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Stability of a dilatonic black hole with a Gauss-Bonnet term
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~Received 19 February 1998; published 31 August 1998!

We investigate the stability of black hole solutions in an effective theory derived from a superstring model,
which includes a dilaton field and the Gauss-Bonnet term. The critical solution, below which mass no static
solution exists, divides a family of solutions in the mass-entropy diagram into two. The upper branch ap-
proaches the Schwarzschild solution in the large mass limit, while the lower branch ends up with a singular
solution which has a naked singularity. In order to investigate the stability of black hole solutions, we adopt
two methods. The first one is catastrophe theory, with which we discuss the stability of non-Abelian black
holes in general relativity. The present system is classified as a fold catastrophe, which is the simplest case.
Following catastrophe theory, if we regard entropy and mass as the potential and the control parameter,
respectively, we find the lower branch is more unstable than the upper branch. To confirm this, we study the
second method, which is a linear perturbation analysis. We find an unstable mode only for the solutions in the
lower branch. Hence, our investigation presents one example that catastrophe theory is also applicable for a
generalized theory of gravity.@S0556-2821~98!02118-3#

PACS number~s!: 04.50.1h, 04.70.Bw, 04.70.Dy, 11.15.2q
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I. INTRODUCTION

A black hole is one of the most interesting stellar obje
which reflects general relativistic effects. Investigation
black holes includes many topics and it would unveil a n
physics. Simultaneously, however, many unsolved proble
have come out. For example, we now have several con
tures or problems such as the black hole no-hair conject
the information loss problem, a cosmological remnant a
black hole evaporation. As one of the attempts to investig
these problems, several researchers have discussed
hole solutions in effective string theories.

The first study of such a black hole was made in
Einstein-Maxwell-dilaton system@1,2#. They derived new
black hole solutions with a dilaton hair in spherically sym
metric static spacetime. It is classified as a secondary
because it is not independent of electromagnetic charge.
effect of the next leading order term in the inverse str
tensiona8, in particular higher curvature term, was studi
by many authors@3–6#. Recently, black hole solutions in th
system including the dilaton field, the gauge field, and
Gauss-Bonnet term were solved numerically@7–9#. These
solutions, which we call dilatonic black holes with Gaus
Bonnet term, have the following interesting properties.

~1! There is a critical solution, below which mass no sta
solution exists.

~2! There is a singular solution, which has a naked sin
larity.

~3! For the neutral and the electrically charged bla
holes, the critical solution is not the same as the singular o
while those two solutions coincide for the magnetica

*Electronic address: torii@th.phys.titech.ac.jp
†Electronic address: maeda@mn.waseda.ac.jp
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charged and the ‘‘colored’’ black holes.
~4! The entropy takes the minimum value at the critic

solution, and a cusp structure appears in the mass-ent
diagram for neutral and electrically charged black holes.
the other hand, no cusp structure appears for magnetic
charged and ‘‘colored’’ black holes.

~5! The black hole temperature is always finite and h
capacity is always negative for any type of black hole.

Note that in the above system, the black hole can sup
a dilaton hair without an electromagnetic or other gau
charge, while the ‘‘no scalar-hair theorem’’ guarantees t
there is no black hole solution with a dilaton hair under t
appropriate conditions in asymptotically flat spacetime
general relativity@10–12#. This is because the existence
nontrivial dilaton hair is due to the Gauss-Bonnet ter
Then, this hair can also be classified as a secondary hair@7#.
Hence, there is no analogue of the ‘‘no scalar-hair’’ theor
in the present model. However if dilatonic black holes w
the Gauss-Bonnet term are unstable, such a scalar hair h
meaning physically. Hence, stability analysis of new so
tions is indispensable.

The fact that black hole mass is bounded below is a
important because such a critical solution can be a candi
of cosmological remnant and it may solve the informati
loss problem. However as the temperature is always fin
evaporation does not stop even at the critical solution. He
a further problem appears: what state does such a black
develop into though evaporation? This has been an o
question. If a singular solution forms generically, it can be
counterexample to the cosmic censorship conjecture. On
the methods to investigate this problem is the stability ana
sis. If the singular solution is unstable, the naked singula
seems not to be formed from the regular initial data gen
cally. With these motivations, we investigate whether or n
dilatonic black holes with the Gauss-Bonnet term are sta
© 1998 The American Physical Society04-1



ef
n-

ta

ze
le
in

de
ti
e
an

ry
s

ing
t

t t
th

n
th

,

ton
s-
ot
ri-
bid-

ce-

c-

s

TAKASHI TORII AND KEI-ICHI MAEDA PHYSICAL REVIEW D 58 084004
Previously, we showed that catastrophe theory is us
for discussing the stability of black hole solutions with no
Abelian matter fields in general relativity@13,14#. Although
in general relativity, there is a close relation between ca
trophe theory and linear perturbation analysis@15#, we are
not sure whether a similar discussion holds in generali
theories of gravity. In this paper, we will give one examp
that catastrophe theory is applicable for the model includ
the Gauss-Bonnet term@16#.

This paper is organized as follows. We outline the mo
and derive static solutions in Sec. II. In Sec. III we inves
gate the stability by using both catastrophe theory and lin
perturbation analysis. Section IV includes discussions
some remarks.

II. DILATONIC BLACK HOLE WITH
GAUSS-BONNET TERM

We only consider the bosonic part of effective field theo
of a heterotic string theory@17#. The action is described a
follows

S5E d4xA2gS 1

2k2
R2

1

2k2
~¹f!21 f ~f!~RGB

2 2F2!D .

~1!

This includes only tree level in expansion of inverse str
tensiona8. Here k258pG and RGB

2 is the Gauss-Bonne
term, i.e.,

RGB
2 5RmnrsRmnrs24RmnRmn1R2. ~2!

The functionf (f) is defined as

f ~f!5
a8

16k2
e2gf, ~3!

whereg5A2 is the coupling constant of dilaton fieldf and
g is regarded as a gauge coupling constant. We neglec
rank three antisymmetric tensor field, which vanishes in
spherically symmetric case. Furthermore, we assume
gauge field and focus only on the neutral case with
Gauss-Bonnet term just for simplicity.

