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Semiclassical gravitation and quantization for the Bianchi type-I universe with large anisotropy
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We use a perturbative method to evaluate the effective action of a free scalar field propagating in Bianchi
type-I spacetime with large space anisotropy. The zeta-function regularization method is used to evaluate the
action to second order in the Schwinger perturbative formula. As the quantum corrections contain a fourth
derivative in the metric we apply the method of iterative reduction to reduce it to second-order form to obtain
a self-consistent solution of the semiclassical gravity theory. The reduced Einstein equation shows that the
space anisotropy, which will be smoothed out during the evolution of universe, may play an important role in
the dynamics of early universe. We quantize the corresponding minisuperspace model to investigate the
behavior of the space anisotropy in the initial epoch. From the wave function of the Wheeler-DeWitt equation
we see that the probability for the Bianchi type-I spacetime with large anisotropy is less than that with small
anisotropy.@S0556-2821~98!06418-2#

PACS number~s!: 04.62.1v, 11.10.Gh
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I. INTRODUCTION

The effective action plays an important role in investig
ing the theory of quantum fields in curved spacetime. In
conformally flat spacetime the effective action can be co
pletely determined by the local geometry@1#. If the space-
time is not conformally flat then the effective action cou
not be evaluated exactly and one can only evaluate i
perturbation. Many years ago, Hartle and Hu@2# used the
dimensional regularization method to expand the effec
action of a scalar field propagating in Bianchi type-I spa
time to the second order of space anisotropy. From the
fective action they investigated the problem of dissipat
space anisotropy by quantum field effects@3#. This method
has also been used to investigate the quantum field in
inhomogeneous spacetime@4# and a cosmic string@5#. How-
ever, as these results are restricted to a spacetime with s
anisotropy it is of value to investigate the case with lar
anisotropy.

In this paper a simple prescription for the expansion of
effective action in the Bianchi type-I universe with large a
isotropy is described. We use the zeta-function regulariza
method to evaluate the renormalized effective action to s
ond order in the Schwinger perturbative formula@6#. As the
quantum corrections contain up to a fourth derivative in
metric the associated Einstein equation will suffer the pr
lems of changing the Hamiltonian structure, lacking stabil
and unphysical solutions appearing, etc.@7–9#. Therefore,
we apply the method of iterative reduction to reduce it to
second-order equation@9#. We then investigate the reduce
equation and see that the space anisotropy, which will
smoothed out during the evolution of universe, may play
important role in the early universe. To see the behavio
the space anisotropy in the initial epoch we quantize
corresponding minisuperspace model. We analyze
Wheeler-DeWitt equation and see that probability for t
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Bianchi type-I spacetime with large anisotropy is less th
that with small anisotropy.

This paper is organized as follows. In Sec. II a simp
prescription to expand effective action in the Bianchi typ
universe with large anisotropy is described. It then uses
zeta-function regularization method to evaluate the effec
action to second order in the Schwinger perturbative f
mula. In Sec. III the method of iterative reduction is used
reduce the action to the second-order form. The solution
the reduced Einstein equation is then analyzed. In Sec. IV
quantize the reduced action and analyze the associ
Wheeler-DeWitt equation. The last section is devoted t
short summary.

II. EXPANSION OF EFFECTIVE ACTION WITH LARGE
ANISOTROPY

A. Method

We consider the Lagrangian describing a massless sc
field conformally coupling to the gravitational background

L52
1

2
gmn]mF]nF2

1

12
RF2, ~2.1!

whereR is the curvature scalar. We will calculate the reno
malized effective action in the Bianchi type-I spacetime w
the line element@10#

d2s5gmndxmdxn52dt21S ie
2b idxi

2, ~2.2!

where

b1[b11)b2 , b2[b12)b2 , b3[22b1 .
~2.3!

The effective action in the metricg̃mn5a(t)2gmn can be
found through a conformal transformation formula, whi
will be described in Sec. II C.

The Hamiltonian associated with the Lagrangian d
scribed in Eq.~2.1! can be written as
© 1998 The American Physical Society07-1
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H5H01D1~Q2Q0!, ~2.4!

where

H0[] t
22S i]xi

21Q0 , ~2.5!

