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Bounds on negative energy densities in flat spacetime
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We generalize results of Ford and Roman which place lower bounds—known as quantum inequalities—on
the renormalized energy density of a quantum field averaged against a choice of sampling function. Ford and
Roman derived their results for a specific non-compactly supported sampling function; here we use a different
argument to obtain quantum inequalities for a class of smooth, even and non-negative sampling functions
which are either compactly supported or decay rapidly at infinity. Our results hold ind-dimensional
Minkowski space (d>2) for the free real scalar field of massm>0. We discuss various features of our bounds
in 2 and 4 dimensions. In particular, for massless field theory in two-dimensional Minkowski space, we show
that our quantum inequality is weaker than Flanagan’s optimal bound by a factor of3
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I. INTRODUCTION

The stress-energy tensorTab is said to obey the weak
energy condition~WEC! if Tabu

aub>0 for all timelike vec-
tors ua. This condition is obeyed by all known forms o
classical matter, but is violated in quantum field theory@1# in
which the renormalized energy density may become a
trarily negative at points of spacetime. If extended regions
large negative energy density occur in nature, a variety
exotic phenomena might be possible, ranging from violatio
of the second law of thermodynamics and cosmic censor
to the creation of time machines and ‘‘warp drive.’’ Accor
ingly, it is important to understand the extent to which t
weak energy condition may be violated. In a series of pap
@2–6#, Ford, Roman and Pfenning have studied quant
field theory in various flat and curved spacetimes and es
lished lower bounds~known asquantum inequalities! on the
time averaged energy densities measured by observers.1 The
results have been employed to argue against the possib
of traversable wormholes@7#, warp drive @8# and also to
discuss the role of negative energy densities in the proces
black hole evaporation@9#.

To be specific, consider a free real scalar field of masm
in d-dimensional Minkowski space, and letTab

ren denote the
renormalized stress-energy tensor. Quantum inequalities
vide lower bounds on the averaged expected energy den

r f ,c5E
2`

`

dt^T00
ren~ t,0!&c f ~ t ! ~1.1!

measured by a stationary observer at the spatial origin0,
where f is a non-negative sampling function and the an
brackets denote the expectation value in the quantum stac.
The sampling function employed by Fordet al. is the Lorent-
zian function peaked att50,
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1
Interestingly, it turns out thatspaceaveraged energy densities

four dimensions are not bounded below@15#.
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L~ t !5
t

p~ t21t2!
, ~1.2!

in which t sets the time scale over which sampling occu
With this sampling function, Ford and Roman have sho
@3# that in four dimensional Minkowski space, the averag
energy densityr f ,c obeys the bound

rL,c>2
3

32p2t4 G~2mt! ~1.3!

for all ~sufficiently well-behaved! statesc and anyt.0,
where the real-valued functionG is independent ofc and is
positive and strictly decreasing onR1 with G(0)51. In two
dimensions, they obtained the corresponding result

rL,c>2
1

8pt2 F~2mt! ~1.4!

whereF(y)5 1
2 y2

„K0(y)1K2(y)… and theKn are modified
Bessel functions of the second kind.

In the present paper, we will improve and generalize th
bounds to cover more general sampling functions
Minkowski space of arbitrary dimension. Some progress
this direction has already been made by Flanagan@10# in the
case of two-dimensional massless field theory. Flanagan
rived an optimal lower bound onr f ,c given by

min
c

r f ,c52
1

24p E
supp f

dt
„f 8~ t !…2

f ~ t !
~1.5!

for any smooth non-negative sampling functionf , where
supp f denotes the support off .2 Flanagan’s argument de
pends critically on special features of two-dimensional ma
less field theory. In this paper, we will consider arbitra
smooth, non-negative, even sampling functionsf of rapid

2Flanagan also derives related quantum inequalities for other c
ponents ofTab

ren.
© 1998 The American Physical Society10-1
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decrease at infinity~including the possibility of compact sup
port!, and will obtain the slightly weaker bound

r f ,c>2
1

16p E
supp f

dt
„f 8~ t !…2

f ~ t !
~1.6!

