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Massive Dirac fields in naked and in black hole Reissner-Nordstro¨m manifolds

F. Belgiorno*
Dipartimento di Fisica, Universita` di Milano, 20133 Milano, Italy

~Received 12 December 1997; published 10 September 1998!

The problem of the electrodynamical stability of the RN naked singularities is analyzed by studying the
qualitative spectral properties of the Dirac equation. A comparison with the RN black hole cases is made. The
Dirac vacuum appears to be stable in the case of the naked RN geometries, whereas in the case of the RN black
holes the same mathematical approach confirms the existence of a discharge mechanism related with the Klein
effect. @S0556-2821~98!06116-5#

PACS number~s!: 04.62.1v, 04.70.Dy
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I. INTRODUCTION

According to the cosmic censorship Conjecture~CCC!
naked singularities are forbidden due to the expected
physical behavior associated with them. See, e.g.,@1#. No
theorem implementing CCC exists, neither at the class
level nor at the quantum one. In the case of charged sin
larities, one could expect that electrodynamical effects co
be enough to dress the singularities and eventually turn t
into a charged Reissner-Nordstro¨m ~RN! black hole. This
expectation arises from the studies carried at the class
level by Cohen and Gautreau in@2#. Therein it is shown that
classical capture trajectories exist for test particles w
charge to mass ratio greater than one~in natural units! and
charge opposite to the one of the singular manifold and
fact allows a picture in which RN naked singularities a
turned into RN black holes. At the quantum level, Damo
and Deruelle@3# studied the case of a charged scalar field
a naked RN background and their semiquantitative anal
showed that a quantum dressing of the naked singula
takes place because of a particle creation related with
Klein effect.

In this work we try to carry an analogous analysis for t
quantum Dirac equation on the classical naked RN ba
ground. We underline the following very important points
our study: We consider an ‘‘eternal’’~that is, existing at all
times! RN naked singularity; we look for quantum electr
dynamical instabilities for the ground state of massive h
spin particles. The classical electromagnetic field associ
with the given geometry is the only source of instability w
will take into account.

We start by discussing some mechanisms allowing qu
tum electrodynamical instability in flat spacetime, becau
they can give some hints about the instability phenome
we are looking for. Then the Dirac one particle hamiltoni
is studied and its qualitative spectral properties are analy
The aim is to understand if it is possible to get a parti
creation process related with the Klein effect. The answe
negative.

Then, a detailed study of the RN black hole cases is m
also in order to make a comparison. It is confirmed that
the case of RN black holes, discharge processes related t
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Klein effect are avoided only for very small black ho
charge to black hole mass ratio if the Dirac field one cons
ers is the electron field.

A further discussion is found in the conclusions.

II. THE KLEIN EFFECT AND QED IN STRONG FIELDS:
POSSIBLE FLAT SPACETIME ANALOGIES

In this section we recall some general theorems that
strong enough to control the stability problem for the Dir
vacuum in presence of an external potential in flat spaceti

We will follow ideas discussed in@4# and in @5#. We can
start our analysis by considering the one particle Ham
tonianh5h01V, whereh0 is the free Hamiltonian andV is
a static external potential. For some formal details, see@4#.
One can choose the spectral decomposition of the~self-
adjoint extension of! h into positive and negative ‘‘energy’
states as a well defined basis for a second quantized the
just in the same way one defines the electron and posi
free states in the standard free theory. Note that no gap
tween positive and negative states is required and that
Fock space vacuumuV& associated with such spectral d
composition is stable under the evolution generated by
second quantization Hamiltonian operator@4#. Then no par-
ticle creation can be expected if a static potential is int
duced.

A second question that can be raised is if the given
tential is a good scattering potential on the free field Fo
space in the sense that quantum Mo” ller wave operators exist
Consider a scattering operatorS:Hin→Hout , where
Hin ,Hout are the one particle asymptotic Hilbert spaces. L
S be an unitary implementation ofS in the Fock spaceF
with cyclic vector~vacuum! uV&. The probability of persis-
tence of the vacuum is

u^vacuum,t→1`uvacuum,t→2`&u25u~V,SV!u2. ~1!

