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Département de Mathe´matiques, Faculte´ des Sciences, Universite´ de Tours, Parc de Grandmont, F-37200 Tours, France

Jacek Jezierski†

Department of Mathematical Methods in Physics, University of Warsaw, ul. Hoz˙a 74, 00-682 Warszawa, Poland

Malcolm A. H. MacCallum‡

School of Mathematical Sciences, Queen Mary and Westfield College, University of London, Mile End Road, London E1 4N
United Kingdom

~Received 6 March 1998; published 28 August 1998!

It is shown that the only functionals, within a natural class, which are monotonic in time for all solutions of
the vacuum Einstein equations admitting a smooth ‘‘piece’’ of conformal null infinityI , are those depending
on the metric only through a specific combination of the Bondi ‘‘mass aspect’’ and other next-to-leading order
terms in the metric. Under the extra condition of passive BMS invariance, the unique such functional~up to a
multiplicative factor! is the Trautman-Bondi energy. It is also shown that this energy remains well defined for
a wide class of ‘‘polyhomogeneous’’ metrics.@S0556-2821~98!05916-5#

PACS number~s!: 04.20.Cv, 11.10.Ef, 11.10.Jj
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I. INTRODUCTION

Consider a Lagrangian theory of fieldsfA defined on a
manifold M with a Lagrange function density

L5L@fA,]mfA,...,]m1
...]mk

fA#, ~1.1!

for somekPN, where]m denotes partial differentiation with
respect toxm. Suppose further that there exists a functiot
on M such thatM can be decomposed asR3S, where
S[$t50% is a hypersurface inM and the vector]/]t is
tangent to theR factor. The proof of the Noether theorem,
presented, e.g., in@1#, Section 10.1, shows that the vect
density

El5Xm(
l 50

k21

fA
,a1 ...a lm (

j 50

k2 l 21

~21! j]g1
...]g j

3S ]L
]fA

,la1 ...a lg1 ...g j

D 2LXl ~1.2!

has vanishing divergence,El
,l50, when the fieldsfA

are sufficiently smooth and satisfy the variational eq
tions associated with a sufficiently smoothL ~cf. also @2#!.
@This is in any case easily seen by calculating the div
gence of the right-hand side of Eq.~1.2!.# Here fA

,a1 ...a l

5]a1
...]a l

fA, andXm]m5] t . In first order theories, that is

theories in whichL depends only uponfA and its first de-
rivatives, it is customary to define the total energy associa
with the hypersurfaceS by the formula

*Email address: Chrusciel@Univ-Tours.Fr
†Email address: jjacekj@fuw.edu.pl
‡Email address: M.A.H.MacCallum@qmw.ac.uk
0556-2821/98/58~8!/084001~16!/$15.00 58 0840
-

r-

d

E~S!5E
S
EldSl , ~1.3!

with dSl5]l4dx0∧...dx3, where 4 denotes contraction.1

By extrapolation one can also use~1.3! to define an ‘‘en-
ergy’’ for higher order theories. Because of its origin, t
right-hand side of Eq.~1.3! will be called theNoether energy
of S, associated with a Lagrange functionL and with the
vector fieldX. Now it is well known that the addition toL of
a functional of the form

]l~Yl@fA,]afA,...,]a1
...]ak21

fA# !, ~1.4!

wherek is as in~1.1!, does not affect the field equations.2 We
show in Appendix E that such a change of the Lagran
function will changeE(S) by a boundary integral:

E~S!→Ê~S!5E~S!1E
]S

DEmldSml , ~1.5!

whereSab5]a4]b4dx0∧...∧dx3, with DEml given by Eq.
~E6!. If ]S is a ‘‘sphere at infinity’’ the integral over]S has
of course to be understood by a limiting process. Unless
boundary conditions at]S force all such boundary integral
to give a zero contribution, if one wants to define ener
using this framework one has to have a criterion for choos
a ‘‘best’’ functional, within the class of all functionals ob

1We use the conventions that]04dx0∧...dx35dx1∧dx2∧dx3,
]14dx1∧dx2∧dx35dx2∧dx3, etc.

2
Here we adopt the standard point of view, that the field equati

are obtained by requiring the action to be stationary with respec
all compactly supported variations~cf. e.g. @3# for a discussion of
problems that might arise when this requirement is not enforce!.
© 1998 The American Physical Society01-1
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CHRUŚCIEL, JEZIERSKI, AND MacCALLUM PHYSICAL REVIEW D58 084001
tainable in this way. As discussed in more detail in Sec.
the vanishing of such boundary integrals will not occur
several cases of interest.

Now the concept of energy plays a most important role
the context of fields which are asymptotically flat in lightlik
directions. An appropriate mathematical framework here
that of spacelike hypersurfaces which intersect the future
infinity I 1 in a compact cross-sectionK. For such field con-
figurations it is widely accepted that the ‘‘correct’’ definitio
of energy of a gravitating system is that given by Freud@4#,
Trautman@5,6#, Bondiet al. @7#, and Sachs@8#, which hence-
forth will be called the Trautman-Bondi~TB! energy.@Be-
cause of the difficulty of accessing Refs.@5,6# we have in-
cluded an Appendix~Appendix A! which describes those
results of@5,6# which are related to the problem at hand. Th
Appendix, together with the date of publication of@5#,
should make it clear why we are convinced that the name
Trautman should be associated with the notion of mass in
radiating regime in general relativity.# There have been vari
ous attempts to exhibit a privileged role of that expression
compared with many alternative ones~@9–20#, to quote a
few!, but the papers known to us have failed, for reas
sometimes closely related to the ones described above
give a completely unambiguous prescription about how
define energy atI . ~We make some more comments abo
that in Sec. II, cf. also@21#.! In this paper we wish to poin
out that the TB energy is, up to a multiplicative constanta
PR, theonly functional of the gravitational field, in a certain
natural class of functionals, which ismonotonic in time for
all vacuum field configurationswhich admit a~piece of! a
smooth null infinityI 1.

We shall also consider a second, somewhat larger, c
of functionals, which contains Hamiltonians that arise in
appropriate symplectic framework.@It will be seen below
that the functionals one obtains from the integrals~1.3! are
quadratic polynomials of the appropriate Bondi functio
and their derivatives; there is no reason for the Hamiltoni
to satisfy this restriction.# In that larger class we describe a
monotone functionals and then among these the further
quirement of passive supertranslation invariance also lead
the TB energy as the unique expression. The symple
framework which is appropriate in the context of radiati
fields will be described elsewhere.

It is natural to ask why the Newman-Penrose constant
motion @22#, or the logarithmic constants of motion of@23#,
do not occur in the conclusions of Theorem IV.1. The
quantities are excluded by the hypothesis that the boun
integrandHab which appears in the integrals we consid
depends on the coordinates only through the fields.
Newman-Penrose constants could be obtained as integra
the form ~1.2! ~cf. e.g. @24#! if explicit r 2 factors were al-
lowed in Hab. Similarly logarithmic constants could occu
as integrals of the form~1.2! if explicit 1/ln r or r 1 i ln2j r
factors were allowed there.

This paper is organized as follows: In Sec. II we revie
some results about ‘‘energy expressions’’ in general rela
ity, and comment on nonuniqueness of those. In Sec. III
find all functionals of the fields induced onI by the metric
which are monotonic in retarded time, in a large class
08400
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natural functionals. In Sec. IV we analyze those monoto
functionals which are invariant under passive Bon
Metzner-Sachs~BMS! supertranslations, and prove our clai
about uniqueness of the Trautman-Bondi mass. In Sec. V
give a supertranslation-invariant formula for the Trautma
Bondi momentum, for general cuts ofI . In Sec. VI we con-
sider the question of convergence of the Freud superpote
to the Trautman-Bondi mass for space-times with a poly
mogeneousI . Remarkably, we find that because of som
integral cancellations the Freud integral always converge
a ‘‘generalized Trautman-Bondi’’ mass, even for metri
which are polyhomogeneous of order 1~cf. Sec. VI for defi-
nitions!. In Sec. VII we briefly discuss the potential exte
sions of our results to a Hamiltonian setting. An appen
gives a very short review of Trautman’s contribution to t
notion of energy for radiating metrics, while the remainin
four appendices contain some technical results needed in
body of the paper.