in the two-dimensional massless case. However, our a
ment has the virtue of generalizing directly to both mass
field theory in two dimensions and to massive and mass
field theory in four dimensional Minkowski space. Our ge
eral quantum inequality inn11-dimensional Minkowski
space, is the bound

r f ,c>2
Cn

2p~n11!
E

m

`

du„f 1/2̂~u!…2un11QnS u

mD ,

~1.7!

for all ~sufficiently well-behaved! quantum statesc, where
f 1/2(t)5Af (t), the hat denotes the Fourier transform and
constantCn is equal to the area of the unitn21-sphere
divided by (2p)n. The bounded non-negative functionsQn
are defined~for n>1) on @1,̀ ! by

Qn~x!5~n11!x2~n11!E
1

x

dyy2~y221!n/221, ~1.8!

and obeyQn(1)50 andQn(x)→1 as x→`. We plot Q1
andQ3 in Figs. 1 and 2.

The derivation of Eq.~1.7! is quite simple and depend
mainly on the canonical commutation relations and the c
volution theorem. Although we will argue formally here, w
expect that the elementary nature of the argument will fac
tate a fully rigorous treatment.
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II. PRELIMINARIES

We begin by stating our conventions. I
n11-dimensional Minkowski space,hab denotes the metric
with signature12¯2. The Klein-Gordon equation is

~h1m2!w[~hab]a]b1m2!w50 ~2.1!

and the quantum fieldF(x) is defined by

F~x!5E dnk

~2p!nA2v~k!
„a~k!e2 ik•x1a†~k!eik•x

…

~2.2!

where v(k)5Aiki21m2, the n11-vector ka has compo-
nents„v~k!,k…, and the annihilation and creation operato
a(k) anda†(k) obey the canonical commutation relations

@a~k!,a~k8!#5@a†~k!,a†~k8!#50

@a~k!,a†~k8!#5~2p!nd~k2k8!. ~2.3!

The classical energy density of a fieldw is

T005
1

2 H ~]0w!21(
i 51

n

~] iw!21m2f2J , ~2.4!

from which the renormalized~normal ordered! quantum en-
ergy density at position (t,0) is easily shown to be
T00
ren~ t,0!5E dnkdnk8

~2p!2n Fv~k!v~k8!1k•k8

4„v~k!v~k8!…1/2 $a†~k!a~k8!ei „v~k!2v~k8!…t2a~k!a~k8!e2 i „v~k!1v~k8!…t%

1
m2

4„v~k!v~k8!…1/2$a†~k!a~k8!ei „v~k!2v~k8!…t1a~k!a~k8!e2 i „v~k!1v~k8!…t%1H.c.G . ~2.5!
in-
Finally, the Fourier transformf̂ of a function f on R is
defined by

f̂ ~v!5E
2`

`

dt f~ t !e2 ivt. ~2.6!

III. A POSITIVITY RESULT

Let f be a smooth, even and non-negative function onR
which decays rapidly at infinity~including the possibility
that f is compactly supported!. Using f 1/2 to denote the
pointwise square root off @i.e., f 1/2(t)5Af (t)#, the function
g defined by

g~v!5
f 1/2̂~v!

A2p
~3.1!

on R is smooth, real-valued and even, decays rapidly at
finity and obeys
0-2
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g!g5 f̂ , ~3.2!

where the convolution! is defined by

~h1!h2!~v!5E
2`

`

dv8h1~v2v8!h2~v8!. ~3.3!

Now let p be a real valued function onRn, growing no
faster than polynomially. We use the annihilation and c
ation operators of the scalar field inn11-dimensional
08401
-

Minkowski space to define two families$O v
6uvPR1% of

operators on the Fock space of the Minkowski vacuum b

Ov
65E dnk

~2p!n $g„v2v~k!…a~k!

6g„v1v~k!…a†~k!%p~k!. ~3.4!

Using the commutation relations and symmetrizing the in
grand ink andk8, we calculate
E
0

`

dvO v
6†O v

65E
0

`

dvE dnkdnk8

~2p!2n $g„v2v~k!…g„v2v~k8!…a†~k!a~k8!

