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We investigate the stability of black hole solutions in an effective theory derived from a superstring model,
which includes a dilaton field and the Gauss-Bonnet term. The critical solution, below which mass no static
solution exists, divides a family of solutions in the mass-entropy diagram into two. The upper branch ap-
proaches the Schwarzschild solution in the large mass limit, while the lower branch ends up with a singular
solution which has a naked singularity. In order to investigate the stability of black hole solutions, we adopt
two methods. The first one is catastrophe theory, with which we discuss the stability of non-Abelian black
holes in general relativity. The present system is classified as a fold catastrophe, which is the simplest case.
Following catastrophe theory, if we regard entropy and mass as the potential and the control parameter,
respectively, we find the lower branch is more unstable than the upper branch. To confirm this, we study the
second method, which is a linear perturbation analysis. We find an unstable mode only for the solutions in the
lower branch. Hence, our investigation presents one example that catastrophe theory is also applicable for a
generalized theory of gravityS0556-282(98)02118-3

PACS numbe(s): 04.50:+h, 04.70.Bw, 04.70.Dy, 11.15q

I. INTRODUCTION charged and the “colored” black holes.
(4) The entropy takes the minimum value at the critical

A black hole is one of the most interesting stellar objectssolution, and a cusp structure appears in the mass-entropy
which reflects general relativistic effects. Investigation ofdiagram for neutral and electrically charged black holes. On
black holes includes many topics and it would unveil a newthe other hand, no cusp structure appears for magnetically
physics. Simultaneously, however, many unsolved problemsharged and “colored” black holes.
have come out. For example, we now have several conjec- (5) The black hole temperature is always finite and heat
tures or problems such as the black hole no-hair conjecturgapacity is always negative for any type of black hole.
the information loss problem, a cosmological remnant after Note that in the above system, the black hole can support
black hole evaporation. As one of the attempts to investigata dilaton hair without an electromagnetic or other gauge
these problems, several researchers have discussed blagkarge, while the “no scalar-hair theorem” guarantees that
hole solutions in effective string theories. there is no black hole solution with a dilaton hair under the

The first study of such a black hole was made in theappropriate conditions in asymptotically flat spacetime in
Einstein-Maxwell-dilaton systeni1,2]. They derived new general relativity{10—12. This is because the existence of
black hole solutions with a dilaton hair in spherically sym- nontrivial dilaton hair is due to the Gauss-Bonnet term.
metric static spacetime. It is classified as a secondary hairhen, this hair can also be classified as a secondary Tair
because it is not independent of electromagnetic charge. Theence, there is no analogue of the “no scalar-hair”’ theorem
effect of the next leading order term in the inverse stringin the present model. However if dilatonic black holes with
tensiona’, in particular higher curvature term, was studiedthe Gauss-Bonnet term are unstable, such a scalar hair has no
by many author$3—-6]. Recently, black hole solutions in the meaning physically. Hence, stability analysis of new solu-
system including the dilaton field, the gauge field, and thetions is indispensable.

Gauss-Bonnet term were solved numericdli=-9]. These The fact that black hole mass is bounded below is also
solutions, which we call dilatonic black holes with Gauss-important because such a critical solution can be a candidate
Bonnet term, have the following interesting properties. of cosmological remnant and it may solve the information
(1) There is a critical solution, below which mass no staticloss problem. However as the temperature is always finite,
solution exists. evaporation does not stop even at the critical solution. Hence
(2) There is a singular solution, which has a naked singua further problem appears: what state does such a black hole
larity. develop into though evaporation? This has been an open

(3) For the neutral and the electrically charged blackquestion. If a singular solution forms generically, it can be a
holes, the critical solution is not the same as the singular ong&ounterexample to the cosmic censorship conjecture. One of
while those two solutions coincide for the magnetically the methods to investigate this problem is the stability analy-

sis. If the singular solution is unstable, the naked singularity
seems not to be formed from the regular initial data generi-
*Electronic address: torii@th.phys.titech.ac.jp cally. With these motivations, we investigate whether or not
Electronic address: maeda@mn.waseda.ac.jp dilatonic black holes with the Gauss-Bonnet term are stable.
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Previously, we showed that catastrophe theory is useful 1 ) pe 2
for discussing the stability of black hole solutions with non-  G,.,= = 59,,(V¢)*+V,V, ¢+ k*F(Rge9,,~ 4RR,,
Abelian matter fields in general relativif3,14]. Although

in general relativity, there is a close relation between catas- +8R,*R,,+8R,,,,R*"—4R,,, ,R*™*,)
trophe theory and linear perturbation analyisis], we are 5
not sure whether a similar discussion holds in generalized +AKA(VIVI)(94p900RT 209,66
theories of gravity. In this paper, we will give one example _
that catastrophe theory is applicable for the model including 4950Rupt20,0Ro0 T 2Rppir0), @
the Gauss-Bonnet terfil6]. and of the dilaton field
This paper is organized as follows. We outline the model
and derive static solutions in Sec. Il. In Sec. lll we investi-
gate the stability by using both catastrophe theory and linear O¢+ ﬁRéBz 0. 5)

perturbation analysis. Section IV includes discussions and

some remarks. i i
The coupling between the Gauss-Bonnet term and the dilaton

field plays a crucial role. Without this coupling, the Gauss-
Bonnet term becomes totally divergent and there will not
exist any nontrivial black hole solution in the static spheri-
We only consider the bosonic part of effective field theorycally symmetric spacetime because such a solution is forbid-

of a heterotic string theorj17]. The action is described as den by the no scalar-hair theorem.
follows In this paper, we consider a spherically symmetric space-

