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It is shown that the only functionals, within a natural class, which are monotonic in time for all solutions of
the vacuum Einstein equations admitting a smooth “piece” of conformal null infirityare those depending
on the metric only through a specific combination of the Bondi “mass aspect” and other next-to-leading order
terms in the metric. Under the extra condition of passive BMS invariance, the unique such fungtprah
multiplicative factoy is the Trautman-Bondi energy. It is also shown that this energy remains well defined for
a wide class of “polyhomogeneous” metrid$s0556-282(98)05916-5

PACS numbgs): 04.20.Cv, 11.10.Ef, 11.10.Jj

I. INTRODUCTION
E(E)zJ ENS,, 1.3
Consider a Lagrangian theory of fielgs* defined on a .

manifold M with & Lagrange function density with dS, =4, 1dx°0...dx%, where J denotes contractioh.

_ A A A By extrapolation one can also us&.3) to define an “en-
L=LLGR 005 Oy O 7, (.9 ergy” for higher order theories. Because of its origin, the
- o _ right-hand side of E¢(1.3) will be called theNoether energy
for someke N, whered,, denotes partial differentiation with of 5 associated with a Lagrange functighand with the

respect tox*. Suppose further that there exists a functton vector fieldX. Now it is well known that the addition t6 of
on M such thatM can be decomposed dsXx2,, where 3 functional of the form

3 ={t=0} is a hypersurface iM and the vector/dt is
tangent to th&k fa_ctor. The _proof of the Noether theorem, as ﬁh(y)\[d)A,aaqu,___ﬂal___ﬁak_ld)A])' (1.9
presented, e.g., ifil], Section 10.1, shows that the vector

density . . ) .
wherek is as in(1.1), does not affect the field equatloﬁWe

k—1 k—I-1 show in Appendix E that such a change of the Lagrange

_ ' function will changeE by a boundary integral:

E}\_XMZ‘B ¢A,a1...a|p. 20 (_1)“?‘}/1"'(?7] g (2) y Y J

_E _ A
o 12 E(2)—E(X) E(E)+LEAE” dS,y, (1.5

( L
>< -
(9¢A,)\a1...a|71...7j
o . _ whereS, ;3= d,1d51dx°0...0dx°, with AE#* given by Eq.

has vanishing divergence™ ,=0, when the fields¢,  (E6). If 43 is a “sphere at infinity” the integral ovedS, has
are sufficiently smooth and satisfy the variational equaof course to be understood by a limiting process. Unless the
tions associated with a sufficiently smooth(cf. also[2]).  poundary conditions at>, force all such boundary integrals
[This is in any case easily seen by calculating the diverto give a zero contribution, if one wants to define energy
gence of the right-hand side of E{L.2.] Here ¢*, .  using this framework one has to have a criterion for choosing
=aal...aal¢“, andX*g,=d;. In first order theories, that is a “best” functional, within the class of all functionals ob-
theories in whichZ depends only upo@” and its first de-
rivatives, it is customary to define the total energy associated
with the hypersurfac& by the formula We use the conventions tha,_dx°0...dx3=dx'Odx20dx3,

9, 1dxt0dx?0dx3= dx?0dx3, etc.

“Here we adopt the standard point of view, that the field equations

*Email address: Chrusciel@Univ-Tours.Fr are obtained by requiring the action to be stationary with respect to
"Email address: jjacekj@fuw.edu.pl all compactly supported variatiorisf. e.g.[3] for a discussion of
*Email address: M.A.H.MacCallum@gmw.ac.uk problems that might arise when this requirement is not enfgrced
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tainable in this way. As discussed in more detail in Sec. Il,natural functionals. In Sec. IV we analyze those monotonic
the vanishing of such boundary integrals will not occur infunctionals which are invariant under passive Bondi-
several cases of interest. Metzner-SachéBMS) supertranslations, and prove our claim
Now the concept of energy plays a most important role inabout uniqueness of the Trautman-Bondi mass. In Sec. V we
the context of fields which are asymptotically flat in lightlike give a supertranslation-invariant formula for the Trautman-
directions. An appropriate mathematical framework here ig3ondi momentum, for general cuts ot In Sec. VI we con-
that of spacelike hypersurfaces which intersect the future nufider the question of convergence of the Freud superpotential
infinity .7* in a compact cross-sectidt For such field con- 10 the Trautman-Bondi mass for space-times with a polyho-
figurations it is widely accepted that the “correct” definition Mogeneous”. Remarkably, we find that because of some
of energy of a gravitating system is that given by Frédl integral cancellations the Freud integral always converges to
Trautmar(5,6], Bondiet al.[7], and Sach§8], which hence- & “generalized Trautman-Bondi” mass, even for metrics
forth will be called the Trautman-BondiTB) energy.[Be- ~ Which are polyhomogeneous of ordefd. Sec. VI for defi-
cause of the difficulty of accessing Refs,6] we have in- nitions). In Sec. VII we briefly discuss the potential exten-
cluded an AppendiXAppendix A which describes those sions of our results to a Hamiltonian setting. An appendix
results of5,6] which are related to the problem at hand. Thisgives a very short review of Trautman’s contribution to the
Appendix, together with the date of publication 8], notion of energy for ra_\dlatlng metrlc_s, while the remaining
should make it clear why we are convinced that the name ofour appendices contain some technical results needed in the
Trautman should be associated with the notion of mass in theody of the paper.
radiating regime in general relativityThere have been vari-
ous attempts to exhibit a privileged role of that expression as |l. NONUNIQUENESS OF THE NOETHER ENERGY
compared with many alternative on€9-20], to quote a FOR GRAVITATING SYSTEMS
few), but the papers known to us have failed, for reasons N .
sometimes cltfseriy related to the ones described above, to As an exa”?p'e of appllcablll_ty of Ec(_‘_LS), co_nS|der a
give a completely unambiguous prescription about how toscalar field 4 in the M.'n!(OWSk' space-time, withs =t
define energy at’. (We make some more comments about:.Q}- Assume thatp satisfies the rather strong fall-off con-
that in Sec. Il, cf. als¢21].) In this paper we wish to point ditions
out that the TB energy is, up to a multiplicative constant

. o : : for (t,x we haved, ...d, ¢p=o0(r ?),
e R, theonly functional of the gravitational fieJdn a certain (tx)eX a1 “Jd’ (r=)

natural class of functionals, which monotonic in time for 0<j<2(k—1), (2.2)
all vacuum field configurationgshich admit a(piece of a
smooth null infinity.7 . wherek is the integer appearing ifl.1). In this case the

We shall also consider a second, somewhat larger, clagsoundary integral irf1.5) will vanish for all smoothY*’s, as
of functionals, which contains Hamiltonians that arise in anconsidered in Eq(1.4). This shows that Eq.1.3) leads to a
appropriate symplectic frameworklt will be seen below well-defined notion of energy on this space of fieldat-
that the functionals one obtains from the integrdls3) are  ever the Lagrange functiofl), as long as the volume integral
quadratic polynomials of the appropriate Bondi functionsthere converges(That will be the case if, e.g£ has no
and their derivatives; there is no reason for the Hamiltonianginear terms in¢g and its derivatives$.
to satisfy this restriction.In that larger class we describe all Consider, next, the same scalar field in Minkowski space-
monotone functionals and then among these the further rgime, with 3 being a hyperboloid,= ~/1+x2+y2+ 72 Sup-

quirement of passive supertranslation invariance also leads {@yse further that=V*¢$V ,¢, so that the field equations
the TB energy as the unique expression. The symplectigagd g

framework which is appropriate in the context of radiating

fields will be described elsewhere. O¢=0. (2.2
It is natural to ask why the Newman-Penrose constants of
motion[22], or the logarithmic constants of motion [#3], In that case the imposition of the boundary conditi@nl)

do not occur in the conclusions of Theorem IV.1. Thesedoes not seem to be of interest, as such boundary conditions
guantities are excluded by the hypothesis that the boundamyould be incompatible with the asymptotic behavior of those
integrandH*? which appears in the integrals we considersolutions of Eq.(2.2) which are obtained by evolving com-
depends on the coordinates only through the fields. Theactly supported data dii=0}. Thus, even for scalar fields
Newman-Penrose constants could be obtained as integrals iof Minkowski space-time, a supplementary condition sin-
the form (1.2 (cf. e.g.[24]) if explicit r? factors were al- gling out a preferred®* is needed.
lowed in H*A. Similarly logarithmic constants could occur ~ Now for various field theories on the Minkowski back-
as integrals of the forni1.2) if explicit 1/Inr or r*iin~Ir ground, including the scalar field, one can impose some fur-
factors were allowed there. ther conditions orE* which render it uniqué25,13,14. The

