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Bounds on negative energy densities in flat spacetime
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We generalize results of Ford and Roman which place lower bounds—known as quantum inequalities—on
the renormalized energy density of a quantum field averaged against a choice of sampling function. Ford and
Roman derived their results for a specific non-compactly supported sampling function; here we use a different
argument to obtain quantum inequalities for a class of smooth, even and non-negative sampling functions
which are either compactly supported or decay rapidly at infinity. Our results hold-dimensional
Minkowski space §=2) for the free real scalar field of mass=0. We discuss various features of our bounds
in 2 and 4 dimensions. In particular, for massless field theory in two-dimensional Minkowski space, we show
that our quantum inequality is weaker than Flanagan’s optimal bound by a facior of
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I. INTRODUCTION pe

L= ———, 1.2
i i w(t2+ 72)
The stress-energy tensdr,, is said to obey the weak

energy conditio(WEC) if Topu?u°=0 for all timelike vec- j, \yhich - sets the time scale over which sampling occurs.

tors u®. This condition is obeyed by all known forms of \yit this sampling function, Ford and Roman have shown

classical matter, but is violated in quantum field theidryin 3] that in four dimensional Minkowski space, the averaged
which the renormalized energy density may become arb'?nergy density; ,, obeys the bound

trarily negative at points of spacetime. If extended regions o
large negative energy density occur in nature, a variety of 3

exotic phenomena might be possible, ranging from violations pLy= — o5 2G(2m7) 1.3
of the second law of thermodynamics and cosmic censorship 32m°r

to the creation of time machines and “warp drive.” Accord- ., (sufficiently well-behaver statesy and any >0,

ingly, it is important to understand the extent to which theWhere the real-valued functia® is independent off and is

weak energy condition may be violated. In a series of pape'% - . : I
. . ositive and strictly decreasing ¢t with G(0)=1. In two
[2-6], Ford, Roman and Pfenning have studied quantu imensions, they obtained the corresponding result

field theory in various flat and curved spacetimes and estab-

lished lower boundgknown asquantum inequalitigson the 1
time averaged energy densities measured by obseriédrs. PLy=— >F(2mT) (1.4
results have been employed to argue against the possibility T

of traversable wormholef7], warp drive [8] and also to
discuss the role of negative energy densities in the process ﬁfg
black hole evaporatiof®].

ereF(y)=1y?(Ko(y) +Ky(y)) and theK, are modified

ssel functions of the second kind.

To be specific, consider a free real scalar field of nrass In the present paper, we will improve an(_j generah;e the_se
bounds to cover more general sampling functions in

- - ; - - en
in d-dimensional Minkowski space, and [&;' denote the Minkowski space of arbitrary dimension. Some progress in

\r/?gorlmvi[eliid Eggzséﬁrlﬁregg\z?:og dQeliarggtm dlnenqeuralltlgsnpr@is direction has already been made by Flandd@hin the
elo 0 9 pected energy densibase of two-dimensional massless field theory. Flanagan de-

rived an optimal lower bound opx , given by

o= [ oo @

: 1 (f'(1))?
. - . min pf](/,Z—E f dtW (1.5
measured by a stationary observer at the spatial ofigin ¥ suppf
wheref is a non-negative sampling function and the angle . . .
brackets denote the expectation value in the quantum gtate fOF @ny smooth non-negative sampling function where

2 )
The sampling function employed by Foetlal.is the Lorent-  SUPPf denotes the support df” Flanagan's argument de-
zian function peaked at=0, pends critically on special features of two-dimensional mass-

less field theory. In this paper, we will consider arbitrary
smooth, non-negative, even sampling functidnsf rapid
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Interestingly, it turns out thagpaceaveraged energy densities in  2Flanagan also derives related quantum inequalities for other com-
four dimensions are not bounded belpub). ponents ofT,p.
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decrease at infinityincluding the possibility of compact sup- Il. PRELIMINARIES

port), and will obtain the slightly weaker bound We begin by stating our conventions. In

o n+ 1-dimensional Minkowski space;,;, denotes the metric
1 f () (1.6 with signature+—---—. The Klein-Gordon equation is
167 J suppf f(t) '

=

Pt.y=

(O+m?) = (7*"ddp+m?) =0 (2.9
in the two-dimensional massless case. However, our argu-
ment has the virtue of generalizing directly to both massive
field theory in two dimensions and to massive and masslesgnd the quantum fiel®(x) is defined by
field theory in four dimensional Minkowski space. Our gen-
eral quantum inequality im+ 1-dimensional Minkowski
space, is the bound —ikx g gf(k)elk-x)