1 1 time. Hence, we adopt the following form of the metric,
S=J d4X\/_g(§R_ﬁ(vd’)z_"f(d))(RéB_Fz) :

Il. DILATONIC BLACK HOLE WITH
GAUSS-BONNET TERM

D ds?= —e?*tNdt2+ e2AtNdr2+r2(d 62+ sirf 0d ¢?).
(6)

This includes only tree level in expansion of inverse string ) _
tensiona’. Here x2=8#G and RéB is the Gauss-Bonnet Ve also use the lapse functiahand the mass functiom

term. i.e. defined as
REg= R, R¥"P7— 4R, R+ R, @ S(tr)=—(®+A), @
The functionf(¢) is defined as Gm(t,r)=r(1—e 2?4, (8)
)= a vé 3 respectively. Then the metric is rewritten with these func-
(¢)= 16K2e ' (3) tions as
wherey= /2 is the coupling constant of dilaton fiettl and 42— —[1- 2Gm(t,r) 7le,zﬁ(t’r)dt2
g is regarded as a gauge coupling constant. We neglect the B r

rank three antisymmetric tensor field, which vanishes in the

spherically symmetric case. Furthermore, we assume no +(1_ 2Gm(t,r)
gauge field and focus only on the neutral case with the r
Gauss-Bonnet term just for simplicity.

dr2+r?(d6?+sirfade?). (9)

Varying the action(1) by the metric and the dilaton field, By using theséAnsdze we write down the field equations
we obtain the basic equations of the gravitational field explicitly. The nontrivial equations of Ed4) are
4, T, : 1 4 ) .
A\ 1+ = (1-8e7?Y) | = 7(¢ 2+ et 209?) + 2—~(1—e2A)+:(1—e’2A)(f —e?AT2PAY), (10)
r r r
4. T, . 1 4 o s
@'| 1+ :f’(1—3e‘2A)) = 7(¢ et 72097 - 2—~(1—e2A)+:(1—e‘2A)e2A‘2‘I’(f—CI>f), (11
r r r
. 4. T - T
A( 1+:f’(1—3e2A)) =Z(1—e2A)(f’—(I>’f)+ Eqsqs', (12)
r
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"+

1 W 1, . 16 ~ ~
(I)/_’_}T (q)r_Al)_62A72lIJ[A+A(A_q))]+E(QS 2_e2A72CI>¢2)_T{e72A[(f/q)/)r+fr(1)r(q)/_3Ar)]

+e [T A(A+¢)—T A+T(®'A—pA")—2AT + A F]}=0. (13)
Here we have used the dimensionless variables;/\Ja', T=t/\a', andf=«?f/a’. A dot and a prime denote derivative
with respect tat andr, respectively. The equation of the dilaton field is described as

2 e . . . s
¢H+ (I)/_A/+: _82A72®[¢+(A_(I))¢]: —
r dpy?

—(1—-e®M)e®r 2P [ A+ A(A—D)]}. (14)

{26722 DA 27 2PN+ (1-e)[ D"+ D' (B~ A)]

The right-hand side comes from the coupling with the GaussThe gauge coupling constant at the low-energy scale is de-
Bonnet term. Since these equations are not independent, viermined by experiments asgf/~O(10?). If we know the
use Eq.(13) as an error check in our numerical calculation. value of the inverse string tensieri and if the renormaliza-
Dropping the terms which include time derivative in the tion effect does not change its value so much, we can esti-
field equations(10)—(14), we find the dilatonic black hole mate ¢.. from Eg.(22). However there is no way to fix’
solution with the Gauss-Bonnet term in the static spacetimesven if a string theory and its low-energy limit are relevant to
We, of course, need the boundary and regularity conditionsur universe. We just expect that it must be the Planck scale.
of metric functions and the dilaton field as follows. At infin- Here we assume..=0. If we are interested in a different

ity, the spacetime approaches the flat one, i.er,-as boundary condition such ag— ¢* #0, we can always have
®(r)—0 (15) such a boundary condition without further calculation be-
' cause the constant difference is absorbed in the coordinates
A(r)—0, (16)  py rescaling. That is, introducing=¢— ¢* , and rescaling

the variables as=e "#:T, t=e ?%*1, andm=e" "%=m,
we recover our boundary condition.
m(r)— M =finite, a7 The equation of the dilaton field is singular on the event
horizon. In order to guarantee to find a regular solution at the
&(r)—0. (18) event horizon, we expand variables around the event horizon

y power series of=(r —r,)/r as

or

The constanM is the mass of a black hole. We assume theb

. . . - - - 1~ 1 -
existence of a regular event horizog, i.e., m(r)=my+mle+ §m(HZ)€2+ . n_lan>€n+ e

2Gmy=ry, (19 (23)

o<, (20 1 1
o(r)=6y+ 6 e+ §5<H2>62+ kSN
Here the variables with a subscridtdenote those values at n (24)
the event horizon. Furthermore, we assume the nonexistence
of a singularity outside the event horizon, i.e., forr,,

r): + (1) +1 (2) 2+...+i (n) ﬂ+“_
2Gm(r)<r. (21) P =dut dyet 5 e i P € '

(25
From the boundary conditiorid7) and(18), the dilaton field o ) ) )
should approach a constant valge . It has been already Substituting them into field equation&0), (11), and (14),
fixed in our universe. In principle, we can estimate by ~ We obtain the coefficientsn’, o, ¢’ (n=1,2,...)
discussing the gauge coupling constant. As the spacetim@rder by order. From the zeroth-order equations,ofe find
approaches flat Minkowski space in the far region from thethe following relation for the dilaton field on the event hori-
black hole, Maxwell theory in the Minkowski spacetime zon:
must be recovered. Comparing the Lagrandignwith La-

grangian of the electromagnetic field, we find the following )2 &y 3-0 26
relation H _c_+ - (26)
’ oY
@' e v (22  Where co=e 7?"/4rfy. This quadratic equation has two
16x2 167g? roots as
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1+ 1126292 2.4 ' ' —
¢Q¢ZT- (27) (a)
oY 2.2} )
By the reality condition ofp/,. , ¢y is restricted as
2 Schwarzschild b.h, .-~~~
~4 =~ 2.0}

L[ A 0y =

2 A5 n - 5 L) S~

¢H 27 3’)/ k:

18F

for each horizon radius. In the numerical calculation, we find
black hole solutions with a regular horizon only when we 1.6
choose the minus sign in the boundary conditigi).

