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Initial singularity free quantum cosmology in two-dimensional Brans-Dicke theory
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We consider two-dimensional Brans-Dicke theory to study the initial singularity problem. It turns out that
the initial curvature singularity can be finite for a certain Brans-Dicke congtdnt considering the quantum
back reaction of the geometry. Far=1, the universe starts with the finite curvature scalar and evolves into
flat spacetime. Furthermore the divergent gravitational coupling at initial time can be finite effectively with the
help of quantum correction. The other type of universe is studied for the case <ab<Ql.
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PACS numbe(s): 04.60.Kz, 98.80.Hw

I. INTRODUCTION Il. CLASSICAL BRANS-DICKE THEORY

The classical solution of general relativity may yield a  We start with two-dimensional Brans-Dicke action
curvature singularity in black hole physics and cosmology.
This divergent physical quantity seems to be mild with the 1 _
help of quantum gravity. However, a consistent quantum SBD:Z f dzx\/—_ge “IR-40(V¢)°], @)
theory of gravity has not been established. The perturbation
theory of Einstein gravity is invalid in higher loops. As far as where R and ¢ are curvature scalar and redefined Brans-
a consistent and renormalizable quantum gravity does nddicke scalar field, respectively, arglis an arbitrary positive
appear, it seems to be difficult to resolve the singularityconstant. We write downy=e 2?¢, then the conventional
problem. Brans-Dicke form is recovered. In our model, the lakge
On the other hand, in two dimensions there exists somémit does not give the locally nontrivial gravity in contrast
renormalizable gravity such as the Callan-Giddings—Harveyto the four-dimensional Brans-Dicke theory since in two di-
Strominger (CGHS model [1] and the Russo-Susskind- mensions the Einstein-Hilbert action is proportional to the
Thorlacius (RST) model [2] including soluble one-loop Euler characteristic. _ _
quantum effect. And various aspects of quantum cosmology We now consider the classical conformal matter fields
in two-dimensional gravity have been studied in R¢&-  diven by
5,12]. The two-dimensional Brans-Dicke theory is also a
good candidate to study the initial singularity problem on the 1 ) 13 5
basis of conventional quantum field theory without encoun- Sei= o f d’x\-g 2 izl (V)
tering the four-dimensional complexity. If the model gives

the initial singularity classically, it would be interesting to wherei=1.2.... N andN is the number of conformal mat-

study how to modify the classical singularity through the e, fie|4s Then the actiord) and(2) lead to classical equa-
quantum back reaction of the geometry. If quantum COITeCons of motion with respect tg,,, and ¢,

tions drastically modify the classical theory and the curva-
ture singularity does not appear, then the initial curvature
singularity may be ascribed to the classical concept.

In this paper, we shall study the classical curvature singu-
larity of expanding universe in the two-dimensional Brans- R+40(V¢)?—400¢=0, 4
Dicke model which exhibits the initial singularity of curva-
ture scalar and the divergent coupling in Sec. II. This initialwhere
singularity can be shown to be finite for some special value

@

G, =TS ©)

uvs

of Brans-Dicke constant by considering the quantum back 27 6Sgp

reaction of the geometry in Sec. Ill. Fes=1 the model Gwsz

exhibits the finite curvature scalar at initial comoving time 9

whereas for 8Zw<1 the curvature is bounded and the ex- :2972¢{VMVV¢—2(1+<0)V#¢VV¢

tremum exists at finite comoving time. And the gravitational

coupling in both cases becomes finitewlf> 1, the curvature +0,,[(2+w)(Ve)> -0} 5

scalar is not bounded. Finally a discussion is given in Sec.