Varying the action~1! by the metric and the dilaton field
we obtain the basic equations of the gravitational field
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Gmn52
1

2
gmn~¹f!21¹m¹nf1k2f ~RGB

2 gmn24RRmn

18Rm
lRnl18RmrnsRrs24RrslmRrsl

n!

14k2~¹r¹s f !~gmrgnsR12grsGmn

24gnsRmr12gmnRrs12Rrmns!, ~4!

and of the dilaton field

hf1
] f

]f
RGB

2 50. ~5!

The coupling between the Gauss-Bonnet term and the dila
field plays a crucial role. Without this coupling, the Gaus
Bonnet term becomes totally divergent and there will n
exist any nontrivial black hole solution in the static sphe
cally symmetric spacetime because such a solution is for
den by the no scalar-hair theorem.

In this paper, we consider a spherically symmetric spa
time. Hence, we adopt the following form of the metric,

ds252e2F~ t,r !dt21e2L~ t,r !dr21r 2~du21sin2udw2!.
~6!

We also use the lapse functiond and the mass functionm
defined as

d~ t,r ![2~F1L!, ~7!

Gm~ t,r ![r ~12e22L!, ~8!

respectively. Then the metric is rewritten with these fun
tions as

ds252S 12
2Gm~ t,r !

r D 21

e22d~ t,r !dt2

1S 12
2Gm~ t,r !

r Ddr21r 2~du21sin2udw2!. ~9!

By using theseAnsätze, we write down the field equation
explicitly. The nontrivial equations of Eq.~4! are
L8S 11
4

r̃
f̃ 8~123e22L!D 5

r̃

4
~f821e2L22Fḟ2!1

1

2r̃
~12e2L!1

4

r̃
~12e22L!~ f̃ 882e2L22FL̇ ḟ̃ !, ~10!

F8S 11
4

r̃
f̃ 8~123e22L!D 5

r̃

4
~f821e2L22Fḟ2!2

1

2r̃
~12e2L!1

4

r̃
~12e22L!e2L22F~ f̈̃ 2Ḟ ḟ̃ !, ~11!

L̇S 11
4

r̃
f̃ 8~123e22L!D 5

r̃

4
~12e2L!~ ḟ̃ 82F8 ḟ̃ !1

r̃

2
ḟf8, ~12!
4-2
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F91S F81
1

r̃
D ~F82L8!2e2L22F@L̈1L̇~L̇2Ḟ!#1

1

2
~f822e2L22Fḟ2!2

16

r̃
$e22L@~ f̃ 8F8!81 f̃ 8F8~F823L8!#

1e22F@ f̃ 8L̇~L̇1ḟ !2 f̃ 8L̈1 ḟ̃ ~F8L̇2ḟL8!22L̇ ḟ̃ 81L8 f̈̃ #%50. ~13!

Here we have used the dimensionless variables;r̃ 5r /Aa8, t̃ 5t/Aa8, and f̃ 5k2f /a8. A dot and a prime denote derivativ
with respect tot̃ and r̃ , respectively. The equation of the dilaton field is described as

f91S F82L81
2

r̃
D 2e2L22F@f̈1~L̇2Ḟ!ḟ#5

] f̃

]f

8

r̃ 2
$2e22LF8L822e22FL̇21~12e2L!@F91F8~F82L8!#

2~12e2L!e2L22F@L̈1L̇~L̇2Ḟ!#%. ~14!
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The right-hand side comes from the coupling with the Gau
Bonnet term. Since these equations are not independen
use Eq.~13! as an error check in our numerical calculatio

Dropping the terms which include time derivative in th
field equations~10!–~14!, we find the dilatonic black hole
solution with the Gauss-Bonnet term in the static spaceti
We, of course, need the boundary and regularity conditi
of metric functions and the dilaton field as follows. At infin
ity, the spacetime approaches the flat one, i.e., asr→`

F~r !→0, ~15!

L~r !→0, ~16!

or

m~r !→M5finite, ~17!

d~r !→0. ~18!

The constantM is the mass of a black hole. We assume
existence of a regular event horizonr H , i.e.,

2GmH5r H , ~19!

dH,`. ~20!

Here the variables with a subscriptH denote those values a
the event horizon. Furthermore, we assume the nonexist
of a singularity outside the event horizon, i.e., forr .r H ,

2Gm~r !,r . ~21!

From the boundary conditions~17! and~18!, the dilaton field
should approach a constant valuef` . It has been already
fixed in our universe. In principle, we can estimatef` by
discussing the gauge coupling constant. As the space
approaches flat Minkowski space in the far region from
black hole, Maxwell theory in the Minkowski spacetim
must be recovered. Comparing the Lagrangian~1! with La-
grangian of the electromagnetic field, we find the followi
relation,

a8

16k2
e2gf`5

1

16pg2
. ~22!
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The gauge coupling constant at the low-energy scale is
termined by experiments as 1/g2;O(102). If we know the
value of the inverse string tensiona8 and if the renormaliza-
tion effect does not change its value so much, we can e
matef` from Eq. ~22!. However there is no way to fixa8
even if a string theory and its low-energy limit are relevant
our universe. We just expect that it must be the Planck sc
Here we assumef`50. If we are interested in a differen
boundary condition such asf→f *̀ Þ0, we can always have
such a boundary condition without further calculation b
cause the constant difference is absorbed in the coordin
by rescaling. That is, introducingf̄[f2f *̀ , and rescaling

the variables asr̄ 5e2gf *̀ r̃ , t̄ 5e2gf *̀ t̃ , and m̄5e2gf *̀ m̃,
we recover our boundary condition.

The equation of the dilaton field is singular on the eve
horizon. In order to guarantee to find a regular solution at
event horizon, we expand variables around the event hor
by power series ofe[( r̃ 2 r̃ H)/ r̃ H as

m̃~r !5m̃H1m̃H
~1!e1

1

2
m̃H

~2!e21•••1
1

n!
m̃H

~n!en1•••,

~23!

d~r !5dH1dH
~1!e1

1

2
dH

~2!e21•••1
1

n!
dH

~n!en1•••,

~24!

f~r !5fH1fH
~1!e1

1

2
fH

~2!e21•••1
1

n!
fH

~n!en1•••.