From the second-order equation

1.4 L : '
0.8 0.9 1.0 1.1 1.2
= 5 (29 GM /| (a')"”
D and E are very complicated functions GTﬁH, oy, and 080 (b) I I I
¢w . It must be noted that if we take the minimum value of .1 .

by, i.e., ¢y=—In(4r}/3y?)/2y, the denominatoD van-
ishes, while the numeratdt remains finite. Hencep;, di- 1.576 F J
verges. Furthermore, we have checked that a scalar invarias.
I=R,,,,R*"" also diverges, which means that a naked sin-8 4 574} .
gularity will appear on the “horizonr=r. “x ¢

We integrate the static field equations from the event ho ~ 1.572F i
rizon with the above boundary conditions. The properties o
dilatonic black holes with Gauss-Bonnet term are discusse 4 s70} S 4
in detail in Refs[7-9]. Figure 1 is theM-r diagram. We
find an end point S which has the minimum horizon radius. | g¢q L L L

At this point S, ¢y = —In(4r}/3y%)/2y, then a naked singu- 0.8503  0.8504  0.8505  0.8506  0.8507
larity appears at=r,. It is no longer a black hole. We call GM | (a')"”

this point S, the singular point. We also find another impor-
tant point C, which has the minimum mass. At this point, the
solution curve turns around. We call this point C, the critical
point. The existence of the critical point plays an important
role in the stability analysis using catastrophe theory.

FIG. 1. (&) The mass-horizon radius diagram for the dilatonic
black holes with Gauss-Bonnet term. There is an end point S, where
a naked singularity appears. We also plot the Schwarzschild black
hole for comparison. In the large mass limit, the dilatonic black
hole approaches the Schwarzschild black h@k.is a magnifica-

tion around the singular point S. We find the critical point C, below
lIl. STABILITY ANALYSIS which no solution exists.

Now we discuss a stability of the dilatonic black hole with . .
the Gauss-Bonnet term. The stability of the solution is one ofS the control parameter, with which we can control the sys-

the most important properties. In particular, our analysis of€M- Here we choose the maﬁs ofa %Iaclglhoil(e r?sl the contLoI
the static solution shows a possibility that a naked singularit)Pharameter' since we 'canh change the ac ho e state Dy
may appear. Hence, we will analyze the stability around thé"fOWing a mass into it. The second group is the state vari-

singular point and the critical point in detail. In this paper, 2P1€S, which describe a state of the system. In the non-
wegadoptptwo methods. P pap Abelian black hole case, we adopted the field strength of the

gauge field on the horizon. However in the present system no
gauge field exists. Hence, we choose the dilaton figldas
the state variable instead of the gauge field. The third group
Catastrophe theory is a mathematical tool to investigate & a potential function, whose extremum should correspond
variety of changes of states in nature. Especially, it is usefulo equilibrium states. In general relativity, we adopted the
when we treat an unexpected and discontinuous change ehtropy as the potential function, which is expressed by one
states. It is widely applied in various research fields, for ex-quarter of the area of the event horizon. The increase of the
ample the structural stability, the crystal lattice, biology, em-area is guaranteed by the area theorem, i.e., the second law
bryology, and astrophysics. Previously, we showed that it i®f the black hole thermodynamics. In generalized theories of
also applicable to the stability analysis of various types ofgravity, however, it is not the case. In fact, Oppenheimer-
non-Abelian black holes in general relativity3,14. Schneider collapse in Brans-Dicke theory reveals a decrease
In order to apply catastrophe theory, first we have to deof the ared18]. Nevertheless, the entropy defined by Kang
fine several catastrophe variables of the system. First grougioes not decrease at any stage in their simulation. Further-

A. Catastrophe theory
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more, Jacobson and Kang showed that the second law of R4
black hole thermodynamics is still valid in the following
restricted model,

S= j d4X \/__g[f(R)+£matter]v (30)

with null energy conditiorf19]. f(R) is a polynomial of the

Ricci scalar. The entropy defined above has been extended

into a more generic model by lyer and W4RD]. Hence, as

the potential function, we adopt the entropy defined by lyer

and Wald as in general relativity. A
This definition of entropy has the following desirable

properties. It can be defined in a covariant way in any dif-

feomorphism invariant theory and it obeys the first law of  _

black hole thermodynamics for an arbitrary perturbation ofa x

stationary black hole. We present its expression in the

present model. The explicit form is obtained by

FIG. 2. The Whitney surface in the control parameteihe state
variablex, and the potential functiol space. Extrema of this sur-
face for the fixed control parameter are denoted by dotted line ACB,
S= _zwf Eﬁypgf,wfpm (3D which corresponds to the family of static solutions of the system.
P The minimum line AC and the maximum line BC are stable and
unstable solutions, respectively. Stability change occurs at the in-
whereX, is the bifurcation horizon 2-surface aeg, denotes  flection point C. We also plot the projection of the static solutions
the volume element binormal ®. E4"?7 is defined by onto thep-x plane and find a cusp structure at the point C. This is
a characteristic sign that the catastrophe occurs.
aL 32)
IR o ( end point S. We can find a cusp structure at the critical point
) ) ) ) C and it is the characteristic sign of a stability change. From
where L is the Lagrangian density. Then in our model, wethis figure, we conclude that solutions in the lower branch
find are more unstable than those in the upper branch, since the
higher entropy means the more stable. Usually, the minimum
and the maximum of the potential function correspond to

MVPO _
ER -

S4G

a,
1+ —Ze‘“ﬁH), (33
2rg

3 10
whereAy, is the area of the event horizon. The second term
in the round bracket is the correction from the Gauss-Bonnet 2 10®
term.

