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Massive Dirac fields in naked and in black hole Reissner-Nordstnm manifolds
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The problem of the electrodynamical stability of the RN naked singularities is analyzed by studying the
qualitative spectral properties of the Dirac equation. A comparison with the RN black hole cases is made. The
Dirac vacuum appears to be stable in the case of the naked RN geometries, whereas in the case of the RN black
holes the same mathematical approach confirms the existence of a discharge mechanism related with the Klein
effect.[S0556-282(98)06116-3

PACS numbeps): 04.62+v, 04.70.Dy

[. INTRODUCTION Klein effect are avoided only for very small black hole
charge to black hole mass ratio if the Dirac field one consid-
According to the cosmic censorship Conject@CC)  ers is the electron field.

naked singularities are forbidden due to the expected un- A further discussion is found in the conclusions.
physical behavior associated with them. See, €¢4., No
theorem implementing CCC exists, neither at the classicalll. THE KLEIN EFFECT AND QED IN STRONG FIELDS:
level nor at the quantum one. In the case of charged singu- POSSIBLE FLAT SPACETIME ANALOGIES
larities, one could expect that electrodynamical effects could . .
be enough to dress the singularities and eventually turn them In this section we recall some _general theorems tha_t are
into a charged Reissner-Nord3tioRN) black hole. This strong epough to control the stability prqble_m for the Dlr.ac
expectation arises from the studies carried at the classic¥PCUUM in presence of an external potential in flat spacetime.
level by Cohen and Gautreau [i#l]. Therein it is shown that We will follow_ldeas d'SCl_Jsse.d ip4] and in[5]. We can
classical capture trajectories exist for test particles Witl‘Ftart our analysis by congdenng the one partlcle I-_|am||-
charge to mass ratio greater than girenatural unity and ~ tonianh=ho+V, whereh, is the free Hamiltonian andl is
charge opposite to the one of the singular manifold and thi€ Static external potential. For some formal details, [¢de
fact allows a picture in which RN naked singularities areon,e, can ChOQSe the. spectrz_il_ decomposm(_)n ?f (Mf'”
turned into RN black holes. At the quantum level, Damourddioint extension ofh into positive and negative “energy
and Deruelld 3] studied the case of a charged scalar field inStates as a well defined basis for a second quantized theory,

a naked RN background and their semiquantitative analysfvSt in the same way one defines the electron and positron

showed that a quantum dressing of the naked singularit}f €€ States in the standard free theory. Note that no gap be-

takes place because of a particle creation related with th¥Veen positive and negative states is required and that the

Klein effect. Fock space vacuurf(}) associated with such spectral de-
In this work we try to carry an analogous analysis for theComposition i§ st_able und_er the evolution generated by the

quantum Dirac equation on the classical naked RN backS€cond quantization Hamiltonian operafdt. Then no par-

ground. We underline the following very important points of ticle creation can be expected if a static potential is intro-

our study: We consider an “eternalthat is, existing at all duced- , o ,

times RN naked singularity; we look for quantum electro- A Second question that can be raised is if the given po-

dynamical instabilities for the ground state of massive half€ntial is a good scattering potential on the free field Fock

spin particles. The classical electromagnetic field associategPac€ in the sense that quantunilllowave operators exist.

with the given geometry is the only source of instability we COnsider a  scattering —operatos: Hi,— Moy, Where

will take into account. Hin » Hout @re the one particle asymptotic Hilbert spaces. Let
We start by discussing some mechanisms allowing quan® b€ an unitary implementation & in the Fock spacé-

tum electrodynamical instability in flat spacetime, becausdVith cyclic vector(vacuum |€©). The probability of persis-

they can give some hints about the instability phenomenofence of the vacuum is

we are looking for. Then the Dirac one particle hamiltonian 2 2

is studied andgits qualitative spectral pro?)erties are analyzed. [(vacuumt— +co|vacuumt— —)[=[(Q,2Q)[%. (1)

