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Chaotic new inflation and formation of primordial black holes
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It is shown that in a number of scalar potentials with an unstable local maximum at the origin chaotic
inflation is followed by new inflation if model parameters are appropriately chosen. In this model density
fluctuation can have a large-amplitude peak on the comoving Hubble scale at the onset of the slow-roll new
inflation and can result in the formation of an appreciable amount of primordial black holes on astrophysically
interesting mass scales.@S0556-2821~98!09318-7#

PACS number~s!: 98.80.Cq, 04.70.Bw
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I. INTRODUCTION

If overdensity of order of unity exists in the hot ear
universe, a black hole can be formed when the pertur
region enters the Hubble radius. While the properties of
primordial black holes~PBHs! thus produced were a subje
of extensive study decades ago@1,2#, there was no observa
tional evidence of their existence and only observatio
constraints were obtained against their mass spectrum@3,4#.
Recently, however, the possibility of their existence has b
raised from a number of astrophysical and cosmological c
siderations and there is an increasing interest in it.

For example, they may be the origin of the massive co
pact halo objects~MACHOs! which are dark compact ob
jects with a typical mass;1M ( and make up abou
O(1022) of the critical density@5#. While the primary MA-
CHO candidates are substellar baryonic objects such
brown dwarfs, it is difficult to reconcile such a large amou
of these objects with the observed mass function of low m
stars@6# and with the infrared observation of dwarf comp
nents @7#, unless the mass function is extrapolated to
lower masses in an extremely peculiar manner of Pop
stars are produced abundantly at the relevant mass scal@8#.
Hence we should consider PBHs seriously as the second
tion. Furthermore this possibility can be experimenta
tested by observing gravitational radiation from coalesc
black hole MACHO binaries by laser interferometers@9#.

Another interesting possibility is PBHs with massM
;1015 g which are just evaporating now@10#. It has been
argued that high energy phenomenon associated with ev
ration can explain origin of a class of gamma-ray burst. F
this purpose their abundance should be aroundV51028 in
unit of the critical density@11#.

One may also consider formation of much heavier bla
holes with massM;108M ( . Such black holes are expecte
to exist in the center of AGNs and quasars@12# and act as an
engine of their activity. Although it is generally believed th
these black holes are formed after recombination with a s
cially arranged spectrum of density fluctuations@13#, it might
be interesting to consider the possibility that they were
primordial origin, which might lead to a new scenario
galaxy formation.

In any case, in order to produce PBHs on some spec
scale, we must prepare density perturbation whose ampli
0556-2821/98/58~8!/083510~9!/$15.00 58 0835
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has a high peak ofO(1022) on the corresponding scale. It i
difficult, however, to realize such a spectral shape in in
tionary cosmology@14–17#, which is not only indispensable
to solve the horizon and the flatness problems but also
most sensible way to generate density perturbations@18#, be-
cause usual models predict a scale-invariant spectrum. G
the smallness of the observed anisotropy of the cosmic
crowave background radiation~CMB! @19#, the amplitude of
primordial density fluctuation turns out to beO(1025) on
any observable scales in most common models.

It is possible, nevertheless, to realize a non-scale-invar
spectrum by choosing somewhat contrived forms of the
flaton’s potential. While examples of the various perturb
tion spectrum realized in different potentials are found
@20#, we must admit that few of the models giving non-sca
invariant spectrum with a single scalar field has a motivat
in sensible particle physics. In particular, the model propo
by Ivanovet al. @21# in order to produce significant amoun
of PBHs employs a scalar potential with two breaks and
plateau in between. Several other toy potentials have
been studied in@22#.

One can construct more natural inflation models for PB
formation if one allows multiple scalar fields. Some of the
make use of primordially isocurvature fluctuations@23#, oth-
ers include multiple stages of inflation with each regime go
erned by different field@24–27#. We must assign appropriat
form of coupling of the scalar fields in each model, whi
may not always be easy.

In the present paper, we propose a new scenario of m
tiple inflation which, unlike previous double inflation mode
@24–28#, contains only one source of inflation. In this mod
we employ in the Einstein gravity an inflaton scalar field,f,
with a simple potential,V@f#, which has an unstable loca
maximum at the origin, such as a quartic double-well pot
tial. This is the same setup as the new inflation scenario@15#,
but chaotic inflation is also possible if thef has a sufficiently
large amplitude initially. In fact Kung and Brandenberg
@29# studied the initial distribution of a scalar field with suc
a potential and concluded that chaotic inflation is much m
likely than new inflation. Thus we also start with chaot
inflation, but show that new inflation is also possible whenf
evolves towards the origin after chaotic inflation if the p
rameters of the potential is appropriately chosen so that
scalar field has the right amount of kinetic energy after c
© 1998 The American Physical Society10-1
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otic inflation in order to climb up the potential hill near to th
origin and start slow rollover there. Hence in this model t
initial condition for new inflation is realized not due to th
high-temperature symmetry restoration nor for a topolog
reason@30#, but by dynamical evolution of the field whic
has already become sufficiently homogeneous because o
first stage of chaotic inflation. We shall refer this success
of inflation simply to chaotic new inflation.

