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2D induced gravity as an effective WZNW system
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We introduce a dynamical system given by a difference of two sirgile2,R) Wess-Zumino-Novikov-
Witten actions in 2D, and define the related gauge theory in a consistent way. It is shown that gauge symmetry
can be fixed in such a way that, after integrating out some dynamical variables in the functional integral, one
obtains the induced gravity actiof50556-282(198)03218-4

PACS numbgs): 04.60.Kz, 11.10.Kk, 11.15.q

I. INTRODUCTION structing canonical gauge invariant actions to establish the
connection between 2D induced gravity and a WZNW sys-
Two-dimensional(2D) gravity naturally appears in the tem, defined by a difference of two simple WZNW actions
string functional integral in subcritical dimensions, where itfor SL(2,R) group:
represents an effective theory of quantum fluctuations of
matter fields coupled to the metric of the string world sheet 1(91,9,)=1(97)—1(9,), 01,9,eSL2R). (1.1
[1]. The induced, effective action is closely related to the

Weyl anomaly of the original string theory, and represents g, s paper we set up the Lagrangian framework for this

gravitational analogue of the usual Wess-Zumino action in,,nection, starting from a gauge invariant extension of the
gauge theories. The dynamical structure of 2D gravity isyyznw system(1.1). The connection is established irca-

therefore, an important aspect of string theory_, b,Ut it alsq ariant way, fully respecting the diffeomorphism invariance
represents a useful model for the theory of gravitational phe(-)f both theories. The approach will be very useful for con-

nomena in four dimensions. : ; : :
: . structing and studying properties of general solutions of the

Polyakov and his collaboratof2] demonstrated that in jnq,ced gravity, in terms of the related simpler solutions of
the light-cone gauge thepoint functions of the effective 2D the WZNW system.
gravity can_be expllcnly four_1d. Althoggh the gauge is fixed,  pfer recalling some basic properties of the WZNW
these solutions display a hidden chi®L(2,R) symmetry, ihaory in Sec. II, we introduce in Sec. Il a consistent for-
which turned out to be very important for the analysis of i, jation of the gauge invariant extension of our basic object,
quantum dynamics. These results motivated the investigatiof,o \yznw system(1.1). By taking the difference ofwo

of the structure of 2D gravity in the conformal gauge, wherey\,7\yy actions we are able to overcome the usual difficul-
it becomes the standard Liouville thedr§]. Although the  tag which one encounters in the process of gaugismale

SL(2,R) symmetry is naturally connected to the light-coney7zn\w theory[11,12. In Sec. IV we explicitly choose the
gauge, there exists a canonical formulation of the theory "bauge group, a four-parameter subgroup SL(2R)
terms of gauge independent variables, 81§2,R) currents, 5 5o R) leading to four gauge fields, which is sufficient
which demonstrates the importance of this symmetry for thge, generating an effective transition to the induced gravity.
general structure of the theof]. In Sec. V we show that new gauge invariance can be fixed in

Dynamical significance of th&L(2,R) symmetry, and ¢ ,ch a way that, after integrating out some variables, one
strong analogy between the induced gravity and the usud; ives at the induced gravity action:

Wess-Zumino action, inspired detailed investigations of the
relation between theSL(2,R) Wess-Zumino-Novikov-
Witten (WZNW) theory and the induced gravity. Polyakov |(¢’gw):f d2¢\J—g
found the connection between ti$d (2,R) WZNW theory
and the induced gravity in théght-cone gaugé5]. Similar 1
results in the light-cone gauge have been also obtained in += a¢R—M(e2¢’“—l)}. (1.2
Refs.[6,7]. The same problem was discussed in toefor- 2
mal gauge in Ref[8], where it was shown that Liouville
theory may be regarded as the WZNW theory, reduced byn this process, the original symmetry of the acti@inl)
certain conformally invariant constraints. These constraintsinder conformal rescalings is also fixed. Appendixes A, B,
can be automatically produced if one considers gauge extend C are devoted to some details concerning geometrical
sion of theSL(2,R) WZNW model, based on two gauge properties of spacetimg and the group manifol&L(2,R),
fields[9]. and gauge properties of the WZNW model.

