PHYSICAL REVIEW D, VOLUME 58, 084007

Semiclassical gravitation and quantization for the Bianchi type-I universe with large anisotropy
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We use a perturbative method to evaluate the effective action of a free scalar field propagating in Bianchi
type-l spacetime with large space anisotropy. The zeta-function regularization method is used to evaluate the
action to second order in the Schwinger perturbative formula. As the quantum corrections contain a fourth
derivative in the metric we apply the method of iterative reduction to reduce it to second-order form to obtain
a self-consistent solution of the semiclassical gravity theory. The reduced Einstein equation shows that the
space anisotropy, which will be smoothed out during the evolution of universe, may play an important role in
the dynamics of early universe. We quantize the corresponding minisuperspace model to investigate the
behavior of the space anisotropy in the initial epoch. From the wave function of the Wheeler-DeWitt equation
we see that the probability for the Bianchi type-I spacetime with large anisotropy is less than that with small
anisotropy.[S0556-282(98)06418-3

PACS numbd(s): 04.62+v, 11.10.Gh

[. INTRODUCTION Bianchi type-l spacetime with large anisotropy is less than
that with small anisotropy.

The effective action plays an important role in investigat- This paper is organized as follows. In Sec. Il a simple
ing the theory of quantum fields in curved spacetime. In thedrescription to expand effective action in the Bianchi type-|
conformally flat spacetime the effective action can be comuniverse with large anisotropy is described. It then uses the
pletely determined by the local geomefr]. If the space- zeta-function regularizatipn method to_ evaluate the gffective
time is not conformally flat then the effective action could &ction to second order in the Schwinger perturbative for-
not be evaluated exactly and one can only evaluate it ifnula. In Sec. Il the method of iterative reduction is used to
perturbation. Many years ago, Hartle and F] used the reduce the action to the second-order form. The solution of

dimensional regularization method to expand the effectivé® reduced Einstein equation is then analyzed. In Sec. IV we

action of a scalar field propagating in Bianchi type-I Space_quant|ze the .reduced. action and ana_Iyze. the associated
time to the second order of space anisotropy. From the e\_Nheeler—DeWnt equation. The last section is devoted to a

: : : . "o oo short summary.
fective action they investigated the problem of dissipating

space anisotropy by quantum field effef®. This method
has also been used to investigate the quantum field in ar!- EXPANSION OF EFFECTIVE ACTION WITH LARGE

inhomogeneous spacetirf¥] and a cosmic stringb]. How- ANISOTROPY
ever, as these results are restricted to a spacetime with small A. Method
:2:285825 it is of value to investigate the case with large We consider the Lagrangian describing a massless scalar

In this paper a simple prescription for the expansion of thef|eld conformally coupling to the gravitational background:

effective action in the Bianchi type-I universe with large an- 1 1 )
isotropy is described. We use the zeta-function regularization L=-599,29,®— 5 RO%, (2.9
method to evaluate the renormalized effective action to sec-

ond order in the Schwinger perturbative formid. As the  \yhereR is the curvature scalar. We will calculate the renor-

quantum corrections contain up to a fourth derivative in themajized effective action in the Bianchi type-I spacetime with
metric the associated Einstein equation will suffer the probthe line elemenf10]

lems of changing the Hamiltonian structure, lacking stability,
and unphysical solutions appearing, €t¢—9]. Therefore, d?s=g,, dx*dx"= —dt*+3,;e*Fidx?, (2.2
we apply the method of iterative reduction to reduce it to a
second-order equatidr®]. We then investigate the reduced where
equation and see that the space anisotropy, which will be
smoothed out during the evolution of universe, may play an  g,=8.+v38_, B,=B,—V3B_, B3=—28,.
important role in the early universe. To see the behavior of 2.3
the space anisotropy in the initial epoch we quantize the
corresponding minisuperspace model. We analyze th&he effective action in the metriﬁw=a(t)zgw can be
Wheeler-DeWitt equation and see that probability for thefound through a conformal transformation formula, which
will be described in Sec. II C.
The Hamiltonian associated with the Lagrangian de-
*Electronic address: whhwung@mail.ncku.edu.tw scribed in Eq(2.1) can be written as
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H=Hy,+D+(Q—Qy), (2.9 (and thusDj) are small and the derivative @; functions
(and thus the anisotrop@,) are large at the initial time.
where Thus we can regarD; and Q—Q,) as the small quantities
and the effective action can be evaluated in perturbation.
Ho=a7~ 33, 2+ Qo, 25 P
DEE,-D,-&X?:E,-(l—e*zﬁi)ax‘z, 2.6 B. Calculations
. ' We will evaluate the renormalized effective action by the
and Z-function regularizatiori1,11] method:
o, . :
=85+ 2. ! b
Q=Fi+ A @7 W= 5 In[Det(H) ]= — 5 [£'(0)+£(0)In 2],
denotes the quantity of the space anisotropy. (2.9

