional~2D! gravity naturally appears in th
string functional integral in subcritical dimensions, where
represents an effective theory of quantum fluctuations
matter fields coupled to the metric of the string world sh
@1#. The induced, effective action is closely related to t
Weyl anomaly of the original string theory, and represent
gravitational analogue of the usual Wess-Zumino action
gauge theories. The dynamical structure of 2D gravity
therefore, an important aspect of string theory, but it a
represents a useful model for the theory of gravitational p
nomena in four dimensions.

Polyakov and his collaborators@2# demonstrated that in
the light-cone gauge then-point functions of the effective 2D
gravity can be explicitly found. Although the gauge is fixe
these solutions display a hidden chiralSL(2,R) symmetry,
which turned out to be very important for the analysis
quantum dynamics. These results motivated the investiga
of the structure of 2D gravity in the conformal gauge, whe
it becomes the standard Liouville theory@3#. Although the
SL(2,R) symmetry is naturally connected to the light-co
gauge, there exists a canonical formulation of the theory
terms of gauge independent variables, theSL(2,R) currents,
which demonstrates the importance of this symmetry for
general structure of the theory@4#.

Dynamical significance of theSL(2,R) symmetry, and
strong analogy between the induced gravity and the u
Wess-Zumino action, inspired detailed investigations of
relation between theSL(2,R) Wess-Zumino-Novikov-
Witten ~WZNW! theory and the induced gravity. Polyako
found the connection between theSL(2,R) WZNW theory
and the induced gravity in thelight-cone gauge@5#. Similar
results in the light-cone gauge have been also obtaine
Refs.@6,7#. The same problem was discussed in theconfor-
mal gauge in Ref.@8#, where it was shown that Liouville
theory may be regarded as the WZNW theory, reduced
certain conformally invariant constraints. These constra
can be automatically produced if one considers gauge ex
sion of theSL(2,R) WZNW model, based on two gaug
fields @9#.

In a recent letter@10# we used a general method of co
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structing canonical gauge invariant actions to establish
connection between 2D induced gravity and a WZNW s
tem, defined by a difference of two simple WZNW actio
for SL(2,R) group:

I ~g1 ,g2!5I ~g1!2I ~g2!, g1 ,g2PSL~2,R!. ~1.1!

In this paper we set up the Lagrangian framework for t
connection, starting from a gauge invariant extension of
WZNW system~1.1!. The connection is established in aco-
variant way, fully respecting the diffeomorphism invarianc
of both theories. The approach will be very useful for co
structing and studying properties of general solutions of
induced gravity, in terms of the related simpler solutions
the WZNW system.

After recalling some basic properties of the WZNW
theory in Sec. II, we introduce in Sec. III a consistent fo
mulation of the gauge invariant extension of our basic obje
the WZNW system~1.1!. By taking the difference oftwo
WZNW actions we are able to overcome the usual diffic
ties which one encounters in the process of gauging asingle
WZNW theory @11,12#. In Sec. IV we explicitly choose the
gauge group, a four-parameter subgroup ofSL(2,R)
3SL(2,R) leading to four gauge fields, which is sufficien
for generating an effective transition to the induced grav
In Sec. V we show that new gauge invariance can be fixe
such a way that, after integrating out some variables,
arrives at the induced gravity action:

I ~f,gmn!5E d2jA2gF1

2
gmn]mf]nf

1
1

2
afR2M ~e2f/a21!G . ~1.2!

In this process, the original symmetry of the action~1.1!
under conformal rescalings is also fixed. Appendixes A,
and C are devoted to some details concerning geomet
properties of spacetimeS and the group manifoldSL(2,R),
and gauge properties of the WZNW model.

