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Critical energy flux and mass in solvable theories of 2D dilaton gravity
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In this paper we address the issue of determining the semiclassical threshold for black hole formation in the
context of a one-parameter family of theories which continuously interpolates between the RST and BPP
models. We find that the results depend significantly on the initial static configuration of the spacetime
geometry before the influx of matter is turned on. In some cases there is a critical energy density, given by the
Hawking rate of evaporation, as well as a critical mags (eventually vanishing In others there is neither
m., nor a critical flux.[S0556-282(98)07318-4

PACS numbegps): 04.70.Dy, 04.60.Kz

[. INTRODUCTION (a) family of models introduced if3] given by the action
S=S;+S,, where
Black holes are among the most fascinating and interest-
ing objects in modern theoretical physics. Discovered in the S :i J d2xy—g
context of general relativity, their understanding from the 20 9
point of view of quantum theory is one of the essential in-

N
gredients in the search of a unified theory of all fundamental 24 2 2 } 2
interactions. x| e RT4(V ) +ar7] 2 Z‘l (Vfi)
Classically black holes are “simple” objects; i.e., as their
name suggests they absorb any kind of matter, but since light 1.y

itself gets trapped in their gravitational field, they are invis- d

ible to any external observer. This view has however been

drastically modified by quantum considerations. The basic 1

process can be understood, heuristically, by considerings =— f d’xy—g
X ) N Sy

loops of virtual particles close to the event horizon; the

gravitational field of the hole is capable of capturing one N N

partner(provided its energy is negatiyeleaving the other X|——RO R+ —=(1-2a)(Ve)2+(a—1)¢R|.
free to reach infinity. Hawking1] has shown, in fact, that 48 12

they rather behave as hot bodies with temperatirg (1.2
=k, /27, wherek, is the surface gravity at the event hori-

zon. Fora=1/2 we recover the Russo-Susskind-Thorla¢RST)

In this paper we will consider the aspect of the formationmodel[5] and whera=0 the one given by Bose, Parker and
of black holes in a simplified context, namely two dimen- Peleg(BPP [6]. The classical limit of these theories, i.e.
sional dilaton gravity. In the classical theory ifF1l dimen- S;, is the Callan-Giddings-Harvey-StromingdCGHS
sions collapse of mattdin the form of conformally coupled model[7], which describes low-energy excitations along the
scalar fields always forms a stable black hole, no matter theinfinite throat of extremalmagneti¢ stringy black holes in
amount of total incoming energyM. The discovery of ex- four dimensions. Its general static solution is simply ex-
actly solvable models at the semiclassical lep@| where pressed in terms of a mass paraméferWhenM >0 it is a
the backreaction of the Hawking radiation on the backgroundlack hole and has the same causal structure as the
geometry can be analytically evaluated, has been very usef@chwarzschild solution; the cadé¢=0 is the well-known
for understanding many features of quantum black holdinear dilaton vacuum and, finally, fdl <O the spacetime
physics. geometry exhibits a naked timelike singularity.

In the present context we will consider a one-parameter In the semiclassical regiméwhich, we recall, makes
sense as an approximation to the full quantum theory only
for N—o, Ne?? fixed) it turns out that by requiring the

*Electronic address: AFABBRIL@LELAND.STANFORD.EDU absence of radiation at infinity Minkowski spacetime is no
TElectronic address: JINAVARRO@LIE.IFIC.UV.ES longer a solution of the equations of motion unless1/2
'Here and throughout the paper we will consider units where(i.e. the RST model For different values o& the “ground
fi=G=c=1. state” of the theory is a nonflat geometry asymptotically
?In four dimensions, however, there is a classical threshold foMinkowskian (as e2*—0) and, in the strong coupling re-
black hole formation; sep4]. gion, with generically a regular timelike boundary at a finite
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proper distance from any other poitibr a=0 it becomes, d’=—dotdo™, ¢=—\o 2.7

instead, an infinite throat and the spacetime is geodesically

completg. These solutions also represent the end-point obindo=(c"— o 7)/2.

