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It is shown that in a number of scalar potentials with an unstable local maximum at the origin chaotic
inflation is followed by new inflation if model parameters are appropriately chosen. In this model density
fluctuation can have a large-amplitude peak on the comoving Hubble scale at the onset of the slow-roll new
inflation and can result in the formation of an appreciable amount of primordial black holes on astrophysically
interesting mass scaldss0556-282(98)09318-7

PACS numbds): 98.80.Cq, 04.70.Bw

. INTRODUCTION has a high peak aP(10 ?) on the corresponding scale. It is
difficult, however, to realize such a spectral shape in infla-
If overdensity of order of unity exists in the hot early tionary cosmology14—17, which is not only indispensable
universe, a black hole can be formed when the perturbetb solve the horizon and the flathess problems but also the
region enters the Hubble radius. While the properties of thenost sensible way to generate density perturbafiték be-
primordial black holesPBHS9 thus produced were a subject cause usual models predict a scale-invariant spectrum. Given
of extensive study decades adip2], there was no observa- the smallness of the observed anisotropy of the cosmic mi-
tional evidence of their existence and only observationatrowave background radiatigCMB) [19], the amplitude of
constraints were obtained against their mass spediB#h  primordial density fluctuation turns out to B®(10°°) on
Recently, however, the possibility of their existence has beeany observable scales in most common models.
raised from a number of astrophysical and cosmological con- It is possible, nevertheless, to realize a non-scale-invariant
siderations and there is an increasing interest in it. spectrum by choosing somewhat contrived forms of the in-
For example, they may be the origin of the massive comf{laton’s potential. While examples of the various perturba-
pact halo object§MACHOSs) which are dark compact ob- tion spectrum realized in different potentials are found in
jects with a typical mass~1My and make up about [20], we must admit that few of the models giving non-scale-
O(10?) of the critical densityf5]. While the primary MA-  invariant spectrum with a single scalar field has a motivation
CHO candidates are substellar baryonic objects such da sensible particle physics. In particular, the model proposed
brown dwarfs, it is difficult to reconcile such a large amountby Ivanovet al.[21] in order to produce significant amount
of these objects with the observed mass function of low massf PBHs employs a scalar potential with two breaks and a
stars[6] and with the infrared observation of dwarf compo- plateau in between. Several other toy potentials have also
nents[7], unless the mass function is extrapolated to thebeen studied in22].
lower masses in an extremely peculiar manner of Pop Il One can construct more natural inflation models for PBH
stars are produced abundantly at the relevant mass [&Jale formation if one allows multiple scalar fields. Some of them
Hence we should consider PBHSs seriously as the second omake use of primordially isocurvature fluctuatid2s], oth-
tion. Furthermore this possibility can be experimentallyers include multiple stages of inflation with each regime gov-
tested by observing gravitational radiation from coalescingerned by different field24—27. We must assign appropriate

black hole MACHO binaries by laser interferometg@s. form of coupling of the scalar fields in each model, which
Another interesting possibility is PBHs with masd may not always be easy.
~10'® g which are just evaporating nofi0]. It has been In the present paper, we propose a new scenario of mul-

argued that high energy phenomenon associated with evaptiple inflation which, unlike previous double inflation models
ration can explain origin of a class of gamma-ray burst. Fof24—28, contains only one source of inflation. In this model
this purpose their abundance should be aroOnd10 8 in  we employ in the Einstein gravity an inflaton scalar fiefd,
unit of the critical density11]. with a simple potentialV[ ¢], which has an unstable local
One may also consider formation of much heavier blackmaximum at the origin, such as a quartic double-well poten-
holes with mas$ ~10®M, . Such black holes are expected tial. This is the same setup as the new inflation scejagg
to exist in the center of AGNs and quasft&] and act as an but chaotic inflation is also possible if tlfehas a sufficiently
engine of their activity. Although it is generally believed that large amplitude initially. In fact Kung and Brandenberger
these black holes are formed after recombination with a spd29] studied the initial distribution of a scalar field with such
cially arranged spectrum of density fluctuati¢asg], it might  a potential and concluded that chaotic inflation is much more
be interesting to consider the possibility that they were oflikely than new inflation. Thus we also start with chaotic
primordial origin, which might lead to a new scenario of inflation, but show that new inflation is also possible wigen
galaxy formation. evolves towards the origin after chaotic inflation if the pa-
In any case, in order to produce PBHs on some specifitameters of the potential is appropriately chosen so that the
scale, we must prepare density perturbation whose amplitudgcalar field has the right amount of kinetic energy after cha-
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otic inflation in order to climb up the potential hill near to the T,

