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Adaptive computation of gravitational waves from black hole interactions
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We construct a class of linear partial differential equations describing general perturbations of non-rotating
black holes in 3D Cartesian coordinates. In contrast with the usual approach, a single equation treats all
radiativel -m modes simultaneously, allowing the study of wave perturbations of black holes with arbitrary
3D structure, as would be present when studying the full set of nonlinear Einstein equations describing a
perturbed black hole. This class of equations forms an excellent testbed to explore the computational issues of
simulating black spacetimes using a three dimensional adaptive mesh refinement code. Using this code, we
present results from the first fully resolved 3D solution of the equations describing perturbed black holes. We
discuss both fixed and adaptive mesh refinement, refinement criteria, and the computational savings provided
by adaptive techniques in 3D for such model problems of distorted black holes.@S0556-2821~98!01214-4#

PACS number~s!: 04.25.Dm, 04.25.Nx, 04.30.Db
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I. INTRODUCTION

The spiraling coalescence of black hole binaries is c
sidered among the most important sources for the upcom
worldwide network of gravitational wave observatories. E
sential for the effective detection and interpretation of a c
lescing black hole event will be the estimation of the gra
tational waveform during the merger@1,2#, a very non-linear
event, which must be computed by direct numerical integ
tion of the Einstein equations. The amount of reliable de
that can be provided by numerical relativity simulations
such events bears directly on the amount of astrophys
information that can be determined from the observati
themselves. The simulations required to study such real
astrophysical events must be fully three-dimensional. Ho
ever, the computational requirements for solving the co
plete set of Einstein equations in 3D are highly non-trivia

Current 3D black hole simulations produce accur
waveforms for a certain integration time, yet problems w
the inner and outer boundaries, and/or poor resolution
certain features, limit the duration of the simulations to
fraction of the physically interesting spacetime. With the e
ception of very recent simulations based on a 3D charac
istic formulation of the equations@3#, this is typical of all 3D
numerical black hole simulations to date~see, e.g.,@4–9#!.

From the perspective ofgravitational wave astronomy,
the availability of adequate resolution in those computati
has twofold significance: First, features unique to gene
relativity would develop in the strong field region near t
black holes during the merger, and those effects mus
quantitatively captured. This is the problem of correc
modeling the source. Next, the imprint stamped on the ra
tive part of the metric by the source motion must be giv
0556-2821/98/58~8!/084002~15!/$15.00 58 0840
-
g

-
-

-

-
il
f
al
s

tic
-
-

e

of

-
r-

s
al

e

a-
n

plenty of room and resolution to grow and propagate,
until the point where reading it off will be unambiguou
This is the problem of correctly capturing the gravitation
signal. It is obvious from the above discussion, that des
the fact the equations describing black holes can be pu
vacuum, there are several scales involved~ultimately deriv-
ing from the nature of the imposed initial data!.

One can attempt a simple overview of those scales and
corresponding resolution requirements: The shape of
black hole effective potential for gravitational waves, we
known from perturbation theory studies@10#, can be used as
a guiding principle. There are three different regions of i
portance. Those can be qualitatively appreciated by insp
tion of Fig. 1. The picture shows the effective black ho
potential for generic perturbations~more details are given in
Sec. II!. The relevant regions span roughly three decades
logarithmic radial scale, from 0.1M to 100M . The inner re-
gion has features of the order of 1M , i.e., the scale of the
horizon for each black hole. Generic strong field regio
modeled in this picture by the potential peak, will encompa
the binary and its effective potential, i.e., a domain
roughly 10M . Finally, for a domain extending considerab
away from the holes ('100M ), adequate resolution is re
quired for allowing outgoing radiation to form and prop
gate.

The relative balance of those regions in the resolut
budget will depend heavily on the details of the geometri
and numerical formalism. This has led many groups to
proposal and development of concepts which aim~among
other things! at reducing the resolution requirements. T
inner region (r ,1M ), being causally disconnected from th
exterior, essentially asks for an effective recipe ofno com-
putation, so that the scale that needs to be resolved
© 1998 The American Physical Society02-1
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bounded below by the size of the horizons. Apparent horiz
boundary conditions~see, e.g.@11,12#! or characteristic
based evolution@3# are the current techniques in this dire
tion. The range of 1M –10M is thought of as the interesting
domain in which the merger drama will unfold, and hen
the bulk of the resolution should be provided here. In t
exterior region a gradual and subtle transition to the we
field occurs. The domain in the range 10M –100M may be
handled cleanly and efficiently, for example, with a close
Cauchy-characteristic matching@13#. Other possibilities in-
clude the evolution of perturbed spacetimes@14# or other
exact approaches as for example, the evolution of con
mally compactified equations on hyperboloidal hypers
faces@15#. Even as those approaches gradually mature,
important to assess the possibilities of managing the res
tion requirements from within the framework of comput
tional science. This paper aims to present some first insig
in this direction.

In 3D black hole coalescence simulations, which w
likely be performed in 3D Cartesian coordinates, we w
need to resolve waves with wavelengths of order 5M or less,
where M is the mass of the black hole. Although fo
Schwarzschild, the fundamentall 52 normal mode wave-
length is 16.8M , higher modes, such asl 54 and above,
have wavelengths of 8M and below. More important, for
very rapidly rotating Kerr black holes, which are expected
be formed in realistic astrophysical black hole coalescen
the modes are shifted down to significantly shorter wa

FIG. 1. The effective potentiala3 for axial perturbations (K1

526M ,K250). The interesting range spans three decades in
logarithmic scale. The inner region harbors a one way~ingoing!
membrane~the event horizon! which requires adequate resolution
order to prevent reflections from the inner boundary and poor s
pling of the rapidly decaying potential. The middle region det
mines essential features of the outgoing radiation~amplitude, fre-
quency, decay rate!. The exterior region sees the wave gradua
transform into a radially propagating pulse with a fixed waveleng
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lengths@1,2#. On the other hand, the size of the black hole
also about 2M . As we need of order 20 grid zones to resol
a single wavelength, we very conservatively estimate a
quired grid resolution of aboutDx5Dy5Dz'0.2M . ~The
best simulations of distorted or colliding black holes in 3
for which accurate waveforms can be obtained, already
higher resolution, although this is partly needed due to s
ing effects @7,5#. It is presently unknown whether eve
higher resolution near the black holes will be required
effective and general apparent horizon boundary conditio!
For simulations of time scales of ordert}102– 103M , which
will be required to follow coalescence, the outer bounda
will probably be placed at a distance of at leastR}100M
from the coalescence, requiring a Cartesian simulation
main of about 200M across. This leads to roughly 1000 gr
zones in each dimension, or about 109 grid zones in total. As
3D codes to solve the full Einstein equations have typica
100 variables to be stored at each location, and simulat
are performed in double precision arithmetic, this leads t
memory requirement of order 1000 Gbytes.

The largest supercomputers available to scientific rese
communities today have only about 1/20 of this capac
and machines with such capacity will not be available
some years. Furthermore, if one needs to double the res
tion in each direction for a more refined simulation, t
memory requirements increase by an order of magnitu
Although such estimates will vary, depending on the ultim
effectiveness of inner or outer boundary treatments, ga
conditions, etc., they indicate that barring some unfores
simplification, some form of adaptive computation th
places resolution only where it is required is not only des
able, but essential for such problems.