II. WZNW MODEL ON CURVED MANIFOLDS

Basic properties of two-dimensional WZNW model a
defined by the action
© 1998 The American Physical Society24-1
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I ~g!5I 0~v !1nG~v !5
1

2
kE

S
~* v,v !1

1

3
kE

M
~v,v2!,

v[g21dg, ~2.1!

where n is an integer,k5nk0 , and k0 is a normalization
constant. The first term is as-model action which provides
dynamics for a group-valued fieldg, defined over a two-
dimensional, Riemann manifoldS, and taking values in a
semisimple Lie groupG, while the second term is the topo
logical Wess-Zumino term, defined on a three-manifoldM
whose boundary is]M5S. Here, v is the Maurer-Cartan
~Lie algebra valued! 1-form, * v is the dual of v, and
(X,Y)51/2 Tr(XY) is the Cartan-Killing bilinear form on
the Lie algebra ofG ~Tr denotes the ordinary matrix trac
operation in the adjoint representation ofG!. The normaliza-
tion factork0 is chosen in such a way that the Wess-Zum
term is well defined modulo a multiple of 2p, which is irrel-
evant in the functional integralZ5*Dg exp@iI (g)#.

Let us now parametrize the group elements by some lo
coordinatesqa, g5g(qa), so that

v5Eata[dqaEa
ata ,

whereta are the generators ofG, satisfying the Lie algebra
@ ta ,tb#5 f ab

ctc . Then,

~* v,v !5* dqadqbgab , gab~q![Ea
aEb

bgab ,

~v,v2!5
1

2
EaEbEcf abc526dt,

where gab5(ta ,tb) is the Cartan metric onG, and f abc
5 f ab

egec . The last equation is based on the theorem t
any closed form is locally exact. Therefore, the WZNW a
tion on the group manifold takes the form

I ~q!5kE S 1

2
* dqadqbgab2dqadqbtabD , ~2.2a!

where we usedt5 1
2 dqadqbtab .

Next, we introduce local coordinatesjm (m50,1) onS,
and rewrite the action as

I ~q!5kE
S
d2jS 1

2
A2ggmn]mqa]nqbgab

2«mn]mqa]nqbtabD ,

where gmn is the inverse metric onS. It is convenient to
define an orthonormal basis of tangent vectors] i5ei

m]m ( i
51,2), in which the metrich i j 5ei

mej
ngmn takes the light-

cone form:h215h1251. In this basis,

I ~q!5kE
S
d2jA2gS 1

2
h i j ] iq

a] jq
bgab2« i j ] iq

a] jq
btabD .

~2.2b!
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Note that the actionI (q) is invariant under conformal trans
formationsgmn→gmne2F ~which implies] i→e2F] i!.

We now turn our attention toG5SL(2,R). Using the fact
that any elementg of SL(2,R) in a neighborhood of identity
admits the Gauss decompositiong5g1g0g2 , whereg1 , g0
and g2 are defined in terms of group coordinatesqa

5(x,w,y) as in Eqs.~B3a! and ~B3b!, one can find explicit
expressions forgab andt, Eqs.~B5! and ~B6!, and obtain

I ~q!5kE
S
d2jA2gF1

2
h i j ] iw] jw12~h i j 2« i j !] ix] j ye2wG

5kE
S
d2jA2g~ ]1w]2w14]1x]2ye2w! .

~2.3!

III. GAUGE EXTENSION OF THE WZNW ACTION

We shall now discuss how one can gauge the WZN
theory starting from the existence of global symmetries,
usual. The actionI (g), whereg belongs toSL(2,R), is in-
variant under theglobal transformations on theSL(2,R)
manifold:

g→g85VgV̄21, dg→~dg!85V~dg!V̄21.

where (V,V̄) is an element ofSL(2,R)3SL(2,R). We want
to introduce the corresponding gauge theory, having the
lowing properties.

~a! It should be invariant under thelocal transformations

g85VgV̄21, V5V~j2,j1!, V̄5V̄~j1,j2!,
~3.1!

where (V,V̄) belongs to a subgroupH of SL(2,R)
3SL(2,R) ~which may be equal to the whole group!.

~b! It should be defined as a field theory onS.
It is well known that the second requirement can not
fulfilled for every gauge groupH @11,12#, since the WZ term
nG, originally defined onM, does not have a gauge invaria
extension that can be reduced to an integral overS5]M .
Possible solutions of this problem will be discussed af
clarifying the meaning of the first requirement~a!.