(2.2

® J’ d"k @k
X)= -
(x) (2m)"V2w(k) alkje

Cn LTI 2L u
Pt,y= mfmdu(f (W)U Qn| 1

(1.7 where w(k)= V||k|>+m?, the n+1-vectork® has compo-
nents (w(k),k), and the annihilation and creation operators
for all (sufficiently well-behaverdquantum states), where  a(k) anda’(k) obey the canonical commutation relations
fY2(t) = \Jf(t), the hat denotes the Fourier transform and the
constantC,, is equal to the area of the unit—1-sphere
divided by (27)". The bounded non-negative functiofs,
are definedfor n=1) on[1,c) by

[a(k),a(k’)]=[a'(k),a’(k’)]=0

[a(k),a’(k)]=(2m)"8(k—k"). 2.3

X
Qn(X)=(n+ l)X*”“)J dyy*(y>-=1)" 1, (1.9
! The classical energy density of a figjdis

and obeyQ,(1)=0 andQ,(x)—1 asx—ow=. We plot Q,
andQz in Figs. 1 and 2. _ 2 2 2,9
The derivation of Eq(1.7) is quite simple and depends TOO_E (dop) +Zl (dip) +m<p“y, (2.4

mainly on the canonical commutation relations and the con-

volution theorem. Although we will argue formally here, we

expect that the elementary nature of the argument will facilifrom which the renormalizethormal orderefiquantum en-
tate a fully rigorous treatment. ergy density at positiont(0) is easily shown to be

n

d"kd"k’
(277_)2n

w(K)o(k)+k-k’
4w (k) o(k' )2 !

af(k)a(k/)ei(w(k)—w(k’))t_ a(k)a(k/)e—i(w(k)+w(k/))t}

oo(t,0)= J

2

[ P 1\ @i (0(K)— w(k" )t 1\ a— i ((K) + o(k" )t
+ 4(w(k)w(k’))1’2{a (k)a(k’)e +a(k)a(k))e VEH.C. 25

m

Finally, the Fourier transformi of a functionf on R is  that f is compactly supported Using f2 to denote the

defined by pointwise square root df [i.e., f¥4(t) = \/f(t)], the function
g defined by
?(w)=f dtf(t)e e, (2.6 _
h ()= 3.
J(w N .

Ill. A POSITIVITY RESULT

Let f be a smooth, even and non-negative functionfon on R is smooth, real-valued and even, decays rapidly at in-
which decays rapidly at infinitfincluding the possibility finity and obeys
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gxg=T, (3.2 Minkowski space to define two familief0 |weR*} of
operators on the Fock space of the Minkowski vacuum by

where the convolution is defined by
n

e[ 9k
(hl*hz)(w)=fm do’hy(0—o)hy(w’). (3.3 O‘”_f (2mn9leekat

+g(w+w(k))a'(k)}p(k). (3.9
Now let p be a real valued function oR", growing no
faster than polynomially. We use the annihilation and cre-Using the commutation relations and symmetrizing the inte-
ation operators of the scalar field in+1-dimensional grand ink andk’, we calculate

d"kd"k’
fdwO”O‘ fde 2 {9(0—w(k))g(w—w(k"))a'(k)a(k’)

+g(o+wk)glo+ o(k"))ak)a’(k")
+g(w—w(k)g(o+w(k))a'(k)a' (k")
+9(w+ w(k)g(w—wk’))a(k)a(k’)}p(k)p(k’)

% d"k
st fo do f G0t 0()2p(02 (39

where G(k,k")=(g*g)(w(K) + o(k")=F(a(k)+ w(k")).
. 1 d"kd"k’ " N (3.19
*=5f 2 {F(k,k")@'(k)a(k")+a'(k")a(k))

Since the right-hand side of E€.5) is (formally) a mani-

+G(k,k")(@"(k)a'(k")+a(k")a(k))}p(k)p(k’) festly positive operator, we conclude that the expectation
(3.6) value(S*), obeys the following bound:

and the functiong andG are given by

. = d"k
. (9= | o 29+ w(k)?p(k)?
F(kk') = | “doglo-o(k)go- k)

1
= — 2
tg+a()g@+ek) (@B x| @mn k)
and (3.11)
G(k,k")= dewg(w—w(k))g(va w(k")) in all sufficiently well behaved stateg As we will see, this
0 bound provides the key to our derivation of the quantum
+g(w+ o(k)g(w—wk). (3.9 Inequality(L..