This paper is organized as follows: In Sec. Il we reviewextension of that analysis to the gravitational field carried on
some results about “energy expressions” in general relativin [13,14 also leads to a unique* (namely the one obtained
ity, and comment on nonuniqueness of those. In Sec. Il wérom the so-called “Einstein energy-momentum pseudoten-
find all functionals of the fields induced or by the metric  sor”), within the class of objects considered. While this is
which are monotonic in retarded time, in a large class ofcertainly an interesting observation, the hypotheses made in
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that last paper are, however, much more restrictive than iappropriately-defined phase spdct e.g.[32—35). This re-
desirable. It seems therefore that for gravitating systems armuirement, together with the normalization condition that the
other approach is needed. Let us recall how the “NoetheHamiltonian vanishes on Minkowski space-time, uniquely
charge” formalism described in the Introduction works in singles out the Freud-ADM energy as the “correct” global
that case. There exist various variational approaches to geenergy for general relativistic initial data sets which satisfy
eral relativity, and depending upon the point of view adoptedhe ‘“spatial infinity asymptotic flathess conditions.” Thus

one finds the following. the Hamiltonian analysis gives a rather satisfactory way of
(1) Let £= \|detg|R/16a, where the Ricci scalar is con- singling out an energy expression at spatial infinity.
sidered as a functional of the metric fiedd, , a symmetric Consider, next, hypersurfac&s which extend to7 and
connection"%., and its first derivatives. In that cag@6] intersect” transversally. There have been attempts to use
- By . . . .
one finds symplectic methods to define energy in this con{éxt11]

(see also[36-38). In particular, the analysis of9—11]
1 shows that, under appropriate assumptions, the integral of
E(X)= 16m EV#V[MXM V|detg|dS, the time-derivative of the TB energy over the retarded time
gives a Hamiltonian with respect to a proposed symplectic
1 structure. This does not allow one to extract the integrand
~8n LEV[”XMWdetngm- (2.3 itself from the expression for the Hamiltonian in any unam-
biguous way, for reasons somewhat analogous to those de-

This integral is known as the Komar energy, except (8 scribed in the Introduction. Moreover in those papers one has
is actually half of the expression given by Konjaf]. to assume various decay properties of_ the flel_ds%lfor

(2) Let £=\[detR, J/\, where the Ricci tensor is consid- large absolute values of the retarded time, which have not
ered as a functionalﬂgf é symmetric connectiofy, and its been established so far. Finally, as the symplectic structure
first derivatives, and\ is a constant. The variational equa- considered i9-11] has a perhaps less universally agcepted
tions for such ,a theory are the Ei.nstein equations with status than the one considered on standard asymptotically flat

cosmological constari8]. The Noether energy gives again %ypersurfaces, one should pgrhaps also che the question of
: unigueness of the symplectic structures involved. For all
[28] the Komar integral2.3).

ok i, s h s sy . 15 e e ol e omenctbd i
sidered as a functional of the metric figdg, and its first and
second derivatives. In that case the valueEQE,) is given
again[29] by the Komar integra(2.3) (with a “wrong” 1/2
multiplicative factoy. From now on, we shall consider metrigg; defined on
(4) Let L=L(9,,,9,,,0) e the Einstein Lagrange func- appropriately large subsets &f*, but not necessarily glo-
tion [30], which is obtained by adding an appropriate diver-pajly defined oriR?, and satisfying Einstein’s equations near
gence to the Hilbert Lagrange functioffdetglR/i167. In 7. We shall examine a class of functionals which includes

[lI. MONOTONIC FUNCTIONALS

that case one obtairig] all the cases discussed in Sec. Il, and in particular all func-
tionals differing from the Hilbert Lagrangian by a diver-
E(E)=j HAdS (2.4) gence. These functionals have the form
(2 :
)
whereH*" is the “Freud superpotential” for the “Einstein H[uo,9]= lim L(tu . H*P[g]dS,g,
p—oo =Ug+p,p)

energy-momentum pseudotensor,” cf. E§.1) below.
Yet another approach, leading to a different energy expres-

_ 0 3
sion, can be found if31]. dSup= 0ot dpIdX0...LAX, @D
Consider first initial data for, say vacuum, Einstein equay,nere
tions satisfying the usual fall-off conditions at spatial infin-
ty; HPL](0) =H**(9,41(X),00us(X), -+ T+ O Dl X)).
9~ 70=00"Y, 3,9,,=0("%). (29 32

In that case both the integraf.3) and(2.4) converge. When fOr somekeN, and_H"B is a twice continuously differen-
the integral overs, in (2.3) is evaluated on a “two-sphere at table functlo? 2°f 't§ Zargugntzents. Her?(r,p) denotes a
infinity” in Schwarzschild space-time one obtaing2. On  SPherer=1(x1)*+(x*)?+(x°)*=p, t=x’=7. The metrics
the other hand, under the asymptotic conditiddss) the ~ Jap Will be assumed to satisfy the standard fall-off condi-
integral (2.4) coincides with the standard Arnowitt-Deser- tions corresponding to asymptotic flatness at null infinity.
Misner (ADM) expression for energy, and givesfor that ~More precisely, consider a space-timé ) which admits a
same sphere in Schwarzschild space-time. conformal completiorfwhich in this section we consider to
Under the asymptotic condition@.5), a way to obtain a € smooth in the following sense: there exists a manifold
unique expression is given by the symplectic formalismwith boundary M,g), a diffeomorphic embeddingb:M
Namely, one can require th&i(>) be a Hamiltonian on an —M\JdM, and a smooth function) on M such that
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®*(Q~?g)=g. We shall also assume tha&t ,y=0, that oM L Yactbd - . b
dQ is nowhere vanishing 0aM, and that7=JM is diffeo- ou_ 8 h**h*XabXcat 7 DaDox™,
morphic tol X S? wherel is an interval(possibly but not
necessarily equal t&). By a standard construction we can IN@
introduce Bondi coordinates neat (cf. e.g.,[19] or [23]) so 3 U —D*M + 7 €2DpA —K?,
that we have
ve2h Ké= %Xabpc)'(bc'i' %).(CdDanCi
ds?=— —— du?—2e?Adudr .
r A=h"%2°D Dy xqa, (3.7

2 a_ 114 b_ )b
Frohg (- URU(@C-UPdY), B e x:=dyx. Here e,n=0d,19,1d%°u where d?u

=sin # dgd¢=1e,,dx20dx° is the standard volume form
on S2. If we fix someug e, then the Einstein equations do
not imposé any restrictions on the functiod (ug, 6, ¢) and
the vector fieldN?(ug, 8, ¢) on S2.

