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Inflation during oscillations of the inflaton

Andrew R. Liddle and Anupam Mazumdar
Astronomy Centre, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom

~Received 10 June 1998; published 14 September 1998!

Damour and Mukhanov have recently devised circumstances in which inflation may continue during the
oscillatory phase which ensues once the inflaton field reaches the minimum of its potential. We confirm the
existence of this phenomenon by numerical integration. In such circumstances the quantification of the amount
of inflation requires particular care. We use a definition based on the decrease of the comoving Hubble length,
and show that Damour and Mukhanov overestimated the amount of inflation occurring. We use the numerical
calculations to check the validity of analytic approximations.@S0556-2821~98!03020-3#

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

Ordinarily, cosmological inflation—a period of accele
ated expansion—is considered to be driven by a scalar
f rolling slowly, and monotonically, down a shallow pote
tial V(f). However, recently Damour and Mukhanov@1#
have pointed out that for non-convex potentials, wh
d2V/df2 is negative in regions not too far from the min
mum, there exist circumstances where inflation may conti
during the oscillations. The basic idea is to arrange that
scalar field spends most of its time on the shallow ‘‘wing
of the potential, where it is quite flat, so that for each os
lation there is a period of inflation which overpowers t
inevitable non-inflationary region near the core of the pot
tial. One thus obtains on average some inflation over a c
plete cycle of oscillation. Damour and Mukhanov did n
give such behavior a name; we shall call itoscillating infla-
tion.

The oscillations take place on a much shorter time sc
than the Hubble expansion. However, over many oscillati
the effect of the expansion is felt, and drains energy aw
from the oscillations. This process continues until the sca
field, known as the inflaton, is trapped completely within t
convex core of the potential. There the condition for osc
lating inflation fails and inflation ceases in the usual mann

Because each oscillation is a combination of inflating a
non-inflating portions, considerable care is required in de
ing what is meant by the amount of inflation obtained, and
fact Damour and Mukhanov overestimated the amount
inflation taking place. We discuss in detail the definition
the amount of inflation, and confirm our analytic estima
numerically.

II. DYNAMICS

In this section we briefly summarize the results obtain
by Damour and Mukhanov@1#. The evolution equations o
the scalar field for the flat Friedmann cosmology read

f̈13Hḟ52
dV

df
; ~1!
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H25
8p

3mPl
2

r, ~2!

whereH is the Hubble parameter andr[ 1
2 ḟ21V(f) is the

energy density of scalar field. Its pressurep is given by
p[ 1

2 ḟ22V(f). From these two further equations can
obtained, which are useful though of course not independ
of the first two: namely,

ṙ523H~r1p!523Hḟ2; ~3!

ä

a
52

4p

3mPl
2 ~r13p!. ~4!

The effective adiabatic index of the scalar matter can
defined as

g[
r1p

r
5

ḟ2

r
'

2

3
eH , ~5!

whereeH is the slow-roll parameter, defined as in Ref.@2#,
which is required to be less than one for inflation to proce
Inflation occurs wheneverg,2/3, corresponding tor13p
,0.

We assume that initially the scalar field is well displac
from the minimum, and drives a period of slow-roll inflatio
We will also follow Damour and Mukhanov in assuming th
potential is an even function off. As the field approaches
the minimum, eventually the slow-roll conditions cease
apply, at somef which depends on the nature of the pote
tial. Then rapid oscillations, with frequencyv, dominate the
evolution equations. Forv@H, one is dealing with two
timescales; individual oscillations can be studied ignor
the Hubble expansion, and the effect of the expansion
posed on the behavior averaged over oscillations. Igno
the Hubble expansion for the time being, the amplitude
the oscillations remains approximately constant withr
'V(fm), fm being the highest point of oscillation. Equatio
~1! then reduces to
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d

dt S 1

2
ḟ21V~f! D50, ~6!

and the periodt of such oscillations is obtained by integra
ing Eq. ~6!:

t[
2p

v
54E

0

fm df

A2@Vm2V~f!#
, ~7!

whereVm5V(fm). We obtain the adiabatic index by ave
aging over an oscillation

g[ K r1p

r L [K ḟ2

r
L . ~8!

The conditiong,2/3 can be expressed as

g5
^ḟ2&
Vm

52S 12
^V~f!&

Vm
D

52
*0

fm
„12V~f!/Vm…

1/2df

*0
fm
„12V~f!/Vm…

21/2df
,

2

3
. ~9!

Using the first two equalities one can reduce this inequa
to a simpler form

^V2fV,f&.0, ~10!

where the comma indicates a derivative.
This has a nice geometric interpretation@1#; V2fV,f is

the intercept of the tangent to the potential at the pointf, and
to obtain inflation on average, then over an oscillation
intercept has to be positive. Note that the above condi
fails to be satisfied for power-law potentials„V(f)}fq

… for
q>1. Such potentials must be a good approximation su
ciently close to the minimum of any potential.