With an appropriate shape of the potential, density fl
tuations generated during new inflation can have larger
plitude than those during chaotic inflation. Furthermo
since the power spectrum of fluctuation generated du
new inflation can be tilted, it can have a peak on the com
ing Hubble scale when the inflaton enters the slow-rollo
phase during new inflation. If the peak amplitude is su
ciently large, it results in formation of PBHs on the horizo
mass scale when the corresponding comoving scale ree
the Hubble radius during radiation domination. We sh
show below that such a scenario is indeed possible wi
simple shape of the inflaton’s potential.

The rest of the paper is organized as follows. In Sec. II
summarize basic features of chaotic inflation and new in
tion scenarios and in Sec. III we calculate formation pro
ability of PBHs in our model. Then we report the results
numerical analysis with various potentials in Sec. IV a
Sec. V. Finally Sec. VI is devoted to conclusion.

II. CHAOTIC INFLATION AND NEW INFLATION

First let us consider two potentials which have a glo
minimum atf5v,M Pl :

VCW@f#5
l̃

4
f4S lnU f

v U2 1

4D1
l̃

16
v4, ~1!

VDW@f#5
l

4
~f22v2!2. ~2!

The former is the Coleman-Weinberg potential@31#, which
was employed in the original version of the new inflati
scenario@15#, and the latter is a simple double-well potenti
For f@M Pl.v, the both potentials can be approximated
least locally by a simple quartic potentialV@f#5 (l/4) f4

with l.l̃ lnuf/vu for the former case, and the evolution
the universe in this regime is practically the same as tha
chaotic inflation with the quartic potential@16#. That is, from
the slow-rollover equations of motion,

3Hḟ52V8@f#, ~3!

H25S ȧ

a
D 2

5
8p

3M Pl
2 V@f#, ~4!

we find

f~ t !5f iexpS 2A l

6p
M Pl~ t2t i ! D , ~5!
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a~ t !5aiexpF p

M Pl
2 ~f i

22f2~ t !!G , ~6!

which are valid until the slow-rollover conditionsuḢu!H2,
f̈!3Hḟ etc. break down at aroundfe.max(MPl/8p ,4v).
Here the suffix i implies the initial value att5t i . The
e-folding number of ~chaotic! inflationary expansion be
tweenf andfe , N(f→fe), is therefore given by

N~f→fe!5
p

M Pl
2 ~f22fe

2!.
p

M Pl
2 f2, ~7!

the latter approximate equality being valid forf2@fe
2 .

The amplitude of linear curvature perturbation,F, gener-
ated on the comoving scale,l 52p/k, is given by

FS l 5
2p

k
D 5 f

H

uḟu
dfU

tk

5 f
H2

2puḟu
U

tk

[ f D~ tk!. ~8!

Here tk is the epoch when the wave numberk satisfiedk
5a(tk)H(tk) during inflation@18#, anddf5H(tk)/(2p) is
the root-mean-square amplitude of fluctuation accumula
during one expansion time aroundt5tk , and f 53/5(2/3) in
the matter-~radiation-! dominated stage. The above expre
sion is valid until the comoving scalel crosses the Hubble
radius again. In the case with quartic inflaton potential
reads

F~ l !5 fA2pl

3 S f~ tk!

M Pl
D 3

.
f

p
A2l

3
Nke

3/2, ~9!

with Nke[N(f(tk)→fe). The large-angular-scale aniso
ropy of CMB due to the Sachs-Wolfe effect@32# is then
given by

dT

T
5

1

3
F5

H2

10puḟu
U

tk

. ~10!

In the usual case with single stage of inflation one typica
takesNke.60 and determine the value ofl using the Cos-
mic Background Explorer~COBE! datadT/T.131025 to
yield l.2310213 @33#. In the case with second stage
inflation the value ofNke corresponding to the scale ob
served by COBE can be significantly smaller and the norm
ized value ofl can be different. TakingNke520 with an-
other 40e-folds during new inflation, for example, we fin
l.6310212.

After chaotic inflation, the scalar field starts oscillatio
aroundf5v if v is too large, or it overshoots the symmetr
statef50 and approaches the other minimumf52v if v
is too small. Ifv is appropriately chosen at an intermedia
value, on the other hand, it can spend a long enough t
near the origin and then slow-rollover new inflation can
in, which ends up with eitherf5v or f52v depending on
the sign off when classical slow-rollover regime begin
0-2
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We must resort to a precise numerical integration of eq
tions of motion to find out what values ofv to take.