The subject of this paper, then, is to elucidate the poten
of adaptive methods in three-dimensional black hole simu
tions. Adaptive mesh refinement~AMR!, has been an impor
tant development in the last two decades, in applied fie
employing large scale numerical computation. It is nevert
less still a frontier area for a wide class of problems. In
gration algorithms for hyperbolic 3D partial differentia
equations, using adaptive finite differences are now incre
ingly explored@16#. The application of such techniques
general relativistic problems has already shown great pr
ise in one dimensional implementations of the Berger-Oli
AMR method @17#. For example, Choptuik’s fundamenta
work in critical phenomena@18# was enabled by the use o
adaptive techniques@19#, which were later applied by othe
groups to similar problems@20,21,42#; spherical black hole
evolutions were carried out with AMR techniques in@22,25#.

More extensive applications of adaptive methods
higher dimensional relativistic problems, are clearly in ord
The application of such techniques has primarily been ha
pered by the complexities associated with computation
implementing the hierarchical tree structure of nested refi
subgrids@23# that underlies those methods. In order to c
cumvent such issues, Wild and Schutz@24# proposed a sim-
pler adaptive mesh refinement data-structure based onhier-
archical linked lists. Preliminary tests of this system wer
applied to model problems involving scalar fields@25#.

Building on this work, we adopt here the hierarchic
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linked list ~HLL ! approach, in its full 3D genre. The sti
fermenting issue of the correct mathematical approach~es! to
the black hole problem, suggests that our exploration of
adaptivity in black hole computations would be initially be
served by the use ofmodelequations. To this end, we intro
duce here a class of 3D linear partial differential equatio
inspired by the theory of perturbations of black holes, wh
we then use to study issues pertaining to adaptive comp
tions. There is strong physical motivation for those mode
coming from the comparison of perturbative studies of bla
hole interactions with full non-linear computations, whic
has shown good agreement@4,26–30# for a large range of
currently feasible simulations. The linear model equatio
we introduce, are completely, even if artificially, thre
dimensional, i.e., they retain no memory of the angle a
time separated equations from which they may arise. Sc
electromagnetic and axial gravitational perturbations of n
rotating black holes are obtained with the appropriate cho
of model parameters. We explore aspects of the models
increase their utility as a calibration tool for the adapti
infrastructure. It is apparent that we exploit here the, by n
well developed, interface between perturbation theorists
numerical relativists@31#.

We apply fully adaptive mesh refinement techniques
the first time in a 3D relativistic calculation, modeling th
dynamics of distorted black holes. We examine a variety
different ways of refining the solution, which we believe a
going to be major themes in future applications of AMR
the black hole problem. These include (a) fixed refinement
regions that are prescribed in advance, exploiting p
knowledge of the regions that will require high resolutio
(b) different geometries of refinement regions, and (c) fully
adaptive calculations that follow certain features that deve
during the calculation. We discuss the effects of differe
refinement criteria, and hybrid refinement, which mixes p
defined refinement regions with fully adaptive refineme
We show that these techniques can be used very effecti
to resolve complex wave structures emitted by systems s
as perturbed black holes.

The organization of the paper is as follows: In Sec. II w
outline a class of 3D linear partial differential equations th
model weak field black hole dynamics. We then study so
aspects on the behavior of their solutions, in particular
they introduce the framework in which AMR will be teste
Our adaptive mesh refinement techniques are summarize
Sec. III. In Sec. IV A we present details of AMR simulation
that focus on static, prescribed in advance refinement. In
IV B we present dynamical AMR simulations. We clos
~Sec. V! with a discussion and summary of our results.

Unless stated otherwise, distances refer to the isotro
coordinate system and are expressed in units of the b
hole massM .

II. MODEL EQUATIONS FOR BLACK HOLE
PERTURBATIONS

A. Linear three-dimensional PDE’s

In this section we describe a general class of thr
dimensional partial differential equations~PDE! that simu-
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late aspects of black hole perturbations. As our standard
ample, we start with the Regge-Wheeler equation@32#:

Z,r
*

r
*
2Z,tt5

D

r 2
@ l ~ l 11!r 26M #Z5V~r !Z, ~1!

where r is the Schwarzschild radial coordinate,D5r (r
22M ), r * is a logarithmic ‘‘tortoise’’ coordinatedr*
5r 2dr/D that relegates the coordinate location of the ev
horizon to negative infinity,l is the spherical harmonic in
dex, andM is the mass of the black hole. This equatio
describesaxial perturbations ~odd-parity! of non-rotating
black holes, withZ being an appropriate combination of me
ric perturbations and their derivatives. Note that, because
background is spherically symmetric, the equation is in
pendent of the azimuthal perturbation parameterm, hence all
perturbations of the samel value obey the same equatio
As we will see below, it is this particularl dependence
which allows one to write a single 3D equation to study t
simultaneous excitation of various angular perturbations.

Similar equations, with different potential terms, gove
the polar~even-parity! perturbations, as well as the propag
tion of scalar and electromagnetic waves in the backgro
of a non-rotating hole. Although the equation governing ev
parity perturbations, first developed by Zerilli, has a mo
complicated potential, it has identical quasi-normal mo
structure, as was shown by Chandrasekhar@10#. However,
the l dependence of this equation is such that it is diffic
or impossible to develop from it a single 3D equation th
treats the different angular modes simultaneously. For th
reasons, in what follows we will focus on the Regge-Whee
and similar equations.

In the first step of the construction procedure, we rest
the symmetry between spatial directions. This is achie
minimally with the introduction of isotropic coordinates,

r 5 r̄ A2,

r̄ 5Ax21y21z2, ~2!

whereA511M /2r̄ .
Next, we introduce the field

f~ t, r̄ ,u,f!5 (
l 50

`

(
m52l

l

Zl m~ t, r̄ !Yl m~u,f!, ~3!

which encodes the aggregate evolution of the separated f
tions Zl m . It is then straightforward to establish, that th
scaled field variableF5f/ r̄ A2 satisfies an equation of th
type

F ,tt5a1~ x̄!¹2F1a2~ x̄!n̂•¹̄F1a3~ x̄!F1a4r, ~4!

whereai are purely radial functions,n̂ is the unit radial vec-

tor, ¹̄ is the gradient and¹2 the Laplacian operator, all in
Euclidean isotropic three-space. Most notably for our p
2-3



e

e

l
a
e

en
n

s

io
os

a

an

at
i

b

l
a

ion
th

rd
fo
e

ar
th
in
l

ck
re
d
ec
n

E

l
as
to
se
c

m

opt
ial
ugh
re

tial
not

me.
by

s a
ture

ur

di-

ld-
lls
-

tion
s.
he
ent

ably
the
at

are

ack
be

he
rba-
of
te

ted
rm
ith
the

wn
ing
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poses, in this equation, the¹2 operator has absorbed th
angular operatorL2f52l (l 11)f and with it, all depen-
dence onl .