In order to investigate whether the stability change oc- 1 10°®
curs, we draw Whitney surface, which is a solution surface -
drawn in the space of control parameters state variables  — 0
X;, and a potential functiov. A schematic diagram with o

=j=1 is given in Fig. 2. When we fix the control param- -1 10
eters, extrema of the Whitney surface give equilibrium solu-

tions. When the extremum is the minimum, the solution is  .» 106} 4
stable, while if it is the maximum point, the solution is found
out to be unstable, when we adopt the usual definition of a .3 19 L
potential function like the energy of a system. Hence in Fig. 0.8504 0.85045 0.8505
2 the branch AC is more stable than the branch BC. The GM / (o)

projection of equilibrium solutions onto thaV plane gives

a cusp structure C, which corresponds to the infection poin{3a

of the three-dimensional figure. As a result, stability Chang%oint and the singular point. In order to show the structure at the

occurs at the cusp point C on tipeV plane. critical point clearly, we depiciS* (M)=S(M)—S,(M), where
As this example, if the stability of solutions changes for agﬁ P Y PICE” (M) =S(M) — So(M),

. . . ; (M) is a linear function ofM passing through an appropriate
certain parameter, its sign appears on the diagram of contrglyint A in the upper branch and the end point S. Hence, the abso-

parameters versus a potential function. The diagram in thge value has no meaning. We can find a cusp structure, which
present model is shown in Fig. 3. In order to show the strucseparates the family of solutions into two branches, at the critical
ture at the critical point clearly, we depi&* (M)=S(M) point C. This means that the stability change occurs at the critical
—S9(M), whereSy(M) is a linear function ofM passing point and solutions of the upper branch AC are stable, while the
through an appropriate point A in the upper branch and théower branch SC is unstable.

FIG. 3. We plot the entropy for the dilatonic black holes with
uss-Bonnet term. This is the magnification around the critical
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stable and unstable solutions, respectively. However, since ¢,
we adopted the entropy as a potential function, the corre- A
spondence turns out to be opposite.

Catastrophe theory shows only a relative stability among
several families of solutions. We cannot predict the absolute
stability of solutions. However we expect that the upper -0.09
branch in Fig. 3 is absolutely stable from the following two
reasons. There is no solution except for those obtainec
above, hence, if the solutions of the upper branch are un
stable, there is no stable static solution and we must give uf
staticity or spherical symmetry. Next, in the limit of, -0.095
—oo, the effect of the Gauss-Bonnet term vanishes and oul
system approaches general relativity with a massless scal¢
field. From the no hair theorem in general relativity, the so-
lutions of the upper branch approach to the Schwarzschilc
black hole, which is stable in general relativity.

Next we investigate what type of catastrophe, the dila-
tonic black hole with Gauss-Bonnet term is classified into. 00012
The first step is drawing the equilibrium spakk;, which
consists of extrema of the potential function in the space of
control parameters and state variables. Then we project thi
equilibrium space onto a control parameter space, which is
called the control plane, by a catastrophe map There
may exist singular points on equilibrium space, where the

J?COb'an Of_the mapplr;gsvanlshes. The image of t_he set of FIG. 4. The equilibrium space of the dilatonic black holes with
singular points is the bifurcation sés. If such singular  Ga,ss-Bonnet term. Upper side and lower side of the equilibrium
points exist, the number of solutions with the same controkpace correspond to the stable and unstable solutions, respectively.
parameter changes beyond the bifurcationBgt and then  \When the black hole mass gets small, the stable and the unstable
the stability also changes there. Hence, by looking at thiSolutions merge at a critical point. On the control plane, we draw
bifurcation set, we can classify our model into elementarythe bifurcation seBg, which shows a fold catastrophe.
catastrophes.

Until now, we have fixed the value of the dilaton field at confirmed in the next subsection. When we will analyze non-
infinity as ¢..=0 because it is related to the physical con-spherically symmetric modes, we may need a different ap-
stant. However we are now interested in the elementary cgsroach.
tastrophe of the present systeit0)—(14) from the math-
ematical point of view. For this purpose, we have to vary all B. Linear stability analysis
possible parameters. In the present model, we have two con-
trol parameters. Hence, in addition to madswe adopte,,
as the second control parameter, althogghis a different
type of control parameter from the black hole méti the
following sense. We can contrtM by putting matter into the
black hole, on the other hand, we cannot chaggeby any
physical process because it needs infinite energy. We plot the

0 -0.1

VE

In order to confirm our results obtained by catastrophe
theory that solutions in the upper branch are stable, we turn
to a linear perturbation analysis. Here we focus only on the
radial modes. First we expand field variables around a static
solution as follows:

equilibrium space and the bifurcation set of dilatonic black A=)+ du)(r.De, (34)
holes with Gauss-Bonnet term in Fig. 4. ~— ~ ~—