In this paper we will investigate the back-reaction effect
only for the universe near the initial epoch. If we denote aln the proper-time formalism, thé function can be found
large space anisotropy at initial timte=0 by Qg then the from the relation
quantity @—Qg) in Eg. (2.4) will be very small if the uni-

verse is sufficiently near the initial epoch. From E(&11) B 1 12

and(3.13 we see that for the universe near the initial epoch (=[] d™x[—g(x)]

the anisotropyQ, can be very large but the functigsy and .

the quantityDj.are very small. Thus the.effective action can % f ids(is)*~ X(x|e'sH|x), 2.9
be evaluated in perturbation by regardibg and Q— Qo) 0

as the small quantities. The fact that is small is very

crucial for the perturbation expansion used in this paper. Iwhere the operatat is defined in Eq(2.4) and it is under-
short, the limitation of the computation in this paper is that itstood thatH —H—ie, with £ a small positive quantity. As
is valid only for a very short time; indeed, for a parametri- the quantities Q — Q) andD are small the function can be
cally short time. It is in this limitation that th@; function  calculated by the Schwinger perturbative formia

. A . . s? (1 4 .
Tr e—lsH:Tr e—lsHO_iS e—lsHo(Q_Qo)_iS e—lsHoD+ 5 J du e—ls(l—u)Ho(Q_Qo)e—lsuHo(Q_QO)
0

2 2
IS 1 ) ) S 1 ) .
+§ Jodu efls(lfu)HO(Q_Qo)eflsuHoD_'_ E Jodu e*ls(lfu)HODeflsuHO(Q_QO)

2
s? (1 . _
+> fodu g Is1-WHopg~isubop 4 ... | (2.10

Then the! function can be expressed as

{(v)=Lo(v) +Lo(v) +{p(v) + {oa(v) + {op(¥) + {po(v) + {pp(¥) + -, (211
where{;(v) and{;;(v) are defined and calculated below.
We first calculately(v):

éo(V)E[F(y)]_lj d4X[_g(X)]llzfoooidS(iS)V_1<X|e_iSHO|X>

4 %
=irr(m1-t| g4 dp dsg~les(P*+Qo)
I[ (V)] X (277)4 0 S €

d4
:IJ dAXJ (2 24 (p2+QO)_V

™

3
1+v E—In Qo | +0(¥?)|. (2.12

=i(32m?) 1 J d*x Qg2

To obtain the above result we have carried the integration by lettings and rotatingp, through /2 in the complex plane.
This procedure will also be used in the following.
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Next, we calculate/o(v):

§Q(V)E[T(V)]7lf d4X[—9(X)]1’Zf ids(is)”~*(—is)(x|e”*"o(Q—Qg)|x)

——ir o dxe- Qo>f P assesoten

(2m)*
=i(16772)7lf d*x(Q= Q) Qo[ 1+ ¥(1—In Qp)+O(+*)]. (2.13

In the same way we have

(=117 [ @~ 12 ids(is)**(~is)(xle”**Dlx)

+0(1?)|.

