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We construct a class of linear partial differential equations describing general perturbations of non-rotating
black holes in 3D Cartesian coordinates. In contrast with the usual approach, a single equation treats all
radiative/-m modes simultaneously, allowing the study of wave perturbations of black holes with arbitrary
3D structure, as would be present when studying the full set of nonlinear Einstein equations describing a
perturbed black hole. This class of equations forms an excellent testbed to explore the computational issues of
simulating black spacetimes using a three dimensional adaptive mesh refinement code. Using this code, we
present results from the first fully resolved 3D solution of the equations describing perturbed black holes. We
discuss both fixed and adaptive mesh refinement, refinement criteria, and the computational savings provided
by adaptive techniques in 3D for such model problems of distorted black h8@556-282(98)01214-4

PACS numbg(s): 04.25.Dm, 04.25.Nx, 04.30.Db

I. INTRODUCTION plenty of room and resolution to grow and propagate, up
until the point where reading it off will be unambiguous.

The spiraling coalescence of black hole binaries is conThis is the problem of correctly capturing the gravitational
sidered among the most important sources for the upcomingignal. It is obvious from the above discussion, that despite
worldwide network of gravitational wave observatories. Es-the fact the equations describing black holes can be purely
sential for the effective detection and interpretation of a coavacuum, there are several scales involyakimately deriv-
lescing black hole event will be the estimation of the gravi-ing from the nature of the imposed initial data
tational waveform during the merggt, 2], a very non-linear One can attempt a simple overview of those scales and the
event, which must be computed by direct numerical integracorresponding resolution requirements: The shape of the
tion of the Einstein equations. The amount of reliable detaiblack hole effective potential for gravitational waves, well
that can be provided by numerical relativity simulations ofknown from perturbation theory studig$0], can be used as
such events bears directly on the amount of astrophysical guiding principle. There are three different regions of im-
information that can be determined from the observationgortance. Those can be qualitatively appreciated by inspec-
themselves. The simulations required to study such realistiion of Fig. 1. The picture shows the effective black hole
astrophysical events must be fully three-dimensional. Howpotential for generic perturbatiorigiore details are given in
ever, the computational requirements for solving the comSec. l). The relevant regions span roughly three decades in a
plete set of Einstein equations in 3D are highly non-trivial. logarithmic radial scale, from OM to 100M. The inner re-

Current 3D black hole simulations produce accurategion has features of the order oMy i.e., the scale of the
waveforms for a certain integration time, yet problems withhorizon for each black hole. Generic strong field regions,
the inner and outer boundaries, and/or poor resolution ofnodeled in this picture by the potential peak, will encompass
certain features, limit the duration of the simulations to athe binary and its effective potential, i.e., a domain of
fraction of the physically interesting spacetime. With the ex-roughly 10M. Finally, for a domain extending considerably
ception of very recent simulations based on a 3D characteaway from the holes#£100M), adequate resolution is re-
istic formulation of the equatiori$], this is typical of all 3D  quired for allowing outgoing radiation to form and propa-
numerical black hole simulations to dateee, e.g.[4-9)). gate.

From the perspective ofravitational wave astronomy The relative balance of those regions in the resolution
the availability of adequate resolution in those computationdudget will depend heavily on the details of the geometrical
has twofold significance: First, features unique to generaiind numerical formalism. This has led many groups to the
relativity would develop in the strong field region near the proposal and development of concepts which & mong
black holes during the merger, and those effects must bether thing$ at reducing the resolution requirements. The
guantitatively captured. This is the problem of correctlyinner region (<1M), being causally disconnected from the
modeling the source. Next, the imprint stamped on the radiaexterior, essentially asks for an effective recipenof com-
tive part of the metric by the source motion must be givenputation so that the scale that needs to be resolved is
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lengths[1,2]. On the other hand, the size of the black hole is
also about 21. As we need of order 20 grid zones to resolve
a single wavelength, we very conservatively estimate a re-
quired grid resolution of abouhx=Ay=Az~0.2M. (The
best simulations of distorted or colliding black holes in 3D,
for which accurate waveforms can be obtained, already use
higher resolution, although this is partly needed due to slic-
ing effects[7,5]. It is presently unknown whether even
higher resolution near the black holes will be required for
effective and general apparent horizon boundary condifions.
For simulations of time scales of order 10°—10°M, which
will be required to follow coalescence, the outer boundary
will probably be placed at a distance of at le&st 100M
from the coalescence, requiring a Cartesian simulation do-
main of about 20M across. This leads to roughly 1000 grid
zones in each dimension, or abouf IPid zones in total. As
: 3D codes to solve the full Einstein equations have typically
R \ 100 variables to be stored at each location, and simulations
1 ' 10 100  are performed in double precision arithmetic, this leads to a
Isotropic radius (M) memory requirement of order 1000 Gbytes.
The largest supercomputers available to scientific research
FIG. 1. The effective potentiad; for axial perturbationsK;  communities today have only about 1/20 of this capacity,
=—6M,K,=0). The interesting range spans three decades in thgnd machines with such capacity will not be available for
logarithmic scale. The inner region harbors a one wiagoing  some years. Furthermore, if one needs to double the resolu-
membrandthe event horizonwhich requires adequate resolution in tjon in each direction for a more refined simulation, the
order to prevent reflections from the inner boundary and poor sammemory requirements increase by an order of magnitude.
pling of the rapidly decaying potential. The middle region deter- ojiq,gh such estimates will vary, depending on the ultimate
mines essential features of the outgoing radiatamplitude, fre-  ot0 tiveness of inner or outer boundary treatments, gauge
quency, dgcay rale.The exterior region sees the.Wave gradually conditions, etc., they indicate that barring some unforeseen
transform into a radially propagating pulse with a fixed wavelength._. e . .
simplification, some form of adaptive computation that
places resolution only where it is required is not only desir-
bounded below by the size of the horizons. Apparent horizomble, but essential for such problems.
boundary conditions(see, e.g.[11,12) or characteristic The subject of this paper, then, is to elucidate the potential
based evolutioi3] are the current techniques in this direc- of adaptive methods in three-dimensional black hole simula-
tion. The range of M—-10M is thought of as the interesting tions. Adaptive mesh refineme@AMR), has been an impor-
domain in which the merger drama will unfold, and hencetant development in the last two decades, in applied fields
the bulk of the resolution should be provided here. In theemploying large scale numerical computation. It is neverthe-
exterior region a gradual and subtle transition to the wealess still a frontier area for a wide class of problems. Inte-
field occurs. The domain in the rangeM8100M may be gration algorithms for hyperbolic 3D partial differential
handled cleanly and efficiently, for example, with a close-inequations, using adaptive finite differences are now increas-
Cauchy-characteristic matchirid3]. Other possibilities in- ingly explored[16]. The application of such techniques to
clude the evolution of perturbed spacetinidgl] or other  general relativistic problems has already shown great prom-
exact approaches as for example, the evolution of conforise in one dimensional implementations of the Berger-Oliger
mally compactified equations on hyperboloidal hypersur-AMR method[17]. For example, Choptuik’s fundamental
faces[15]. Even as those approaches gradually mature, it isvork in critical phenomenf18] was enabled by the use of
important to assess the possibilities of managing the resoluadaptive techniquelsl9], which were later applied by other
tion requirements from within the framework of computa- groups to similar problempg20,21,43; spherical black hole
tional science. This paper aims to present some first insightsvolutions were carried out with AMR techniqued #2,25.
in this direction. More extensive applications of adaptive methods in
In 3D black hole coalescence simulations, which will higher dimensional relativistic problems, are clearly in order.
likely be performed in 3D Cartesian coordinates, we will The application of such techniques has primarily been ham-
need to resolve waves with wavelengths of ordet &r less, pered by the complexities associated with computationally
where M is the mass of the black hole. Although for implementing the hierarchical tree structure of nested refined
Schwarzschild, the fundamentdl=2 normal mode wave- subgrids[23] that underlies those methods. In order to cir-
length is 16.81, higher modes, such a$=4 and above, cumvent such issues, Wild and Sch{@4]| proposed a sim-
have wavelengths of @ and below. More important, for pler adaptive mesh refinement data-structure basekiern
very rapidly rotating Kerr black holes, which are expected toarchical linked lists Preliminary tests of this system were
be formed in realistic astrophysical black hole coalescencegpplied to model problems involving scalar fiel®5].
the modes are shifted down to significantly shorter wave- Building on this work, we adopt here the hierarchical
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linked list (HLL) approach, in its full 3D genre. The still late aspects of black hole perturbations. As our standard ex-
fermenting issue of the correct mathematical appr@egiio  ample, we start with the Regge-Wheeler equafigi:

the black hole problem, suggests that our exploration of 3D

adaptivity in black hole computations would be initially best

served by the use ahodelequations. To this end, we intro- Lo,
duce here a class of 3D linear partial differential equations,

inspired by the theory_of perturbati_ons of black h.OIGS‘ WhiCh\/\/here r is the Schwarzschild radial coordinatd,=r(r
we then use to study issues pertaining to adaptive computa_—ZM)’ r, is a logarithmic “tortoise” coordinaiedr*

tions. There is strong physical motivation for those rnOdeIS’=r2dr/A that relegates the coordinate location of the event

coming from the comparison of perturbative studies of blachqorizon to negative infinity/” is the spherical harmonic in-

hole interactions with full non-linear computations, which dex, andM is the mass of the black hole. This equation
has shown good agreemeft, 263 for a large range of describesaxial perturbations (odd-parity of non-rotating

currently feasible simulations. The linear model equation%Iack holes, withZ being an appropriate combination of met-
we introduce, are completely, even if artificially, three- ic perturbations and their derivatives. Note that, because the

dimensional, i.e., they retain no memory of the angle an ' : . : A
time separated equations from which they may arise. Scalal ackground is spherically symmetric, the equation is inde-
' )endent of the azimuthal perturbation parameatehence all

electromagnetic and axial gravitational perturbations of nonP ) , .

rotating black holes are obtained with the appropriate choic erturbaU_tﬁns of tt)h? sarr_l,té_vatlﬁ_e Obei{ thltz;a:jme e%uatlon.

of model parameters. We explore aspects of the models th _we will see below, 1t 1s this particular dependence
which allows one to write a single 3D equation to study the

increase their utility as a calibration tool for the adaptive’. o : .
infrastructure. It is apparent that we exploit here the, by nov\gml,!lta}lneous excitation ?lf V%:’IOUS angular. ;?erturbanons.
well developed, interface between perturbation theorists anﬂ] Similar equatlons, with di Qrent potential terms, govern
numerical relativistg31]. e polar(even-parity perturbations, as well as the propaga-

We apply fully adaptive mesh refinement techniques fOIIion of scalar_and electromagnetic waves in the bac_:kground
the first time in a 3D relativistic calculation, modeling the ofq non-rotating hoIe._AIthough the equation governing even
dynamics of distorted black holes. We examine a variety o anty_perturbatlons_, f“?‘ deve]opeq by Zer|I!|, has a more
different ways of refining the solution, which we believe areC:)m}C;hcated pOte”t'ﬁL it T)asclﬂengcal qua5|-r|1_(|)rmal mode
going to be major themes in future applications of AMR to SUCIUTE, as was shown by thandrase 1141, However,

the black hole problem. These includa) (fixed refinement the / dependence of this equation is such that it is difficult

regions that are prescribed in advance, exploiting prior,?r 'TptOhSS'g.lf? to cievelo;l) fromdlt a S.mgllf 3D eqluatllzon ttlr:at
knowledge of the regions that will require high resolution, reals the difierent angular modes simuitaneously. -or these

(b) different geometries of refinement regions, aoyl fully reasons, in what follows we will focus on the Regge-Wheeler

adaptive calculations that follow certain features that develof)ind similar equations.

during the calculation. We discuss the effects of different In the first step of the congtruqtion.procedu_re,_ we restore
refinement criteria, and hybrid refinement, which mixes pre-tmhﬁ]irsgrﬂm\?\;% tbhetvivnet(rendspgure]ﬂ <fj|irecttr|onis. Thlfdili ?cmeved
defined refinement regions with fully adaptive refinement. ally € introduction ot 1sotropic coordinates,

We show that these techniques can be used very effectively

A
—Zu=S[/(/+Dr-6M1Z=V(NZ, (1)
r

to resolve complex wave structures emitted by systems such r=rA?,
as perturbed black holes.
The organization of the paper is as follows: In Sec. Il we r=2+yZ+ 72 2)

outline a class of 3D linear partial differential equations that
model weak field black hole dynamics. We then study some _ S
X : . . . whereA=1+M/2r.
aspects on the behavior of their solutions, in particular as Next we introduce the field
they introduce the framework in which AMR will be tested. '
Our adaptive mesh refinement techniques are summarized in w g
Sec. lll. In Sec. IV A we present details of AMR simulations - =
. o , -~ z Y
that focus on static, prescribed in advance refinement. In Sec. ¢(Lr.0,¢) Zo m;/ /m(LOY (6, 8), )

IV B we present dynamical AMR simulations. We close

(Sec. V) with a discussion and summary of our results.  which encodes the aggregate evolution of the separated func-
Unless stated otherwise, distances refer to the isotropigons z,,,. It is then straightforward to establish, that the

coordinate system and are expressed in units of the blacéi:aled field variabIeP=¢/r_A2 satisfies an equation of the
hole masavl.

type
Il. MODEL EQUATIONS FOR BLACK HOLE & nzal(;)VZCDJraz(;)ﬁ-€¢+a3(;)<b+a4p, (4)
PERTURBATIONS :
A. Linear three-dimensional PDE'’s wherea; are purely radial functions) is the unit radial vec-

In this section we describe a general class of threetor, V is the gradient and? the Laplacian operator, all in
dimensional partial differential equatiodBDE) that simu-  Euclidean isotropic three-space. Most notably for our pur-
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poses, in this equation, th€? operator has absorbed the = To complete the specification of the initial value problem
angular operatok?¢=—/(/+1)¢ and with it, all depen- for Eq. (1), we need to supplement E¢#) with boundary
dence or". conditions. With respect to the exterior boundary, we adopt
The coefficienta,;=B?/A® determines the coordinate the approach of evolving only the development of the initial
speed of waves B=1—M/2r). The coefficient Cauchy surface, hence we place our boundary far enough
that it will not causally affect the spacetime domain we are
considering. For the simulations performed here, the initial
n%ata have compact support, which enlarges the domain not

decay rate of quasi-normal mode radiation. As mentionecllnfluenced by the outer boundary by about one crossing time.

above, perturbations of different spin have different poten- In isotropic coordinates the event horizon is described by
tials than Eq.(1), the remaining structure of the equation the coordinate surfacery(x,y,z)=M/2. The use of
being the same. Following the spirit (3] we introduce a Schwarzschild slicing implies that the lapse function has a

general effective potential for a non-rotating black hole as 2€ro there. The effects of angular momentum and curvature
are rapidly dampedsee for exampl¢10]) and the effective

black hole potential decays exponentiallyrin. Imposing an
, (5  ingoing wave type condition

a,= M2B/2r3A7 governs the apparendamping behavior
near the horizon. The coefficieat is the effective potential
for the field and determines among others the frequency a

