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Inflation during oscillations of the inflaton
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Damour and Mukhanov have recently devised circumstances in which inflation may continue during the
oscillatory phase which ensues once the inflaton field reaches the minimum of its potential. We confirm the
existence of this phenomenon by numerical integration. In such circumstances the quantification of the amount
of inflation requires particular care. We use a definition based on the decrease of the comoving Hubble length,
and show that Damour and Mukhanov overestimated the amount of inflation occurring. We use the numerical
calculations to check the validity of analytic approximatiof0556-282(98)03020-3

PACS numbd(s): 98.80.Cq

I. INTRODUCTION 8
2 a
H?=—p, @
Ordinarily, cosmological inflation—a period of acceler- 3mp,

ated expansion—is considered to be driven by a scalar field

g-i) rO”ing SlOle, and monotonica”y, down a shallow poten- whereH is the Hubble parameter amﬂ5%¢2+V(¢) is the
tial V(). However, recently Damour and Mukhang¥]  energy density of scalar field. Its pressyseis given by

have pointed out that for non-convex potentials, wherep=;¢z_v(¢) From these two further equations can be
=1 .

d*V/ide* is negative in regions not too far _from the MIN" 5ptained, which are useful though of course not independent
mum, there exist circumstances where inflation may contlnu%f the first two: namely
e ' '

during the oscillations. The basic idea is to arrange that th

scalar field spends most of its time on the shallow “wings” : :

of the potential, where it is quite flat, so that for each oscil- p=—3H(p+p)=—3H¢* ()

lation there is a period of inflation which overpowers the

inevitable non-inflationary region near the core of the poten- A 4o

tial. One thus obtains on average some inflation over a com- —=——(p*+3p). 4

plete cycle of oscillation. Damour and Mukhanov did not a 3mg,

give such behavior a name; we shall calbsicillating infla-

tion. The effective adiabatic index of the scalar matter can be

The oscillations take place on a much shorter time scaleefined as
than the Hubble expansion. However, over many oscillations
the effect of the expansion is felt, and drains energy away “2
I . . . ptp ¢° 2

from the oscillations. This process continues until the scalar y=—="—~c¢€y, (5)

field, known as the inflaton, is trapped completely within the p p 3

convex core of the potential. There the condition for oscil-

lating inflation fails and inflation ceases in the usual mannerwhere € is the slow-roll parameter, defined as in R,

Because each oscillation is a combination of inflating andwhich is required to be less than one for inflation to proceed.

non-inflating portions, considerable care is required in defininflation occurs whenevey<2/3, corresponding t@+ 3p

ing what is meant by the amount of inflation obtained, and in<0.

fact Damour and Mukhanov overestimated the amount of We assume that initially the scalar field is well displaced

inflation taking place. We discuss in detail the definition of from the minimum, and drives a period of slow-roll inflation.

the amount of inflation, and confirm our analytic estimateswe will also follow Damour and Mukhanov in assuming the

numerically. potential is an even function ap. As the field approaches
the minimum, eventually the slow-roll conditions cease to
apply, at somep which depends on the nature of the poten-

II. DYNAMICS tial. Then rapid oscillations, with frequeney, dominate the

] ] ] ] ~evolution equations. Fow>H, one is dealing with two
In this section we briefly summarize the results obtainedjmescales: individual oscillations can be studied ignoring

by Damour and Mukhano{/]. The evolution equations of the Hubble expansion, and the effect of the expansion im-
the scalar field for the flat Friedmann cosmology read posed on the behavior averaged over oscillations. Ignoring
the Hubble expansion for the time being, the amplitude of
the oscillations remains approximately constant wjih
~V(ém), om being the highest point of oscillation. Equation

. . dv
¢+3Hp=— @ (1) then reduces to

d¢o
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¢ (L evin)
gt 5 ¢ +V(¢)|=0, (6)

and the periodr of such oscillations is obtained by integrat-
ing Eq. (6):

T=E—= a— ¥
® 0 V2[Vh—V(9)]

whereV,,=V(¢,,). We obtain the adiabatic index by aver-
aging over an oscillation

p+p &> 200 -0 o s 100
Y\ T\ ® #/8
p p e
The conditiony<2/3 can be expressed as FIG. 1. The potential fog=0.1, showing the concave shape for
|p|> ¢.. The inset shows the convex region around the minimum.
42
vV
y= <\¢/)_>:2 1— ( \(/¢’)>) There are many reasons why this is the correct general defi-
m m nition. First, the inflationary conditioa>0 is precisely the
fgm(l—V(¢)/Vm)1/2d¢ 2 condition thataH is increasing. Second, it is the combination
=2—- 7 <§. (99  aH which determines whether the flatness and horizon prob-
Jo"(A=V(¢)IVy) do lems are being solved. And, most importantly of all, the con-

. . i o _dition for horizon crossing for a perturbation of comoving
Using the first two equalities one can reduce this inequalityyavenumberk is k=aH. so it is that combination which

to a simpler form decides whether scales are inside or outside the horizon.