D[S jD j]xj

25S j~12e22b j !]xi

2, ~2.6!

and

Q[ḃ1
2 1ḃ2

2 ~2.7!

denotes the quantity of the space anisotropy.
In this paper we will investigate the back-reaction effe

only for the universe near the initial epoch. If we denote
large space anisotropy at initial timet50 by Q0 then the
quantity (Q2Q0) in Eq. ~2.4! will be very small if the uni-
verse is sufficiently near the initial epoch. From Eqs.~3.11!
and~3.13! we see that for the universe near the initial epo
the anisotropyQ0 can be very large but the functionb j and
the quantityD j are very small. Thus the effective action ca
be evaluated in perturbation by regardingD j and (Q2Q0)
as the small quantities. The fact thatD j is small is very
crucial for the perturbation expansion used in this paper
short, the limitation of the computation in this paper is tha
is valid only for a very short time; indeed, for a paramet
cally short time. It is in this limitation that theb j function
08400
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~and thusD j ) are small and the derivative ofb j functions
~and thus the anisotropyQ0) are large at the initial time.
Thus we can regardD j and (Q2Q0) as the small quantities
and the effective action can be evaluated in perturbation

B. Calculations

We will evaluate the renormalized effective action by t
z-function regularization@1,11# method:

W52
i

2
ln@Det~H !#52

i

2
@z8~0!1z~0!ln m2#.

~2.8!

In the proper-time formalism, thez function can be found
from the relation

z~n!5@G~n!#21E d4x@2g~x!#1/2

3E
0

`

ids~ is!n21^xueisHux&, ~2.9!

where the operatorH is defined in Eq.~2.4! and it is under-
stood thatH→H2 i«, with « a small positive quantity. As
the quantities (Q2Q0) andD are small thez function can be
calculated by the Schwinger perturbative formula@6#
Tr e2 isH5TrFe2 isH02 is e2 isH0~Q2Q0!2 is e2 isH0D1
s2

2 E
0

1

du e2 is~12u!H0~Q2Q0!e2 isuH0~Q2Q0!

1
s2

2 E
0

1

du e2 is~12u!H0~Q2Q0!e2 isuH0D1
s2

2 E
0

1

du e2 is~12u!H0De2 isuH0~Q2Q0!

1
s2

2 E
0

1

du e2 is~12u!H0De2 isuH0D1•••G . ~2.10!

Then thez function can be expressed as

z~n!5z0~n!1zQ~n!1zD~n!1zQQ~n!1zQD~n!1zDQ~n!1zDD~n!1•••, ~2.11!

wherez i(n) andz i j (n) are defined and calculated below.
We first calculatez0(n):

z0~n![@G~n!#21E d4x@2g~x!#1/2E
0

`

ids~ is!n21^xue2 isH0ux&

5 i @G~n!#21E d4xE d4p

~2p!4 E
0

`

dssn21e2s~p21Q0!

5 i E d4xE d4p

~2p!4 ~p21Q0!2n

5 i ~32p2!21E d4xQ0
2F11nS 3

2
2 ln Q0D1O~n2!G . ~2.12!

To obtain the above result we have carried the integration by lettings→ is and rotatingp0 throughp/2 in the complex plane.
This procedure will also be used in the following.
7-2
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Next, we calculatezQ(n):

zQ~n![@G~n!#21E d4x@2g~x!#1/2E ids~ is!n21~2 is!^xue2 isH0~Q2Q0!ux&

52 i @G~n!#21E d4x~Q2Q0!E d4p

~2p!4 E0

`

dssne2s~p21Q0!

5 i ~16p2!21E d4x~Q2Q0!Q0@11n~12 ln Q0!1O~n2!#. ~2.13!

In the same way we have

zD~n![@G~n!#21E d4x@2g~x!#1/2E ids~ is!n21~2 is!^xue2 isH0Dux&

5 i ~64p2!21E d4x~S jD j !Q0
2F11nS 3

2
2 ln Q0D1O~n2!G . ~2.14!