Equation(3.5 shows that in the coordinate systdf4)

with x2=(6,¢). We can introduce quasi-Minkowskian co-
ordinates by setting

u=t—r, X=r sin f cosq,

y=r sin 6 sin¢, z=r cosé. (3.4  the metric(3.3) is of the form
1 2
We shall consider only vacuum metrics; recall that this g0 4+ 9us(v) n 9ur(v) +O(r 3 3.9
implies the following behavior ofh,,, B, U2 and V 9ur= Quv r r2 ' '
([24,7,9):

with obvious analogous expansions holding for the various
ed Xab(v) 3 derivatives ofg,, when an appropriate expansion for the
1+ 272 X Xea| T ——+0O0 ), derivatives ofh,y, is assumed. Herg’,=diag(-1,1,1,1).
We can now insert a metric of the for3.8) into a func-
tional of the form(3.1), and as a further restriction we shall

Nap="hap

1 hathanchd

=— 5+ 0(r 79, require thatd has a finite numerical value for all fields,,
32 r of the type described above. Our hypothesis of differentia-
bility of H*# allows us to Taylor expan#i“? to order 2 in
. 1D terms of powers ofy,,,—0%,. 9,(9,,~9%,)=0,9,,. etc.,
Ul==5"2 aboutg,,,=g,. Note that by(3.2 the H*[g%,0,...,0]
are constants which are either zero or integrate to zero in
N 32N?(v) + D¥(x“%ca) + 8x% Dex™° (3.1) [otherwise the limit in(3.1) would be infinitd, so that
3
16er H[u,g),]=0 Vuel.
+0(r™%, : . o L
The 1f terms ing,,, and itsv derivatives will give at most
cd abnc. a a quadratic contribution tél, and the 172 terms at most a
V=r—2M(v)+ X" Xeat 4DoX" D Xac~ 16DaN linear one, while the remainder terms in the Taylor expan-
(v) . : . e °
160 sion of H*? will contribute nothing in the limitr —o. It
+0(r 2). (3.5 follows thatH can be written in the form
Here ©)=(u,x*) and h,,dx*dx’=d@?+sirP0d¢?’ D, is H=Jszh[M,Mm,...,M(k),Na,Na“’,...,Na<k>,
the covariant derivative operator defined Iy, . Indicesa,
b, etc., take values 2 and 3, and are raised and lowered with Xab XoD .. x X g, ] d2u. (3.9

h3®. The tensor fieldy,, satisfies the condition
Here the addition of a superscripf to a quantity denotes the
ﬁabxab: 0, (3.6) I-th u-derivative of that quantity. The square brackets around
the arguments olfi are meant to emphasize the fact thas
and no other conditions are impodedn y.,(v) by the nota function but a local functional of the fields which is a

vacuum Einstein equations. The functidvisandN® satisfy ~differentiable function ofM, 9 M. ..., dq,...9,M, M,

the following equations: I MW, g0, MWD, etc., for some finite number of
derivatives in directions tangent ®. Note that for func-
tionals (3.1) the dependence df on N, N3, .. etc., as

*Note, however, that there may be some restrictions arising fronwell as on derivatives afl®, Na®), etc., in angular direc-
some further global hypotheses if those are made. We emphasii®ns, will be linear becausé® comes with a factor 2, and
that we do not impose any such global hypotheses here. we shall henceforth only consider such functionals. From a
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symplectic point of view it turns out to be natural not to value problem with data given on the null hypersurfade
make the hypothesis thatis a quadratic polynomial of the ={u=u,} and on a piece of7={x=0ue (ug—1uo]}
fields and their derivatives, as would be the case for funcx« s2, This proceeds as follows: Forx<1 leth?,(x, 6, )
tionals (3.1), and for this reason we shall allow arbitrary pe anyx-dependent family of symmetric non-degenerate ten-
differentiable functions in (3.9), except for the hypothesis sors ons2 with hgb(0,0,¢)=hag(0,¢) (the standard metric

of linearity in N# with coefficients of linearity independent N 0 " .
of the remaining fields. on S°), with deth;,(x,6,¢)=deth,(6,¢), and with

Assuming that the metrig,, is vacuum(at least in a oho
neighborhood of”) we can eliminate the-derivatives ofv ab =x2,. (3.19
andN? in favor of M andu-derivatives ofy,,, using equa- IX |0

tions (3.7), so that(3.9) can be rewritten as 0 ) .
Set hyp(u=ug,X, 8, d) =hg,(x,0,¢). Using the Bondi-van

He [ hivone 1 (K142 der Burg-Sachs prescription in the coordinate system
= | NIMNT Xab Xap - -Xap 142, 310 (r=1/xx% [7,8] we can find unique smooth func-
tions 9),8(Ug,X,0,¢), d,U%(Ug,X,0,¢), 9 V(Ug,X,0,d),
whereh is still linear in N? and its derivatives in directions l?iuhab(uo,xﬁ,(ﬁ), such that Eqs(3.11)—(3.13 hold and
tangent toS?. By an abuse of notation here, we still denotesych that for allNe N the metric gW:X*ZEW satisfies
the integrand of by h, although it will in general not coin- RW=O[(u—uo)N], whatever the field, V, U, h,;, as long
cide with the originalh of (3.9). Before we proceed further as those fields and their derivatives assume the boundary
we need the fO”OWing result based on the work of FriedriChva|ues obtained above. Indeed, the fields appearing at the
[39,4Q as extended by Kanng41]: right hand side of Eqs(3.11)—(3.13 provide precisely the
Lemma IIl.1 Let M(6,¢) be a smooth function on’S  data needed for the construction of a solution of the hierar-
N3(6,¢) be a smooth vector field on*Sand x3,(6,4),  chy of equations obtained hydifferentiating the Bondi-van
X;b(a,¢),...,X';b(a,qs),... be any sequence of smooth sym-der Burg-Sachs equations. It follows that any geometric
metric traceless tensors orf SThen there exists>0 and a  quantities, built out of the metric together with an arbitrary
vacuum space-tim@gM,g) with a smooth conformal comple- finite number of its derivatives, calculated &t u, for any
tion (in the sense described abov@)l,g) which has a two such metrics will coincide ai=uj.

spherical cut u=uy of .7 D (ug— €,ug) X S? such that the Becausey,p is symmetric and tracelesh,, can be pa-
Bondi functions Mu,,¢), N3(u,6,¢), and xap(u,0,¢)  rametrized as
satisfy 2 . .
e“’cosh29) sinh(24)sin @
lim M(u,6,6)=Moq(6,0), (3.11 sinh(28)sin @ e 2”cosh(26)sir?6)’ (318
U*)UO
. N s where we writey=c(v)/r +O(r %), s=d(v)/r+0O(r 3).
lim N%(u,0,6)=Ng(6,¢), (312  |ete,s be the following tetrad field:
uU—ug
. . €y=€gy=—17 y
VieN lim x{(u,0,¢)=xin(0.6). (3.13 o
U—ug

e1=ep= eizﬁ((?u‘k %VX30X+ U 03@"’ U¢0"¢),
Remarks.(1) Actually the functionsy,(u, 8, ¢) can be
arbitrarily prescribed as functions ofi (6, ¢) on an interval 1
(up— €,uq] for some appropriate. The above weaker claim e,=eyy=—[e~ Y(—coshs+i sinh §)d,
is, however, sufficient for our purposes. V2
(2) The limits lim,_,, in the equations above have been

. . : . i +e”(sinh 6—i coshd)cosectd,,],
introduced to avoid talking about space-times with boundary.

Proof. For xe[0,1] anduy—1<u<u, consider metrics e3=e0=(e,)*, (3.19
of the form
_ , 3284 2 28 where ,)* denotes the vector whose coordinate compo-
9., dxfdx"= —Vx’e”du”+2e”"du dx nents are complex conjugates of thoseegf From Egs.
+h,(dx2— Uadu) (dx°— UPdu), (3.16 and (3.17) one can calculate the Newman-Penrose

quantity o (=11 in the notation of41], and=T"gggy in
(3.14  the notation 0f42]) to obtain

We wish to show that we can fine>0 and a metrig,,, of oly_o=c+id. (3.18

the form (3.14 defined for xe[0,], x2eS?, ue(ug

—€,Up] such thatx*ZEW satisfies the Einstein vacuum In [41] the time sense o, ande; is unspecified an&, is
equations, for which3.11)—(3.13 hold. We shall construct only specified up to rotations in the — e; plane at points in
the appropriate solution backwards in on (ug— €,uq] the intersection ofN and.7 (in Kannar's notation Since
x[0,6]XS? by solving an asymptotic characteristic initial they are then parallelly propagated in Kannar's treatment,
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these rotations aneandr independent. Note that up to these  Proof. Note first that the tensor fields,y,....@a, . ab

ambiguities the tetratB.17) coincides with that used i#1],  can be set to zero by integration by parts and a redefinition of

time-reversed, ax=0, but will in general differ from it at 4, &, with an appropriatea,. Calculating theu-
other points. This is irrelevant as far as the valuepf.ois  derivative of(3.19 we obtain

concerned becauseatx=0 is calculated using only deriva-

tives of the tetrad field tangent to the sphepesO, u dH oh . . oh .