The gim is to understand _if it is pogsible to get a particle—rhe pair creation probability is

creation process related with the Klein effect. The answer is

negative. p=1-](Q,2Q)2 )
Then, a detailed study of the RN black hole cases is made

also in order to make a comparison. It is confirmed that, inn the case of Dirac particles, it holds theor€h0.10 of [5]:

the case of RN black holes, discharge processes related to tHeDirac particles are affected by a static external potential

such that the scattering operator S exists and it is unitary,
then S is unitarily implementable in the Fock space F and it
*Email address: belgiorno@mi.infn.it holds
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Hamiltonian operators in the asymptotic regions such that a
Klein region appears. This fact amounts to have a nonvan-
ishing current particle occurring between the two asymptotic
that is p=0. regions(Klein effec) [9] and could be interpreted as an in-
This implies that no particle creation is possible in such astability of the physical systerfexternal field, etg. In other
static external potentigb]. Particularly, vacuum stability for - words, one chooses to privilege a particle interpretation in
the Coulomb potential is predicted. In this case, an instabilitterms of asymptotic states and then the fact that no unitary
of the vacuum is naively expected for the Dirac Hami|t0nianscattering operator can be found is assumed as a signal of a
when the quantized electron field is in presence of the clagsarticle creation process. In our case, the presence of a Klein
sical Coulomb field generated by an highly charged nucleus;region could be interpreted as an instability of the RN solu-
moreover, a consequent emission of pairs of positrons hagon with respect to the ordinary electron field that could be
been predicted. The above theorem shows that it is not postefined in the asymptotically flat region of RN spacetime.
sible to find out such discharge phenomenon unless some In the following, we will look for the Klein effect for
adiabatic time dependence for the potential is introducedDirac particles both in the naked geometry and in the RN
See also the final discussion. The so called Klein effect alplack hole case.
lows to recover in some sense a particle creation effect even
in presence of a static potential. Let us consider a Dirac ;| t4e DIRAC HAMILTONIAN ON NAKED RN
Hamiltonian defined on a intenfaand characterized by two MANIEOLDS
asymptotic regions, say, #=—o and atB=~. Roughly
speaking, we can define as “Klein region” an overlap region Let us define the one particle Hamiltonian for Dirac mas-
between asymptotic positiveegative continuum states &  sive particles on the naked RN geometry. The metric of the
and asymptotic negativépositive continuum states aB.  background RN manifold is

20

Il
-

Compare als$5], Sec. 4.7. Usually, such phenomenon takes 1

place whenA=—o and B=+%=. Then, e.g., an electron ds’=—f(r)dt*+ mdfzﬂzdﬂz,

state atA is seen as a positron stateRif it belongs to the 3)
overlap region: One gets the so called Klein effeete un- oM 2

derline that the Klein effect takes place because one assigns f(ry=1— —+ Q_Z

a physical relevance to the given asymptotic states; see also

the discussion below. At the level of quantum field theory,

the presence of level crossing between negative and positiwghereM is the masSandQ is the charge, and it hold®?
energy asymptotic states of the Dirac particles gives rise to &M?. The manifold[te R;r € (0%);Q € $?] cannot be ex-
nonzero particle current. For an extensive discussion abouénded.

the Klein effect, also in curved spacetime cases,[6¢e Because of the spherical symmetry of the problem, we

We note that the above theorem is not violated by statican separate the variables and study a reduced problem on a
potentials inducing a Klein effect, as steplike ones. Indeedfixed eigenvalue sector of the angular momentum operator.
for these cases, Bongaarts and Ruijsenf@rshow thatS  Since the treatment is standdrt0], we limit ourselves to
cannot be unitarily implemented in the free particle Fockwrite the reduced radial Hamiltonian and to study its quali-
spaceF. One can physically interprg8] the presence of a tative spectral propertiedocalization of the essential spec-
Klein overlap region in terms of particle creatigm>0. trum).

