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Quantum creation of a universe with Q#1: Singular and nonsingular instantons
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We propose two new classes of instantons which describe the tunneling and/or quantum creation of closed
and open universes. The instantons leading to an open universe can be considered as generalizations of the
Coleman-De Luccia solution. They are nonsingular, unlike the instantons recently studied by Hawking and
Turok, whose prescription has the problem that the singularity is located on the hypersurface connecting to the
Lorentzian region, which makes it difficult to remove. We argue that such singularities are harmless if they are
located purely in the Euclidean region. We thus obtain new singular instantons leading to a closed universe;
unlike the usual regular instantons used for this purpose, they do not require complex initial conditions. The
singularity gives a boundary contribution to the action which is small for the instantons leading to sufficient
inflation, but changes the sign of the action for smallcorresponding to short periods of inflation.
[S0556-282(98)08016-3

PACS numbes): 98.80.Cq

[. INTRODUCTION was obtained only after invoking the anthropic principle,
without which one would gef)=0. The prediction comes

It is well known that most of the models of inflationary from the probability measure associated with the Hartle-
cosmology predicf)=1+10*. It is possible to have infla- Hawking wave function. 5] it was argued that, according
tion with Q # 1, but it is rather difficult. The basic idea is to to [7,8], this wave function should not be used for the de-
solve the homogeneity and isotropy problem not by thescription of the creation of the universe and it was shown
long stage of inflation, but by quantum tunneling to a statethat the use of the tunneling proposal would typically lead to
describing an open or closed universe. Then the univers@~1. It thus appears that with either choice of the wave
will be homogeneous if the probability of tunneling is suffi- function of the universe we are not currently in a position to
ciently and strongly suppressed. In this scenario an infinit@btain a realistic value of=0.3 unless customized poten-
number of open universes can be created in one of two way$als are employed.
One may consider a purely classical evolution of an infla- The second problem is associated with the presence of a
tionary universe in the false vacuum and a subsequent creingularity on the nucleation surface. Vilenki@] argued
ation of inflating open universes by tunneling to the truethat instantons of the Hawking-Turok type lead to vacuum
vacuum[1-3]. Alternatively, one may consider the quantum instability and should therefore be excluded from the path
creation from nothing of a closed inflationary universe,integral. In[5] it was shown that not every instanton is per-
which later decays into an infinite number of open universesnitted even if it is nonsingular. On the other hand, it was
by the process described abdves]. In all such models, itis suggested that singular instantons are not necessarily forbid-
necessary to assume a potential with a false vacuum. den, but one should be extremely careful about the analytical

Recently, Hawking and Turok claimed that open uni-continuation involving singularities which was used[BI.
verses can be obtained without an intermediate stage invol=or other problems associated with this issue see[dBb
ing false vacua. They described a process in which an open In this paper, we will perform a more detailed investiga-
universe is created from nothing in the chaotic inflation scetion of these issues. We will suggest two ways of avoiding
nario with a generic effective potentigh]. They used the the problems associated with the Hawking-Turok singularity.
standard deformed-four-sphere Euclidean solution, in whichrirst, we will consider potentials with a local maximum, for
the inflaton field is constant on the lines of constant latitudewhich there are non-singular solutions. They include the
This solution generically has a singularity on one of theColeman—De Luccia instantons as well as some new, related
poles. Usually it is cut along the equator; the singular hemisolutions that we found. We will discuss the structure and
sphere is discarded, and the regular one is analytically corapplication of these solutions in Sec. Il. They describe the
tinued to yield a closed Lorentzian universe. nucleation of open universes, and allow the correct predic-

Instead, Hawking and Turok cut the Euclidean solutiontion of ) for suitable potentials. Of course, this means that
through the poles, thus including the singularity on the hy-the generality claimed by Hawking and Turok is lost, but as
persurface through which the Euclidean and Lorentzian seave pointed out above, generic inflaton potentials do not seem
tors are joined. The hypersurfaces of constant inflaton fieldery promising in any case when one tries to predict uni-
will then form infinite open spacelike sections in a part of theverses which are both non-flat and non-empty.
resulting Lorentzian universe. We will allow generic potentials in Sec. Ill, where we will