The transformation law ofdg under gauge transformatio
is changed, but the change can be compensated by intro
ing thecovariant derivative:

Dg[dg1Ag2gB, ~Dg!85V~Dg!V̄21, ~3.2!

where ~A,B! are gauge fields~Lie algebra valued 1-forms!.
The covariant derivativeDg transforms homogeneously un
der local transformations, provided the gauge fields tra
form according to

A85V~A1d!V21, B85V̄~B1d!V̄21. ~3.3!

Having definedDg, one can try to gauge the WZNW actio
by replacingdg→Dg, i.e., by replacing 1-formv5g21dg
with the corresponding covariant 1-formV:
4-2
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V[g21Dg5v1g21Ag2B, V85V̄VV̄21. ~3.4!

It is also useful to define the field strengths,FA5dA
1A2 and FB5dB1B2, which transform as follows:FA8

5VFAV21, FB85V̄FBV̄21.
Now, we apply this procedure toformally define a gauge

invariant extension of the WZNW action~2.1!:

I ~g,A,B!5I 0~V!1nG~V!

5
1

2
kE

S
~* V,V!1

1

3
kE

M
~V,V2!. ~3.5!

The first termI 0(V) is both ~a! gauge invariant, and~b!
defined overS, so that it represents an acceptable gau
invariant action. It can be written as

I 0~V!5I 0~v !1D0 ,

D05kE
S

1

2
TrF2* v̄A2* vB2* ~g21Ag!B

1
1

2
~* AA1* BB!G , ~3.6a!

wherev̄5gdg2152gvg21.
The second termnG(V) is defined as an integral of

three-form onM, which is gauge invariant. However, th
form is in general not exact, so thatnG(V) cannot be ex-
pressed as an integral overS; therefore, it can not be used a
part of thes-model action onS.

We shall now analyze some additional restrictions un
which an acceptable gauge extension ofI (g) canbe defined.
First we note that, after some algebra, the second term ca
rewritten as

nG~V!5nG~v !1G11G21G3 ,

G15kE
S

1

2
Tr@2 v̄A1vB1g21AgB#,

G25kE
M

1

2
@v3~B,FB!2v3~A,FA!#,

G35kE
M

1

2
Tr@FA~Dg!g21

1FBg21~Dg!#, ~3.6b!

where v3(A,FA)5Tr(AFA21/3A3) is the Chern-Simons
three-form. Formal extension ofI (g), obtained in Eqs.~3.5!
and ~3.6a!, and~3.6b! can be written as

I ~g,A,B!5I r~g,A,B!1G2~A,B!1G3~g,A,B!,

I r~g,A,B![I ~g!1D0~g,A,B!1G1~g,A,B!,
~3.7!

whereG2 and G3 are defined not onS but on M, violating
thereby the basic requirement~b!. Now, one should observ
08402
e
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that the termG3 is gauge invariant, therefore it can be r
moved fromI (g,A,B), leaving us with the gauge invarian
combinationI r(g,A,B)1G2(A,B). SinceG2 is a three-form
on M, only I r(g,A,B) can be included as part of the actio
for the s-model onS, but it is not gauge invariant:

dI r~g,A,B!52dG2~A,B!

52kE
M

1

2
d@v3~B,FB!2v3~A,FA!#Þ0.

The actionI r(g,A,B) is very close to what we want: it is
defined onS, and its variation under gauge transformatio
gives an expression which depends on gauge fields~A,B!, but
not on g. Can one find a mechanism that compensates
noninvariance, and yields an acceptable gauge invariant
tension of the WZNW action~2.1!?

In the analogous four-dimensional model Witten@13#
solved the problem by requiring the constraintv3(B,FB)
2v3(A,FA)50 on the gauge groupH, sufficient for gauge
invariance. In string models one can simply removeG2 with-
out assuming any constraint onH, while the gauge invari-
ance of the theory is ensured by the presence of some a
tional field in the action, with ‘‘anomalous’’ transformatio
law @12#. In this paper we shall solve theG2 problem by
considering a gauge extension of the action~1.1!, describing
a system oftwo simple WZNW models, in which the prob
lematicG2 term in the first sector will cancel the correspon
ing term in the second sector, leading to the theory which
both ~a! gauge invariant and~b! defined onS.