3
51 Qo (2.14

=i(64w2)’1f d*x(3;D;)Q¢¥ 1+ v

We now turn to evaluate the functiogg(») which involves more calculations. From the definition we have
s?\ [t . .
ZQq(V)E[F(V)]*J d4X[—g(X)]1’2J idS(iS)”l( - 7” du(x|e™ "1 "WHo(Q—Qg)e"*"o(Q— Qo) [x)
0

d*% [~
f ds(s)v+1

_ 1 4 4
=—[2T'(v)]~ de[Q(XO) Qo]fdy[Q(yo Qo]f (27 )4 (2m)* Jo

1
xf du e {81~ WIk*+Qo(x0)1+sUp?Qo(yo) 1 gi (P—K)- (x=y)
0

in which we have inserted the complete Bgfk)(k| or X ;|p)(p| before the operatdt,. After integrating the variables, s,
y, p, andk, then shiftingk,—ky+ pg and performing the,, ko andy, integrations we have the final result:

e -1 2
log?)= =1 5 | 4%(Q=Qo)1- ¥ In Qu+0(Qy )+ 0021 219
Through the same manipulation we have

2

S S 1 . .
gQD(V)E[F(V)]_lf d4X[—9(X)]1’2f IdS(IS)”_l(—g) fodU<X|e_'S(1_”)H°(Q—Qo)e_'S“H°D|X>

37
=i 5, | 4X(Q-Qu)Qo¥;D;{1+ ¥[1-In Qo]+ 0(Qy )+ O(2)}, (2.16

s?\ (1 . _
é’Dq(V)E[F(V)]dJ d4x[—g(x)]1’2J idS(iS)Vl(—E) J'OdU<X|ef's(lfu)HODef'S”Ho(Q—Qo)|X>

— —fd“x(Q Q0)Qs%,D {1+ 11~ In Q] +O(Qy Y +O(12)}, (2.17

2

gDD(v)E[r(y)]—lf d“x[—g(x)]lfzf ids(is)”‘1<—%) foldu<x|e—i5<1—U>HoDe—iSUHoD|x>

3
=—1In Qg

77 4y ~2
—|l—6 deO[Z(EjD) +ED]

1+v)5 +0(QhH+0(v?) . (2.18
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Now, substituting the calculatefifunctions into Eq(2.8) been produced. This behavior had also been found in our
we finally obtain the effective actiom[g,,] for the free  previous investigation about a rotational spacetja®. Fol-
scalar field propagating in the metr(2.2): lowing the above calculations we can see that if we let the
universe evolve, thu® approaches zero, then the effective
action will have an imaginary part and a particle has been
produced. However, in this case the universe will be far from
the initial stage. However, as will be seen in the next section,

(2.19 what we are concerned with is the state near the initial epoch,
’ ' not far from the initial epoch. Thus, the effective action in
_ ) ] Eqg.(2.19 is a suitable one which will be used to analyze in
in which, for convenience, we have let the paramgierl.  the next section. Note also that the imaginary part, if it ap-
The effective action in Eqg(2.19 contains only these from pears, may possibly be shown &, as those if12,13.
{0, {q. and{p. Those from¢;; are smaller than those from Tnys in this section we calculate the zeta function to the
{i and are therefore neglected. The Lagrangian density Conkecond order in the Schwinger perturbative to see whether
ing from {, is a constant and can be absorbed by the renofhe imaginary part will be appear. However, our calculation

malization of a cosmological constant. shows that it does not appear, at least to the order we have
Note that the effective action in E.19 dose not have gygaluated.

an imaginary part and thus there has been no particle pro-
duced[1]. This is because in our approximation we assume
that both Q—Q,) and D are small. This means that we
constrain the system near the initial epoch; thus the universe The more cosmologically interesting spacetime is that de-
has yet not evolved too much and the particle has yet nagcribed by the metric

’IT2 ’iT2
—&2 Q6N Qo— 35 (Q—Q0)Qoln Qo

Wig,. 1= | '

772 2
+§8(21D1)Qo InQo

C. Conformal transformation

d?s=7,, dx*dx"=a(t)?g,, dx“dx"=a(t)’[ — dt®>+3,;e?fidx?]. (2.20
Now the effective action in the metr‘@wza(t)zg uv» denoted aSN[?J,w], can be easily found by the conformal transfor-
mation formula[13]

_ 1
W(G,,]1=Wg,,]+ 6.2 ﬁf d4x[—g(x)]1’2[ A[U(R,,\sR*"™—4R, R*"+R%)+2RU, U *—4R, U*U"

Ul R, \sR*"™M—2R R“V+ER2 +ER(U H+U, UM
/,LV}\(? nv 3 ’ Ly

—4U,#U,\UM=2(U,\UM?]+B 3

—2U,,U*-4U,U,,U*~2(U,,uM)?