II. NONUNIQUENESS OF THE NOETHER ENERGY
FOR GRAVITATING SYSTEMS

As an example of applicability of Eq.~1.5!, consider a
scalar field f in the Minkowski space-time, withS5$t
50%. Assume thatf satisfies the rather strong fall-off con
ditions

for ~ t,x!PS we have ]a1
...]a j

f5o~r 22!,

0< j <2~k21!, ~2.1!

where k is the integer appearing in~1.1!. In this case the
boundary integral in~1.5! will vanish for all smoothYm’s, as
considered in Eq.~1.4!. This shows that Eq.~1.3! leads to a
well-defined notion of energy on this space of fields~what-
ever the Lagrange functionL!, as long as the volume integra
there converges.~That will be the case if, e.g.,L has no
linear terms inf and its derivatives.!

Consider, next, the same scalar field in Minkowski spa
time, with S being a hyperboloid,t5A11x21y21z2. Sup-
pose further thatL5¹mf¹mf, so that the field equation
read

hf50. ~2.2!

In that case the imposition of the boundary condition~2.1!
does not seem to be of interest, as such boundary condit
would be incompatible with the asymptotic behavior of tho
solutions of Eq.~2.2! which are obtained by evolving com
pactly supported data on$t50%. Thus, even for scalar field
in Minkowski space-time, a supplementary condition s
gling out a preferredEl is needed.

Now for various field theories on the Minkowski back
ground, including the scalar field, one can impose some
ther conditions onEl which render it unique@25,13,14#. The
extension of that analysis to the gravitational field carried
in @13,14# also leads to a uniqueEl ~namely the one obtained
from the so-called ‘‘Einstein energy-momentum pseudot
sor’’!, within the class of objects considered. While this
certainly an interesting observation, the hypotheses mad
1-2
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UNIQUENESS OF THE TRAUTMAN-BONDI MASS PHYSICAL REVIEW D58 084001
that last paper are, however, much more restrictive tha
desirable. It seems therefore that for gravitating systems
other approach is needed. Let us recall how the ‘‘Noet
charge’’ formalism described in the Introduction works
that case. There exist various variational approaches to
eral relativity, and depending upon the point of view adop
one finds the following.

~1! Let L5AudetguR/16p, where the Ricci scalar is con
sidered as a functional of the metric fieldgmn , a symmetric
connectionGbg

a , and its first derivatives. In that case@26#
one finds

E~S!5
1

16p
E

S
¹m¹ [mXl]Audet gudSl

5
1

8p
E

]S
¹ [mXl]Audet gudSml . ~2.3!

This integral is known as the Komar energy, except that~2.3!
is actually half of the expression given by Komar@27#.

~2! Let L5AudetRmnu/l, where the Ricci tensor is consid
ered as a functional of a symmetric connectionGbg

a and its
first derivatives, andl is a constant. The variational equ
tions for such a theory are the Einstein equations with
cosmological constant@28#. The Noether energy gives aga
@28# the Komar integral~2.3!.

~3! Let L5AudetguR/16p, where the Ricci scalar is con
sidered as a functional of the metric fieldgmn and its first and
second derivatives. In that case the value ofE(S) is given
again@29# by the Komar integral~2.3! ~with a ‘‘wrong’’ 1/2
multiplicative factor!.

~4! Let L5L(gmn ,gmn,s) be the Einstein Lagrange func
tion @30#, which is obtained by adding an appropriate dive
gence to the Hilbert Lagrange functionAudetguR/16p. In
that case one obtains@4#

E~S!5E
]S

HmndSmn , ~2.4!

whereHmn is the ‘‘Freud superpotential’’ for the ‘‘Einstein
energy-momentum pseudotensor,’’ cf. Eq.~6.1! below.
Yet another approach, leading to a different energy exp
sion, can be found in@31#.

Consider first initial data for, say vacuum, Einstein equ
tions satisfying the usual fall-off conditions at spatial infi
ity;

gmn2hmn5O~r 21!, ]sgmn5O~r 22!. ~2.5!

In that case both the integrals~2.3! and~2.4! converge. When
the integral over]S in ~2.3! is evaluated on a ‘‘two-sphere a
infinity’’ in Schwarzschild space-time one obtainsm/2. On
the other hand, under the asymptotic conditions~2.5! the
integral ~2.4! coincides with the standard Arnowitt-Dese
Misner ~ADM ! expression for energy, and givesm for that
same sphere in Schwarzschild space-time.

Under the asymptotic conditions~2.5!, a way to obtain a
unique expression is given by the symplectic formalis
Namely, one can require thatE(S) be a Hamiltonian on an
08400
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appropriately-defined phase space~cf. e.g.@32–35#!. This re-
quirement, together with the normalization condition that t
Hamiltonian vanishes on Minkowski space-time, unique
singles out the Freud-ADM energy as the ‘‘correct’’ glob
energy for general relativistic initial data sets which satis
the ‘‘spatial infinity asymptotic flatness conditions.’’ Thu
the Hamiltonian analysis gives a rather satisfactory way
singling out an energy expression at spatial infinity.

Consider, next, hypersurfacesS which extend toI and
intersectI transversally. There have been attempts to
symplectic methods to define energy in this context@9–11#
~see also@36–38#!. In particular, the analysis of@9–11#
shows that, under appropriate assumptions, the integra
the time-derivative of the TB energy over the retarded ti
gives a Hamiltonian with respect to a proposed symple
structure. This does not allow one to extract the integra
itself from the expression for the Hamiltonian in any una
biguous way, for reasons somewhat analogous to those
scribed in the Introduction. Moreover in those papers one
to assume various decay properties of the fields onI for
large absolute values of the retarded time, which have
been established so far. Finally, as the symplectic struc
considered in@9–11# has a perhaps less universally accep
status than the one considered on standard asymptotically
hypersurfaces, one should perhaps also face the questio
uniqueness of the symplectic structures involved. For
those reasons we conclude that the framework of@9–11# fails
to demonstrate uniqueness of the TB mass.

III. MONOTONIC FUNCTIONALS

From now on, we shall consider metricsgab defined on
appropriately large subsets ofR4, but not necessarily glo-
bally defined onR4, and satisfying Einstein’s equations ne
I . We shall examine a class of functionals which includ
all the cases discussed in Sec. II, and in particular all fu
tionals differing from the Hilbert Lagrangian by a dive
gence. These functionals have the form

H@u0 ,g#5 lim
r→`

E
S~ t5u01r,r!

Hab@g#dSab ,

dSab5]a4]b4dx0∧...∧dx3, ~3.1!

where

Hab@g#~x![Hab
„gmn~x!,]agmn~x!,...,]a1

...]ak
gmn~x!….

~3.2!

for somekPN, and Hab is a twice continuously differen-
tiable function of its arguments. HereS(t,r) denotes a
spherer[A(x1)21(x2)21(x3)25r, t[x05t. The metrics
gab will be assumed to satisfy the standard fall-off cond
tions corresponding to asymptotic flatness at null infini
More precisely, consider a space-time (M ,g) which admits a
conformal completion~which in this section we consider t
be smooth! in the following sense: there exists a manifo
with boundary (M̄ ,ḡ), a diffeomorphic embeddingF:M
→M̄ \]M̄ , and a smooth functionV on M̄ such that
1-3
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CHRUŚCIEL, JEZIERSKI, AND MacCALLUM PHYSICAL REVIEW D58 084001
F* (V22ḡ)5g. We shall also assume thatV u]M̄50, that
dV is nowhere vanishing on]M̄ , and thatI []M̄ is diffeo-
morphic to I 3S2 where I is an interval~possibly but not
necessarily equal toR!. By a standard construction we ca
introduce Bondi coordinates nearI ~cf. e.g.,@19# or @23#! so
that we have

ds252
Ve2b

r
du222e2bdu dr

1r 2hab~dxa2Uadu!~dxb2Ubdu!, ~3.3!

with xa5(u,f). We can introduce quasi-Minkowskian co
ordinates by setting

u5t2r , x5r sin u cosf,

y5r sin u sin f, z5r cosu. ~3.4!

We shall consider only vacuum metrics; recall that t
implies the following behavior ofhab , b, Ua, and V
~@24,7,8#!:

hab5h̆abS 11
1

4r 2 xcdxcdD1
xab~v !

r
1O~r 23!,

b52
1

32

h̆abh̆cdxacxbd

r 2 1O~r 23!,

Ua52
1

2

Dbxab

r 2

1
32Na~v !1Da~xcdxcd!18xa

bDcx
bc

16r 3

1O~r 24!,

V5r 22M ~v !1
xcdxcd14DbxabDcxac216DaNa

16r

1O~r 22!. ~3.5!