(V= ¢V 4)>0, (10) In the slow-roll IinlitN andN are identical, but here they
are far from it, andN<N by definition asH always de-
where the comma indicates a derivative. creases.
This has a nice geometric interpretatifdl; V— ¢V , is
the intercept of the tangent to the potential at the pgirand IV. THE DAMOUR-MUKHANOV MODEL
to obtain inflation on average, then over an oscillation the ) o
intercept has to be positive. Note that the above condition A. Analytic approximation
fails to be satisfied for power-law potentidlé( )= ¢) for So far the argument holds good for arbitrary potentials.
g=1. Such potentials must be a good approximation suffifrom now on we shall restrict ourselves to potentials which
ciently close to the minimum of any potential. give rise to inflation during oscillations. We consider the one
suggested by Damour and MukhanidM, which is the po-
IIl. QUANTIFYING INFLATIONARY EXPANSION tential
In slow-roll inflation, the standard quantification of infla- Al ¢? a2
tion is the number oé-foldings N, defined by V(¢)= a _g+ 1 _1}! (13
N=In ay (11) whereq is a real dimensionless parameter greater than zero.
a;’ A and ¢, are dimensionfulA has the dimension gimasg*

and ¢.. is the scale which determines the core of the potential
where “i” and “f” denote initial and final values respec- and has the same dimension @snamely[mass. The po-
tively. However, if slow-roll is not working well this requires  tential is shown in Fig. 1. It can be reduced to different forms
modification. This is particularly true for oscillating inflation, in different regimes. Forq—0,V($)=3A In(1+ ¢ ¢2),
where the universe continues to expand during those nofghile when ¢.<¢ the potential reduces toV(¢)

inflationary parts of the expansion. They should certainly not_ aq=1(4/4.)9. If both limits are taken one gets()
count towards the inflationary total, and in fact should count_ In(#l o).

againstit. o _ Since oscillating inflation will only occur if the oscilla-
In such circumstances, the correct definition 'f’lto examingjons extend well outside the core region, for most of a cycle
the change in the comoving Hubble lend@, H™"/a, by the field must obeyb> ¢, so that the potential reduces to the

defining power-law form. We can approximate the mean behavior by
ignoring the core region, an approximation which will hold
N=In af_Hf. (12) well until the oscillation amplitude falls close to the core

ajH; radius and oscillating inflation ceases. For power-law poten-
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tials the adiabatic index has been computed in R¢8] as 1.5[ ' ¢ 10 mo
| < Pl

vy=2q/(q+2) and the various physical gquantities evolve as

[1]

1.0f

aoct23r=t(a+2)/3q (14) [

p=V/( )t~ 22— 0W(a+2 s F 05f
¢m0(t72/qo(a76/(q+2)1 (16)

0.0
where ¢, is the amplitude of the oscillationsp.< ¢,
< ¢s, ¢ being the value ofp where the slow-roll approxi-
mation breaks down. 0.0
From Egs.(14)—(16) one can compute Eq12)

~ 1- C

N:qunis, 7 3'5:

e 3.0}

where ¢4 is the value of the field at the end of slow roll, 2.5

which is usually less thamp,. This is to be contrasted with F

the amount of expansion 2.0¢

Z [

2+ q d’s 1.5 [

N=——In —. 18 ;

6 "o (19 T

Damour and Mukhano{/1] quoted this expression, with the 0.5
additional approximatiombs=mp,. This latter result is quite

misleading; for example it suggests that there is a possibility 'O 0 0.5 10 15

of enhancement of accelerated expansion due to increase i ’ ) : :

the value ofg. Their result is self-contradictory, as we have t

already seen that there can be no inflation during oscillations £ 2 A numerical simulation of the evolution df for

for the power-law potentials witlg=1. Our result is Sup- 4=0.1. The upper panel shows the early evolution for two choices

ported by the numerical calculation, described in the nexbf 4, showing the last stages of slow-roll and the beginning of the

subsection. oscillations. The lower panel shows the complete oscillating infla-
We also note that the assumptigg=mp, is not correctin  tion era for two choices o, ; the oscillations are too small to be

general. The contrived shape of the potential allows the fieldeen on this scale. In each caleis normalized to zero at the end

to slow roll for a longer period. From E@L7), we see thatas  of slow-roll inflation, and an arbitrary horizontal shift has been used

we approacty— 0 the prefactor increases and one expects t@o separate the lines. The heights of the maxima in the lower panel

get higher values dfl for the same values af.. In fact, on  are accurately given by EGL9).