], (2.2)

where U=In(a), A=—1/360, andB=1/120. This formula The method of iterative reduction is as follows. The semi-
also appears inl4] in which the other applications were classical gravitation theory is that described by the general-
discussed. The explicit expression of E®.21) will be ized Einstein equation with quantum corrections

shown in the next section.

1
Ry~ 5 0,uR=87G[ T, + T3], (3.0

I1l. REDUCED ACTION AND SEMICLASSICAL

GRAVITATION

From the effective actions shown in E¢2.19 and(2.22) yvh_erewa is the stress tensor of th(_:: classical rad_iation which
we see that they contain a fourth derivative in the metriciS included to support the expansion of the Universe at the

changing the Hamiltonian structure, lacking the stability, and’€glected because it becomes negligit3¢ The quantity

unphysica' solutions appearing' e'[c?_g] Therefore, we T/le is the renormalized stress tensor of the quantum f|e|d,
will app|y the method of iterative reduction to reduce it to aWhiCh can be found from the renormalized effective action

second-order equation. We will follow the method which W[g,,]. Becausél}}, is the quantum correction term, it will
was used by Parker and Simf@] to find the reduced system be first order ima. Thus, to zeroth order df, we can neglect
for the spacetime without space anisotropy. Tf'w.
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(1) Therefore, from the Bianchi identify;;"zo we have
a relation

E=E

0a % (3.2

wheree is the energy density of classical radiation adan
integration constant.

(Il The spatial-spatial component Einstein equation leads

to

. . . - 871G
a ?(a’a?+aa '+pB,+2Baa )=

3 & (3.3
It then implies two useful relations
. . 87G
a %(a’a ?+aa V)= 3 & (3.9
I'['gt+2’.3ia*1:0,: ,-Bizctaiz, (3.5

wherec.. are the integration constants.
(') The time-time component Einstein equation leads t

871G
—_— a28.

22.-2_)—
a‘a Q 3

(3.9

Then from Eqs(3.2), (3.5), and(3.6) we have the relation

a= 87;6 got+Aa 2 (3.7
where
A=(c?+c?). (3.9
Differentiating Eq.(3.7) leads to
a=—-Aa 3 (3.9
And differentiating Eq(3.9) leads to
d=3Aa ‘a. (3.10

(0]

PHYSICAL REVIEW D 58 084007

known that the determination of the constand™ in a
theory is the question of the initial problem and it can only
be solved by the theory of the quantum cosmolfgy,16.
Thus, we will qguantize the reduced semiclassical gravitation
theory to investigate this problem in the next section.

Next, from Eq.(3.7) it is seen that when &” is small
then we can neglect they term and it has a solution

a=(2At+a2)*? (3.12
Substituting this relation into E43.5) we find that
Bij=c;(2A) YIn[(2At+ag)ay °]. (3.133

Thus g; becomes small ais— 0. In this case we see that the
functionsD; defined in Eq.(2.6) become

D;=2c;(2A) UIn[(2At+aj)a, °], (3.13h
which can be regarded as a small functiontas0. This
proves the crucial assumption adopted in Sec. Il A. Let us
emphasize that the relations of Ed8.12 and (3.13 can
only be used for the universe near the initial epoch and our
calculation in Sec. Il B is a good approximation only for the
universe near the initial time.