We think a further discussion is useful on this peculiar Some remarks are necessary before we start our analysis.
kind of “instability.” Indeed, as seen, one can adopt the The manifold we are considering is not globally
above spectral decomposition of the one particle hamiltoniahyperbolic’ This means that, rigorously speaking, it is not
with real spectrumin order to construct a well defined Fock available the standard approach to quantum field theory on a
space vacuurf(}) that is obviously stablg4]. Nevertheless, given geometrical background. It is anyway somehow tempt-
one could consider as physically interesting only a fielding to approach the problem by means of the standard tools
theory having a satisfactory interpretation in terms of scatof quantum theory. For an attempt of rigorous approach to
tering state§7]. Then let us suppose that one has asymptoti¢he problem of quantum field theof@FT) on a nonglobally

hyperbolic spacetime s¢é&2].

A further remark is that there is a choice of the physical
“vacuum” to be made. As it is usual in curved spacetime,

!In the case of a pointlike nucleus is required for the atomic num-,[he existence of a static Killing vector is not a sufficient
berZ to be greater than 137. g

2lt can be thought as obtained from a variable separation procesgond_Itlon in order to QEt the correspond_lng vacuum as a
. . physical staté.The requirement of the physical state to be an
See also the following sections. Had d C. | idered b d cri
3An example is discussed in Sec. IV. adamard state Is In general considered to be a good crite-

“In literature it is also known as Klein's paradox.

SThere is a remarkable difference with respect to the scalar
charged particle case, that is associated with the fact that for strong®Here we use natural unifs=c=G=1. See also the Appendix.
enough static fields the Klein-Gordon Hamiltonian gets complex "See[1] and especiallf11], Chap. 6.
eigenvalues, whereas the Dirac hamiltonian spectrum is real. 8See the section on RN black holes.
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rion for selecting physically acceptable states. In the case of 0 —d
a naked singularity, characterized by divergences of curva- Ho= P 0 }
ture invariants at the singularity, it is not clear if it is possible X
to get an Hadamard state. and

In the following, we will assume an heuristic point of
view. We will limit ourselves to study the electrodynamical Ji
instability problem by choosing a vacuum state associated \/?m—ev +k—
with the static Killing vectors; . It will result that, given the V(F(x)) = r
lack of self-adjointness of the Hamiltonian operator, i&is NG '
priori possible to define an infinity of candidate vacuum k- —\fm-ev

states. Between them, we have no reason to exclude the ex-

istence of unique? Hadamard state. But, given our limited |n what follows, we rewrite suitably the reduced hamiltonian
interest into an electrodynamical stability problem, it will be jn order to get a form allowing us to use theorem 4.16 of
not necessary to find out eXpIICItIy such a state, as it W|||[5]9 Then we rewrite the potentia| term as follows:

result from the next sections.

The reduced Hamiltonian is 1
m+¢sc(x)+¢el(x) +k;+¢am(x)

Jim—eV —f&r+k\/7f V(r(x)= 1 ,
Hred: , +k§+¢am(x) —m= ¢sc(x)+¢e|(x)
fa,+k£ —Jfm-eVv
r where
where bsd¥)=(VF-1)m,
2M Q2 eQ
f(ry=1— —+—, __€eQ
O BeiX) =~ e
k=angular momentum eigenvalue, - N
Q d’am(x)—k I’(_X)_; .
V(r)=T.

Theorem 4.16 of5] states that, given an Hamiltonian opera-
tor Heq as in Eqg. (4 and if the potential terms
dsd(X), de|(X), Pam(X) are locally integrable functions in
(0,»), thenH .4 is essentially self-adjoint if and only if there
exists a\ e C such that the equation

It is the one particle Hamiltonian operator projected on an
gular momentum eigenstates. For more details $6k The
charge of the RN solution is chosen to be posit@e 0.