The pair creation probability is

p512u~V,SV!u2. ~2!

In the case of Dirac particles, it holds theorem~10.10! of @5#:
If Dirac particles are affected by a static external potenti
such that the scattering operator S exists and it is unita
then S is unitarily implementable in the Fock space F and
holds
© 1998 The American Physical Society17-1
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SV5V

that is p50.
This implies that no particle creation is possible in suc

static external potential@5#. Particularly, vacuum stability for
the Coulomb potential is predicted. In this case, an instab
of the vacuum is naively expected for the Dirac Hamiltoni
when the quantized electron field is in presence of the c
sical Coulomb field generated by an highly charged nucle1

moreover, a consequent emission of pairs of positrons
been predicted. The above theorem shows that it is not
sible to find out such discharge phenomenon unless s
adiabatic time dependence for the potential is introduc
See also the final discussion. The so called Klein effect
lows to recover in some sense a particle creation effect e
in presence of a static potential. Let us consider a Di
Hamiltonian defined on a interval2 and characterized by two
asymptotic regions, say, atA>2` and atB<`. Roughly
speaking, we can define as ‘‘Klein region’’ an overlap regi
between asymptotic positive~negative! continuum states atA
and asymptotic negative~positive! continuum states atB.
Compare also@5#, Sec. 4.7. Usually, such phenomenon tak
place whenA52` and B51`.3 Then, e.g., an electron
state atA is seen as a positron state atB if it belongs to the
overlap region: One gets the so called Klein effect.4 We un-
derline that the Klein effect takes place because one ass
a physical relevance to the given asymptotic states; see
the discussion below. At the level of quantum field theo
the presence of level crossing between negative and pos
energy asymptotic states of the Dirac particles gives rise
nonzero particle current. For an extensive discussion ab
the Klein effect, also in curved spacetime cases, see@6#.

We note that the above theorem is not violated by st
potentials inducing a Klein effect, as steplike ones. Inde
for these cases, Bongaarts and Ruijsenaars@7# show thatS
cannot be unitarily implemented in the free particle Fo
spaceF. One can physically interpret@8# the presence of a
Klein overlap region in terms of particle creation:p.0.

We think a further discussion is useful on this pecul
kind of ‘‘instability.’’ Indeed, as seen, one can adopt t
above spectral decomposition of the one particle hamilton
with real spectrum5 in order to construct a well defined Foc
space vacuumuV& that is obviously stable@4#. Nevertheless,
one could consider as physically interesting only a fi
theory having a satisfactory interpretation in terms of sc
tering states@7#. Then let us suppose that one has asympt

1In the case of a pointlike nucleus is required for the atomic nu
ber Z to be greater than 137.

2It can be thought as obtained from a variable separation proc
See also the following sections.

3An example is discussed in Sec. IV.
4In literature it is also known as Klein’s paradox.
5There is a remarkable difference with respect to the sc

charged particle case, that is associated with the fact that for st
enough static fields the Klein-Gordon Hamiltonian gets comp
eigenvalues, whereas the Dirac hamiltonian spectrum is real.
08401
a

y

s-
;
as
s-
e

d.
l-
en
c

s

ns
lso
,
ve
a
ut

ic
d,

r

n

t-
ic

Hamiltonian operators in the asymptotic regions such tha
Klein region appears. This fact amounts to have a nonv
ishing current particle occurring between the two asympto
regions~Klein effect! @9# and could be interpreted as an in
stability of the physical system~external field, etc.!. In other
words, one chooses to privilege a particle interpretation
terms of asymptotic states and then the fact that no uni
scattering operator can be found is assumed as a signal
particle creation process. In our case, the presence of a K
region could be interpreted as an instability of the RN so
tion with respect to the ordinary electron field that could
defined in the asymptotically flat region of RN spacetime

In the following, we will look for the Klein effect for
Dirac particles both in the naked geometry and in the R
black hole case.