Before doing this, let us review the basic properties
new inflation, assuming that the slow-rollover starts fromf
5fs at the epocht5ts . Since the shape of the potenti
around the origin is different between the Colema
Weinberg potential and the double-well potential, we m
treat them separately.

First for the former, the potential near the origin can
approximated by

VCW@f#.V02
l̂

4
f4, ~11!

with l̂5l̃ lnufs/vu andV0 readsV05l̃v4/16. The classical
slow-rollover solution satisfies

H25H0
25

8pV0

3M Pl
2 , ~12!

l̂f25
3H0

2

2N~f→f f !11
.

3H0
2

2N~f→f f !
, ~13!

the latter approximate equality being valid forN@1. The
curvature perturbation reads

F~ l !5
f

p
A2l̂

3
Nk f

3/2, ~14!

whereNk f is defined byNk f[N(f(tk)→f f). Sincel̂ is no
larger than;20l;10210 the resultant curvature perturba
tion is at most of order of 1024 for Nk f,60. Hence chaotic
new inflation with the Coleman-Weinberg potential is n
suitable to produce large enough density perturbation
small scale to warrant significant formation of primord
black holes.

Next we consider new inflation with the double-well p
tential ~2!, which can be approximated as

VDW@f#.V02
1

2
m2f2, ~15!

with V05(l/4) v4 and m25lv2, but for later convenience
we treat as ifV0 andm2 were free parameters. The classic
slow roll-over solution reads

f~ t !5fsexpF m2

3H0
2 H0~ t2ts!G ,

H0
25

8pV0

3M Pl
2 , a~ t !;eH0t. ~16!

Inflation ends atf5f f[cv with c being a constant of orde
of 0.1, so we find
08351
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N~f→f f !5
3H0

2

m2 ln
f f

f
5

3H0
2

m2 ln
cv
f

, ~17!

and curvature perturbation in the slow-rollover regime rea

F~ l !5 f DSR~ tk![3 f
H0

2

m2

H0

2pf~ tk!

5
3 f

2p

H0
3

m2f f
expS m2

3H0
2 Nk fD . ~18!

The above classical slow-roll solution~16! @and also Eq.
~13! for the Coleman-Weinberg model# is valid only when
classical potential force dominates diffusion due to quant
fluctuation. In other words, the classical motion during o
expansion time,Df5uḟuH21, should be larger than the am
plitude of quantum fluctuation,df5H/(2p), accumulated
in the same period. For the potential~15! this condition reads

ufu.
3H0

3

2pm2 [fq . ~19!

If f stays in the regionufu,fq for more than one expansio
time, quantum fluctuation will start to dominate the dyna
ics and the universe enters a self-reproduction regime wh
can last eternally@34#. Then the memory of chaotic inflation
would be washed away and our double inflation scena
would not work.

Note that the amplitude of density fluctuation evaluat
with the slow-roll approximation exceeds unity,DSR(tk)
.1, for ufu,fq . This means that iff entered the slow-roll
regime in ufu,fq , we would find the peak amplitude o
density fluctuation larger than unity. Since our goal is
produce a spectrum of density fluctuation whose amplitu
at the peak is at mostO(1022), we should arrange mode
parameters so thatf crosses over the regionufu,fq rapidly
enough to ensureD(tk)!DSR(tk) in this period and to avoid
self-reproduction, orf should reverse its direction of motio
before reachingf5fq . In either case, as long as we choo
the model parameters so that the peak amplitude of fluc
tion is O(1022), we can automatically avoid the dangero
self-reproduction in the new inflation regime.

Equation ~18! implies the spectral index of power-law
density fluctuation is given by

n512
2m2

3H0
2,1. ~20!

Thus the power spectrum can be significantly tilted. The l
ear perturbation has a peak amplitude

max F53 f
H0

2

m2

H0

2pfs
, ~21!

on the comoving scalel s[2p/ks whereks[a(ts)H(ts). It
can be large iffs turns out to be small. Since the couplin
constant is determined by COBE observation, we have
sentially one parameter,v, which determines not only the
ratio H0

2/m2 but alsofs . Hence we must await the result o
0-3
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JUN’ICHI YOKOYAMA PHYSICAL REVIEW D 58 083510
numerical solution of the equations of motion in order to s
if this model realizes large enough density perturbation
cosmologically interesting scales.

Before proceeding to the numerical analysis, we next c
culate the abundance, if at all, of the PBHs produced du
the potentially large fluctuations generated in the new in
tion regime with the potential~15!.