the Hawking evaporation process. Finally, when M <0 there is a timelike singularity at
There are however other solutions, obtained by imposing*x™=—|M |/)\3, By cosmic censorship arguments this so-

reflecting boundary conditions along some timelike surfacdution should be excluded from the physical spectrum. How-

in the strong coupling region, which can also be considere@ver, we will see in the next section that we can nonetheless

regular from the point of view of the semiclassical theory.introduce semiclassical configurations which reduce, in the

We will use all such configurations as possible initial statesclassical limit, to these solutions. This simple fact will be

for the gravitational collapse process that we will investigateimportant for the discussion of our results.

Starting with the simple case of an incoming shock-wave

(Sec. V), we will then consider a constant energy density lIl. SEMICLASSICAL STATIC SOLUTIONS
flux (Sec. VJ and show finally, in Sec. VI, that the results OF THE RST-BPP MODELS
obtained have a rather general validity and apply for all types AND SPACETIME STRUCTURE

of collapsing null matter.
The solvability of the semiclassical thedBy, +S;, given
Il. CGHS MODEL: CLASSICAL SOLUTIONS in Egs. (1.1) and (1.2), is essentially due to the fact that
provided we perform the field redefinitions

In this section we will recall briefly the form of the clas-
sical solutions. The CGHS theory is given by the act&n N —24
of Eq. (1.1), whereR is the 2D Ricci scalarg the dilaton Q=T7ad+e ", 3.9
field, A? the cosmological constant afidrepresentN mass-
less conformally coupled scalar fields. N N

Choosing the conformal framds®=—e?’dx"dx~ the X=13p+ 1—2(a—l)¢+e*2‘f’, (3.2
equations of motion of this theory obtained by variation with

respect to the metric are and work in the conformal gauge, it is equivalent to a Liou-

N ville theory
Y 2 1
e *(4d.pd. p=202 )+ 2, 59.-fi0.f=0, (2.1 . "
=1
S=—Jd2x — (=9, xI_x+3.Q9_Q)
—24 -~ N 2020\ — ™ N
e 2920, 0_d—4d, dpd_d—\2€*)=0. (2.2
N
1
Variation of the dilaton and the matter fields gives + N\ 224~ DN > > o fia_fi|. (3.3
=1

—40,0_¢p+4d,.pi_dp+2d,.d_p+A\?e*=0, (2.3 _ , _ .
The equations of motion of this theory take a very simple

9,9 f,=0. (2.4  form
It is possible to fix the residual diffeomorphism invariance d.0-(x—Q)=0, (3.4
[i.e. the transformations™ —x’ *(x™) that preserve the con- y e QUN
formal framg and impose the Kruskal gauge choice d.d_x=— N2, (3.9
p=¢ (2.5 In addition to these equations the solutions to the equations

of motion have also to satisfy the constraifugich are ob-
for which the static solutions to the equations of motion taketained by variation of the full covariant action with respect to
the simple form g*7)

e*2¢=e*29=M—>\2x+x* (2.6) Et =1—2(—a dx+3:00.Q)
N : : 127N + X0 XT O+ +

The parameteM is identified with the Arnowitt-Deser-
Misner (ADM) mass.
The solutions withM >0 represent black holes: they are

characterized by a spacelike curvature singularity located ayheret, (x*) are functions of their arguments and depend
x*x~=MI/\®, event horizons ak* =0 and are asymptoti- on boundary conditions such as the choice of the quantum
cally Minkowskian as«<"x~—. state for the radiation fields. We can always choose the
The caseM =0 is the linear dilaton vacuum. This is easily Kruskal gaugey=9 (i.e. p= ¢) for which the general static
seen by transforming to coordinates” such that+Ax=  solutions with no radiation at infinity in terms of the original

=e™\" where fields read

N
1
tohxtg 2 aufio-t, (3.6
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Na N Na P(x")| N
—2d 4 Y2yt v— —  In( —)2yty— _ _ _
e + 12¢_ AXTX 48|n( AXTXT)+C e 2¢+E :—)\2X+(X + 2 —4—8|n(_)\2X+X )
(3.7
M(xT)
. . . i + +C, 4.1
andC is an integration constant. We can think of these so- A
lutions as being the “semiclassical versions” of those in Eq'whereP(x*)=fdx+Tf++ andM(x+)=)\fdx+x*TL+ are,

(2.9).