In a recent lettef10] we used a general method of con-
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1. WZNW MODEL ON CURVED MANIFOLDS
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1 1 Note that the actioh(q) is invariant under conformal trans-
1(@)=lo(v)+nl'(v)=5 KJ (o)t 3 Kf (v,0?), formationsg,,,—g,,e*" (which impliesg;—e ™ F4;).
* M We now turn our attention t&=SL(2,R). Using the fact
v=g ldg, (2.1  that any elemeng of SL(2,R) in a neighborhood of identity

admits the Gauss decompositionr g, gog_ , whereg. , gq
wheren is an integer,k=nxy, and x, is a normalization and g_ are defined in terms of group coordinate$
constant. The first term is @model action which provides =(X,¢,y) as in Eqs(B3a) and(B3b), one can find explicit
dynamics for a group-valued field, defined over a two- expressions foty,; and 7, Egs.(B5) and (B6), and obtain
dimensional, Riemann manifold, and taking values in a
semisimple Lie groups, while the second term is the topo- _ 2
logical Wess-Zumino term, defined on a three-manifld I(q)_KLd 5\/—_9
whose boundary i¥M=3,. Here,v is the Maurer-Cartan
(Lie algebra valued 1-form, *v is the dual ofv, and
(X,Y)=1/2 Tr(XY) is the Cartan-Killing bilinear form on ZKJ dzg\/—_g(f7+@(97€0+4(9+Xr97ye_‘P)-
the Lie algebra ofG (Tr denotes the ordinary matrix trace * 2.3
operation in the adjoint representation®y. The normaliza- '
tion factor « is chosen in such a way that the Wess-Zumino

1 L
> 7' dipdje+2(n —e")oxaye?

term is well defined modulo a multiple of2 which is irrel- IIl. GAUGE EXTENSION OF THE WZNW ACTION
evant in the functional integra=JDg exil (g)]. We shall now discuss how one can gauge the WZNW
Let us now parameanze the group elements by some locg} e ory starting from the existence of global symmetries, as
coordinates}®, g=g(q“), so that usual. The action(g), whereg belongs toSL(2,R), is in-
variant under theglobal transformations on th&L(2,R
v=EM=dq"E%ta, manifold: ~ (2R
wheret, are the generators @, satisfying the Lie algebra '~ 0g0-1 =0 0-1
[t ty]= focCt,. Then, g—g'=0g90"", dg—(dg)'=Q(dg)Q "
* ok @] o _ra b where (1,Q) is an element 08L(2,R) X SL(2,R). We want
(F0,0)=7da"dq Yap,  Yap(d)=E"E s van, to introduce the corresponding gauge theory, having the fol-
lowing properties.
(v,02)= % E2EPECSf,, .= —6d7, (@) It should be invariant under tHecal transformations

_ _ 9'=0g07Y, 0=0(£,69), Q=0(¢,¢),
where y,p,=(t4,t,) is the Cartan metric orG, and f .
=f. Yec. The last equation is based on the theorem that _
any closed form is locally exact. Therefore, the WZNW ac-where (2,Q)) belongs to a subgrougd of SL(2R)
tion on the group manifold takes the form X SL(2,R) (which may be equal to the whole group
(b) It should be defined as a field theory oB.
e o 8 o It is well known that the second requirement can not be
|(Q):Kf > d9*da”vap—dq*da’rag|, (228 fyifilled for every gauge groupi [11,12, since the WZ term
nI", originally defined orM, does not have a gauge invariant

where we usedzédq“dqﬁraﬂ. extension that can be reduced to an integral averdM.
Next, we introduce local coordinaté® (x=0,1) ons, Possible solutions of this problem will be discussed after
and rewrite the action as clarifying the meaning of the first requireme(ab.

The transformation law aofig under gauge transformation

1 is changed, but the change can be compensated by introduc-
I(q)= Kf2d2§ > V=094"9,09,0" Vap ing the covariant derivative
Dg=dg+Ag-gB, (Dg)'=Q(Dg)Q, (3.2
— 8#V(5’Mqa3vqﬁ7'aﬁ) ,

where (A,B) are gauge fields(Lie algebra valued 1-forms
The covariant derivativ®g transforms homogeneously un-
der local transformations, provided the gauge fields trans-
form according to

where g#” is the inverse metric ofx. It is convenient to
define an orthonormal basis of tangent vectgrse;*d,, (i
=+,—), in which the metricy;; = e;*€;"g,,, takes the light-

cone form:n_ .= n, _=1. In this basis, A'=Q(A+d)Q L, B,Z(_)(Ber)(_rl' 3.3
_ 26 [l 2 iigm@g 4B — i 9.q%9.q8 Having definedDg, one can try to gauge the WZNW action
(@ Kfzd ¢ 9(2 70 ap = & A0 A Tap |- by replacingdg—Dg, i.e., by replacing 1-form=g'dg
(2.2b  with the corresponding covariant 1-for¥f
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V=g Dg=v+g !Ag-B, V'=QvQ-l (3.4 thatthe terml'; is gauge invariant, therefore it can be re-
moved froml(g,A,B), leaving us with the gauge invariant