=constant, so that|,_ calculated for the tetra¢8.17) will au Lz( M M+ a N?+ Sxas Xab

coincide with that calculated in the tetrad used4d] (up to ab

a constant factor of modulus.IThe essential point is that oh (k1) | 42

andd give the requisite data. +eet m Xab  |dw. (3.20
a

Now let (U, 8, ) be an arbitrary one-parameter family

. . 2 - _
of symmetric tensor fields 08", with ue (up—1uo] such shl 5x{% and all the terms irf3.20 except for the last

i — i .
that r9uXab(Uo,9,¢>)—X?i0, 2 frpT Xao(U,0,4) We Can oo are independent gft**D(ug). If sh/5x%) were non-
calculater|x—o. Fromdyg,.,u-u, 1=0.12(which we have o4 for somek=1 we could, by Lemma IlI.1, find a solu-
already calculated previouslye can determine at=uo the  tjon of the vacuum Einstein equations wigft**1(u,) so

remaining initial data needed for the Friedrich-Kannar.nqsen thadH/du>0, which shows thaﬁhléX(kb):O for
asymptotic initial value problem. The existence of @n0 all k=1. Setting a

(depending on the initial datand a solution of the vacuum
Einstein equationg,,, defined for (1,X,6,¢) € (Uy— €,Uq] ﬁ[M Xap:X2]=h(M, DM, ... Dy....Da M
X[0,e]x S? assuming those initial data now follows from e A
the main theorem df41]. The property that the Bondi func-

tions M, N?, hgp, and dsh,p, parametrizing the metrig,,, Xab»DeXab:---Dey---De Xab
assume the desired values ofi follows from the unique- " " "
ness theorems ¢B9). O Xab =0.PcXap =0, ... De,.-.De Xz =0,
We can now pass to the proof of our main result.
Theorem 111.2. Consider any functional of the form ’__,ngb):oipcxgkb):o,
H[g]= Jsz[h(M,DaM,...,Dal...DakM, . .Dcl---Dckx;kt,):O,xa),

we obtain fromésh/ (k)=0, k=1,
Xab1Dchba---1Dcl---Dcanbv Xab

Xab DeXip o+ De,- Do Xhb H(g,u)= Lz(h['\/' Xabl T N d?p,

dH f (5F1 P sh . )d2
T |\ s Mta S Xab|d7u.
du 2\ 6M a ) a
X4 DX - Doy Do) ) ; Xan " a g
a an|b
+agN™+ agp DN Consider, first, Eq(3.2]) for solutions of the vacuum Ein-
o aalmakaal___Dako]dZM, (3.19 stein equations witb(ab|u=uo=0. Equationg3.21) and(3.7)

then yield
where h is a twice continuously differentiable function of all
its argumer]ts, with some, sz.iy smO(.)th,.tensor f|&|;q$“a|§b d_H:J’ (_ E &a( D.M— E Eab'Db)\) &u
on . If H is monotone non-increasing in u for all metrics g du Jg\ 3 4
which satisfy the vacuum Einstein field equations (with M
Xab: @and N interpreted as Bondi functions appearing in g), :f (E M D36 — i A e?PD, & )dz,u (3.22
then H can be rewritten as 2\ 3 & 12 pTa CT

B 17 act bd a2 To proceed further we need to know a little more aboais
H= LZ‘I'(M —7h**h° D, Dpxcq . x*)d w1, defined by(3.7). In Appendix B we show that the image of
the operatoly ,p— €,.D°D,x2° defined on traceless symmet-
with a differentiable local function&lW (f ) whose varia- ric tensors consists precisely of functions of the foP,
tional derivative W/ sf is non-negative. where ¢ is an arbitrary appropriately differentiable function
on S$? andP is the projection operator defined as

3
“That is, ¥(f ) is a differentiable function ok?, f and a finite Py=— E (Dif 1/1(I>id2,u, (3.23
number of its derivatives in directions tangentSa i=0 s?
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where the®; form an orthonormal basis of the space of w, ,(S?) with somek large enough, the; will be a twice

spherical harmonics withl=0 (®o) and |=1 (®;,i  (jfferentiable function on that space, and (828 we have
=1,2,3). Consequently. runs over all smooth functions

with no zero or first spherical harmonics gg, runs over all
smooth symmetric traceless tensors. This, together with
Lemma lll.1[note thatM in (3.22 is arbitrary] shows that
dH/du in (3.22 will have an arbitrary sign unless

1 . .
Gi[v]:=— o f Sz(ZacDb)(ca+ 3x2°DPar) vadiu,
(3.29

where G; [v] denotes the derivative oB; acting on the
symmetric traceless tensar. It follows from Schwarz’s

3

~a_ abp ~ P,
Paa”=0, e Daay ,21 i, 329 emma that the second derivative of G; satisfies
Gi[7,v]=G}[v,7], for all smooth symmetric traceless ten-
for some constants; . It follows that sor fieldst,, andv,,. From(3.29 we have

3

~a__ 1 ab i ” 1 ~ b b~ 2

at=5 Dyl € izl a;® (3.29 Gf[T,V]zz—l—z ,(2a;D T2+ 373D ) vypdue.
= S

(3.30
(the fact that the above vector field satisfi@24) can be _
checked by a direct calculation; the fact that there is only ongetting F:=333 ,;®' with some constants;;, we have
such vector field is shown in Appendix) BReturning to Eg.

(3.2, we obtain from(3.25 and (3.7

dH_J
E_ 2

L. e, sh
- Z & _
a SXab Xab

5ﬁ 1. cab 1 cab
M | T g XabX +ZDanX

d?u

(3.2

Define a new functiona by
WLf, xan X1 ==h[M =+ $DyDpx™®, xan X°].

Equation(3.26) can be rewritten as

a?= e2*DyF [cf. (3.29]. We also haveD*DyF = — 63F (cf.
e.g.[43], Lemma 5, so one get9?aP= *’F. Using those
identities, by integration by parts one obtains

Gl r,v]—Gf[v,7]=— % fsz( aDP7%%+ aPD, 78
+2F 72%° ) v, d2 .