origin and start slow rollover there. Hence in this model the a(t)=ajex IVERS A ()|, (6)

initial condition for new inflation is realized not due to the Pl

high-temperature symmetry restoration nor for a topological | . ) i o )

reason[30], but by dynamical evolution of the field which Which are valid until the slow-rollover conditionjst| <H?,

has already become sufficiently homogeneous because of tife<3H ¢ etc. break down at around.=maxMp/8m ,4v).

first stage of chaotic inflation. We shall refer this successiortere the suffixi implies the initial value att=t;. The

of inflation simply to chaotic new inflation. e-folding number of (chaoth mflatlonary.expansmn be-
With an appropriate shape of the potential, density fluctween¢ and ¢, N(¢— ¢,), is therefore given by

tuations generated during new inflation can have larger am-

plitude than those during chaotic inflation. Furthermore, T o T

since the power spectrum of fluctuation generated during N(p— de) = M§,|(¢ be)= M§,|¢ ' (@)

new inflation can be tilted, it can have a peak on the comov-

ing Hubble scale when the inflaton enters the slow-rollovekne |atter approximate equality being valid fg#> P2

phase during new inflation. If the peak amplitude is suffi- pe amplitude of linear curvature perturbatidn, gener-

ciently large, it results in formation of PBHs on the horizon 54 on the comoving scale= 2m/k, is given by
mass scale when the corresponding comoving scale reenters

the Hubble radius during radiation domination. We shall o H H2
show below that such a scenario is indeed possible with a q)( | = _> =f—38¢p| =f =fA(t). (8)
simple shape of the inflaton’s potential. k |¢| . 277|£1>| t

k k

The rest of the paper is organized as follows. In Sec. Il we
summarize basic features of chaotic inflation and new infla-H tis th h when th Hersatisfiedk
tion scenarios and in Sec. Il we calculate formation prob- eret, 1s the epoch when the wave numbersatisiied
ability of PBHSs in our model. Then we report the results of - &t H(ti) during inflation[18], and 6¢=H (t)/(2) is
numerical analysis with various potentials in Sec. IV andthe root-mean-square amplitude of fluctuation accumulated

: ; : during one expansion time aroube t,, andf=3/5(2/3) in
. V. Finall VI I . - i k
Sec inally Sec 's devoted to conclusion the matter<(radiation) dominated stage. The above expres-

sion is valid until the comoving scalecrosses the Hubble
IIl. CHAOTIC INFLATION AND NEW INFLATION radius again. In the case with quartic inflaton potential, it

First let us consider two potentials which have a globalreads
minimum at¢=v<Mp,:
o)1 27N (p(t)\2 2N N2 9
O=INTZ My ) "7 VN O

NoJ el 1) X,
chv[d’]:zd’ In ol T U (1)
with Nye=N(¢(t)— ¢e). The large-angular-scale anisot-
N ropy of CMB due to the Sachs-Wolfe effef32] is then
Vowl #]= 7 (670?72 (2 gvenby
. . . 6T 1 H?
The former is the Coleman-Weinberg potenfial], which —=—-P= . . (10
was employed in the original version of the new inflation T 3 107| ¢| .
k

scenarid 15], and the latter is a simple double-well potential.
For $>Mp >v, the both potentials can be apprOX|mat4ed alin the usual case with single stage of inflation one typically
least locally by a simple quartic potentig] ¢]= (A/4) 6" 3kesN, . ~60 and determine the value afusing the Cos-
with X=X In|¢/fv| for the former case, and the evolution of mic Background ExplorefCOBE) datasT/T=1x10"° to
the universe in this regime is practically the same as that ijeld A=2x 10712 [33]. In the case with second stage of
chaotic inflation with the qual’tic potentlﬁﬂ.G] That iS, from inflation the value Okae Corresponding to the scale ob-

the slow-rollover equations of motion, served by COBE can be significantly smaller and the normal-
) ized value of\ can be different. TakindN,.=20 with an-
3H¢p=—-V'[ o], 3 other 40e-folds during new inflation, for example, we find
A=6x10"12
a\?  srx After chaotic inflation, the scalar field starts oscillation
sz(— = V[ ¢], (4) around¢=v if v is too large, or it overshoots the symmetric
a 3Mp, state¢p=0 and approaches the other minimuts —v if v

is too small. Ifv is appropriately chosen at an intermediate
value, on the other hand, it can spend a long enough time
near the origin and then slow-rollover new inflation can set