It is also useful to define the field strengtis,=dA  combinationl’(g,A,B)+T5(A,B). Sincel, is a three-form
+A? and Fg=dB+ Bi which transform as followsF, on M, only 1"(g,A,B) can be included as part of the action

=QOF, Q7% Fg=0QFQ7 1 for the o~-model onX, but it is not gauge invariant:
Now, we apply this procedure formally define a gauge . _
invariant extension of the WZNW actio2.1): o1'(g.A.B)=—l'5(A.B)
1

1(g.AB)=1g(V)+n(V) . KJM 5 dL0a(B.F)~ ws(AF )]0,

1 1
=35 "L(*V’V)Jr 3 KJM(VvVZ)- (3.5  The actionl’(g,A,B) is very close to what we want: it is
defined on3, and its variation under gauge transformations
The first termlo(V) is both () gauge invariant, angp) ~ 9ives an expression which depends on gauge fi\d3), but
defined overS, so that it represents an acceptable gaugdot ong. Can one find a mechanism that compensates this

invariant action. It can be written as noninvariance, and yields an acceptable gauge invariant ex-
tension of the WZNW actioni2.1)?
lo(V)=1lg(v)+ Ay, In the analogous four-dimensional model Witt¢h3]

solved the problem by requiring the constraig(B,Fg)
—w3(A,F,)=0 on the gauge grouf, sufficient for gauge
invariance. In string models one can simply remd\ewith-
out assuming any constraint d#, while the gauge invari-
ance of the theory is ensured by the presence of some addi-
tional field in the action, with “anomalous” transformation
law [12]. In this paper we shall solve thE, problem by
wherev=gdg '=—gvg L. considering a gauge extension of the actidri), describing
The second terrnI’(V) is defined as an integral of a a system oftwo simple WZNW models, in which the prob-
three-form onM, which is gauge invariant. However, this lematicI’, term in the first sector will cancel the correspond-
form is in general not exact, so thal’ (V) cannot be ex- ing term in the second sector, leading to the theory which is
pressed as an integral ovEy therefore, it can not be used as both (a) gauge invariant an¢b) defined onZ.
part of theo-model action or. The construction goes as follows. We start with the for-
We shall now analyze some additional restrictions undemal extension ol (g,A,B), as obtained in Eq3.7). Next,
which an acceptable gauge extension (@f) canbe defined. using gauge invariance df;(g,A,B) we define a simpler
First we note that, after some algebra, the second term can lgauge invariant action:
rewritten as

1 _
A0=KJ ETr[—*vA—*vB—*(glAg)B
3

+%(*AA+*BB)}, (3.6

I'(g,A,B)=1"(g,A,B)+T',5(g,A,B).
n'(V)=nl'(v)+T'1+T,+T3,
It is now easy to see that an acceptable gauge extension of
1 _ the action(1.1) for the WZNW system can be defined by
Fl:Kf > T —vA+vB+g !AgB],
2 1(1,2=1"(g4,A,B)—1'(g,,A,B), (3.8

_ 1 whereg;=g(Xy,¢1,Y1) andg,=g(X,,¢,,y,) are different
FZ_KJM 2 L0a(B.Fe) = w0s(AFA)], fields, belonging to the same representatiolstf2,R). In-
deed, sincd’,(A,B) does not depend og, the contribution

1 . of two I'; terms tol (1,2) vanishes. Thus, the gauge invariant
FsZKfM > T FA(Dg)g action (3.8) can be written in the simpler form
+Fgg (Dg)], (3.6b 1(1,2=1"(9:,A,B)—17(g2,A,B), (3.9a

where ws(A,F)=Tr(AF,—1/3A%) is the Chern-Simons where we clearly see that it is an action definedXon
three-form. Formal extension ofg), obtained in Eqs(3.5) The reduced actiof8.7) can be written as
and(3.63, and(3.6b can be written as

1(g,A.B)=1"(g,AB)+ T5(A,B)+T'5(g,A,B), I"(g.A.B)=1(g)+ "L 5 = (vtv)A=(*v-v)B
1"(9,A,B)=1(g)+Ay(g,A,B)+T1(g,A,B), —(*B+B)(g*Ag)], (3.9p

3.