The coefficient a15B2/A6 determines the coordinat
speed of waves (B512M /2r̄ ). The coefficient
a25M2B/2r̄ 3A7 governs the apparentdamping behavior
near the horizon. The coefficienta3 is the effective potentia
for the field and determines among others the frequency
decay rate of quasi-normal mode radiation. As mention
above, perturbations of different spin have different pot
tials than Eq.~1!, the remaining structure of the equatio
being the same. Following the spirit of@33# we introduce a
general effective potential for a non-rotating black hole a

a352
B2

r̄ 3A8S K122M1
K2

r̄ A2D , ~5!

whereK1 ,K2 are real parameters. The dominant contribut
to this potential comes from the Riemann curvature, wh
components behave asM /r 3 for large r . Fields of different
spin have different quantitative interactions with the curv
ture potential and this is encoded in the value ofK1. For
fields of spin number 0,1,2, i.e., scalar, electromagnetic
axial gravitational perturbations, the coefficientK1 has val-
ues 2M ,0,26M , respectively. Curvature effects are finite
the horizon which implies that they are redshifted to zero
a static Schwarzschild time slicing@the factorB2 in Eq. ~5!#.
Higher order contributions to the curvature are modeled
the coefficientK2, which represents a ‘‘deformation’’ of the
potential, e.g., for a charged black holeK254e2. A massive
scalar field of massm would have an additional potentia
term given by a35m2B2/A2, whereas excitations by
source are generically modeled with the terma4 r(t,x̄),
wherea45B2/A2. The geometrical factora4 in front of the
mass and source terms is redshifting away their contribut
near the horizon, and can be obtained by considering
Klein-Gordon equation in the given spacetime and coo
nates. Since the background metric is vacuum, the con
mally invariant wave equation is also trivially included in th
model.

Equation~4! describes the time evolution of general line
fields around non-rotating black holes, in the sense that
evolution of all multipole perturbations can be encoded
this functionF(t,x̄) of the four spacetime variables. Initia
data forF andḞ can always be obtained by referring ba
to Eq. ~1!, but can also be given arbitrarily, and then cor
spond to some, probably complicated, superposition of
coupled perturbations. This generality permits the dir
study of waves with different wavelengths and arbitrary a
gular structure. Despite the vector notation in presenting
~4!, it should be stressed that the fieldf does not~with the
exception of the caseK152M ,K250), represent a physica
scalar in spacetime. Our construction is, in the general c
completely coordinate dependent, and the unit weight fac
in Eq. ~3! are an arbitrary choice. In the scalar field ca
general coordinate transformations of the underlying spa
time ~e.g., different time slicings, boosted coordinates! are of
course allowed.
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To complete the specification of the initial value proble
for Eq. ~1!, we need to supplement Eq.~4! with boundary
conditions. With respect to the exterior boundary, we ad
the approach of evolving only the development of the init
Cauchy surface, hence we place our boundary far eno
that it will not causally affect the spacetime domain we a
considering. For the simulations performed here, the ini
data have compact support, which enlarges the domain
influenced by the outer boundary by about one crossing ti

In isotropic coordinates the event horizon is described
the coordinate surfacer̄ H(x,y,z)5M /2. The use of
Schwarzschild slicing implies that the lapse function ha
zero there. The effects of angular momentum and curva
are rapidly damped~see for example@10#! and the effective
black hole potential decays exponentially inr * . Imposing an
ingoing wave type condition

Z,t2Z,r* 50, ~6!

at some inner timelike world-tube at radiusr
*
B is applicable

for any equation of the form of Eq.~1!. The transformation
of condition ~6! to the coordinates and variables of o
model equation yields

F ,t5
B

A3r̄
S x̄•¹̄F1

B

A
F D . ~7!

Condition ~7! becomes equivalent to a static horizon con
tion (F50), when applied in the limitr̄ B→ r̄ H , but is actu-
ally extremely accurate, when applied at a timelike wor
tube that is inside the decay width of the potential, as it fa
from its peak value atr̄ P'2. This fact has been both exten
sively tested and used in the literature.

B. The nature of the solutions

Here we touch upon issues regarding the model equa
~4!, especially as they apply to our adaptive computation

The merger waveform, due to the final interactions of t
black holes as they coalesce, will be an important compon
of the detected signal, which when detected can presum
reveal intricate details of the coalescence process. Even
broad features of the merger waveforms are uncertain
present~and may require techniques such as those we
developing and testing here to compute!.

As we have emphasized, the later stages of binary bl
hole mergers lead to highly distorted black holes that can
treated surprisingly well by perturbation theory. Even t
entire collision process has proved amenable to a pertu
tive treatment in certain regimes. Through this large body
work, the following picture has emerged: during the very la
stages of a binary black hole merger, the highly distor
black hole formed in the process rings down to its Kerr fo
through a progression of regular, damped oscillations, w
the least damped quasinormal mode quickly dominating
picture. The frequency~wavelength! of the slowest damped
mode is an important feature of the solution in the ring-do
phase. Fully nonlinear simulations of such distorted rotat
black holes have been performed, and the (m50) quasi-
2-4
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normal modes are found to be the dominant feature of
waveforms@34#.

For full 3D black hole coalescence, leading to a rapid
rotating black hole, at late times thel 5m52 mode is ex-
pected to dominate, having a much higher frequency than
Schwarzschild counterpart~perhaps two to three time
higher!. Hence, for realistic 3D simulations, the resolutio
requirements will be higher than what would be indicated
a naive treatment of Schwarzschild perturbations. A pow
ful approach to modeling the ringing phase of a rotat
black hole would be the use of equations based on curva
perturbations. Recently, certain members of the Teukol
family of equations have been integrated numerically a
211 problem@35,36#. As some aspects of the numerical i
tegration of those equations e.g., coordinate systems, hi
dimensional simulations, are now under investigation,
chose here to base our model in the more thoroughly un
stood dynamics of potential type equations.

The potential of Eq.~4! can be modified to allow the
study of a larger range of ringing wavelengths. To this e
we have performed a numerical study of the slowest dam
modes of Eq.~4! for various angular multipoles, using 1D
versions of the equations, as such a catalog is convenien
calibrating the three-dimensional code. The behavior of
real and imaginary parts of the quasi-normal mode~QNM!
frequency are rather interesting. We mention for exam
that the slowest damped mode of the equation has a
frequency that is a monotonic function ofK1, for any fixed
K2. The imaginary part~decay rate! has an oscillatory depen
dence onK1. Different values ofK2 tend to introduce an
overall shift on the dependence ofv on K1. Figure 2 pro-
vides a convenient calibration of the slowest damped m
wavelength and decay rate.

FIG. 2. Graphical representation of the frequency and decay
of the slowest damped mode for potentials of the typea3. Here l
52 and the parameterK2 has been set to zero. The derived valu
for K1526M ,0,2M agree well with values tabulated in the liter
ture.
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C. 1-Dimensional considerations

In this work we use the structure of the QNM’s as
important diagnostic tool for the efficiency, flexibility an
accuracy of the AMR suite. For convenient calibration w
use evolutions computed with one-dimensional codes, b
in the well behavedtortoise coordinate, which approache
2` at the horizon, and the isotropic radial coordinate, wh
goes to a finite value ofr 50.5. The tortoise coordinate i
most naturally adapted to the problem, accounting exa
for the infinite blue shift of a wave as it approaches t
horizon. If an ingoing wave is resolved on an equally spac
grid in the tortoise coordinate near the peak of the poten
it will remain so as it propagates towards the horizon, ev
as its wave is highly blue shifted physically. The tortoi
coordinate can be considered as a natural adaptive mes
the problem, and the 1D code in this formulation can eas
give accurate results for a givenl -mode.

On the other hand, the isotropic coordinate descript
provides important clues for the minimal amount of reso
tion required for the 3D code, as it is directly related to t
3D Cartesian coordinates. In this coordinate, an ingo
wave will be shifted to much shorter wavelengths as it a
proaches the horizon, and hence the wave will very rapi
become difficult to resolve as it propagates in. This is
effect of the Schwarzschild slicing we are using in the mo
equation. This effect can be seen alternatively by conside
the reduction of the wave speed as one approaches the
zon: with the inner boundary at an isotropic radius ofr
50.6 ~Schwarzschild radius 2.016!, the speed drops by thir
tyfold to about 0.027.