~25!

Substituting them into field equations~10!, ~11!, and ~14!,
we obtain the coefficientsm̃H

(n) , dH
(n) , fH

(n) (n51,2, . . . )
order by order. From the zeroth-order equations ofe, we find
the following relation for the dilaton field on the event hor
zon:

fH8
22

fH8

c0g
1350, ~26!

where c05e2gfH/4r̃ H
2 . This quadratic equation has tw

roots as
4-3
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TAKASHI TORII AND KEI-ICHI MAEDA PHYSICAL REVIEW D 58 084004
fH68 5
16A1212c0

2g2

2c0g
. ~27!

By the reality condition offH68 , fH is restricted as

fH>2
1

2g
lnS 4r̃ H

4

3g2D , ~28!

for each horizon radius. In the numerical calculation, we fi
black hole solutions with a regular horizon only when w
choose the minus sign in the boundary condition~27!.

From the second-order equation

fH9 5
E

D
. ~29!

D and E are very complicated functions ofm̃H , dH , and
fH . It must be noted that if we take the minimum value
fH , i.e., fH52 ln(4r̃H

4 /3g2)/2g, the denominatorD van-
ishes, while the numeratorE remains finite. HencefH9 di-
verges. Furthermore, we have checked that a scalar inva
I[RmnrsRmnrs also diverges, which means that a naked s
gularity will appear on the ‘‘horizon’’r 5r H .

We integrate the static field equations from the event
rizon with the above boundary conditions. The properties
dilatonic black holes with Gauss-Bonnet term are discus
in detail in Refs.@7–9#. Figure 1 is theM -r H diagram. We
find an end point S which has the minimum horizon radi
At this point S,fH52 ln(4r̃H

4 /3g2)/2g, then a naked singu
larity appears atr 5r H . It is no longer a black hole. We ca
this point S, the singular point. We also find another imp
tant point C, which has the minimum mass. At this point, t
solution curve turns around. We call this point C, the critic
point. The existence of the critical point plays an importa
role in the stability analysis using catastrophe theory.

III. STABILITY ANALYSIS

Now we discuss a stability of the dilatonic black hole wi
the Gauss-Bonnet term. The stability of the solution is one
the most important properties. In particular, our analysis
the static solution shows a possibility that a naked singula
may appear. Hence, we will analyze the stability around
singular point and the critical point in detail. In this pape
we adopt two methods.

A. Catastrophe theory

Catastrophe theory is a mathematical tool to investiga
variety of changes of states in nature. Especially, it is us
when we treat an unexpected and discontinuous chang
states. It is widely applied in various research fields, for
ample the structural stability, the crystal lattice, biology, e
bryology, and astrophysics. Previously, we showed that
also applicable to the stability analysis of various types
non-Abelian black holes in general relativity@13,14#.

In order to apply catastrophe theory, first we have to
fine several catastrophe variables of the system. First gr
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is the control parameter, with which we can control the sy
tem. Here we choose the mass of a black hole as the con
parameter, since we can change the black hole state
throwing a mass into it. The second group is the state v
ables, which describe a state of the system. In the n
Abelian black hole case, we adopted the field strength of
gauge field on the horizon. However in the present system
gauge field exists. Hence, we choose the dilaton fieldfH as
the state variable instead of the gauge field. The third gro
is a potential function, whose extremum should correspo
to equilibrium states. In general relativity, we adopted t
entropy as the potential function, which is expressed by o
quarter of the area of the event horizon. The increase of
area is guaranteed by the area theorem, i.e., the second
of the black hole thermodynamics. In generalized theories
gravity, however, it is not the case. In fact, Oppenheim
Schneider collapse in Brans-Dicke theory reveals a decre
of the area@18#. Nevertheless, the entropy defined by Kan
does not decrease at any stage in their simulation. Furt

FIG. 1. ~a! The mass-horizon radius diagram for the dilaton
black holes with Gauss-Bonnet term. There is an end point S, wh
a naked singularity appears. We also plot the Schwarzschild b
hole for comparison. In the large mass limit, the dilatonic bla
hole approaches the Schwarzschild black hole.~b! is a magnifica-
tion around the singular point S. We find the critical point C, belo
which no solution exists.
4-4
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STABILITY OF A DILATONIC BLACK HOLE WITH A . . . PHYSICAL REVIEW D 58 084004
more, Jacobson and Kang showed that the second law
black hole thermodynamics is still valid in the followin
restricted model,

S5E d4xA2g@ f ~R!1Lmatter#, ~30!

with null energy condition@19#. f (R) is a polynomial of the
Ricci scalar. The entropy defined above has been exten
into a more generic model by Iyer and Wald@20#. Hence, as
the potential function, we adopt the entropy defined by I
and Wald as in general relativity.

This definition of entropy has the following desirab
properties. It can be defined in a covariant way in any d
feomorphism invariant theory and it obeys the first law
black hole thermodynamics for an arbitrary perturbation o
stationary black hole. We present its expression in
present model. The explicit form is obtained by

S522pE
S
ER

mnrsemners , ~31!

whereS is the bifurcation horizon 2-surface andemn denotes
the volume element binormal toS. ER

mnrs is defined by

ER
mnrs5

]L
]Rmnrs

, ~32!

whereL is the Lagrangian density. Then in our model, w
find

S5
AH

4GS 11
a8

2r H
2

e2gfHD , ~33!

whereAH is the area of the event horizon. The second te
in the round bracket is the correction from the Gauss-Bon
term.