Sincev is arbitrary(traceless, symmetpiave obtain

T o D°1°%+ a D %%+ 2F %" ]=0, (3.3

for arbitrary 7s. Think of the two-dimensional sphere as a
submanifold ofR3. By a rotation of the coordinate axes we
can always achievE =\ cosé, for some constant. Equa-
tion (3.3) at a pointpy lying on the equator,pg=(6
=1l2,¢0), With a= 6, b= 0 reads

(3.32

Consider the smooth traceless symmetric tensor field

Tapdx2d X = p[ (d 0)?— sirPé(d¢)?]+20d6 d¢, with p and o-
smooth functions o0%?, supported near the equator, and sat-

dH 1 o¥
Jsz isfying p(pg) = o(po) =0. Equation(3.32 implies

du” 8 Je o X MdH

|
SZ

1 o DPx 3+ E XD &+ —N X
6 Cc 4 Cc 5Xab ab

Ndgp(Po) =0,
d?w. prATo

for all such functions, so clearlyx =0, and we finally get

(3.2

. - F=0. (3.33
dH/du will be non-positive for ally,y, if and only if 6¥/ 5f
is non-negative, and the last integral vanishes, which yieldPefine

1. 1 . a1_h 1 ab —y@
5)(ab — _TS{ (6 aCDbXaC+ Z Xcapba'c ), (328) \I,[f,x ] h[f+ 4DanX yXab O,X ]
Equations(3.30 and(3.33 give

whereT S denotes the symmetric trace-free part with respect
to the indicesa,b. We wish to show tha&? has to be zero. L ab ~
To do this, fix a smoothf and considerGy[xap,x%] LZ‘I’[M — 7D Dpx ™= Lzh[M Xan]=H[g],
= [W[f,xan.x?]d%u as a functional of,,. Note that if we
endow the space of the,,’s with a Sobolev space topology which is what had to be established. O
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IV. SUPERTRANSLATION INVARIANCE :,ISEWkWh so that one may think ofv* as of a future

. . . _ O
Theorem 111.2 does not quite lead to the Trautman—Bondit'mekIIke vector. We have thus obtainett(f )=(w
+wn,) f/4m, and finally

mass as a preferred quantity in the class of functionals con-
sidered in that theorem, as it still contains an arbitrary func-

tion ¥ of M—%.hachbdDanxcd and a finite number of its H= 1 f (WO whn) (M — 120 d2y
angular derivatives. Let us show that the further requirement 4w )

of passive supertranslation invarianacg H can be used to 1

obtain that desired conclusion. Here the qualification “pas- = f (W4 wkn )M d?u. (4.4)
sive” refers to the fact that we use a different Bondi coordi- Am )g

nate system but we integrate on the same cut’oMore
precisely, consider a function& as in Theorem IIl.2. We
can calculate the value &f at a cross sectio8? for a metric
g, and compare the result witH calculated on the same
cross section af7 for the same metric with a different Bondi
parametrization, differing by #inite, or infinitesimal BMS
supertranslation. Le§ denote a given cut of/, which in
some Bondi coordinate system, @, ¢) on.7 is given by the
equationu=0, and set

Equation (4.4) has the clear interpretation that is the
Trautman-Bondi mass as measured with respect to a frame
with time-like four-velocity vector @°w'), which can be
checked from the transformation properties of Bondi coordi-
nate systems unddpassive Lorentz transformations. For
completeness we analyze that question in Appendix D.
The results of this section and Theorem 111.2 imply the
following.
H(S) = Jszqr(M 1 F\acﬁbdDanxcd)(u=0,0,¢>)d2,u. Theorem IV.1. Let H be a functional of the form
4.7
L —— H[g!u]:fz Haﬁ(g/.wig/.w,(rv"'1g,uv,(rl...(rk)dsaﬁ’1
Consider another Bondi coordinate system,¢)=(u () 4.5
—a(6,¢),80,¢), with corresponding functionls!, x5, etc. '
As shown in Appendix Gsee alsd37]), we have
W(U 0,4) where the H# are twice differentiable functions of their ar-
X llap]tH, O guments, and the integral ovef(®) is understood as a limit
_ ab as p goes to infinity of integrals over the spheresu+p,
=[4M=xTapt A2(A2F2)](u,6,4). (4.2 r=p. Suppose that H is finite and monotonic in u for all

The overbar in the left hand side of the last equation denote$Cuum metrics g, satisfying

the quantity M — x23®,, calculated in the barred Bondi L X
frame, using the barred Bondi functioh, etc. The require- h..,(u,0,¢6) hj,(u,6,¢)
ment thatH(S), calculated in the unbarred Bondi coordinate 9ur= Mur ™ r + r2 +
system, coincides withl(S), calculated in the barred Bondi
coordinate system, gives thus the equation

o(r—2),

h® (u,6, h? (u,8,
o e 2lU,0,6) ’”(”2 )

— -2
i mv r r _O(r )1

(4.6

I

Va | WIM- D00 0% [ wiM- iD,pp
S S

+ Y(DD?+2)DyD°a]d? . 4.3

, , _ _ with 1<i=<k, for some ¢ functions ,(u,6,¢), a=1,2.1f
[t should be emphasized thalis not given by the equation  js inyariant under passive BMS supertranslations, then the
u=0. We arenot requiring that the valuéi(S) of H, calcu-  numerical value of H equals (up to a proportionality con-
lated on the cutS={u=0}, coincides with that oH(S).  stant) the Trautman-Bondi mass.
That last condition would be the requirement that the value Proof. If H is monotonic for all such metrics, then it is
of H does not depend on the cut under consideration, whicimonotonic for Bondi-Sachs type metri¢3.3) for which a
is of course absurd in the radiating regifidow, elementary  quasi-Minkowskian coordinate systef®.4) has been intro-
considerations using spherical harmonics show thatluced. As discussed at the beginning of Sec. lll, for such
x=(D,D*+2)D,D° is an arbitrary function such that metrics(4.5) can be written as a quadratic polynomial in the
Px=x, whereP is the projection operator introduced in relevant fields, linear ilN?, so that Theorem IIl.2 applies.
equation(3.23. If we replacea by ta in Eq. (4.3), differen-  Now the asymptotic behavior of the functions appearing in
tiate with respect tot, and sett=0, we obtain thus the metric(3.3) shows that any quadratic terms M that
P(s¥/56f)=0. It follows that there exist constantg”, x could possibly survive in the limit—c come with no an-
=0,1,2,3, such thadW¥/sf = (w°+w n,)/4m, n:=x,/r be-  gular derivatives acting oM. The definiteness of the varia-
ing an orthogonalbut not orthonormalbasis in the space tional derivative of¥, whereW is given by Theorem Il1.2,
SH' of the I=1 spherical harmonics. The condition that together with Lemma lIl.1, implies then thdt is necessarily
5P/ 5f be nonnegative givew®+w*n,=0 for all n e S%. linear, and the result follows from the argument leading to
That will hold if and only if wo=|w|, where |w| (4.4). O
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Note that the trivial monotone functional, namety=0, pK(S,) — pX(Sy)
is contained in the result above, the relevant constant of pro-

ortionality being zero. 1
P y g = E fﬁN(4M —XabHab)nksin 0de dd)

V. GENERAL CUTS OF .7 1

- ab Kai
So far we have been considering the TB mass of those 327 foab*“X pn'sin 6 du dg dg. (54

cuts of 7 which are given by the equatiom=0. Consider
now a cutS of .7 which, in Bondi coordinates, is given by
the equation We note that the existence of a flux formula is a rather trivial
S={u=s(6,9)}, property, since one can always take theerivative of any
for some, say smooth, functiogon S2. Theorem I11.2, to- integrand to obtain a flux. The_in?eres_t of the above fqrmulas
gether with the discussion of the previous section, suggeséms from the fact thag,p,, is invariant under(passive
that it is natural to define supertranslations, so that the fluxgs3) and(5.4) also share
this property.
(5) Passive supertranslation invariance together with the
flux formulas(5.3) and(5.4) imply that in a stationary space-
time the four-momentunp* defined by(5.1) and(5.2) is S
independent. In particulgr* vanishes in Minkowski space-
(5.)  time, independently of the c\f.