The construction goes as follows. We start with the fo
mal extension ofI (g,A,B), as obtained in Eq.~3.7!. Next,
using gauge invariance ofG3(g,A,B) we define a simpler
gauge invariant action:

I 8~g,A,B!5I r~g,A,B!1G2~g,A,B!.

It is now easy to see that an acceptable gauge extensio
the action~1.1! for the WZNW system can be defined by

I ~1,2!5I 8~g1 ,A,B!2I 8~g2 ,A,B!, ~3.8!

whereg15g(x1 ,w1 ,y1) andg25g(x2 ,w2 ,y2) are different
fields, belonging to the same representation ofSL(2,R). In-
deed, sinceG2(A,B) does not depend ong, the contribution
of two G2 terms toI (1,2) vanishes. Thus, the gauge invaria
action ~3.8! can be written in the simpler form

I ~1,2!5I r~g1 ,A,B!2I r~g2 ,A,B!, ~3.9a!

where we clearly see that it is an action defined onS.
The reduced action~3.7! can be written as

I r~g,A,B!5I ~g!1kE
S

1

2
Tr@2~* v̄1 v̄ !A2~* v2v !B

2~* B1B!~g21Ag!#, ~3.9b!

where theg-independent term 1/2(* AA1* BB) in D0 is ig-
nored, as its contribution to sectors 1 and 2 in Eq.~3.9a! is
canceled. The absence of this term implies thatI (1,2) does
4-3
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not depend on (* A1A);A2 and (* B2B);B1 @see Eq.
~A6!#, i.e., self-dual and anti-self-dual parts of the gau
fields A andB, respectively. As we shall see, the absence
these parts will greatly influence the dynamical structure
the gauged WZNW system.

IV. H 13H 2 GAUGE THEORY

In this section we shall specify the gauge group, and
rive an explicit expression for the gauge action~3.9! in terms
of the group coordinates (x1 ,w1 ,y1) and (x2 ,w2 ,y2).

Using now the matrixR(g), that defines the adjoint rep
resentation of the gauge group,g21tbg52tcR

c
b , where

Rc
b[Ec

aĒa
b ~Appendix B!, the reduced action takes th

form

I r~g,A,B!5I ~g!12kE
S
d2jA2g@2 v̄2

a A1
b

2v1
a B2

b 1B2
a Rb

cA1
c #gab . ~4.1!

As we mentioned, the actionI (1,2) does not contain vari
ables (A2 ,B1), which implies the existence of anextra
gauge symmetry, allowing an arbitrary change of the abs
components. This is a specific feature of the action for
WZNW system. To simplify further considerations we sh
fix this symmetry by imposing the following gauge cond
tions:

A250, B150. ~4.2!

Up to now we did not specify the gauge groupH. We
could takeH to be the wholeSL(2,R)3SL(2,R), but for our
purposes this is not necessary. We assume thatH is a sub-
group ofSL(2,R)3SL(2,R), defined by

H5H13H2 , ~4.3!

whereH1 andH2 are subgroups ofSL(2,R) defined by the
generators (t1 ,t0) and (t0 ,t2), respectively. When com
pared to SL(2,R)3SL(2,R), our choice means that th
gauge fields should be restricted as follows:

A~2 !50, B~1 !50. ~4.4!

The gauge symmetryH13H2 is defined in terms of the
following gauge fields and gauge parameters:

~A1
~1 ! ,A1

~0! ,B2
~2 ! ,B2

~0!!, ~«~1 !,«~0!,«̄ ~2 !,«̄ ~0!!.

Gauge transformations of dynamical variables are given
Eqs.~C4! and ~C5!.

Using the general relations

v i5g21] ig5taEa
a] iq

a,

v̄ i5g] ig
215taĒa

a] iq
a,

and assuming the restrictions~4.2! and ~4.4!, one obtains
08402
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v̄2
a A1

b gab52v̄2
~2 !A1

~1 !1 v̄2
~0!A1

~0!

522e2w]2y@A1
~1 !1xA1

~0!#2]2wA1
~0! ,

v1
a B2

b gab52v1
~1 !B2

~2 !1v1
~0!B2

~0!

52e2w]1x@B2
~2 !1yB2

~0!#1]1wB2
~0! .