In order to investigate whether the stability change
curs, we draw Whitney surface, which is a solution surfa
drawn in the space of control parameterspi , state variables
xj , and a potential functionV. A schematic diagram withi
5 j 51 is given in Fig. 2. When we fix the control param
eters, extrema of the Whitney surface give equilibrium so
tions. When the extremum is the minimum, the solution
stable, while if it is the maximum point, the solution is foun
out to be unstable, when we adopt the usual definition o
potential function like the energy of a system. Hence in F
2 the branch AC is more stable than the branch BC. T
projection of equilibrium solutions onto thep-V plane gives
a cusp structure C, which corresponds to the infection p
of the three-dimensional figure. As a result, stability chan
occurs at the cusp point C on thep-V plane.

As this example, if the stability of solutions changes fo
certain parameter, its sign appears on the diagram of con
parameters versus a potential function. The diagram in
present model is shown in Fig. 3. In order to show the str
ture at the critical point clearly, we depictS* (M )5S(M )
2S0(M ), whereS0(M ) is a linear function ofM passing
through an appropriate point A in the upper branch and
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end point S. We can find a cusp structure at the critical po
C and it is the characteristic sign of a stability change. Fr
this figure, we conclude that solutions in the lower bran
are more unstable than those in the upper branch, since
higher entropy means the more stable. Usually, the minim
and the maximum of the potential function correspond

FIG. 2. The Whitney surface in the control parameterp, the state
variablex, and the potential functionV space. Extrema of this sur
face for the fixed control parameter are denoted by dotted line A
which corresponds to the family of static solutions of the syste
The minimum line AC and the maximum line BC are stable a
unstable solutions, respectively. Stability change occurs at the
flection point C. We also plot the projection of the static solutio
onto thep-x plane and find a cusp structure at the point C. This
a characteristic sign that the catastrophe occurs.

FIG. 3. We plot the entropy for the dilatonic black holes wi
Gauss-Bonnet term. This is the magnification around the crit
point and the singular point. In order to show the structure at
critical point clearly, we depictS* (M )5S(M )2S0(M ), where
S0(M ) is a linear function ofM passing through an appropriat
point A in the upper branch and the end point S. Hence, the a
lute value has no meaning. We can find a cusp structure, w
separates the family of solutions into two branches, at the crit
point C. This means that the stability change occurs at the crit
point and solutions of the upper branch AC are stable, while
lower branch SC is unstable.
4-5
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TAKASHI TORII AND KEI-ICHI MAEDA PHYSICAL REVIEW D 58 084004
stable and unstable solutions, respectively. However, s
we adopted the entropy as a potential function, the co
spondence turns out to be opposite.

Catastrophe theory shows only a relative stability amo
several families of solutions. We cannot predict the abso
stability of solutions. However we expect that the upp
branch in Fig. 3 is absolutely stable from the following tw
reasons. There is no solution except for those obtai
above, hence, if the solutions of the upper branch are
stable, there is no stable static solution and we must give
staticity or spherical symmetry. Next, in the limit ofr H

→`, the effect of the Gauss-Bonnet term vanishes and
system approaches general relativity with a massless s
field. From the no hair theorem in general relativity, the s
lutions of the upper branch approach to the Schwarzsc
black hole, which is stable in general relativity.

Next we investigate what type of catastrophe, the d
tonic black hole with Gauss-Bonnet term is classified in
The first step is drawing the equilibrium spaceMS , which
consists of extrema of the potential function in the space
control parameters and state variables. Then we projec
equilibrium space onto a control parameter space, whic
called the control plane, by a catastrophe mapxS . There
may exist singular points on equilibrium space, where
Jacobian of the mappingxS vanishes. The image of the set
singular points is the bifurcation setBS . If such singular
points exist, the number of solutions with the same con
parameter changes beyond the bifurcation setBS , and then
the stability also changes there. Hence, by looking at
bifurcation set, we can classify our model into element
catastrophes.

Until now, we have fixed the value of the dilaton field
infinity as f`50 because it is related to the physical co
stant. However we are now interested in the elementary
tastrophe of the present system~10!–~14! from the math-
ematical point of view. For this purpose, we have to vary
possible parameters. In the present model, we have two
trol parameters. Hence, in addition to massM, we adoptf`

as the second control parameter, althoughf` is a different
type of control parameter from the black hole massM in the
following sense. We can controlM by putting matter into the
black hole, on the other hand, we cannot changef` by any
physical process because it needs infinite energy. We plo
equilibrium space and the bifurcation set of dilatonic bla
holes with Gauss-Bonnet term in Fig. 4.

When there are two control parameters, systems can
classified into either a fold catastrophe or a cusp catastro
In the present case, since we find that the bifurcation
forms a curve without a cusp in Fig. 4, our model classifi
into a fold catastrophe which is the simplest but nontriv
case. A fold catastrophe needs only one control param
essentially and the other control parameter become
dummy parameter which is not important for the catastro
analysis.

In the stability analysis using catastrophe theory, we p
attention to certain modes of the system. In our case
consider only a spherically symmetric spacetime, hence,
evant modes must be restricted to radial ones. This will
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confirmed in the next subsection. When we will analyze no
spherically symmetric modes, we may need a different
proach.

B. Linear stability analysis

In order to confirm our results obtained by catastrop
theory that solutions in the upper branch are stable, we
to a linear perturbation analysis. Here we focus only on
radial modes. First we expand field variables around a st
solution as follows:

f~ r̃ , t̃ !5f~0!~ r̃ !1f~1!~ r̃ , t̃ !e, ~34!

F~ r̃ , t̃ !5F~0!~ r̃ !1F~1!~ r̃ , t̃ !e, ~35!

L~ r̃ , t̃ !5L~0!~ r̃ !1L~1!~ r̃ , t̃ !e, ~36!

heree is an infinitesimal parameter. Substituting them in
the field equations~10!–~14!, and dropping the second- an
higher-order terms ofe, we find the perturbation equation fo
the dilaton fieldf, which is decoupled as

F1f̈~1!1F2f~1!9 1F3f~1!8 1F4f~1!50, ~37!

whereFi ( i 51 –4) are complicated functions of zeroth o
der variables, whose explicit forms are given in the Appe

FIG. 4. The equilibrium space of the dilatonic black holes w
Gauss-Bonnet term. Upper side and lower side of the equilibr
space correspond to the stable and unstable solutions, respect
When the black hole mass gets small, the stable and the uns
solutions merge at a critical point. On the control plane, we dr
the bifurcation setBS , which shows a fold catastrophe.
4-6
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dix. Since Eq.~37! becomes singular on the event horizo
we introduce the tortoise coordinater̃ * defined by

dr̃*

dr̃
5e2~F~0!2L~0!!. ~38!