1g„v1v~k!…g„v1v~k8!…a~k!a†~k8!

6g„v2v~k!…g„v1v~k8!…a†~k!a†~k8!

6g„v1v~k!…g„v2v~k8!…a~k!a~k8!%p~k!p~k8!

5S61E
0

`

dvE dnk

~2p!n g„v1v~k!…2p~k!2, ~3.5!
ion

m

e
s of
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v-
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S65
1

2 E dnkdnk8

~2p!2n $F~k,k8!„a†~k!a~k8!1a†~k8!a~k!…

6G~k,k8!„a†~k!a†~k8!1a~k8!a~k!…%p~k!p~k8!

~3.6!

and the functionsF andG are given by

F~k,k8!5E
0

`

dvg„v2v~k!…g„v2v~k8!…

1g„v1v~k!…g„v1v~k8!… ~3.7!

and

G~k,k8!5E
0

`

dvg„v2v~k!…g„v1v~k8!…

1g„v1v~k!…g„v2v~k8!…. ~3.8!

The expressions forF and G may be simplified, using the
fact thatg is even, to obtain

F~k,k8!5E
2`

`

dvg„v2v~k!…g„v2v~k8!…

5~g!g!„v~k!2v~k8!…

5 f̂ „v~k!2v~k8!… ~3.9!

and, similarly,
G~k,k8!5~g!g!„v~k!1v~k8!…5 f̂ „v~k!1v~k8!….
~3.10!

Since the right-hand side of Eq.~3.5! is ~formally! a mani-
festly positive operator, we conclude that the expectat
value ^S6&c obeys the following bound:

^S6&c>2E
0

`

dvE dnk

~2p!n g„v1v~k!…2p~k!2

52
1

2p E
0

`

dvE dnk

~2p!n f 1/2̂
„v1v~k!…2p~k!2

~3.11!

in all sufficiently well behaved statesc. As we will see, this
bound provides the key to our derivation of the quantu
inequality ~1.7!.

We conclude this section with two remarks. Firstly, w
have argued rather formally and have interchanged order
integration at will. Nonetheless, we expect that iff has rapid
decay at infinity~e.g., if f is a Schwartz test function! our
result can be established rigorously for a dense set of st
in the folium of the usual Minkowski vacuum, and concei
ably for all Hadamard states on the usual field algebra. S
ondly, we do not claim that Eq.~3.11! is the sharpest bound
that can be placed on the expectation value ofS6, and in fact
do not expect that the bound is actually attained by any r
sonable statec, asc would necessarily belong to the kern
of all Ov

6’s ~except, perhaps, for a set of measure zero!.
0-3
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IV. DERIVATION OF THE QUANTUM INEQUALITIES

The result derived above allows a simple proof of the energy inequalities. Withf as in Sec. III, define

Tf5E
2`

`

T00
ren~ t,0! f ~ t ! ~4.1!

so thatr f ,c5^Tf&c . By Eq. ~2.5! and the fact thatf̂ is even, we have

Tf5
1

2
E dnkdnk8

~2p!2n

v~k!v~k8!1k•k8

2„v~k!v~k8!…1/2 $F~k,k8!„a†~k!a~k8!1a†~k8!a~k!…1G~k,k8!„a†~k!a†~k8!1a~k8!a~k!…%

1
1

2
E dnkdnk8

~2p!2n

m2

2„v~k!v~k8!…1/2$F~k,k8!„a†~k!a~k8!1a†~k8!a~k!…2G~k,k8!„a†~k!a†~k8!1a~k8!a~k!…%

~4.2!
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with F andG given by Eqs.~3.9! and~3.10!. Clearly,Tf is a
finite sum of operators of the formS6. We therefore apply
the bound~3.11! for the various cases

p~k!5
v~k!