B(t) = ¢>iexp( _ /ﬁ Mp|(t_ti)), 5) in, which ends up with eithe¢p=v or ¢=—v depending on

the sign of ¢ when classical slow-rollover regime begins.

we find
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We must resort to a precise numerical integration of equa- 3H3 ¢ 3H3 cv

tions of motion to find out what values of to take. N(p— ;)= —2—In & =z n— 5 17
Before doing this, let us review the basic properties of

new inflation, assuming that the slow-rollover starts frgm and curvature perturbation in the slow-rollover regime reads

= ¢, at the epocht=t;. Since the shape of the potential

around the origin is different between the Coleman- 2

Weinberg potential and the double-well potential, we must q)(l):fASR(tk)Ee'fmTOW(()t)
treat them separately. k
First for the former, the potential near the origin can be 3f Hg m?
approximated by =5 m2¢f F{ 3r2 Nkf) (18

N The above classical slow-roll solutidfi6) [and also Eg.
Vewl ¢]=Vo— Z¢4’ (1)  (13) for the Coleman-Weinberg modeis valid only when
classical potential force dominates diffusion due to quantum
fluctuation. In other words, the classical motion during one
expansion timeA ¢=|¢|H ™%, should be larger than the am-
plitude of quantum fluctuation¢=H/(27), accumulated
in the same period. For the potent{ab) this condition reads

with X=X In|¢s/v| andV, readsVo=Xv*/16. The classical
slow-rollover solution satisfies

8’77'\/0

2_142_
H —HO——3M%I, (12 3H3 B X
|¢|>27Tm§=¢q- ( 9)
3H3 3H3

= =~ , (13 If ¢ stays in the regiof| < ¢ for more than one expansion
2N(p— 1) +1  2N(d— ¢y) time, quantum fluctuation will start to dominate the dynam-
ics and the universe enters a self-reproduction regime which
the latter approximate equality being valid fdi=>1. The can last eternally34]. Then the memory of chaotic inflation

>>
ASS
N

curvature perturbation reads would be washed away and our double inflation scenario
would not work.
f S Note that the amplitude of density fluctuation evaluated
O()=—\/ 3 N2, (14)  with the slow-roll approximation exceeds unit}sg(ty)

>1, for [¢| < ¢4. This means that ity entered the slow-roll
A regime in|$|<¢,, we would find the peak amplitude of
whereN; is defined byN,;=N(&(t) — ¢¢). Sinceh isno  density fluctuation larger than unity. Since our goal is to
larger than~ 20\~ 101 the resultant curvature perturba- produce a spectrum of density fluctuation whose amplitude
tion is at most of order of 10* for N,;<60. Hence chaotic at the peak is at mosP(10~?), we should arrange model
new inflation with the Coleman-Weinberg potential is not parameters so that crosses over the regidsb|<¢q rapidly
suitable to produce large enough density perturbation oenough to ensurA(t,)<Agg(ty) in this period and to avoid
small scale to warrant significant formation of primordial self-reproduction, og should reverse its direction of motion

black holes. before reachingb= ¢4 . In either case, as long as we choose
Next we consider new inflation with the double-well po- the model parameters so that the peak amplitude of fluctua-
tential (2), which can be approximated as tion is O(10™2), we can automatically avoid the dangerous

self-reproduction in the new inflation regime.
1 Equation (18) implies the spectral index of power-law
Vowl ¢1=Vo— §m2¢2, (15  density fluctuation is given by
m2
with Vo= (A /4)v* and m?=\v?, but for later convenience n=1— 3H2<1 (20)
we treat as iV, andm? were free parameters. The classical

slow roll-over solution reads Thus the power spectrum can be significantly tilted. The lin-
ear perturbation has a peak amplitude

m2
¢(t):¢seXF{WHO(t_ts)}a H2 Ho
0
max @ =3f — 5—~ b (21)
H2= 877\/0, a(t)~eHot, (16 ©On the comoving scales=2mn/ks whereks=a(ts)H(ts). It
3|V| can be large ifp turns out to be small. Since the coupling

constant is determined by COBE observation, we have es-
Inflation ends atp= ¢¢=cv with ¢ being a constant of order sentially one parameter,, which determines not only the
of 0.1, so we find ratio H%/m2 but also¢,. Hence we must await the result of