III. THE DIRAC HAMILTONIAN ON NAKED RN
MANIFOLDS

Let us define the one particle Hamiltonian for Dirac ma
sive particles on the naked RN geometry. The metric of
background RN manifold is

ds252f~r!dt21
1

f~r!
dr21r2dV2,

~3!

f ~r !512
2M

r
1

Q2

r 2
,

whereM is the mass6 andQ is the charge, and it holdsQ2

.M2. The manifold@ tPR;r P(0,̀ );VPS2# cannot be ex-
tended.

Because of the spherical symmetry of the problem,
can separate the variables and study a reduced problem
fixed eigenvalue sector of the angular momentum opera
Since the treatment is standard@10#, we limit ourselves to
write the reduced radial Hamiltonian and to study its qua
tative spectral properties~localization of the essential spec
trum!.

Some remarks are necessary before we start our anal
The manifold we are considering is not global

hyperbolic.7 This means that, rigorously speaking, it is n
available the standard approach to quantum field theory o
given geometrical background. It is anyway somehow tem
ing to approach the problem by means of the standard t
of quantum theory. For an attempt of rigorous approach
the problem of quantum field theory~QFT! on a nonglobally
hyperbolic spacetime see@12#.

A further remark is that there is a choice of the physic
‘‘vacuum’’ to be made. As it is usual in curved spacetim
the existence of a static Killing vector is not a sufficie
condition in order to get the corresponding vacuum a
physical state.8 The requirement of the physical state to be
Hadamard state is in general considered to be a good c

-

ss.

r
ng
x

6Here we use natural units\5c5G51. See also the Appendix
7See@1# and especially@11#, Chap. 6.
8See the section on RN black holes.
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MASSIVE DIRAC FIELDS IN NAKED AND IN BLACK . . . PHYSICAL REVIEW D 58 084017
rion for selecting physically acceptable states. In the cas
a naked singularity, characterized by divergences of cu
ture invariants at the singularity, it is not clear if it is possib
to get an Hadamard state.

In the following, we will assume an heuristic point o
view. We will limit ourselves to study the electrodynamic
instability problem by choosing a vacuum state associa
with the static Killing vector] t . It will result that, given the
lack of self-adjointness of the Hamiltonian operator, it isa
priori possible to define an infinity of candidate vacuu
states. Between them, we have no reason to exclude the
istence of a~unique?! Hadamard state. But, given our limite
interest into an electrodynamical stability problem, it will b
not necessary to find out explicitly such a state, as it w
result from the next sections.

The reduced Hamiltonian is

Hred5F Af m2eV 2 f ] r1k
Af

r

f ] r1k
Af

r
2Af m2eV

G ,

where

f ~r !512
2M

r
1

Q2

r 2
,

k5angular momentum eigenvalue,

V~r !5
Q

r
.

It is the one particle Hamiltonian operator projected on
gular momentum eigenstates. For more details see@10#. The
charge of the RN solution is chosen to be positiveQ.0.

We want to see if the given reduced Hamiltonian is
sentially self-adjoint onC0

`(0,̀ )2 or not, that is, if a bound-
ary condition atr 50 has to be imposed. We will use som
known theorems about first order ordinary differential eq
tions systems.

We start by defining the following smooth change of va
able ~tortoiselike!

dx

dr
5

1

f ~r !
,

x5r 1M logS r 222Mr 1Q2

Q2 D
1~2M22Q2!

1

AQ22M2
arctanS r 2M

AQ22M2D 1C

and we choose the arbitrary integration constantC in such a
way thatxP(0,̀ ). This allows us to write

Hred5H01V~x!, ~4!

where
08401
of
a-

d

ex-

ll

-

-

-

H05F 0 2]x

]x 0 G
and

V~r ~x!!5FAf m2eV 1k
Af

r

1k
Af

r
2Af m2eV

G .

In what follows, we rewrite suitably the reduced hamiltoni
in order to get a form allowing us to use theorem 4.16
@5#.9 Then we rewrite the potential term as follows:

V„r ~x!…5F m1fsc~x!1fel~x! 1k
1

x
1fam~x!

1k
1

x
1fam~x! 2m2fsc~x!1fel~x!

G ,

where

fsc~x!5~Af 21!m,

fel~x!52
eQ

r ~x!
,

fam~x!5kS Af

r ~x!
2

1

xD .