It is easy to realize that the linear dilaton vacu(@ri) is
not included in these solutions unleas: 3, in which case
\C is identified with the ADM mass. For different values of
a the only solutions that are completely regular are those fo
which

respectively, the Kruskal momentum and energy of the in-
falling matter(and T, . =3=N 4, f,0.f)).

As a first simple example, let us consider the case of a
shock-wave carrying an energy and propagating along the
hull line x*=xg , described by the energy-momentum ten-
sor

Na Tf :15(x+—x+). 4.2
1—In—>. (3.9 NG 0

48+ﬂ( 24

. N N
C=CE——(1—In—

Consider our initial static configuration to be one of those

The spacetime geometry for these cases is asymptotical ud|§d in the previous section with gene@c The solution
Minkowskian asx*x~—w (and e€24—0). In the strong- (4.1 is then

coupling regime the critical line wher€)’(4)=0, i.e., Na N

e 2?=Na/24, is generically at a finite distandsee[3]) e 2%+ %= —NFxT - Egln(—)\zx*x*)

except fora=0, where it takes the form of a semi-infinite

throat(we refer to[6] for the detail$. This regular boundary

can be considered on the same footing as the surfadeof -
4D Minkowski spacetime.

Considering the cas€<C one can show that we now 4.3
have a timelike curvature singularity along the line

o (XT—Xg)0(Xx"—xg)+C.

The critical line at the future of the shock-wave is therefore
given by

N Na Na

N2yt v— Y2ty — _ -

NXTX —48In( A XTXT)+C 24(1 In °a

N m
' a=—\NXxT(x"+A)— —=In(=\*>x"x")+ —+C,
3.9 48 \
' (4.4

. — 3 + —
When, insteadC>C the spacetime geometry presents Iight—vl/?r?(rs a/vgllel)]have defined =m/\"x, and a=(Na/24)[1

like weakly coupled singularities at*=0. It is however : . .
Let us first consider the casé<C. The onset of the

consistent in both these cas@ee[6] for a=0) to impose ; . : .
reflecting boundary conditions on a suitable timelike hyper2lack hole phase is when this curve becomes light-like. We
surface in order to avoid the region of strong coupling in thet€n €xpect an apparent horizon to form, thus shielding the

physical spacetime. The dynamical evolution of the boungSingularity from thehexternal observersl,( anld, in thi futgre
. - . asymptotic region, the evaporation to take place as has been
zrinrl)edself(;rncéTrflor]]afzrt;(hagnt%nfrlgzﬁd 18.9] for the RST shown in[3]. Once the singularity has become spacelike it is

no longer possible to impose reflecting boundary conditions,

The regularity of the solutions witli=C together with  \yhich would then violate causality, and the spacetime be-
the fact that they represent the end-point of the Hawking:omes “truly” singular.

evaporation of these modelsee[3]) suggests that they can  pifferentiating Eq.(4.4) we get
be considered the ground state of the theory. Any generic

solution would therefore have ADM méass(C— C). dx™  NA(xT+A)+N/4sx* @5
dx® N\t -N/4ex '
IV. BLACK HOLE FORMATION WITH A SHOCK-WAVE The critical condition
We begin our analysis of the dynamical solutions with ds?= —e?rerdxtdx =0, (4.6)
infalling matter by recalling that the general solutions to the _ - _ _
equations of motiori3.4), (3.5) and(3.6) take the form where p, is the value ofp along the critical line, is then
given, atx* =xg , in terms of a critical mass, :
. . .. 2 — mcr N

3We note, although it could seem superfluous, that this definition N Xg + o + +=0 4.7

of mass reduces to the classical ADM massn the classical limit. Ao 48X
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FIG. 2. Behavior of the singularity curve f@>0 both for the
shock-wave and<<N/48 cases.

critical mass for the formation of the black hole given by
[M|. m,, given by Eg.(4.9) can then be interpreted as the
analogous of such a classical critical mass.