We want to see if the given reduced Hamiltonian is es
sentially self-adjoint 0r(3°0°(0,oo)2 or not, that is, if a bound- H N (5)
ary condition atr =0 has to be imposed. We will use some redd =19
known theorems about first order ordinary differential equa,qnmits a solutiomy & L[ (O,R),dx]? for R>0, i.e. a solution

tions systems. , _ not square integrable in a right neighbor£0. The hy-
We start by defining the following smooth change of vari- yothesis of local integrability is clearly satisfied by the po-
able (tortoiselike tentials given above. About the existence or not of a non

dx 1 square integrable solution for a givan the so called Weyl
_—=— alternative generalized to a system of first order ordinary
dr f(r) equation®’ ensures that, if the integrability condition is veri-
fied for all the solutions corresponding to a given value. pf

x=r+M log r’—2Mr+Q? then it is verified for every\ e C. The analysis of this topic
Q? shows that all the solutions are square integrable in a right
neighbor ofx=0. Indeed, working in the variable, one gets
(2M2—Q?) 1 ) r—m c the following system of first order equations:
+ - arcta +
JoZ—M? REEVE y I
and we choose the arbitrary integration constrih such a 991t Egﬁ B EJF ?(—eV—)\) 92=0,

way thatx e (0,2). This allows us to write
Hrea=Ho+V(X), (4)

91t is equivalent to theorems appearing[ik8].
where 105ee, e.g.[14], theorem 5.6.
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k
— 3, Qo+ —0p+
r92 ﬁr Jd2

m

1 here hmj,kj is H,eq and the relation between the quantum
—+ - (—eV-\)

Nl 9:=0. numbersk;, m; andj is shown in the notation.
As a further remark, we can choose to restrict our study to

Note that the coefficients appearing in the above equation?ee jgtl;i?g'%t e;(teﬁgc?tl% ns ;fstehliat\?jtg:n?aerztlgggilgg Eg?tec,—inh
are regular in the limitr—0. We get the following h y Y J

asymptotic limit forr —0<x—0 for the eigenvalue equa- ™ j and we can also |mpos§ the ;ame b.oundar.y condition
tion (5): for all the hmj K- Froma physical point of view, this means

preserving the commutativity of the angular momentum op-
k erator with the self-adjoint extension of the total Hamil-
991t 691:0(”* tonian. Other choices could be allowed but we adopt this
physically reasonable strategy.
Kk A comment has to be done about curvature invariants di-
99— 692=O(r). vergences at the singularity. Indeed, they can actually repre-
sent a strong drawback for the external field approximation
implicitly adopted for the gravitational field: the well known
divergences of the curvature invariants suggest that classical
general relativity(GR) should fail at the singularity3].1* In

Nearr =0 one can limit to consider @egula) series expan-
sion of the solution and then locally in a right neighbor of

r=0 it holds fact, it lacks a clear criterion allowing to check if a naked RN
K singularity could be realized as a classical solution of GR.

gl(r)=eX;< ——r|(a;+0(r)), Cf. also the Appendix. It is puzzling that such a possible

Q breakdown of the external field approximation cannot be in-

ferred in a straightforward way from the behavior of the
k wave equationgfor the Dirac equation as well as for the

gz(r)=ex;{6r Klein-Gordon ong near the singularity. In order to try to

overcome these problems, one could adopt the proposal con-
So it results that solutions of Eq(5) belong to tained in[3]: From a qualitative point of view, given the
L2[(O,R), [1/f(r)]dr]? for R>0, that is they are square in- repulsive character of the singularity and given the curvature
tegrable in thex variable. This holds for every choice af  invariants explosion near the singularity, it seems reasonable
and of the parameters,m,Q,M entering the eigenvalue to impose on the wave function a vanishing boundary con-
equation(but, obviously, withQ?>M?). As a consequence, dition nearr=0. Anyway, the above repulsive character is
the reduced Hamiltonian is not essentially self-adjoint, paroperative only for geodetic timelike motions and for nonra-
ticularly its lack of self-adjointness arises near0. Accord-  dial null ones. For nongeodetic ongsg., for radially infall-
ing to theorem 5.7 of14], the deficiency indices dfi,.qare  ing charged particlgsand for null radial motions it is pos-
(1,1). We recall that an analogous problem of lack of essensible to hit the singularity, so that it is quite unclear which
tial self-adjointness im=0 was found also for the case of boundary condition could be physically meaningful. Never-
uncharged scalar field ifL5]. theless, as it will result from the following subsection, our

The spacetime singularity at=0 is so also related to a analysis of the electrodynamical stability features for the
nontrivial problem to define a physically meaningful self- Dirac equation in the given naked geometry can be consid-
adjoint extension of the reduced Hamiltoniéhany). ered boundary conditions independent.

