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Volume elements of spacetime and a quartet of scalar fields
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Starting with a ‘‘bare’’ 4-dimensional differential manifold as a model of spacetime, we discuss the options
one has for defining a volume element which can be used for physical theories. We show that one has to
prescribe a scalar densitys. Whereas conventionallyAudetgij u is used for that purpose, withgi j as the
components of the metric, we point out other possibilities, namelys as a ‘‘dilaton’’ field or as a derived
quantity from either a linear connection or a quartet of scalar fields, as suggested by Guendelman and Kaga-
novich. @S0556-2821~98!06518-7#

PACS number~s!: 04.50.1h, 02.30.Cj, 04.20.Fy, 12.10.2g
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I. INTRODUCTION

A fundamental premise is that gravity is intimately inte
twined with the geometry of spacetime. This geometry
locally characterized by two independent concepts: The c
cept of a linear connection~parallel transport! and the con-
cept of a metric~length and angle measurements!.

Within a gauge approach to gravity the existence of
linear connectioncan be quite satisfactorily explained by th
principle of local gauge invariance@1,2#. In contrast to this, it
is not clear how to derive themetric from some fundamenta
principle. Usually the existence of the metric is simply a
sumed, sometimes in disguise of a local gauge group wh
contains an orthogonal subgroup. Therefore it is natura
ask whether the metric itself is a fundamental quantity
derived quantity, or a quantity which can be substituted
some more fundamental field. To investigate this questio
the main motivation for this article.

In physics it is of fundamental importance to integra
objects on spacetime. This requires the definition of a v
ume element. We will point out in Sec. II that this definitio
can be done without reference to any metric. Basically
volume element can be defined on any differentiable ma
fold as the determinant of a parallelepiped defined in te
of n vectors, ifn is the dimension of the manifold. Then n
absolutevolume measure exists. However,proportions of
different volumes can be determined. Such a volume elem
is an~odd! density of weight21. In order to define an inte
gral, we then need an additional scalar density of weight11.

Usual physical fields are no densities. Therefore the co
mon practice is to take the components of the metric an
build a density according toAudetgij u. But there exist alter-
natives which open the gate to alternative theories of gr
tation. In this light we will analyze, in Sec. III, one possib
ity, namely the quartet of scalar fields, as proposed in@3#.

II. INTEGRATION ON SPACETIME AND THE VOLUME
ELEMENT s AS SCALAR DENSITY

We model spacetime as a 4-dimensional differentia
manifold, which is assumed to be paracompact, Hausdo
and connected. In order to be able to formulate physical la
on such a spacetime, we have to come up with suitably
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fined integrals. If we want, for example, to specify ascalar
action functionalW of a physical system,

W5E L5E ẽ L̂, ~2.1!

then, taking the integral in its conventional~Lebesgue!
meaning, the LagrangianL has to be an odd 4-form in orde
to make the integral~2.1! a scalar. Incidentally, ap-form v
5 1/p! v i 1 . . . i p

dxi 1∧ . . . ∧dxi p is calledevenif it is invari-

ant under a diffeomorphismxi→x8 i(xj ) with det(]xj/]x8i)
,0. It is calledodd if it changes sign under such a diffeo
morphism@4,5,1#.

Now, any odd 4-form can be split into a product of
0-form ~or scalar! L̂ and another odd 4-formẽ. Let us define
a trivial physical system byL̂51. Then the integral measure
the volume of the corresponding piece of spacetime:

Vol5E ẽ. ~2.2!

For that reasonẽ is called a volume form or, more colloqui
ally, a volume elementof spacetime. This quantity can b
split again into two pieces.

As the first piece we have the Levi-Civitae in mind. Its
componentsei jkl are, by definition,numerically invariantun-
der diffeomorphisms. We have

eª
1

4!
ei jkl dxi∧dxj∧dxk∧dxl , ~2.3!

with e0123515 invariant.

Consequentlye transforms as anodd 4-form density of
weight21 ~see, e.g.,@1#, Appendix A, for details!:

e85
1

J
e5

sgnJ

uJu
e, ~2.4!

whereJ5det(]xj/]x8i) is the determinant of the Jacobian m
trix of the diffeomorphismxi→x8 i(xj ). We are denoting
densities by boldface letters.
© 1998 The American Physical Society21-1
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GRONWALD, MUENCH, MACÍAS, AND HEHL PHYSICAL REVIEW D 58 084021
If we take the interior productc of an arbitrary frameea
with the Levi-Civitae 4-form density, then we find a 3-form
ea ; if we contract again, we find a 2-formeab , etc.:

ea ªeace5
1

3!
eabgdqb∧qg∧qd, ~2.5a!

eab ªebcea5
1

2!
eabgdqg∧qd, ~2.5b!

eabg ªegceab5
1

1!
eabgdqd, ~2.5c!

eabgd5edceabg5edcegcebceace. ~2.5d!