A2v~k!
, p~k!5

ki

A2v~k!
, p~k!5

m

A2v~k!
~4.3!

and add the results, obtaining

r f ,c>2
1

2p E
0

`

dvE dnk

~2p!n v~k! f 1/2̂
„v1v~k!…2

52
Cn

2p E
0

`

dvE
m

`

dv8 f 1/2̂~v1v8!2v82

3~v822m2!n/221 ~4.4!

for all ~sufficiently well-behaved! statesc. Here,Cn is equal
to the area of the unitn21-sphere divided by (2p)n ~with
the convention thatC151/p), that is,

Cn5
1

2n21pn/2G~ 1
2 n!

. ~4.5!

If we now make the change of variables

u5v1v8 v5v8 ~4.6!

we find

r f ,c>2
Cn

2p E
m

`

du„ f 1/2̂~u!…2E
m

u

dvv2~v22m2!n/221

52
Cn

2p~n11!
E

m

`

du„f 1/2̂~u!…2un11QnS u

mD , ~4.7!

where the functionsQn(x) are defined by Eq.~1.8!, thus
completing the derivation of our general quantum inequa
Eq. ~1.7!. We note that eachQn(x) is a positive function
08401
y

with Qn(1)50 andQn(x)→1 asx→`. For n>2, Qn(x) is
strictly increasing onR1, while Q1(x) exhibits a maximum
nearx51.8 and decreases thereafter—see Figs. 1 and 2

To conclude this section, we consider the scaling beha
of Eq. ~1.7!. Let f l(t) be the scaled function

f l~ t !5l21f ~ t/l!. ~4.8!

This function has the same integral overR as f , but with l
times the characteristic width. It is easy to see that

„f l
1/2̂~u!…25l„f 1/2̂~lu!…2 ~4.9!

from which it follows that the bound for sampling functio
f l at massm is equal tol2(n11) times the bound for sam
pling function f at masslm. This is the expected scalin
behavior and is also exhibited by the quantum inequali
~1.3! and ~1.4! of Ford and Roman. Furthermore, it is cle
that the value of the bound~1.7! tends to zero for each fixed
f asm→`. Thus we have

lim
l→`

lr f l ,c>0 ~4.10!

and we recover the averaged weak energy condition in
limit ~cf. @11#!.

V. SPECIAL CASES

In this section, we briefly discuss the most interesti
cases of the general quantum inequality derived above,
compare our results with those of Flanagan@10# and Ford
and Roman@3#.

A. Two dimensions

As mentioned in the introduction, Flanagan has deriv
an apparently optimal quantum inequality for massless tw
dimensional field theory@10#. Substitutingn51 andm50
into our bound Eq.~1.7!, and using the fact thatQ1(x)→1 as
x→`, we find
0-4
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r f ,c>2
1

4p2 E
0

`

duu2
„f 1/2̂~u!…2. ~5.1!

The integrand is an even function inu, so we may extend the
range of integration to the whole ofR and then employ
Parseval’s theorem to yield at-space version of the quantum
inequality

r f ,c>2
1

4p E
2`

`

dt„f 1/28~ t !…252
1

16p E
supp f

dt
„f 8~ t !…2

f ~ t !
,

~5.2!

which should be compared with Flanagan’s bound~1.5!. Our
bound is seen to be weaker by a factor of3

2 ; there is no
contradiction because we do not expect our bound to be
timal. Since Flanagan’s bound is six times stronger than
of Ford and Roman when applied to the Lorentzian samp
function, our bound is accordingly four times stronger in th
case.

In the two-dimensional massive case, the quantum
equality ~1.7! becomes

r f ,c>2
1

4p2 E
0

`

duu2
„f 1/2̂~u!…2Q1S u

mD ~5.3!

with Q1 given by

Q1~x!5~12x22!1/21x22 log„x1~x221!1/2
…. ~5.4!

FIG. 1. Graph ofQ1(x) on @1,10#.
08401
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Figure 1 shows thatQ1(x) exhibits a maximum value o
approximately 1.2 nearx51.8. We cannot exclude the pos
sibility that massive fields in two-dimensions can exhi
slightly stronger negative energy densities than mass
fields can~by a factor of at most 1.2!. Interestingly, a similar
phenomenon occurs in Ford and Roman’s treatment@3# so it
would be worthwhile to determine whether this is indeed
or whether the peak is an artifact of the argument~as Ford
and Roman suggest!.