Turning now to the cas€>C, i.e., >0, we see that Eq.
a4 : (4.9 has no solution. This is of no surprise, because the
corresponding initial static solution is already a black hole in
the classical limit. The singularity curve =0 persists until

161 the timex; =xg [1+ (\/m)B]. At this point the singularity
is given by the critical liné4.4), which again becomes light-
FIG. 1. Graph of the functioi(y) (we choseb=1). like at the end-point of the evaporation proc€sg. 2).
[herexa is given by EC](44) at X+:X8—]. Combining Egs. V. CONSTANT ENERGY DENSITY ELUX

(4.4) and (4.7) we get

Mg, N) N (mC,

a_CI<T+4_8_4_8|n X 4_8)'

In this section a more general flux of matter will be con-
sidered, namely an influx of constant energy denségtart-
ing atx™=xg . In the Kruskal gauge it is described by the
energy-momentum tensor
In order to understand this equation better, let us first con-
sider as our initial configuration the ground state solution €
C=C=(—N/48)[1—In(N/48)]+a. This gives simplym,, Tf++(X+)= Ny
=0, as already verified in the case of the RST mod¢bin (x7)

To analyze the other cases let us wrile=C+ S and  The golution to the equations of motion is, from E4.1),
define, for simplicity,y=m., /A (>0) andb=N/48. Equa-

4.9

O(x*—xg). (5.2

tion (4.8 can then be rewritten as
Na N
y e‘2¢+E =\ X+ —Eln(—)\sz“x‘)
bin|1+2|—y=g8. 4.9 Ao
b +
€
The graph of the functiorf(y)=b In(1+y/b)—y is repre- Ty |t Xg +C. 5.2

sented in Fig. 1.

AsC<C, i.e., <0, Eq.(4.9 has one solutioy,>0. As  The analysis of the formation of the black hole proceeds
B<<1 we can expand the logarithm and find qualitatively as in the previous section. The critical line

_ e 2?=Na/24 is now described by the curve
—2N(C-0C)
Me,~\ 4—8 (410)

€ N
a= —)\Zx*< X~ + | 4—8In(—)\2x*x*)
The existence of a critical massan be understood by con- Xo
sidering the classical limit of the solution8.7) with C € +
<C, i.e. Eq.(2.6) with M<O0. Also in this case there is a +5 |1t X +C (5.3

and the critical conditiords?’=0 along this surface defines
“See, for the BPP modd]10]. the relation
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)\2

SIS [ R B 54 oM
gl 6

We can now rewrite Eq5.3) using Eq.(5.4) in the form al

c= N1 € ol e
TR e VT Y Al | D Nk
(55) 014
The case of the ground state solutiés= C requires
N Q.081
€ _ €Ecr _N
T (5.6

Provided we introduce the asymptotic Minkowskian null co-

ordinate o™ =(1/\)In A\x™ we find that the threshold for

black hole formation is given by an energy flux of the form
0.04¢

2
f NA

Ta'+¢7+:4_8' (57)

This is nothing but the rate of evaporation of these two-
dimensional black hole&ee for instancg7]) and this result

is quite plausible because we would not expect, on physical
grounds, a black hole to form for subcritical fluxes because ¢ .
of the semiclassical Hawking effect. The same result was x
obtained in the RST model irb].