Theorem 4.16 of@5# states that, given an Hamiltonian oper
tor Hred as in Eq. ~4! and if the potential terms
fsc(x),fel(x),fam(x) are locally integrable functions in
(0,̀ ), thenHred is essentially self-adjoint if and only if ther
exists alPC such that the equation

Hredg5lg ~5!

admits a solutiong¹L2@(0,R),dx#2 for R.0, i.e. a solution
not square integrable in a right neighbor ofx50. The hy-
pothesis of local integrability is clearly satisfied by the p
tentials given above. About the existence or not of a n
square integrable solution for a givenl, the so called Weyl
alternative generalized to a system of first order ordin
equations10 ensures that, if the integrability condition is ver
fied for all the solutions corresponding to a given value ofl,
then it is verified for everylPC. The analysis of this topic
shows that all the solutions are square integrable in a r
neighbor ofx50. Indeed, working in ther variable, one gets
the following system of first order equations:

] rg11
k

Af r
g11F2

m

Af
1

1

f
~2eV2l!Gg250,

9It is equivalent to theorems appearing in@13#.
10See, e.g.,@14#, theorem 5.6.
7-3
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F. BELGIORNO PHYSICAL REVIEW D 58 084017
2] rg21
k

Af r
g21F m

Af
1

1

f
~2eV2l!Gg150.

Note that the coefficients appearing in the above equat
are regular in the limit r→0. We get the following
asymptotic limit for r→0⇔x→0 for the eigenvalue equa
tion ~5!:

] rg11
k

Q
g15O~r !,

] rg22
k

Q
g25O~r !.

Nearr 50 one can limit to consider a~regular! series expan-
sion of the solution and then locally in a right neighbor
r 50 it holds

g1~r !5expS 2
k

Q
r D „a11O~r !…,

g2~r !5expS k

Q
r D „b11O~r !….

So it results that solutions of Eq.~5! belong to
L2@(0,R), @1/f (r )# dr#2 for R.0, that is they are square in
tegrable in thex variable. This holds for every choice ofl
and of the parameterse,m,Q,M entering the eigenvalue
equation~but, obviously, withQ2.M2). As a consequence
the reduced Hamiltonian is not essentially self-adjoint, p
ticularly its lack of self-adjointness arises nearr 50. Accord-
ing to theorem 5.7 of@14#, the deficiency indices ofHred are
(1,1). We recall that an analogous problem of lack of ess
tial self-adjointness inr 50 was found also for the case o
uncharged scalar field in@15#.

The spacetime singularity atr 50 is so also related to a
nontrivial problem to define a physically meaningful se
adjoint extension of the reduced Hamiltonian~if any!.

We stress that there are timelike singularities allowing
well defined quantum evolution for test particles in the se
that the one particle Hamiltonian results to be essenti
self-adjoint even in presence of a singular manifold. Su
problem is analyzed in@16#, where some examples of wel
behaved quantum evolution for the case of scalar test
ticles in presence of timelike singularities are given. T
naked RN manifold does not belong to this special class
timelike singularities, because boundary conditions atr 50
are required for scalar test particles@15,16#. Our result in
particular shows that the naked RN manifold does not al
a one particle well defined evolution also in the case o
charged spin1

2 field minimally coupled to the electromag
netic ~external! field of the singularity.

The standard separation of variables we implicitly used
order to getHred allows to write the total HamiltonianH as
it follows:

H5 % j 5 1/2 , 3/2 ,•••
`

% mj 52 j
j

% kj 56~ j 1 1/2!hmj ,kj
;
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here hmj ,kj
is Hred and the relation between the quantu

numberskj , mj and j is shown in the notation.
As a further remark, we can choose to restrict our study

the self-adjoint extensions of the total Hamiltonian that c
be obtained by selecting a self-adjoint extension for e
hmj ,kj

and we can also impose the same boundary condi

for all the hmj ,kj
. From a physical point of view, this mean

preserving the commutativity of the angular momentum o
erator with the self-adjoint extension of the total Ham
tonian. Other choices could be allowed but we adopt t
physically reasonable strategy.