III. QUANTIFYING INFLATIONARY EXPANSION

In slow-roll inflation, the standard quantification of infla
tion is the number ofe-foldings N, defined by

N5 ln
af

ai
, ~11!

where ‘‘i’’ and ‘‘f’’ denote initial and final values respec
tively. However, if slow-roll is not working well this require
modification. This is particularly true for oscillating inflation
where the universe continues to expand during those n
inflationary parts of the expansion. They should certainly
count towards the inflationary total, and in fact should co
againstit.

In such circumstances, the correct definition is to exam
the change in the comoving Hubble length@2#, H21/a, by
defining

Ñ5 ln
afH f

aiH i
. ~12!
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There are many reasons why this is the correct general d
nition. First, the inflationary conditionä.0 is precisely the
condition thataH is increasing. Second, it is the combinatio
aH which determines whether the flatness and horizon pr
lems are being solved. And, most importantly of all, the co
dition for horizon crossing for a perturbation of comovin
wavenumberk is k5aH, so it is that combination which
decides whether scales are inside or outside the horizon

In the slow-roll limit N andÑ are identical, but here they
are far from it, andÑ,N by definition asH always de-
creases.

IV. THE DAMOUR-MUKHANOV MODEL

A. Analytic approximation

So far the argument holds good for arbitrary potentia
From now on we shall restrict ourselves to potentials wh
give rise to inflation during oscillations. We consider the o
suggested by Damour and Mukhanov@1#, which is the po-
tential

V~f!5
A

q F S f2

fc
2 11D q/2

21G , ~13!

whereq is a real dimensionless parameter greater than z
A andfc are dimensionful;A has the dimension of@mass#4

andfc is the scale which determines the core of the poten
and has the same dimension asf, namely@mass#. The po-
tential is shown in Fig. 1. It can be reduced to different form
in different regimes. Forq→0,V(f)5 1

2 A ln(11f2/fc
2),

while when fc!f the potential reduces toV(f)
'Aq21(f/fc)

q. If both limits are taken one getsV(f)
'A ln(f/fc).

Since oscillating inflation will only occur if the oscilla
tions extend well outside the core region, for most of a cy
the field must obeyf@fc so that the potential reduces to th
power-law form. We can approximate the mean behavior
ignoring the core region, an approximation which will ho
well until the oscillation amplitude falls close to the co
radius and oscillating inflation ceases. For power-law pot

FIG. 1. The potential forq50.1, showing the concave shape f
ufu@fc . The inset shows the convex region around the minimu
8-2
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tials the adiabatic indexg has been computed in Ref.@3# as
g52q/(q12) and the various physical quantities evolve
@1#

a}t2/3g5t ~q12!/3q ~14!

r5V~fm!}t22}a26q/~q12! ~15!

fm}t22/q}a26/~q12!, ~16!

where fm is the amplitude of the oscillations,fc,fm
,fs, fs being the value off where the slow-roll approxi-
mation breaks down.

From Eqs.~14!–~16! one can compute Eq.~12!

Ñ.
12q

3
ln

fs

fc
, ~17!

where fs is the value of the field at the end of slow ro
which is usually less thanmPl . This is to be contrasted with
the amount of expansion

N.
21q

6
ln

fs

fc
. ~18!

Damour and Mukhanov@1# quoted this expression, with th
additional approximationfs.mPl . This latter result is quite
misleading; for example it suggests that there is a possib
of enhancement of accelerated expansion due to increa
the value ofq. Their result is self-contradictory, as we ha
already seen that there can be no inflation during oscillati
for the power-law potentials withq>1. Our result is sup-
ported by the numerical calculation, described in the n
subsection.

We also note that the assumptionfs.mPl is not correct in
general. The contrived shape of the potential allows the fi
to slow roll for a longer period. From Eq.~17!, we see that as
we approachq→0 the prefactor increases and one expect
get higher values ofÑ for the same values offc . In fact, on
the contrary one gets smallerÑ, because slow roll does no
end atfs'mPl but rather atfs'qmPl /A16p for f@fc ,
giving

Ñ.
12q

3 F ln
qmPl

fc
22G . ~19!

As q approaches zero,fs also goes to zero, implying that th
number ofe-foldings in Eq.~17! also decreases logarithm
cally. This effect starts dominating asq→0 lowering the
maximum yield inÑ, determined by Eq.~19!. Hence to ob-
tain the maximum number ofe-foldings one needs to fix the
value ofq and then reducefc .