Here (v)[(u,xa) and h̆abdxadxb5du21sin2u df2; Da is
the covariant derivative operator defined byh̆ab . Indicesa,
b, etc., take values 2 and 3, and are raised and lowered
h̆ab. The tensor fieldxab satisfies the condition

h̆abxab50, ~3.6!

and no other conditions are imposed3 on xab(v) by the
vacuum Einstein equations. The functionsM andNa satisfy
the following equations:

3Note, however, that there may be some restrictions arising f
some further global hypotheses if those are made. We emph
that we do not impose any such global hypotheses here.
08400
ith

]M

]u
52 1

8 h̆ach̆bdẋabẋcd1 1
4 DaDbẋab,

3
]Na

]u
52DaM1 1

4 eabDbl2Ka,

Ka[ 3
4 xa

bDcẋ
bc1 1

4 ẋcdDdxa
c ,

l[h̆bdeacDcDbxda , ~3.7!

where ẋª]ux. Here eab5]a4]b4d2m where d2m
5sinu du∧df51

2eabdxa∧dxb is the standard volume form
on S2. If we fix someu0PI , then the Einstein equations d
not impose3 any restrictions on the functionM (u0 ,u,f) and
the vector fieldNa(u0 ,u,f) on S2.

Equation~3.5! shows that in the coordinate system~3.4!
the metric~3.3! is of the form

gmn5gmn
0 1

gmn
1 ~v !

r
1

gmn
2 ~v !

r 2 1O~r 23!, ~3.8!

with obvious analogous expansions holding for the vario
derivatives ofgmn when an appropriate expansion for th
derivatives ofhab is assumed. Heregmn

0 5diag(21,1,1,1).
We can now insert a metric of the form~3.8! into a func-
tional of the form~3.1!, and as a further restriction we sha
require thatH has a finite numerical value for all fieldsgmn

of the type described above. Our hypothesis of differen
bility of Hab allows us to Taylor expandHab to order 2 in
terms of powers ofgmn2gmn

0 , ]s(gmn2gmn
0 )5]sgmn , etc.,

aboutgmn5gmn
0 . Note that by~3.2! the Hab@gmn

0 ,0, . . . ,0#
are constants which are either zero or integrate to zero
~3.1! @otherwise the limit in~3.1! would be infinite#, so that

H@u,gmn
0 #50 ;uPI .

The 1/r terms ingmn and itsv derivatives will give at most
a quadratic contribution toH, and the 1/r 2 terms at most a
linear one, while the remainder terms in the Taylor expa
sion of Hab will contribute nothing in the limitr→`. It
follows thatH can be written in the form

H5E
S2

h@M ,M ~1!,...,M ~k!,Na,Na~1!,...,Na~k!,

xab ,xab
~1! ,...xab

~k! ,u,f]d2m. ~3.9!

Here the addition of a superscript~l! to a quantity denotes the
l-th u-derivative of that quantity. The square brackets arou
the arguments ofh are meant to emphasize the fact thath is
not a function but a local functional of the fields which is
differentiable function ofM, ]aM ,..., ]a1

...]ak
M , M (1),

]aM (1),..., ]a1
...]ak

M (1),..., etc., for some finite number o

derivatives in directions tangent toS2. Note that for func-
tionals ~3.1! the dependence ofH on Na, Na(1),..., etc., as
well as on derivatives ofNa, Na(1),..., etc., in angular direc-
tions, will be linear becauseNa comes with a factorr 22, and
we shall henceforth only consider such functionals. From

m
ize
1-4



to

nc
ry
s
t

s
te

r
ich

m

-

en
r

t

al

en-

em
-

dary
the

rar-

tric
ry

o-

se

nt,

UNIQUENESS OF THE TRAUTMAN-BONDI MASS PHYSICAL REVIEW D58 084001
symplectic point of view it turns out to be natural not
make the hypothesis thath is a quadratic polynomial of the
fields and their derivatives, as would be the case for fu
tionals ~3.1!, and for this reason we shall allow arbitra
differentiable functionsh in ~3.9!, except for the hypothesi
of linearity in Na with coefficients of linearity independen
of the remaining fields.

Assuming that the metricgmn is vacuum~at least in a
neighborhood ofI ! we can eliminate theu-derivatives ofM
andNa in favor of M andu-derivatives ofxab , using equa-
tions ~3.7!, so that~3.9! can be rewritten as

H5E
S2

h@M ,Na,xab ,xab
~1! ,...xab

~k!#d2m, ~3.10!

whereh is still linear in Na and its derivatives in direction
tangent toS2. By an abuse of notation here, we still deno
the integrand ofH by h, although it will in general not coin-
cide with the originalh of ~3.9!. Before we proceed furthe
we need the following result based on the work of Friedr
@39,40# as extended by Kannar@41#:

Lemma III.1 Let M0(u,f) be a smooth function on S2,
N0

a(u,f) be a smooth vector field on S2, and xab
0 (u,f),

xab
1 (u,f),..., xab

k (u,f),... be any sequence of smooth sy
metric traceless tensors on S2. Then there existse.0 and a
vacuum space-time(M ,g) with a smooth conformal comple
tion (in the sense described above)(M̄ ,ḡ) which has a
spherical cut u5u0 of I 1.(u02e,u0)3S2 such that the
Bondi functions M(u,u,f), Na(u,u,f), and xab(u,u,f)
satisfy

lim
u→u0

M ~u,u,f!5M0~u,f!, ~3.11!

lim
u→u0

Na~u,u,f!5N0
a~u,f!, ~3.12!

; i PN lim
u→u0

xab
~ i !~u,u,f!5xab

i ~u,f!. ~3.13!

Remarks.~1! Actually the functionsxab(u,u,f) can be
arbitrarily prescribed as functions of (u,u,f) on an interval
(u02e,u0# for some appropriatee. The above weaker claim
is, however, sufficient for our purposes.

~2! The limits limu→u0
in the equations above have be

introduced to avoid talking about space-times with bounda
Proof. For xP@0,1# and u021<u<u0 consider metrics

of the form

ḡmndxmdxn52Vx3e2bdu212e2bdu dx

1hab~dxa2Uadu!~dxb2Ubdu!,

~3.14!

We wish to show that we can finde.0 and a metricḡmn of
the form ~3.14! defined for xP@0,e#, xaPS2, uP(u0
2e,u0# such that x22ḡmn satisfies the Einstein vacuum
equations, for which~3.11!–~3.13! hold. We shall construc
the appropriate solution backwards inu on (u02e,u0#
3@0,e#3S2 by solving an asymptotic characteristic initi
08400
-

-

y.

value problem with data given on the null hypersurfaceN
5$u5u0% and on a piece ofI 5$x50,uP(u021,u0#%
3S2. This proceeds as follows: For 0<x<1 let hab

0 (x,u,f)
be anyx-dependent family of symmetric non-degenerate t
sors onS2 with hab

0 (0,u,f)5h̆ab(u,f) ~the standard metric
on S2), with dethab

0 (x,u,f)5deth̆ab(u,f), and with

]hab
0

]x
U

x50

5xab
0 . ~3.15!

Set hab(u5u0 ,x,u,f)5hab
0 (x,u,f). Using the Bondi-van

der Burg-Sachs prescription in the coordinate syst
(r 51/x,xa) @7,8# we can find unique smooth func
tions ]u

i b(u0 ,x,u,f), ]u
i Ua(u0 ,x,u,f), ]u

i V(u0 ,x,u,f),
]u

i hab(u0 ,x,u,f), such that Eqs.~3.11!–~3.13! hold and
such that for allNPN the metric gmn5x22ḡmn satisfies
Rmn5O@(u2u0)N#, whatever the fieldsb, V, U, hab as long
as those fields and their derivatives assume the boun
values obtained above. Indeed, the fields appearing at
right hand side of Eqs.~3.11!–~3.13! provide precisely the
data needed for the construction of a solution of the hie
chy of equations obtained byu-differentiating the Bondi-van
der Burg-Sachs equations. It follows that any geome
quantities, built out of the metric together with an arbitra
finite number of its derivatives, calculated atu5u0 for any
two such metrics will coincide atu5u0 .

Becausexab is symmetric and traceless,hab can be pa-
rametrized as

S e2gcosh~2d! sinh~2d!sin u

sinh~2d!sin u e22gcosh~2d!sin2u D , ~3.16!

where we writeg5c(v)/r 1O(r 23), d5d(v)/r 1O(r 23).
Let eAB8 be the following tetrad field:

e05e00852]x ,

e15e1185e22b~]u1 1
2 Vx3]x1Uu]u1Uf]f!,

e25e0185
1

&

@e2g~2coshd1 i sinh d!]u

1eg~sinh d2 i coshd!cosecu]f#,

e35e1085~e2!* , ~3.17!

where (e2)* denotes the vector whose coordinate comp
nents are complex conjugates of those ofe2 . From Eqs.
~3.16! and ~3.17! one can calculate the Newman-Penro
quantitys (5G01800 in the notation of@41#, and5G00018 in
the notation of@42#! to obtain

sux505c1 id. ~3.18!