To analyze the stability, we setf (1) as

f~1!~ r̃ , t̃ !5j~ r̃ !ei s̃ t̃ . ~39!

If s̃ is real,f oscillates around the static solution and th
the solution is stable. On the other hand, if the imaginary p
of s̃ is negative, the perturbationf (1) diverges exponentially
with time and then the solution is unstable. With Eqs.~38!
and ~39!, the perturbation equation becomes

d2j

dr̃* 2
1G1

dj

dr̃*
1~G22G3s̃2!j50, ~40!

where

G15e2~L~0!2F~0!!S ~L~0!8 2F~0!8 !1
F3

F2
D , ~41!

G25e2~2L~0!22F~0!!
F4

F2
, ~42!

G35e2~2L~0!22F~0!!
F1

F2
. ~43!

Introducing a new functionx as

x~ r̃ * ![j~ r̃ * !expS E
2`

r̃* G1

2
dr̃* D , ~44!

finally we obtain a simple form of the perturbation equatio

d2x

dr̃* 2
2~V11V2s̃2!x50, ~45!

where

V15
1

2

dG1

dr̃*
1

G1
2

4
2G2 , ~46!

V25G3 . ~47!

Equation~40! or Eq. ~45! is a Strum-Liouville equation
and s2 and j ~or x) are the eigenvalue and the eigenfun
tion, respectively. In a numerical calculation, we have solv
Eq. ~40! instead of Eq.~45! because the functions in Eq.~40!
are much simpler and then it is easier to analyze it.

The eigenfunction must be finite in the whole region. Th
meansj→0 (r̃ *→6`) for the eigenfunction with a nega
08400
,

rt

:

-
d

tive eigenvalue. With this boundary condition, we ha
searched a negative eigenmode, and found it only in
lower branch in Fig. 3. We show the eigenvalues2 and the
eigenfunctionj for several radii of event horizon in Figs.
and 6, respectively. Although the functionj crosses at the
same point (r̃ * 51.57), it does not have any physical mea
ing because we can shiftj arbitrarily by changing an integra
constant of the differential equation~38!. Hence, these solu
tions are unstable against the radial perturbations. We co
not find any unstable mode in the upper branch. We m

FIG. 5. The eigenvalue of the perturbation equation of the d
tonic black holes with Gauss-Bonnet term. For the lower branch
theM -S diagram, we found negative eigenvalues, which means
these solutions are unstable for radial perturbation. On the o
hand, there is no negative eigenvalue for the upper branch. S
the eigenvalue becomes zero at the critical point, stability cha
occurs at this point. This result is consistent with that obtained b
catastrophe analysis.

FIG. 6. We show the behavior of the eigenfunctions for t
lower branch ofM -r H diagram. The radius of black holes arer H

51.5724~solid line!, r H51.5716~dotted line!, r H51.5708~dashed
line!, r H51.5702 ~dot-dashed line!. Although they cross at the
same point (r * 51.57), it does not have any physical meaning b
cause we can shift eigenfunctions arbitrarily by changing an in
gral constant of Eq.~38!.
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conclude that the solutions in the upper branch are absolu
stable as we expected. The critical point C has eigenva
zero. This means that a stability change occurs at this po
These results are exactly the same as those we showe
using catastrophe theory in the previous subsection.

C. Comment on the stability analysis by using Strum’s theorem

Kanti et al. claimed that all black holes obtained here a
stable using a semianalytic method or catastrophe the
@21#. We should comment on that. Their semianaly
method is as follows. They first derive the perturbation eq
tion ~45!. Next they prepare two infinitesimally close stat
solutions,f1(r ) and f2(r ), which have the same horizo
radius, but different asymptotic values off` . Since these
functions satisfy the static equations, they claimed that
differencef̄ (1)5f22f1 satisfies the perturbation equatio
~45! with s̃250, i.e., f̄ (1) is one of the eigenfunctions with
the eigenvalue 0.~This is not correct as we will show below!
Then they apply Strum’s theorem, which says that if th
exist eigenfunctionsf 1 and f 2 with eigenvaluess1

2 ands2
2 ,

respectively, such thats1
2.s2

2, then f 1 must have at leas
one node between any two nodes off 2 , if any. If a dilatonic
black hole with Gauss-Bonnet term has an unstable mo
i.e., s̃2,0, the corresponding eigenfunction has ‘‘nodes’’
r̃ * 56`. Strum’s theorem demands the eigenfunctionf̄ (1) ,
whose eigenvalue iss̃250, must have at least one nod
somewhere in (2`,`). However numerical calculation
shows that any pair off1(r ) and f2(r ) does not intersec
anywhere, so the eigenfunctionf̄ (1) is nodeless. This is in-
consistent with saying thatf̄ (1) has at least one node. As
result, Kantiet al. concluded that there is no unstable mo
and all dilatonic black holes with Gauss-Bonnet term a
stable.

Apparently, their results disagree with ours that the so
tions of the lower branch inM -S diagram are unstable. Th
disagreement comes from the fact that they regardf̄ (1) as
the solution of the perturbation equation~45! with s̃250.
The perturbation equation~45! is derived by using the (t,r )
component of the Einstein equation~A8! or ~A41! ~see the
detail in Appendix!. However, asf̄ (1)(r ) ~the difference of
two static solutions! does not depend ont̃ , Eq.~A8! becomes
trivial. As a result,f̄ (1)(r ) no longer satisfies the perturba
tion equation~45! with s̃250. In fact, it satisfies thetime-
independentperturbation equations:

F̄1f~1!9 1F̄2f~1!8 1F̄3f~1!1F̄4L~1!50, ~48!