BZ

a3: e —
r3p8

K2
Ki=2M+=5

whereK,K, are real parameters. The dominant contribution 2= 2 =0, ©)

to this potential comes from the Riemann curvature, whose; some inner timelike world-tube at radiu% is applicable

3 . .
components behave &8/r* for larger. Fields of different ¢, oy equation of the form of Eq1). The transformation
spin have different quantitative interactions with the curva-o¢ ondition (6) to the coordinates and variables of our
ture potential and this is encoded in the valuekaf For . qq equation yields

fields of spin number 0,1,2, i.e., scalar, electromagnetic and

axial gravitational perturbations, the coefficidtt has val- B/_— B
ues M ,0,—6M, respectively. Curvature effects are finite at <I>,t=—34 X-Vo+ —P|. @
the horizon which implies that they are redshifted to zero in A1

a static Schwarzschild time slicifthe factorB? in Eq. (5)]. dition (7 b val ic hori di
Higher order contributions to the curvature are modeled b);:on ition (7) becomes equivalent to a static horizon condi-

the coefficient<,, which represents a “deformation” of the tion (®=0), when applied in the limitg—r,;, but is actu-
potential, e.g., for a charged black hi{g=4e?. A massive ally extremely accurate, when applied at a timelike world-
scalar field of massn would have an additional potentia' tube that is inside the decay width of the pOtential, as it falls

term given by a;=m?B%A2, whereas excitations by a from its peak value atp~2. This fact has been both exten-

source are generically modeled with the teap p(t,x), Sively tested and used in the literature.
wherea,=B?/A?. The geometrical factoa, in front of the
mass and source terms is redshifting away their contributions B. The nature of the solutions

near the horizon, a_nd can he pbtained by_ considering the Here we touch upon issues regarding the model equation
KIem-Gg.rdon ﬁqugtm; In thg given spacetime anhd coorfd|—(4)' especially as they apply to our adaptive computations.

nates.. ince the bac groun .metnc IS vacuum, the conior- - tpg merger waveform, due to the final interactions of the

mally invariant wave equation is also trivially included in the black holes as they coalesce, will be an important component
mogel. ion(4) d ibes the i luti ¢ i of the detected signal, which when detected can presumably
) quation(4) descri es the time evolution of general linear o\ 05| intricate details of the coalescence process. Even the
fields around non-rotating black holes, in the sense that thBroad features of the merger waveforms are uncertain at

evolution of all r@ltipole perturbations can be encoded inpresent(and may require techniques such as those we are
this functiond)(_t,x) of the four spacetime variables. Initial developing and testing here to compute

data for® and® can always be obtained by referring back As we have emphasized, the later stages of binary black
to Eqg. (1), but can also be given arbitrarily, and then corre-hole mergers lead to highly distorted black holes that can be
spond to some, probably complicated, superposition of detreated surprisingly well by perturbation theory. Even the
coupled perturbations. This generality permits the direcentire collision process has proved amenable to a perturba-
study of waves with different wavelengths and arbitrary antive treatment in certain regimes. Through this large body of
gular structure. Despite the vector notation in presenting Eqwork, the following picture has emerged: during the very late
(4), it should be stressed that the fietddoes not(with the  stages of a binary black hole merger, the highly distorted
exception of the cask;=2M,K,=0), represent a physical black hole formed in the process rings down to its Kerr form
scalar in spacetime. Our construction is, in the general cas#rough a progression of regular, damped oscillations, with
completely coordinate dependent, and the unit weight factorthe least damped quasinormal mode quickly dominating the
in Eqg. (3) are an arbitrary choice. In the scalar field case picture. The frequencywavelength of the slowest damped
general coordinate transformations of the underlying spacenode is an important feature of the solution in the ring-down
time (e.g., different time slicings, boosted coordinatae of  phase. Fully nonlinear simulations of such distorted rotating
course allowed. black holes have been performed, and tine=(0) quasi-
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2.0 . . T C. 1-Dimensional considerations

In this work we use the structure of the QNM'’s as an
important diagnostic tool for the efficiency, flexibility and
15 L -7.5 Im[w](2M) i accuracy of the AMR suite. For convenient calibration we

\__/M/ use evolutions computed with one-dimensional codes, both

I in the well behavedortoise coordinate, which approaches
— o at the horizon, and the isotropic radial coordinate, which
1.0 + . goes to a finite value of =0.5. The tortoise coordinate is
Re[w](2M) most naturally adapted to the problem, accounting exactly
for the infinite blue shift of a wave as it approaches the
horizon. If an ingoing wave is resolved on an equally spaced
0.5 iy grid in the tortoise coordinate near the peak of the potential,
it will remain so as it propagates towards the horizon, even
as its wave is highly blue shifted physically. The tortoise

coordinate can be considered as a natural adaptive mesh for

0'915_0 _1'0_0 _5'_0 0.0 5.0 the problem, and the 1D code in this formulation can easily
Parameter K, give accurate results for a givefrmode.

On the other hand, the isotropic coordinate description

FIG. 2. Graphical representation of thg frequency and decay ratgrovides important clues for the minimal amount of resolu-
of the slowest damped mode for potentials of the tageHerel  tjon required for the 3D code, as it is directly related to the
=2 and the parametd(, has been set to zero. The derived valuesgpy cartesian coordinates. In this coordinate, an ingoing
for K;=—6M,0,2M agree well with values tabulated in the litera- wave will be shifted to much shorter wavelengths as it ap-
ture. proaches the horizon, and hence the wave will very rapidly

become difficult to resolve as it propagates in. This is an
normal modes are found to be the dominant feature of theffect of the Schwarzschild slicing we are using in the model
waveforms[34]. equation. This effect can be seen alternatively by considering

For full 3D black hole coalescence, leading to a rapidlythe reduction of the wave speed as one approaches the hori
rotating black hole, at late times thé=m=2 mode is ex- zon: with the inner boundary at an isotropic radius rof
pected to dominate, having a much higher frequency than its* 0.6 (Schwarzschild radius 2.01,6he speed drops by thir-
Schwarzschild counterpartperhaps two to three times tyfold to about0.027. . _
highed. Hence, for realistic 3D simulations, the resolution N spite of these considerations, one might think that the
requirements will be higher than what would be indicated byfréatment of the equation near the horizon would not neces-
a naive treatment of Schwarzschild perturbations. A powerSa'ily have important effects on the waves propagating far
ful approach to modeling the ringing phase of a rotatingfrom the black hole, for several reasons. First, waves should

black hole would be the use of equations based on curvatu%e essentially ingoing in this area, second, any reflections

perturbations. Recently, certain members of the Teukolsk ue to poor treatment here will be rapidly redshifted as they

, . . . limb out of the black hole potential, and finally, the poten-
family of equations have been integrated numerically as fial barrier in Fig. 1 acts to protect the outside observer.