A comment has to be done about curvature invariants
vergences at the singularity. Indeed, they can actually re
sent a strong drawback for the external field approximat
implicitly adopted for the gravitational field: the well know
divergences of the curvature invariants suggest that clas
general relativity~GR! should fail at the singularity@3#.11 In
fact, it lacks a clear criterion allowing to check if a naked R
singularity could be realized as a classical solution of G
Cf. also the Appendix. It is puzzling that such a possib
breakdown of the external field approximation cannot be
ferred in a straightforward way from the behavior of th
wave equations~for the Dirac equation as well as for th
Klein-Gordon one! near the singularity. In order to try to
overcome these problems, one could adopt the proposal
tained in @3#: From a qualitative point of view, given the
repulsive character of the singularity and given the curvat
invariants explosion near the singularity, it seems reason
to impose on the wave function a vanishing boundary c
dition nearr 50. Anyway, the above repulsive character
operative only for geodetic timelike motions and for nonr
dial null ones. For nongeodetic ones~e.g., for radially infall-
ing charged particles! and for null radial motions it is pos
sible to hit the singularity, so that it is quite unclear whic
boundary condition could be physically meaningful. Neve
theless, as it will result from the following subsection, o
analysis of the electrodynamical stability features for t
Dirac equation in the given naked geometry can be con
ered boundary conditions independent.

A. Essential spectrum and the Klein effect

Essential spectrum features are the same for every
adjoint extension of the reduced Hamiltonian, because
reduced Hamiltonian has finite and equal deficiency indic
Then the positive and negative continuum energy states~e.g.,
electron and positron states! can be found even without dis
cussing the highly nontrivial problem of choosing the boun
ary conditions on the singularity.

We can find the essential spectrum of the reduced Ha
tonian as follows. We use the decomposition method~see
@14#, chapter 11!. Let us split the interval (0,̀) as
(0,d#ø@d,`) and defineH0 and H1 the restriction of the
reduced Hamiltonian to the former and to the latter interv

11This problem is related with the existence problem f
Hadamard-like states.
7-4
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MASSIVE DIRAC FIELDS IN NAKED AND IN BLACK . . . PHYSICAL REVIEW D 58 084017
respectively. Then, according to theorem 11.5 of@14#, for
any dP(0,̀ ) it holds

se~Hred!5se~H0!øse~H1!.

We note that the operatorHred is regular atx5d and so its
restrictions above are regular too. It follows thatH0 is char-
acterized by the limit circle case at both the extremes. T
its self-adjoint extensions have discrete spectrum12 and
se(H0)50”. The essential spectrum ofHred can be contrib-
uted only byH1 .

According to theorem 16.5 of@14#, given that

lim
x→`

V~x!5Fm 0

0 2mG
then for every self-adjoint extension ofH1 it holds
se(H1)ù(2m,m)50”.

Moreover, it is easy to show that the hypothesis of th
rem 16.6 of @14# is satisfied, so it also holds (2m,m)c

5(2`,2m#ø@m,`),se(H1).13 The above results allow
us to write

se~Hred!5~2`,2m#ø@m,`!.

As a final remark, given that the potentialV(x) has compo-
nents of classC1 ~at least! in @d,`) for any d.0 and given
the above value of limx→`V(x), it results, according to theo
rem 16.7 of@14# that every self-adjoint extension of H1 has
purely absolutely continuous spectrum in (2`,
2m)ø(m,`) and the same is true forH red.

14

We can now discuss the problem of the existence o
Klein region@5,6# according to the ideas exposed in the p
ceding section. In our case,A50 andB5` and, as it results
from the above calculation, no such overlap exists.

The static nature of the geometry and of the classical e
tromagnetic field associated with it allows us to conclu
that pair creation probability is zero. Indeed a static exter
gravitational field cannot give rise to a particle creation p
cess and this holds also for a purely electric static poten
as the one we have. We can construct a Fock space bas
the spectral decomposition of the one particle redu
Hamiltonian. Then the Dirac Hamiltonian operator genera
the time evolution of a linear system and its ground stat
stable. In this case we have excluded the possibility o
Klein effect,15 so we can also reasonably exclude parti
creation from an ‘‘eternal’’ naked RN singularity.