083510-3



JUN’ICHI YOKOYAMA PHYSICAL REVIEW D 58 083510

numerical solution of the equations of motion in order to see 1

if this model realizes large enough density perturbation on [ ¢,7]= —exp( -

cosmologically interesting scales. V2ma(7)
Before proceeding to the numerical analysis, we next cal-

(¢—¢c|(7))2)
a?(7) ’

culate the abundance, if at all, of the PBHs produced due to =t—t, (27
the potentially large fluctuations generated in the new infla-
tion regime with the potentiall5). with
2
Ill. ABUNDANCE OF PRIMORDIAL BLACK HOLES m
dei(7)= d’sexi{ 3H ) (28)

The initial fraction of the PBHs with maskl, 8(M),
produced during radiation dominated era has been estimated

by Carr[3] as 3H4

2m
;{stHor) 1}. (29

1
ﬁ(M)z&(M)exr{ B 1857(M))' (22) This does not imply, however, that the resultant abun-
dance of PBHs are given in the for(@2), because of the

assuming the density fluctuation is Gaussian distributed witftonlinear dependence of the metric perturbations. Following
the root-mean- square at the horizon Cr055|ng g|veﬁ(m) lvanov [36] we write the coarse- gralned metric in the qU&Sl'
Since PBHs are formed at high density peaks with1/3,  isotropic form
however, possible non-Gaussian effect on the tail may sig-
nificantly affect the estimation of their abundance, as was ds?=—dt?+a?( $(t,x))dx?, (30
first pointed out by Bullock and Prima¢R2]. Here we esti-

mate the abundance of PBHs produced in our model by caly e the scale factdr now depends on the coarse-grained

culating th? probabll!ty distribution funcUo(PDF)_ of t.he spatial coordinate as well, and quantify the metric perturba-
coarse-grained field in terms of the stochastic inflation ap:

proach[35], following more recent analysis by lvan¢86]. tion in terms of
Since our model predicts a relatively sharp peak at the

scalel ; corresponding to the onset of slow-rollover we esti- A (1,%)

mate the abundance of PBHSs on this particular scale with the a(t)

potential

o¥(1)= 52

Q>

-1, (30)

which is frozen in the super-Hubble scales. In the lifmit
V[ $]=Vy— Emzd)z_ (23) <1, ﬁ_reduces to the gauge-invariant growing adiabatic per-
2 turbation[37].
We are interested in the statistical distribution of metric
The scalar field coarse-grained over a super-Hubble scal@erturbation on the comoving scales that leave the Hubble

&(t,x) satisfies the Langevin equation radius in the period between=0 and r=H, ' when the
classical solution has rolled down tapy(7=Hg?)
~ ~ - 2y : . .

3Hod+ V' [$]=q(t,), (24) —¢Sexp(mZ/3Ho)—¢sl. While the amplitude of the metric

perturbation is determined by the duration of inflation in
each region, it is not straightforward to extract perturbation
'on these particular scales in the present approach in which
nonlinear effects are at least partially taken into account. In
9HS this situation, in order to obtain the PDF for the duration of
/ _o inflation in a specific regime, lvandB6] proposed to solve
{a(tx)q(t ’X)>_W6(t ). (25) the Fokker-Planck equatiof26) with the initial condition
I1[ ¢,0]= 6(¢— ¢s) and the absorbtive boundary condition

Since the potential is a quadratic function, the PDRbof  até=da(7=Ho "), and to identify the probability curredt
II[ = ¢,t] remains Gaussian as long as the initial distribu- in Eq. (26) with the desired PDF, from which he finds the
tion is also Gaussian. For example, starting with the PDFPDF ofh, P[h], as
II[ ¢,ts]= 8(¢p— ¢s) and solving the Fokker-Planck equa-
tion . 1 Ng