For sensible values of the parameters, only a f
e-foldings of inflation are available. Even iffc is lowered to
the electro-weak scale,fc510217mPl , the amount is still
limited, for exampleq50.6 givesÑ'4.9 andq50.1 gives
Ñ'10.5.
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For a logarithmic potential the adiabatic indexg
51/ln(fm/fc) @1#, and we are unable to give a simple for
of Ñ for such a potential.

B. Numerical analysis

In this section we describe our numerical results. We c
sider the potential of Eq.~13! and evolve the field equation
numerically. In Figs. 2 and 3 we depict the evolution ofÑ
for two different values ofq. The first hump describes th
end of slow-roll approximation, which is where oscillatin
inflation is considered to start. For normal potentials there
a sharp decrease in the value ofÑ after slow-roll inflation
ends, but for the potential under consideration we see fur
e-foldings; each oscillation has inflationary and no
inflationary parts but the former dominate leading to a co
tinued upward trend. Eventually, as seen in the lower pa
of Fig. 2, the field finds its way to the true core and oscill

FIG. 2. A numerical simulation of the evolution ofÑ for
q50.1. The upper panel shows the early evolution for two choi
of fc , showing the last stages of slow-roll and the beginning of
oscillations. The lower panel shows the complete oscillating in
tion era for two choices offc ; the oscillations are too small to b

seen on this scale. In each case,Ñ is normalized to zero at the en
of slow-roll inflation, and an arbitrary horizontal shift has been us
to separate the lines. The heights of the maxima in the lower p
are accurately given by Eq.~19!.
8-3
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ing inflation ends. Its total amount is measured by the ma
mum height ofÑ above its value at the end of slow-ro
inflation.

Figure 4 compares our analytic estimate Eq.~19! of the
amount of inflation with our numerical results, as a functi
of q. The agreement is extremely good. There is no inflat
for q.1, and asq is decreased the amount of inflation i
creases almost linearly before reaching its maxima and
starts decreasing asq approaches zero. In this last regime t
analytic approximation fails to work well, with the potenti
approaching the logarithmic limit as explained in the pre
ous section. For small values ofq we are unable to compar
the numerical results as we have not been able to derive
analytical expression.

V. DENSITY PERTURBATIONS

As well as solving problems of initial conditions, inflatio
plays a crucial role in generating density perturbations wh
can later seed structure formation. Because the oscilla
inflation is brief, the observed perturbations are normally
pected to originate in the slow-roll regime which preced
the oscillations, though in principle a subsequent additio
period of inflation could push them to observable scales@1#.
In this short section, we check that required amplitude
density perturbations generated in the slow-roll epoch d
not give an uncomfortable constraint on the potential un
consideration.

Defining the primordial density perturbation spectrumdH
as in Ref.@4#, one has

d H
2'

32

75

V

mPl
4

1

e
, ~20!

where the slow-roll parametere is given by

e5
mPl

2

16p S V,f

V D 2

. ~21!

The perturbations observed by the Cosmic Background
plorer ~COBE! satellite requiredH'231025; since the

FIG. 3. As the upper panel of Fig. 2, but forq50.6.
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number ofe-foldings during the oscillating inflation phase
small, these perturbations must be generated during the s
roll phase. This phase ends whene'1, which as commented
above is at

fs'
q

A16p
mPl . ~22!

During the slow-roll phase the power-law approximation
the potential is an excellent one and yields

d H
2 5

512p

75

A

q3mPl
6

f21q

fc
q . ~23!

The value of the amplitudeA of the potential is to be
adjusted to give the right level of perturbations when o
present Hubble scale crossed outside the horizon during
flation, of order 50e-foldings before inflation finally ends
The amount of inflation in the slow-roll epoch can be a
equately computed using the normal slow-roll formula

N.2
8p

mPl
2 E

f

fs V

V,f
df, ~24!

and approximatingÑ.N. We assume the perturbations a
generated 50e-foldings from the end of inflation, and ignor
the oscillating inflation contribution as negligible given th
uncertainty in this number. We then find, for example, th
with q50.1 andfc51026mPl , the required amplitude of the
potential isA1/4.531023mPl . This is a fairly typical sort of
number for inflationary models. We conclude that the app
priate level of density perturbations can be readily achie
in these models.

FIG. 4. A comparison of numerical and analytical solutions
the number of e-foldings forfc51024mPl and 1026mPl . The sym-
bols correspond to the numerical results, and the smooth curve
the analytical estimate of Eq.~19!.
8-4
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VI. SUMMARY

We have analyzed the possibility of oscillating inflatio
both analytically and numerically. A more accurate quant
cation of the amount of inflation shows that it was overe
mated by Damour and Mukhanov@1#, and we have given a
more appropriate definition which is in excellent agreem
with our numerical analysis. Only a fewe-foldings of oscil-
lating inflation are possible.
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