We stress that there are timelike singularities allowing a
well defined quantum evolution for test particles in the sense
that the one particle Hamiltonian results to be essentially
self-adjoint even in presence of a singular manifold. Such Essential spectrum features are the same for every self-
problem is analyzed ifil6], where some examples of well- adjoint extension of the reduced Hamiltonian, because the
behaved quantum evolution for the case of scalar test pareduced Hamiltonian has finite and equal deficiency indices.
ticles in presence of timelike singularities are given. TheThen the positive and negative continuum energy states,
naked RN manifold does not belong to this special class oélectron and positron stajesan be found even without dis-
timelike singularities, because boundary conditions a0 cussing the highly nontrivial problem of choosing the bound-
are required for scalar test particlgg5,16. Our result in  ary conditions on the singularity.
particular shows that the naked RN manifold does not allow We can find the essential spectrum of the reduced Hamil-
a one particle well defined evolution also in the case of aonian as follows. We use the decomposition metligee
charged spin; field minimally coupled to the electromag- [14], chapter 11 Let us split the interval (6&) as
netic (externa) field of the singularity. (0d]U[d,) and defineH, andH , the restriction of the

The standard separation of variables we implicitly used inreduced Hamiltonian to the former and to the latter interval,
order to getH, .4 allows to write the total Hamiltoniakl as
it follows:

(b1 +0O(r)).

A. Essential spectrum and the Klein effect

This problem is related with the existence problem for

=g~ T . :
H=®j-12 32, . D= Pry==(i+ 1/2>hmj Ky Hadamard-like states.
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respectively. Then, according to theorem 11.5[bd], for  continuum spectrum contribution from the region near the
anyd e (0,) it holds source[14]. From this point of view, there is so a strong

similarity with a “standard” scattering center.
Oe(Hreq) =0e(Ho)Uae(H ).

We note that the operatdt, 4 is regular atx=d and so its IV. RN BLACK HOLES

restrictions above are regular too. It follows th&§ is char-

acterized by the limit circle case at both the extremes. Then In this section we _degl with the problem of quantum elec-
: . . . trodynamical instability in the case of the RN black holes. It
its self-adjoint extensions have discrete spectfurand

= . . is known that it is operative a Klein effect that causes the
oe(Ho) =0. The essential spectrum 6frq can be contrib- discharge of the black holgl7,18,§. The charged scalar
uteg onI;(/j_byI? .th 16.5 4], gi that field case was extensively studied [ih7]. Nevertheless, a
ceording fo theorem 26. - given tha nonapproximate study of the spectral properties of the Dirac
m Hamiltonian is still lacking'® The reduced Hamiltonian has
limV(x)= } the same form as in the naked case but for the fact that now
0 -m there exist real zeroes, =r_>0 of the functionf(r) cor-
responding to the event horizon and to the Cauchy horizon
then for every self-adjoint extension off, it holds respectively and we consider only the external region
oge(H)N(—mm)=0. e(r,,»). As a consequence, the explicit expression of the
Moreover, it is easy to show that the hypothesis of theotortoise coordinatex changes. Indeed, in the non extremal
rem 16.6 of[14] is satisfied, so it also holds—(m,m)¢ case one gets
=(—o,—m]U[m,»)Coe(H.).r The above results allow
us to write 2