2+1 problefmr[]35,36|. As some aspectsdqf the numencalh!n-hHowever’ it turns out that significant fractions of the emitted
tegration of those equations e.g., coordinate systems, Nighg[yna are influenced strongly by the inner region near the
dimensional simulations, are now under investigation, wi —

chose here to base our model in the more thoroughly undefiofzon. Le.rg<r=rp. In particular, poor resolution of the
stood dynamics of potential type equations inner region gnd inner boundary can have very adverse ef-
X . fects on the final waveform as shown below.
The potential of Eq.(4) can be modified to allow the

dv of a £ rinai | h hi d We demonstrate these points with a series of 1D simula-
study of a larger range of ringing wavelengths. To this endyj,ng for an/=2 wave in Fig. 3. We compare three simu-

we have performed a numerical study of the slowest dampeflions that illustrate the importance of proper treatment near
modes of Eq.(4) for various angular multipoles, using 1D the horizon. Initial data consist of a Gaussian packet local-
versions of the equations, as such a catalog is convenient fgjeq to a region outside the potential barrier with vanishing
calibrating the three-dimensional code. The behavior of thgnitial time derivative. The parameters in the potential corre-
real and imaginary parts of the quasi-normal mé@&M)  spond to the standard Regge-Wheeler potential. The integra-
frequency are rather interesting. We mention for exampleion domain extends from an isotropic radiusref 0.6 (r,

that the slowest damped mode of the equation has a real —7.56), tor=100. The tortoise based evolution attains
frequency that is a monotonic function Kf, for any fixed adequate accuracy for our purposes already for resolution
K,. The imaginary partdecay ratghas an oscillatory depen- N=200, whereN is the number of grid pointsXr, =0.5);
dence onK;. Different values ofK, tend to introduce an for comparison purposes we use a more than suffidient

overall shift on the dependence of on K;. Figure 2 pro- =2000 grid. The solid line in both panels of Fig. 3 shows the
vides a convenient calibration of the slowest damped modsignal recorded at a radius=10M, as obtained with the
wavelength and decay rate. tortoise code. After an initial burst of waves, the quasinormal
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0 . . corresponds t&N=2000 andN=5000, respectively. The in-
going boundary condition is always applied at the same ra-
dius, r=0.6. For larger, the tortoise and isotropic coordi-
nates are very similar, and therefore meager resolutions of
the order of 0.5 would be adequate to resolve the burst
phase(the first part of the signal, which overlaps perfegtly
But near the horizon, the wave is woefully under-resolved in
. isotropic coordinates, even with a grid that is ten times finer
(Ar=0.05), which shows its wrath on the waveform at late
times, i.e., when the under-resolved region near the horizon
makes causal contact with the observer. With increased reso-
lution (lower pane), there is marked improvement, and near
convergence to the true QNM signal. In contrast the solution
for Ar=0.05(upper panglillustrates the subtle effect on the
phase and frequency of the QNM, even for what would be
thought of as a very fine resolution. The frequency shift in
the QNM suggests that the poor resolution of the horizon
region modifies the effective potentiaixperienced by the
gravitational wave. This argument is made more plausible by
1 the fact that, even in flat space, a reflecting potential near the
origin supports a finite number of QN-modes, $8€,39.

The severity of the effect suggests we have a first rate test
problem on which to apply AMR techniques. In order to
obtain a sufficiently resolved simulation with a uniform grid
we had to use more than 25 times the basic tortoise resolu-
tion of N=200. In this case, it is possible in 1D, but in 3D
1 such a factor would lead to 383 We will turn into the
handling of this behavior in the next section.

Those adverse effects of poor resolution around the hori-
zon suggest that this is an issue to be kept in mind in more
150  general simulations. In non-linear numerical relativity simu-
Time (M) lations, the time slicing is dynamic and generally has a finite
lapse at the horizon. Despite the reduced blueshift experi-

FIG. 3. We show 1D results for a Gaussian wave packet hitting

the black hole Regge-Wheeler potential. The solid line in both pan-enced by a wavéthe most demanding factorther physical

els shows the waveform measuredrat10M, obtained with an factors also Qompete for resplutloﬁa) th? geometr_lcal vol-
equally spaced gridin tortoise coordinateof Ar, =0.05, orN ume facmr(smce_ We are usmg Cartes',an coordingteb)
=2000. The dashed lines show results obtained with the isotropithe need for sufficient sampling of the inner part of the po-
code using a fixed resolution afr=0.05 (upper panéland Ar  tential (see Fig. 1in order to capture accurately the correct
=0.02 (lower panel, which corresponds toN=2000 and N scattering and development of the quasinormal modes; and
=5000, respectively. The ingoing boundary condition is always(C) the need to guarantee convergence for any type of ana-
applied at the same radius=0.6. For larger, the tortoise and lytic condition near an excised horizon area. Hence, also in
isotropic coordinates are very similar, and therefore meager resolimplementations of apparent horizon boundary conditions
tions of the order of 0.5 would be adequate to resolve the burstAHBC), one will need to be careful to ensure that the waves
phase(the first part of the signal, which overlaps perfegtiput ~ going in at the horizon be properly resolved, and that the
near the horizon, the wave is woefully under-resolved in isotropicboundary condition allows ingoing waves to propagate off
coordinates, even with a grid that is ten times finAr €0.05),  the grid, if one is to get the black hole dynamics correct. To
which shows its wrath on the waveform at late times, i.e., when thejate, even in successful implementations of AHBC, only the
under-resolved region near the horizon makes causal contact Wi‘l’@)ngitudinal part of the spacetime has been tested. These
the obs&_erver. With increased resolutidlower panel there is ~ AHBC simulations need to be applied to spacetimes with
marked improvement, and eventual convergence of the QNM siggynamic black holes for which waveforms can be extracted,
nal. such as those recently studied in R¢67,4,5 to ensure that

) the low amplitude waves are not adversely affected by the
modes of the black hole dominate, and are well resolved. Wgeaiment of the spacetime near the black hole.

use this as our fiducial run against which we compare other
simulations.

We now examine results obtained with the isotropic ra-
dius, which gives an indication of the problems that will be
encountered in 3D. In Fig. 3 the dashed lines show results
obtained with the isotropic code using a fixed resolution of Conventional adaptive mesh refinement assumes a data
Ar=0.05 (upper paneland Ar=0.02 (lower pane), which  structure based on a hierarchical tree of embedded refined
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. THE NUMERICAL ALGORITHM:
MULTI-DIMENSIONAL HIERARCHICAL
LINKED LIST AMR
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sub-grids( [17]). In one dimension this hierarchy is simple
and efficient—each sub-grid is just a spatial interval demar-
cated by an upper and lower bound—however in multi-
dimensions, one must first demarcate regions of refinement".,
into clusters and then for each cluster a refined rectilinear
sub-grid must be placed over(for exampl€g39]). The qual-

ity by which one is able to match the desired refinement
topology with rectilinear boxes is given by an input
parameter—the clustering efficiency—which when set to
100% produces a minimal refinement topology. However,
depending on the refinement topology itself, this may mean
the production, storage and management of many thousands
of “little boxes.” This number of boxegand hence their
associated computational cost of managemeah be re-
duced considerably by reducing the clustering efficiency, but
this inevitably over refines the computational domain and
thus increasing once more the computational cost this time of FIG. 4. 3D mesh refinement using nodes. The large cubes
integrating the solution. Therefore, usually a balance need&odes represent a 86X 4 lattice of grid points that make up the
to be attained between the increased computational ovebkase gridRo. The smaller nodes are the refinement lekegl