39 where theg-independent term 1/2Q@A+*BB) in Ag is ig-
whereI', andI'; are defined not o but onM, violating  nored, as its contribution to sectors 1 and 2 in E9a is
thereby the basic requireme(it). Now, one should observe canceled. The absence of this term implies il{at2) does
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not depend on*A+A)~A_ (_amd (‘B—B)~B. [see Eq. 32 A% y,,=20 A+ OAQ
(A6)], i.e., self-dual and anti-self-dual parts of the gauge

fields A andB, respectively. As we shall see, the absence of — —2e 29_y[A[)+xAD]—g_oA
these parts will greatly influence the dynamical structure of - " -
the gauged WZNW system. viBE Yab= 2v(++)B(__)+v(+°)B(_°)

IV. H,xH_ GAUGE THEORY =267 %9, x[BT)+yB@]+a, B

In this section we shall specify the gauge group, and de- . . )
rive an explicit expression for the gauge acti@m) in terms Next, with the help of the expressidB8) for Ry, we find
of the group coordinate(,¢4,y1) and X, ¢5,Y>).

a b_ _ 2a=¢fyBOAT) £ xyBOAO £ B(-)AH)
Using now the matriXR(g), that defines the adjoint rep- BRapAy=—26 FyBIAL T XYBUALTHBLAY

resentation of the gauge groug, t,g=—t.R%, where +XB(—_)A(+°)]—B(_°>A(+°)_
R®,=E°,E%*, (Appendix B, the reduced action takes the
form The final result for the reduced action takes the form
lf(g,A,B>=|<g>+2f<f2d2w—g[—?;A3 w(g,A,B):KJ d?V-glo_ed, o +2AY 0 ¢
—v3B® +BARY A Jyap. (4.2) ~2B%9, ¢+4D xD_ye ¢—2BYA"],

(4.9

As we mentioned, the actidr{1,2) does not contain vari-
ables @_,B,), which implies the existence of aextra  where
gauge symmetry, allowing an arbitrary change of the absent

components. This is a specific feature of the action for the D .x=[d, +APx+A",
WZNW system. To simplify further considerations we shall

fix this symmetry by imposing the following gauge condi- D,y:[a,—B(f’)]y—B(:),
tions:

are covariant derivatives on the group manifold, E§2a
A_=0, B,=0. (4.2 and(C2b). The last,g-independent term in Ed4.5) will be
canceled in the complete actio(l,2), Eq.(3.93.
Up to now we did not specify the gauge grotp We
could takeH to be the wholé&SL(2,R) X SL(2,R), but for our

L . V. INDUCED GRAVITY FROM GAUGED WZNW SYSTEM
purposes this is not necessary. We assumeHhist a sub-

group of SL(2,R) X SL(2,R), defined by In this section we shall consider the functional integral of

the theory defined by the actidB.93, and(3.9b and show,

H=H,XH_, 4.3 by performing a suitable gauge fixing and integrating out
some dynamical variables, that this theory leads to the in-

whereH, andH _ are subgroups dbL(2,R) defined by the duced gravity actior{1.2).
generators t(, ,t;) and (g,t_), respectively. When com-
pared to SL(2,R)XSL(2,R), our choice means that the A. Effective theory for gauged WZNW system

auge fields should be restricted as follows: ) . . .
gaug It is useful to introduce auxiliary field$,. ,f,., and

A =0. BM)=0. (4.4 rewrite the part of the actioh(1,2) given by
Y=4D  x;D_y,e ¢1—-4D_x,D_y,e" ¥2, 5.1
The gauge symmetnd . XH _ is defined in terms of the PN +X20-Y2 6.2
following gauge fields and gauge parameters: in the form

(AL A B BOY - (g(F) 50 FT7) 510, 1
Y=f1_D+x1+f1+D_y1—A—1 fi_f ef1—f,_D.X,
Gauge transformations of dynamical variables are given in

Egs.(C4) and(C5).