B. Four dimensions

Just as in the two-dimensional case discussed above
four-dimensional quantum inequality takes a particula
simple form for massless fields:

r f ,c>2
1

16p3 E
0

`

du„f 1/2̂~u!…2u4

52
1

16p2 E
2`

`

dt„f 1/29~ t !…2. ~5.5!

In particular, for the Lorentzian function, we have

rL,c>2
1

16p2 E
2`

`

dt
~2t22t2!2t

p~ t21t2!5 52
27

2048p2t4

~5.6!

which is 9
64 of Ford and Roman’s result~1.3! in this case

@recall thatG(0)51#. This entails a slight tightening of the
constraints on traversable wormholes@7#.

Finally, we state the form of Eq.~1.7! in the four-
dimensional massive case. In terms of the Fourier transf
of f , we have

r f ,c>2
1

16p3 E
m

`

du„f 1/2̂~u!…2u4Q3S u

mD ~5.7!

where

Q3~x!5~12x22!1/2S 12
1

2x2D2
1

2x4 log„x1~x221!1/2
….

~5.8!

As Fig. 2 makes clear, the functionQ3 is bounded between
zero and unity. Accordingly, the bound~5.5! is also a lower
bound for massive fields: in four dimensions~indeed, in any
spacetime dimension greater than or equal to three! the effect
of introducing a mass cannot decrease the averaged en
density below the massless bound.

VI. CONCLUSION

We have given a simple derivation of a quantum inequ
ity for the free real scalar field in Minkowski space of an
dimension, which allows more general sampling functio
than previously possible. In particular, our derivation allo
for compactly supported sampling functions and theref
0-5
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removes any remaining doubt that the quantum inequal
of Ford and Roman might rely on subtle large scale effect
cancel local negative energy densities. In conclusion,
make various remarks.

First, the derivation given here has been somewhat for
and lacking in mathematical rigor. However, we hope t
our argument is simple enough that a rigorous formulat
might be established without too much difficulty, and inte
to return to this issue elsewhere. Two elements of our
cussion need to be more precisely specified: namely the c
of sampling functions and the class of quantum states
which Eq.~1.7! is valid. We have required that the samplin
function f be even primarily for convenience, and expect th

FIG. 2. Graph ofQ3(x) on @1,10#.
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this condition may be removed. In addition, we may spe
late as to whether it is necessary thatf be smooth. Of course
a necessary condition onf is that the integral on the righ
hand side of Eq.~1.7! should converge; this amounts to
smoothness condition onf which becomes more stringent a
the spacetime dimension increases~and which is always sat
isfied if f is actually smooth!. Thus, it may be that the
smoothness off could be relaxed toCk wherek depends on
n. However, it is clearly important thatf has some degree o
continuity. As an example, supposef is the characteristic
function for the interval@2t,t#,R. We have

„f 1/2̂~v!…25
4 sin2 vt

v2 , ~6.1!

from which it follows that the integral in Eq.~1.7! diverges
for any n>1. Thus the quantum inequality provides no i
formation in this case, which is consistent with results
Garfinkle ~quoted by Yurtsever in@12#—see particularly
footnote @1# therein! that the integral ofT00

ren over sharply
defined boxes in spacetime can be unboundedly negative
mentioned above, the class of quantum states for which
~1.7! holds must also be clarified. It is likely that quantu
inequalities will hold for a dense class of states in the Fo
space built on the Minkowski vacuum; more generally, w
hope that such inequalities might be established for the c
of ~globally! Hadamard states@13,14#.

Second, we have seen that our bound is weaker by a
tor of 3

2 than the optimal bound proposed by Flanagan@10#,
which was derived using special features of two-dimensio
massless field theory. It would be interesting to investig
whether our argument could be improved to replicate Fla
gan’s result and perhaps to obtain optimal bounds for
massive case and also higher dimensional spacetimes.

Finally, we anticipate no particular difficulties in genera
izing our argument to provide quantum inequalities in curv
spacetime. Again, we intend to return to this elsewhere.
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