In spite of these considerations, one might think that
treatment of the equation near the horizon would not nec
sarily have important effects on the waves propagating
from the black hole, for several reasons. First, waves sho
be essentially ingoing in this area, second, any reflecti
due to poor treatment here will be rapidly redshifted as th
climb out of the black hole potential, and finally, the pote
tial barrier in Fig. 1 acts to protect the outside observ
However, it turns out that significant fractions of the emitt
signal are influenced strongly by the inner region near
horizon, i.e.,r̄ B, r̄ , r̄ P . In particular, poor resolution of the
inner region and inner boundary can have very adverse
fects on the final waveform as shown below.

We demonstrate these points with a series of 1D simu
tions for anl 52 wave in Fig. 3. We compare three sim
lations that illustrate the importance of proper treatment n
the horizon. Initial data consist of a Gaussian packet loc
ized to a region outside the potential barrier with vanish
initial time derivative. The parameters in the potential cor
spond to the standard Regge-Wheeler potential. The inte
tion domain extends from an isotropic radius ofr 50.6 (r *
527.56), to r 5100. The tortoise based evolution attai
adequate accuracy for our purposes already for resolu
N5200, whereN is the number of grid points (Dr * 50.5);
for comparison purposes we use a more than sufficienN
52000 grid. The solid line in both panels of Fig. 3 shows t
signal recorded at a radiusr 510M , as obtained with the
tortoise code. After an initial burst of waves, the quasinorm

te
2-5
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PHILIPPOS PAPADOPOULOS, EDWARD SEIDEL, AND LEE WILD PHYSICAL REVIEW D58 084002
modes of the black hole dominate, and are well resolved.
use this as our fiducial run against which we compare ot
simulations.

We now examine results obtained with the isotropic
dius, which gives an indication of the problems that will b
encountered in 3D. In Fig. 3 the dashed lines show res
obtained with the isotropic code using a fixed resolution
Dr 50.05 ~upper panel! andDr 50.02 ~lower panel!, which

FIG. 3. We show 1D results for a Gaussian wave packet hitt
the black hole Regge-Wheeler potential. The solid line in both p
els shows the waveform measured atr 510M , obtained with an
equally spaced grid~in tortoise coordinate! of Dr * 50.05, or N
52000. The dashed lines show results obtained with the isotro
code using a fixed resolution ofDr 50.05 ~upper panel! and Dr
50.02 ~lower panel!, which corresponds toN52000 and N
55000, respectively. The ingoing boundary condition is alwa
applied at the same radius,r 50.6. For larger , the tortoise and
isotropic coordinates are very similar, and therefore meager res
tions of the order of 0.5 would be adequate to resolve the b
phase~the first part of the signal, which overlaps perfectly!. But
near the horizon, the wave is woefully under-resolved in isotro
coordinates, even with a grid that is ten times finer (Dr 50.05),
which shows its wrath on the waveform at late times, i.e., when
under-resolved region near the horizon makes causal contact
the observer. With increased resolution~lower panel! there is
marked improvement, and eventual convergence of the QNM
nal.
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corresponds toN52000 andN55000, respectively. The in
going boundary condition is always applied at the same
dius, r 50.6. For larger , the tortoise and isotropic coordi
nates are very similar, and therefore meager resolution
the order of 0.5 would be adequate to resolve the bu
phase~the first part of the signal, which overlaps perfectly!.
But near the horizon, the wave is woefully under-resolved
isotropic coordinates, even with a grid that is ten times fin
(Dr 50.05), which shows its wrath on the waveform at la
times, i.e., when the under-resolved region near the hori
makes causal contact with the observer. With increased r
lution ~lower panel!, there is marked improvement, and ne
convergence to the true QNM signal. In contrast the solut
for Dr 50.05~upper panel! illustrates the subtle effect on th
phase and frequency of the QNM, even for what would
thought of as a very fine resolution. The frequency shift
the QNM suggests that the poor resolution of the horiz
region modifies the effective potentialexperienced by the
gravitational wave. This argument is made more plausible
the fact that, even in flat space, a reflecting potential near
origin supports a finite number of QN-modes, see@37,38#.

The severity of the effect suggests we have a first rate
problem on which to apply AMR techniques. In order
obtain a sufficiently resolved simulation with a uniform gr
we had to use more than 25 times the basic tortoise res
tion of N5200. In this case, it is possible in 1D, but in 3
such a factor would lead to 253N3! We will turn into the
handling of this behavior in the next section.

Those adverse effects of poor resolution around the h
zon suggest that this is an issue to be kept in mind in m
general simulations. In non-linear numerical relativity sim
lations, the time slicing is dynamic and generally has a fin
lapse at the horizon. Despite the reduced blueshift exp
enced by a wave~the most demanding factor!, other physical
factors also compete for resolution:~a! the geometrical vol-
ume factor~since we are using Cartesian coordinates!; ~b!
the need for sufficient sampling of the inner part of the p
tential ~see Fig. 1! in order to capture accurately the corre
scattering and development of the quasinormal modes;
~c! the need to guarantee convergence for any type of a
lytic condition near an excised horizon area. Hence, also
implementations of apparent horizon boundary conditio
~AHBC!, one will need to be careful to ensure that the wav
going in at the horizon be properly resolved, and that
boundary condition allows ingoing waves to propagate
the grid, if one is to get the black hole dynamics correct.
date, even in successful implementations of AHBC, only
longitudinal part of the spacetime has been tested. Th
AHBC simulations need to be applied to spacetimes w
dynamic black holes for which waveforms can be extract
such as those recently studied in Refs.@6,7,4,5# to ensure that
the low amplitude waves are not adversely affected by
treatment of the spacetime near the black hole.

III. THE NUMERICAL ALGORITHM:
MULTI-DIMENSIONAL HIERARCHICAL

LINKED LIST AMR

Conventional adaptive mesh refinement assumes a
structure based on a hierarchical tree of embedded refi
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sub-grids~ @17#!. In one dimension this hierarchy is simp
and efficient—each sub-grid is just a spatial interval dem
cated by an upper and lower bound—however in mu
dimensions, one must first demarcate regions of refinem
into clusters and then for each cluster a refined rectilin
sub-grid must be placed over it~for example@39#!. The qual-
ity by which one is able to match the desired refinem
topology with rectilinear boxes is given by an inp
parameter—the clustering efficiency—which when set
100% produces a minimal refinement topology. Howev
depending on the refinement topology itself, this may me
the production, storage and management of many thous
of ‘‘little boxes.’’ This number of boxes~and hence their
associated computational cost of management! can be re-
duced considerably by reducing the clustering efficiency,
this inevitably over refines the computational domain a
thus increasing once more the computational cost this tim
integrating the solution. Therefore, usually a balance ne
to be attained between the increased computational o
heads required to achieve and maintain a grid hierarchy w
a 100% clustering efficiency, hence many boxes, but
over-refinement of the computational domain as compare
a reduced clustering efficiency, hence less refined boxes
over-refinement of the domain.

To avoid such scenarios we have instead adopted
AMR method proposed by Wild and Schutz@24#. Here they
build mesh refinement that precisely matches the desired
pological requirements, but without clustering algorithms

Their method centers on the representation of mesh
finement by a simple hierarchy of refinement levels

R0øR1øR2ø..Rl ..øRTotalLevels , ~8!

whereR is a uniform distribution of grid points of arbitrar
topology and the subscript indicates the magnitude of
spatial and temporal resolution such thatR0 has the least
resolution andRTotalLevels the greatest. For neighboring re
finement levelsRl andRl 11, the boundaries of the forme
always contain those of the latter~i.e.,Rl 11PRl) and their
spatialand temporal resolutions differ by an integerrefine-
ment factorh we choose to be two.