Next, with the help of the expression~B8! for Rab we find

B2
a RabA1

b 522e2w@yB2
~0!A1

~1 !1xyB2
~0!A1

~0!1B2
~2 !A1

~1 !

1xB2
~2 !A1

~0!#2B2
~0!A1

~0! .

The final result for the reduced action takes the form

I r~g,A,B!5kE d2jA2g@]2w]1w12A1
~0!]2w

22B2
~0!]1w14D1xD2ye2w22B2

~0!A1
~0!#,

~4.5!

where

D1x5@]11A1
~0!#x1A1

~1 ! ,

D2y5@]22B2
~0!#y2B2

~2 ! ,

are covariant derivatives on the group manifold, Eqs.~C2a!
and ~C2b!. The last,g-independent term in Eq.~4.5! will be
canceled in the complete actionI (1,2), Eq.~3.9a!.

V. INDUCED GRAVITY FROM GAUGED WZNW SYSTEM

In this section we shall consider the functional integral
the theory defined by the action~3.9a!, and~3.9b! and show,
by performing a suitable gauge fixing and integrating o
some dynamical variables, that this theory leads to the
duced gravity action~1.2!.

A. Effective theory for gauged WZNW system

It is useful to introduce auxiliary fieldsf 16 , f 26 , and
rewrite the part of the actionI (1,2) given by

Y[4D1x1D2y1e2w124D1x2D2y2e2w2, ~5.1!

in the form

Y5 f 12D1x11 f 11D2y12
1

4
f 12 f 11ew12 f 22D1x2

2 f 21D2y21
1

4
f 22 f 21ew2,

or, more explicitly,

Y52B2
~2 !~ f 112 f 21!1A1

~1 !~ f 122 f 22!

1 f 12@]11A1
~0!#x11 f 11@]22B2

~0!#y1
4-4
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2
1

4
f 12 f 11ew12 f 22@]11A1

~0!#x22 f 21@]22B~2 !
~0! #y2

1
1

4
f 22 f 21ew2.

Gauge transformations determined by« (1) and«̄ (2) have
the form

dx15«~1 !, dx25«~1 !,

dA1
~1 !52@]11A1

~0!#«~1 !,

dy152 «̄ ~2 !, dy252 «̄ ~2 !,

dB2
~2 !52@]22B2

~0!#«̄~2 !.

This part of the complete gauge symmetry can be fixed
imposing the following gauge conditions:

x250, y250.

Integrations*dA1
(1)dB2

(2) and *d f21d f22 in the func-
tional integral lead to the elimination off 26 from the action:
f 265 f 16 . Writing f 6 instead of f 16 for simplicity, one
obtains

Y5 f 2@]11A1
~0!#x12 f 1@]22B2

~0!#y1

2
1

4
f 2 f 1~ew12ew2!.

After that the integration*dx1dy1 produces

d@~¹12A1
~0!! f 2#•d@~¹21B2

~0!! f 1#,

where ¹6 is the covariant derivative onS ~Appendix A!.
Then,*dA1

(0)dB2
(0) yields

A1
~0!52v11]1 lnu f 2u, B2

~0!52v22]2 lnu f 1u,
~5.2!

where v6 is the connection onS ~Appendix A!, and an
additional factor @det(f2f1)#21 appears in the functiona
measure. Consequently, we find

Y52
1

4
f 2 f 1~ew12ew2!, ~5.3!

and the reduced action becomes

I r~w, f 2 , f 1!

5kE d2jA2gF]2w]1w22~v1

2]1 lnu f 2u!]2w12~v21]2 lnu f 1u!]1w

2
1

4
f 2 f 1ewG . ~5.4!
08402
y

The complete actionI (1,2) is invariant under the remain
ing piece of gauge transformations:

d f 252«~0! f 2 , d f 15 «̄ ~0! f 1 ,

dw15«~0!2 «̄ ~0!, dw25«~0!2 «̄ ~0!.

Now, we introduce gauge invariant variables

f15w11 lnu f 1 f 2u, f25w21 lnu f 1 f 2u,

in terms of which, after some cancellation off-independent
pieces, we obtain

I ~1,2!5I r~f1!2I r~f2!,

I r~f!5kE
S
d2jA2gF]2f]1f12v2]1f

22v1]2f2
1

4
efG . ~5.5!