L~1!8 5Ḡ1f~1!9 1Ḡ2f~1!8 1Ḡ3f~1!1Ḡ4L~1! , ~49!

which are different from Eq.~45! with s̃250 ~see Appen-
dix!. We have also checked numerically thatf̄ (1) obtained
by Eqs.~48! and~49! is really not the same as the eigenfun
tion of Eq. ~45! with s̃250. Hence, we cannot usef̄ (1) in
order to investigate the stability of our system by Strum
theorem.
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Kanti et al. also used catastrophe theory. They showe
branch of static solutions with different boundary values o
dilaton field from ours. They have fixedf on the event ho-
rizon and left that at infinity free, although we have fixed t
value off at infinity and determined that on the event ho
zon to satisfyf`50. Then theirM -r H diagram does not
show a turning point. Since their diagram is single valu
with respect toM, no cusp structure appears even when
plot the M -S diagram with their boundary condition. As
result, they concluded that all solutions are stable.

What is the essential difference between their analysis
ours? In order to clarify this problem, we vary thef` and
plot theM -r H diagram in Fig. 7. Each branch is obtained
scaling from the original branch withf`50 because the
changing off` by a constant can be absorbed by normali
tion of r H andM as we mentioned. As a result, each bran
has a turning point in theM -r H diagram and a cusp structur
in the M -S diagram. We then trace thefH5constant solu-
tions as shown by dotted lines in Fig. 7. As we can see fr
Fig. 7, thefH5constant curve can change monotonica
without any cusp structure, although a cusp structure app
in any f`5constant curves. The trick comes from that th
fix the state variable, i.e.,fH . It is shown that fixing the
state variable can lead to a wrong result@15#. Therefore we
believe that the solutions in afH5constant branch also be
come unstable beyond the point corresponding to our crit
point C, although no cusp structure appears.

IV. CONCLUSION AND REMARKS

We have studied the stability of dilatonic black holes w
the Gauss-Bonnet term. The minimum mass solution at
critical point divides them into two branches in theM -S
diagram. The upper branch has ther H→` limiting solution,

FIG. 7. TheM -r H diagram of the dilatonic black holes with
Gauss-Bonnet term. Each solid line has the different boundary c
dition; f`50.012, 0.009, 0.006, 0.003, 0.0,20.003, 20.006,
20.009, and 20.012 from the left side. We also plot th
fH520.488 line by a dotted line. We cannot find a turning po
for dotted line, while there is a turning point for each solid lin
However the dotted line passes through the turning point of
solid line and stability change occurs at this point.
4-8
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STABILITY OF A DILATONIC BLACK HOLE WITH A . . . PHYSICAL REVIEW D 58 084004
which corresponds to a Schwarzschild black hole; on
other hand, the lower branch ends up with the singular po
where a naked singularity will appear. By catastrophe the
analysis, the solutions of upper branch are stable, while th
in lower branch are found to be unstable. As catastro
theory tells us, only relative stability between several fam
lies of solutions and we are not sure whether catastro
theory is applicable for any generalized theory of gravity,
have also checked stability by linear perturbation analy
Then we find one unstable mode in the lower branch, bu
unstable mode in the upper branch. The solution which
eigenvalue zero coincides with the critical point. Hence,
stability changes at this critical point. These results are
actly the same as those obtained by a catastrophe th
analysis. Hence, our investigation gives one evidence
catastrophe theory is useful not only in general relativity,
also in the generalized theory of gravity@15#.

The global structure of dilatonic black holes with Gaus
Bonnet term was studied by Alexeev and Pomazanov@8#.
They found that a spacelike singularity extends atr 5r s.0
inside the event horizon. This global structure is almost
same as that of the Schwarzschild black hole. We find
the location of the singularity approaches the event hori
as the horizon radius gets smaller. Eventually, the singula
and the event horizon coincide at the singular point S. T
a naked singularity appears atr 5r s5r H . Can a naked sin-
gularity appear in the real universe? We could give an
swer for this question. Suppose that a black hole in the lo
branch is formed first. One may expect that as remain
matter around falls into a black hole, the spacetime evol
along the lower branch ofM -S diagram to the singular poin
S and eventually a naked singularity appears. However, s
the solutions in the lower branch are unstable as we show
those jump up to the solution in the upper branch by so
perturbations caused by matter accretion. There might
some initial data, which evolves into the singular solution
without forming an event horizon. However such a scena
seems unlikely because the singular solution S belongs to
unstable branch. As a result, the singular solution is not
nerically formed. This may support the cosmic censors
conjecture.

If we consider quantum mechanics, i.e., if we include
evaporation process, more careful treatment is required. S
pose the unstable black hole solution in the lower branc
formed. How does this black hole evolve? We have to co
pare two time scales; the time scale of instabilityt inst and the
evaporation time scaletevap . As the eigenvalue of the linea
perturbation equation iss2;1024/a8, the time scale tha
instability grows is estimated ast inst;100Aa8. On the other
hand, since the temperature of the black hole in the lo
branch isT;0.05/Aa8, the evaporation time scale from th
singular point S to the critical point C is estimated as

tevap;~Ms2Mc!/S p2

120
NT43Ae f fD;10

Aa8

Ng2
, ~50!
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whereMs and Mc are the masses of the black holes of t
singular and the critical points, respectively@9#, N is the
number of evaporating particle species including s
weight, andAe f f;O(10)3AH is the effective area of Hawk
ing radiation@22#. Since the evaporation time scale is shor
than the instability time scale, the unstable solution w
evaporate to the critical solution C before it jumps up in
the stable upper branch. In any case, both stable and uns
solutions will evaporate into the critical solution C. After th
spacetime reaches the critical point C, we are not sure w
kind of state it evolves into.

We have to comment on the case with the gauge fields
the electrically charged case, our results will be essenti
the same as the present case. Since magnetically charg
‘‘colored’’ black holes do not have a cusp in theM -S dia-
gram, a black hole solution can evolve to a naked singula
via an evaporation process. In the ‘‘colored’’ case, we exp
that sphaleron type instability of the Yang-Mills field@23#
destroys such a solution and all solutions are unstable. H
ever we have no idea about the magnetically charged b
hole case. If it is stable, the cosmic censorship conjec
may not hold. Quantum gravity may play an essential a
important role at the last stage.