Concluding this section, we note that, from the point
view of qualitative spectral properties of the reduced Ham
tonian, the behavior in the naked background is analogou
the behavior in the external Coulomb field of a charg
~pointlike! nucleus. Indeed, in the latter case one can ve
by means of the decomposition method the absence

12Cf. @14#, p. 123.
13The notationI c means the complementary set of the setI .
14Cf. also theorem~4.18! in @5#.
15Cf. @3# for the scalar field case.
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continuum spectrum contribution from the region near
source@14#. From this point of view, there is so a stron
similarity with a ‘‘standard’’ scattering center.

IV. RN BLACK HOLES

In this section we deal with the problem of quantum ele
trodynamical instability in the case of the RN black holes
is known that it is operative a Klein effect that causes
discharge of the black hole@17,18,6#. The charged scala
field case was extensively studied in@17#. Nevertheless, a
nonapproximate study of the spectral properties of the D
Hamiltonian is still lacking.16 The reduced Hamiltonian ha
the same form as in the naked case but for the fact that
there exist real zeroesr 1>r 2.0 of the functionf (r ) cor-
responding to the event horizon and to the Cauchy hori
respectively and we consider only the external regionr
P(r 1 ,`). As a consequence, the explicit expression of
tortoise coordinatex changes. Indeed, in the non extrem
case one gets

x5r 1
r 1

2

r 12r 2
logS r 2r 1

r 1
D2

r 2
2

r 12r 2
logS r 2r 2

r 2
D

and in the extremal one (r 15r 2)

x5r 12r 1 logS r 2r 1

r 1
D2

r 1
2

r 2r 1
.

In both cases, it holdsxP(2`,1`). This means that the
reduced problem is equivalent to a one dimensional prob
on the whole real line.

There is a further difference to be taken into account w
respect to the naked case. Indeed, the choice of the phy
state, i.e., of the positive and negative frequency solutio
cannot trivially be given by the positive and negative fr
quency solutions associated with the static Killing vec
characterizing the geometry. The request of regularity~Had-
amard condition! selects the ‘‘Hartle-Hawking’’ state@17,19#
if an eternal nonextremal black hole is considered.17 The
extremal case is more puzzling because there is no defin
notion of Hadamard state in the case of the extremal ge
etry and we choose for it the standard~‘‘Boulware’’ ! vacuum
in agreement with the lack of a geometrical temperature
the extremal black hole. In the nonextremal case we pr
lege the ‘‘Hartle-Hawking’’ state, that could be obtained al
by generating a finite temperature KMS state by means
‘‘heating up’’ at the black hole temperature the ‘‘Boulware
vacuum, as, e.g., it results from a rigorous approach@20# for

16There are in literature some approximate studies due to So
et al. @10#, and the so called constant electric field approximat
@18#, that allows an explicit computation of the discharge rate.

17The ‘‘Unruh’’ vacuum is selected if a collapse-generated bla
hole is taken into account. We will consider only the eternal c
for simplicity.
7-5
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F. BELGIORNO PHYSICAL REVIEW D 58 084017
the scalar field case on a Schwarzschild background.18 The
charged field contribution to the corresponding partiti
function gives rise to a chemical potential associated with
charge @19#. The effect of the vacuum choice affects th
charge decay rate in the following sense: a thermal s
decay rate is found, such that for very low temperature
‘‘vacuum one ’’ is retrieved@17#. This means that, at th
level of actual decay rate calculations, a very massive bl
hole ~that is an astrophysical one! will not contribute a size-
able thermal effect on the discharge rate till its mass beco
very small@17#.

As a final remark, we recall the well known fact that
the case of nonextremal RN black holes, in order get a fi
electromagnetic potential on the event horizon, the cho
A05Q/r ; Ai50, i 51,2,3 we used in the case of naked R
manifolds is not a good one; a gauge transformat
Am→Am1]mL, with L5 Q/r h 5Vh , is required@19#. Then
wave function time dependence gets the shiftl→l2eVh

and the potential in the Hamiltonian becomeseV→e(V
2Vh). We note that the given gauge choice can be used
in the extremal case.