heads required to achieve and maintain a grid hierarchy with

a 100% clustering efficiency, hence many boxes, but no To evolve the refinement hierarchy, we use a modified
over-refinement of the computational domain as compared tgerger-Oliger algorithn{24]. Here the concept of each re-
a reduced clustering efficiency, hence less refined boxes, bghement level being integrated by one time step and then
over-refinement of the domain. only being integrated again once all higher refinement levels
To avoid such scenarios we have instead adopted thgave been integrated to the same temporal point, remains
AMR method proposed by Wild and Schu@4]. Here they  ynaltered. However, whenever neighboring refinement levels
build mesh refinement that precisely matches the desired tag, and R, , are temporally coincident, then only the subset
pological requirements, but without clustering algorithms. 2, N R, ,, of the R, solution that can numerically influence
Their method centers on the representation of mesh rghe boundary ofR, . , is replaced by that irR,,, as com-

finement by a simple hierarchy of refinement levels pared to the Berger-Oliger approach which injects the com-
plete R;,,; solution ontoR;. This much reduced inter-
RoURIURLU..Ry..URrotalLevels: (8)  refinement communication can help performance on parallel

computing platforms in situations, where the domain decom-
whereR is a uniform distribution of grid points of arbitrary position strategy for distributing the mesh refinement’s to-
topology and the subscript indicates the magnitude of theology across processors does not ensure regions of refine-
spatial and temporal resolution such tiia§ has the least ment are aligned with their parental region. Thus, potentially
resolution andRrqa eels the greatest. For neighboring re- expensive inter-processor communications are reduced from
finement levelsR, and R, 1, the boundaries of the former that of a refinement level's volume to just its surface area.

always contain those of the lattére., R, ;€ R;) and their To integrate the solution on each refinement level, the
spatialand temporal resolutions differ by an integesfine-  AMR method (written in C) traverses all linked lists in the
ment factory we choose to be two. x-dimension—one node at a time—by using the appropriate

To construct each refinement level, in 3D Cartesian copointers. For each node the necessary finite difference stencil
ordinates, three sets of one dimensional double linked list& read from memory and passed to a separate progsaita
are requiredone set along each of y andz-dimensions.  ten in Fortran9Q) Here, the solution for the new time level is
These lists are in turn built from a data structyoalled computed and then returned to the AMR code to be stored

nodes which contain: (in this way AMR is independent from the simulation—it
A hexahedron of grid points. choreographs the topology of the mesh and the storage of the
Six sibling pointers(two for each dimensiognfor the  solution therein, nothing more.

double links between neighboring nodes. The mesh is modified periodically to ensure its topology
Eight offspring pointers to allow each grid point presentsatisfies that of the evolving solution. This process is always

to spawn a new, offspring, node. carried out fromRqtaLeels dOWNwards, such that for each

One parental pointer to identify the node it is refining. refinement level nodes are checked against the refinement
A flag to indicate whether it requires refinement or not. criteria to determine whether offspring nodes need to be cre-
An example of this type of mesh topology construct isated or destroyed.
shown in Fig. 4. Here the coarse gfit}, (large cubescon- The AMR method is made parallel on shared memory
sists of a 4<3X 2 lattice of nodes and therefore represents architectures using a simple one dimensional domain decom-
8X6Xx 4 lattice of grid pointgassuming a refinement factor position strategy whereby the total number of lists in the
n=2.) The smaller nodes are refinement le¥&l. Here itis  direction of traversal are distributed evenly between the
clear to see why eight are required to refine a parental nodavailable processorg§25,43. Although simple, such a

084002-7



PHILIPPOS PAPADOPOULOS, EDWARD SEIDEL, AND LEE WILD PHYSICAL REVIEW B8 084002

TABLE |. The first column refers to the refinement level, which ' ' '
is bounded in the outside by the radial value of the second column.
The resolution of each levétefinement by factors of twds given
in the third column. The innermost grid point at which a given level
approximates the inner boundary is shown in the fourth column.

Refinement level Outer bouri) Resolution(M) Inner bound

ry 10.0 0.25 0.75

rp 5.0 0.125 0.625

rs 25 0.0625 0.625

ra 1.5 0.03125 0.625

rs 1.0 0.015625 0.609375

re 0.75 0.0078125  0.6015625 i
rsy 0.62 0.0039860  0.6015625

scheme should not be under-estimated, since it has the a
vantage of ensuring every processor has a 100% work loa . . .
during the Berger-Oliger integration cydla great advantage "¢ 20 a0 80 80
when the workload per grid point is high as is the case, whel. Time (M)

C.onSIden.ng the fully relat|y|§t|C Einstein equation#ddi- FIG. 5. We show waveforms obtained for different levels of
tionally, it introduces imm'mal chang.e tQ the code: lonefixed refinement in the interior region near the horizon, and its
must .nov.v ensure eac processpr mamtamg tempora SYRffects on the guasi-normal mode structure. The solid line is the 1D
chronlzaFlon d'urln'g the Berger-Oliger |nt'egrat'|or'1 cydé). result, which is progressively attained using three refinement layers

The discretization of the model equation within the AMR

. ! ] ' dashed lingand seven refinement layefdotted ling. Poor reso-
framework is straightforward and is done using a three-level,tion leads to under-sampling of the inner part of the potential

leapfrog scheme. Interior points are updated with the regulagnich combined with reflections from the ingoing boundary condi-
nine-point stencil, which is for the centered differencing oftion generates an effective numerical potential with different fre-

first and second order derivatives. Boundary points arguency and decay rate. Figure 6 illustrates this point more clearly
masked and discretized with sidewise differences. with the use of logarithmic scale fab.

black hole horizon, which were motivated by studies of the
1D equation in isotropic coordinates. A valuable guide is the

A. Prescribed mesh refinement study of two radially ingoing null geodesics(t), r,(t), and
correspondingly the allocation of resolution so as to preserve

some sort of adaptive grid is required at least in the regioﬁOughly the number of grid points in-between the geodesics

near the horizon. We have as our guide the model 1D probS 2 function of radius. To test this nested grid structure, we
: set up an initially time symmetric quadrupole Gaussian pulse

lem above, where we saw in Sec. Il C how critical it was to: ) .
resolve the region around the horizon. Equal spacing in thd! the Regge-Wheeler functio® located at 1M. Specifi-

tortoise coordinate gives constant resolution coverage of 8ally, the initial data takes the form:

blueshifting wave as it approaches the horizon, which trans-

lates into increasing resolution requirements in the isotropic

coordinate, and hence in the Cartesian coordinates. Indeed )

unigrid (i.e., single uniform spacing3D Cartesian evolu- $=0, (10

tions with up to 308 grids covering a region from the hori- o

zon to a distance ~100M produce woefully inadequate wherex andr control the width and location of the shell,

waveforms, as expected from the 1D considerations abovandR(6,¢) sets an appropriate angular dependence, which

The question we address next is how to provide the adaptiofior our standard comparison with the 1D Regge-Wheeler
We first investigate whether one can use cerfaiior  equation, we adopt to be a quadrupole:

knowledgeof a system to construct an adapted predefined

mesh appropriate to the problem. We hence prescribe suc- R(6, ) =sirfgcog 2¢+ m/2) (11

cessive refinement layers around the horizon, whose topol-

ogy and location remains constant throughout the evolution(the rotated form oR in this particular case is explained in

This approach is a powerful and efficient use of the AMRthe Appendix.

infrastructure in three dimensions, which is easily combined The accuracy in resolving the QNM structure using such

with dynamic refinement in other parts of the domain. nested refinement levels is demonstrated in Figs. 5,6. Figure
Here we illustrate this technique with an example of5 shows results in linear scales, showing the familiar ringing

seven successive layefSable |) of refinement around the waveform, while Fig. 6 shows the same simulation in a loga-

IV. 3D ADAPTED COMPUTATIONS

It is clear that in a 3D integration of the model equation

d=e *TI°R(0, ), 9)

084002-8



ADAPTIVE COMPUTATION OF GRAVITATIONAL WAVES . .. PHYSICAL REVIEW D 58 084002

0 ' ' cases, but there is a slight improvement in the quality of the
modes, when using boxes with width equal to the diameter of
the corresponding sphere. This is expected, given the consid-
erably larger refinement volume introduced by nested cubes.
This result suggests that using linked lists to construct
spheres within spheres, one can match the accuracy of the
] nested cube waveforms, but using6 of the memory. This
non-negligible saving is inherent to the linked list approach,
not to AMR, and could equally well be applied to the con-
struction of uniform grid codes. Furthermore, in addition to
handling irregular outer boundaries, linked lists are highly
amenable to the construction of an internal boundary, e.g.,
. within a black hole’s horizon as shown here.