Note that the part of the functional integral depending
f 2 , f 1 is decoupled from the rest, and can be absorbed
the normalization factor. Thus, using gauge invariant va
ables effectively restricts the space of dynamical variable
is, essentially, equivalent to a gauge-fixing corresponding
(« (0),«̄ (0)) transformations, e.g.,f 25m2 , f 15m1 , fol-
lowed by the integration*d f2d f1 .

Thus, the final form of the effective action for the gaug
WZNW system is given by Eq.~5.5!.

B. Transition to the induced gravity

To show that the effective theory~5.5! is equivalent to the
induced gravity~1.2!, let us observe that~5.5! is invariant
under the following conformal rescalings:

gmn→e2Fgmn , f1→f122F, f2→f222F,
~5.6!

which imply ]6→e2F]6 , andv6→e2F(v67]6F). This
symmetry is directly connected to the invariance of the ori
nal WZNW theory under conformal rescalings. It can
gauge-fixed by demanding

f25 ln m,

whereafter the effective action becomes

I ~f,gmn!

5kE
S
d2jA2gF]2f]1f12v2]1f22v1]2f

2
1

4
m~ef21!G , ~5.7!

where we introducedf5f12 ln m. Now, partial integrations
together with Eq.~A3!, and the replacementf→f/Ak, lead
to the induced gravity action~1.2!, wherea52Ak, andM
5km/4.
4-5
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VI. CONCLUDING REMARKS

We presented here the connection between the gauge
tension of the WZNW system~1.1! and the induced gravity
action ~1.2!, fully respecting the diffeomorphism invarianc
of both theories.

It is well known that an acceptable gauge extension of
simple WZNW model does not exist unless one requires s
cific constraints on the gauge group@11#. The reason for this
unusual behavior steams from the fact that gauged WZ t
nG does not represent, in general, a field theory on a
manifoldS. If one tries to select an action defined onS, one
looses gauge invariance, and vice versa. In string models
can overcome these problems with the help of an additio
field @12#. Following the ideas developed in Ref.@10#, we
introduced in this paper an acceptable action, which is b
gauge invariant and defined onS, by considering a dynami
cal system described by a difference of two simple WZN
models.

Our gauge group isH13H2 , a four-parameter subgrou
of SL(2,R)3SL(2,R). Two of the gauge fields,A1

(1) and
B2

(2) , ensure the equality of currents in two sectors, in
cordance with the results of the Hamiltonian analysis of
WZNW system @10#. The remaining two fields,A1

(0) and
B2

(0) , become components of the connection of the indu
gravity action. In this way, the Riemannian structure onS is
seen to be closely related to theSL(2,R) gauge fields.

The results obtained here can be used to clarify the c
nection between globally regular solutions of the equati
of motion for the WZNW system, and the related singu
solutions ~in the coordinate sense! of the induced gravity
@8,9#. In particular, it will be interesting to improve our un
derstanding of the WZNW black hole solutions in the co
text of induced gravity@14#.
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APPENDIX A: RIEMANNIAN STRUCTURE OF S

In this Appendix we present some formulas on the R
mannian structure of 2D manifoldS, which are used in the
paper.

Coordinates of points in two-dimensional manifoldS are
denoted byjm (m50,1). Basic tensorial objects in the coo
dinate basis are

vectors: em5]m ; 1-forms: um5djm;

metric: em•en5gmn ; «0151.

Another useful basis is the local light-cone basis:

vectors: ei5] i5ei
mem ;

1-forms: u i5dj i5ei
mdjm ~ i 51,2 !;
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metric: ei•ej5ei
mej

ngmn5h i j ,

h125h2151; «2151.

Connection and curvature.Riemannian connection onS,
v i

j5« i
jv, is defined by the first structural equation:

du i1v i
ju

j50. ~A1!

The exterior derivative of a 1-formu5uku
k can be writ-

ten as

du5~dui !u
i1uidu i5~dui2usv

s
i !u

i5~¹kui !u
ku i ,

where¹kui is the covariant derivative of a 1-form:

¹kui5]kui2«s
ivkus ¹ku75~]k7vk!u7 .