We now turn to evaluate the functionsz i j (n) which involves more calculations. From the definition we have

zQQ~n![@G~n!#21E d4x@2g~x!#1/2E ids~ is!n21S 2
s2

2 D E
0

1

du^xue2 is~12u!H0~Q2Q0!e2 isuH0~Q2Q0!ux&

52@2G~n!#21E d4x@Q~x0!2Q0#E d4y@Q~y0!2Q0#E d4p

~2p!4 E d4k

~2p!4 E0

`

ds~s!n11

3E
0

1

du e2$s~12u!@k21Q0~x0!#1su@p2Q0~y0!#%ei ~p2k!•~x2y!,

in which we have inserted the complete setSkuk&^ku or Spup&^pu before the operatorH0 . After integrating the variablesu, s,
y, p, andk, then shiftingk0→k01p0 and performing thep0 , k0 andy0 integrations we have the final result:

zQQ~n!52 i
p

4 E d4x~Q2Q0!2@12n ln Q01O~Q0
21!1O~n2!#. ~2.15!

Through the same manipulation we have

zQD~n![@G~n!#21E d4x@2g~x!#1/2E ids~ is!n21S 2
s2

2 D E
0

1

du^xue2 is~12u!H0~Q2Q0!e2 isuH0Dux&

52 i
3p

24 E d4x~Q2Q0!Q0S jD j$11n@12 ln Q0#1O~Q0
21!1O~n2!%, ~2.16!

zDQ~n![@G~n!#21E d4x@2g~x!#1/2E ids~ is!n21S 2
s2

2 D E
0

1

du^xue2 is~12u!H0De2 isuH0~Q2Q0!ux&

52 i
3p

24 E d4x~Q2Q0!Q0S jD j$11n@12 ln Q0#1O~Q0
21!1O~n2!%, ~2.17!

zDD~n![@G~n!#21E d4x@2g~x!#1/2E ids~ is!n21S 2
s2

2 D E
0

1

du^xue2 is~12u!H0De2 isuH0Dux&

52 i
p

16 E d4xQ0
2@2~S jD j !

21S jD j
2#H 11nF3

2
2 ln Q0G1O~Q0

21!1O~n2!J . ~2.18!
084007-3
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WUNG-HONG HUANG PHYSICAL REVIEW D58 084007
Now, substituting the calculatedz functions into Eq.~2.8!
we finally obtain the effective actionW@gmn# for the free
scalar field propagating in the metric~2.2!:

W@gmn#5E d4xF2
p2

64
Q0

2ln Q02
p2

32
~Q2Q0!Q0ln Q0

1
p2

128
~S jD j !Q0

2 lnQ0G , ~2.19!

in which, for convenience, we have let the parameterm51.
The effective action in Eq.~2.19! contains only these from
z0 , zQ , andzD . Those fromz i j are smaller than those from
z i and are therefore neglected. The Lagrangian density c
ing from z0 is a constant and can be absorbed by the ren
malization of a cosmological constant.

Note that the effective action in Eq.~2.19! dose not have
an imaginary part and thus there has been no particle
duced@1#. This is because in our approximation we assu
that both (Q2Q0) and D are small. This means that w
constrain the system near the initial epoch; thus the univ
has yet not evolved too much and the particle has yet
e

ric
o

n

a
ch
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been produced. This behavior had also been found in
previous investigation about a rotational spacetime@12#. Fol-
lowing the above calculations we can see that if we let
universe evolve, thusQ approaches zero, then the effectiv
action will have an imaginary part and a particle has be
produced. However, in this case the universe will be far fr
the initial stage. However, as will be seen in the next secti
what we are concerned with is the state near the initial epo
not far from the initial epoch. Thus, the effective action
Eq. ~2.19! is a suitable one which will be used to analyze
the next section. Note also that the imaginary part, if it a
pears, may possibly be shown inz i j , as those in@12,13#.
Thus, in this section we calculate the zeta function to
second order in the Schwinger perturbative to see whe
the imaginary part will be appear. However, our calculati
shows that it does not appear, at least to the order we h
evaluated.

C. Conformal transformation

The more cosmologically interesting spacetime is that
scribed by the metric
r-
d2s5g̃mndxmdxn5a~ t !2gmndxmdxn5a~ t !2@2dt21S ie
2b idx2#. ~2.20!

Now the effective action in the metricg̃mn[a(t)2gmn , denoted asW@ g̃mn#, can be easily found by the conformal transfo
mation formula@13#

W@ g̃mn#5W@gmn#1
1

16p2 \E d4x@2g~x!#1/2H A@U~RmnldRmnld24RmnRmn1R2!12RU,mU ,m24RmnU ,mU ,n

24U,m
;mU,lU ,l22~U,lU ,l!2#1BFUS RmnldRmnld22RmnRmn1

1

3
R2D1

2

3
R~U,m

;m1U,mU ,m!