Longer evolutions of the same initial data reveal an inter-
esting phenomenon associated with the presence of different
refinement levels. Observers inside a given refinement level
will observe numerical reflections arising at the refinement
level boundary with the next coarsest grid. In our simulations

w . those reflections were well below the interesting signal lev-
0 20 40 60 80 . . . . . -
Time (M) els, but this may change in non-linear simulations with more
meager resolutions, or refinement factors larger than two.

FIG. 6. Logarithmic plot illustrating accuracy issues related to  To summarize the results of this section, we note that the
the generation of QNM signals. The time signal is extracted arouneéssential dynamics of a black hole in the linear regime was
3M and is compared with the corresponding one-dimensional resullesolved with a fixed, refined mesh structure. In this ap-
(SOlid Iine). The base grld has a resolution of 0.5M, which is too proach we use know|edge of the System to p|ace appropriate
coarse to resolve the black hole potential and hence produces gfinement levels where they will be needed. We also found
large reflected wavénot shown. Using three refinement layers nat the underlying geometry of the refinement levels can be
(finest level at 0.0625M, dashed lineonsiderably reduces the re- fjayiple, i.e., we found that nested boxes and nested spheres
flections, but cannot reproduce most of the QNM structure. Furthef)oth do an excellent job of resolving the calculation, al-

refinement(dotted ling to seven level$0.0039062M captures thg hough the nested spheres allow considerable memory sav-
icnc;gg;ttQNM frequency and decay rate over the whole domain 0fngs. We note, however, that fixed refinement must be used

with care: if highly resolved waves are allowed to propagate

rithmic scale, to bring out different aspects of the results/NO regions that are unable to resolve a wavelength, spurious
The comparison is done at the peak of the potergimilar  reflections.(See Wild[25] or Wild and Schutz24] for a
signals are obtained e.g., &10M). The base grid is at detailed anal_yS|s of_reflectl_on_ and transmission properties of
Ax=Ay=Az=0.5\ resolution and extends to=50M. waves crossing various grid mte_rfaces, alo_ng with str_ategles
The solid lines are 1D results, using abdlt 1000 radial to handle such problemsExtendmg the refined domain as
points using theortoise code The 3D solution converges to e generated signal propagates outwards, away from the
the correct(1D) one as more layers of refinement are added!9nly resolved horizon region, is a natural application for
(the coarse grid evolution is too erroneous to displajsing ~ dynamicmesh refinement, to which we turn next.
three refinement layek§inest level athx=0.0629M, dashed
line) considerably reduces the reflections, but still has a se-
rious effect on most of the QNM structure. Further refine- Using our model equation we also explored the issue of
ment(dotted ling to seven level$0.0039062M captures the outgoing waves—with wavelengths typical of black hole
correct QNM frequency and decay rate, oveders of mag- QNM’s—propagating outwards on an initially coarse grid,
nitudein the decay. Furtheenlargementf the thickness of which would not provide adequate resolution if not refined.
the layers reduces the amplitude loss at the expense, @fepending on the initial burst of waves hitting the black
course, of computational time. hole, different outgoing radiation patterns and wavelengths
These results have been obtained with refinement levelsay emerge, which cannot be predicted ahead of time. We
usingnested spheresvhich naturally adapt to the geometry now examine approaches for supplying the necessary resolu-
of a central black hole. Even though the underlying coordi-tion to these waves, which must be tracked and resolved as
nate system being used is Cartesian, by uliimiged liststhis ~ they propagate. In what follows we maintain the static re-
structure is still straightforward and natural to create. Withfinement necessary to resolve the region around the horizon
more traditional grid structures, if one attempted nested retincluding all seven levels listed in Tablg, land explore
finement levels it might be easier to creatested cubes different methods to track the waves as they propagate to
With the linked lists we can also easily create such refinefarge distances from the black hole. In this “hybrid” refine-
ment structures and study their effect on the results. Usingnent strategy, we allow the adapted grids to follow the
this nested box construction, we have reproduced results fawvaves wherever they go, both away from the hole and into
various refinement layers. The results are excellent in botkhe highly refined region near the hole.

log(|®f)

B. Dynamic mesh refinement
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A crucial aspect of AMR is the choice of refinement cri- ™[~~~ """ T T
teria. A commongeneral purposestimator for dynamic re- ]
finement is the intrinsic truncation error estimate. Such an
estimate of the truncation error of a numerical solutien,
can be defined as

T“|Qis,m¢_ Qoasoatdl, (12

where Q is the finite difference evolution operator used to
integrate the solution anfls, At are the spatial and temporal

resolutions, respectively. Thus, the truncation error is com-z
puted by taking the difference of the solution obtained using §
two regular time steps akt for a spatial resolutiocAx from ~

ts

poin

100 —

50—

ntage increase in number of grid

the solution obtained using just one large time step/of @n ol

a coarsened grid of 2x. Thus for a given point in the com- ° Time (M)

putational domain if the magnitude of Ed.2) is larger than

some specified amoufé.g. 7= threshold, then locally that FIG. 7. Using the truncation error estimator E42) without
region of the computational domain is refinese[17].) radial scaling reveals that the refined region “evaporates” as it

Such criteria in lower dimensional work have been dem-Propagates outwar(('iﬂot'ted ling. This behgvior is also true with the
onstrated to work very well in demanding circumstanceg0rm refinement criteria EG13) (dashed ling However, appropri-
(e.9.[18,22,23.) However, applying the truncation error es- ately scaling the norm refinement criteria produces a continuous
timator Eq.(12) as the refinement criteria, verbatim, can fail. 9"°Wth of dynamic gridpointgsolid line).

To understand what we mean by “fail,” consider thee A . . . S
dial scaling of the waves as they gropagate away from thelmtlal points, as a function of timésee dotted line in Fig.)7

black hole and the impact of this effect on the refinement" . € that the growth of the dynamic refinement occurred

o . . ._only over a finite period of time, eventually evaporated even
criteria. The perturbed metric variables have strong radia T
. - - as the waves expand to larger volumes. This is due to the
falloff behavior (for sufficiently large radir, h~1/r). In our

. ; o . decay of the wave amplitude below the level at which it can
single wave equation, this is very clear, although in a mor

general case, as one would encounter in the full set of Eir?E)e captured by the specified truncation error limit. This is

stein equations, there will be a mixture of different falloff contrary to our AMR requirements for capturing and trans-

) . rting the physical waveform to some arbitrarily distant de-
rates depending on the variables, the gauge, and so fqrth. B ?ctor. The solid and dashed lines correspond to other refine-
physically the wave part of the solution, given hy will

decay as it propagates away. Since refinement criteria Iikg1ent criteria discussed below.
y propag Y- Indeed the net effect of such evaporation on a waveform