Using the general relations —f2. Doyt 5 fo-fa, €%
vi=g '9g=t.E%,4,9% or, more explicitly,
Ui=gag = tEaq", Y=—BU(fy— o) + AL (f1 —F5)
and assuming the restrictio4.2) and(4.4), one obtains [0+ AD X+ [0-—BOy,
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The complete actioh(1,2) is invariant under the remain-

—7 fi-faeef- fo[ds+APTX,—F,,[0-—B®ly,  ing piece of gauge transformations:

1
+ Z f2— f2+e<‘02.

sf_=—eO0f_, of,=e0f,,

5p1=60 -3 5p,=g0_F0).

Gauge transformations determined &) ande'™) have  Now, we introduce gauge invariant variables

the form
5X1=8(+), 5X2=s(+),
oA =0, +ADe),
Syi;=—¢'"), Sy,=—s&""),

BT =—[9_-BOTe),

This part of the complete gauge symmetry can be fixed by

imposing the following gauge conditions:

X2:O, y2:0

d1=@1+Inf f_|, dr=e+In|f f_|,

in terms of which, after some cancellation éfindependent
pieces, we obtain

1(1,2=1"(¢1)—1"(b2),
lf(¢>=KLd2w—_g{a¢ﬁ+¢>+2wa+¢

1
~20.0-¢- €. (5.5

Note that the part of the functional integral depending on

IntegrationsfdAf)dB(_‘) and [df,,df,_ in the func- f_,f, is decoupled from the rest, and can be absorbed into

tional integral lead to the elimination @%.. from the action:
f,..=f,.. Writing f. instead off,. for simplicity, one

obtains

Y=f_[d. +AD I~ [d_—BO]y,
1
7 f_f,(e*1—e%2),

After that the integratiorf dx,dy,; produces

SV =AY - 8[(V_+BO)f,],

the normalization factor. Thus, using gauge invariant vari-
ables effectively restricts the space of dynamical variables; it
is, essentially, equivalent to a gauge-fixing corresponding to
(¢(9,&19) transformations, e.gf_=u_, f,=u,, fol-
lowed by the integratioffdf_df_ .

Thus, the final form of the effective action for the gauged
WZNW system is given by Eq5.5).

B. Transition to the induced gravity

To show that the effective theo($.5) is equivalent to the
induced gravity(1.2), let us observe thaf5.5 is invariant
under the following conformal rescalings:

where V. (ios; th?o)cqvariant derivative ol (Appendix A). 0, —€%0,,, di—¢1—2F, $y— by 2F,
Then, f[dA}’dBY yields (5.9
AV=—w,+d, In[f_|, BP=-w_—a_In|f.], which imply 9. —e Fo,, andw.—e F(w.Fd.F). This

(5.2 symmetry is directly connected to the invariance of the origi-
nal WZNW theory under conformal rescalings. It can be

where w-. is the connection or® (Appendix A), and an gauge-fixed by demanding
additional factor[det(f_f.)]"! appears in the functional

measure. Consequently, we find

¢2:In My

whereafter the effective action becomes

1
Y=— 7l f_f (ef1—e¥2), (5.3
1(4,9,.)
and the reduced action becomes
=Kf d?6V—0|d_¢pd,p+2w_d,p—2w.d_¢
r 3
I (QD,f, 1f+)
L et 1 5
:Kf dzg\/—g[a_¢a+¢—2(w+ ZM(e )|, (5.7
—a, In|f_|)o_e+2(w_+ad_ In|f,|)d, e where we introducee= ¢, —In u. Now, partial integrations
together with Eq(A3), and the replacemet— ¢/, lead
1 i i i =
-3 £, e, (5.4 t;);r;e}dfmduced gravity actiofll.2), wherea=2\/x, andM
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VI. CONCLUDING REMARKS metric: e-e;=e,“€;"g,.,= 7

We presented here the connection between the gauge ex-
tension of the WZNW systerfil.1) and the induced gravity
action (1.2, fully respecting the diffeomorphism invariance  Connection and curvaturdRiemannian connection aB,

me_=n_,=1; & *t=1.

of both theories. o';=¢'|, is defined by the first structural equation:
It is well known that an acceptable gauge extension of the S
simple WZNW model does not exist unless one requires spe- dé'+w';6'=0. (A1)

cific constraints on the gauge gro[fi]. The reason for this
unusual behavior steams from the fact that gauged WZ term
nI’ does not represent, in general, a field theory on a opfen as

manifold 3. If one trjes to select. an action defin_ed bnone du=(du) 8 +u,dd =(du — uws) 6= (V,u;) 656,
looses gauge invariance, and vice versa. In string models one

can overcome these problems with the help of an additionakhereV u; is the covariant derivative of a 1-form:
field [12]. Following the ideas developed in Ré¢fL0], we

introduced in this paper an acceptable action, which is both Viui=dui—eSio s Viluz=(dF opus .
gauge invariant and defined @) by considering a dynami-

cal system described by a difference of two simple WZNW?®Y '
models. rivative of a vector.