III. ABUNDANCE OF PRIMORDIAL BLACK HOLES

The initial fraction of the PBHs with massM , b(M ),
produced during radiation dominated era has been estim
by Carr @3# as

b~M !.d~M !expS 2
1

18d2~M ! D , ~22!

assuming the density fluctuation is Gaussian distributed w
the root-mean-square at the horizon crossing given byd(M ).
Since PBHs are formed at high density peaks withd*1/3,
however, possible non-Gaussian effect on the tail may
nificantly affect the estimation of their abundance, as w
first pointed out by Bullock and Primack@22#. Here we esti-
mate the abundance of PBHs produced in our model by
culating the probability distribution function~PDF! of the
coarse-grained field in terms of the stochastic inflation
proach@35#, following more recent analysis by Ivanov@36#.

Since our model predicts a relatively sharp peak at
scalel s corresponding to the onset of slow-rollover we es
mate the abundance of PBHs on this particular scale with
potential

V@f#5V02
1

2
m2f2. ~23!

The scalar field coarse-grained over a super-Hubble sc
f̂(t,x) satisfies the Langevin equation

3H0ḟ̂1V8@f̂#5q~ t,x!, ~24!

with the temporal correlation function of the stochastic for
q(t,x), given by

^q~ t,x!q~ t8,x!&5
9H0

5

4p2 d~ t2t8!. ~25!

Since the potential is a quadratic function, the PDF off̂,
P@f̂5f,t# remains Gaussian as long as the initial distrib
tion is also Gaussian. For example, starting with the P
P@f,ts#5d(f2fs) and solving the Fokker-Planck equ
tion

]P

]t
5

1

3H0

]

]f
V8@f#P1

H0
3

8p2

]2P

]f2 [2
]J

]f
, ~26!

with the boundary conditionP@f→6`,t#50, we find
08351
e
n

l-
to
-

ted

th

g-
s

l-

-

e
-
e

le,

,

-
F

P@f,t#5
1

A2ps~t!
expS 2

~f2fcl~t!!2

2s2~t! D ,

t[t2ts , ~27!

with

fcl~t!5fsexpS m2

3H0
2 H0t D , ~28!

s2~t!5
3H0

4

8p2m2 FexpS 2m2

3H0
2 H0t D 21G . ~29!

This does not imply, however, that the resultant abu
dance of PBHs are given in the form~22!, because of the
nonlinear dependence of the metric perturbations. Follow
Ivanov @36#, we write the coarse-grained metric in the qua
isotropic form

ds252dt21â2~f̂~ t,x!!dx2, ~30!

where the scale factorâ now depends on the coarse-grain
spatial coordinate as well, and quantify the metric pertur
tion in terms of

ĥ[
â~ t,x!

a~ t !
21, ~31!

which is frozen in the super-Hubble scales. In the limitĥ

!1, ĥ reduces to the gauge-invariant growing adiabatic p
turbation@37#.

We are interested in the statistical distribution of met
perturbation on the comoving scales that leave the Hub
radius in the period betweent50 and t.H0

21 when the
classical solution has rolled down tofcl(t5H0

21)
5fsexp(m2/3H0

2)[fs1 . While the amplitude of the metric
perturbation is determined by the duration of inflation
each region, it is not straightforward to extract perturbat
on these particular scales in the present approach in w
nonlinear effects are at least partially taken into account
this situation, in order to obtain the PDF for the duration
inflation in a specific regime, Ivanov@36# proposed to solve
the Fokker-Planck equation~26! with the initial condition
P@f,0#5d(f2fs) and the absorbtive boundary conditio
at f5fcl(t5H0

21), and to identify the probability currentJ
in Eq. ~26! with the desired PDF, from which he finds th
PDF of ĥ, P@ ĥ#, as

P@ ĥ#5
1

A2pD2N̂

Ncl

N̂

3expS 2
~N̂2Ncl!

2

2D2N̂
D dN̂

dĥ
, ~32!
0-4
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in the case with a linear potential, whereN̂ is thee-folding
number of expansion while the classical solution allows
e-folding number ofNcl , to which we put unity here.ĥ and
N̂ are related by

ĥ5exp~N̂2Ncl!21. ~33!

Since our potential is more complicated, it is cumberso
to adopt the same procedure. So we instead use the sol
~27! and obtain the PDF of the duration of inflation whilef̂

evolves fromfs to fs1 , t̂, simply assuming thatf̂ satisfies
the classical equation of motion at the momentf̂5fs1 .
Then we find the PDF ofĥ as

P@ ĥ5h#5
m2

3H0
2

fs1

11h

3PFfs1 ,
1

H0
~11 ln~11h!!G . ~34!

Before proceeding to the calculation of PBH abundan
we mention the relation between this approach and Ivano
result ~32!. If we follow the same procedure as above for
linear potential we obtain explicitly

P@ ĥ#5
1

A2pD2N̂

3expS 2
~N̂2Ncl!

2

2D2N̂
D dN̂

dh
. ~35!

Thus the only difference to Eq.~32! is the absence of a
prefactorNcl /N̂. One may also be tempted to define the P
for t̂ from the probability currentJ using a solution analo
gous to Eq.~27! but with a linear potential. In this case on
would find

P@ ĥ#5
1

A2pD2N̂
S 1

2
1

Ncl

2N̂
D

3expS 2
~N̂2Ncl!