In @41# the time sense ofe0 ande1 is unspecified ande2 is
only specified up to rotations in thee22e3 plane at points in
the intersection ofN and I ~in Kannar’s notation!. Since
they are then parallelly propagated in Kannar’s treatme
1-5
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these rotations areu andr independent. Note that up to thes
ambiguities the tetrad~3.17! coincides with that used in@41#,
time-reversed, atx50, but will in general differ from it at
other points. This is irrelevant as far as the value ofsux50 is
concerned becauses at x50 is calculated using only deriva
tives of the tetrad field tangent to the spheresx50, u
5constant, so thatsux50 calculated for the tetrad~3.17! will
coincide with that calculated in the tetrad used in@41# ~up to
a constant factor of modulus 1!. The essential point is thatc
andd give the requisite data.

Now let xab(u,u,f) be an arbitrary one-parameter fami
of symmetric tensor fields onS2, with uP(u021,u0# such
that ]u

i xab(u0 ,u,f)5xab
i (u,f); from xab(u,u,f) we can

calculatesux50 . From]u
i ḡmnuu5u0

, i 50,1,2 ~which we have

already calculated previously! we can determine atu5u0 the
remaining initial data needed for the Friedrich-Kann
asymptotic initial value problem. The existence of ane.0
~depending on the initial data! and a solution of the vacuum
Einstein equationsgmn defined for (u,x,u,f)P(u02e,u0#
3@0,e#3S2 assuming those initial data now follows from
the main theorem of@41#. The property that the Bondi func
tions M, Na, hab, and ]xhab parametrizing the metricḡmn

assume the desired values onI 1 follows from the unique-
ness theorems of@39#. h

We can now pass to the proof of our main result.
Theorem III.2. Consider any functional of the form

H@g#5E
S2

@h~M ,DaM ,...,Da1
...Dak

M ,

xab ,Dcxab ,...,Dc1
...Dck

xab ,

xab
~1! ,Dcxab

~1! ,...,Dc1
...Dck

xab
~1! ,

,...,

xab
~k! ,Dcxab

~k! ,...,Dc1
...Dck

xab
~k! ,xa)

1aaNa1aabDaNb

1•••1aa1 ...akbDa1...DakNb]d2m, ~3.19!

where h is a twice continuously differentiable function of
its arguments, with some, say smooth, tensor fieldsaa1 ...akb

on S2. If H is monotone non-increasing in u for all metrics
which satisfy the vacuum Einstein field equations (with,
xab, and N interpreted as Bondi functions appearing in g
then H can be rewritten as

H5E
S2

C~M2 1
4 h̆ach̆bdDaDbxcd ,xa!d2m,

with a differentiable local functional4 C( f ) whose varia-
tional derivativedC/d f is non-negative.

4That is, C( f ) is a differentiable function ofxa, f and a finite
number of its derivatives in directions tangent toS2.
08400
r

l

,

Proof. Note first that the tensor fieldsaab ,...,aa1 ...akb,
can be set to zero by integration by parts and a redefinitio
ab , ab→âb with an appropriateâb . Calculating theu-
derivative of~3.19! we obtain

dH

du
5E

S2S dh

dM
Ṁ1âaṄa1

dh

dxab
ẋab

1•••1
dh

dxab
~k! xab

~k11!D d2m. ~3.20!

Now dh/dxab
(k) and all the terms in~3.20! except for the last

one are independent ofx (k11)(u0). If dh/dxab
(k) were non-

zero for somek>1 we could, by Lemma III.1, find a solu
tion of the vacuum Einstein equations withx (k11)(u0) so
chosen thatdH/du.0, which shows thatdh/dxab

(k)50 for
all k>1. Setting

ĥ@M ,xab ,xa#5h~M ,DaM ,...,Da1
...Dak

M ,

xab ,Dcxab ,...,Dc1
...Dck

xab ,

xab
~1!50,Dcxab

~1!50, . . . ,Dc1
...Dck

xab
~1!50,

,...,xab
~k!50,Dcxab

~k!50,

. . . ,Dc1
...Dck

xab
~k!50,xa),

we obtain fromdh/dxab
(k)50, k>1,

H~g,u!5E
S2

~ ĥ@M ,xab#1âaNa!d2m,

dH

du
5E

S2
S dĥ

dM
Ṁ1âaṄa1

dĥ

dxab
ẋabD d2m.

~3.21!

Consider, first, Eq.~3.21! for solutions of the vacuum Ein
stein equations withẋabuu5u0

50. Equations~3.21! and~3.7!
then yield

dH

du
5E

S2X2 1

3
âaSDaM2

1

4
eabDbl D Cd2m

5E
S2

S 1

3
MDaâa2

1

12
leabDbâaDd2m. ~3.22!

To proceed further we need to know a little more aboutl as
defined by~3.7!. In Appendix B we show that the image o
the operatorxab→eacDcDbxab defined on traceless symme
ric tensors consists precisely of functions of the formPc,
wherec is an arbitrary appropriately differentiable functio
on S2 andP is the projection operator defined as

Pc5c2(
i 50

3

F iE
S2

cF id
2m, ~3.23!
1-6
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where theF i form an orthonormal basis of the space
spherical harmonics with l 50 (F0) and l 51 (F i ,i
51,2,3). Consequentlyl runs over all smooth function
with no zero or first spherical harmonics asxab runs over all
smooth symmetric traceless tensors. This, together w
Lemma III.1 @note thatM in ~3.22! is arbitrary# shows that
dH/du in ~3.22! will have an arbitrary sign unless

Daâa50, eabDaâb5(
i 51

3

a iF i , ~3.24!

for some constantsa i . It follows that

âa5
1

2
DbS eab(

i 51

3

a iF
i D ~3.25!

~the fact that the above vector field satisfies~3.24! can be
checked by a direct calculation; the fact that there is only
such vector field is shown in Appendix B!. Returning to Eq.
~3.21!, we obtain from~3.25! and ~3.7!

dH

du
5E

S2
F dĥ

dM S 2
1

8
ẋabẋ

ab1
1

4
DaDbẋabD

2
1

3
âaKa1

dĥ

dxab
ẋabGd2m

5E
S2

F S 1

4
DaDb

dĥ

dM
1

1

6
âcDbxca

1
1

4
xcaDbâc1

dĥ

dxab
D ẋab2

1

8

dĥ

dM
ẋabẋ

abGd2m.

~3.26!

Define a new functionalĈ by

Ĉ@ f ,xab ,xa#ªĥ@M5 f 1 1
4DaDbxab,xab ,xa#.

Equation~3.26! can be rewritten as

dH

du
52

1

8 E
S2

dĈ

d f
ẋabẋ

abd2m

1E
S2

F S 1

6
âcDbxca1

1

4
xcaDbâc1

dĈ

dxab
D ẋabGd2m.

~3.27!

dH/du will be non-positive for allẋab if and only if dĈ/d f
is non-negative, and the last integral vanishes, which yie

dĈ

dxab
52TSH S 1

6
âcDbxac1

1

4
xcaDbâcD J , ~3.28!

whereTS denotes the symmetric trace-free part with resp
to the indicesa,b. We wish to show thatâa has to be zero.
To do this, fix a smoothf and considerGf@xab ,xa#
5*Ĉ@ f ,xab ,xa#d2m as a functional ofxab . Note that if we
endow the space of thexab’s with a Sobolev space topolog
08400
th

e

s

t

Wk,2(S
2) with somek large enough, thenGf will be a twice

differentiable function on that space, and by~3.28! we have

Gf8@n#ª2
1

12 ES2
~2âcDbxca13xacDbâc!nabd

2m,

~3.29!

where Gf8 @n# denotes the derivative ofGf acting on the
symmetric traceless tensorn. It follows from Schwarz’s
Lemma that the second derivativeGf9 of Gf satisfies
Gf9@t,n#5Gf9@n,t#, for all smooth symmetric traceless ten
sor fieldstab andnab . From ~3.29! we have

Gf9@t,n#ª2
1

12 ES2
~2âcDbtca13tacDbâc!nabd

2m.

~3.30!

Letting Fª 1
2( i 51

3 a iF
i with some constantsa i , we have

âa5eabDbF @cf. ~3.25!#. We also haveDaDbF52db
aF ~cf.

e.g. @43#, Lemma 5!, so one getsDaâb5eabF. Using those
identities, by integration by parts one obtains

Gf9@t,n#2Gf9@n,t#52
1

6 E
S2

~ âcDbtca1âbDct
ca

12Ftaceb
c!nabd

2m.

