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Critical energy flux and mass in solvable theories of 2D dilaton gravity
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In this paper we address the issue of determining the semiclassical threshold for black hole formation in the
context of a one-parameter family of theories which continuously interpolates between the RST and BPP
models. We find that the results depend significantly on the initial static configuration of the spacetime
geometry before the influx of matter is turned on. In some cases there is a critical energy density, given by the
Hawking rate of evaporation, as well as a critical massmcr ~eventually vanishing!. In others there is neither
mcr nor a critical flux.@S0556-2821~98!07318-4#

PACS number~s!: 04.70.Dy, 04.60.Kz
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I. INTRODUCTION

Black holes are among the most fascinating and inter
ing objects in modern theoretical physics. Discovered in
context of general relativity, their understanding from t
point of view of quantum theory is one of the essential
gredients in the search of a unified theory of all fundamen
interactions.

Classically black holes are ‘‘simple’’ objects; i.e., as the
name suggests they absorb any kind of matter, but since
itself gets trapped in their gravitational field, they are inv
ible to any external observer. This view has however b
drastically modified by quantum considerations. The ba
process can be understood, heuristically, by conside
loops of virtual particles close to the event horizon; t
gravitational field of the hole is capable of capturing o
partner~provided its energy is negative!, leaving the other
free to reach infinity. Hawking@1# has shown, in fact, tha
they rather behave as hot bodies with temperature1 TH
5k1/2p, wherek1 is the surface gravity at the event hor
zon.

In this paper we will consider the aspect of the formati
of black holes in a simplified context, namely two dime
sional dilaton gravity. In the classical theory in 111 dimen-
sions collapse of matter~in the form of conformally coupled
scalar fields! always forms a stable black hole, no matter t
amount of total incoming energy2 M . The discovery of ex-
actly solvable models at the semiclassical level@2#, where
the backreaction of the Hawking radiation on the backgrou
geometry can be analytically evaluated, has been very us
for understanding many features of quantum black h
physics.

In the present context we will consider a one-parame

*Electronic address: AFABBRI1@LELAND.STANFORD.EDU
†Electronic address: JNAVARRO@LIE.IFIC.UV.ES
1Here and throughout the paper we will consider units wh

\5G5c51.
2In four dimensions, however, there is a classical threshold

black hole formation; see@4#.
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(a) family of models introduced in@3# given by the action
S5Scl1Sq , where

Scl5
1

2p E d2xA2g

3Fe22f@R14~¹f!214l2#2
1

2 (
i 51

N

~¹ f i !
2G

~1.1!

and

Sq5
1

2p E d2xA2g

3F2
N

48
Rh21R1

N

12
~122a!~¹f!21~a21!fRG .

~1.2!

For a51/2 we recover the Russo-Susskind-Thorlacius~RST!
model@5# and whena50 the one given by Bose, Parker an
Peleg ~BPP! @6#. The classical limit of these theories, i.
Scl , is the Callan-Giddings-Harvey-Strominger~CGHS!
model@7#, which describes low-energy excitations along t
infinite throat of extremal~magnetic! stringy black holes in
four dimensions. Its general static solution is simply e
pressed in terms of a mass parameterM . WhenM.0 it is a
black hole and has the same causal structure as
Schwarzschild solution; the caseM50 is the well-known
linear dilaton vacuum and, finally, forM,0 the spacetime
geometry exhibits a naked timelike singularity.

In the semiclassical regime~which, we recall, makes
sense as an approximation to the full quantum theory o
for N→`, Ne2f fixed! it turns out that by requiring the
absence of radiation at infinity Minkowski spacetime is
longer a solution of the equations of motion unlessa51/2
~i.e. the RST model!. For different values ofa the ‘‘ground
state’’ of the theory is a nonflat geometry asymptotica
Minkowskian ~as e2f→0) and, in the strong coupling re
gion, with generically a regular timelike boundary at a fin
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proper distance from any other point~for a50 it becomes,
instead, an infinite throat and the spacetime is geodesic
complete!. These solutions also represent the end-point
the Hawking evaporation process.