V. and classical energy-momentum teniﬁl; is set to zero for

simplicity.
We now choose a conformal gauge such @gs:=

*Electronic address: wtkim@ccs.sogang.ac.kr —1e? andg. . =0. From Eq.(5), we obtain the conformal
TElectronic address: younms@physics.sogang.ac.kr gauge fixed forms
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G..=26 272 p—2(1+ w)(d+ $)?— 29+ pd. P, K 11 1-w
- [62 ¢p—2(1+ 0)(9+$)2—20. pi- §] 6 Sem f dsz—_g{‘zRaR‘“’W‘f’)LT‘f’R}’
_ (15
G._=2e"%20,¢pd_¢p—0d.0_], (7)
wherexk=#A(N—24)/12. The first term in Eq.15) is due to
the induced gravity from the conformal matter fields. The
®) other two terms are regarded as local regularization ambigu-
ities of conformal anomaly. A similar effective action was
wherex™=t=+x. The classical solutions in the homogeneousalready treateq for the purpose of studyin.g Fhe graceful exit
space are given by p_roblem of string cosmology in Fhe larde limit [6,7]. The
higher order of quantum correction beyond one loop is neg-

and the equation of motion fap is given by

d,0_p—2wdyPpd_¢p+2wd, d_¢d=0,

p=—wd, (9) lizable in the largeN approximation wherdN—« and #
—0 so thatk is assumed to be positive finite quantity.
e 2¢=Mt (10) By introducing an auxiliary fields, Eq. (15 may be writ-

ten in the local form
where M is an integration constant and we také as a
positive constant to obtain positive tinte The other two _K oy 1 1 2 2
integration constants are chosen to be zero since they have Sat 2@ d™xv-g 4Rd/ 16(Vw) @(Vo)
no important role in our case. On the other hand, in the

comoving coordinates defined hys’=—dr?+a?(7)dx?, 1o 4R (16)
the curvature scald®(7) and scale factoa(r) are written as 2 '
4o 1 Now the total effective action is defined by
R(T)——mz;z, (11
Sr=Sgp+ S, 17
) wl(2+ w)
a(r)=|| 1+ 2 M7 ' (12 where the matter part is formally composed of two pieces of

Sw=Sci+Sq:, however, we neglect the conformal matter
where M 7=2/(2+ w)(Mt)1*(® (7>0 and t>0). It is ﬂelds asin t_he cl_assical cosmology for simplicity. The_equa-
clear that the curvature scalar has an initial singularity with dions of motion with respecttg,,, , ¢, andy from the action
power-law inflation. Since the behaviors of the scale factof17) are
area(r)~7 2@**)>0 anda(r)~—r V2 te)<Q, the "
universe shows decelerating expansion. It is natural to obtain Cuv=Tpw (18)
the negative curvature scalar in K1) corresponding to the
desirable decelerating universe since in two dimensiiis

K
. “2¢IR— =_ _(1—
directly proportional toa(7)/a(7). e "R-400é+4u(Ve)] 4(1 @R+ wxDi¢,

Note that the gravitational coupling can be defined by (19
gn=e"’ (13 Oy=—2R, (20
and from Egs(9) and(12), it yields where T}, is the energy-momentum tensor, which is given
—2/(2+ w) by
2 w
3= 1+§)MT (14)

Y

This shows that the divergent coupling at the initial time T J—g 69""
decreases and goes to zero in the asymptotically flat space-
time.

In the next section, we study whether the initial curvature
singularity and the divergent coupling can be modified in the
guantized theory or not. We hope the resulting quantum —f(l—w)[V V,6—9,,06]
theory gives the singularity free cosmology with finite cou- 2 o Y

pling.