Sincen is arbitrary~traceless, symmetric! we obtain

TS@âcDbtca1âbDct
ca12Ftaceb

c#50, ~3.31!

for arbitrary t’s. Think of the two-dimensional sphere as
submanifold ofR3. By a rotation of the coordinate axes w
can always achieveF5l cosu, for some constantl. Equa-
tion ~3.31! at a point p0 lying on the equator,p05(u
5p/2,f0), with a5u, b5u reads

2lDftff50. ~3.32!

Consider the smooth traceless symmetric tensor fi
tabdxadxb5r@(du)22sin2u(df)2#12sdu df, with r ands-
smooth functions onS2, supported near the equator, and s
isfying r(p0)5s(p0)50. Equation~3.32! implies

l]fr~p0!50,

for all such functionsr, so clearlyl50, and we finally get

F50. ~3.33!

Define

C@ f ,xa#5ĥ@ f 1 1
4DaDbxab,xab50,xa#.

Equations~3.30! and ~3.33! give

E
S2

C@M2 1
4DaDbxab#5E

S2
ĥ@M ,xab#5H@g#,

which is what had to be established. h
1-7
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IV. SUPERTRANSLATION INVARIANCE

Theorem III.2 does not quite lead to the Trautman-Bo
mass as a preferred quantity in the class of functionals c
sidered in that theorem, as it still contains an arbitrary fu
tion C of M2 1

4 h̆ach̆bdDaDbxcd and a finite number of its
angular derivatives. Let us show that the further requirem
of passive supertranslation invarianceof H can be used to
obtain that desired conclusion. Here the qualification ‘‘p
sive’’ refers to the fact that we use a different Bondi coor
nate system but we integrate on the same cut ofI . More
precisely, consider a functionalH as in Theorem III.2. We
can calculate the value ofH at a cross sectionS2 for a metric
g, and compare the result withH calculated on the sam
cross section ofI for the same metric with a different Bond
parametrization, differing by a~finite, or infinitesimal! BMS
supertranslation. LetS denote a given cut ofI , which in
some Bondi coordinate system (u,u,f) on I is given by the
equationu50, and set

H~S!5E
S2

C~M2 1
4 h̆ach̆bdDaDbxcd!~u50,u,f!d2m.

~4.1!

Consider another Bondi coordinate system (ū,ū,f̄)5(u
2a(u,f),u,f), with corresponding functionsM̄ , x̄ āb̄ , etc.
As shown in Appendix C~see also@37#!, we have

@4M2xab
iab#~u,u,f!

5@4M2xab
iab1D2~D212!a#~u,u,f!. ~4.2!

The overbar in the left hand side of the last equation den
the quantity 4M2xab

iab calculated in the barred Bond
frame, using the barred Bondi functionsM̄ , etc. The require-
ment thatH(S), calculated in the unbarred Bondi coordina
system, coincides withH(S), calculated in the barred Bond
coordinate system, gives thus the equation

;a E
S2

C@M2 1
4DaDbxab#d2m5E

S2
C@M2 1

4DaDbxab

1 1
4 ~DaDa12!DbDba#d2m. ~4.3!

@It should be emphasized thatS is not given by the equation
ū50. We arenot requiring that the valueH(S̄) of H, calcu-
lated on the cutS̄5$ū50%, coincides with that ofH(S).
That last condition would be the requirement that the va
of H does not depend on the cut under consideration, wh
is of course absurd in the radiating regime.# Now, elementary
considerations using spherical harmonics show t
x5(DaDa12)DbDba is an arbitrary function such tha
Px5x, where P is the projection operator introduced
equation~3.23!. If we replacea by ta in Eq. ~4.3!, differen-
tiate with respect tot, and set t50, we obtain thus
P(dC/d f )50. It follows that there exist constantswm, m
50,1,2,3, such thatdC/d f 5(w01wknk)/4p, nkªxk /r be-
ing an orthogonal~but not orthonormal! basis in the space
SH1 of the l 51 spherical harmonics. The condition th
dC/d f be nonnegative givesw01wknk>0 for all nkPS2.
That will hold if and only if w0>uwu, where uwu
08400
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5Adklwkwl , so that one may think ofwm as of a future
timelike vector. We have thus obtainedC( f )5(w0

1wknk) f /4p, and finally

H5
1

4p E
S2

~w01wknk!~M2 1
4 xab

iab!d
2m

5
1

4p E
S2

~w01wknk!Md2m. ~4.4!

Equation ~4.4! has the clear interpretation thatH is the
Trautman-Bondi mass as measured with respect to a fr
with time-like four-velocity vector (w0,wi), which can be
checked from the transformation properties of Bondi coor
nate systems under~passive! Lorentz transformations. Fo
completeness we analyze that question in Appendix D.

The results of this section and Theorem III.2 imply th
following.

Theorem IV.1. Let H be a functional of the form

H@g,u#5E
S2~u!

Hab~gmn ,gmn,s ,...,gmn,s1 ...sk
!dSab ,

~4.5!

where the Hab are twice differentiable functions of their ar
guments, and the integral over S2(u) is understood as a limit
as r goes to infinity of integrals over the spheres t5u1r,
r 5r. Suppose that H is finite and monotonic in u for a
vacuum metrics gmn satisfying

gmn5hmn1
hmn

1 ~u,u,f!

r
1

hmn
2 ~u,u,f!

r 2 1o~r 22!,

]s1
...]s i

S gmn2
hmn

1 ~u,u,f!

r
2

hmn
2 ~u,u,f!

r 2 D 5o~r 22!,

~4.6!

with 1< i<k, for some Ck functions hmn
a (u,u,f), a51,2. If

H is invariant under passive BMS supertranslations, then
numerical value of H equals (up to a proportionality co
stant) the Trautman-Bondi mass.

Proof. If H is monotonic for all such metrics, then it i
monotonic for Bondi-Sachs type metrics~3.3! for which a
quasi-Minkowskian coordinate system~3.4! has been intro-
duced. As discussed at the beginning of Sec. III, for su
metrics~4.5! can be written as a quadratic polynomial in th
relevant fields, linear inNa, so that Theorem III.2 applies
Now the asymptotic behavior of the functions appearing
the metric ~3.3! shows that any quadratic terms inM that
could possibly survive in the limitr→` come with no an-
gular derivatives acting onM. The definiteness of the varia
tional derivative ofC, whereC is given by Theorem III.2,
together with Lemma III.1, implies then thatC is necessarily
linear, and the result follows from the argument leading
~4.4!. h
1-8
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Note that the trivial monotone functional, namelyH[0,
is contained in the result above, the relevant constant of
portionality being zero.

V. GENERAL CUTS OF I

So far we have been considering the TB mass of th
cuts of I which are given by the equationu50. Consider
now a cutS of I which, in Bondi coordinates, is given b
the equation

S5$u5s~u,f!%,

for some, say smooth, functions on S2. Theorem III.2, to-
gether with the discussion of the previous section, sugg
that it is natural to define

mTB~S!ª
1

16p E
S2

~4M

2xab
iab!~u5s~u,f!,u,f!sin u du df

~5.1!

pk~S!ª
1

16p E
S2

~4M

2xab
iab!~u5s~u,f!,u,f!nksin u du df,

~5.2!

where nk, k51,2,3 denotes the functions sinu cosf,
sinu sinf and cosu, in that order. We have the following.

~1! As observed in Sec. IV@cf. Eq. ~4.4!#, Eq. ~5.1! re-
duces to the standard Trautman-Bondi-Sachs definition w
s[0.

~2! It also follows from what is said in the previous se
tion that the quantities~5.1! and ~5.2! are invariant under
passive BMS supertranslations.

~3! Equation~4.4! together with passive supertranslatio
invariance and the discussion of Appendix D imply that t
quantities (pm)5(mTB ,pk) transform as a Lorentz vecto
under those boosts which mapS into itself.

~4! The definitions~5.1! and~5.2! allow us to define a flux
of energy-momentum through a subset ofI 1 bounded by
two cross-sections thereof. More precisely, letSi , i 51,2 be
two cross-sections ofI 1 which are graphs over the cutu
50:

Si5$u5si~u,f!%,

and letN,I 1 be such that]N5s2(S2)øs1(S2). From the
definition ~D6! and the relation~3.7! we have

mTB~S2!2mTB~S1!

5
1

16p E
]N

~4M2xab
iab!sin u du df

52
1

32p E
N
xab,uxab

,u sin u du du df, ~5.3!

which can be thought of as a flux of energy throughN. A
similar formula holds for the space-momentumpk defined by
~D7!:
08400
o-

e

ts

en

pk~S2!2pk~S1!