By noting thatu65u7 , one easily finds the covariant de
rivative of a vector.

The curvature is defined by the second structural eq
tion:

dv i
j5

1

2
Ri

jklu
ku l . ~A2!

Using dv5(¹kv l)u
ku l , one finds

Ri
jkl5« i

j~¹kv l2¹ lvk!,

R52R2152~¹2v12¹1v2!.
~A3!

Conformal rescaling.Let us now derive the transforma
tion law of the connection under conformal rescaling of t
metric. The relationgmn5e2Fĝmn implies u i5eFû i . Replac-
ing this into the first structural equation gives

dû i1dFû i1v i
kû

k50⇒v̂ i
j û

j5dFû i1v i
kû

k.

Sincev̂ i
j5« i

j v̂, we easily obtain

v̂12 ]̂1F5v1eF, v̂21 ]̂2F5v2eF. ~A4!

Acting on these equations with¹̂2 and ¹̂1 , respectively,
and using Eq.~A4! again, one finds

¹̂2v̂12¹̂2]̂1F5e2F¹2v1 ,

¹̂1v̂21¹̂1]̂2F5e2F¹1v2 .

Subtracting two equations one finds the effect of conform
rescaling on the curvature:

R~ ĝ!22h i j ¹̂ i¹̂ jF5e2FR~g!. ~A5!

We display here some useful formulas:

u2u15d2jA2g, * u i5« i
ku

k,

u iu j5« i j d2jA2g, * u iu j5h i j d2jA2g,

A6* A52A7u7,
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~* A6A!B52A7B6d2jA2g. ~A6!

APPENDIX B: ON THE GEOMETRY
OF SL„2,R… MANIFOLD

Here we present some useful results concerning the
mannian structure of the group manifoldSL(2,R).

If the generators of the groupSL(2,R) are chosen as
t (6)51/2(s16 is2), t (0)5(1/2)s3 , wheresk are the Pauli
matrices, the Lie algebra@ ta ,tb#5 f ab

ctc takes the form

@ t ~1 ! ,t ~2 !#52t ~0! , @ t ~6 ! ,t ~0!#57t ~6 ! . ~B1!

Then, the calculation of the Cartan metricgab5(ta ,tb)
51/2 f ac

df bd
c yields

gab5S 0 0 2

0 1 0

2 0 0
D , a,b5~1 !,~0!,~2 !. ~B2!

Raising and lowering of the tangent space indices (a,b,...)
are performed withgab and its inversegab.

The groupSL(2,R) has the property that any elementg in
a neighborhood of identity admits the Gauss decomposit

g5g1~x!g0~w!g2~y!,

g15ext~1 !511xt~1 ! , g25eyt~2 !511yt~2 ! ,

g05ewt~0!5cos~w/2!12t ~0! sin~w/2!. ~B3a!

whereqa5(x,w,y) are group coordinates. In this paramet
zation we have

g5S ew/21xye2w/2 xe2w/2

ye2w/2 e2w/2 D . ~B3b!

Now, we can writev5g21dg5Eata5taEa
adqa, where

the quantitiesEa
a serve as the vielbein on the group man

fold. The above expression forg leads to

E~1 !5e2wdx,

E~0!52ye2wdx1dw,

E~2 !52y2e2wdx2ydw1dy,

so that the vielbeinEa
a and its inverseEa

a are given as
08402
e-

n:

Ea
a5S e2w 0 0

2ye2w 1 0

2y2e2w 2y 1
D , Ea

a5S ew 0 0

22y 1 0

2y2 y 1
D .

~B4!

The Cartan metric in the coordinate basis,gab
5Ea

aEb
bgab , has the form

gab5S 0 0 2e2w

0 1 0

2e2w 0 0
D , a,b5x,w,y. ~B5!

From the relation (v,v2)526dt we obtain

dt5E~1 !E~0!E~2 !5d~e2wdxdy!. ~B6!