K 1 1 )
Z VMVV¢+ Zv,uwvvlp_ g;LV D(/l—’— g(V‘ﬁ)

+ Kkw

1 2
VMQZSV,,QZS_ Eg,u.v(vd))

. (21)
I1l. QUANTUM BACK REACTION

We consider the one-loop effective action from the con- In conformal gauge fixing, the energy-momentum tensor
formal matter fields which is given by is written as
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T, = k[02 p=(9:p)%]— 5 (1= )2 b= 20 pd. 8]

+ kw(ds P)’—kt. (22

K
TT_:—K19+(9_p+ E(l_a))(?+(9_¢, (23

wheret.. arises from elimination of auxiliary field and re-
flects the nonlocality of induced gravity. Defining new fields

as[7-9|

Q=—g(1+w)¢+e’2‘/’, (24)

X=Kp—%(1—w)¢+e‘2¢, (25)

the equations of motiofi.8)—(20) are obtained in the simple

form

9,9_Q=0, (26)

d,d_x=0, (27

and the constraints are given by
M 1 2, 1 2_ 2
Gii_Tiiz_;(ﬁtQ) +;(O7iX) —dixt Kty

=0. (28
In the homogeneous spacetime, general solutions are
X=XotT+A, (29

Q=Q,t+B, (30)

whereQg, xo, A, andB are constants. Choosing the quan-

tum matter state as a vacuuhO], t.=0, the constraint

equation(28) results inQy==* x,. Hereafter we consider
only the case of)y=+ xo=M corresponding to the classi-

cal solution p=—wd¢) for k—0. Also we can takéd=B
=0 without loss of physical result. From the definitionsyof

and( in Egs.(24) and(25) and the general solutions of Egs.

(29) and(30), we obtain the following closed forms:

e(2/w)p+ i(l{-w)[(p: Mt (31)
2w ’

e_2¢—%(l+w)K¢=Mt. (32

To study how the universe evolves as time goes on, we

redefine timet as a comoving timer defined by 7

= 'dte’™, and then the metric can be expressedda$

=—erO(dt?—dx?) = —d7?+a?(r)dx?, where a(7) is a
scale factor. In the case @f~ + 0 (t— — =), the behavior of
scale factor is approximately given by
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20oM
a(r)~ k(1l+w) T—+0, (33
. 20M
a( T)% m> O, (34)
L w 32 [ 20M (2-w)lw
AN~ vl M k@ e) 7 <0,
(35

where 7=~[(1+ ) k/20M Jel2eM/AT o)t Heance in initial
stage of inflation, the size of the universe approaches zero
and the universe exhibits the decelerating expansion. And the
asymptotic behavior of scale factor for— +o (i.e., t

— +©) is given by

) wl(2+ w)
a(n)~|| 1+ 5 |m~ . (36)
_ ® 202+ w) -1
a(T)WEM (1+E)MT +Z(1+w) —+0,
(37
B ) ) —(4+w)(2+w)
a(7)~—§|v|2 1+ |M7 ——0,
(38)

where 7=~2/M(2+ w)(Mt)?*”2 This shows that the
spacetime exhibits the decelerating expansion farrél«,

The exact expression of curvature scalar is written in the
form

-3
K
R(7) = —0M?a®*1")(7) a®(1)+ 2(1+ o)

(39

Note that the condition for boundedness of the scalar curva-
ture is given by the range ofOw=<1 as is easily seen from
Eqg. (39). Therefore we restrict the Brans-Dicke constant as
0<w=1 to avoid curvature singularity. The initial curvature
scalar approaches asymptotically zero fer ®<<1. It is fi-
nite R(0)=—8M?/«3 for =1 (see Figs. 1 and)2

In fact, we can obtain the closed form of scale factor. By
differentiating Eq.(31) and transforming coordinates from
(t,x) to (7,x), we find the equation of scale facta(r)

-1

. w K
a(r)=5Ma”(1)+ 7 (1+o) (40)

Through the integration of Eq40), this leads to the closed
form

w
1+—)M7‘

1+ 2
w 2
(41)

[a(n)]H 20+ 2(1+0)| 1+ =]a(r)=

with the initial conditiona(0)=0. It is difficult to generi-
cally show the behavior of the scale factor, so the scale factor
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a(zw) scale factor {w=1) R(v) curvature (w=1)

T

FIG. 1. Foro=1 the curvature scalar in the beginning of inflation approaches a constant value and spacetime is flat in the far future.