5
1

16p E
]N

~4M2xab
iab!n

ksin u du df

52
1

32p E
N
xab,uxab

,unksin u du du df. ~5.4!

We note that the existence of a flux formula is a rather triv
property, since one can always take theu derivative of any
integrand to obtain a flux. The interest of the above formu
stems from the fact thatxab,u is invariant under~passive!
supertranslations, so that the fluxes~5.3! and~5.4! also share
this property.

~5! Passive supertranslation invariance together with
flux formulas~5.3! and~5.4! imply that in a stationary space
time the four-momentumpm defined by~5.1! and ~5.2! is S
independent. In particularpm vanishes in Minkowski space
time, independently of the cutS.

VI. POLYHOMOGENEOUS METRICS

Having established the preferred role played by
Trautman-Bondi mass, it is of interest to enquire under w
weaker asymptotic conditions one can still obtain a definit
of mass which is finite and monotonic inu. Recall that in
@23# an ad hocdefinition of mass was given for all Bondi
type metrics with a ‘‘polyhomogeneousI ’’, and that mass
was shown there to be monotonic. Similarly it was check
in @44# that for a class of asymptotically flat asymptotical
vacuum space-times5 the energy expression defined in@18#
converges to an appropriately defined Bondi mass. Fro
field theoretic point of view it is natural to define mass
terms of an integral, as considered in Theorem IV.1, usi
e.g., the Freud potential, where theHab of equation~3.1! is
given by the expression~cf. e.g.,@45#!

Hmn5Umn
aXa, ~6.1!

Umn
a5

1

16pAudet grsu

3gab~ udet grsugb[mgn]l! ,l, ~6.2!

with Xm5d0
m . Inserting the metric~3.14! into ~6.2!, with

Xa]a5]u and with hab parametrized as in~3.16!, one ob-
tains via aSHEEP@46# calculation

5The class of metric considered in@44# includes the metrics poly-
homogeneous of order 2~see@23# and below for definitions!.
1-9
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E
u5u0 ,r 5r 0

Umn
aXadSmn

5
1

16p E
S2H 22V12re2bcosh~2g!cosh~2d!2r 4e22bF]Uu

]r
„Uue2gcosh~2d!1Ufsinh~2d!sin~u!…

1sin~u!
]Uf

]r
„Ufe22gcosh~2d!sin~u!1Uusinh~2d!…G1r 2DaUaJ U

u5u0 ,r 5r 0

sin~u!du df ~6.3!

5
1

16p E
S2H 2~r 2V!12r „12e2bcosh~2g!cosh~2d!…2r 4e22bhab

]Ua

]r
Ub1r 2DaUaJ U

u5u0 ,r 5r 0

sin~u!du df.

~6.4!
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More precisely, this formula is obtained by ‘‘covariantizing
~as described in@34#! Eq. ~6.2! with the following flat back-
ground metrich :

hmndxmdxn52du222du dr1r 2
„du21sin2~u!df2

….

Equation~6.4! is exact; no hypotheses about the asympto
behavior of the quantities involved have been made. N
that the last term in Eq.~6.4! integrates out to zero. We sha
say that a metric ispolyhomogeneous of order kif in the
Bondi coordinates~3.3! the functionshab have a polyhomo-
geneous expansion~see@23# for definitions! in which the lnr
terms start at a powerr 2k:

hab5h̆ab1
hab

1

r
1•••1

hab
k,nlnnr

r k 1
hab

k,~n21! ln~n21! r

r k 1¯ .

Consider first metrics which are polyhomogeneous of or
2. We have theng5O(r 21), d5O(r 21) and it follows from
the Einstein equations as written out, e.g., in@23#, Appendix
C6 that b5O(r 22), Ua5O(r 22), ]Ua/]r 5O(r 23) and
r 2V5O(1). Equations~3.1! and ~6.4! then give

H@u0 ,g#5 lim
r→`

1

8p E
S2

~r 2V!sin~u!du df, ~6.5!

which is the standard Bondi integral. Consider, next, met
which are polyhomogeneous of order 1. In that case one
g5O(r 21lnNr), d5O(r 21lnNr) for some N. The Einstein
equations imply~see the proof of Prop. 2.1 in@23#! that b
5O(r 22ln2Nr), Ua5O(r 22lnNr), ]Ua/]r 5O(r 23lnNr) and
r 2V5O(lnNVr) for someNV . Equations~3.1! and~6.4! lead
again to~6.5!. At first sight it appears that the integral at th
right hand side of~6.5! might diverge for some vacuum me
rics which are polyhomogeneous of order 1. However, ca
ful study of the leading terms in the Einstein equatio

6There are unfortunately some misprints in Appendix C of@23#:
~1! The last term in Eq.~C4!, 1

2r
2cosecu(W1314W3), should be

replaced by1
2r cosecu(rW1314W3); ~2! in the 8th line of Eq.~C6!

the factor 4 in front of the term 4g1g2U should be replaced by 2
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shows that those terms inV which are linear combinations o
lnir are divergences, so that their integral over a sphere v
ishes. Thus the Freud integral always converges to the mo
tonic mass expression considered in@23#. Remarkably, the
polyhomogeneous case of orderk>1 always has a finite
energy.

Let us mention that for metrics which are polyhomog
neous of orderk>2 the Freud integral can be given a Ham
tonian interpretation—this will be discussed elsewhere.

VII. CLOSING REMARKS

We have shown that every functional of the fields whi
is monotonic in time in a certain class of functionals for
metrics ‘‘having a piece ofI ’’ is proportional to the
Trautman-Bondi mass. The key ingredient of our proof w
the Friedrich-Kannar construction of space-times ‘‘having
piece ofI .’’ Now in general the space-times we have co
structed in the proof above will not have any reasona
global properties. For example, in Lemma III.1 the functi
M could be chosen to be negative. In such a case one
pects, from the positive TB mass conjecture, that the spa
time constructed in Lemma III.1 will have no extension wi
complete Cauchy surfaces. Now the property of having s
Cauchy surfaces is a starting point of any standard Ham
tonian analysis, and for this reason it would be rather use
to have an equivalent of Lemma III.1 in which well behav
space-times are constructed. We expect that a result of
kind can be proved, under some mild~yet to be determined!
restrictions on the functionM ~such as, e.g., positivity!, and
we are planning to investigate this problem in the future.

Let us finally mention that using similar ideas to tho
presented here one can prove related results for other
theories, such as, e.g., Maxwell theory, or for scalar fiel
More precisely, for a scalar field one has the following:

Theorem VII.1 The only functional F, in the class of fun
tionals defined in the Introduction, of a scalar fieldf on
Minkowski space-time, which is monotonic in retarded tim
for all solutions of the massless linear wave equation, a
which is a Hamiltonian for the dynamics on a hyperboloidS,
is the integral H of the standard energy-momentum ten
over S.
1-10
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UNIQUENESS OF THE TRAUTMAN-BONDI MASS PHYSICAL REVIEW D58 084001
To prove this one uses an equivalent of Lemma II
which, for a scalar field on Minkowski space-time, can
easily modified to obtain globally defined solutions. T
question of how to define a symplectic structure for dyna
ics on hyperboloids will be discussed elsewhere@47#. The
requirement that the functional considered is a Hamilton
leads to the conclusion thatF differs from H by a boundary
integral. Using arguments similar to the ones presented
this paper~and actually rather simpler, as the correspond
equations onI are much simpler in the case of a scalar fie!
one then proves@48# that all the boundary integrands, in th
case of the scalar field, which have the right monotonic
properties, have to integrate out to zero. Minkowski spa
time above can be replaced by any Lorentzian manif
which has sufficiently regular conformal completions.

Let us finally mention that one can set up a Hamilton
framework in which some of the problems related to t
Ashtekar-Streubel or Ashtekar-Bombelli-Reula approach
listed in Sec. II, are avoided@47#. Unsurprisingly, the Hamil-
tonians one obtains in such a formalism are again not uniq
but the nonuniqueness can be controlled in a very pre
way. The Trautman-Bondi mass turns out to be a Ham
tonian, and an appropriate version of the uniqueness Th
rem III.2 proved above can be used to single out the TB m
amongst the family of all possible Hamiltonians.
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APPENDIX A: TRAUTMAN’S DEFINITION OF MASS
IN THE RADIATION REGIME

In @5#7 Trautman considers gravitational fields for which
coordinate system exists in which the metric can be writ
in the form

gmn5hmn1O~r 21!, gmn,r5hmnkr1O~r 22!, ~A1!