Here, the coframeqb is dual to the frameea , that is,
eacqb5da

b . The (e,ea ,eab ,eabg ,eabgd) represent a basi
for the odd form densities of weight21. It is callede-basis
and can be used to define a metric independent duality
eration. Instead of lowering the rank of thee’s, we can also
increase their rank by exterior multiplication with the c
frameqm:

qm∧ea51da
me, ~2.6a!

qm∧eab52da
meb1db

mea , ~2.6b!

qm∧eabg51da
mebg2db

meag1dg
meab , ~2.6c!

qm∧eabgd52da
mebgd1db

meagd2dg
meabd1dd

meabg .
~2.6d!

For the ẽ ~which is an odd 4-form density of weight 0!,
formulas analogous to Eqs.~2.5a–2.5d!, ~2.6a–2.6d! are
valid. We have just to add tildes to thee’s.

Sincee is an odd density of weight21, we can split the
volume elementẽ, if we postulate the existence of aneven
scalar densitys of weight 11, that is,

s85uJus. ~2.7!

For our purpose here,1 we postulated anevenscalar density,
since theẽ in Eq. ~2.1! and the Levi-Civitae in Eq. ~2.3! are
both odd. Then, eventually, Eq.~2.1! can be rewritten as

~2.8!

Conventionally, the square root of the modulus of t
metric determinant is chosen as the scalar densitys:

1In reference@@1#, Eq. ~A.1.33!# we took anodd scalar density
instead, which we also denoted by the same letters.
08402
p-

0sªAudet gi j u. ~2.9!

As soon as a metricg5gi j dxi
^ dxj is given—the gravita-

tional potential of general relativity—we can define0s.
Alternatively, we can promote the scalar density to a n

fundamental field of nature, compare also the model de
oped in@1, Sec. 6#. The value of such a density1s can be
viewed as a scale factor of the volume element; see
@6,7#. Thus, from a physical point of view, it is interesting t
investigate the role of1s as a scaling parameter which rea
izes a scale transformation on a physical system.

The possibility to take a metric independent scalar den

1s in place ofAudetgij u in order to build a proper volume
element gives new opportunities to define a concept of s
invariance. In this context, the field1s is known as adilaton
field, which becomes non-trivial in the quantum theory af
the conformal~scale! invariance is broken.

In a pure connection ansatz, we prescribe alinear connec-
tion Ga

b5G ia
bdxi ~but no metric!. Define, as usual, the

curvature-2-form by

Ra
b5dGa

b2Ga
g∧Gg

b ~2.10!

and the Ricci-1-form by

Rica ªebcRa
b5Riciadxi . ~2.11!

Then

2sªAudet Rici j u, ~2.12!

with Rici j 5Riciaej
a, is a viable scalar density, as first su

gested by Eddington@@8#, Sec. 92#, compare also Schro¨-
dinger @9# and the more recent work of Kijowski and co
laborators; see@10#. Likewise, the corresponding quantit
based on thesymmetricpart of the Ricci tensor,

28sªAudet Ric~ i j !u, ~2.13!

also qualifies as a volume measure. Note that2s and 28s
may have singular points in such a theory as soon as
Ricci tensor or its symmetric part vanish. There seems
exist no criterion around which would prefer, say,2s, as
compared to28s. Lately, such theories have been aba
doned.

In contrast, the non-linear electrodynamics ofBorn-Infeld
@11# with its structurally similar Lagrangian (f 5maximal
field strength!

3s5Audet~gi j 1Fi j / f !u2Audet gi j u, ~2.14!

has been in the focus of renewed interest; see@12#.

III. THE QUARTET THEORY

A further possibility is the introduction of aquartet of
scalar fields. First, in close analogy to the componentsei jkl
of the Levi-Civitae, we can define the totally antisymmetr
tensor densityei jkl of weight 11. We put its numerically
invariant componente0123521. Then we define@3#
1-2
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4sª2ei jkl ~] iw
~0!!~] jw

~1!!~]kw
~2!!~] lw

~3!!

52
1

4!
ei jkl eABCD~] iw

A!~] jw
B!~]kw

C!~] lw
D!,

~3.1!

whereA, . . . ,D are indices of interior space. This definitio
yields, for the volume 4-form

h̄ª4se, ~3.2!

the following relations:

h̄5dw~0!∧dw~1!∧dw~2!∧dw~3!

5
1

4!
eABCDdwA∧dwB∧dwC∧dwD. ~3.3!

If we introduce the abbreviation

]Aª
]

]wA , ~3.4!

then the duality ofdwA and]B can be expressed as follow

dwA@]B#5dB
A . ~3.5!

In analogy to the set of Eqs.~2.5a–2.5d!, we define the 3-
form and the 2-form

h̄Aª]Ach̄, h̄ABª]Bch̄A , etc. ~3.6!

