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Initial singularity free quantum cosmology in two-dimensional Brans-Dicke theory
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We consider two-dimensional Brans-Dicke theory to study the initial singularity problem. It turns out that
the initial curvature singularity can be finite for a certain Brans-Dicke constantv by considering the quantum
back reaction of the geometry. Forv51, the universe starts with the finite curvature scalar and evolves into
flat spacetime. Furthermore the divergent gravitational coupling at initial time can be finite effectively with the
help of quantum correction. The other type of universe is studied for the case of 0,v,1.
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I. INTRODUCTION

The classical solution of general relativity may yield
curvature singularity in black hole physics and cosmolo
This divergent physical quantity seems to be mild with t
help of quantum gravity. However, a consistent quant
theory of gravity has not been established. The perturba
theory of Einstein gravity is invalid in higher loops. As far a
a consistent and renormalizable quantum gravity does
appear, it seems to be difficult to resolve the singula
problem.

On the other hand, in two dimensions there exists so
renormalizable gravity such as the Callan-Giddings–Harv
Strominger ~CGHS! model @1# and the Russo-Susskind
Thorlacius ~RST! model @2# including soluble one-loop
quantum effect. And various aspects of quantum cosmol
in two-dimensional gravity have been studied in Refs.@3–
5,12#. The two-dimensional Brans-Dicke theory is also
good candidate to study the initial singularity problem on
basis of conventional quantum field theory without enco
tering the four-dimensional complexity. If the model giv
the initial singularity classically, it would be interesting
study how to modify the classical singularity through t
quantum back reaction of the geometry. If quantum corr
tions drastically modify the classical theory and the cur
ture singularity does not appear, then the initial curvat
singularity may be ascribed to the classical concept.

In this paper, we shall study the classical curvature sin
larity of expanding universe in the two-dimensional Bran
Dicke model which exhibits the initial singularity of curva
ture scalar and the divergent coupling in Sec. II. This init
singularity can be shown to be finite for some special va
of Brans-Dicke constant by considering the quantum b
reaction of the geometry in Sec. III. Forv51 the model
exhibits the finite curvature scalar at initial comoving tim
whereas for 0,v,1 the curvature is bounded and the e
tremum exists at finite comoving time. And the gravitation
coupling in both cases becomes finite. Ifv.1, the curvature
scalar is not bounded. Finally a discussion is given in S
IV.
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II. CLASSICAL BRANS-DICKE THEORY

We start with two-dimensional Brans-Dicke action

SBD5
1

2p E d2xA2ge22f@R24v~¹f!2#, ~1!

where R and f are curvature scalar and redefined Bran
Dicke scalar field, respectively, andv is an arbitrary positive
constant. We write downc5e22f, then the conventiona
Brans-Dicke form is recovered. In our model, the largev
limit does not give the locally nontrivial gravity in contras
to the four-dimensional Brans-Dicke theory since in two
mensions the Einstein-Hilbert action is proportional to t
Euler characteristic.

We now consider the classical conformal matter fie
given by

SCl52
1

2p E d2xA2g
1

2 (
i 51

N

~¹ f i !
2, ~2!

wherei 51,2,. . . ,N andN is the number of conformal mat
ter fields. Then the actions~1! and~2! lead to classical equa
tions of motion with respect togmn andf,

Gmn5Tmn
Cl , ~3!

R14v~¹f!224vhf50, ~4!

where

Gmn5
2p

A2g

dSBD

dgmn

52e22f$¹m¹nf22~11v!¹mf¹nf

1gmn@~21v!~¹f!22hf#% ~5!

and classical energy-momentum tensorTmn
Cl is set to zero for

simplicity.
We now choose a conformal gauge such asg675

2 1
2 e2r andg6650. From Eq.~5!, we obtain the conforma

gauge fixed forms
© 1998 The American Physical Society14-1
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G6652e22f@]6
2 f22~11v!~]6f!222]6r]6f#,

~6!

G1252e22f@2]1f]2f2]1]2f#, ~7!

and the equation of motion forf is given by

]1]2r22v]1f]2f12v]1]2f50, ~8!

wherex65t6x. The classical solutions in the homogeneo
space are given by

r52vf, ~9!

e22f5Mt, ~10!

where M is an integration constant and we takeM as a
positive constant to obtain positive timet. The other two
integration constants are chosen to be zero since they
no important role in our case. On the other hand, in
comoving coordinates defined byds252dt21a2(t)dx2,
the curvature scalarR(t) and scale factora(t) are written as

R~t!52
4v

~21v!2

1

t2 , ~11!

a~t!5F S 11
v

2 D Mt Gv/~21v!

, ~12!

where Mt52/(21v)(Mt)11(v/2) (t.0 and t.0). It is
clear that the curvature scalar has an initial singularity wit
power-law inflation. Since the behaviors of the scale fac
are ȧ(t);t22/(21v).0 andä(t);2t2(41v)/(21v),0, the
universe shows decelerating expansion. It is natural to ob
the negative curvature scalar in Eq.~11! corresponding to the
desirable decelerating universe since in two dimensionsR is
directly proportional toä(t)/a(t).