=4+ — Io(r—r+>_ r? .0(r_r)
0e(Hreq) =(—2%, —m]U[m,). 19 r—r_ 9

X— 0

As a final remark, given that the potenth(x) has compo-
nents of clas<?! (at least in [d,=) for anyd>0 and given
the above value of lig, . V(X), it results, according to theo-
rem 16.7 of{ 14] that every self-adjoint extension of ,Hhas
purely absolutely continuous spectrum in —¢,
—m)U(m,») and the same is true fot 42"

We can now discuss the problem of the existence of 3, poth cases, it holdg e (—,+ ). This means that the
Klein region[5,6] according to the ideas exposed in the pre-reqced problem is equivalent to a one dimensional problem
ceding section. In our casd=0 andB=x and, as itresults yn the whole real line.
from the above calculation, no such overlap exists. There is a further difference to be taken into account with

The static nature of the geometry and of the classical eleGgpect to the naked case. Indeed, the choice of the physical
tromagnetic field associated with it allows us to concludegiate je., of the positive and negative frequency solutions,
that pair creation probablllt_y is zero. Indeeql a static _externa&annot trivially be given by the positive and negative fre-
gravitational field cannot give rise to a particle creation pro-quency solutions associated with the static Killing vector
cess and this holds also for a purely electric static pOtent'aéharacterizing the geometry. The request of reguldkitgd-
as the one we have. We can construct a Fock space based 9fard conditionselects the “Hartle-Hawking” statgl7,19
the spectral decomposition of the one particle reduceg 5, eternal nonextremal black hole is consideredhe
Hamiltonian. Then the Dirac Hamiltonian operator generateg,yremal case is more puzzling because there is no definitive
the time evolution of a linear system and its ground state iggtion of Hadamard state in the case of the extremal geom-
stable. In tTSS case we have excluded the possibility of &y and we choose for it the standdt@oulware” ) vacuum
Klein effect; so we can”also reasonably exclude particlejn greement with the lack of a geometrical temperature of
creation from an “eternal” naked RN singularity. _ the extremal black hole. In the nonextremal case we privi-

~ Concluding this section, we note that, from the point of g6 the “Hartle-Hawking” state, that could be obtained also
view of qualltatlve_ spectral properties of the re_duced Hamll-by generating a finite temperature KMS state by means of
tonian, the behavior in the naked background is analogous mheating up” at the black hole temperature the “Boulware”

the behavior in the external Coulomb field of a charged,gcyum. as e.g., it results from a rigorous apprda¢h for
(pointlike) nucleus. Indeed, in the latter case one can verify

by means of the decomposition method the absence of a—

and in the extremal one (=r_)

r—r+) r2

x=r+2r+log< .
T4

ry

8There are in literature some approximate studies due to Soffel
et al. [10], and the so called constant electric field approximation

12cf. [14], p. 123. [18], that allows an explicit computation of the discharge rate.
3The notationl ¢ means the complementary set of the Iset The “Unruh” vacuum is selected if a collapse-generated black
14¢cf. also theoren{4.18 in [5]. hole is taken into account. We will consider only the eternal case
15¢f. [3] for the scalar field case. for simplicity.
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the scalar field case on a Schwarzschild backgrdfiithe  a Klein region allowing the predicted discharge procéss.
charged field contribution to the corresponding partitionDefining
function gives rise to a chemical potential associated with the
charge[19]. The effect of the vacuum choice affects the

charge decay rate in the following sense: a thermal state
decay rate is found, such that for very low temperature the
“vacuum one " is retrieved[17]. This means that, at the e
level of actual decay rate calculations, a very massive black =0
hole (that is an astrophysical ophwill not contribute a size-

able thermal effect on the discharge rate ill its mass becomesg is straightforward to see that the Klein effect condition

Al
=

Z|0

3

very small[17]. eV,,>m is equivalent to the condition
As a final remark, we recall the well known fact that in
the case of nonextremal RN black holes, in order get a finite 1+\1-a?<ay.