~hmn2 1
2 hmnhrshrs!kn5O~r 22!. ~A2!

Here the functionshmn satisfyhmn5O(r 21), while the null
vector field kn is defined as follows: Lets be a spacelike
hypersurface, and definenm to be a unit spacelike vecto

7The first chapter of@6# is a slightly expanded version of@5#.
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lying in s perpendicular to the spherer 5const, and pointing
outside it. Trautman defineskn to benn1tn, wheret denotes
a unit timelike vector normal tos, such thatt0.0.

Trautman shows that under the conditions~A1! and ~A2!
the integral at the right-hand side of the equation

Pm@s#5 R
S
Unl

mdSnl ~A3!

exists8 and is finite because of cancellations among the
vergent terms. HereUnl

m is the Freud potential given in Eq
~6.2!. Next, Trautman shows thatPm@s# is coordinate inde-
pendent in the following sense: Let a new coordinate sys
x8n be given by the equations

xn→x8n5xn1an, ~A4!

with an satisfying

an5o~r !, an,m5bnkm1O~r 22!, ~A5!

where

an5hnmam, bn5O~r 21!,

and

an,mr5bn,mkr1O~r 22!, bn,r5O~r 21!. ~A6!

Those coordinate transformations preserve the bound
conditions introduced above. Trautman notices that un
those transformations the integrand in~A3! changes by terms
which areO(r 23), so thatPm@s# itself remains unchanged

In Sec. 4 of@5# Trautman gives the formula for the tota
energy and momentum, which he callspm , radiated between
two hypersurfacess ands8,

pm5Pm@s#2Pm@s8#5E
S
tm

ndSn , ~A7!

under the hypothesis that the energy-momentum tenso
matter fields gives no contribution onS. Here

tm
n5tkmkn1O~r 23!, ~A8!

where

4kt5hmn~hmn2 1
2 hmnhrshrs!, ~A9!

andk is the constant of proportionality between the Einste
tensor and the energy-momentum tensor, and it is clear
the integral overS in Eq. ~A7! is defined by a limiting

8It is clear thatS in Eq. ~A3! is understood as ‘‘a boundary ofs at
infinity,’’ defined as far as integration is concerned by a limitin
process. In the section in which he talks about radiating fie
Trautman does not give a precise definition of whatS is.
1-11
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CHRUŚCIEL, JEZIERSKI, AND MacCALLUM PHYSICAL REVIEW D58 084001
process.9 He emphasizes thatt is invariant with respect to
the transformations~A4! and is non-negativeby virtue of
~A2!, so thatp0>0.

For our purposes we need to change the definition ofkm
given above: we requirekm to be a null vector field satisfying

~1! km is normal to the spheresr 5$const%, future pointing
and outwards pointing;

~2! km satisfies the following asymptotic conditions:

k0215O~r 21!, ki2
xi

r
5O~r 21!.

~This is compatible with Trautman’s definition if one takess
to be the hypersurface$x05const% in the coordinate system
in which ~A1! and~A2! hold. However, the hypersurfaces w
consider here arenot of this form.! With this modification
Eqs.~A7! and~A8! together with positivity oft are the fun-
damental statement that on hypersurfaces which, in mod
terminology, ‘‘intersectI 1’’ the energy can only be radiate
away. It should be emphasized that this is a more gen
statement than that discussed by Bondiet al. and by Sachs
four years later@7,8#, as the boundary conditions~A1! and
~A2! are weaker than those of@7,8#. Indeed, consider a
Bondi-Sachs type metric~3.3!, with all the functions appear
ing there satisfying the fall-off requirements of@7,8#. If
quasi-Minkowskian coordinates are introduced via the
~3.4!, one finds that Trautman’s conditions~A1! and ~A2!
hold with km5u,m . If s is taken to be the null hypersurfac
$u5u0% ~note that with our minor modification of the defi
nition of whatkm is, the hypothesis thats is spacelike is not
needed any more in the above formalism! the four-
momentumPm@s# defined by Eq.~A3! gives the Bondi mass
as defined in@7,8#. If s8 is taken to be another such nu
hypersurface, Eq.~A7! yields the Bondi mass loss formul
~integrated inu!. Further, the coordinate transformatio
~A4! comprise the BMS ‘‘supertranslations’’: a supertrans
tion given by Eqs.~C1!–~C3! below corresponds to a trans
formation ~A4! with am5fm(u,f)1O(1/r ), for some ap-
propriate functionsfm(u,f), so thatbm in ~A5! vanishes.

It should be pointed out that, as discussed in Sec.
above, the fall-off conditions~A1! and~A2! allow for a large
class of metrics with polyhomogeneous asymptotics. L
but not least, using the framework of@5# reduces the compu
tational complexity of the proof of positivity of mass loss,
compared to several other frameworks, e.g., the Bondi-Sa
one.

APPENDIX B: ON SOME OPERATORS ON S2

Let us denote byD2 the Laplace-Beltrami operator ass
ciated with the standard metric onS2, D25DaDa . Let SHl

9In the section in which he talks about radiating fields Trautm
does not give a precise definition of whatS is. In a preceding
section of @5# where boundary conditions appropriate for spat
infinity are considered he uses the same equation to show thatPm is
conserved, and in that case he definesS as ‘‘a timelike ‘‘cylindri-
cal’’ hypersurface at spatial infinity.’’
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denote the space of spherical harmonics of degreel (g
PSHl⇔D2g52 l ( l 11)g). Consider the following se-
quence

V0
% V0 ——→

i 01

V1 ——→
i 12

V2 ——→
i 21

V1 ——→
i 10

V0
% V0.

Here V0 is the space of, say, smooth functions
S2,V1—that of smooth covectors onS2, and V2—that of
symmetric traceless tensors onS2. The various mappings
above are defined as follows:

i 01~ f ,g!5 f ia1«a
bgib ,

i 12~v !5vaib1vbia2h̆abv ic
c ,

i 21~x!5xa
b

ib ,

i 10~v !5~va
ia ,«abvaib!,

where i is used to denote the covariant derivative with r
spect to the Levi-Civita connection of the standard me
h̆ab on S2. The following equality holds

i 10+ i 21+ i 12+ i 015@D2~D212!# % @D2~D212!#. ~B1!

Note that we havei 10+ i 21(x)5(xab
iab ,«bcxb

a
iac). Consider

the spaceV̄0
ª@SH0

% SH1#', where' denotesL2 orthogo-
nality in L2(S2)ùC`(S2). Now the operatorD2(D212) is
surjective fromV0 to V̄0, so that for anylPV̄0 there exists
f PV0 such thatD2(D212) f 5l. Consider the tensor field
x5 i 12+ i 01„( f ,0)…, then ~B1! shows thatxab

iab5l, which
establishes surjectivity of the double divergence opera
from the space of symmetric traceless tensors to that of fu
tions on the sphere which have no zero and first harmon
Similarly the tensor fieldx5 i 12+ i 01„(0,g)… shows that the
mapV2{xab→«c

bxab
iacP@SH0

% SH1#' is surjective.
To justify our claim, that the vector fieldâ given by Eq.

~3.25! is the unique solution of Eq.~3.24!, consider the se-
quence

V0
% V0 ——→

i 01

V1 ——→
i 10

V0
% V0.

It is easy to check that

i 10+ i 015D2% D2 ,

so if aaib«ab, aa
iaP(SH0)' then there existf ,gP(SH0)'

such thati 01( f ,g)5a, and they are the unique solutions
(SH0)' of the equations:

D2f 5aa
ia , D2g5aaib«ab.

Our claim follows immediately from this observation.

APPENDIX C: SUPERTRANSLATIONS

As in Appendix B we use the notationf ia[Daf , D2
[DaDa .

Consider a supertranslation which in an appropriate co
dinate system onI reduces to a transformation u→u

n

l

1-12
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2a(u,f), for some, say smooth, functiona on S2, with the
angular coordinate being left invariant. The supertransla
can be extended fromI to a neighborhood thereof in th
physical space-time using Bondi coordinates@cf. Eq. ~3.3!#.
This leads to the following asymptotic expansions~see also
@8#, p. 119!:

x̄a5xa1
1

r
a ia2

1

2r 2 ~xaba ib22a iaba ib

1Ğbc
aa iba ic!1¯ , ~C1!

ū5u2a2
1

2r
a iaa ia1

1

4r 2 @xaba iaa ib

2a ia~a iba ib! ia#1¯ , ~C2!

r̄ 5r 2
1

2
D2a1

1

2r Fxab
iba ia1

1

2
xaba iab1

1

2
xab

,ua iaa ib

2
1

2
a iaba iab2a iaa ia1

1

4
~D2a!22~D2a! iaa iaG1¯ ,

~C3!

where Ğbc
a is the connection defined by the metrich̆ab .