1
mTB(S)::E f52(4M

—x%0ap) (U=5(6,¢),0,$)sin 6d0 de

1
k —_

— X*ap)(U=5(0,0),0,H)n*sin 6d6 dg,
Having established the preferred role played by the
(5.2 ) " ) .
Trautman-Bondi mass, it is of interest to enquire under what
where nk, k= 1,2,3 denotes the functions sitos¢,  weaker asymptotic conditions one can still obtain a definition
sin ¢sin ¢ and cos, in that order. We have the following. of mass which is finite and monotonic in Recall that in
(1) As observed in Sec. Icf. Eq. (4.4)], Eq. (5.D re- 23] an ad hocdefinition of mass was given for all Bondi-
duces to the standard Trautman-Bondi-Sachs definition whe@,pe metrics with a “polyhomogeneoug”, and that mass
SE(%) It also follows from what is said in the previous sec- V&S shown there to be monotonic. Similarly it was checked
P in [44] that for a class of asymptotically flat asymptotically

tion that the quantitieg5.1) and (5.2) are invariant under . : "
passive BMS 1upertraﬁsla)tions.( ) vacuum space-timéshe energy expression defined [ib8]

(3) Equation(4.4) together with passive supertranslation CONverges to an appropriately defined Bondi mass. From a
invariance and the discussion of Appendix D imply that thefield theoretic point of view it is natural to define mass in
quantities p#):(mTB,pk) transform as a Lorentz vector terms of an integral, as considered in Theorem IV.1, using,
under those boosts which mainto itself. e.g., the Freud potential, where th&? of equation(3.1) is

(4) The definitiong5.1) and(5.2) allow us to define a flux given by the expressiofcf. e.g.,[45)])
of energy-momentum through a subsetsf bounded by
two cross-sections thereof. More precisely,$et i=1,2 be

VI. POLYHOMOGENEOUS METRICS

two cross-sections o7t which are graphs over the cut HAv=4[KY X<, (6.1
=0:
Si:{U:Si(0,¢)},
1

and letNC.7" be such thatN=s,(S?) Us,(S?). From the Uy=———
definition (D6) and the relatior(3.7) we have 16my|detg,,|

Mrg(Sz) —Mrg(Sy) X9aﬁ(|det9po|9ﬁw9v])\),m (6.2

1

LN(4M —X*jap)Sin 0d6 dg

T 167 with X#= 8% . Inserting the metriq3.14 into (6.2), with

1 X“d,= 4, and with h,, parametrized as i183.16, one ob-

== 0 J'NXab,uXab,u sin 6 du do de, (5.3  tains via asHEEP[46] calculation

which can be thought of as a flux of energy throughA
similar formula holds for the space-momentpihdefined by SThe class of metric considered [i#4] includes the metrics poly-
(D7): homogeneous of order (8ee[23] and below for definitions
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f ger Xeds,,
U=ug,r=rog

1 2 ap-2g Y s - :

= Ton Jo| 2VT2e Peosh(2y)cosh26) —re 2#| ——(U’e cosh(28) + U #sinh(28)sin( §))
o au? _ _ _
+sin(8) — (U%e 27cosh26)sin( 8) + U’sinh(26)) |+ r?D,U? sin(6)dé d¢ (6.3
o u=ug,r=rqy

! 2 4,2 AT :

= Iom | 2(r—V)+2r(1—e?®cosi2y)cosi28))—r%e ?Ph,, o Ut DU sin(6)dé de.
S u=ug,r=rg
(6.4

More precisely, this formula is obtained by “covariantizing” shows that those terms Wwhich are linear combinations of
(as described ifi34]) Eq. (6.2) with the following flat back- In'r are divergences, so that their integral over a sphere van-

ground metricy: ishes. Thus the Freud integral always converges to the mono-
) 5 oo 5 tonic mass expression considered[#8]. Remarkably, the
7,dXdX’= —du?—2du dr+r2(d¢?+sir’(6)d¢?). polyhomogeneous case of order1 always has a finite

. . . energy.
Equation(6.4) is exact; no hypotheses about the asymptotic Leqcyus mention that for metrics which are polyhomoge-

?hez;i\r?e(z)rlaofc ;[Qremqlrj]agt'gej) .':t\(’e olvaeg hgvtet:eino mv?/ge'hgﬁ)t%eous of ordek=2 the Freud integral can be given a Hamil-
S 1in q6.4) integrates out to zer ). WE S tonian interpretation—this will be discussed elsewhere.
say that a metric ipolyhomogeneous of orderikin the
Bondi coordinate$3.3) the functionsh,, have a polyhomo-
geneous expansidsee| 23] for definitiong in which the Inr VII. CLOSING REMARKS
terms start at a powar <: . ) .
We have shown that every functional of the fields which
hl hgg‘ln”r hgvé“ﬂ) In("=1) is monotonic in time in a certain class of functionals for all

K K tee metrics “having a piece of7” is proportional to the

' Trautman-Bondi mass. The key ingredient of our proof was

Consider first metrics which are polyhomogeneous of ordef® Frledn(,:,h-Kannar construction of space-times “having a
2. We have the=0(r ~1), 6=0(r %) and it follows from  PI€C€ of.;’Z. Now in general the_ space-times we have con-
the Einstein equations as written out, e.g.[48], Appendix structed in thg proof above WI|.| not have any reasonable
C® that B=0(r2), Ud=0(r"2), aU¥ar=0(r"%) and global properties. For example, in Lemma 1l1.1 the function
r—V=0(1). Equations(3.1) and (6.4) then give M could be chosen to be negative. In such a case one ex-
pects, from the positive TB mass conjecture, that the space-
1 time constructed in Lemma I1l.1 will have no extension with
H[ug,g]= lim P j 2(r—V)sin( 9)do dop, (6.5 complete Cauchy surfaces. Now the property of having such
r—e S Cauchy surfaces is a starting point of any standard Hamil-
tonian analysis, and for this reason it would be rather useful
Y0 have an equivalent of Lemma 1ll.1 in which well behaved
aﬁ)ace-times are constructed. We expect that a result of that
kind can be proved, under some milgkt to be determined
restrictions on the functioM (such as, e.g., positivityand

L N ) we are planning to investigate this problem in the future.
r—V=0(In"r) for someN, . Equations3.1) and(6.4) lead Let us finally mention that using similar ideas to those

again to(6.5). At first sight it appears that the integral at the presented here one can prove related results for other field
right hand side of6.5) might diverge for some vacuum met- heqries, such as, e.g., Maxwell theory, or for scalar fields.
rics which are polyhomogeneous of order 1. However, careg;qre precisely, for a scalar field one has the following:

ful study of the leading terms in the Einstein equations Thegrem VII.1 The only functional F, in the class of func-
tionals defined in the Introduction, of a scalar fieitl on
Minkowski space-time, which is monotonic in retarded time
5There are unfortunately some misprints in Appendix (28]):  for all solutions of the massless linear wave equation, and
(1) The last term in Eq(C4), 3r2cosecd(W,s+4Ws;), should be  which is a Hamiltonian for the dynamics on a hyperbolid
replaced bysr cosecd(rW,s+4Ws); (2) in the 8th line of Eq(C6)  is the integral H of the standard energy-momentum tensor
the factor 4 in front of the term #, y,U should be replaced by 2. overZX.

which is the standard Bondi integral. Consider, next, metric
which are polyhomogeneous of order 1. In that case one h
y=0(r 1n"r), 6=0(r 1n"r) for someN. The Einstein
equations imply(see the proof of Prop. 2.1 if23]) that 8
=0(r 2n®Mr), U=0(r 2In"r), gU?ar=0(r 3InNr) and
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To prove this one uses an equivalent of Lemma lll.1lying in o perpendicular to the sphere= const, and pointing
which, for a scalar field on Minkowski space-time, can beoutside it. Trautman defindg to ben”+t”, wheret denotes
easily modified to obtain globally defined solutions. Thega unit timelike vector normal te, such that®>0.
question of how to define a symplectic structure for dynam-  Trautman shows that under the conditidAd) and (A2)

ics on hyperboloids will be discussed elsewhpt&]. The  the integral at the right-hand side of the equation
requirement that the functional considered is a Hamiltonian

leads to the conclusion th&tdiffers fromH by a boundary N
integral. Using arguments similar to the ones presented in Puol= fﬁsﬂ” wdS,) (A3)
this paperand actually rather simpler, as the corresponding

equations o are much simpler in the case of a scalar field existd and is finite because of cancellations among the di-

one then provep48] that all the boundary integrands, in the vergent terms. HerH”‘# is the Freud potential given in Eq.