M_ 10 e HS LU B V2ma2l N
T 3Hg a6 WM gz 5g (O p( (N—Ncu)z) aN
xexg — —————| —, (32)

with the boundary conditiobl[ ¢— *=,t]=0, we find

with the temporal correlation function of the stochastic force
q(t,x), given by
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in the case with a linear potential, whekeis the e-folding o y(1+h)~1
. - - H P =
number of expansion while the classical solution allows the [h] Twc2[<1+h)27—e—27]1/2

e-folding number ofN,, to which we put unity hereéh and

R [(1+h)7—1]?
N are related by ><exp{ T 21 )T —e 7|’ (37
h=exp(N—Ng)—1. (33 .
with
Since our potential is more complicated, it is cumbersome 4 )
to adopt the same procedure. So we instead use the solution 2= 3Hy 5, and y= lz (38)
(27) and obtain the PDF of the duration of inflation Whﬂﬁe 8772m2¢>3 3Hg

evolves fromes 10 ¢s, 7, simply assuming tha,'bAsatisfies Since ¢ is slowly rolling at ¢= ¢ one can also write? in
the classical equation of motion at the momebt ;. terms ofA as
Then we find the PDF of as

Y Y
o m e c?=ZA%(t)=7AS. (39
th= ]_3H§1+h o _ _
In the limit of smallh it properly reduces to Gaussian:
1
XII| ¢ps1, = (1+In(1+h))|. (39
Ho Y

P[h]—

V2w (1—e 27)
Before proceeding to the calculation of PBH abundance, -
we mention the relation between this approach and Ivanov’s Xexr{ _ yh } (40)
result(32). If we follow the same procedure as above for a 2c%(1-e )|
linear potential we obtain explicitly
If we further take the limity— 0, it reduces to a more famil-
1 iar form:

P[h]= ——
V27A2N 1 210x2
P[h]— e "2s, (41)
(R=Ng2) di V2mAs
Xexp ————| —. (35 .
2A2N dh From Eq.(37) the probability thath exceeds a threshold
valuehy, is estimated as
Thus the only difference to Eq32) is the absence of a PLh>hy]
prefactorN,, /N. One may also be tempted to define the PDF th
for 7 from the probability curren using a solution analo- _ f“ P[h]dh
gous to Eq.(27) but with a linear potential. In this case one he
would find
c [(1+hg)?Y—e 2%
o= ——— 14 &) " V2w (L ) (L Py = L1+ Dy =€ 2]
N 270 V2 2N
2mAN [(1+ )7~ 117
. 2\ e exp — — , (42
(N=N¢)?)| dN 2¢*[(1+hy)?7—e"?7]
Xexp ————| —. (36)
2A%2N ) dh

which is insensitive to the upper end of integral since the
_dominant contribution comes frotm=h,,,. The criterion for
Again we only have an extra prefactor of order of unity. pjack hole formation has been numerically investigated by
Since the deviation betweéwh andN¢, is not expected to be Nadegin, Novikov, and Polnare\88] and by Biknell and
too large in our case, unlike in the situation of eternallyHenriksen[39]. Although it depends on the shape of the
self-reproducing inflationary univerg®4], all of the above perturbed region, the generic value of the threshold reads
three approaches will yield essentially the same result as fdr,,>0.75-0.9. We take the black hole threshold Bhg;,

as the rare PBH formation is concerned. This also implies=0.75.

that our semi-nonlinear approach suffices to the present Putting h;,=h;, we can identify Eq(42) with the frac-

problem. tion of primordial black holes,
We now proceed to evaluation of the fraction of PBHs
produced using Eq.34), which is explicitly written as B(Mg)=P[h>hy], (43
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where the typical black hole madd,q, is equal to the hori- is substantially larger than unity. As a result the magnitude

zon mass when the comoving scélereenters the Hubble of density fluctuations produced in this regime remains

radius. Note that since our model predicts density fluctuatiosmall: A=(10"°) with COBE-normalized self coupling

which is highly peaked on the comoving schi¢he resultant A=3x10 13,

mass function of PBHs are sharply peaked at the mass We thus find neither the Coleman-Weinberg potential

aroundMj. nor the double-well potentigR) lead to formation of large-
amplitude density fluctuations on currently observable scales
in the chaotic new inflation scenario. But the reasons of their