and curvature scalar are depicted for the special values  Next we study what is the source of the decelerating ex-
=1 andw=3 in Figs. 1 and 2. pansion of universe. If we take the quantum mechanically
As for the gravitational coupling, it is easily seen from theinduced matter as a perfect fluid, then we can realize the
string theoretic point of view by using the nonlineamodel  induced pressure is directly related to the curvature scalar
in Ref.[11]. The total action(17) can be written in the form and the induced energy is always zero from the constraint
equation. To show this fact, Eq&) and(21) are written in
Co the comoving coordinate as
S;= f 426G (X)aXaX, (42) ¢

G,=TM=0, (45)

where the target metric is given by

__2? 2+(2/w) é(_T) 3(3(7’) T
2w(e‘2¢+£ e—2¢+£(1—w) Gxx= w[a(r)] a(T)+w =) | (46)
Gij= (43)
5 K K y « )
et z(1-w) ) To= 55 (1+w)a(na() @7
w

and the target coordinate ¥ = (¢, p). Therefore we obtain by using the solutiors(7) = — (1/w)In a(7). Then we obtain
the effective couplinges as
-3

2 =~ Z(1+ w)M2a2(7)| a%(7) + = (1+ )
2 9N X4 4
et = - (44)

1+Z(1+w)g§

(48

after eliminatinga(r) by using Eq(40). The pressure for the
In classical theory such as=0 (g.s=0y), the coupling di-  perfect fluid becomes
verges at the initial time of inflation as seen from Ety)
and approaches zero in the far future. However, after taking 1,
into account the quantum back reaction, the coupling is in- pZ?TXX
terestingly given by the finite value 4(1+ w) in the begin-

ning of inflation and decreases monotonically during the ex- _kK 14 i R (49)
pansion of the universe. 4 w| "’
2 curvature (w= 2 )
a(z) scale factor(w:;) R(T) ‘;

T

FIG. 2. Forw=§ the curvature scalar in the beginning of inflation approaches zero and spacetime is flat in the far future.
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where we used Eq39). Note that the curvature scalar which M 2M3

characterizes the geometry in two dimensions is of relevance a(r)= T 3. 7?+0(7) if w=1, (50

to the pressure. This is a dynamical equation of motion while

Eq. (45) is just a constraint equation in the comoving coor- aAM 3(4M)* .

dinate. Therefore, the source of dynamical evolution of the a(r)=g -7- (57)57'4+ o(r® if w=5%. (51
geometry is determined by the pressure. In our model, the

induced energy always vanishes. This is the reason why the curvature scalar is finite or zero

near the origin although the scale factor goes to zero.

In summary, we have studied the curvature singularity
IV. DISCUSSION problem using the conventional quantum field theory in the
two-dimensional Brans-Dicke cosmology and obtained the
bounded curvature scalar and the finite gravitational coupling
ror 0<w=1. We hope that the consistent quantum gravity
r%ay solve the singularity problems in realistic cases in the
future.

The curvature scalar is defined By=2a(7)/a(r) in two-
dimensional homogeneous space. In our model, the sca
factora(r) vanishes atr— +0. Therefore, one might won-
der why the curvature scalar is finite foo € 1) or zero for
(0<w=1) at 7—+0. If the scale factor is expanded as
a(r)=a,7+3a,72+0(7r3), then the scalar curvature di-
verges unless,=0. So the finiteness of curvature requires W. T. Kim is very grateful to R. H. Brandenberger for
the absence of the order of in the asymptotic expansion of useful discussions. This work was supported by the Ministry
a(7) around 7=0. Let us exhibit two special cases @f  of Education, Project No. BSRI-97-2414, and the Korea Sci-
=1 andw=3$ for simplicity. Here the scale factors around ence and Engineering Foundation through the Center for
the initial comoving time are expanded as Theoretical Physics in Seoul National University.
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