To analyze Eq(5.5) for other values ofc we introduce,
in order to simplify the expression, the quantities
=x"Ixg (>1), e instead ofe/\, b=N/48 andg=C—C.
We then rewrite Eq(5.5) as

1_5)

&
-
o
n4
N
"
»

FIG. 3. g(X)=b In[e/lbx+(1—e/b)]—€In x for b=1 and e=1/2
(subcritical flux.

physical interpretation is therefore the same. On the other
hand, for3>0 the equatiorg(x) =8 has no real solution;

i.e., the black hole starts to radiate but never disappears.

€
b In 5X+ b€ In x=8. (5.8

. ~ . VI. DISCUSSION AND CONCLUSIONS
On the basis of the results for the c&e C (8=0) we will

consider the “subcritical”’e<b and “supercritical” e>b We could ask, at this point, whether the results obtained
fluxes separately. in the last two sections are only specific to the types of in-
For e<b the graph of the functiorg(x)=b In[(e/b)x  falling matter considered. We can show quite easily that they
+(1—-¢€b)]—€ln x is represented in Fig. 3. We see that ashave instead a rather general validity. In the general case, for
B<0, Eq.(5.8) is never satisfied, which means that with this infalling fluxes of matter switched on &t =x, , the critical
subcritical flux the black hole is never formed, in completeline is given by
analogy with the casgg=0. Turning to 8>0 we find a
rather surprising result: for any values € N/48 Hawking

o 2 : ; e x*t N
radiation |s_always produ.ced. The smgula_rlty cuwe 0 a=— 22|+ (x™) B
transforms into a space-like curve at the time given by the A2 48
condition
(x")
+ N +C. (6.1

(5.9

i
X A
+ + 1+
X1 —Xg In X—+—xo(1+ ;,8
0

and fma"y it turns out to be ||ght_||ke at the end_point of The time at which the Singularity becomes null is related to

Hawking evaporation; =x; g~%(B) (see again Fig. 2 the critical Kruskal momentun®(x") through the equa-
The supercritical fluxe>b gives the functiory(x) in Fig. ~ ton

4. We see clearly that g8<0 the black hole forms at the

time xg 9~ 1(B) (>xg). In this case there is a critical mass

given by e In g %(B). This happened also in the shock-wave A2

scenario analyzed in the previous section and the possible

X +

=0. (6.2

Per(x") N
A2 * 48x*
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Starting fromh(xg)=0 the behavior of this function for
x*>xg is essentially given by its first derivative

Pcr(x+)(1_ X+2Tir+/b)
1+x P (x*)/b

h'(x*)=

(6.4

0.051 Provided thaP..(x")>0 (which is always true for classical

matte) we easily see thah’(x*)<0 for TS, >N/48"2

andh’(x")>0 asT%, <N/48™*2. The qualitative behavior

of the functionh(x) is therefore the same as in Figs. 3 and 4.
We can now summarize the results of our investigation as

follows. We have considered initial static geometries param-

etrized by the continuous parameter As c=<C, whereC
denotes the ground state solution, there is essentially a
threshold on the energy density of the incoming radiation
e.;=N\?/48 given by the Hawking rate of evaporation. For
e<e., in fact, it is not possible to form the black hole and
ase> e, there is, in addition, also a critical maG&nishing

whenC=C). WhenC>C the static semiclassical solution
can be interpreted as a sort of “black hole” in amstablg
equilibrium state. By sending in a small amount of energy
one induces the evaporation process, irrespective of the in-
coming density fluxe and with no critical mass. This is in
contrast with the thermal equilibrium black hole solutions
which maintain equilibrium even in the presence of incom-
ing matter.

We would like to mention that it could be of interest to
study the critical behavior for black hole formation in other
solvable models of 2D dilaton gravity with a different ther-
modynamic[11]. This will be considered in a future publi-

0.15¢

-0.2¢

0.28¢

FIG. 4. g(x) as in Fig. 3, but withbo=1 ande= 3/2 (supercriti-
cal flux).

Combining the previous two equations and considering th%ation
guantitiesB andb defined in the last section we obtain '
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