2

2D2N̂
D dN̂

dh
. ~36!

Again we only have an extra prefactor of order of uni
Since the deviation betweenN̂ andNcl is not expected to be
too large in our case, unlike in the situation of eterna
self-reproducing inflationary universe@34#, all of the above
three approaches will yield essentially the same result as
as the rare PBH formation is concerned. This also imp
that our semi-nonlinear approach suffices to the pres
problem.

We now proceed to evaluation of the fraction of PBH
produced using Eq.~34!, which is explicitly written as
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P@h#5
g~11h!21

A2pc2@~11h!2g2e22g#1/2

3expH 2
@~11h!g21#2

2c2@~11h!2g2e22g#J , ~37!

with

c2[
3H0

4

8p2m2fs
2 , and g[

m2

3H0
2 . ~38!

Sincef is slowly rolling atf5fs one can also writec2 in
terms ofD as

c25
g

2
D2~ ts![

g

2
Ds

2 . ~39!

In the limit of smallh it properly reduces to Gaussian:

P@h#→
g

A2pc2~12e22g!

3expF2
g2h2

2c2~12e22g!G . ~40!

If we further take the limitg→0, it reduces to a more famil
iar form:

P@h#→
1

A2pDs
2

e2h2/2Ds
2
. ~41!

From Eq.~37! the probability thath exceeds a threshold
valuehth is estimated as

P@h.hth#

5E
hth

`

P@h#dh

.
c

A2p

@~11hth!2g2e22g#3/2

~11hth!g@~11hth!g21#@~11hth!g2e22g#

3expH 2
@~11hth!g21#2

2c2@~11hth!2g2e22g#
J , ~42!

which is insensitive to the upper end of integral since
dominant contribution comes fromh.hth . The criterion for
black hole formation has been numerically investigated
Nadegin, Novikov, and Polnarev@38# and by Biknell and
Henriksen@39#. Although it depends on the shape of th
perturbed region, the generic value of the threshold re
hth.0.7520.9. We take the black hole threshold ashbh
50.75.

Putting hth5hbh we can identify Eq.~42! with the frac-
tion of primordial black holes,

b~Ms!5P@h.hbh#, ~43!
0-5
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JUN’ICHI YOKOYAMA PHYSICAL REVIEW D 58 083510
where the typical black hole mass,Ms , is equal to the hori-
zon mass when the comoving scalel s reenters the Hubble
radius. Note that since our model predicts density fluctua
which is highly peaked on the comoving scalel s the resultant
mass function of PBHs are sharply peaked at the m
aroundMs .

IV. NUMERICAL ANALYSIS OF CHAOTIC NEW
INFLATION WITH THE SIMPLEST POTENTIALS

We now proceed to the numerical analysis of the eq
tions of motion for the homogeneous part:

f̈~ t !13Hḟ1V8@f#50, ~44!

S ȧ

a
D 2

5H2~ t !5
8p

3M Pl
2 S ḟ2

2
1V@f# D , ~45!

with eitherV@f#5VCW@f# or V@f#5VDW@f#. One of the
nice features of chaotic inflation is that no matter what init
configuration is adopted, the system rapidly approaches
slow-rollover solution with exponential accuracy once infl
tion sets in with sufficiently large initial value off. We
stress in this sense that the dynamics of the second infla
ary phase is independent of the choice of initial condition
is only sensitive to the model parameters of the potential,
unlike in the original version of new inflation fine-tuning o
initial condition is not necessary. For our purpose, it is s
ficient to takef*3.5M Pl24M Pl .

First, for completeness we solve Eqs.~44! and ~45! for
new inflation with the Coleman-Weinberg potential~1!. We
find that if 0.2201M Pl,v,0.2259M Pl at least tene-folds
inflationary~accelerated! expansion withuḢu,H2 is realized
independent of the value ofl̃. For 0.2223M Pl,v
,0.2239M Pl we have more than 60e-folds new inflation
and in this case the chaotic inflation regime would be infla
beyond our current Hubble radius. In any case, as we m
tioned in Sec. II we cannot obtain large-amplitude fluctu
tions in the observable scale in this model.

Next we report the case of the double-well potential~2!.
In this case we find, independent of the value ofl, that the
field settles down to the positive minimum ifv
>0.16286751M Pl and it overshoots the origin to a negativ
value for v<0.16286750M Pl[vcr . If v is much smaller
thanvcr , f will travel between positive and negative valu
several times before settling down to one of the minima,
we do not consider this possibility here.