22U,mU ,m24U,m
;mU,lU ,l22~U,lU ,l!2G J , ~2.21!
i-
ral-

ich
the
r is

ld,
on
l

where U[ ln(a), A521/360, andB51/120. This formula
also appears in@14# in which the other applications wer
discussed. The explicit expression of Eq.~2.21! will be
shown in the next section.

III. REDUCED ACTION AND SEMICLASSICAL
GRAVITATION

From the effective actions shown in Eqs.~2.19! and~2.21!
we see that they contain a fourth derivative in the met
The associated system will thus suffer the problems
changing the Hamiltonian structure, lacking the stability, a
unphysical solutions appearing, etc.@7–9#. Therefore, we
will apply the method of iterative reduction to reduce it to
second-order equation. We will follow the method whi
was used by Parker and Simon@9# to find the reduced system
for the spacetime without space anisotropy.
.
f

d

The method of iterative reduction is as follows. The sem
classical gravitation theory is that described by the gene
ized Einstein equation with quantum corrections

Rmn2
1

2
gmnR58pG@Tmn

c 1Tmn
q #, ~3.1!

whereTmn
c is the stress tensor of the classical radiation wh

is included to support the expansion of the Universe at
late epoch compared with the Planck time. Other matte
neglected because it becomes negligible@9#. The quantity
Tmn

q is the renormalized stress tensor of the quantum fie
which can be found from the renormalized effective acti
W@ g̃mn#. BecauseTmn

q is the quantum correction term, it wil
be first order in\. Thus, to zeroth order of\, we can neglect
Tmn

q .
7-4
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SEMICLASSICAL GRAVITATION AND QUANTIZATIO N . . . PHYSICAL REVIEW D 58 084007
~I! Therefore, from the Bianchi identityTmn
c ;n50 we have

a relation

«>«0a24, ~3.2!

where« is the energy density of classical radiation and«0 an
integration constant.

~II ! The spatial-spatial component Einstein equation le
to

a22~ ȧ2a221äa211b̈112ḃ i ȧa21!5
8pG

3
«. ~3.3!

It then implies two useful relations

a22~ ȧ2a221äa21!5
8pG

3
«, ~3.4!

b̈612ḃ6a2150,⇒ ḃ6>c6a22, ~3.5!

wherec6 are the integration constants.
~III ! The time-time component Einstein equation leads

ȧ2a222Q5
8pG

3
a2«. ~3.6!

Then from Eqs.~3.2!, ~3.5!, and~3.6! we have the relation

ȧ2>
8pG

3
«01Aa22, ~3.7!

where

A[~c1
2 1c2

2 !. ~3.8!

Differentiating Eq.~3.7! leads to

ä52Aa23. ~3.9!

And differentiating Eq.~3.9! leads to

â53Aa24ȧ. ~3.10!

These relations will be substituted into the renormalized
fective actions~2.19! and ~2.21! to reduce them to second
order equations. Before doing this we will see two use
results.

First, from Eq. ~3.5! we see that the space anisotro
defined in Eq.~2.7! becomes

Q[Aa24. ~3.11!

Thus the anisotropy will be smoothed out during the evo
tion of expanding universe~i.e., if ‘‘ a’’ becomes large.!.
However, if the value of ‘‘A,’’ which is proportional to the
space anisotropyQ, was not too small then the anisotrop
may be very large when ‘‘a’’ is small ~i.e., near the initial
epoch!. This means that the anisotropy may affect the e
lution of the Universe in the early epoch. However, it
08400
s

o

f-

l

-

-

known that the determination of the constant ‘‘A’’ in a
theory is the question of the initial problem and it can on
be solved by the theory of the quantum cosmology@15,16#.
Thus, we will quantize the reduced semiclassical gravitat
theory to investigate this problem in the next section.

Next, from Eq.~3.7! it is seen that when ‘‘a’’ is small
then we can neglect the«0 term and it has a solution

a5~2At1a0
2!1/2. ~3.12!

Substituting this relation into Eq.~3.5! we find that

b j5cj~2A!21ln@~2At1a0
2!a0

22#. ~3.13a!