To construct each refinement level, in 3D Cartesian
ordinates, three sets of one dimensional double linked
are required~one set along each ofx, y andz-dimensions.!
These lists are in turn built from a data structure~called
nodes! which contain:

A hexahedron of grid points.
Six sibling pointers~two for each dimension! for the

double links between neighboring nodes.
Eight offspring pointers to allow each grid point prese

to spawn a new, offspring, node.
One parental pointer to identify the node it is refining.
A flag to indicate whether it requires refinement or no
An example of this type of mesh topology construct

shown in Fig. 4. Here the coarse gridR0 ~large cubes! con-
sists of a 43332 lattice of nodes and therefore represent
83634 lattice of grid points~assuming a refinement facto
h52.! The smaller nodes are refinement levelR1. Here it is
clear to see why eight are required to refine a parental n
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To evolve the refinement hierarchy, we use a modifi
Berger-Oliger algorithm@24#. Here the concept of each re
finement level being integrated by one time step and t
only being integrated again once all higher refinement lev
have been integrated to the same temporal point, rem
unaltered. However, whenever neighboring refinement lev
Rl andRl 11 are temporally coincident, then only the subs
RlùRl 11 of theRl solution that can numerically influenc
the boundary ofRl 11 is replaced by that inRl 11, as com-
pared to the Berger-Oliger approach which injects the co
plete Rl 11 solution ontoRl . This much reduced inter
refinement communication can help performance on para
computing platforms in situations, where the domain deco
position strategy for distributing the mesh refinement’s
pology across processors does not ensure regions of re
ment are aligned with their parental region. Thus, potentia
expensive inter-processor communications are reduced f
that of a refinement level’s volume to just its surface are

To integrate the solution on each refinement level,
AMR method~written in C! traverses all linked lists in the
x-dimension—one node at a time—by using the appropr
pointers. For each node the necessary finite difference ste
is read from memory and passed to a separate program~writ-
ten in Fortran90!. Here, the solution for the new time level
computed and then returned to the AMR code to be sto
~in this way AMR is independent from the simulation—
choreographs the topology of the mesh and the storage o
solution therein, nothing more.!

The mesh is modified periodically to ensure its topolo
satisfies that of the evolving solution. This process is alw
carried out fromRTotalLevels downwards, such that for eac
refinement level nodes are checked against the refinem
criteria to determine whether offspring nodes need to be
ated or destroyed.

The AMR method is made parallel on shared memo
architectures using a simple one dimensional domain dec
position strategy whereby the total number of lists in t
direction of traversal are distributed evenly between
available processors@25,43#. Although simple, such a

FIG. 4. 3D mesh refinement using nodes. The large cu
~nodes! represent a 83634 lattice of grid points that make up th
base gridR0. The smaller nodes are the refinement levelR1.
2-7
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scheme should not be under-estimated, since it has the
vantage of ensuring every processor has a 100% work
during the Berger-Oliger integration cycle~a great advantage
when the workload per grid point is high as is the case, w
considering the fully relativistic Einstein equations.! Addi-
tionally, it introduces a minimal change to the code: o
must now ensure each processor maintains temporal
chronization during the Berger-Oliger integration cycle@17#.

The discretization of the model equation within the AM
framework is straightforward and is done using a three-le
leapfrog scheme. Interior points are updated with the reg
nine-point stencil, which is for the centered differencing
first and second order derivatives. Boundary points
masked and discretized with sidewise differences.

IV. 3D ADAPTED COMPUTATIONS

A. Prescribed mesh refinement

It is clear that in a 3D integration of the model equati
some sort of adaptive grid is required at least in the reg
near the horizon. We have as our guide the model 1D pr
lem above, where we saw in Sec. II C how critical it was
resolve the region around the horizon. Equal spacing in
tortoise coordinate gives constant resolution coverage
blueshifting wave as it approaches the horizon, which tra
lates into increasing resolution requirements in the isotro
coordinate, and hence in the Cartesian coordinates. Ind
unigrid ~i.e., single uniform spacing! 3D Cartesian evolu-
tions with up to 3003 grids covering a region from the hor
zon to a distancer'100M produce woefully inadequat
waveforms, as expected from the 1D considerations ab
The question we address next is how to provide the adap

We first investigate whether one can use certainprior
knowledgeof a system to construct an adapted predefin
mesh appropriate to the problem. We hence prescribe
cessive refinement layers around the horizon, whose to
ogy and location remains constant throughout the evolut
This approach is a powerful and efficient use of the AM
infrastructure in three dimensions, which is easily combin
with dynamic refinement in other parts of the domain.

Here we illustrate this technique with an example
seven successive layers~Table I! of refinement around the

TABLE I. The first column refers to the refinement level, whic
is bounded in the outside by the radial value of the second colu
The resolution of each level~refinement by factors of two! is given
in the third column. The innermost grid point at which a given lev
approximates the inner boundary is shown in the fourth column

Refinement level Outer bound~M! Resolution~M! Inner bound

r 1 10.0 0.25 0.75
r 2 5.0 0.125 0.625
r 3 2.5 0.0625 0.625
r 4 1.5 0.03125 0.625
r 5 1.0 0.015625 0.609375
r 6 0.75 0.0078125 0.6015625
r 7 0.62 0.0039860 0.6015625
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black hole horizon, which were motivated by studies of t
1D equation in isotropic coordinates. A valuable guide is t
study of two radially ingoing null geodesicsr̄ 1(t), r̄ 2(t), and
correspondingly the allocation of resolution so as to prese
roughly the number of grid points in-between the geodes
as a function of radius. To test this nested grid structure,
set up an initially time symmetric quadrupole Gaussian pu
in the Regge-Wheeler functionF located at 10M . Specifi-
cally, the initial data takes the form:

F5e2k~ r̄ 2 r̄ c!2
R~u,f!, ~9!

Ḟ50, ~10!

wherek and r̄ c control the width and location of the shel
and R(u,f) sets an appropriate angular dependence, wh
for our standard comparison with the 1D Regge-Whee
equation, we adopt to be a quadrupole:

R~u,f!5sin2ucos~2f1p/2! ~11!

~the rotated form ofR in this particular case is explained i
the Appendix!.

The accuracy in resolving the QNM structure using su
nested refinement levels is demonstrated in Figs. 5,6. Fig
5 shows results in linear scales, showing the familiar ring
waveform, while Fig. 6 shows the same simulation in a log

FIG. 5. We show waveforms obtained for different levels
fixed refinement in the interior region near the horizon, and
effects on the quasi-normal mode structure. The solid line is the
result, which is progressively attained using three refinement lay
~dashed line! and seven refinement layers~dotted line!. Poor reso-
lution leads to under-sampling of the inner part of the poten
which combined with reflections from the ingoing boundary con
tion generates an effective numerical potential with different f
quency and decay rate. Figure 6 illustrates this point more cle
with the use of logarithmic scale forF.
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ADAPTIVE COMPUTATION OF GRAVITATIONAL WAVES . . . PHYSICAL REVIEW D 58 084002
rithmic scale, to bring out different aspects of the resu
The comparison is done at the peak of the potential~similar
signals are obtained e.g., atr 510M ). The base grid is a
Dx5Dy5Dz50.5M resolution and extends tor 550M .