IV. NUMERICAL ANALYSIS OF CHAOTIC NEW failures are opposite; with the Coleman-Weinberg potential,
INFLATION WITH THE SIMPLEST POTENTIALS the field moves too slowly and the scales with large-
We now proceed to the numerical analysis of the equag:\mplltude quctuat_lons are mflated'away, while .Wlth the
tions of motion for the homogeneous part: doutl)lle-well potentialgp moves so rapidly thak remains too
small.
B(t)+3Hp+V'[$]=0, (44) V. PBH FORMATION IN CHAOTIC NEW INFLATION

The above observation naturally leads us to consider a
different class of potential including another free parameter:

2
%+V[¢]). (45)

a)Z—HZt— 7
a ()_3sz|

1
Z +V0, (47)

L
v

1 X
Vul¢l=— §m2¢2+ Z¢4< In
with eitherV[ ¢]1=Veul @] or V[ ¢]1=Vpwl ¢]. One of the
nice features of chaotic inflation is that no matter what initialthat is, typical one-loop effective potential with nonvanish-
configuration is adopted, the system rapidly approaches thieg mass term at the origin. This type of the potential with a
slow-rollover solution with exponential accuracy once infla-positive mass-squared at the origin was employed in the
tion sets in with sufficiently large initial value of. We  original inflation scenari914], but for our purpose we adopt
stress in this sense that the dynamics of the second inflatior negative mass term.
ary phase is independent of the choice of initial condition but The potential(47) has four parameters, but one of them,
is only sensitive to the model parameters of the potential, an¥, is fixed from the requirement that the vacuum energy
unlike in the original version of new inflation fine-tuning of density vanishes at the potential minimupe= * ¢,,,. While
initial condition is not necessary. For our purpose, it is suf-we numerically solve the equatio’'[ ¢,,]=0 and obtain
ficient to take¢p=3.5Mp|—4Mp,. the numerical value oV, so thatV[ ¢,,]=0, we can also

First, for completeness we solve Edd4) and (45) for  cajculate them perturbatively in the casd<Xv?, as
new inflation with the Coleman-Weinberg potentia). We

find that if 0.220Mp;<v<0.225Mp, at least tene-folds m2 3/ m?\?
inflationary (acceleratedexpansion witHH| <H? is realized $m=v| 1+ F 5 F Tl (48)
independent of the value ofx. For 0.22281p<v v v
<0.223Mp, we have more than 6@-folds new inflation ~ 4
and in this case the chaotic inflation regime would be inflated A, m

. Vo= —v*+-—mav+ —+--. (49
beyond our current Hubble radius. In any case, as we men- 16 2 X

tioned in Sec. Il we cannot obtain large-amplitude fluctua-
tions in the observable scale in this model.

Next we report the case of the double-well potentizl
In this case we find, independent of the value\pthat the
field settles down to the positive minimum i

Another parameter, say, can be fixed from the amplitude
of large-scale CMB fluctuations using the COBE data as
before. Hence we are essentially left with two free param-
. . . eters,v and m. While v mainly controls the speed ab
Z?'16$8672M pi and it overihoots ;he orgin toha negliatlve around the origin and its fate, i.e., to which minimum it falls,
value forv=<0.1628675Mp=v,. If v is much smaller 40 mainly governs the duration of new inflation, the en-

thanve,, ¢ will travel between positive and negative values o qvnamics is determined by a complicated interplay of the
several times before settling down to one of the minima, bu%hree parameters. For example, we cannot deterfinatil

we do not consider this possibility here. lculate the durati f flati hich also d
Forv=v,,, we find the vacuum energy at the origin in- W€ calcuale the duration ot new nfiation-which aiso de-

duces inflationary expansion which lasts only about fivePends on\ itself for fixed values ofn andv. Hence we must
e-folds. This is because the curvature of the potential at th@umerically solve the equations of motion iteratively to find
origin is so large that the universe cannot stay in the slow®ut appropriate values of parameters to produce PBHs at the

roll phase as is seen from the fact that the ratio right scale with the right amount. _
Let us now consider a specific example of formation of

) 1 (M2 MACHO-PBHSs. For this purpose we must realize a peak
m i ~10 10 i = _
2 ( p|) ~6.00, (46)  With B~10"*on the comoving Hubble scale Bit=35. Af