Similarly, the calculation of v̄5gdg215taĒa

5taĒa
adqa leads to

Ē~1 !52dx1xdw1x2e2wdy,

Ē~0!52dw22xe2wdy,

Ē~2 !52e2wdy,

or

Ēa
a5S 21 x x2e2w

0 21 22xe2w

0 0 2e2w
D ,

Ēa
a5S 21 2x x2

0 21 2x

0 0 2ew
D . ~B7!

The metricḡab is the same asgab .
Also, we shall be making use of the matrixRa

b , defined
by g21tbg52taRa

b. Starting from the identityg21v̄g
52v, which can be written in the formĒa

ag21tag
52Ea

ata , one finds Ra
b5Ea

aĒa
b . The calculation of

Rab5gacR
c
b yields
Rab~g!5S 2y2e2w 2xy2e2w12y 22x2y2e2w24xy22ew

22ye2w 22xye2w21 2x2ye2w12x

22e2w 22xe2w 2x2e2w
D . ~B8!
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APPENDIX C: COVARIANT DERIVATIVE AND GAUGE
TRANSFORMATIONS

In this appendix we exhibit gauge properties of t
WZNW system in some detail.

~1! Writing the expression~3.4! for the covariant 1-form
V in group coordinatesqa, one can obtain coordinate expre
sion for the covariant derivativeDqa on the group manifold:

taEa
aDqa5taEa

adqa2taRa
bAb2taBa,

Dqa5dqa2Ēa
aAa2Ea

aBa. ~C1!

Effectively, the componentsA2 and B1 are absent, Eq
~4.2!, so that

D1qa5]1qa2Ēa
aA1

a , D2qa5]2qa2Ea
bB2

b .

Taking into account additional conditionsA1
(2)5B2

(1)50,
Eq. ~4.4!, one finds

D1x5@]11A1
~0!#x1A1

~1 ! ,

D1w5]1w1A1
~0! ,

D1y5]1y, ~C2a!

and

D2x5]2x,

D2w5]2w2B2
~0! ,

D2y5@]22B2
~0!#y2B2

~2 ! .
~C2b!

~2! Let us now considerSL(2,R)3SL(2,R) gauge trans-
formations. Group elements transform according tog8
5VgV̄21, whereV5e«, V̄5e«̄, and«5ta«a, «̄5ta«̄a. In-
finitesimal transformations are

g21dg5g21«g2 «̄,

dqa52Ēa
a«a2Ea

a«̄a, ~C3!
ys

08402
or, in components:

dx5«~1 !1x«~0!2x2«~2 !2ew«̄~1 !,

dw5«~0!22x«~2 !12y«̄ ~1 !2 «̄ ~0!,

dy5ew«~2 !1y2«̄ ~1 !2y«̄ ~0!2 «̄ ~2 !.

Infinitesimal transformations of gauge potentials are o
tained from Eq.~3.3!:

dAa52d«a2 f bc
aAb«c, dBa52d«̄a2 f bc

aBb«̄c.

Gauge fixing~4.2! leads to

dA1
a 52]1«a2 f bc

aA1
b «c, dB2

a 52]2«̄a2 f bc
aB2

b «̄c.

~3! Now, restriction toH13H2 is achieved by demand
ing « (2)5 «̄ (1)50. The restricted transformations take th
form

dx5«~1 !1x«~0!,

dw5«~0!2 «̄ ~0!,

dy52y«̄ ~0!2 «̄ ~2 !, ~C4!

and

dA1
~0!52]1«~0!, dA1

~1 !52@]11A1
~0!#«~1 !1A1

~1 !«~0!,

dB2
~0!52]2«̄ ~0!, dB2

~2 !52@]22B2
~0!#«̄~2 !2B2

~2 !«̄ ~0!.
~C5!

~4! UsingdVa5 f bc
a«̄bVc, whereVa5Ea

aDqa, one finds

d~Dqa!5@~Ea
af bc

aEc
b!«̄b2Ea

a~dEa
b!#Dqb.

Restriction toH13H2@« (2)5 «̄ (1)50# yields

d~Dx!5«~0!Dx, d~Dw!50, d~Dy!52 «̄ ~0!Dy.

Then, gauge transformations of auxiliary fieldsf 6 are d f 1

5 «̄ (0)f 1 , d f 252« (0)f 2 . From this it follows d(w
1 lnuf2f1u)50.
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