The solid lines are 1D results, using aboutN51000 radial
points using thetortoise code. The 3D solution converges t
the correct~1D! one as more layers of refinement are add
~the coarse grid evolution is too erroneous to display!. Using
three refinement layers~finest level atDx50.0625M , dashed
line! considerably reduces the reflections, but still has a
rious effect on most of the QNM structure. Further refin
ment~dotted line! to seven levels~0.0039062M! captures the
correct QNM frequency and decay rate, overorders of mag-
nitude in the decay. Furtherenlargementof the thickness of
the layers reduces the amplitude loss at the expense
course, of computational time.

These results have been obtained with refinement le
usingnested spheres, which naturally adapt to the geometr
of a central black hole. Even though the underlying coor
nate system being used is Cartesian, by usinglinked liststhis
structure is still straightforward and natural to create. W
more traditional grid structures, if one attempted nested
finement levels it might be easier to createnested cubes.
With the linked lists we can also easily create such refi
ment structures and study their effect on the results. Us
this nested box construction, we have reproduced results
various refinement layers. The results are excellent in b

FIG. 6. Logarithmic plot illustrating accuracy issues related
the generation of QNM signals. The time signal is extracted aro
3M and is compared with the corresponding one-dimensional re
~solid line!. The base grid has a resolution of 0.5M, which is t
coarse to resolve the black hole potential and hence produc
large reflected wave~not shown!. Using three refinement layer
~finest level at 0.0625M, dashed line! considerably reduces the re
flections, but cannot reproduce most of the QNM structure. Fur
refinement~dotted line! to seven levels~0.0039062M! captures the
correct QNM frequency and decay rate over the whole domain
interest.
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cases, but there is a slight improvement in the quality of
modes, when using boxes with width equal to the diamete
the corresponding sphere. This is expected, given the con
erably larger refinement volume introduced by nested cub
This result suggests that using linked lists to constr
spheres within spheres, one can match the accuracy o
nested cube waveforms, but usingp/6 of the memory. This
non-negligible saving is inherent to the linked list approa
not to AMR, and could equally well be applied to the co
struction of uniform grid codes. Furthermore, in addition
handling irregular outer boundaries, linked lists are high
amenable to the construction of an internal boundary, e
within a black hole’s horizon as shown here.

Longer evolutions of the same initial data reveal an int
esting phenomenon associated with the presence of diffe
refinement levels. Observers inside a given refinement le
will observe numerical reflections arising at the refinem
level boundary with the next coarsest grid. In our simulatio
those reflections were well below the interesting signal l
els, but this may change in non-linear simulations with mo
meager resolutions, or refinement factors larger than two

To summarize the results of this section, we note that
essential dynamics of a black hole in the linear regime w
resolved with a fixed, refined mesh structure. In this a
proach we use knowledge of the system to place approp
refinement levels where they will be needed. We also fou
that the underlying geometry of the refinement levels can
flexible, i.e., we found that nested boxes and nested sph
both do an excellent job of resolving the calculation,
though the nested spheres allow considerable memory
ings. We note, however, that fixed refinement must be u
with care: if highly resolved waves are allowed to propag
into regions that are unable to resolve a wavelength, spur
reflections.~See Wild @25# or Wild and Schutz@24# for a
detailed analysis of reflection and transmission propertie
waves crossing various grid interfaces, along with strateg
to handle such problems!. Extending the refined domain a
the generated signal propagates outwards, away from
highly resolved horizon region, is a natural application f
dynamicmesh refinement, to which we turn next.

B. Dynamic mesh refinement

Using our model equation we also explored the issue
outgoing waves—with wavelengths typical of black ho
QNM’s—propagating outwards on an initially coarse gri
which would not provide adequate resolution if not refine
Depending on the initial burst of waves hitting the bla
hole, different outgoing radiation patterns and waveleng
may emerge, which cannot be predicted ahead of time.
now examine approaches for supplying the necessary res
tion to these waves, which must be tracked and resolve
they propagate. In what follows we maintain the static
finement necessary to resolve the region around the hor
~including all seven levels listed in Table I!, and explore
different methods to track the waves as they propagate
large distances from the black hole. In this ‘‘hybrid’’ refine
ment strategy, we allow the adapted grids to follow t
waves wherever they go, both away from the hole and i
the highly refined region near the hole.
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A crucial aspect of AMR is the choice of refinement c
teria. A commongeneral purposeestimator for dynamic re-
finement is the intrinsic truncation error estimate. Such
estimate of the truncation error of a numerical solution,t,
can be defined as

t}uQ Ds,Dt
2 f2Q2Ds,2Dtfu, ~12!

whereQ is the finite difference evolution operator used
integrate the solution andDs, Dt are the spatial and tempora
resolutions, respectively. Thus, the truncation error is co
puted by taking the difference of the solution obtained us
two regular time steps ofDt for a spatial resolutionDx from
the solution obtained using just one large time step of 2Dt on
a coarsened grid of 2Dx. Thus for a given point in the com
putational domain if the magnitude of Eq.~12! is larger than
some specified amount~e.g.t> threshold!, then locally that
region of the computational domain is refined~see@17#.!

Such criteria in lower dimensional work have been de
onstrated to work very well in demanding circumstanc
~e.g. @18,22,25#.! However, applying the truncation error e
timator Eq.~12! as the refinement criteria, verbatim, can fa

To understand what we mean by ‘‘fail,’’ consider thera-
dial scaling of the waves as they propagate away from
black hole and the impact of this effect on the refinem
criteria. The perturbed metric variables have strong ra
falloff behavior~for sufficiently large radiir , h;1/r ). In our
single wave equation, this is very clear, although in a m
general case, as one would encounter in the full set of E
stein equations, there will be a mixture of different fallo
rates depending on the variables, the gauge, and so forth
physically the wave part of the solution, given byh, will
decay as it propagates away. Since refinement criteria
Eq. ~12! are proportional to the local magnitude of the so
tion, the decaying nature on the function being refined
dermines the effectiveness of the refinement criteria’s ab
to place refinement.

1. Adaptive refinement studies for a purel 52 mode

We illustrate many of these issues by considering the
fect of different refinement criteria on a 3D simulation for
purel 52 wave, as discussed in the section above. We c
sider a general packet containing manyl -modes, taking ad-
vantage of our generalized wave equation, in the next s
tion. We note that these simulations are much m
demanding than those discussed in the section above, w
waveforms were measured near the peak of the potential
the horizon. In this section we study the propagation
waves far from the black hole, and our ability to dynamica
track and resolve them.

Consider the refinement criteria Eq.~12! with the demand
that t<0.002 throughout a computation domain which e
tends to 300M and a base resolution of 2M . In this simula-
tion of the purel 52 mode, we allow one level of refine
ment. In Fig. 7 we show the growth number of grid poin
for several adaptive mesh refinement simulations. As
waves propagate out from the black hole, they of cou
sweep out an ever larger volume. Plotting the percent
growth of dynamic grid points, relative to the number
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initial points, as a function of time~see dotted line in Fig. 7!
we see that the growth of the dynamic refinement occur
only over a finite period of time, eventually evaporated ev
as the waves expand to larger volumes. This is due to
decay of the wave amplitude below the level at which it c
be captured by the specified truncation error limit. This
contrary to our AMR requirements for capturing and tran
porting the physical waveform to some arbitrarily distant d
tector. The solid and dashed lines correspond to other refi
ment criteria discussed below.