For v.vcr , we find the vacuum energy at the origin in
duces inflationary expansion which lasts only about fi
e-folds. This is because the curvature of the potential at
origin is so large that the universe cannot stay in the slo
roll phase as is seen from the fact that the ratio

m2

3H0
2 5

1

2p S M Pl

vcr
D 2

.6.00, ~46!
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is substantially larger than unity. As a result the magnitu
of density fluctuations produced in this regime rema
small: D5O(1025) with COBE-normalized self coupling
l53310213.

We thus find neither the Coleman-Weinberg potential~1!
nor the double-well potential~2! lead to formation of large-
amplitude density fluctuations on currently observable sca
in the chaotic new inflation scenario. But the reasons of th
failures are opposite; with the Coleman-Weinberg potent
the field moves too slowly and the scales with larg
amplitude fluctuations are inflated away, while with th
double-well potential,f moves so rapidly thatD remains too
small.

V. PBH FORMATION IN CHAOTIC NEW INFLATION

The above observation naturally leads us to conside
different class of potential including another free parame

VML@f#52
1

2
m2f21

l̃

4
f4S lnUfv U2 1

4D1V0 , ~47!

that is, typical one-loop effective potential with nonvanis
ing mass term at the origin. This type of the potential with
positive mass-squared at the origin was employed in
original inflation scenario@14#, but for our purpose we adop
a negative mass term.

The potential~47! has four parameters, but one of them
V0 is fixed from the requirement that the vacuum ener
density vanishes at the potential minimumf[6fm . While
we numerically solve the equationV8@fm#50 and obtain
the numerical value ofV0 so thatV@fm#50, we can also
calculate them perturbatively in the casem2!l̃v2, as

fm5vF11
m2

l̃v2
2

3

2 S m2

l̃v2D 2

1¯G , ~48!

V05
l̃

16
v41

1

2
m2v21

m4

l̃
1¯ . ~49!

Another parameter, sayl̃, can be fixed from the amplitude
of large-scale CMB fluctuations using the COBE data
before. Hence we are essentially left with two free para
eters,v and m. While v mainly controls the speed off
around the origin and its fate, i.e., to which minimum it fall
andm mainly governs the duration of new inflation, the e
tire dynamics is determined by a complicated interplay of
three parameters. For example, we cannot determinel̃ until
we calculate the duration of new inflation which also d
pends onl̃ itself for fixed values ofm andv. Hence we must
numerically solve the equations of motion iteratively to fin
out appropriate values of parameters to produce PBHs a
right scale with the right amount.

Let us now consider a specific example of formation
MACHO-PBHs. For this purpose we must realize a pe
with b;10210 on the comoving Hubble scale atN535. Af-
ter some iterative trials we have chosenl̃53310212 and
0-6
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m5631028M Pl , and then solved the equation of motio
for various values ofv. In this choice ofl̃ and m we find
new inflation lasts for more than tene-folds expansion if we
take v in the rangev50.2131M Pl20.2147M Pl . Hence we
do not need much fine-tuning of the model parameters
realize a new inflationary stage itself. We also find thatf
settles down tofm classically ifv>0.213843638M Pl and to
2fm if v<0.213843631M Pl . If, on the other hand, we
choose v in the range 0.213843632M Pl,v
,0.213843637M Pl , f spends more than one expansion tim
in the region ufu,fq53.431028M Pl and the universe
would enter the self-reproduction regime.

Figures 1 and 2 depict evolution of the scale factor a
the inflaton f, respectively, for the case v
50.21384360M Pl[vM with the initial condition ai51 at
f i53.5M Pl . The chaotic inflation ends atf.0.89M Pl and
new inflationary expansion sets in atf.0.082M Pl but the
slow roll-over phase starts only atfs524.0331027M Pl
[fM . In this casef is found to stay in the regionufu
,fq for only about 0.1 expansion time. The linear perturb

FIG. 1. Evolution of the inflaton in chaotic new inflation wit

l̃53310212, m5631028M Pl , and v50.21384360M Pl . Time
andf are displayed in units of the Planck time andM Pl , respec-
tively.

FIG. 2. Evolution of the scale factor with the same paramet
08351
to

d

-

tion D has the right amplitude on large scales to meet
COBE observation, and it has a peak on the comov
Hubble scale atf5fs . We findN(fs→f f)535, which is
the right scale for MACHO-PBHs.

In this case we findg50.300590 and the abundance
the PBHs at formation reads

b52.29c exp~20.0196994c22!, ~50!

with hbh50.75. Forfs5fM we find the peak abundance o
PBH, b56310210 at the mass scaleM.1M ( .1 Using Eq.
~39! we can also write it as

b50.888Ds exp~20.131072Ds
22!. ~51!

One can also obtain an approximate shape of the m
spectrum of the PBHs using Eq.~51! with Ds replaced byD
at different epoch corresponding to different black ho
mass. More specifically the mass of black holes,M , and
their initial fraction, b(M ), can be written by an implicit
function of f as

M5K exp~2@N~f→f f !235# !M ( , ~52!

b~M !.0.888D~f!exp~20.131072D22~f!!,
~53!

whereK is a factor of order of unity which depends on th
expansion law of the post-inflationary universe but we p
K51 for simplicity below.