case of the scalar field, which have the right monotonicity ) ; .
properties, have to integrate out to zero. Minkowski spacege'z)' Next, Trautman shows tha,[ o] is coordinate inde-

time above can be replaced by any Lorentzian manifolooendent.in the following sense: Let a new coordinate system
which has sufficiently regular conformal completions. x'" be given by the equations
Let us finally mention that one can set up a Hamiltonian

framework in which some of the problems related to the Xoxr=xran, (A4)
Ashtekar-Streubel or Ashtekar-Bombelli-Reula approachesWi,[h a” satisfyin

listed in Sec. Il, are avoiddd7]. Unsurprisingly, the Hamil- 9

tonians one obtains in such a formalism are again not unique, a’=o(r), a,,=bk,+ o(r-2), (A5)

but the nonuniqueness can be controlled in a very precise
way. The Trautman-Bondi mass turns out to be a Hamil-

) : ; : where
tonian, and an appropriate version of the uniqueness Theo-
rem Ill.2 proved above can be used to single out the TB mass

= IZ = -1
amongst the family of all possible Hamiltonians. a,=nya%  b,=0(r ),

and
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APPENDIX A: TRAUTMAN'S DEFEINITION OF MASS under the hypothesis that the energy-momentum tensor of
IN THE RADIATION REGIME matter fields gives no contribution dii Here
In [_5]7 Trautman considers gravitational fields for which a =7k, k"+0(r 3, (A8)
coordinate system exists in which the metric can be written
in the form where
9= 77,uv+o(r_l)a guv,p:huvkp"'o(r_z), (A1) AkT=h*" (N, =3 7,177 N,0), (A9)

and « is the constant of proportionality between the Einstein
(M= 37,7770, K"=0(r 2). (A2)  tensor and the energy-momentum tensor, and it is clear that
the integral ovel, in Eq. (A7) is defined by a limiting
Here the function$,, satisfyh,w=0(r‘l), while the null
vector fieldk, is defined as follows: Letr be a spacelike

hypersurface, and define” to be a unit spacelike vector 81t is clear thatSin Eq. (A3) is understood as “a boundary ofat

infinity,” defined as far as integration is concerned by a limiting
process. In the section in which he talks about radiating fields
"The first chapter of6] is a slightly expanded version §5]. Trautman does not give a precise definition of w8as.
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process. He emphasizes that is invariant with respect to
the transformationgA4) and is non-negativeby virtue of
(A2), so thatpy=0.

For our purposes we need to change the definitiok,of
given above: we requirke, to be a null vector field satisfying

(1) k,, is normal to the spheres={cons}, future pointing
and outwards pointing;

(2) k,, satisfies the following asymptotic conditions:

. X
K—1=0(r %, K- TzO(rfl).

(This is compatible with Trautman’s definition if one takes
to be the hypersurfacgx®=cons} in the coordinate system

in which (A1) and(A2) hold. However, the hypersurfaces we

consider here areot of this form) With this modification
Eqgs.(A7) and(A8) together with positivity ofr are the fun-

PHYSICAL REVIEW D58 084001

denote the space of spherical harmonics of dedrdeg
eSHeA,g=—1(1+1)g). Consider the following se-
guence

i1 i12 i21 i10

Vi V2 Vi

Ve VO Ve VO,
Here V° is the space of, say, smooth functions on
S?,Vi—that of smooth covectors 08?, and V?—that of
symmetric traceless tensors @&. The various mappings
above are defined as follows:

i01(F,0)=fjat2"0p.

. _ c
i12(v) =Vt Vpja— NanV e

i21(X):Xabubr

damental statement that on hypersurfaces which, in modern ilo(v)=(va”a,sabva”b),
terminology, “intersect7*” the energy can only be radiated . . o ,
away. It should be emphasized that this is a more gener{yyherell is used tp d.elnote the cqvanant derivative with re-
statement than that discussed by Boatlal. and by Sachs spect to the Levi-Civita connection of the standard metric
four years latef7,8], as the boundary conditiori@1) and  hap 0n S%. The following equality holds
(A2) are weakerthan those of[7,8]. Indeed, consider a L
Bondi-Sachs type metri3.3), with all the functions appear- il 12lo1=[A2(A2+2)]©[A(A2+2)].
ing there satisfying the fall-off requirements 67,8]. If
guasi-Minkowskian coordinates are introduced via the Eq
(3.4), one finds that Trautman’s conditiorid1) and (A2)
hold withk,=u ,. If o is taken to be the null hypersurface
{u=ug} (note that with our minor modification of the defi-
nition of whatk,, is, the hypothesis that is spacelike is not
needed any more in the above formaljsithe four-
momentunP [ o] defined by Eq(A3) gives the Bondi mass
as defined in7,8]. If ¢’ is taken to be another such null
hypersurface, EqA7) yields the Bondi mass loss formula
(integrated inu). Further, the coordinate transformations
(A4) comprise the BMS “supertranslations”: a supertransla-
tion given by Eqs(C1)—(C3) below corresponds to a trans- _ . ¢ X
formation (A4) with a*= ¢*(6, )+ O(Llr), for some ap- (3.25 is the unique solution of Eq3.24), consider the se-
propriate functionsp“(6, ), so thatb,, in (A5) vanishes. ~ 44eNce

It should be pointed out that, as discussed in Sec. VI io1 i10
above, the fall-off condition§A1) and(A2) allow for a large VOoqp /O V2
class of metrics with polyhomogeneous asymptotics. Last
but not least, using the framework [&#] reduces the compu- It is easy to check that
tational complexity of the proof of positivity of mass loss, as
compared to several other frameworks, e.g., the Bondi-Sachs

one. . .

SO if aqpe?®, a?j,e(SHY)* then there exist,ge (SHO)*
such thati o4(f,g) = «, and they are the unique solutions in
(SH)* of the equations:

(B1)

Note that we havé;ii(x) = (x?°ap.°xp%ac). Consider
the space/%:=[ SH’@ SH']*, whereL denoted ? orthogo-
nality in L(S?)NC*(S?). Now the operatot\,(A,+2) is
surjective fromV° to V°, so that for any\ e V° there exists
f e VO such thatA,(A,+2)f=X\. Consider the tensor field
x=i1ri0((f,0)), then (B1) shows thaty®",,=\, which
establishes surjectivity of the double divergence operator,
from the space of symmetric traceless tensors to that of func-
tions on the sphere which have no zero and first harmonics.
Similarly the tensor fieldy=i,2ig1((0,9)) shows that the
mapV?s xap— €%ox?0ace [SH® SHT" is surjective.

To justify our claim, that the vector field given by Eq.

VO VO,

1Pl = A28 A5,

APPENDIX B: ON SOME OPERATORS ON S?

Let us denote by, the Laplace-Beltrami operator asso-

— ,a
ciated with the standard metric &%, A,=D*D,. Let SH Aaf=ata,

A= agps®.
Our claim follows immediately from this observation.

%In the section in which he talks about radiating fields Trautman
does not give a precise definition of whatis. In a preceding
section of[5] where boundary conditions appropriate for spatial
infinity are considered he uses the same equation to show thiat

APPENDIX C: SUPERTRANSLATIONS

As in Appendix B we use the notatioh,=D,f, A,
=D?D,.

conserved, and in that case he defideas “a timelike “cylindri-
cal” hypersurface at spatial infinity.”