From those formulas we obtain the transformation laws fox
andM:

M̄ „ū5u2a~xa!, xa
…

5FM1
1

2
x ,uib

ab a ia1
1

4
x ,u

aba iab

1
1

4
x ,uu

ab a iaa ibG~u,xa!,

x̄ab„ū5u2a~xc!,xc
…

5@xab22a iab1h̆abD2a#~u,xc!.

Consider the quantityx̄ab
i āb̄ , wherei āb̄ denotes covarian

derivatives with respect to the transformed coordinates] ā
5]a1a ,a]0 . Note that the occurrence ofu derivatives in] ā
will introduceu derivatives ofxab in the transformation for-
mula for this quantity, and one finds that the combinat
4M2xab

iab has a simple transformation law with respect
the supertranslations:

@4M2xab
iab#„ū5u2a~u,f!,u,f…

5@4M2xab
iab1D2~D212!a#~u,u,f!.

The overbar in the left hand side of the last equation den
the corresponding quantity calculated in the new Bo
frame. Note that while the equations~C1!–~C3! had only an
asymptotic character in 1/r , the last three equations are e
act; in particular no smallness conditions ona have been
imposed.
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APPENDIX D: BOOST TRANSFORMATIONS AND Pµ

Let L be a boost-transformation with boost parametern ;
by an appropriate choice of space-coordinates we can ch
it to act along thez axis. In coordinates~3.4! on Minkowski
space-time one has

ū5
u

coshn2sinh n cosu
1OS u

r D ,

tan
ū

2
5entan

u

2
1OS u

r D ,

with f remaining unchanged. It follows that onI the boost
L reduces to the transformation

ū5
u

coshn2sinh n cosu
, tan

ū

2
5entan

u

2
, f̄5f.

~D1!

It is natural to interpret~D1! as the definition of the action o
the Lorentz boostL on I for general space-times admittin
a I .

Equation~D1! leads to the following transformation law

] ū5~coshn2sinh n cosu!]u ,

]ū5u sinh n sin u]u1~coshn2sinh n cosu!]u ,

sin ū5
sin u

coshn2sinh n cosu
,

dū5
du

coshn2sinh n cosu
,

cos ū5
coshn cosu2sinh n

coshn2sinh n cosu
. ~D2!

From Eq.~D2! one obtains the well known statement, th
boosts induce conformal transformations of ‘‘spheres at
finity’’: if we denote by c the transformation which take
~u,f! to (ū,f̄), then

c* h̆ab5w22h̆ab , ~D3!

with

w5coshn2sinh n cosu.

We note thatw is a linear combination ofl 50 and l 51
spherical harmonics. Set

r̄ 5wr . ~D4!

The coordinate transformation~D1!, ~D4! preserves the lead
ing order behavior of all the components of the metric~3.3!.
1-13
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It follows from @19# ~compare also@23#! that ~D1!, ~D4! can
be extended to a neighborhood ofI while preserving the
Bondi form of the metric~3.3!, the hypersurfaceu50 being
mapped into the hypersurfaceū50. From ~D1!, ~D4!, and
~3.3! at u50 one immediately obtains

M̄5w3M , ~D5!

so that

E
S2

M̄ sin ū dū df̄

5E
S2

M ~coshn2sinh n cosu!sin u du df.

It follows that the knowledge of thel 50 harmonics ofM is
not sufficient to determine thel 50 harmonics ofM̄ . Let us
set

mTBuu50ª
1

4p E
S2

M uu50sin u du df, ~D6!

pkuu50ª
1

4p E
S2

M uu50nksin u du df, ~D7!

wherenk, k51,2,3 denotes the functions sinu cosf, sinu
sinf and cosu, in that order. Equations~D1!, ~D4!, and
~D5! also yield

M̄ cos ū sin ū dū5M ~coshn cosu2sinh n!sin u du.

Consequently we obtain the transformation law

m̄TB5mTBcoshn2pzsinh n, ~D8!

p̄z5pzcoshn2mTB sinhn. ~D9!

As the choice of the axis along whichL acts was arbitrary,
the set of numbers (pm)5(mTB ,pk) transforms as a~contra-
variant! four-vector under thepassiveaction of the Lorentz
group onI . It is therefore natural to interpretmTB as the
time component, and thepk’s as space-components of a
energy-momentum four-vectorpm. We use the qualification
‘‘passive’’ above to emphasize the fact that such a sim
transformation property holds only for those Lorentz tra
formations which map a chosen cross-section ofI into it-
self.

APPENDIX E: CHANGES OF THE NOETHER CHARGE
INDUCED BY CHANGES OF THE LAGRANGE

FUNCTION

In this Appendix we wish to derive the transformatio
rule of the ‘‘Noether charge’’~1.5!, when the Lagrange func
tion is changed by the addition of a term of the form~1.4!,
08400
e
-

L→L̂5L1R, R[]lYl, ~E1!

with Ym being a smooth function of the fields and their d
rivatives up to orderk21. LettingV be an arbitrary domain
of Rn with smooth boundary and compact closure, we ha

E
]V

YmdSm5E
V

R dnx.

Integration by parts gives

E
]V

(
i 50

k21 X ]Ym

]fa1 ...a i

A 2 (
j 50

k2 i 21

~21! j]b1
...]b j

3S ]R

]fma1 ...a ib1 ...b j

A D Cdfa1 ...a i

A dSm

5E
V

dR

dfA dfAdnx, ~E2!

where dR/dfA is the variational derivative ofR, for any
smooth fieldsdfA. Equation~E2! still holds with V5Rn if
thedfA’s are compactly supported. In that case arbitrarin
of the dfA’s implies

dR

dfA 50,

which expresses the well known fact that the field equati
are unchanged by the above transformation of the Lagra
function. It follows that

E
]V

(
i 50

k21 X ]Ym

]fa1 ...a i

A 2 (
j 50

k2 i 21

~21! j]b1
...]b j

3S ]R

]fma1 ...a ib1 ...b j

A D Cdfa1 ...a i

A dSm50. ~E3!

It is convenient to choose a coordinate system (xm)
5(x1,va) such that]V is given by the equationx150, the
va’s, a51, . . . ,n21 being coordinates on]V. Define

RA,m
a1 ...al5 (

j 50

k2 l 2m

~21! j]b1
...]b jS ]R

]fa1 ...alb1 ...b j

A,m D .

Integration by parts in~E3! yields
1-14
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E
]V

(
m50

k21

(
i 50

k2m21

~21! i]a1
...]ai

3S ]Y1

]fa1 ...ai

A,m 2RA,m11
a1 ...ai D dfA,mdn21v50. ~E4!

As thedfA,m’s are arbitrary we conclude that

(
i 50

k2m21

~21! i]a1
...]aiS ]Y1

]fa1 ...ai

A,m 2RA,m11
a1 ...ai D 50. ~E5!

Let Êl be the Noether current~1.2! corresponding to the
Lagrange functionL̂, as in~E1!. For our purposes it is suf
ficient to consider vector fieldsXl which are transverse toS.
We can choose a coordinate system in a neighborhoodS
so that S is given by the equationx150, and moreover
Xl]l5]1 . From the definition ofÊl andEl we obtain

Ê15E11 (
m50

k21

(
i 50

k2m21

RA,m11
a1 ...ai fa1 ...ai

A,m112]mYm

5E11 (
m50

k21

(
i 50

k2m21 S RA,m11
a1 ...ai 2

]Y1

]fa1 ...ai

A,m Dfa1 ...ai

A,m112]aYa.
s.

n.

c.

ys

d

:

08400
It follows that

E
S
ÊldSl2E

S
EldSl

5E
S
(

m50

k21

(
i 50

k2m21

~21! i]a1
...]ai

3S RA,m11
a1 ...ai 2

]Y1

]fa1 ...ai

A,m DfA,m11dn21v

1E
]S
XYa2 (

m50

k21

(
i 50

k2m22

fa1 ...ai

A,m11

3 (
l 50

k2m2 i 22

~21! l]b1
...]blS RA,m11

a1 ...aib1 ...bla

2
]Y1

]fa1 ...aib1 ...bla
A,m D CXldSla . ~E6!

The integral overS in the right hand side of this last equa
tion vanishes by~E5!, which establishes our claim that th
Noether charge ofS, defined as*SEldSl , changes by a
boundary integral under the change~E1! of the Lagrange
function.
-
n-
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