Our results are obtained by assuming the model~1! which
includes only the tree level of the leading order terms of
expansion parametera8. There is a possibility that the solu
tions near the critical point and singular point may be mo
fied by taking the one-loop quantum correction or next le
ing terms of a8 into account. It is well known that the
singularity theorem demands that the universe has an in
singularity in general relativity. According to the latest in
vestigation of string cosmology, however, the moduli fie
with one-loop effect could remove an initial singularity an
provide us a nonsingular cosmology@24,25#. Motivated by
these discussions, we have studied the effect of the mo
field on the black hole solution as well. Preliminarily, w
find that the properties of the solution are almost the sam
the present model. In fact, the singular solution S appear
the end of branch in this case as well. The effect of
moduli field is not large enough to change the outside str
ture of the black hole, although an inside singularity mig
be removed. The detail will be discussed in a future publi
tion.
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APPENDIX: LINEAR PERTURBATION EQUATIONS

We show the explicit forms of the coefficients of linear perturbation equation~37!. By using the time dependent expansio

f~ r̃ , t̃ !5f~0!~ r̃ !1f~1!~ r̃ , t̃ !e, ~A1!

F~ r̃ , t̃ !5F~0!~ r̃ !1F~1!~ r̃ , t̃ !e, ~A2!

L~ r̃ , t̃ !5L~0!~ r̃ !1L~1!~ r̃ , t̃ !e, ~A3!

we find the following first-order perturbation equations:

a1f~1!1a2f~1!8 1f~1!9 1a3f̈~1!1a4L~1!1a5F~1!8 1a6L~1!8 1a7F~1!9 1a8L̈~1!50, ~A4!

F~1!9 5b1f~1!1b2f~1!8 1b3f~1!9 1b4f̈~1!1b5f̈~1!8 1b6L~1!1b7L~1!8 1b8D ~1! , ~A5!

L~1!8 5c1f~1!1c2f~1!8 1c3f~1!9 1c4L~1!1c5D ~1! , ~A6!

F~1!8 5d1f~1!8 1d2f̈~1!1d3L~1!1d4D ~1! , ~A7!

L̇~1!5e1ḟ~1!1e2ḟ~1!8 , ~A8!

D ~1!5 f 1f~1!1 f 2f~1!8 1 f 3L~1! , ~A9!

where coefficients are

a15
8g2 f̃ ~0!

r̃ 2
@2L~0!8 F~0!8 2~12e22L~0!!~F~0!9 23L~0!8 F~0!8 1F~0!8 2!#, ~A10!

a252L~0!8 1F~0!8 1
2

r̃
, ~A11!

a352e2L~0!22F~0!, ~A12!

a45
16g f̃ ~0!

e2L~0!r̃ 2
~F~0!9 23L~0!8 F~0!8 1F~0!8 2!, ~A13!

a55
1

e2L~0!r̃ 2
@8g f̃ ~0!~3L~0!8 22F~0!8 2L~0!8 e2L~0!12F~0!8 e2L~0!!1f~0!8 e2L~0!r̃ 2#, ~A14!

a652f~0!8 2
8g f̃ ~0!F~0!8 ~123e22L~0!!

r̃ 2
, ~A15!

a75
8g f̃ ~0!~12e22L~0!!

r̃ 2
, ~A16!

a85
8g f̃ ~0!e

22F~0!~12e2L~0!!

r̃ 2
, ~A17!

b15
g2 f̃ ~0!

D ~0!
2r̃ 3e2L~0!

@~32e2L~0!!~f~0!8 2 r̃f~0!9 1 r̃gf~0!8 2!16L~0!8 f~0!8 r̃ #~222e2L~0!2f~0!8 2r̃ 2!, ~A18!
084004-10
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b25
1

2D ~0!
2e2L~0!r̃ 3

@24g f̃ ~0!~112r̃gf~0!8 !~12e2L~0!!~32e2L~0!!1D ~0!r̃
3e2L~0!~f~0!8 1 r̃f~0!9 !

12r̃ 2g f̃ ~0!f~0!8 2~314r̃f~0!8 g!~32e2L~0!!212r̃L~0!8 g f̃ ~0!~222e2L~0!23r̃ 2gf~0!8 2!

24f~0!8 f~0!9 g r̃ 3 f̃ ~0!~42e2L~0!!#, ~A19!

b35
1

2D ~0!
2r̃ 2e2L~0!

@2g f̃ ~0!~324e2L~0!!~222e2L~0!2 r̃ 2f~0!8 2!1D ~0!f~0!8 e2L~0!r̃ 3#, ~A20!

b45
4g f̃ ~0!

D ~0!
2e2L~0!e2F~0!r̃ 3

$4g f̃ ~0!~f~0!8 2gf~0!9 1 r̃gf~0!8 2!~12e2L~0!!~32e2L~0!!2 r̃ ~12e2L~0!!

3@D ~0!e
2L~0!~112r̃F~0!8 1 r̃gf~0!8 !224r̃f~0!8 L~0!8 g f̃ ~0!#22D ~0!L~0!8 e4L~0!r̃ 2%, ~A21!

b55
4g f̃ ~0!~12e2L~0!!

D ~0!r̃ e2F~0!
, ~A22!

b65
1

D ~0!
2e2L~0!r̃ 3

@2g f̃ ~0!~f~0!8 2 r̃f~0!9 1 r̃gf~0!8 2!~622e4L~0!23r̃ 2f~0!8 2!2D ~0!r̃ e4L~0!~122r̃L~0!8 !

112L~0!8 r̃gf~0!8 f̃ ~0!~22 r̃ 2f~0!8 2!#, ~A23!

b75
1

D ~0!
2e2L~0!r̃ 2

@26gf~0!8 f̃ ~0!~222e2L~0!2 r̃ 2f~0!8 2!1D ~0!e
4L~0!r̃ #, ~A24!

b85
1

4r̃ 3D ~0!
3e2L~0!