There are however other solutions, obtained by impos
reflecting boundary conditions along some timelike surfa
in the strong coupling region, which can also be conside
regular from the point of view of the semiclassical theo
We will use all such configurations as possible initial sta
for the gravitational collapse process that we will investiga
Starting with the simple case of an incoming shock-wa
~Sec. IV!, we will then consider a constant energy dens
flux ~Sec. V! and show finally, in Sec. VI, that the resul
obtained have a rather general validity and apply for all ty
of collapsing null matter.

II. CGHS MODEL: CLASSICAL SOLUTIONS

In this section we will recall briefly the form of the clas
sical solutions. The CGHS theory is given by the actionScl
of Eq. ~1.1!, whereR is the 2D Ricci scalar,f the dilaton
field, l2 the cosmological constant andf i representN mass-
less conformally coupled scalar fields.

Choosing the conformal frameds252e2rdx1dx2 the
equations of motion of this theory obtained by variation w
respect to the metric are

e22f~4]6r]6f22]6
2 f!1(

i 51

N
1

2
]6 f i]6 f i50, ~2.1!

e22f~2]1]2f24]1f]2f2l2e2r!50. ~2.2!

Variation of the dilaton and the matter fields gives

24]1]2f14]1f]2f12]1]2r1l2e2r50, ~2.3!

]1]2 f i50. ~2.4!

It is possible to fix the residual diffeomorphism invarian
@i.e. the transformationsx6→x86(x6) that preserve the con
formal frame# and impose the Kruskal gauge choice

r5f ~2.5!

for which the static solutions to the equations of motion ta
the simple form

e22f5e22r5
M

l
2l2x1x2. ~2.6!

The parameterM is identified with the Arnowitt-Deser-
Misner ~ADM ! mass.

The solutions withM.0 represent black holes: they a
characterized by a spacelike curvature singularity locate
x1x25M /l3, event horizons atx650 and are asymptoti
cally Minkowskian asx1x2→`.

The caseM50 is the linear dilaton vacuum. This is easi
seen by transforming to coordinatess6 such that6lx6

5e6ls6
, where
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ds252ds1ds2, f52ls ~2.7!

ands[(s12s2)/2.
Finally, when M,0 there is a timelike singularity a

x1x252uM u/l3. By cosmic censorship arguments this s
lution should be excluded from the physical spectrum. Ho
ever, we will see in the next section that we can nonethe
introduce semiclassical configurations which reduce, in
classical limit, to these solutions. This simple fact will b
important for the discussion of our results.

III. SEMICLASSICAL STATIC SOLUTIONS
OF THE RST-BPP MODELS

AND SPACETIME STRUCTURE

The solvability of the semiclassical theoryScl1Sq , given
in Eqs. ~1.1! and ~1.2!, is essentially due to the fact tha
provided we perform the field redefinitions

V5
N

12
af1e22f, ~3.1!

x5
N

12
r1

N

12
~a21!f1e22f, ~3.2!

and work in the conformal gauge, it is equivalent to a Lio
ville theory

S5
1

p E d2xF12

N
~2]1x]2x1]1V]2V!

1l2e24~x2V!/N1
1

2 (
i 51

N

]1 f i]2 f i G . ~3.3!

The equations of motion of this theory take a very simp
form

]1]2~x2V!50, ~3.4!

]1]2x52l2e24~x2V!/N. ~3.5!

In addition to these equations the solutions to the equat
of motion have also to satisfy the constraints~which are ob-
tained by variation of the full covariant action with respect
g66)

N

12
t65

12

N
~2]6x]6x1]6V]6V!

1]6
2 x1

1

2 (
i 51

N

]6 f i]6 f i , ~3.6!

where t6(x6) are functions of their arguments and depe
on boundary conditions such as the choice of the quan
state for the radiation fields. We can always choose
Kruskal gaugex5V ~i.e. r5f) for which the general static
solutions with no radiation at infinity in terms of the origin
fields read
1-2
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e22f1
Na

12
f52l2x1x22

N

48
ln~2l2x1x2!1C

~3.7!

andC is an integration constant. We can think of these
lutions as being the ‘‘semiclassical versions’’ of those in E
~2.6!.