the contrary one gets smalldt, because slow roll does not
end at ps~mp, but rather atp~qmp/\16m for ¢> ¢,
giving

For a logarithmic potential the adiabatic index
=1/In(én! Po) [1], and we are unable to give a simple form

of N for such a potential.
ame;

~ 1—q
N=-——|In—/——
bc

3In

2. (19

B. Numerical analysis

) ) In this section we describe our numerical results. We con-
As q approaches zergjs also goes to zero, implying that the gjder the potential of Eq13) and evolve the field equations
number c_)fe-foldmgs n Eq.(1_7) al_so decreases Ioganthml— numerically. In Figs. 2 and 3 we depict the evolutionMof
cally. This effect starts dominating as—0 lowering the for two different values ofy. The first hump describes the

maximum yield inN, determined by Eq19). Hence to ob-  end of slow-roll approximation, which is where oscillating
tain the maximum number @f-foldings one needs to fix the jnflation is considered to start. For normal potentials there is

value ofq and then reduce.. a sharp decrease in the value Mfafter slow-roll inflation

FOF senS|_bIe yalues of _the parameters, only a feWends, but for the potential under consideration we see further
e-foldings of inflation are available. Even @ is lowered to

he el K scalah.— 1017 h i still e-foldings; each oscillation has inflationary and non-
the electro-weak scalgp.=10""'mp, the amount is still i qationary parts but the former dominate leading to a con-

limited, for exampleq=0.6 givesN~4.9 andq=0.1 gives  tinued upward trend. Eventually, as seen in the lower panel
N=~10.5. of Fig. 2, the field finds its way to the true core and oscillat-
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FIG. 3. As the upper panel of Fig. 2, but fqe=0.6.
FIG. 4. A comparison of numerical and analytical solutions of
the number of e-foldings fo.= 10" *mp, and 10 ®myp,. The sym-
ing inflation ends. Its total amount is measured by the maxibols correspond to the numerical results, and the smooth curves to

mum height ofN above its value at the end of slow-roll the analytical estimate of EG19).
inflation.

Figure 4 compares our analytic estimate EtP) of the
amount of inflation with our numerical results, as a functionnumber ofe-foldings during the oscillating inflation phase is
of g. The agreement is extremely good. There is no inflatiorsmall, these perturbations must be generated during the slow-
for g>1, and asy is decreased the amount of inflation in- roll phase. This phase ends wher 1, which as commented
creases almost linearly before reaching its maxima and theabove is at
starts decreasing asapproaches zero. In this last regime the
analytic approximation fails to work well, with the potential
approaching the logarithmic limit as explained in the previ- s -
ous section. For small values qfwe are unable to compare N
the numerical results as we have not been able to derive any
analytical expression.

(22)

During the slow-roll phase the power-law approximation to
the potential is an excellent one and yields

V. DENSITY PERTURBATIONS

, i . N 12r A @2
As well as solving problems of initial conditions, inflation 52 :5 7 ¢

plays a crucial role in generating density perturbations which 75 gdmg, ¢l
can later seed structure formation. Because the oscillating
inflation is brief, the observed perturbations are normally ex-
pected to originate in the slow-roll regime which precedes,
the oscillations, though in principle a subsequent additionag
period of inflation could push them to observable scélds

In this short section, we check that required amplitude o
density perturbations generated in the slow-roll epoch doeg
not give an uncomfortable constraint on the potential under
consideration.

(23

The value of the amplitudé of the potential is to be
djusted to give the right level of perturbations when our
resent Hubble scale crossed outside the horizon during in-
lation, of order 50e-foldings before inflation finally ends.
he amount of inflation in the slow-roll epoch can be ad-
quately computed using the normal slow-roll formula

Defining the primordial density perturbation spectram N 8w (¢s V dé (24
- -~ — — ddo,
as in Ref[4], one has mg Js V.,
32V 1
Ze— — = (20) L .
H75 m‘F‘,I €’ and approximatindN=N. We assume the perturbations are

generated 5@-foldings from the end of inflation, and ignore
where the slow-roll parameteris given by the oscillating inflation contribution as negligible given the
) uncertainty in this number. We then find, for example, that
My (Vi 2 with g=0.1 and¢.=10"°mg,, the required amplitude of the
T l6m\ VvV potential isAY=5x 10~3mp,. This is a fairly typical sort of
number for inflationary models. We conclude that the appro-
The perturbations observed by the Cosmic Background Expriate level of density perturbations can be readily achieved
plorer (COBE) satellite require 5,~2%x10"%; since the in these models.

(21)
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