Note that the gravitational coupling can be defined by

gN
2 5e2f ~13!

and from Eqs.~9! and ~12!, it yields

gN
2 5F S 11

v

2 D Mt G22/~21v!

. ~14!

This shows that the divergent coupling at the initial tim
decreases and goes to zero in the asymptotically flat sp
time.

In the next section, we study whether the initial curvatu
singularity and the divergent coupling can be modified in
quantized theory or not. We hope the resulting quant
theory gives the singularity free cosmology with finite co
pling.

III. QUANTUM BACK REACTION

We consider the one-loop effective action from the co
formal matter fields which is given by
08401
s

ve
e
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SQt5
k

2p E d2xA2gF2
1

4
R

1

h
R2v~¹f!22

12v

2
fRG ,

~15!

wherek5\(N224)/12. The first term in Eq.~15! is due to
the induced gravity from the conformal matter fields. T
other two terms are regarded as local regularization amb
ities of conformal anomaly. A similar effective action wa
already treated for the purpose of studying the graceful
problem of string cosmology in the largeN limit @6,7#. The
higher order of quantum correction beyond one loop is n
lizable in the largeN approximation whereN→` and \
→0 so thatk is assumed to be positive finite quantity.

By introducing an auxiliary fieldc, Eq. ~15! may be writ-
ten in the local form

SQt5
k

2p E d2xA2gF1

4
Rc2

1

16
~¹c!22v~¹f!2

2
12v

2
fRG . ~16!

Now the total effective action is defined by

ST5SBD1SM , ~17!

where the matter part is formally composed of two pieces
SM5SCl1SQt , however, we neglect the conformal matt
fields as in the classical cosmology for simplicity. The equ
tions of motion with respect togmn , f, andc from the action
~17! are

Gmn5Tmn
M , ~18!

e22f@R24vhf14v~¹f!2#52
k

4
~12v!R1vkhf,

~19!

hc522R, ~20!

whereTmn
M is the energy-momentum tensor, which is giv

by

Tmn
M 52

2p

A2g

dSM

dgmn

5
k

4 F¹m¹nc1
1

4
¹mc¹nc2gmnS hc1

1

8
~¹c!2D G

2
k

2
~12v!@¹m¹nf2gmnhf#

1kvF¹mf¹nf2
1

2
gmn~¹f!2G . ~21!

In conformal gauge fixing, the energy-momentum ten
is written as
4-2
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T66
M 5k@]6

2 r2~]6r!2#2
k

2
~12v!@]6

2 f22]6r]6f#

1kv~]6f!22kt6 , ~22!

T12
M 52k]1]2r1

k

2
~12v!]1]2f, ~23!

where t6 arises from elimination of auxiliary field and re
flects the nonlocality of induced gravity. Defining new fiel
as @7–9#

V52
k

2
~11v!f1e22f, ~24!

x5kr2
k

2
~12v!f1e22f, ~25!

the equations of motion~18!–~20! are obtained in the simple
form

]1]2V50, ~26!

]1]2x50, ~27!

and the constraints are given by

G662T66
M 52

1

k
~]6V!21

1

k
~]6x!22]6

2 x1kt6

50. ~28!

In the homogeneous spacetime, general solutions are

x5x0t1A, ~29!

V5V0t1B, ~30!

whereV0 , x0 , A, andB are constants. Choosing the qua
tum matter state as a vacuum@10#, t650, the constraint
equation~28! results inV056x0 . Hereafter we conside
only the case ofV051x0[M corresponding to the class
cal solution (r52vf) for k→0. Also we can takeA5B
50 without loss of physical result. From the definitions ofx
andV in Eqs.~24! and~25! and the general solutions of Eq
~29! and ~30!, we obtain the following closed forms:

e~2/v!r1
1

2v
~11v!kr5Mt, ~31!

e22f2
1

2
~11v!kf5Mt. ~32!

To study how the universe evolves as time goes on,
redefine time t as a comoving timet defined by t
5* tdter(t), and then the metric can be expressed asds2

52er(t)(dt22dx2)52dt21a2(t)dx2, where a(t) is a
scale factor. In the case oft→10 (t→2`), the behavior of
scale factor is approximately given by
08401
-

e

a~t!'
2vM

k~11v!
t→10, ~33!

ȧ~t!'
2vM

k~11v!
.0, ~34!

ä~t!'2
v

~11v!3

32

k3 M2S 2vM

k~11v!
t D ~22v!/v

,0,

~35!

where t'@(11v)k/2vM #e@2vM /(11v)k#t. Hence in initial
stage of inflation, the size of the universe approaches z
and the universe exhibits the decelerating expansion. And
asymptotic behavior of scale factor fort→1` ~i.e., t
→1`) is given by

a~t!'F S 11
v

2 D Mt Gv/~21v!

→1`, ~36!

ȧ~t!'
v

2
M H F S 11

v

2 D MtG2/~21v!

1
k

4
~11v!J 21

→10,

~37!

ä~t!'2
v

2
M2F S 11

v

2 D MtG2~41v!/~21v!

→20,

~38!

where t'2/M (21v)(Mt)(21v)/2. This shows that the
spacetime exhibits the decelerating expansion for 0,t,`.