In any case, it is important to study the~would be! ‘‘Boul-
ware’’ vacuum, and to verify the existence of a Klein regio

The reduced Hamiltonian operator results to be essent
self-adjoint, being the so called limit point case verified
2`. This fact implies also the essential self-adjointness
the total Dirac Hamiltonian in the RN black hole case.
order to locate its essential spectrum we use again the
composition method. We callH2 andH1 self-adjoint exten-
sions of the reduced Hamiltonian restricted to the interv
(2`,0# and @0,1`) respectively. Then, according to the
rem 11.5 of@14#, it holds

se~Hred!5se~H2!øse~H1!.

Then theorems 16.5 and 16.6 of@14# allow to conclude that,
in the nonextremal case as well as in the extremal one,

se~H1!5~2m1eVh ,m1eVh!c,

se~H2!5R.

We deduce that ifeVh,m then there is no overlap of th
asymptotic negative energy states at1` and the positive
energy states at2`; if eVh.m then there is an overlap
region of the asymptotic negative energy states at1` and
the positive energy states at2`. Note also thatse(Hred)
5R in both cases. This means that, in the latter case, the

18For the details of the above construction see@20#.
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a Klein region allowing the predicted discharge proces19

Defining

a[
Q

M
<1,

g[
e

m

it is straightforward to see that the Klein effect conditio
eVh.m is equivalent to the condition

11A12a2,ag.

If g<1, the above inequality cannot be satisfied and
Klein effect cannot take place. Ifg.1, then there exists a
Klein region for 2g/(11g2),a<1, and no Klein region
can exist fora,2g/(11g2),1. Note that, forg.1, the
extremal black holea51 is always Klein instable.

If one considers the electron field, theng;231021 and
2g/(11g2) ;10221, so Klein stable non extremal blac
holes should be characterized by a charge to mass rata
,10221 and this bound is of the same order of the one
duced for the classical stability against classical accretion
oppositely charged dust. The latter is derived by compar
Newtonian force and Coulomb force for the electron@1,21#.
Newtonian accretion wins over opposite charge accretio
Mm>eQ, that is fora< 1/g. The bound is lower than the
one estimated@1# by considering the proton mass and it
found that classically the upper bound fora in order to get a
stable charged black hole isa;10218. Such estimate is low-
ered by quantum electrodynamical instability consideratio
@17#.

It is interesting to underline that, given the actual valu
of a necessary for a nonextremal black hole to be out of
Klein discharge region, and given the conditionsQ@e and
M@m necessary in order to get a sensible external fi
approximation, it is impossible to prepare even a Gedan
quantum scattering experiment allowing to transform suc
black hole into a naked singularity~with a.1). Indeed, a
violation of the external field approximation would be r
quired.

As a concluding remark, we note that the quantum m
chanical instability conditiong.1 allowing a Klein dis-
charge of RN black holes resembles the classical instab
condition @2# g.1 allowing classical charged particles
dress a naked RN singularity by hitting it along classic
radial trajectories. In a somehow unclear way, the instabi
of RN solution is related to the existence of charged partic
with a charge to mass ratio greater than 1.

19In the case one chooses, e.g., in the extremal case the g
A05Q/r one finds

se~H1!5~2m,m!c,
se(H2)5R.

Obviously, both the spectrum and the Klein region conditions
main unaltered.
7-6
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V. CONCLUSIONS

In a naive level discussion about quantum electrodyna
cal stability of the Dirac vacuum, the naked singularity a
pears to be characterized by analogous problems with res
to the ones affecting the flat spacetime Dirac equation in
Coulomb field of an highly charged pointlike nucleus (Z
.137). Indeed, in both cases there is a lack of s
adjointness, with the difference that in the naked RN ma
fold, as seen, this lack does not depend on the parame
i.e., there is no possibility to get a set of parameters allow
an essentially self-adjoint reduced Hamiltonian.