It is easy to realize that the linear dilaton vacuum~2.7! is
not included in these solutions unlessa5 1

2 , in which case
lC is identified with the ADM mass. For different values
a the only solutions that are completely regular are those
which

C5Ĉ[2
N

48 S 12 ln
N

48D1
Na

24 S 12 ln
Na

24D . ~3.8!

The spacetime geometry for these cases is asymptotic
Minkowskian asx1x2→` ~and e2f→0). In the strong-
coupling regime the critical line whereV8(f)50, i.e.,
e22f5Na/24, is generically at a finite distance~see @3#!
except fora50, where it takes the form of a semi-infinit
throat~we refer to@6# for the details!. This regular boundary
can be considered on the same footing as the surfacer 50 of
4D Minkowski spacetime.

Considering the caseC,Ĉ one can show that we now
have a timelike curvature singularity along the line

2l2x1x22
N

48
ln~2l2x1x2!1C5

Na

24 S 12 ln
Na

24D .

~3.9!

When, instead,C.Ĉ the spacetime geometry presents lig
like weakly coupled singularities atx650. It is however
consistent in both these cases~see@6# for a50) to impose
reflecting boundary conditions on a suitable timelike hyp
surface in order to avoid the region of strong coupling in
physical spacetime. The dynamical evolution of the bou
aries for C,Ĉ has been considered in@8,9# for the RST
model and in@10# for the BPP model.

The regularity of the solutions withC5Ĉ together with
the fact that they represent the end-point of the Hawk
evaporation of these models~see@3#! suggests that they ca
be considered the ground state of the theory. Any gen
solution would therefore have ADM mass3 l(C2Ĉ).

IV. BLACK HOLE FORMATION WITH A SHOCK-WAVE

We begin our analysis of the dynamical solutions w
infalling matter by recalling that the general solutions to t
equations of motion~3.4!, ~3.5! and ~3.6! take the form

3We note, although it could seem superfluous, that this defini
of mass reduces to the classical ADM massM in the classical limit.
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-
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e22f1
Na

12
f52l2x1S x21

P~x1!

l2 D 2
N

48
ln~2l2x1x2!

1
M ~x1!

l
1C, ~4.1!

whereP(x1)5*dx1T11
f and M (x1)5l*dx1x1T11

f are,
respectively, the Kruskal momentum and energy of the
falling matter~andT11

f 5 1
2 ( i 51

N ]1 f i]1 f i).
As a first simple example, let us consider the case o

shock-wave carrying an energym and propagating along th
null line x15x0

1 , described by the energy-momentum te
sor

T 11
f 5

m

lx0
1 d~x12x0

1!. ~4.2!

Consider our initial static configuration to be one of tho
studied in the previous section with genericC. The solution
~4.1! is then

e22f1
Na

12
f52l2x1x22

N

48
ln~2l2x1x2!

2
m

lx0
1 ~x12x0

1!u~x12x0
1!1C.

~4.3!

The critical line at the future of the shock-wave is therefo
given by

a52l2x1~x21D!2
N

48
ln~2l2x1x2!1

m

l
1C,

~4.4!

where we have definedD5m/l3x0
1 and a5(Na/24)@1

2 ln(Na/24)#.
Let us first consider the caseC<Ĉ. The onset of the

black hole phase is when this curve becomes light-like.
then expect an apparent horizon to form, thus shielding
singularity from the external observers, and, in the futu
asymptotic region, the evaporation to take place as has b
shown in@3#. Once the singularity has become spacelike i
no longer possible to impose reflecting boundary conditio
which would then violate causality, and the spacetime
comes ‘‘truly’’ singular.

Differentiating Eq.~4.4! we get

dx2

dx1 5
l2~x21D!1N/48x1

2l2x12N/48x2
. ~4.5!

The critical condition

ds252e2rcrdx1dx250, ~4.6!

where rcr is the value ofr along the critical line, is then
given, atx15x0

1 , in terms of a critical massmcr :

l2S x0
21

mcr

l3x0
1D 1

N

48x0
1 50 ~4.7!n
1-3
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@herex0
2 is given by Eq.~4.4! at x15x0

1]. Combining Eqs.
~4.4! and ~4.7! we get

a2C5S mcr

l
1

N

48D2
N

48
lnS mcr

l
1

N

48D . ~4.8!