When there are two control parameters, systems can be O(r,1)=Do)(r)+D)(r, e, (35
classified into either a fold catastrophe or a cusp catastrophe. s _ .
In the present case, since we find that the bifurcation set A(r,t)=A)(n)+An)(r,te, (36)

forms a curve without a cusp in Fig. 4, our model classified
into a fold catastrophe which is the simplest but nontrivialhere e is an infinitesimal parameter. Substituting them into
case. A fold catastrophe needs only one control parametéhe field equation$10)—(14), and dropping the second- and
essentially and the other control parameter becomes higher-order terms of, we find the perturbation equation for
dummy parameter which is not important for the catastrophéhe dilaton field¢, which is decoupled as
analysis. )

In the stability analysis using catastrophe theory, we pay Fi¢)+Fao(1)+Fad(y)+Fab)=0, (37
attention to certain modes of the system. In our case we
consider only a spherically symmetric spacetime, hence, rewhereF; (i=1-4) are complicated functions of zeroth or-
evant modes must be restricted to radial ones. This will beler variables, whose explicit forms are given in the Appen-
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dix. Since Eq.(37) becomes singular on the event horizon,
we introduce the tortoise coordinaté defined by

dr*
—=e P00, (38)
dr
To analyze the stability, we sef,) as
b)(r, D) =¢&(r)et. (39

If o is real, ¢ oscillates around the static solution and then
the solution is stable. On the other hand, if the imaginary part

of o is negative, the perturbatiafy ;) diverges exponentially
with time and then the solution is unstable. With E¢&8)
and (39), the perturbation equation becomes

& +G d¢ +(G,— G302 £=0 (40)
. 5 T~ - g =V,
dre2 e+ 2 s
where
Gy=e Lo~ %) (Al — D/ R (41)
l_e ( (0) (0)) F2 1
_ _ Fy
G,=e (2A(g) 24’(0))_’ (42)
2
_ _ F1
Gy=e 2A072%0) —, (43
2
Introducing a new functiory as
- - Gy
x(r*)=§&(r*)ex - dr (44)

finally we obtain a simple form of the perturbation equation:

d?y ~s
W—(VlJFVzU )x=0, (45)
where
v—ldGlJr(312 G 46
l_zd}:* T_ 2 ( )
V2:G3. (47)

Equation(40) or Eq. (45) is a Strum-Liouville equation
ando? and ¢ (or x) are the eigenvalue and the eigenfunc
tion, respectively. In a numerical calculation, we have solve
Eq. (40) instead of Eq(45) because the functions in EGL0)
are much simpler and then it is easier to analyze it.

PHYSICAL REVIEW D 58 084004

6 10+

4 10+

oo

2 10+

0 10°

-2 10+
1.570

1.571 1.572

r, / (o)1

1.573 1.574

FIG. 5. The eigenvalue of the perturbation equation of the dila-
tonic black holes with Gauss-Bonnet term. For the lower branch of
the M-S diagram, we found negative eigenvalues, which means that
these solutions are unstable for radial perturbation. On the other
hand, there is no negative eigenvalue for the upper branch. Since
the eigenvalue becomes zero at the critical point, stability change
occurs at this point. This result is consistent with that obtained by a
catastrophe analysis.

tive eigenvalue. With this boundary condition, we have
searched a negative eigenmode, and found it only in the
lower branch in Fig. 3. We show the eigenvalu® and the
eigenfunction¢ for several radii of event horizon in Figs. 5
and 6, respectively. Although the functighcrosses at the

same point(* =1.57), it does not have any physical mean-
ing because we can shitarbitrarily by changing an integral
constant of the differential equatidB8). Hence, these solu-
tions are unstable against the radial perturbations. We could
not find any unstable mode in the upper branch. We may

1.5 10° T

1 105

50
r* 1 (o)1

FIG. 6. We show the behavior of the eigenfunctions for the

Aower branch ofM-r, diagram. The radius of black holes arg

=1.5724(solid line), ry=1.5716(dotted ling, r ;= 1.5708(dashed

line), ry=1.5702 (dot-dashed linge Although they cross at the
same point (* =1.57), it does not have any physical meaning be-

The eigenfunction must be finite in the whole region. Thisayse we can shift eigenfunctions arbitrarily by changing an inte-
meansé—0 (r* — +o) for the eigenfunction with a nega- gral constant of Eq(38).

084004-7



TAKASHI TORII AND KEI-ICHI MAEDA PHYSICAL REVIEW D 58 084004

conclude that the solutions in the upper branch are absolutel 1.6
stable as we expected. The critical point C has eigenvalue .-
zero. This means that a stability change occurs at this point 1.50 | A
These results are exactly the same as those we showed t .
using catastrophe theory in the previous subsection.

1.58 | .

C. Comment on the stability analysis by using Strum’s theorem

/ (0(')1/2

Kanti et al. claimed that all black holes obtained here are = 157
stable using a semianalytic method or catastrophe theon
[21]. We should comment on that. Their semianalytic 1.56 |
method is as follows. They first derive the perturbation equa-
tion (45). Next they prepare two infinitesimally close static
solutions, ¢,(r) and ¢,(r), which have the same horizon 1.55
radius, but different asymptotic values ¢t.. Since these 0-84 0-843 0-85 N 0-858 0.8
functions satisfy the static equations, they claimed that the GM /()