Eq‘ (12) are pro_portlonal to the local m?‘g”'t“‘?'e of the SOIU'is to dramatically perturb it, since waves once initially cap-
tion, the decaying nature on the function being refined un-

dermines the effectiveness of the refinement criteria’s abilit fured within some region of mesh refinement will not remain
. Yontained and instead “leak” back across the dynamic re-
to place refinement.

finement boundaries onto coarser resolutions. To demon-
strate this behavior, in Fig. 8 we show the actual waveform
obtained for the same simulation, again demanding that
We illustrate many of these issues by considering the ef<0.002 throughout the computation domain. Initially this
fect of different refinement criteria on a 3D simulation for aresults in the first two out-going modes being contained
pure/ =2 wave, as discussed in the section above. We conwithin the dynamic refinement, although with only one level
sider a general packet containing mafiymodes, taking ad- of refinement, the wave is still not resolved enough. How-
vantage of our generalized wave equation, in the next seever, by the time these modes have passed a detector placed
tion. We note that these simulations are much moreat 125, only the first mode remains captured within the
demanding than those discussed in the section above, wherefinement—the second mode now trails in its wake. More-
waveforms were measured near the peak of the potential neaver, because the evaporation of the grid is non-sm¢s#h
the horizon. In this section we study the propagation ofFig. 7 dotted ling, this has an effect of perturbing the wave-
waves far from the black hole, and our ability to dynamically form which becomes highly inaccurate. Here the solid line is
track and resolve them. the correct waveform obtained from 1D simulations in the
Consider the refinement criteria E§-2) with the demand  tortoise coordinate. The dotted line is the truncation-error
that 7=0.002 throughout a computation domain which ex-based AMR result, clearly revealing the deterioration of the
tends to 30M and a base resolution of\2. In this simula-  second mode which now trails the dynamic mesh refinement.
tion of the pure/=2 mode, we allow one level of refine- (For a discussion on the effects moving boundaries have on
ment. In Fig. 7 we show the growth number of grid pointsperturbing waves straddling mesh refinement,[2&¢) One
for several adaptive mesh refinement simulations. As theannot cure this effect by simply tightening the tolerance on
waves propagate out from the black hole, they of coursehe refinement criterion, since this can only improve things
sweep out an ever larger volume. Plotting the percentagéor awhile, but eventually as wave decays away, the same
growth of dynamic grid points, relative to the number of effects will be seen.

1. Adaptive refinement studies for a pur€é=2 mode
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FIG. 8. Tracking of outgoing waves using one level of dynamic  FIG. 9. Tracking of outgoing waves using one and two levels of
refinement. The signal as seen by an equatorial observer located dgnamic refinement with a “scaled” refinement criterion. The sig-
125M. The base grid resolution is 2M. Using truncation error re-nal shown is seen by an equatorial observer located at 125M. The
finement criterig Eq. (12)] with no radial scaling produces a poor base grid resolution is 2M. Using norm refinement crit¢kg. 13
quality signal(dotted ling compared to the 1D resuisolid line). with 1/r? radial scaling captures and contains the first two outgoing
The trailing part of the signal falls outside the AMR captured regionmodes (dotted ling compared to the 1D resulsolid ling). The
and deteriorates considerably. This is also the case for the normmailing part of the signal falls outside the AMR captured region and
refinement criteria(Eq. 13 with no radial scaling, shown as a has inevitably deteriorated. The quality of the signal improves even
dashed line. more when two levels of dynamic refinement are usddshed

line).

Such behavior should not be thought of as indicative of
truncation error estimators. This dynamic refinement behav- gingjly, for simulations of a pure’=2 multipole wave
ior is generic to refinement criteria which do not take intopitting a black hole, we show the evolution of the grid re-
consideration the underlying nature of the solution’s falloff. finement structure as the wave propagates out. Again we use
For example, employing a refinement criterion based on g pase grid extending out to 3UQ with a resolution of M.
norm of the solution: Two levels of dynamic AMR track outgoing waves using the

5 ) norm based refinement criterf&q. (13)] with the correct
Ny=cq|®|*+c)| D |7, (13

produces similar effects, as shown by the dashed lines in Fic30m
7 and Fig. 8. In Fig. 7 we see the initial growth and final
decay of dynamic grid points, and in Fig. 8 we see a simi- |
larly poor waveform. Interestingly, however, the evaporation R\
of the dynamic refinement created in this case is more regu H
lar and hence shorter lived than that for refinement criteria |
based on estimating the truncation error. This difference cai
be traced to the fact that we found the truncation error esti-
mator Eq.(12) produced a “noisier” estimate of where re-
finement was required and was therefore less able to create
regular pattern of refinement than the norm based criterion.
To overcome this grid evaporation requires an appropriate
scaling the refinement criteria. For example, for the norm
refinement criteria by scaling it radially withr#/ results in
both the first and second outgoing modes remaining captured
within the mesh refinement—in principle forevdihe ef-

" (300M,0)

FIG. 10. Mesh structure and isosurfaces for an outgoing pulse,

f f di . il I hi ff h at time 100M. The grid extends out to 300M, with a base resolution
ects of dispersion will eventually negate this eifect OW- ¢ 2M. The boundaries of the refinement layers are indicated by the

evc_ar) This is shown.by the dotted line n Fig. 9. Here_, the zig-zag lines. Two such layers engulf the outgoing burst. Several
trglllng part of the signal th{?‘t falls OUIS"?'e the dynamic re_'layers cover the hole, of which only three are shown. At this stage
gion of refinement has deteriorated considerably. The qualityhe dynamically prescribed layers tracking the outgoing burst still
of the signal can be increased further by introducing a secongeriap with the prescribed layers around the hole. Two wave-
level of dynamic mesh refinement as shown by the dashegngths(depicted as isosurface shelise captured by the, refine-

line in Fig. 9. We obtained similar results by suitably scalingment and will be propagated accurately outwards. A third oscilla-
the truncation error criterion, although as before, with ation is seen to be just outside,, a fact which will prove

slightly noisier solution. detrimental to its shape.
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(0,300M) (0,300M)

(300M,0) (300M,0)

(0,0) (0,0)

FIG. 11. Mesh structure and isosurfaces for outgoing pulse, at FIG. 12. Planar slice of mesh structure and isosurfaces of dumb-
time 200M. The boundaries of the refinement layers covering thévell shaped initial data, after 200M of evolution. A shell of over-
hole and the outgoing signal are clearly separated. The coarse rexpping high-frequency bursts will eventually be succeeded by the
gion in-between cannot support the lower amplitude trailing signalmore regular pattern of QNM ringing.
which will become heavily distorted.