- )" on the S
3Hy 27\ ver ter some iterative trials we have choskr3x10 2 and

083510-6



CHAOTIC NEW INFLATION AND FORMATION OF . .. PHYSICAL REVIEW D 58 083510

35 T - - - - T tion A has the right amplitude on large scales to meet the
COBE observation, and it has a peak on the comoving
Hubble scale ath= ¢5. We find N(ps— ¢¢) = 35, which is

3| J

o5l i the right scale for MACHO-PBHSs.
In this case we findy=0.300590 and the abundance of
2t ] the PBHs at formation reads
g 1 1 B=2.2% exp(—0.0196994 2), (50)

with h,,=0.75. Forgs= ¢ we find the peak abundance of
o5l | PBH, 8=6x10 1% at the mass scal=1M .1 Using Eq.
(39) we can also write it as

\ B=0.888\, exp(—0.131072_?). (51)

5 6
log(ti . .
ogime) One can also obtain an approximate shape of the mass

FIG. 1. Evolution of the inflaton in chaotic new inflation with Spectrum of the PBHs using E(1) with A replaced byA
X=3X10"12 m=6x108Mp,, and v=0.2138436M,,. Time at different epoch corresponding to different black hole
and ¢ are displayed in units of the Planck time akth,, respec- Mass. More specifically the mass of black holbs, and
tively. their initial fraction, B(M), can be written by an implicit

function of ¢ as

m=6x10"8Mp,, and then solved the equation of motion

for various values ob. In this choice ofA andm we find
new inflation lasts for more than temfolds expansion if we -2

. M)=0.888\(¢)exp(—0.131072A ,
takev in the rangev =0.213Mp,—0.214Mp,. Hence we AM) ($lexn (¢)
do not need much fine-tuning of the model parameters to

realize a new inflationary stage itself. We also find tfat whereK is a factor of order of unity which depends on the
settles down tap,, classically ifv=0.21384363B1p; and to  expansion law of the post-inflationary universe but we put
—¢m if v<0.21384363Mp,. If, on the other hand, we K=1 for simplicity below.
choose v in the range 0.21384368P<v Figure 3 depicts the mass spectrum of black holes ob-
<0.21384363Mp,, ¢ spends more than one expansion timetained from Eqs(52) and (53). Thus the PBH abundance is
in the region |¢|<¢,=3.4x10"°Mp, and the universe sharply peaked. Note, however, that the shape of the large-
would enter the self-reproduction regime. mass tail is not exactly correct which corresponds to the
Figures 1 and 2 depict evolution of the scale factor andegime where slow-roll solution is invalid. Nonetheless this
the inflaton ¢, respectively, for the casev figure correctly describes the location of the peak.
=0.2138436Mp=vy with the initial conditiona;=1 at Apart from the effects of inflaton’s detailed dynamics,
¢;=3.5Mp,. The chaotic inflation ends a=0.89Mp, and  however, we must say that the above spectrum is only quali-
new inflationary expansion sets in &#t=0.082Mp, but the tatively correct, because we have chosen a specific value of
slow roll-over phase starts only at;=—4.03<10" My, the thresholdh,,,=0.75, and assumed the black hole mass is
=¢y . In this caseg is found to stay in the regiong| equal to the horizon mass when the perturbed region reen-
< ¢4 for only about 0.1 expansion time. The linear perturba-tered the Hubble radiuésee alsd40,41)). In order to im-
prove the calculation of the mass spectrum we must calculate
90 . . . . : : the probability distribution functional of the configuration of
the perturbed region and then calculate the final mass of the
black hole, if formed, for each configuration, which is be-

M=K exp(2[N(¢— ¢¢) —35))Mo, (52)

(53

80
70

60 -
ln obtaining Eq. (50) we have started withII[¢,t=t]=
8(¢p— ¢s) in order to extract information on a specific mass scale.
This also corresponds to treating thaevolves along the classical
trajectory until¢= ¢4, which is correct only as an average. In fact,
due to quantum fluctuations generated during chaotic inflation and
the early stage of new inflation)s itself takes different values in
different domains. We have confirmed, however, #hashifts only
about=4H,/(27) even if we consider their effects. Since we find
|pm|=>4H/(27), it does not induce significant fluctuations fh
8 9 For the same reason we are free from the domain wall problem
which could be present i had a large fluctuation and different
FIG. 2. Evolution of the scale factor with the same parametersregions fell different minima.
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-5 r T r r T VI. CONCLUSION