Consider a supertranslation which in an appropriate coor-
dinate system on7 reduces to a transformation—tu

084001-12



UNIQUENESS OF THE TRAUTMAN-BONDI MASS

—a(6,¢), for some, say smooth, functiamon S?, with the

angular coordinate being left invariant. The supertranslation

can be extended fron¥ to a neighborhood thereof in the
physical space-time using Bondi coordinaktet Eqg. (3.3)].
This leads to the following asymptotic expansidsee also
(8], p. 119:

~a a 1 la 1 ab llab
x3=X +Fa —?(X ap—2a' Pap
+f~bcaallba,HC)+... , (Cy
— 1 la 1 ab
U=U—a— o afaat ;7 [x*Pajap
— ¥ apa®) ]+ (C2)

T 1 1 ab 1 ab 1 ab
r=r-s Ara+ or [ X Ib®jat 5 X Ajap™t 5 X" u@jap

1 llab lla 1 2 lla
T 5 AT @apT X +Z (Ara)“=(Aza) Caya|+---,

(C3

where fbca is the connection defined by the metﬁgb.
From those formulas we obtain the transformation lawsyfor
andM:

M@U=u—a(x?), x2)

1 1
b b
M+ > X Ub@iat 2 X0 Wb

1
ab
+ 2 X.uu@iaib

(u,x?),

Xap(U=Uu—a(x°),x%)
:[Xab_zallab+habAza](quC)-
Consider the quantity®"z;, whereliab denotes covariant
derivatives with respect to the transformed coordinafgs,

=d,+ a 4do. Note that the occurrence ofderivatives indy
will introduce u derivatives ofy,, in the transformation for-

mula for this quantity, and one finds that the combination
4M — x2b, ., has a simple transformation law with respect to

the supertranslations:

[4M — x?0 ] (U=u—a(0,¢),0,¢)
=[4M — x2% ap+ An(Ay+2)a](u, 6, 6).

PHYSICAL REVIEW [»8 084001

APPENDIX D: BOOST TRANSFORMATIONS AND P*

Let A be a boost-transformation with boost parametgr

by an appropriate choice of space-coordinates we can choose

it to act along thez axis. In coordinate$3.4) on Minkowski
space-time one has

u u
. +0| -
coshv—sinh v cos 6 O(r)’

el

with ¢ remaining unchanged. It follows that on the boost
A reduces to the transformation

t ;— "t 0-0—0
anz—e ani

— u 49_ , (7] —
" coshv—sinh v cos 6’ tanz—e tanz, ¢=¢-
(D1)

It is natural to interpre(D1) as the definition of the action of
the Lorentz boosi\ on.7 for general space-times admitting
aJ.

Equation(D1) leads to the following transformation laws

dg=(coshv—sinh v cos 6)4,,

dg=U sinh v sin §3,+ (coshv—sinh v cos 6)4d,,

Sl sin

SN 0= oshy—sinh v cos 6’
— do

de

" coshv—sinh v cos 6’

coshv cos @—sinh v
coshv—sinhv cos 6’

cos 0=

(D2)

From Eq.(D2) one obtains the well known statement, that
boosts induce conformal transformations of “spheres at in-
finity”: if we denote by ¢ the transformation which takes

(6,¢) to (8, ¢), then

o Hab:‘Pizﬁaba (D3)

with
@¢=coshv—sinh v cosé.

We note thate is a linear combination of=0 andl=1

The overbar in the left hand side of the last equation denotespherical harmonics. Set
the corresponding quantity calculated in the new Bondi
frame. Note that while the equatiof§1)—(C3) had only an

asymptotic character in 11/ the last three equations are ex-

T=or. (D4)

act; in particular no smallness conditions enhave been
imposed.

The coordinate transformatid®1), (D4) preserves the lead-
ing order behavior of all the components of the me(8S).
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It follows from [19] (compare als$23]) that(D1), (D4) can

be extended to a neighborhood .af while preserving the
Bondi form of the metrid3.3), the hypersurface=0 being

mapped into the hypersurface=0. From (D1), (D4), and

(3.3) at u=0 one immediately obtains

M=¢*M, (D5)

so that

J.

sin 6 do d¢

= f 2M(coshv—sinh v cos6)sin 6 do do.
S

It follows that the knowledge of the=0 harmonics oM is

not sufficient to determine the=0 harmonics oM. Let us
set

1 .
mTB|u=0’:E JSZM|U=Osm 0 dodg, (D6)

‘ 1
p |u:0’=ﬂ (D7)

M| —on*sin 6 d6 dé,
82
wherenk, k=1,2,3 denotes the functions sincose, sin @
sin¢ and cosd, in that order. Equation$D1), (D4), and
(D5) also vyield

M cos d sin 6 do= M (coshv cos §—sinh v)sin 6 d6.

Consequently we obtain the transformation law

Mrg=Mrgcoshv—pZsinh v, (D8)

p?=p?coshv—myg sinhw. (D9)

As the choice of the axis along which acts was arbitrary,
the set of numberspi*) = (mrg,p*) transforms as écontra-
variany four-vector under thg@assiveaction of the Lorentz
group on.Y. It is therefore natural to interpreh;g as the

time component, and thp¥’s as space-components of an
energy-momentum four-vect@*. We use the qualification

PHYSICAL REVIEW D58 084001
L—L=CL+R, R=a,Y\, (ED)

with Y# being a smooth function of the fields and their de-
rivatives up to ordek—1. Letting() be an arbitrary domain
of R" with smooth boundary and compact closure, we have

f Yﬂdsff R dx.
0] Q

Integration by parts gives
f E:l G
Q0 1=0 07(1)
R ))5¢A ds
A ay ...a
&(ﬁ“al"'aiﬁl"'ﬁj . : *

_J' 5R5Adn
~Jo s 20

where SR/ 5¢” is the variational derivative oR, for any
smooth fieldsé¢”. Equation(E2) still holds with Q=R" if

the 5¢™'s are compactly supported. In that case arbitrariness
of the 6¢™'s implies

X

(E2)

oR o
550

which expresses the well known fact that the field equations
are unchanged by the above transformation of the Lagrange
function. It follows that

z( iAls

#))Mﬁl_ﬂ.dsfa
&(ﬁual...aiﬁl...ﬁj I

k—i—-1

X (E3

It is convenient to choose a coordinate systemt')(

“passive” above to emphasize the fact that such a simple=(x,0?) such thatéQ) is given by the equation’=0, the

transformation property holds only for those Lorentz transy®s, a=1, ..

formations which map a chosen cross-sectionzointo it-
self.

APPENDIX E: CHANGES OF THE NOETHER CHARGE
INDUCED BY CHANGES OF THE LAGRANGE
FUNCTION

In this Appendix we wish to derive the transformation
rule of the “Noether charge’(1.5), when the Lagrange func-

tion is changed by the addition of a term of the fo(in4),

. .h—1 being coordinates oéX). Define

A,m — $A
¢a1 Ny - ¢l...l a;
——

m times

aj ...
RA,m

k—I—m
= > (=1)op...05 (L)

- a¢al BB

Integration by parts iHE3) yields
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k=1 k—-m-1

e 2
A%

(—1)'0,....0,
= 1 i

A, 1.
T RAmH) spAmd 1y =0. (E4)

X

As the §¢™™s are arbitrary we conclude that

avyl

k—m—-1
> (—1),...0,
i=0 . &d)ﬁim

-RL f'l) =0. (EH

Let E* be the Noether currentl.2) corresponding to the
Lagrange functionZ, as in(E1). For our purposes it is suf-
ficient to consider vector field$ which are transverse .
We can choose a coordinate system in a neighborhodl of
so that is given by the equa:tiorx1=0, and moreover
X 3, =4d,. From the definition oE» andE* we obtain

k=1 k-m—-1

El_,_E ,2 RAm+1¢Am+1 3,Y"

%
c9¢>

ajp ...q;
Am+1

k=1 k-m—-1
=E4+ > 2> (R
m=0 =0

>¢Am+l_a Ya

PHYSICAL REVIEW 8 084001

It follows that

[ e

k=1 k—-m-1
szo 2 (—1)'0a,...04
1
X R:1m+1 ,9¢§’m )¢A'm+1dn_1v
18

k=1 k—m-2

+L2(Ya_2 2 phms

k—m—i—2
XX (D)o ..y bia
I1=0

ajp...ajby..
RAm+1

A%

—) )X"d Sa- (E6)
ajb;...bja

I

The integral ovei in the right hand side of this last equa-
tion vanishes by(E5), which establishes our claim that the
Noether charge oB, defined asfyE*dS,, changes by a
boundary integral under the chan@el) of the Lagrange
function.
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