In order to understand this equation better, let us first c
sider as our initial configuration the ground state solut
C5Ĉ5(2N/48)@12 ln(N/48)#1a. This gives simplymcr
50, as already verified in the case of the RST model in@5#.

To analyze the other cases let us writeC5Ĉ1b and
define, for simplicity,y[mcr /l (.0) andb[N/48. Equa-
tion ~4.8! can then be rewritten as

b lnS 11
y

bD2y5b. ~4.9!

The graph of the functionf (y)5b ln(11y/b)2y is repre-
sented in Fig. 1.

As C,Ĉ, i.e.,b,0, Eq.~4.9! has one solutiony0.0. As
b!1 we can expand the logarithm and find

mcr;lA22N~C2Ĉ!

48
. ~4.10!

The existence of a critical mass4 can be understood by con
sidering the classical limit of the solutions~3.7! with C

,Ĉ, i.e. Eq. ~2.6! with M,0. Also in this case there is

4See, for the BPP model,@10#.

FIG. 1. Graph of the functionf (y) ~we choseb51).
08401
-
n

critical mass for the formation of the black hole given b
uM u. mcr given by Eq.~4.9! can then be interpreted as th
analogous of such a classical critical mass.

Turning now to the caseC.Ĉ, i.e.,b.0, we see that Eq
~4.9! has no solution. This is of no surprise, because
corresponding initial static solution is already a black hole
the classical limit. The singularity curvex250 persists until
the timex1

15x0
1@11(l/m)b#. At this point the singularity

is given by the critical line~4.4!, which again becomes light
like at the end-point of the evaporation process~Fig. 2!.

V. CONSTANT ENERGY DENSITY FLUX

In this section a more general flux of matter will be co
sidered, namely an influx of constant energy densityle start-
ing at x15x0

1 . In the Kruskal gauge it is described by th
energy-momentum tensor

T11
f ~x1!5

e

l~x1!2
u~x12x0

1!. ~5.1!

The solution to the equations of motion is, from Eq.~4.1!,

e22f1
Na

12
f52l2x1S x21

e

l3x0
1D 2

N

48
ln~2l2x1x2!

1
e

l S 11 ln
x1

x0
1D 1C. ~5.2!

The analysis of the formation of the black hole procee
qualitatively as in the previous section. The critical lin
e22f5Na/24 is now described by the curve

a52l2x1S x21
e

l3x0
1D 2

N

48
ln~2l2x1x2!

1
e

l S 11 ln
x1

x0
1D 1C ~5.3!

and the critical conditionds250 along this surface define
the relation

FIG. 2. Behavior of the singularity curve forb.0 both for the
shock-wave ande,N/48 cases.
1-4
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l2S x21
e

l3x0
1D 1S N

48
2

e

l D 1

x1 50. ~5.4!

We can now rewrite Eq.~5.3! using Eq.~5.4! in the form

a2C5
N

48 H 12 lnF S N

48
2

e

l D1
ex1

lx0
1G J 1

e

l
ln

x1

x0
1 .

~5.5!

The case of the ground state solutionC5Ĉ requires

e

l
5

ecr

l
[

N

48
. ~5.6!

Provided we introduce the asymptotic Minkowskian null c
ordinate s15(1/l)ln lx1 we find that the threshold fo
black hole formation is given by an energy flux of the for

T s1s1
f

5
Nl2

48
. ~5.7!

This is nothing but the rate of evaporation of these tw
dimensional black holes~see for instance@7#! and this result
is quite plausible because we would not expect, on phys
grounds, a black hole to form for subcritical fluxes becau
of the semiclassical Hawking effect. The same result w
obtained in the RST model in@5#.

To analyze Eq.~5.5! for other values ofC we introduce,
in order to simplify the expression, the quantitiesx
[x1/x0

1 (.1), e instead ofe/l, b[N/48 andb5C2Ĉ.
We then rewrite Eq.~5.5! as

b lnF e

b
x1S 12

e

bD G2e ln x5b. ~5.8!