Before entering into the next section we will mention that
the constang, in Eq. (3.12 will not be zero. This is because
asa—0 the time-time component of the reduced Einstein
equation becomes

. 4 G
a %a’+ 3 A%2a %—Aa 4- goa 2=0, (3.19

3
in which the first term is coming from the classically Ein-
stein action, the second and third terms are coming from the
leading part of the quantum corrections in E¢s.21) and
(2.19 respectively, while the last term is that from the clas-
sical radiation. EquatiofB.14) shows an interesting fact that
the classical radiation does not affect the initial state of the
universe much and it is the conformal part that will dominate
the contribution. Now Eq(3.14 could be regarded as an
equation describing a particle with a unit mass in a potential
U(a) which becomes positively infinite @&—0 and thus the
universe will be bounced at a positive radi&j. Note that

the radialag must be a small value because the conformal

These relations will be substituted into the renormalized ef-part is a guantum correction which will contafnh Such a
fective actions(2.19 and (2.21) to reduce them to second- hounce solution is also shown in the semiclassical gravita-
order equations. Before doing this we will see two usefulion model in the spacetime without anisotropy, as analyzed

results.

First, from Eq. (3.5 we see that the space anisotropy

defined in Eq(2.7) becomes

Q=Aa *. (3.11)

by Parker and Simof9].

IV. QUANTIZATION OF THE REDUCED ACTION

Before performing the quantization we need some ma-
nipulations. First, for the later convenience we will change

Thus the anisotropy will be smoothed out during the evoluy,e metric to be

tion of expanding universéi.e., if “a” becomes large.
However, if the value of ‘A,” which is proportional to the
space anisotropf), was not too small then the anisotropy
may be very large whend” is small (i.e., near the initial

d?s=—dt>+e?°3, e?fidx?, 4.1

which is a conventional form used in the Bianchi type-I

epoch. This means that the anisotropy may affect the evo-quantum cosmology17,18. In this metric form, after the
lution of the Universe in the early epoch. However, it is calculation, we can find, from Eq&2.19 and(2.21) that

084007-5
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2 2

Wig ]=f de |~ T QB Qo - (Q-Qo)Quln Qo 1 (%,0,)QE Q 4.2
v 64 0 0 32 0/~0 0 128 gl 0 (VK] .
W[G,,]=W[g ]+;hfd4xe3“(z a*—2(a+2a?)?%+48a2Q°—4(a+3a°)Q
r K 1920m02 3
wy ey oL . Y 32. ., A
+12a[ i+ B+ 2a(B4 B+ B-B-) T a"Ql+ 5 afi —322B. 7. 4.3

Next, we express the reduction relations found in E§<), (3.5, (3.7), (3.8), (3.9, and(3.10 in the metric form(4.1), and
then substitute these new relations into E¢s2) and (4.3). The results are

2

Wg,,]= f d*xe ¢ — g A%a; ®In(Aag*) — g—; A%(a*—ay Y a, YIn(Aag®) + %(Eij)Azaoaln(Aao“)} (4.4
W[QMV]ZW[QMV]+—12 f d“xe?““[z @e‘4“+Ae‘6“)2—2(327TG e“““—Ae‘e‘“)2
19207 3| 3 3
+96aA%e™ 122 — % Aet%+ 3200 62(2c2 A+ 4c+ci)($ e‘4“+Ae‘6“) 1/2} . (4.5
[
Finally, the classical actio,[g,,] which shall be added 2v  d2v  d2v

before analyzing the quantization of the reduced system is +U(a,AB,,B-)¥=0, (412

+ +
de? dp2 dp?

1 ) i )
WelG,01= 76—5 f d*xe*[—6a’+6(B% +B2)],
167G A .
(4.6) where the potentidl is defined by

whereG denotes the gravitational constant.
The total action to be quantized is the summation of Egs. U(a,A B+ B-)=Uy(a)+Upg(e,B,6-), (413
(4.4), (4.5, and(4.6). From Eqgs.(4.4) and(4.5) we see that
after using the method of iterative reduction the quantum ]
correction dose not change the canonical momentums uséed which
in the classical action. Thus the canonical momentums are

— r — _ R a3 3
Ha &Nc[gﬂy]/éa 6ae , (47) Ua: gj A28—6a|a|'
Mg, = OW[G,,)/08.=6B. €™, (4.8
which are those used in the quantum cosmology model with- __ i 20/ o2 2\ A2.—8a _da
out the quantum-field effecfd7,18. Then, the Hamiltonian Us 8 (B + pZ)ATe Hein(Ae ).
is defined by (4.149
H=Tl,a+1lz B+, B_—L, (4.9