Indeed the net effect of such evaporation on a wavefo
is to dramatically perturb it, since waves once initially ca
tured within some region of mesh refinement will not rema
contained and instead ‘‘leak’’ back across the dynamic
finement boundaries onto coarser resolutions. To dem
strate this behavior, in Fig. 8 we show the actual wavefo
obtained for the same simulation, again demanding that
<0.002 throughout the computation domain. Initially th
results in the first two out-going modes being contain
within the dynamic refinement, although with only one lev
of refinement, the wave is still not resolved enough. Ho
ever, by the time these modes have passed a detector p
at 125M , only the first mode remains captured within th
refinement—the second mode now trails in its wake. Mo
over, because the evaporation of the grid is non-smooth~see
Fig. 7 dotted line!, this has an effect of perturbing the wav
form which becomes highly inaccurate. Here the solid line
the correct waveform obtained from 1D simulations in t
tortoise coordinate. The dotted line is the truncation-er
based AMR result, clearly revealing the deterioration of t
second mode which now trails the dynamic mesh refinem
~For a discussion on the effects moving boundaries have
perturbing waves straddling mesh refinement, see@25#.! One
cannot cure this effect by simply tightening the tolerance
the refinement criterion, since this can only improve thin
for awhile, but eventually as wave decays away, the sa
effects will be seen.

FIG. 7. Using the truncation error estimator Eq.~12! without
radial scaling reveals that the refined region ‘‘evaporates’’ as
propagates outward~dotted line!. This behavior is also true with the
norm refinement criteria Eq.~13! ~dashed line!. However, appropri-
ately scaling the norm refinement criteria produces a continu
growth of dynamic gridpoints~solid line!.
2-10
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ADAPTIVE COMPUTATION OF GRAVITATIONAL WAVES . . . PHYSICAL REVIEW D 58 084002
Such behavior should not be thought of as indicative
truncation error estimators. This dynamic refinement beh
ior is generic to refinement criteria which do not take in
consideration the underlying nature of the solution’s fallo
For example, employing a refinement criterion based o
norm of the solution:

N15c1uFu21c2uF ,tu2, ~13!

produces similar effects, as shown by the dashed lines in
7 and Fig. 8. In Fig. 7 we see the initial growth and fin
decay of dynamic grid points, and in Fig. 8 we see a sim
larly poor waveform. Interestingly, however, the evaporati
of the dynamic refinement created in this case is more re
lar and hence shorter lived than that for refinement crite
based on estimating the truncation error. This difference
be traced to the fact that we found the truncation error e
mator Eq.~12! produced a ‘‘noisier’’ estimate of where re
finement was required and was therefore less able to crea
regular pattern of refinement than the norm based criteri

To overcome this grid evaporation requires an appropr
scaling the refinement criteria. For example, for the no
refinement criteria by scaling it radially with 1/r 2 results in
both the first and second outgoing modes remaining captu
within the mesh refinement—in principle forever.~The ef-
fects of dispersion will eventually negate this effect ho
ever.! This is shown by the dotted line in Fig. 9. Here, th
trailing part of the signal that falls outside the dynamic r
gion of refinement has deteriorated considerably. The qua
of the signal can be increased further by introducing a sec
level of dynamic mesh refinement as shown by the das
line in Fig. 9. We obtained similar results by suitably scali
the truncation error criterion, although as before, with
slightly noisier solution.

FIG. 8. Tracking of outgoing waves using one level of dynam
refinement. The signal as seen by an equatorial observer locat
125M. The base grid resolution is 2M. Using truncation error
finement criteria@Eq. ~12!# with no radial scaling produces a poo
quality signal~dotted line! compared to the 1D result~solid line!.
The trailing part of the signal falls outside the AMR captured regi
and deteriorates considerably. This is also the case for the n
refinement criteria~Eq. 13! with no radial scaling, shown as a
dashed line.
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Finally, for simulations of a purel 52 multipole wave
hitting a black hole, we show the evolution of the grid r
finement structure as the wave propagates out. Again we
a base grid extending out to 300M , with a resolution of 2M .
Two levels of dynamic AMR track outgoing waves using th
norm based refinement criteria@Eq. ~13!# with the correct
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rm

FIG. 9. Tracking of outgoing waves using one and two levels
dynamic refinement with a ‘‘scaled’’ refinement criterion. The si
nal shown is seen by an equatorial observer located at 125M.
base grid resolution is 2M. Using norm refinement criteria~Eq. 13!
with 1/r 2 radial scaling captures and contains the first two outgo
modes~dotted line! compared to the 1D result~solid line!. The
trailing part of the signal falls outside the AMR captured region a
has inevitably deteriorated. The quality of the signal improves ev
more when two levels of dynamic refinement are used~dashed
line!.

FIG. 10. Mesh structure and isosurfaces for an outgoing pu
at time 100M. The grid extends out to 300M, with a base resolut
of 2M. The boundaries of the refinement layers are indicated by
zig-zag lines. Two such layers engulf the outgoing burst. Seve
layers cover the hole, of which only three are shown. At this sta
the dynamically prescribed layers tracking the outgoing burst s
overlap with the prescribed layers around the hole. Two wa
lengths~depicted as isosurface shells! are captured by theL2 refine-
ment and will be propagated accurately outwards. A third osci
tion is seen to be just outsideL2, a fact which will prove
detrimental to its shape.
2-11
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radial scaling of 1/r 2. Seven layers of prescribed refineme
resolve the region near the black hole horizon.

Figure 10 shows the mesh structure and isosurfaces
the outgoing pulse at timet5100M , and Fig. 11 show the
same system at timet5200M . The boundaries of the refine
ment layers are indicated by the zig-zag lines. Two su
layers engulf the outgoing burst and of the seven layers
solving the hole, only three are shown.

At the t5100M stage ~Fig. 10! the dynamically pre-
scribed layers tracking the outgoing burst still overlap w
the prescribed layers around the hole. The two wavelen
~depicted as isosurface shells! are captured by theR2 refine-
ment and will be propagated accurately outwards. The th
oscillation resides just outsideR2, a fact which will prove
detrimental to its later accuracy. Att5200M ~Fig. 11! the
boundaries of the refinement layers covering the hole
the outgoing signal are clearly separated. The resul
coarse region in-between cannot support the lower amplit
trailing signal which consequently becomes heavily d
torted.

In such simulations, with expanding wavefronts, the pr
one must now pay for keeping a solution correctly captu
within 3D dynamic refinement is to inevitably have to i
crease the number of grid points within the computatio
domain. This is shown by the solid line in Fig. 7. This rap
growth of the consumed resources, as the wavefront exp
onto the coarse grid, will be typical of the more gene
black hole coalescence problems. Thus, for the future ef
tive use of AMR in black hole simulation, one must addre
directly the question of what amount of the signal needs
be captured with high resolution grids and set the refinem
criteria accordingly~appropriately scaled byr ) to distribute
the refined grids around the strongest part of the signal,
the initial burst, and the largest QNM oscillations immed
ately following.

2. Simulations of general pulse hitting a black hole

The previous discussion was based on a single initial d
set, which contained only a purel 52 angular structure. We

FIG. 11. Mesh structure and isosurfaces for outgoing pulse
time 200M. The boundaries of the refinement layers covering
hole and the outgoing signal are clearly separated. The coars
gion in-between cannot support the lower amplitude trailing sign
which will become heavily distorted.
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turn now to a more general wave packet, probing the AM
performance on more complex wave patterns that could
encountered in the general black hole coalescence prob
To this end, we consider general initial data, for exam
data that have compact support in a three dimensional
ume which does not surround the black hole, for exampl

F5e2k[ ~ x̄2 x̄c!21~ ȳ2 ȳc!21~ z̄2 z̄c!2] , ~14!