The second analogy is that the static Coulomb poten
seems to be not able to generate a quantum electrodynam
instability of the naked RN geometry, no matter ho
strongly charged the singularity could be. Moreover, there
no room for a Klein discharge mechanism. This means
the possible quantum electrodynamical instability could
then hidden in being the vacuum overcritical: As in fl
spacetime Coulomb problem, one could suppose that on
more negative eigenvalues exist and give rise to the so ca
charged vacuum.20 The overcriticality in flat spacetime i
conjectured to be a condition ensuring the electrodynam
instability if it is coupled with an adiabatic time variation o
the~would be static! external potential@5,23#. So, even if one
could show that there are some negative eigenvalues
massive Dirac fields on a naked RN background, one sho
also consider a further problem of defining suitably an ad
batic time dependence of the geometry. Moreover, in or
to find out the eigenvalues it is required an explicit definiti
of the self-adjoint extension of the reduced Hamiltonia
There is a 1-parameter family of possible self-adjoint ext
sions, and the possibility to select one of them on firm phy
cal grounds lacks.

A possibility to overcome the above problem could be
remove the hypothesis of an ‘‘eternal’’ naked RN geome
and to consider a full backreaction problem@24#, but we will
not pursue it in this paper.

Finally, we cannot exclude that no acceptable phys
state exists on a naked RN background~in this case self-
consistency of the theory would lack! and that real physica
quantum states associated with the RN naked singula
could be very different from ‘‘Boulware’’ states we dis
cussed.

As far as the RN black hole case is considered, it is c
firmed that a Klein region exists ifa.10221.

ACKNOWLEDGMENTS

The author wishes to thank D. W. Sciama, J. Miller, M
Martellini, and A. Treves for their fruitful suggestions an
remarks and SISSA~Trieste, Italy! for kind hospitality.
Thanks are also addressed to V. Gorini and U. Moschella
discussions at the early stages of this work.

20See@5,22# and references therein.
08401
i-
-
ect
e

-
i-
rs,
g

al
cal

is
at
e

or
ed

al

or
ld
-
r

.
-
i-

y

l

ty

-

r

APPENDIX

We recall thatM , Q appearing in the expression off (r )
are actually given by

M→
G

c2
M[M* 5

l pl

mpl
M ,

Q→AG

c4
Q[Q* 5A l pl

mplc
2
Q,

where the electrical units are unrationalized. Here, we w
indicate withM* ,Q* the lengths associated with the ma
M and the chargeQ respectively as in the above formula,
order not to use the same graphical symbols~in the paper we
avoided this explicit distinction in order to simplify the no
tation!. Given thatl plmplc

25\c and recalling the definition
of the fine structure constantae5e2/\c we can also write

G

c2
M5 l pl

M

mpl
,

AG

c4
Q5 l plAae

Q

e
.

We can also poseQ5Ze, as usual in atomic physics. We g

Q*

M*
5

Aae~Q/e!

M /mpl
5AaeZ

mpl

M
.

In the case of the electron, one gets

e* 58.5431022l pl,

m* 54.18310223l pl .

Note that the extremal black hole withQ5e should get an
horizon radiusr bh5e* ;0.1l pl, l pl , so it cannot be consid
ered a reasonable solution of General Relativity. As a cr
rion for the validity of a solution of General Relativity can b
assumed the following one@25#

lcompton!RSchwarzschild, ~A1!

where lcompton,RSchwarzschild are respectively the compto
wavelength and the Schwarzschild radius of the soluti
Clearly, such inequality is not satisfied by an extremal R
black hole withQ5e, that appears to be in a full quantum
gravity regime.

Note that the above criterion~A1! does not seem to be
useful in the case of a naked RN solution; indeed, it has
meaningful Schwarzschild radius, and it lacks a natural g
metric scale for this kind of solution of GR.
7-7
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We limit ourselves to note that one can naively define
analogous of the classical electron radius in the case of
naked singularity, that is, one introduces a classical len
scale

r classical5
Q* 2

M*
,

such that the Coulomb field energy valued atr 5r classical
equates exactly the singularity massM . Below this value, the
-

n

ys

d
n-

R

08401
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effective mass of the given gravitational source becom
negative and this fact explains the repulsive character of
singularity @2#. Then one could impose

lcompton

2p
5

l plmpl

M
5

l pl
2

M*
!r classical5

Q* 2

M*

that is satisfied as far asQ* 2@ l pl
2 . Note that this inequality

is not satisfied by the electrons.
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