In the present paper we proposed a new scenario of
-0t . double inflation which contains only one inflation-driving
scalar field, that is, we pointed out that a scalar potential
which has an unstable local maximum at the origin can not
only realize new and chaotic inflation separately but also
accommodate both sequentially if its model parameters are
20} j appropriately chosen with natural initial conditions as em-
ployed in the chaotic inflation scenario. We have further
shown that the spectrum of density fluctuation in this model
can have a large-amplitude peak on the comoving Hubble
scale at the onset of the slow-roll regime of new inflation and
50 . . . . that this can be applied to formation of PBHs on a specific
25 2 18 TogMass) > 0 05 ' mass scale. This feature of the spectrum is realized naturally
_ _ ~ compared with other models with a single scalar fl@,22
_ FIG. 3. Expected mass spectrum of PBHs in chaotic new inflapacqyse the scalar field is not slowly rolling at the onset of
tion with the same model parameters. Mass is displayed in units oﬁew inflation. On the other hand, we must specify the values
the solar mass. . S
of model parameters with many digits in order to produce an

. appropriate amount of PBHs on a desired scale. This feature,
yond the scope of the present analysis. Nevertheless from tl?'néc))wever, is more or less common to all the other models

above analysis we can convince ourselves that we can pr%(ttempting to account for formation of PBHSs in inflationary

duce large enough amplitude of curvature fluctuation on acosmology(see e.g[22]), because both the peak amplitude
desw_ed_ scale in t_he chaotic new 'nf_l‘fit'on scenario. of the fluctuations and its location must be specified with
Within the fimit of our predictability of the mass spec- high accuracy due to the exponential dependence of the
trum, we can also apply our model for the formation of black hole abundance and its mass on the model parameters.
PBHs with different masses and abundance. For example, we On the other hand, one could in principle claim that ob-
ma;; plroduqe PBszGWI\IItFM :'tﬁoiw@ Wh'Cht rgay iCt as &  garvation of PBHs can serve as a strong tool to determine the
(:Nefor_as ,\inglr;e 0 S d\'NI © clu(;[?rf EPSI Y, S&y, parameters in the inflaton’s dynamics. Unfortunately, how-
pc 5 corrﬁsgon _lngogto,8~ at dormat|0n. ever, our ignorance of the detailed condition for PBH forma-
From Eq. (52 we fin M=10"M¢ corresponds tN(bs tion, such as the precise threshold amplitude of fluctuation as
—¢1) =44 and the desired spectrum is realized Xo¢ 3.7 5 fynctional of the shape of perturbed region, makes it im-
x10"", m=6.1x10 "Mp;, andv =0.2153232Mp, under  ,,qgible to link the mass spectrum of PBHs with the shape of
the COBE normall_zanon. o ) the inflaton’s potential precisely. In the present paper we
Another interesting possibility is to produce a tiny amountpaye calculated the values of the model parameters rather
of PBHs whlgh are evaporating right now, with thf3 initial precisely under the universal assumptionhgf,=0.75. In
massM = 10" g. With the current abundand@=10"° of g3t “however, the values of the parameters would totally
B=10"""at formation, they may explain a class of gamma-cpange had we chosen a different threshold. Hence the pre-
ray bursts. In this case we should have only a short period Qfise numbers we have quoted do not have much significance,

slow-roll new inflation, N(¢s— ¢¢)=14. We find =2 ¢ the number of digits simply indicates the sensitivity of
X 10™~° at the right mass scale if we choose=3X10™ ", the mass spectrum to the model parameters.

m=5x108Mp,, andv=0.16557604828! 5, . In this case
a relatively large value afn is required in order to keep new
inflation short, and we cannot necessarily rely on the sto-
chastic inflation method which is valid only {m?|<H2.
This does not mean we cannot generate large enough density The author is grateful to Professor Andrei Linde for use-
fluctuation on the relevant scale. The only problem is we ddul comments and his hospitality at Stanford University,
not have a reliable method to calculate magnitude of fluctuawhere this work was done. This work was partially sup-
tion or black hole abundance accurately in such situations. ported by the Monbusho.

log(Beta)

25| i
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