Explicitly they read

h̄A5
1

3!
eABCDdwB∧dwC∧dwD, ~3.7a!

h̄AB5
1

2!
eABCDdwC∧dwD, etc. ~3.7b!

In analogy to Eqs.~2.6a–2.6d! we have

dwN∧h̄A51dA
Nh̄, dwN∧h̄AB52dA

Nh̄B1dB
Nh̄A ,

~3.8!

and so on. We contract Eq.~3.8! and find

h̄5
1

4
dwN∧h̄N , h̄A5

1

3
dwN∧h̄AN , etc. ~3.9!

We differentiate Eq.~3.9!:

dh̄52
1

4
dwN∧dh̄N , dh̄A52

1

3
dwN∧dh̄AN , etc.

~3.10!

Now, h̄, as a 4-form, is closed:

dh̄50. ~3.11!

ProvideddwAÞ0, we find successively,
08402
dh̄A50, dh̄AB50, etc. ~3.12!

Using this information, we can partially integrate Eq.~3.9!
and can prove that all these forms are not only closed,
also exact:

h̄5dF1

4
wN∧h̄NG , h̄A5dF1

3
wN∧h̄ANG , etc.

~3.13!

Using Eqs.~3.3! and ~3.7a,b!, we find

]h̄

]dwA 5h̄A,
]h̄A

]dwB 5h̄AB , etc. ~3.14!

or, because of Eq.~3.13!:

d
]h̄

]dwA 50, d
]h̄A

]dwB 50, etc. ~3.15!

Since the corresponding ‘‘forces’’ vanish too, as can be s
from Eqs.~3.3! and ~3.7a,b!,

]h̄

]wA 50,
]h̄A

]wB50, etc., ~3.16!

we find an analogous result for the variational derivatives

dh̄

dwA 50,
dh̄A

dwB50, etc. ~3.17!

Similarly, we have

dh̄

dqa 50,
dh̄A

dqa 50, etc. ~3.18!

and

dh̄

dgab
50,

dh̄A

dgab
50, etc. ~3.19!

That the volume element is an exact form is the dist
guishing feature of this quartet ansatz. Under these circ
stances, the volume~2.2! can be expressed, via Stokes’ the
rem, as a 3-dimensional surface integral which does
contribute to the variation of the action functional.

Using Eq. ~2.8! and the volume element~3.3! and
denoting the gravitational Lagrangian by V
5V(gab ,qa,Qab ,Ta,Ra

b) and the matter Lagrangian b
Lm5Lm(gab ,qa,Ga

b,C,dC), the actionW reads

~3.20!

see Guendelman and Kaganovich@3#. Note that the 3-formx,
according to Eq.~3.13!, explicitly readsxªwN∧h̄N/4. If we
add a constantl to the scalar Lagrangian, we find
1-3
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E dx~V̂1L̂m1l!5W1lE dx. ~3.21!

Since the 3-dimensional hypersurface integral*]Volx does
not contribute to the variation, the scalar Lagrangian is
variant under the addition of a constant.

Variation with respect towA yields the corresponding
field equations

]~V1Lm!

]wA 2d
]~V1Lm!

]dwA 50. ~3.22!

Suppose, see@3#, thatV̂ andL̂m do not depend on the quarte
field at all,

]V̂

]wA 50,
]V̂

]dwA 50,
]L̂m

]wA 50,
]L̂m

]dwA 50, ~3.23!

then the field equations for the quartet field read

~V̂1L̂m!
]h̄

]wA 2dF ~V̂1L̂m!
]h̄

]dwAG50. ~3.24!

The first term vanishes, sinceh̄ does not depend onwA ex-
plicitly; see Eq.~3.16!. Then the Leibniz rule yields

~3.25!

~3.26!
n,

4

08402
-

ProvidedwAÞ0 anddwAÞ0, we can conclude that

d~V̂1L̂m!50, i.e., V̂1L̂m5const. ~3.27!

The gravitational field equations following fromdgab and
dGa

b are not disturbed by the existence ofwA. Hence the
usual metric-affine formalism applies in its convention
form ~see@1#, for recent developments cf.@13–16#!, but the
field equation~3.27! for the scalar field quartetwA has to be
appended. Perhaps surprisingly, it is only one equation si
in addition to Eqs.~3.18! and ~3.19!, we trivially have

dh̄

dGa
b 50,

dh̄A

dGa
b 50, etc. ~3.28!

IV. CONCLUSION

We transparently displayed the necessary structures
building up a volume element and pointed out several ph
cal alternatives to the usual metric volume element, giv
rise to different gravity theories. Within the framework o
metric-affine gravity we can reproduce the essential featu
of the Guendelman-Kaganovich theory without the neces
to specify the gravitational first-order Lagrangian other th
by the property~3.23!
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