electromagnetic potential on the event horizon, the choice

Ap=Q/r; A;=0, 1=1,2,3 we used in the case of naked RN |f <1, the above inequality cannot be satisfied and the
manifolds is not a good one; a gauge transformatiorklein effect cannot take place. >1, then there exists a
A,—A,+d,A, with A= Qlr,=V,, is required19]. Then  Klein region for 2y/(1+ y?)<a<1, and no Klein region
wave function time dependence gets the shift\ —eV, can exist fora<2y/(1+ y?)<1. Note that, fory>1, the
and the potential in the Hamiltonian become¥—e(V  extremal black holex=1 is always Klein instable.
—V})). We note that the given gauge choice can be used also If one considers the electron field, them-2x 10?7 and
in the extremal case. 2y/(1+9%) ~10"?%, so Klein stable non extremal black
In any case, it is important to study th&ould be “Boul- holes should be characterized by a charge to mass #atio
ware” vacuum, and to verify the existence of a Klein region. <10~ ** and this bound is of the same order of the one de-
The reduced Hamiltonian operator results to be essentiallfluced for the classical stability against classical accretion of
self-adjoint, being the so called limit point case verified at Oppositely charged dust. The latter is derived by comparing
—o. This fact implies also the essential self-adjointness ofVewtonian force and Coulomb force for the electfdre1].
the total Dirac Hamiltonian in the RN black hole case. InNéwtonian accretion wins over opposite charge accretion if
order to locate its essential spectrum we use again the ddM=e€Q, that is fora= 1/y. The bound is lower than the
composition method. We cafl_ andH , self-adjoint exten- one estimated1] by considering the proton mass and it is

sions of the reduced Hamiltonian restricted to the intervalgOund that classically the upper 9‘3};‘”" teiin °Fdef tO.QEt a
(—<0,0] and[0,+ ) respectively. Then, according to theo- stable charged black hole s~10" ©. Such estimate is low-

. ered by quantum electrodynamical instability considerations
rem 11.5 of{14], it holds [17]

It is interesting to underline that, given the actual values
of a necessary for a nonextremal black hole to be out of the
Klein discharge region, and given the conditio@s>e and
M>m necessary in order to get a sensible external field
approximation, it is impossible to prepare even a Gedanken
Then theorems 16.5 and 16.6[d#4] allow to conclude that, gantum scattering experiment allowing to transform such a
in the nonextremal case as well as in the extremal one,  pjack hole into a naked singularitith @>1). Indeed, a

violation of the external field approximation would be re-
quired.
ge(Hy)=(—m+eV,,m+eV,)", As a concluding remark, we note that the quantum me-
chanical instability conditiony>1 allowing a Klein dis-
charge of RN black holes resembles the classical instability
ogo(H_)=R. condition [2] y>1 allowing classical charged particles to
dress a naked RN singularity by hitting it along classical
radial trajectories. In a somehow unclear way, the instability
We deduce that iEV,<m then there is no overlap of the Of RN solution is related to the existence of charged particles
asymptotic negative energy states-atc and the positive With & charge to mass ratio greater than 1.
energy states at-«; if eV,,>m then there is an overlap
region of the asymptotic negative energy states-at and 19 _
the positive energy states ato. Note also thaire(H,eg) In the case_ one chooses, e.g., in the extremal case the gauge
—R in both cases. This means that, in the latter case, there fo=@/" one finds

Oe(Hreg) =0e(H_)U0oe(H.).

oH)=(—mm),
oe(H_)=R.
Obviously, both the spectrum and the Klein region conditions re-
BFor the details of the above construction §26)]. main unaltered.