To obtain the above equation we have let@=1 and con-
sidered only the initial epochg— —x, i.e., a—0. The
Wheeler-DeWitt equatiofé.12) is too complex to be solved
exactly and some approximations shall be adopted.
When the universe is near initial epoch we can replace
M, ——idlda, (4.10 inUg by @g. ThenUg is only a func_tion of3, and@, and
thus Eq.(4.12 could be separated into two equations:

in which the Lagrangian density can be found from the
total action.
Now, through the canonically substituting

My, ——idldB. , (4.10)

2
the Wheeler-DeWitt equation associated with the reduced d Tw+ %Aze“sﬂal—c ¥ ,=0, (4.15
T

semiclassical gravitational equation becomes da?
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d>w B
d ,gi * dg? We have presented a prescription to expand the effective
action in the Bianchi type-l spacetime with large anisotropy.
2 25 —ba tu B We used the zeta-function regularization method to evaluate
+ C— a2 (B3 +BZ)A%e "In(Ae ") | X W 5=0, the renormalized effective action of a quantum scalar field to
second order in the Schwinger perturbative formula. As the
(4.16  quantum corrections contain up to a fourth derivative in the
metric, to obtain the self-consistent solutions of the semiclas-
sical gravity theory, we apply the method of iterative reduc-
V=V, V,. (4.1 tion to reduce it to a second-order equation. The reduced
equation shows that the space anisotropy, which may play an
Note that the numbe€ appearing in Eqsi4.19 and(4.16  important role in the early Universe, will be smoothed out
can be neglected ifg— — . during the evolution of Universe. We thus quantize the cor-
Now, Eq.(4.15 can be solved in the WKB approximation responding minisuperspace model to investigate the behavior
and the solution is of space anisotropy in the initial epoch. We solve the
Wheeler-DeWitt equation in an approximation. From the
,  (4.189  wave function of the Wheeler-DeWitt equation we see that
the probability of the Bianchi type-l spacetime with large
where anisotrgpy is Iess_ than t_hat wit_h small ani_sotropy. Thus_the
Bianchi type-I universe is not likely to be in the state with
large space anisotropy.
Finally, let us make two remarks.
(1) In a previous pap€el20] we had quantized the effec-
Equation(4.16) can be solved exactljy19] and we have tive action with small anisotropgwhich was first evaluated
3 by [2]) and saw that the universe is likely to be in the state
V= Ks{i — (8)"Y2Ae 3%[ (B2 + B2)In(Ae 4%0) Y2} with small anisotropy. In this paper we quantize the effective
m action with large anisotropgwhich is first evaluated in this
(4.20 papej and see that the universe is not likely to be in the state

in which s is an integration constant, which is irrelevant to With large anisotropy. o o
our discussion below, ari; is a Bessel function. From the ~ (2) It can be seen that the prescription used in this paper

asympotical behavior of the Bessel functid®] may also be applied to other cosmologically interesting
spacetimes. However, it shall be mentioned that, although in

N _, 1 general we can absorb some large quantiieshis paper it
Ks2)=|5;] e 11+0(z Il (421 isQ,) in the initial epoch intcH,, this does not ensure that
the remaining termgin this paper they ar®;) are small.
we see thatV 4 is a decreasing function & and ¥ ;— 0 if Only if the choserH, was sufficiently simple and the re-
A— . Because the probability density of universe is propor-maining term was small could the perturbative method be
tional to|\Ifa\Ifﬁ|2, we thus conclude that the Bianchi type-1 useful. The investigations about other spacetime, such as the
universe is not likely to be in a state with large space anisotBianchi type-1X rotating universe, will be discussed else-
ropy. This completes our investigations. where.

2 V. CONCLUSION
2w,

if we take

3A
\Ifa=|a|1’4e3|“’zexr{ —ie |G(a)|

G(a)Ef dalale 3. (4.19

12
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