The exact expression of curvature scalar is written in
form

R~t!52vM2a2/v~12v!~t!Fa2/v~t!1
k

4
~11v!G23

.

~39!

Note that the condition for boundedness of the scalar cu
ture is given by the range of 0,v<1 as is easily seen from
Eq. ~39!. Therefore we restrict the Brans-Dicke constant
0,v<1 to avoid curvature singularity. The initial curvatur
scalar approaches asymptotically zero for 0,v,1. It is fi-
nite R(0)528M2/k3 for v51 ~see Figs. 1 and 2!.

In fact, we can obtain the closed form of scale factor.
differentiating Eq.~31! and transforming coordinates from
(t,x) to (t,x), we find the equation of scale factora(t)

ȧ~t!5
v

2
M Fa2/v~t!1

k

4
~11v!G21

. ~40!

Through the integration of Eq.~40!, this leads to the closed
form

@a~t!#112/v1
k

4
~11v!S 11

2

v Da~t!5S 11
v

2 D Mt

~41!

with the initial conditiona(0)50. It is difficult to generi-
cally show the behavior of the scale factor, so the scale fa
4-3
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FIG. 1. Forv51 the curvature scalar in the beginning of inflation approaches a constant value and spacetime is flat in the far fu
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and curvature scalar are depicted for the special valuev
51 andv5 2

3 in Figs. 1 and 2.
As for the gravitational coupling, it is easily seen from t

string theoretic point of view by using the nonlinears model
in Ref. @11#. The total action~17! can be written in the form

ST5E d2sGi j ~X!]Xi]Xj , ~42!

where the target metric is given by

Gi j 5S 2vS e22f1
k

4D e22f1
k

4
~12v!

e22f1
k

4
~12v! 2

k

2

D ~43!

and the target coordinate isXi5(f,r). Therefore we obtain
the effective couplinggeff as

geff
2 5

gN
2

11
k

4
~11v!gN

2

. ~44!

In classical theory such ask50 (geff5gN), the coupling di-
verges at the initial time of inflation as seen from Eq.~14!
and approaches zero in the far future. However, after tak
into account the quantum back reaction, the coupling is
terestingly given by the finite value 4/k(11v) in the begin-
ning of inflation and decreases monotonically during the
pansion of the universe.
08401
g
-

-

Next we study what is the source of the decelerating
pansion of universe. If we take the quantum mechanica
induced matter as a perfect fluid, then we can realize
induced pressure is directly related to the curvature sc
and the induced energy is always zero from the constr
equation. To show this fact, Eqs.~5! and ~21! are written in
the comoving coordinate as

Gtt5Ttt
M 50, ~45!

Gxx52
2

v
@a~t!#21~2/v!F ä~t!

a~t!
1

2

v
S ȧ~t!

a~t!
D 2G , ~46!

Txx
M 5

k

2v
~11v!a~t!ä~t! ~47!

by using the solutionf(t)52(1/v)ln a(t). Then we obtain

Txx
M 52

k

4
~11v!M2a2/v~t!Fa2/v~t!1

k

4
~11v!G23

~48!

after eliminatingä(t) by using Eq.~40!. The pressure for the
perfect fluid becomes

p[
1

a2 Txx
M

5
k

4 S 11
1

v DR, ~49!
.
FIG. 2. Forv5
2
3 the curvature scalar in the beginning of inflation approaches zero and spacetime is flat in the far future
4-4
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where we used Eq.~39!. Note that the curvature scalar whic
characterizes the geometry in two dimensions is of releva
to the pressure. This is a dynamical equation of motion wh
Eq. ~45! is just a constraint equation in the comoving coo
dinate. Therefore, the source of dynamical evolution of
geometry is determined by the pressure. In our model,
induced energy always vanishes.

IV. DISCUSSION

The curvature scalar is defined byR52ä(t)/a(t) in two-
dimensional homogeneous space. In our model, the s
factor a(t) vanishes att→10. Therefore, one might won
der why the curvature scalar is finite for (v51) or zero for
(0,v<1) at t→10. If the scale factor is expanded a
a(t)5a1t1 1

2 a2t 21O(t 3), then the scalar curvature d
verges unlessa250. So the finiteness of curvature requir
the absence of the order oft 2 in the asymptotic expansion o
a(t) around t50. Let us exhibit two special cases ofv
51 andv5 2

3 for simplicity. Here the scale factors aroun
the initial comoving time are expanded as
er

08401
ce
e
-
e
e

le

a~t!5
M

k
t2

2M3

3k4 t31O~t4! if v51, ~50!

a~t!5
4M

5k
t2

3~4M !4

~5k!5 t41O~t 5! if v5 2
3 . ~51!

This is the reason why the curvature scalar is finite or z
near the origin although the scale factor goes to zero.

In summary, we have studied the curvature singula
problem using the conventional quantum field theory in
two-dimensional Brans-Dicke cosmology and obtained
bounded curvature scalar and the finite gravitational coup
for 0,v<1. We hope that the consistent quantum grav
may solve the singularity problems in realistic cases in
future.
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