Ḟ50. ~15!

It is obvious that such evolutions would be intrinsical
three-dimensional. The emitted signal has a distinct ‘‘burs
phase, containing radiation of considerably high frequen
The presence of high harmonics, with the correspond
short wavelengths makes the accurate evolution of such
more demanding than simpler superpositions of low lyi
modes. Here we illustrate the ability of the AMR suite
capture complex solution patterns. The refinement criter
used was norm based@Eq. ~13!# and one level of dynamic
refinement.

Figure 12 shows a planar slice of mesh structure and
surfaces of dumb-bell shaped initial data, after 200M of e
lution. This ‘‘burst shell’’ of overlapping high-frequencie
will eventually be succeeded by the more regular pattern
QNM ringing. Here, these high frequency features have
possibility of being accurately transported to a distant det
tor without dynamic AMR.

The corresponding three dimensional mesh structure
t5200M is shown in Fig. 13. Here octant symmetry, in co
nection with the initial data of compact support, produc
‘‘voids’’ in between the out-going wavefronts. This corre
sponds to the delayed arrival of the ‘‘mirror’’ data in th
computational domain. In these regions dynamic refinem
senses the absence of a strong signal and therefore le
unrefined.

at
e
re-
l,

FIG. 12. Planar slice of mesh structure and isosurfaces of du
bell shaped initial data, after 200M of evolution. A shell of ove
lapping high-frequency bursts will eventually be succeeded by
more regular pattern of QNM ringing.
2-12
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V. CONCLUSIONS AND FUTURE DIRECTIONS

This work presents an introduction to the potential a
problems of full 3D adaptive mesh refinement in numeric
relativity. For the purpose of our investigation in adapti
three dimensional computations, we introduced a gen
class of three-dimensional partial differential equations t
capture important aspects of black hole interactions. For
lect parameters those equations correspond rather direct
physical models of scalar, electromagnetic and gravitatio
interactions of black holes, hence physical processes ca
described~in the weak limit! in terms of those equations
Preliminary analysis of those equations outlines aspects
their behavior, in particular the dependence of the ring-do
signal on the parameters, and the resolution requiremen
the solution in the near horizon region in isotropic sta
slicings of the black hole.

We presented a series offully resolvedthree-dimensional
computations involving dynamics in black hole spacetim
The linear nature of the problem does not reduce the la
dynamic range of the black hole potential, which manife
itself through the strong radial dependence of the coefficie
of the equation. Our adopted gauge accentuates the l
resolution requirements near the horizon. Prescribed fi
refinement was successfully used to provide the requ
resolution in that region.

Dynamic refinement was used to propagate signals
the exterior domain. The necessaryscalingof refinement cri-
teria by appropriate power ofr was discussed, along with th
impressive growth of grid points occurring when the outg
ing burst is resolved dynamically as it propagates. The id

FIG. 13. Three dimensional mesh structure. The octant sym
try in connection with initial data of compact support produc
‘‘voids’’ in between the fronts, which correspond to the delay
arrival of the ‘‘mirror’’ data in the computational domain. The dy
namic refinement senses the absence of strong signal and ec
mizes the grid.
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of norm-based refinementwas introduced, which works wel
in conjunction with a selective tracking of the strongest p
of the signal. Our considerations are based of course on
model equations, but may be useful for the Einstein proble
In particular we propose the~appropriately scaled! norm
N25c1uC4u21c2uC4,tu2, where C4 is a locally computed
component of the Weyl tensor describing, in vacuum, out
ing radiation. This might prove to be an effective outer r
finement criterion, and should be tested on model proble
involving the full set of Einstein equations.

We are presently extending this work in several dire
tions. Our study directly demonstrates that 3D investigatio
of black hole physics in the linearized limit can directly be
efit from AMR methods. Extensions of the presently d
scribed models involving rotation and different stationary c
ordinate systems are underway@40#. Studies of non-linear
systems are also underway~e.g., in connection with ADM
evolution of single black hole spacetimes in thre
dimensions.! The considerable complexity of the adaptiv
mesh infrastructure suggests comparisons of the HHL d
structure with the DAGH data structure, developed for t
BBHGC alliance program, in particular with respect to pe
formance in three-dimensional computations on parallel
chitectures.
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APPENDIX: NUMERICAL ANGULAR MODE MIXING
AND INSTABILITIES

In this Appendix we elaborate on a feature of some
the Eqs. ~4!, which is important for stable long-term
evolutions, a very desirable characteristic for a numeri
problem.

The PDE~4! is equivalent to anl -sequence of separate
one-dimensional PDE’s. It is of some importance to no
that from the point of view ofapproximatesolutions to the
initial value problem, the equivalence may break down.
this we mean that a discrete approximation to Eq.~4! will
not ~in general! be a separable difference equation, and
hence numerical mixing of angular modes is possible, a
is generally the case unless some techniques are devis
prevent it.

Some of the Eqs.~4! demonstrate in the late stages
numerical evolution a dramatic manifestation of such mo
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no-
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mixing. For valuesK1526,K250, the equation represen
axial gravitational perturbations and hence should excl
non-radiative solutions with spherical or dipole symme
(l 50,1!. It turns out that anapproximateintegration of the
initial value problem is unstable with respect to thel 50
mode, i.e., even if the mode is absent in the initial data
will appear in the solution and it will exhibit unbounde
growth.

The origin of the unstablel 50 behavior can be easil
seen by inspection of the separated Eq.~1! for l 50. The
effective potential is negative in the entire domain, henc
simple examination of the dispersion relation (v25k22V)
for spherical waves reveals the presence of local modes
are exponentially growing. Depending on the accuracy of
integration, the manifestation of the instability may be d
layed, but in finite precision arithmetic, it is bound to occ
due to round-off error. In our simulations it occurs typica
after 100M of evolution for 1283 base-grids. It manifests
itself much earlier if a spherical component is analytica
introduced at the initial time.

For long time evolutions, with potentials admittin
growing modes, excluding the unstablel 50 mode is
possible with the appropriate use of boundary conditions.
this end, we restrict the integration domain to an octant,
select to impose at least one condition ofanti-reflection
across the planes defining the octant domain. Such c
d
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ditions eliminate spherical modeseven for the discretized
equations. The spherical nature of the background c
veniently allows one to rotate the coordinate system~this is
of course the reason why multipoles of samel , but different
m values obey the same equations for non-rotating bl
holes!.

As an example, thel 52, m50 mode with angular de-
pendence proportional to 3cos(u)221, will be decomposed

in a rotated frameû5u1p/2, to sum of quadrupole terms
of which thel 52,m52 mode, with a furtherf rotation by

p/4 gives sin(û)2cos(2f̂1p/2). This angular dependence a
mits antireflection conditions across thex50 and y50
planes. Indeed, with the use of such conditions, the num
cal integrations show no sign of unstable growth for at le
500M of evolution time.

Axial perturbations will be present in full non-linea
simulations, and their dynamics will be governed, at leas
some weak regime, by a collection of coupled linear eq
tions. It is not clear that such a linearized system of Einst
equations should have an unstable spherical mode of
same type exhibited by our model partial differential equ
tions ~PDE!. This issue warrants some more investigation
this were the case though, eliminating the instability wou
be very difficult for integrations in the full spatial domai
and non-spherical holes.
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