Our gauge group i8l . XH_, a four-parameter subgroup . The curvature is defined by the second structural equa-
of SL(2R)XSL(2R). Two of the gauge fieldsa{”) and 10N
B, ensure the equality of currents in two sectors, in ac- 1
cordance with the results of the Hamiltonian analysis of the do'j=5 Rij 040", (A2)
WZNW system[10]. The remaining two fieldsA® and
B, become components of the connection of the inducedsing dw= (V) 6%¢', one finds
gravity action. In this way, the Riemannian structureXis . _
seen to be closely related to t8d(2,R) gauge fields. Rik=¢'j(Vio—Viwy),

The results obtained here can be used to clarify the con-
nection between globally regular solutions of the equations R=2R ,=2(V 0,V o).
of motion for the WZNW system, and the related singular (A3)
solutions (in the coordinate senseof the induced gravity Conformal rescalingLet us now derive the transforma-
[8,9]. In particular, it will be interesting to improve our Un- o |aw of the connection under conformal rescaling of the
derstanding of the WZNW black hole solutions in the coNn- 1 atric. The reIatiorngeZF@W implies G—cFi Replac-

text of induced gravity 14]. ing this into the first structural equation gives

The exterior derivative of a 1-form=u,6* can be writ-

By noting thatu™=u-, one easily finds the covariant de-
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w,—d,F=w,e", w_+i_F=w_e". (A4)

APPENDIX A: RIEMANNIAN STRUCTURE OF 3 Acting on these equations witi_ andV, , respectively,

. . . and using Eq(A4) again, one finds
In this Appendix we present some formulas on the Rie-

mannian structure of 2D manifol®, which are used in the Vo,-V_ 0.F=e*V o, ,
paper.
Coordinates of points in two-dimensional manif@dare @+&)_+@+:9_F=e2FV+w_ _
denoted by¢* (u=0,1). Basic tensorial objects in the coor-
dinate basis are Subtracting two equations one finds the effect of conformal

rescaling on the curvature:

. — . _ - M — M " A A
vectors: e,=d,; 1-forms: o*=d¢&x, R(g)—Zn”ViVJF=e2FR(g). (A5)
metric: e,-€,=g,,; %=1 _

We display here some useful formulas:

Another useful basis is the local light-cone basis: 66" =d’¢\—g, *6'=¢ 6
vectors: e;=d,=ej*e,,; 00=cd’s\V~g, *6'0'=751d*¢\-g,
1-forms: ¢'=dé'=¢€', d¢* (i=+,-); AX*A=2A07,
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(*A+A)B=2A-B.d%—g. (AB) e 0 O e 0 0

E2,=| 2ye® 1 0|, E*=| -2y 1 O

APPENDIX B: ON THE GEOMETRY _yzeﬂp -y 1 _yz y 1
OF SL(2R) MANIFOLD (B4)

Here we present some useful results concerning the Rie- o ) )
mannian structure of the group manifdl(2,R). The Cartan metric in the coordinate basisy,s
If the generators of the grouplL(2,R) are chosen as =E*E pYap, has the form
t+)=12(c1*i07), t(0)=(1/12)o3, whereoy are the Pauli

matrices, the Lie algebri,,ty]= f..°t. takes the form 0 0 2°
_ = 0 1 0 a,B=X,0,y. (B5)
_ :2 +) = +) . Bl 7(1’,3 ! ! T
[t to)]=2t0) [t tol=Ftx). (B et 0 0
Then, the calculation of the Cartan metrig,,= (t,,tp)
=1/2f,9f, yields From the relation ¢,v?)=—6dr we obtain
002 dr=EMEOE) = d(e~*dxdy). (B6)
yao=| 0 1 O, ab=(+),(0),(-). (B2 -
2 00 Similarly, the calculation of v=gdg '=t,E?