radial scaling of I/2. Seven layers of prescribed refinementturn now to a more general wave packet, probing the AMR
resolve the region near the black hole horizon. performance on more complex wave patterns that could be
Figure 10 shows the mesh structure and isosurfaces fa@ncountered in the general black hole coalescence problem.
the outgoing pulse at time=100M, and Fig. 11 show the To this end, we consider general initial data, for example
same system at time=200M . The boundaries of the refine- data that have compact support in a three dimensional vol-
ment layers are indicated by the zig-zag lines. Two suctume which does not surround the black hole, for example
layers engulf the outgoing burst and of the seven layers re-
solving the hole, only three are shown. ey ——y ——
At the t=100M stage (Fig. 10 the dynamically pre- P =g KX+ Y (2727 (14)
scribed layers tracking the outgoing burst still overlap with
the prescribed layers around the hole. The two wavelengths
(depicted as isosurface shelire captured by th&, refine- d=0. (15)
ment and will be propagated accurately outwards. The third
oscillation resides just outsidR,, a fact which will prove
detrimental to its later accuracy. A&=200M (Fig. 11) the It is obvious that such evolutions would be intrinsically
boundaries of the refinement layers covering the hole anehree-dimensional. The emitted signal has a distinct “burst”
the outgoing signal are clearly separated. The resultinghase, containing radiation of considerably high frequency.
coarse region in-between cannot support the lower amplitud®he presence of high harmonics, with the corresponding
trailing signal which consequently becomes heavily dis-short wavelengths makes the accurate evolution of such data
torted. more demanding than simpler superpositions of low lying
In such simulations, with expanding wavefronts, the pricemodes. Here we illustrate the ability of the AMR suite to
one must now pay for keeping a solution correctly capturecapture complex solution patterns. The refinement criterion
within 3D dynamic refinement is to inevitably have to in- used was norm basd@qg. (13)] and one level of dynamic
crease the number of grid points within the computationakefinement.
domain. This is shown by the solid line in Fig. 7. This rapid  Figure 12 shows a planar slice of mesh structure and iso-
growth of the consumed resources, as the wavefront expandsirfaces of dumb-bell shaped initial data, after 200M of evo-
onto the coarse grid, will be typical of the more generallution. This “burst shell” of overlapping high-frequencies
black hole coalescence problems. Thus, for the future effeawill eventually be succeeded by the more regular pattern of
tive use of AMR in black hole simulation, one must addressQNM ringing. Here, these high frequency features have no
directly the question of what amount of the signal needs tqossibility of being accurately transported to a distant detec-
be captured with high resolution grids and set the refinemertor without dynamic AMR.
criteria accordingly(appropriately scaled by) to distribute The corresponding three dimensional mesh structure at
the refined grids around the strongest part of the signal, i.et=200M is shown in Fig. 13. Here octant symmetry, in con-
the initial burst, and the largest QNM oscillations immedi- nection with the initial data of compact support, produces
ately following. “voids” in between the out-going wavefronts. This corre-
sponds to the delayed arrival of the “mirror” data in the
computational domain. In these regions dynamic refinement
The previous discussion was based on a single initial dataenses the absence of a strong signal and therefore leaves
set, which contained only a puré=2 angular structure. We unrefined.

2. Simulations of general pulse hitting a black hole
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of norm-based refinememtas introduced, which works well

in conjunction with a selective tracking of the strongest part
of the signal. Our considerations are based of course on our
model equations, but may be useful for the Einstein problem.
In particular we propose théappropriately scalednorm
Np=cy|W 4|2+ Cy| V4|2 whereV, is a locally computed
component of the Weyl tensor describing, in vacuum, outgo-
ing radiation. This might prove to be an effective outer re-
finement criterion, and should be tested on model problems
involving the full set of Einstein equations.

We are presently extending this work in several direc-
tions. Our study directly demonstrates that 3D investigations
of black hole physics in the linearized limit can directly ben-
efit from AMR methods. Extensions of the presently de-
scribed models involving rotation and different stationary co-
ordinate systems are underwf40]. Studies of non-linear
systems are also underwdg.g., in connection with ADM
evolution of single black hole spacetimes in three-
dimensions. The considerable complexity of the adaptive
mesh infrastructure suggests comparisons of the HHL data

FIG. 13. Three dimensional mesh structure. The octant symmestructure with the DAGH data structure, developed for the
try in connection with initial data of compact support producesBBHGC alliance program, in particular with respect to per-
“voids” in between the fronts, which correspond to the delayedformance in three-dimensional computations on parallel ar-
arrival of the “mirror” data in the computational domain. The dy- chitectures.
namic refinement senses the absence of strong signal and econo-
mizes the grid.
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their behavior, in particular the dependence of the ring-down APPENDIX: NUMERICAL ANGULAR MODE MIXING

V. CONCLUSIONS AND FUTURE DIRECTIONS

signal on the parameters, and the resolution requirements of AND INSTABILITIES
the solution in the near horizon region in isotropic static
slicings of the black hole. In this Appendix we elaborate on a feature of some of

We presented a series fafily resolvedthree-dimensional the Egs. (4), which is important for stable long-term
computations involving dynamics in black hole spacetimesevolutions, a very desirable characteristic for a numerical
The linear nature of the problem does not reduce the largproblem.
dynamic range of the black hole potential, which manifests The PDE(4) is equivalent to an”’-sequence of separated
itself through the strong radial dependence of the coefficientsne-dimensional PDE’s. It is of some importance to note
of the equation. Our adopted gauge accentuates the largeat from the point of view ofipproximatesolutions to the
resolution requirements near the horizon. Prescribed fixethitial value problem, the equivalence may break down. By
refinement was successfully used to provide the requirethis we mean that a discrete approximation to Etj. will
resolution in that region. not (in general be a separable difference equatiprand

Dynamic refinement was used to propagate signals intbhence numerical mixing of angular modes is possible, and
the exterior domain. The necessaoalingof refinement cri- is generally the case unless some techniques are devised to
teria by appropriate power ofwas discussed, along with the prevent it.
impressive growth of grid points occurring when the outgo- Some of the Eqs(4) demonstrate in the late stages of
ing burst is resolved dynamically as it propagates. The ideaumerical evolution a dramatic manifestation of such mode
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mixing. For valueK;=—6K,=0, the equation represents ditions eliminate spherical mode=ssenfor the discretized
axial gravitational perturbations and hence should excludequations. The spherical nature of the background con-
non-radiative solutions with spherical or dipole symmetryveniently allows one to rotate the coordinate systéms is
(~=0,1). It turns out that arapproximateintegration of the  of course the reason why multipoles of saffiebut different
initial value problem is unstable with respect to tHe=0  m values obey the same equations for non-rotating black
mode, i.e., even if the mode is absent in the initial data, itholeg.

will appear in the solution and it will exhibit unbounded  As an example, the’=2, m=0 mode with angular de-
growth. pendence proportional to 3c#¥{—1, will be decomposed,

The origin of the unstable’=0 behavior can be easily in a rotated framed= 6+ /2, to sum of quadrupole terms

seen by inspection of the separated EL.for /=0. The ) P . )
effective potential is negative in the entire domain, hence :Qf which the/=2m=2 mode, with a further rotation by

simple examination of the dispersion relation?c k2—V) /4 gives sinf)’cos(2p+m/2). This angular dependence ad-
for spherical waves reveals the presence of local modes thatits antireflection conditions across the=0 and y=0
are exponentially growing. Depending on the accuracy of th@lanes. Indeed, with the use of such conditions, the numeri-
integration, the manifestation of the instability may be de-cal integrations show no sign of unstable growth for at least
layed, but in finite precision arithmetic, it is bound to occur 500M of evolution time.
due to round-off error. In our simulations it occurs typically  Axial perturbations will be present in full non-linear
after 100M of evolution for 128 base-grids. It manifests simulations, and their dynamics will be governed, at least in
itself much earlier if a spherical component is analyticallysome weak regime, by a collection of coupled linear equa-
introduced at the initial time. tions. It is not clear that such a linearized system of Einstein
For long time evolutions, with potentials admitting equations should have an unstable spherical mode of the
growing modes, excluding the unstablé=0 mode is same type exhibited by our model partial differential equa-
possible with the appropriate use of boundary conditions. Tdions (PDE). This issue warrants some more investigation. If
this end, we restrict the integration domain to an octant, anthis were the case though, eliminating the instability would
select to impose at least one condition aiiti-reflection  be very difficult for integrations in the full spatial domain
across the planes defining the octant domain. Such corand non-spherical holes.
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