@8g f̃ ~0!~32e2L~0!!~222e2L~0!2 r̃ 2f~0!8 2!~f~0!8 2 r̃f~0!9 1 r̃gf~0!8 2!

2 r̃ ~D ~0!e
2L~0!248L~0!8 gf~0!8 f̃ ~0!!~222e2L~0!2 r̃ 2f~0!8 2!

22D ~0!r̃
2e2L~0!~2L~0!8 e2L~0!1 r̃ 2f~0!8 f~0!9 1 r̃f~0!8 2!#, ~A25!

c15
4g2 f̃ ~0!

D ~0!r̃
~12e22L~0!!~f~0!9 2f~0!8 2g!, ~A26!

c25
f~0!8

2D ~0!r̃
@16g2 f̃ ~0!~12e22L~0!!1 r̃ 2#, ~A27!

c35
24g f̃ ~0!~12e22L~0!!

D ~0!r̃
, ~A28!

c45
1

D ~0!r̃
@2e2L~0!28g f̃ ~0!e

22L~0!~f~0!9 2f~0!8 2g!#, ~A29!

c55
1

4D ~0!
2r̃

@2212e2L~0!2f~0!8 2r̃ 2116g f̃ ~0!~12e22L~0!!~f~0!9 2f~0!8 2g!#, ~A30!

d15
r̃f~0!8

2D ~0!
, ~A31!
084004-11
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d25
4g f̃ ~0!~12e2L~0!!

D ~0!r̃ e2F~0!
, ~A32!

d35
e2L~0!

D ~0!r̃
, ~A33!

d45
2~12e2L~0!!2f~0!8 2r̃ 2

4D ~0!
2r̃

, ~A34!

e15
~12e22L~0!!$8g f̃ ~0!~F~0!8 1f~0!8 g!@~12e2L~0!!22r̃ ~L~0!8 1F~0!8 !#2f~0!8 e2L~0!r̃ 2%

2r̃ @D ~0!~12e2L~0!!22D ~0!r̃ ~L~0!8 1F~0!8 !1f~0!8 2r̃ 2#
, ~A35!

e25
4g f̃ ~0!~12e22L~0!!@211e2L~0!12r̃ ~L~0!8 1F~0!8 !#

r̃ @D ~0!~12e2L~0!!22D ~0!r̃ ~L~0!8 1F~0!8 !1f~0!8 2r̃ 2#
, ~A36!

f 15
4f~0!8 g2 f̃ ~0!~123e22L~0!!

r̃
, ~A37!

f 25
4g f̃ ~0!~123e22L~0!!

r̃
, ~A38!

f 35
224f~0!8 g f̃ ~0!e

22L~0!

r̃
, ~A39!
y

Eq

he

ri-
where

D ~0!511
4

r̃
f̃ ~0!8 ~123e22L~0!!. ~A40!

Integrating Eq.~A8!, we obtain

L~1!5e1f~1!1e2f~1!8 1l~1!~r !, ~A41!

wherel (1)(r ) is an arbitrary time-independent function. B
differentiating Eq. ~A41! with respect tor and by using
zeroth- and other first-order equations, we find thatl (1)(r )
satisfies the following differential equation:

l~1!8 1S F~0!8 2L~0!8 1
1

r Dl~1!50. ~A42!

This is easily integrated as

l~1!5
CeL~0!2F~0!

r
. ~A43!

C is an integration constant. SinceeL(0)2F(0) diverges on the
event horizon, a regularity of perturbations forcesC50, i.e.,
l (1)[0. The same result can be easily obtained from
~A8!, when we set

f~1!~ r̃ , t̃ !5j~ r̃ !ei s̃ t̃ , ~A44!
08400
.

L~1!~ r̃ , t̃ !5h~ r̃ !ei s̃ t̃ , ~A45!

for s̃Þ0.
From the above first-order equations~A4!–~A7!, ~A9!,

and~A41!, we obtain the single perturbation equation of t
dilaton fieldf:

F1f̈~1!1F2f~1!9 1F3f~1!8 1F4f~1!50, ~A46!

whereFi ( i 51 –4) are some functions of zeroth-order va
ables defined by

F15a31a7b41a5d21a8e1 , ~A47!

F2511a7b31a6c31a7b7c3 , ~A48!

F35a21a7b21~a61a7b7!~c21c4e2!

1a5d11~ f 21 f 3e2!~a7b81a6c51a5d4!

1a7b7~c5f 21c5f 3e2!1e2~a41a7b61a5d3!,

~A49!

F45a11a7b11~a61a7b7!~c11c4e1!

1~ f 11 f 3e1!~a7b81a6c51a7b7c51a5d4!

1e1~a41a8b61a5d3!. ~A50!
4-12
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How about time-independent perturbations? In that ca
we just find the perturbation equations~A4!–~A7!, ~A9!
without time derivative terms. From those equations, we
tain

F̄1f~1!9 1F̄2f~1!8 1F̄3f~1!1F̄4L~1!50, ~A51!

L~1!8 5Ḡ1f~1!9 1Ḡ2f~1!8 1Ḡ3f~1!1Ḡ4L~1! , ~A52!

where coefficients are

F̄1511a7b31c3~a61a7b7!, ~A53!

F̄25a21a7b21~a61a7b7!~c21c5f 2!

1 f 2~a7b81a5d4!1a5d1 , ~A54!

F̄35a11a7b11~a61a7b7!~c11c5f 1!

1 f 1~a7b81a5d4!, ~A55!
D

B
d

E

v.
,

08400
e,

-

F̄45a41a7b61~a61a7b7!~c41c5f 3!

1 f 3~a7b81a5d4!1a5d3 , ~A56!

Ḡ15c3 , ~A57!

Ḡ25c21c5f 2 , ~A58!

Ḡ35c11c5f 1 , ~A59!

Ḡ45c41c5f 3 . ~A60!

Equations~A51! and~A52! cannot be reduced to a sing
equation with respect to the dilaton field because of the l
of an algebraic equation betweenf (1) and L (1) like Eq.
~A41!.

Notice that those equations for time-independent per
bations are not recovered from those for time-dependent
turbations by settings̃50.
K.

E.
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