On the basis of the results for the caseC5Ĉ (b50) we will
consider the ‘‘subcritical’’e,b and ‘‘supercritical’’ e.b
fluxes separately.

For e,b the graph of the functiong(x)5b ln@(e/b)x
1(12e/b)#2e ln x is represented in Fig. 3. We see that
b,0, Eq.~5.8! is never satisfied, which means that with th
subcritical flux the black hole is never formed, in comple
analogy with the caseb50. Turning to b.0 we find a
rather surprising result: for any values ofe,N/48 Hawking
radiation is always produced. The singularity curvex250
transforms into a space-like curve at the time given by
condition

x1
12x0

1ln
x1

1

x0
1 5x0

1S 11
l

e
b D ~5.9!

and finally it turns out to be light-like at the end-point
Hawking evaporationx2

1[x0
1g21(b) ~see again Fig. 2!.

The supercritical fluxe.b gives the functiong(x) in Fig.
4. We see clearly that asb,0 the black hole forms at the
time x0

1g21(b) (.x0
1). In this case there is a critical mas

given bye ln g21(b). This happened also in the shock-wa
scenario analyzed in the previous section and the poss
08401
-

-

al
e
s

e

le

physical interpretation is therefore the same. On the ot
hand, forb.0 the equationg(x)5b has no real solution;
i.e., the black hole starts to radiate but never disappears

VI. DISCUSSION AND CONCLUSIONS

We could ask, at this point, whether the results obtain
in the last two sections are only specific to the types of
falling matter considered. We can show quite easily that th
have instead a rather general validity. In the general case
infalling fluxes of matter switched on atx15x0

1 , the critical
line is given by

a52l2x1S x21
P~x1!

l2 D 2
N

48
ln~2l2x1x2!

1
M ~x1!

l
1C. ~6.1!

The time at which the singularity becomes null is related
the critical Kruskal momentumPcr(x

1) through the equa-
tion

l2S x21
Pcr~x1!

l2 D 1
N

48x1 50. ~6.2!

FIG. 3. g(x)5b ln@e/bx1(12e/b)#2e ln x for b51 and e51/2
~subcritical flux!.
1-5
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Combining the previous two equations and considering
quantitiesb andb defined in the last section we obtain

b5b lnF11
x1Pcr~x1!

b G2
Mcr~x1!

l
. ~6.3!

The functionh(x1)5b ln@11x1Pcr(x
1)/b#2Mcr(x

1)/l is the
analogue off (y) andg(x) considered in Secs. IV and V.

FIG. 4. g(x) as in Fig. 3, but withb51 ande53/2 ~supercriti-
cal flux!.
08401
e

Starting fromh(x0
1)50 the behavior of this function for

x1.x0
1 is essentially given by its first derivative

h8~x1!5
Pcr~x1!~12x12T11

cr /b!

11x1Pcr~x1!/b
. ~6.4!

Provided thatPcr(x
1).0 ~which is always true for classica

matter! we easily see thath8(x1),0 for T11
cr .N/48x12

andh8(x1).0 asT11
cr ,N/48x12. The qualitative behavior

of the functionh(x) is therefore the same as in Figs. 3 and
We can now summarize the results of our investigation

follows. We have considered initial static geometries para
etrized by the continuous parameterC. As C<Ĉ, whereĈ
denotes the ground state solution, there is essentiall
threshold on the energy density of the incoming radiat
ecr5Nl2/48 given by the Hawking rate of evaporation. F
e,ecr , in fact, it is not possible to form the black hole an
ase.ecr there is, in addition, also a critical mass~vanishing
when C5Ĉ). WhenC.Ĉ the static semiclassical solutio
can be interpreted as a sort of ‘‘black hole’’ in an~unstable!
equilibrium state. By sending in a small amount of ener
one induces the evaporation process, irrespective of the
coming density fluxe and with no critical mass. This is in
contrast with the thermal equilibrium black hole solutio
which maintain equilibrium even in the presence of inco
ing matter.

We would like to mention that it could be of interest
study the critical behavior for black hole formation in oth
solvable models of 2D dilaton gravity with a different the
modynamic@11#. This will be considered in a future publi
cation.
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