Figure 3 depicts the mass spectrum of black holes
tained from Eqs.~52! and ~53!. Thus the PBH abundance i
sharply peaked. Note, however, that the shape of the la
mass tail is not exactly correct which corresponds to
regime where slow-roll solution is invalid. Nonetheless th
figure correctly describes the location of the peak.

Apart from the effects of inflaton’s detailed dynamic
however, we must say that the above spectrum is only qu
tatively correct, because we have chosen a specific valu
the threshold,hbh50.75, and assumed the black hole mass
equal to the horizon mass when the perturbed region re
tered the Hubble radius~see also@40,41#!. In order to im-
prove the calculation of the mass spectrum we must calcu
the probability distribution functional of the configuration o
the perturbed region and then calculate the final mass of
black hole, if formed, for each configuration, which is b

1In obtaining Eq. ~50! we have started withP@f,t5ts#5
d(f2fs) in order to extract information on a specific mass sca
This also corresponds to treating thatf evolves along the classica
trajectory untilf5fs , which is correct only as an average. In fac
due to quantum fluctuations generated during chaotic inflation
the early stage of new inflation,fs itself takes different values in
different domains. We have confirmed, however, thatfs shifts only
about64H0 /(2p) even if we consider their effects. Since we fin
ufMu@4H0 /(2p), it does not induce significant fluctuations inb.
For the same reason we are free from the domain wall prob
which could be present iff had a large fluctuation and differen
regions fell different minima.s.
0-7
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yond the scope of the present analysis. Nevertheless from
above analysis we can convince ourselves that we can
duce large enough amplitude of curvature fluctuation o
desired scale in the chaotic new inflation scenario.

Within the limit of our predictability of the mass spec
trum, we can also apply our model for the formation
PBHs with different masses and abundance. For example
may produce PBHs withM.108M ( which may act as a
central engine of AGNs with the current density, say,n
;1025 Mpc23 corresponding tob;10211 at formation.
From Eq. ~52! we find M5108M ( corresponds toN(fs
→f f)544 and the desired spectrum is realized forl53.7
310212, m56.131028M Pl , andv50.21532324M Pl under
the COBE normalization.

Another interesting possibility is to produce a tiny amou
of PBHs which are evaporating right now, with the initi
massM.1015 g. With the current abundanceV.1028 or
b.10225 at formation, they may explain a class of gamm
ray bursts. In this case we should have only a short perio
slow-roll new inflation, N(fs→f f)514. We find b52
310225 at the right mass scale if we choosel53310213,
m5531028M Pl , andv50.16557604828M Pl . In this case
a relatively large value ofm is required in order to keep new
inflation short, and we cannot necessarily rely on the s
chastic inflation method which is valid only ifum2u&H0

2.
This does not mean we cannot generate large enough de
fluctuation on the relevant scale. The only problem is we
not have a reliable method to calculate magnitude of fluct
tion or black hole abundance accurately in such situation

FIG. 3. Expected mass spectrum of PBHs in chaotic new in
tion with the same model parameters. Mass is displayed in unit
the solar mass.
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VI. CONCLUSION

In the present paper we proposed a new scenario
double inflation which contains only one inflation-drivin
scalar field, that is, we pointed out that a scalar poten
which has an unstable local maximum at the origin can
only realize new and chaotic inflation separately but a
accommodate both sequentially if its model parameters
appropriately chosen with natural initial conditions as e
ployed in the chaotic inflation scenario. We have furth
shown that the spectrum of density fluctuation in this mo
can have a large-amplitude peak on the comoving Hub
scale at the onset of the slow-roll regime of new inflation a
that this can be applied to formation of PBHs on a spec
mass scale. This feature of the spectrum is realized natu
compared with other models with a single scalar field@21,22#
because the scalar field is not slowly rolling at the onset
new inflation. On the other hand, we must specify the val
of model parameters with many digits in order to produce
appropriate amount of PBHs on a desired scale. This feat
however, is more or less common to all the other mod
attempting to account for formation of PBHs in inflationa
cosmology~see e.g.@22#!, because both the peak amplitud
of the fluctuations and its location must be specified w
high accuracy due to the exponential dependence of
black hole abundance and its mass on the model parame

On the other hand, one could in principle claim that o
servation of PBHs can serve as a strong tool to determine
parameters in the inflaton’s dynamics. Unfortunately, ho
ever, our ignorance of the detailed condition for PBH form
tion, such as the precise threshold amplitude of fluctuation
a functional of the shape of perturbed region, makes it
possible to link the mass spectrum of PBHs with the shap
the inflaton’s potential precisely. In the present paper
have calculated the values of the model parameters ra
precisely under the universal assumption ofhbh50.75. In
fact, however, the values of the parameters would tota
change had we chosen a different threshold. Hence the
cise numbers we have quoted do not have much significa
but the number of digits simply indicates the sensitivity
the mass spectrum to the model parameters.