. , o =t,E?,dq® leads to
Raising and lowering of the tangent space indicad...)

are performed withy,, and its inversey?®.
The groupSL(2,R) has the property that any elemenin
a neighborhood of identity admits the Gauss decomposition:

E(H) = —dx+xde+x2e“dy,

E©=_de—2xe “dy,
g=9+(X)go(@)g-(y),

(=_@a~
g.=€""=1+xt,,, g-=e'Cr=1+yt ), B =—e vy,
Jo=e*'0=cog ¢/2) + 2t g, Sin(¢/2). (B3a Or

whereq®“= (X, ¢,y) are group coordinates. In this parametri- -1 X x2e~®
zation we have Eaa= 0 -1 -2xe¢|
e??+xye ¢? xe ¢? 0 0 -—-e*
h ye ¢ ool | (B3b)
_ -1 -x x
Now, we can writev =g~ dg=E?%,=t,E?,dq®, where - 0 1 2
the guantitiesE?, serve as the vielbein on the group mani- E%a= B X . (B7)
fold. The above expression fgrleads to 0 0 -—e®

(H)— o o
B =e"¥dx, The metricy,; is the same ay,,.
Also, we shall be making use of the mati&,, defined
_l_

(0) = -
E 2ye “dx+de, by g 'tyg=—t,R,°. Starting from the identityg™ “vg

EC)=—y2e~¢dx—yde+dy, =—v, which can be written in the formE®,g 't.g
=—E?,t,, one findsR*,=E3,E%,. The calculation of
so that the vielbeirE?, and its inversee®, are given as Rab= 7acR%, vields

2y’e ¢  2xy’e ¢+2y —2x%y%e ¢—A4Axy—2e?
Ra(g)=| —2ye ¢ —2xye ¢—1 2x%ye ¢+ 2x . (B8)
—2e ¢ —2xe™ ¢ 2x%e™ ¢
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APPENDIX C: COVARIANT DERIVATIVE AND GAUGE
TRANSFORMATIONS

In this appendix we exhibit gauge properties of the

WZNW system in some detail.
(1) Writing the expressioii3.4) for the covariant 1-form

V in group coordinateq®, one can obtain coordinate expres-

sion for the covariant derivativ@q® on the group manifold:
t,E3,Dg*=t,E3,dq*—t,R*%AP—1,B?,

Dq®=dq*—E%,A®— E*,B2. (C1)

Effectively, the component®&_ and B, are absent, Eq.

(4.2), so that
D+q“=ﬁ+q“—E“aAi , D_q*=d_q*—E%B" .

Taking into account additional conditioms{’=B'")=0,
Eq. (4.4), one finds

D x=[d, +APx+A",

D+go=(?+<p+A(f),

D.y=d.y, (C2a
and
D_x=4d_x,
D_¢=d_¢—B9,
D_y=[d_—-BP]y-B.
(C2b

(2) Let us now consideBL(2,R) X SL(2,R) gauge trans-
formations. Group elements transform according gob
=0g0 1, whereQ)=¢e®, O=e®, ande=t,e?, e=t &% In-
finitesimal transformations are
189_;,

g 'ég=g"

5q%=—E%,e®—E%¢&?, (C3)
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or, in components:
5)(:8(+)+X8(0>_X28(_)_egog“—),
Sp=89—2xe( T+ 2y —£0),
dy=e%e ) +yZelt) —yg0 %),

Infinitesimal transformations of gauge potentials are ob-
tained from Eq.(3.3):
SA?= —dg?—f, AP, 5B?= —de®— fy 2BP".
Gauge fixing(4.2) leads to
A% =—0,e2—fp PARES, OB =—9_g2—f, 2B

(3) Now, restriction toH . X H_ is achieved by demand-
ing e(7)=¢(")=0. The restricted transformations take the
form

5X=8(+)+Xs(0),

5cp=8(0)—;(0),
dy=—ye @ —¢gl"), (C4)
and
A =—9,0 A =—[g, +AD]eT+ A,
BO=—y e B T)=—[9_.-BPTe)-B O,
(CH

(4) Using 8V2=f,,.2ePV¢, whereV3=E?,Dq¢, one finds
8(Dq*) =[(E*,fy*E®) e~ E*4(SE?5)]DGP.

Restriction toH , X H_[(7)=¢{")=0] yields

8(Dx)=¢'9Dx, &(D¢)=0, &(Dy)=—¢e"Dy.
Then, gauge transformations of auxiliary fielfls are &f
=0t sf_=—¢@f_. From this it follows (¢
+In|f_f_|)=0.
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