Thusb j becomes small ast→0. In this case we see that th
functionsD j defined in Eq.~2.6! become

D j52cj~2A!21ln@~2At1a0
2!a0

22#, ~3.13b!

which can be regarded as a small function ast→0. This
proves the crucial assumption adopted in Sec. II A. Let
emphasize that the relations of Eqs.~3.12! and ~3.13! can
only be used for the universe near the initial epoch and
calculation in Sec. II B is a good approximation only for th
universe near the initial time.

Before entering into the next section we will mention th
the constanta0 in Eq. ~3.12! will not be zero. This is becaus
as a→0 the time-time component of the reduced Einste
equation becomes

a22ȧ21
4

9
A2a262Aa242

8pG

3
«0a2250, ~3.14!

in which the first term is coming from the classically Ein
stein action, the second and third terms are coming from
leading part of the quantum corrections in Eqs.~2.21! and
~2.19! respectively, while the last term is that from the cla
sical radiation. Equation~3.14! shows an interesting fact tha
the classical radiation does not affect the initial state of
universe much and it is the conformal part that will domina
the contribution. Now Eq.~3.14! could be regarded as a
equation describing a particle with a unit mass in a poten
U(a) which becomes positively infinite asa→0 and thus the
universe will be bounced at a positive radiala0 . Note that
the radiala0 must be a small value because the conform
part is a quantum correction which will contain\. Such a
bounce solution is also shown in the semiclassical grav
tion model in the spacetime without anisotropy, as analy
by Parker and Simon@9#.

IV. QUANTIZATION OF THE REDUCED ACTION

Before performing the quantization we need some m
nipulations. First, for the later convenience we will chan
the metric to be

d2s52dt21e2aS ie
2b idx2, ~4.1!

which is a conventional form used in the Bianchi type
quantum cosmology@17,18#. In this metric form, after the
calculation, we can find, from Eqs.~2.19! and ~2.21! that
7-5
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W@gmn#5E d4xe2aF2
p2

64
Q0

2ln Q02
p2

32
~Q2Q0!Q0ln Q01

p2

128
~S jD j !Q0

2ln Q0G , ~4.2!

W@ g̃mn#5W@gmn#1
1

1920p2
\E d4xe3aH 2

3
ȧ422~ ä12ȧ2!2148aQ224~ ä13ȧ2!Q

112a@b̈1
2 1b̈2

2 12ȧ~ b̈1ḃ11b̈2ḃ2!1ȧ2Q#1
32

3
ȧḃ1

3 232ȧḃ1ḃ2
2 J . ~4.3!

Next, we express the reduction relations found in Eqs.~3.2!, ~3.5!, ~3.7!, ~3.8!, ~3.9!, and~3.10! in the metric form~4.1!, and
then substitute these new relations into Eqs.~4.2! and ~4.3!. The results are

W@gmn#5E d4xe2aF2
p2

64
A2a0

28ln~Aa0
24!2

p2

32
A2~a242a0

24!a0
24ln~Aa0

24!1
p2

128
~S jD j !A

2a0
28ln~Aa0

24!G , ~4.4!

W@ g̃mn#5W@gmn#1
1

1920p2 E d4xe3aH 2

3 S 8pG

3
e24a1Ae26aD 2

22S 32pG

3
e24a2Ae26aD 2

196aA2e212a2
160pG

3
Ae10a132ae26a~2c1

2 A14c1c2
3 !S 8pG

3
e24a1Ae26aD 1/2J . ~4.5!
is

q

um
us
re

ith

ce

e

Finally, the classical actionWc@ g̃mn# which shall be added
before analyzing the quantization of the reduced system

Wc@ g̃mn#5
1

16pG E d4xe3a@26ȧ216~ ḃ1
2 1ḃ2

2 !#,

~4.6!

whereG denotes the gravitational constant.
The total action to be quantized is the summation of E

~4.4!, ~4.5!, and~4.6!. From Eqs.~4.4! and~4.5! we see that
after using the method of iterative reduction the quant
correction dose not change the canonical momentums
in the classical action. Thus the canonical momentums a

Pa5dWc@ g̃mn#/da526ȧe3a, ~4.7!

Pb6
5dWc@ g̃mn#/db656ḃ6e3a, ~4.8!

which are those used in the quantum cosmology model w
out the quantum-field effects@17,18#. Then, the Hamiltonian
is defined by

H5Paȧ1Pb1
ḃ11Pb2

ḃ22L, ~4.9!

in which the Lagrangian densityL can be found from the
total action.