We conclude this section with two remarks. Firstly, we
have argued rather formally and have interchanged orders of
integration at will. Nonetheless, we expect that lias rapid
decay at infinity(e.g., if f is a Schwartz test functigrour

. result can be established rigorously for a dense set of states
F(k,k’)zf dwg(w—w(k))g(w—w(k")) in the folium of the usual Minkowski vacuum, and conceiv-
e ably for all Hadamard states on the usual field algebra. Sec-
=(g*g)(w(k)— (k")) ondly, we do not claim that Ed3.11) is the sharpest bound
that can be placed on the expectation valu§of and in fact
=f(w(k)—w(k’)) (3.9 do not expect that the bound is actually attained by any rea-
sonable state), asy would necessarily belong to the kernel
and, similarly, of all Oi's (except, perhaps, for a set of measure gero

The expressions foF and G may be simplified, using the
fact thatg is even, to obtain
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IV. DERIVATION OF THE QUANTUM INEQUALITIES

The result derived above allows a simple proof of the energy inequalities. W4thin Sec. Ill, define

T~ [~ o

4.1

so thatp; ,=(Ts),. By Eq. (2.5 and the fact thaf is even, we have

1 ¢ d'kd"k’ w(K)o(k')+k -k’
Tf_Ef 2m2" 2(o(k)o(k’

1  d"kd"k’ NG
+_

2f 2m)%" 2(w(k)w(k’

with F andG given by Eqs(3.9) and(3.10. Clearly,T; is a
finite sum of operators of the fori&*. We therefore apply
the bound(3.11) for the various cases

k)= w(k) k)= ki k)= m
P( - 2wk)’ Pt = 20(k) P " 2ek)

4.3

and add the results, obtaining

1 (= d"k = 2
b= 5= | do [ et o)

C o0 o o~
=__nf da)f dw’fllz(cz)-i-w')zw'2
2w Jo m

X(w12_m2)nl27l (44)
for all (sufficiently well-behavepstatesy. Here,C,, is equal
to the area of the unih— 1-sphere divided by (2)" (with
the convention tha€,=1/m), that is,

1
n=2n—l,n_n/21'*(%n) ' (45)
If we now make the change of variables
U=wt+ow' v=ow’ (4.6

we find

C o —~ u
pi.y=— _n f du(fllz(u))zf dvvz(vz—mz)”/zfl
' 27 Jm m

Cn .
=D fmdu(fl’z(unzu”“Qn(%). (.7

where the function€Q,(x) are defined by Eq(1.8), thus

N2 {F(k,k)@"(Ka(k")+a'(k)a(k)+G(k k") @"(k)a'(k") +a(k")a(k))}

))1,2{F(k,k’)(aT(k)a(k')+aT(k’)a(k))—G(k,k’)(aT(k)aT(k’)+a(k’)a(k))}

4.2)

with Q,(1)=0 andQ,(x)—1 asx—x. Forn=2, Q,(x) is
strictly increasing o™, while Q,(x) exhibits a maximum
nearx=1.8 and decreases thereafter—see Figs. 1 and 2.
To conclude this section, we consider the scaling behavior
of Eq. (1.7). Let f,(t) be the scaled function
fL () =N"(t/N). 4.8
This function has the same integral oderasf, but with A
times the characteristic width. It is easy to see that
(2= (FP(\u))? 4.9
from which it follows that the bound for sampling function
f, at masam is equal tox " ("1 times the bound for sam-
pling function f at masshm. This is the expected scaling
behavior and is also exhibited by the quantum inequalities
(1.3) and(1.4) of Ford and Roman. Furthermore, it is clear
that the value of the bound..7) tends to zero for each fixed
f asm—. Thus we have

(4.10

lim \pg ,=0

A—o

and we recover the averaged weak energy condition in the
limit (cf. [11]).

V. SPECIAL CASES

In this section, we briefly discuss the most interesting
cases of the general quantum inequality derived above, and
compare our results with those of Flanadd] and Ford
and Romarn 3].

A. Two dimensions

As mentioned in the introduction, Flanagan has derived
an apparently optimal quantum inequality for massless two-
dimensional field theory10]. Substitutingn=1 andm=0

completing the derivation of our general quantum inequalityinto our bound Eq(1.7), and using the fact th&@,(x)—1 as

Eqg. (1.7). We note that eacl®,(x) is a positive function

x—oo, we find
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1.24 Figure 1 shows tha®Q;(x) exhibits a maximum value of
approximately 1.2 neax=1.8. We cannot exclude the pos-
sibility that massive fields in two-dimensions can exhibit
slightly stronger negative energy densities than massless
fields can(by a factor of at most 1)2Interestingly, a similar
phenomenon occurs in Ford and Roman’s treatri@hso it
would be worthwhile to determine whether this is indeed so,
or whether the peak is an artifact of the argumest Ford

and Roman suggest

B. Four dimensions

Just as in the two-dimensional case discussed above, the
0.67 four-dimensional quantum inequality takes a particularly
simple form for massless fields:

1 S
=— du(f¥2(u))u*
0.4 Pty 1673 fo (f¥A(u))
1 foc 1/21 2
=-— dt(fY" (1))~ 5.
o | duE) (55
0.2
In particular, for the Lorentzian function, we have
1 (= (2t2=71)%r 27
T ; : : T L= Tom? L,adt w(C+)° 2048777
* (5.6