ACKNOWLEDGMENTS

The author is grateful to Professor Andrei Linde for us
ful comments and his hospitality at Stanford Universi
where this work was done. This work was partially su
ported by the Monbusho.

-
of
n.
@1# Ya. B. Zel’dovich and I. D. Novikov, Sov. Astron.10, 602
~1967!.

@2# S. W. Hawking, Mon. Not. R. Astron. Soc.152, 75 ~1971!.
@3# B. J. Carr, Astrophys. J.201, 1 ~1975!.
@4# B. J. Carr, Astrophys. J.206, 8 ~1976!; S. Miyama and K.
Sato, Prog. Theor. Phys.59, 1012~1978!; I. D. Novikov, A. G.
Polnarev, A. A. Starobinsky, and Ya. B. Zel’dovich, Astro
Astrophys.80, 104 ~1979!.
0-8



tro

-

.

D

D

t.

-

tes

s-

CHAOTIC NEW INFLATION AND FORMATION OF . . . PHYSICAL REVIEW D 58 083510
@5# C. Alcocket al., Nature~London! 365, 623~1990!; Phys. Rev.
Lett. 74, 2867 ~1995!; Astrophys. J.486, 697 ~1997!; E. Au-
bourget al., Nature~London! 365, 623 ~1993!; Astron. Astro-
phys.301, 1 ~1995!.

@6# H. B. Richer and G. G. Fahlman, Nature~London! 358, 383
~1992!.

@7# S. P. Boughn and J. M. Uson, Phys. Rev. Lett.74, 216~1995!.
@8# B. J. Carr, J. R. Bond, and W. D. Arnett, Astrophys. J.277,

445 ~1984!.
@9# T. Nakamura, M. Sasaki, T. Tanaka, and K. S. Thorne, As

phys. J. Lett.487, L139 ~1997!.
@10# S. W. Hawking, Nature~London! 248, 30 ~1974!; Commun.

Math. Phys.43, 19 ~1975!.
@11# D. Cline, D. A. Sanders, and W. Hong, Astrophys. J.486, 169

~1997!.
@12# E. L. Turner, Astron. J.101, 5 ~1991!.
@13# A. Loeb, Astrophys. J.403, 542 ~1993!; M. Umemura, A.

Loeb, and E. L. Turner,ibid. 419, 459 ~1993!.
@14# A. H. Guth, Phys. Rev. D23, 347 ~1981!; K. Sato, Mon. Not.

R. Astron. Soc.195, 467 ~1981!.
@15# A. D. Linde, Phys. Lett.108B, 389~1982!; A. Albrecht and P.

J. Steinhardt, Phys. Rev. Lett.48, 1220~1982!.
@16# A. D. Linde, Phys. Lett.129B, 177 ~1983!.
@17# For a review of inflation see, e.g. A. D. Linde,Particle Physics

and Inflationary Cosmology~Harwood, Academic, Chur, Swit
zerland, 1990!.

@18# S. W. Hawking, Phys. Lett.115B, 295 ~1982!; A. A. Starob-
insky, ibid. 117B, 175 ~1982!; A. H. Guth and S-Y. Pi, Phys
Rev. Lett.49, 1110~1982!.

@19# C. L. Bennetet al., Astrophys. J. Lett.464, L1 ~1996!.
@20# H. M. Hodges and G. R. Blumenthal, Phys. Rev. D42, 3329

~1990!.
@21# P. Ivanov, P. Naselsky, and I. Novikov, Phys. Rev. D50, 7173

~1994!.
@22# J. S. Bullock and J. R. Primack, Phys. Rev. D55, 7423~1997!.
@23# J. Yokoyama, Astron. Astrophys.318, 673 ~1997!.
08351
-

@24# J. Silk and M. S. Turner, Phys. Rev. D35, 419 ~1987!.
@25# L. Randall, M. Soljacic´, and A. H. Guth, Nucl. Phys.B472,

377 ~1996!.
@26# J. Garcı´a-Bellido, A. D. Linde, and D. Wands, Phys. Rev.

54, 6040~1996!.
@27# M. Kawasaki, N. Sugiyama, and T. Yanagida, Phys. Rev.

57, 6050~1998!.
@28# L. F. Kofman, A. D. Linde, and A. A. Starobinsky, Phys. Let

157B, 361 ~1985!; R. Holman, E. W. Kolb, S. L. Vadas, and
Y. Wang, Phys. Lett. B269, 252~1991!; D. Polarski and A. A.
Starobinsky, Nucl. Phys.B385, 623 ~1992!; Phys. Rev. D50,
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