084017-6



MASSIVE DIRAC FIELDS IN NAKED AND IN BLACK . .. PHYSICAL REVIEW D 58 084017

V. CONCLUSIONS APPENDIX

In a naive level discussion about quantum electrodynami- We recall thatM, Q appearing in the expression ofr)
cal stability of the Dirac vacuum, the naked singularity ap-are actually given by
pears to be characterized by analogous problems with respect
to the ones affecting the flat spacetime Dirac equation in the

Coulomb field of an highly charged pointlike nucleug ( M_>EZ|\/|E|\/|*:|L'|\/|,
>137). Indeed, in both cases there is a lack of self- c M)
adjointness, with the difference that in the naked RN mani-

fold, as seen, this lack does not depend on the parameters, G |

i.e., there is no possibility to get a set of parameters allowing Q— \/jQEQ* -/ P! Q,
an essentially self-adjoint reduced Hamiltonian. c? mp|c2

The second analogy is that the static Coulomb potential
seems to be not able to generate a quantum electrodynamicghere the electrical units are unrationalized. Here, we will
instability of the naked RN geometry, no matter how indicate withM*,Q* the lengths associated with the mass
strongly charged the singularity could be. Moreover, there isv] and the charg® respectively as in the above formula, in
no room for a Klein discharge mechanism. This means thagrder not to use the same graphical symlgisishe paper we
the possible quantum electrodynamical instability could beavoided this explicit distinction in order to simplify the no-
then hidden in being the vacuum overcritical: As in flat tation). Given thaﬂplmpICZZﬁC and recalling the definition

spacetime Coulomb problem, one could suppose that one @ the fine structure constaai,=e?/%c we can also write
more negative eigenvalues exist and give rise to the so called

charged vacuurf® The overcriticality in flat spacetime is

conjectured to be a condition ensuring the electrodynamical EM = Iﬂ
instability if it is coupled with an adiabatic time variation of c? Pmy’
the (would be statigexternal potentidl5,23]. So, even if one

could show that there are some negative eigenvalues for

massive Dirac fields on a naked RN background, one should \/§Q=| \/a—g
also consider a further problem of defining suitably an adia- ct pINTeg -

batic time dependence of the geometry. Moreover, in order

to find out the eigenvalues it is required an explicit definition\ye can also pos@=Ze, as usual in atomic physics. We get
of the self-adjoint extension of the reduced Hamiltonian. ’

There is a 1-parameter family of possible self-adjoint exten-

sions, and the possibility to select one of them on firm physi- Q* Jae(Qle) — Jaz Tt
cal grounds lacks. M* M/mg, M

A possibility to overcome the above problem could be to
remove the hypothesis of an “eternal” naked RN geometry,
and to consider a full backreaction probl¢ga], but we will
not pursue it in this paper.

Finally, we cannot exclude that no acceptable physical
state exists on a naked RN backgrouiml this case self-
consistency of the theory would lacknd that real physical m*=4.18<10"#,.
guantum states associated with the RN naked singularity

could be very different from “Boulware” states we dis- Note that the extremal black hole with=e should get an

In the case of the electron, one gets

e* =8.54x10 2,

cussed. _ _ o horizon radius,,=€* ~0.1,<I,, so it cannot be consid-
~ As far as the RN black hole case is E:2<)ln5|dered, ItIS CONgred a reasonable solution of General Relativity. As a crite-
firmed that a Klein region exists #&>10"“" rion for the validity of a solution of General Relativity can be

assumed the following one5]

)\compton< RSchwarzschild (Al)
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discussions at the early stages of this work. Note that the above criteriofA1) does not seem to be
useful in the case of a naked RN solution; indeed, it has no
meaningful Schwarzschild radius, and it lacks a natural geo-
205ee[5,27] and references therein. metric scale for this kind of solution of GR.
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We limit ourselves to note that one can naively define theeffective mass of the given gravitational source becomes
analogous of the classical electron radius in the case of theegative and this fact explains the repulsive character of the
naked singularity, that is, one introduces a classical lengtsingularity[2]. Then one could impose
scale
|’2)| Q*Z

<[ classical

I classical™ W ) 2w M W M*

Q*Z Acompton_ Iplmpl _

such that the Coulomb field energy valuedratr,sica  that is satisfied as far 6(3*2>I§,. Note that this inequality
equates exactly the singularity mads Below this value, the is not satisfied by the electrons.
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