FIG. 1. Graph ofQ,(x) on[1,10].
which is & of Ford and Roman’s resultl.3) in this case
1 (e L [recall thatG(0)=1]. This entails a slight tightening of the
Pty — j dut?(f¥%(u))?. (5.1)  constraints on traversable wormho[&s.
Ams Jo Finally, we state the form of Eq(1.7) in the four-

_ _ o dimensional massive case. In terms of the Fourier transform
The integrand is an even functionin so we may extend the of f, we have

range of integration to the whole d& and then employ

Parseval’'s theorem to yieldtaspace version of the quantum 1 S u
inequality P1v= " 163 jmdu(f (u)<u Q3(5> (5.7
1 (= 1 (f'(1)?
=>— — dt(fY¥? (t))%= — — , where
(5.2

1 1
Qs(X)=(1—X_2)1/2( 1- 2—2) T o log(x+ (x?—1)%?).
which should be compared with Flanagan’s boghd). Our X X 5.9
bound is seen to be weaker by a factor 3f there is no :
contradiction because we do not expect our bound to be OB Fig. 2 makes clear, the functid@s is bounded between

timal. Since Flanagan’s bound is six times stronger than thaztero and unity. Accordingly, the bour(@.5) is also a lower

of Fo.rd and Roman yvhen applied to the_ Lorentzian Sa.mp”.n%ound for massive fields: in four dimensiotisdeed, in any
function, our bound is accordingly four times stronger in this . . . ' ’
case spacetime dimension greater than or equal to jHrexeffect

' of introducing a mass cannot decrease the averaged energy

In _the two-dimensional massive case, the quantum maensity below the massless bound.
equality (1.7) becomes

(5.3

VI. CONCLUSION
m

b= gor | du@w)Q (3
Y 47 Jo ! We have given a simple derivation of a quantum inequal-
ity for the free real scalar field in Minkowski space of any
with Q; given by dimension, which allows more general sampling functions
than previously possible. In particular, our derivation allows

Q:(X)=(1—x"2)Y2+x"2 log(x+(x?—1)¥?. (5.4  for compactly supported sampling functions and therefore
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it this condition may be removed. In addition, we may specu-
late as to whether it is necessary tlidte smooth. Of course,

a necessary condition ohis that the integral on the right
hand side of Eq(1.7) should converge; this amounts to a
smoothness condition dnwhich becomes more stringent as
0.8 the spacetime dimension increasesd which is always sat-
isfied if f is actually smooth Thus, it may be that the
smoothness of could be relaxed t€* wherek depends on

n. However, it is clearly important thdthas some degree of
continuity. As an example, suppodeis the characteristic

0.67 function for the interval — r,7]CR. We have
— 4sirf ot
(Y w))2=—75—, 6.1
w
0.47 from which it follows that the integral in Eq1.7) diverges

for any n=1. Thus the quantum inequality provides no in-
formation in this case, which is consistent with results of
Garfinkle (quoted by Yurtsever inf12]l—see particularly
footnote [1] therein that the integral ofTg,' over sharply
0.21 defined boxes in spacetime can be unboundedly negative. As
mentioned above, the class of quantum states for which Eq.
(1.7 holds must also be clarified. It is likely that quantum
inequalities will hold for a dense class of states in the Fock
space built on the Minkowski vacuum; more generally, we
— hope that such inequalities might be established for the class
. of (globally) Hadamard statels3,14.
Second, we have seen that our bound is weaker by a fac-
FIG. 2. Graph 0fQs(x) on[1,10. tor of 2 than the optimal bound proposed by Flanaa,
removes any remaining doubt that the quantum inequalitie¥/hich was derived using special features of two-dimensional
of Ford and Roman might rely on subtle large scale effects tghassless field theory. It would be interesting to investigate
cancel local negative energy densities. In conclusion, w&vhether our argument could be improved to replicate Flana-
make various remarks. gan’s result and perhaps to obtain optimal bounds for the
First, the derivation given here has been somewhat formdPassive case and also higher dimensional spacetimes.
and lacking in mathematical rigor. However, we hope that _Finally, we anticipate no particular difficulties in general-
our argument is simple enough that a rigorous formulatioriZing our argument to provide quantum inequalities in curved
might be established without too much difficulty, and intendSPacetime. Again, we intend to return to this elsewhere.
to return to this issue elsewhere. Two elements of our dis-
cussion need to be more precisely specified: namely the class ACKNOWLEDGMENT
of sampling functions and the class of quantum states for C.J.F. was supported by EPSRC Grant No. GR/K29937 to
which Eq.(1.7) is valid. We have required that the sampling the University of York during the preliminary stages of this
functionf be even primarily for convenience, and expect thatwork.
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