difference ¢1)= ¢o— ¢, satisfies the perturbation equation  FIG. 7. TheM-ry; diagram of the dilatonic black holes with
(45) with o2=0, i.e., ¢(1) is one of the eigenfunctions with Gauss-Bonnet term. Each solid line has the different boundary con-
the eigenvalue Q(This is not correct as we will show below. dition; ¢..=0.012, 0.009, 0.006, 0.003, 0.0;0.003, —0.006,
Then they apply Strum’s theorem, which says that if there~0.009, and —0.012 from the left side. We also plot the
exist eigenfunction$, andf, with eigenvaluesrlz and 022' ¢ =-—0.488 line by a dotted line. We cannot find a turning point
respectively, such that 2- +2 thenf. must have at least for dotted line, while there is a turning point for each solid line.
one node bétween anyltwo r21(’)desf9f1if any. If a dilatonic However the dotted line passes through the turning point of the
. ' lid i d stability ch t thi int.
black hole with Gauss-Bonnet term has an unstable modes',OI NG and stabillly change occtirs afhis poin
; ~2 ; ; ; « ”
lf <0, the corresponding e|genfunct|qn has ”ides al  ganti et al. also used catastrophe theory. They showed a
r*=xo. Strum’s theorem demands the eigenfunciiiy,  branch of static solutions with different boundary values of a
whose eigenvalue is>=0, must have at least one node dilaton field from ours. They have fixedl on the event ho-
somewhere in {,»). However numerical calculation rizon and left that at infinity free, although we have fixed the
shows that any pair oé,(r) and ¢,(r) does not intersect value of¢ at infinity and determined that on the event hori-
anywhere, so the eigenfunctiafy,, is nodeless. This is in- 20N to satisfy$..=0. Then theirM-ry diagram does not
consistent with saying thag(l) has at least one node. As a sr_\ow a turning point. Since their diagram is single valued
result, Kantiet al. concluded that there is no unstable modeWith "éSPect toVl, no cusp structure appears even when we

and all dilatonic black holes with Gauss-Bonnet term arepIOt the M-S diagram with their bogndary condition. As a
stable. result, they concluded that all solutions are stable.

Apparently, their results disagree with ours that the solu- What is the essential difference between their analysis and

tions of the lower branch iM-S diagram are unstable. The ©UrS? In order to clarify this problem, we vary tde. and

. — plot theM-r diagram in Fig. 7. Each branch is obtained by
disagreement comes from the fact that they reghyd as scaling from the original branch witlkb,,=0 because the

the solution of the perturbation equatiéd5) with 0*=0.  changing ofi.. by a constant can be absorbed by normaliza-
The perturbation equatiof#5) is derived by using thet(r)  tion of r,; andM as we mentioned. As a result, each branch
component of the Einstein equati¢A8) or (A41) (see the pas a turning point in thdl -r,, diagram and a cusp structure
detail in Appendiyx. However, asp(;)(r) (the difference of in the M-S diagram. We then trace th¢, = constant solu-
two static solutionsdoes not depend dn Eq.(A8) becomes tiqns as shown by dotted lines in Fig. 7. As we can see from
trivial. As a result,g;,(r) no longer satisfies the perturba- F19- 7. the ¢, =constant curve can change monotonically

. . e ) . . Wwithout any cusp structure, although a cusp structure appears
fuon equation(45) W'th o°=0. I.n fa.ct, it satisfies théme in any ¢, = constant curves. The trick comes from that they
independenperturbation equations:

fix the state variable, i.ey . It is shown that fixing the
state variable can lead to a wrong reg§ds]. Therefore we
believe that the solutions in @&, = constant branch also be-
=y = ., = — come unstable beyond the point corresponding to our critical
A(1y=G1¢(1) T Cad(1)+ Csd1)+ Cal(y), (49 point C, although no cusp structure appears.

El(ﬁE,:L)+E2¢(,1)+E3¢(1)+E4A(1):O, (48)

which are different from Eq(45) with a?=0 (see Appen-
dix). We have also checked numerically thag, obtained
by Eqs.(48) and(49) is really not the same as the eigenfunc-  We have studied the stability of dilatonic black holes with
tion of Eq. (45) with o?=0. Hence, we cannot usg in  the Gauss-Bonnet term. The minimum mass solution at the
order to investigate the stability of our system by Strum’scritical point divides them into two branches in tihé-S
theorem. diagram. The upper branch has the— limiting solution,

IV. CONCLUSION AND REMARKS
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which corresponds to a Schwarzschild black hole; on thevhereM¢ and M. are the masses of the black holes of the
other hand, the lower branch ends up with the singular pointsingular and the critical points, respectivdl9], N is the
where a naked singularity will appear. By catastrophe theorywumber of evaporating particle species including spin
analysis, the solutions of upper branch are stable, while thosgeight, andA,;;~O(10)x A, is the effective area of Hawk-
in lower branch are found to be unstable. As catastrophghg radiation[22]. Since the evaporation time scale is shorter
theory tells us, only relative stability between several fami-than the instability time scale, the unstable solution will
lies of solutions and we are not sure whether catastrophgvaporate to the critical solution C before it jumps up into

theory is applicable for any generalized theory of gravity, Weihe staple upper branch. In any case, both stable and unstable
have also checked stability by linear perturbation analysisqq tions will evaporate into the critical solution C. After the
Then we find one unstable mode in the lower branch, but n