Now, through the canonically substituting

Pa→2 i ]/]a, ~4.10!

Pb6
→2 i ]/]b6 , ~4.11!

the Wheeler-DeWitt equation associated with the redu
semiclassical gravitational equation becomes
08400
s.

ed

-

d

d2C

da2
1

d2C

db1
2

1
d2C

db2
2

1U~a,A,b1 ,b2!C50, ~4.12!

where the potentialU is defined by

U~a,A,b1 ,b2!5Ua~a!1Ub~a,b1 ,b2!, ~4.13!

in which

Ua5
3

5p2 A2e26auau,

Ub52
9

8p2 e2a~b1
2 1b2

2 !A2e28a0ln~Ae24a0!.

~4.14!

To obtain the above equation we have let 8pG51 and con-
sidered only the initial epoch,a→2`, i.e., a→0. The
Wheeler-DeWitt equation~4.12! is too complex to be solved
exactly and some approximations shall be adopted.

When the universe is near initial epoch we can replaca
in Ub by a0 . ThenUb is only a function ofb1 andb2 and
thus Eq.~4.12! could be separated into two equations:

d2Ca

da2
1S 3

5p2 A2e26auau2CDCa50, ~4.15!
7-6
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d2Cb

db1
2

1
d2Cb

db2
2

1FC2
9

8p2
~b1

2 1b2
2 !A2e26a0ln~Ae24a0!G3Cb50,

~4.16!

if we take

C5CaCb . ~4.17!

Note that the numberC appearing in Eqs.~4.15! and ~4.16!
can be neglected ifa0→2`.

Now, Eq.~4.15! can be solved in the WKB approximatio
and the solution is

Ca5uau21/4e23uau/2expF2 i
3A

5p
uG~a!uG , ~4.18!

where

G~a![E dauaue23a. ~4.19!

Equation~4.16! can be solved exactly@19# and we have

Cb5KsH i
3

p
~8!21/2Ae23a0@~b1

2 1b2
2 !ln~Ae24a0!#1/2J ,

~4.20!

in which s is an integration constant, which is irrelevant
our discussion below, andKs is a Bessel function. From th
asympotical behavior of the Bessel function@19#

Ks~z!5S p

2zD
1/2

e2z@11O~z21!#, ~4.21!

we see thatCb is a decreasing function ofA andCb→0 if
A→`. Because the probability density of universe is prop
tional to uCaCbu2, we thus conclude that the Bianchi type
universe is not likely to be in a state with large space anis
ropy. This completes our investigations.
d
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V. CONCLUSION

We have presented a prescription to expand the effec
action in the Bianchi type-I spacetime with large anisotrop
We used the zeta-function regularization method to evalu
the renormalized effective action of a quantum scalar field
second order in the Schwinger perturbative formula. As
quantum corrections contain up to a fourth derivative in
metric, to obtain the self-consistent solutions of the semic
sical gravity theory, we apply the method of iterative redu
tion to reduce it to a second-order equation. The redu
equation shows that the space anisotropy, which may pla
important role in the early Universe, will be smoothed o
during the evolution of Universe. We thus quantize the c
responding minisuperspace model to investigate the beha
of space anisotropy in the initial epoch. We solve t
Wheeler-DeWitt equation in an approximation. From t
wave function of the Wheeler-DeWitt equation we see t
the probability of the Bianchi type-I spacetime with larg
anisotropy is less than that with small anisotropy. Thus
Bianchi type-I universe is not likely to be in the state wi
large space anisotropy.

Finally, let us make two remarks.
~1! In a previous paper@20# we had quantized the effec

tive action with small anisotropy~which was first evaluated
by @2#! and saw that the universe is likely to be in the sta
with small anisotropy. In this paper we quantize the effect
action with large anisotropy~which is first evaluated in this
paper! and see that the universe is not likely to be in the st
with large anisotropy.

~2! It can be seen that the prescription used in this pa
may also be applied to other cosmologically interest
spacetimes. However, it shall be mentioned that, althoug
general we can absorb some large quantities~in this paper it
is Q0) in the initial epoch intoH0 , this does not ensure tha
the remaining terms~in this paper they areD j ) are small.
Only if the chosenH0 was sufficiently simple and the re
maining term was small could the perturbative method
useful. The investigations about other spacetime, such as
Bianchi type-IX rotating universe, will be discussed els
where.
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