Rpacetime reaches the critical point C, we are not sure what
unstable mode in the upper branch. The solution which haﬁiﬁld of state it evolves into P '

eigenvalue zero coincides with the critical point. Hence, the . .
- N : We have to comment on the case with the gauge fields. In
stability changes at this critical point. These results are ex: . ; )
e electrically charged case, our results will be essentially

actly the same as those obtained by a catastrophe theo h N Si ticallv ch d
analysis. Hence, our investigation gives one evidence tha‘{ € same as he present case. sincé magnetcally charged or

catastrophe theory is useful not only in general relativity, but c0lored” black holes do not have a cusp in theé-S dia-
also in the generalized theory of graviys). gram, a black hple solution can evolve to a naked singularity
The global structure of dilatonic black holes with Gauss-Via an evaporation process. In the “colored” case, we expect
Bonnet term was studied by Alexeev and Pomazajgly  that sphaleron type instability of the Yang-Mills fiel@3]
They found that a spacelike singularity extends atr >0 destroys such a solution and all solutions are unstable. How-
inside the event horizon. This global structure is almost theé2ver we have no idea about the magnetically charged black
same as that of the Schwarzschild black hole. We find thafole case. If it is stable, the cosmic censorship conjecture
the location of the singularity approaches the event horizomay not hold. Quantum gravity may play an essential and
as the horizon radius gets smaller. Eventually, the singularitymportant role at the last stage.
and the event horizon coincide at the singular point S. Thus Our results are obtained by assuming the md@tiehich
a naked singularity appears atrs=r . Can a naked sin- includes only the tree level of the leading order terms of the
gularity appear in the real universe? We could give an anexpansion parameter’ . There is a possibility that the solu-
swer for this question. Suppose that a black hole in the lowefions near the critical point and singular point may be modi-
branch is formed first. One may expect that as remainingied by taking the one-loop quantum correction or next lead-
matter around falls into a black hole, the spacetime evolvefhg terms of o’ into account. It is well known that the
along the lower branch dfl-S diagram to the singular point - gingyarity theorem demands that the universe has an initial
S and eventually a naked singularity appears. However, SinGgnqjarity in general relativity. According to the latest in-
the solutions in the lower branch are unstable as we showegegiigation of string cosmology, however, the moduli field
those jump up to the solution in the upper branch by SOMGyith one-loop effect could remove an initial singularity and

perturbations caused by matter accretion. There might b . . .
some initial data, which evolves into the singular solution SSrowde us a nonsingular cosmologg4,25. Motivated by

: : : —these discussions, we have studied the effect of the moduli
without forming an event horizon. However such a scenari

seems unlikely because the singular solution S belongs to tq eld on the black hole solution as well. Preliminarily, we

unstable branch. As a result, the singular solution is not ge-Ind that the properties of the solution are aimost the same as

nerically formed. This may support the cosmic censorshiﬁhe present model. I'n faqt, the singular solution S appears at
conjecture. the end of branch in this case as well. The effect of the

If we consider quantum mechanics, i.e., if we include anmoduli field is not large enough to change the outside struc-
evaporation process, more careful treatment is required. Sufre of the black hole, although an inside singularity might
pose the unstable black hole solution in the lower branch i®€ removed. The detail will be discussed in a future publica-
formed. How does this black hole evolve? We have to comiion.
pare two time scales; the time scale of instabiljty; and the
evaporation time scalg, ,,. As the eigenvalue of the linear
perturbation equation is?~10 %/«’, the time scale that ACKNOWLEDGMENTS
instability grows is estimated dg,s,~ 100J/a’. On the other . . L
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APPENDIX: LINEAR PERTURBATION EQUATIONS

We show the explicit forms of the coefficients of linear perturbation equ#&8@dn By using the time dependent expansions

$(r, )=o)+ 1T, De, (A1)
(1) =D o) (r)+ P 1) (r,De, (A2)
A(?:f):A(O)(?)+A(1)(?.T)€, (A3)
we find the following first-order perturbation equations:
&Pyt axdiy)t )t agdhy)+agA )+ ag® (1) +agA ) +a; Py + agh1)=0, (A4)
(1y=b1d)+ b2¢(’1)+b3¢2,1)+b4<li>(1)+b5¢{1)+beA(1)+b7A<’1)+ bgD 1), (A5)
A(1y=C11)FCad(1)+C3(1)+ CsA 1)+ CsD(q), (A6)
‘b(,l):d1¢(’1)+d2$(1)+d3A(1)+d4D<1), (A7)
A(1)291¢(1)+92¢(’1), (A8)
Dy=Ff1dw)*T20(1)+ T3, (A9)
where coefficients are
87 f(0) ' / '
a1 = —=5;—[2A () ®(o,— (1= 220) (Do~ 3A (0P (o, + P (5], (A10)
! ! 2
== Ao+ ®io+ =, (A11)
az=—e* 0 2%0), (A12)
167,]((0) ’ ’ ! 2
= Fror2 (P07 340 P+ P, (AL3)
8= o —=5[87F(0)(BA (o) = 2D (5~ A ) €? 0+ 20 (€240 + b € 0iT ?], (A14)
, 8’}/’?(0)(1)(,0)(1_36_2/\(0))
=~ )~ = , (A15)
8yf g (1—e Mo
a— Y o)( - )' (A16)
8yf e 2P0 (1—e? o)
ag= 10 F2( , (A17)
,}/Zf(o) 2A ’ ~ " ~ ) ’ r 2A 1 272
D1= g L3 & (b0~ b0t 1Y h0)) +6A0) P01 [(2= 2670 = )T, (A18)
(0)
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by= s argmal ~ 4 01+ 217(g) (1~ €240) (3= €240) 4 Do I & 0 (g, +T ()
0
+2r2yF )0 (0)2(3+ 4T $(5,7) (3— €21 @) = 1 A [ ¥ (0)(2— 26 0= 32y /() ?)
—4¢(0)b(0) ¥ T o) (4—€ 0], (A19)
bs= 2D o 7r%e o) [27F(0)(3—4€*"©0)(2— 26?40 —T?¢ (5 %) + D () () €*" Or°], (A20)
_ 47’?(0) rs ! ” ~ r 2 2A 0 2A 0 ~ 2A 0
by D(O)ZEZA(O)GZ‘D(O)?S{47f(0)(¢(O)_y¢(0)+ry¢(0) )(1-e“2@)(3—e)—r(1—e o)
X[D0)€*"O(1+2r ® (o) +T yeb(o)) = 24 (o)A 0, ¥F(0)] ~ 2D 0 A (g 8" OIF 2}, (A21)
4yf 0(1—e* o)
bs=— (0)(~ o : (A22)
Dgre="©
o™ m[27’?<0>(¢<'0>_?¢2'0>+?7¢<'0>2)(6_ 2e*0=3r?¢(o, %)~ Do re* O (1-2rAf)
(0
+12A (o (o) F0) (2= T2 (0], (A23)
b .t [—6yh/of0)(2— 26?2 0=T2¢/2)+D e  or] (A24)
"7 Do ZeP o2 Y$0f0(2-2e $0)) +Dge™Or],
D5~ 23D g e £ 7 03702 26RO =TE00 (90 T bl 1T 7))
—T(D )€ 0~ 48A (g, (0T (0)) (2— 2610 —T? ¢ ?)
— 2D o 2621 (2 (0, €2 O+ T2 (o) lo) +T (D)1, (A25)
472? 0 - ” ’
C1= ——=(1—e 2 0)(¢o — (027, (A26)
D(O)r
_ ¢(,O) 77 —2A T2
Co=—=[16y"fp(1—e @) +r7], (A27)
oFf
—4yf o (1—e 2M)
o= —7 1~ , (A28)
1 -~
Cy= —=[—e* 0 -8yf 5 e 2 oy #lo)— ¢('o)23’)]- (A29)
Cs= 4D(0)ZF[—2+2e2A(0>— gb('o)ze-i- 16y~f(0)(1—e’ZA(O))(d);'O)_ d)(/o)zy)], (A30)
T o)
d;= Do)’ (A31)
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d _ 4’}/?(0)(1_ GZA(()))

= A32

© Dere*o A3

d;= =, (A33)
2(1—e?M0) — (o ir?

4= © (A34)

4D )71

o (1- 372A<°)){87~f(0)(q’(’0) + ¢l V[(1— e?ho) - 2?(/\(,0) +® (o)) ] - ¢{O)92A(°>?2} (A35)
1= ~ ~ B B ’
2r[D(0)(1—€?*0) = 2D )T (A (o) + P (g)) + B(0) 7T %]

4yf g (1—e 2ho)[ =1+ X0+ 21 (A + D)

== o (A36)
r[D0)(1—€24©)=2D T (A, + D (o)) + (0 ’r%]
45, ¥%F (0)(1—3e 2M0)
f= (R4 <0>~ ' (A37)
r
4yf 5 (1—3e 2N o)
. ¥fo)( - ), (A38)
r
—24¢/5 ¥ 08 2N
= (0) & (0) , (A39)
r
|
where AT, 1)=n(r)e, (A45)
4. ~
D(oy=1+ =f(o(1—3e 2 0). (A40)  for o#0. _ _
r From the above first-order equatiod4)—(A7), (A9),
) ) and (A41), we obtain the single perturbation equation of the
Integrating Eq.(A8), we obtain dilaton field ¢:
A =e +e,0/,,t\ r), A4l y " ’
(1) ld)(l) 2¢(1) (l)( ) ( ) F]_¢(]_)+ F2¢(l)+ F3¢(1)+ F4¢(1):0: (A46)

where\ 1)(r) is an arbitrary time-independent function. By
differentiating Eqg.(A41) with respect tor and by using
zeroth- and other first-order equations, we find that(r)
satisfies the following differential equation:

whereF; (i=1-4) are some functions of zeroth-order vari-
ables defined by

F1:a3+ a7b4+ a.5d2+ agel, (A47)
1
)\(l)+(q)(0)_A(0)+ F )\(l)zo (A42) F2:1+a7b3+a6C3+a7b7C3, (A48)
This is easily integrated as Fy=a,+asb,+ (ag+asbs)(crtcyer)
cero~—20 +agd; + (fo+fze;)(asbg+agCs+asdys)
ANpy=—""T"—"" (A43)
r +asbs(csf,+c5fze,) +ex(as+asbg+asds),
C s an integration constant. Sine&©~ % diverges on the (A49)
event horizon, a regularity of perturbations forées 0, i.e.,
N(1y=0. The same result can be easily obtained from Eq. ~ Fa=a17a7bi+(ag+azby)(Citcqey)
(A8), when we set +(f1+fae;)(asbg+agCs+asb,Cs+asd,)
¢ (T H=£MET, (Ad4) +ey(a+aghe+asds). (A50)
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How about time-independent perturbations? In that case, Fa=ay+as;bg+(ag+asb,)(c+csfs)
we just find the perturbation equatiori$4)—(A7), (A9)

without time derivative terms. From those equations, we ob- +f;(asbg+agd,) +asds, (A56)
tain
o _ G,=c3, (A57)
Fid(1)tFad(yytFad)+FsA(1)=0,  (A5]) B
— — . _ GZZC2+ C5f2, (A58)
A(]_):G1¢(l)+G2¢(’1)+G3¢(1)+G4A(1), (A52) o
Gz=c tcsfq, A59
where coefficients are CERCERCH (AS9)
F,=1+asbs+cs(ag+asbs), (A53) Ga=CqtCsls. (AB0)
_ Equations(A51) and(A52) cannot be reduced to a single
Fo=a,+asby+(as+azbs)(cy+csfy) equation with respect to the dilaton field because of the lack
+f,(asbg+asd,) +asd; (A54) ((),;4611? algebraic equation betweefy;) and A4 like Eq.

Notice that those equations for time-independent pertur-

Fa=a,tasby+(as+asbs)(C,+Csfy) bations are not recovered from those for time-dependent per-

+f,(asbg+asd,), (A55) turbations by setting-=0.
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