This approach suffers from two problems. The first prob-use variants of the deformed-four-sphere instanton to nucle-
lem is that they obtaif) =102 for the ratio of the present ate closed universes. We cut them along the equator and
density to the critical density. This contradicts observationatiscard theregular hemisphere. The Hawking-Turok singu-
data by almost two orders of magnitude, and even this resularity will be present in this case. It will not, however, lie on
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FIG. 1. Effective potentiaV/(¢) = m?/2[ ¢2(¢—v)?+ B¢*] for
m?=2, B=0.12, andv=0.5. It has a shallow minimum ap,
~0.357 and a local maximum at;=0.312. All quantities in the
figures in this section are in units ™,/ 8.
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the nucleation hypersurface. Therefore it can be “surgically
removed,” or viewed as a small region of Planckian density. 15
We calculate the boundary contribution to the action and

show that it is small in all cases where sufficient inflation 10
ensues. We discuss a possible interpretation of these solu-
tions as the birth of a closed inflationary universe by tunnel-
ing from space-time foam. Finally, we construct instantons

T

that are symmetric about the equator and contain two singu-
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larities. They allow the construction of nucleation paths on  F|G. 2. The upper panel shows the behavior of scalar fefor

which all variables are everywhere real.

IIl. NONSINGULAR INSTANTONS

examples of the Coleman—De Luccia “bubble” instant(solid
line) and the new “double-bubble” instanton that we foufahshed
line). For both instantons, the field is in the domain of the true

vacuum at smalt, forming a bubble. For the bubble instanton, the
Suppose we have an effective potentgkp) with a local  field is closest to the false vacuum at the pole opposite the bubble.
minimum at ¢;, and a global minimum at)=0, where  For the double-bubble instanton, this happens on the equator at the
V=0 (see Fig. 1 In anO(4)-invariant Euclidean spacetime moment of the maximal expansion. The behavior of the three-
with the metric sphere radiug(7) shown in the lower panel is very similar for both
instantons, though it is not identical.
ds?=d7?+a?(7)(dy?+ sirfydQ3), (1)
clidean solutions with varying fields. These include the
Coleman-De Lucia instanton, and related instantons that we
found.

the scalar field¢ and the three-sphere radiasobey the
equations of motion

!

" a ' " 87G 12 i
& +3E¢ =V, a'=- Ta(¢ +V), (2 A. Bubble instantons

A Euclidean solution that describes the creation of an
where primes denote derivatives with respect.to open universe was first found by Coleman and De Luccia in
These equations have several nonsingular solutions, tiE980[12]. It is given by a slightly distorted de Sitter four-

simplest of which are th€®(5) invariant four-spheres one sphere of radiusl ~1(¢,). Typically, field ¢ is very close to

obtains when fieldp sits at one of the extrema of its poten- false vacuume, throughout the four-sphere except in a

tial. In this case the first of the two equations above is trivi-small region(whose center we may choose to lierat0), in

ally satisfied, anda(7)=H 'sinHrz. Here H2:8’7TV/3M,2). which it lies on the “true vacuum” side of the maximum of

Using the solution for whichp=¢,, Hawkins and Moss V. The behavior of the field and scale factor for the potential

[11] found the rate at which fielgh in a single Hubble vol- in Fig. 1 is shown in Fig. 2. The scale factor vanishes at the

ume tunnels to the top of the potential, from which it can roll points 7=0 and = 7=~ 7/H, which we will call the north

down towards the true vacuum. For a recent discussion aind south pole of the four-sphere. In order to get a

this instanton and its interpretation sgg. The main other singularity-free solution, one must hayé=0 anda’=*1

use of these trivial instantons is to find the action of the falseon the poles.

vacuum background solution, which must be subtracted from This solution can be cut in half along the ling=/2,

the bounce action to obtain a tunneling rate. which removes half of each three-sphere. Then one can con-
We shall consider potentials for whidh’¢¢>H2 in the  tinue analytically to a Lorentzian spacetirfie3,6] with the

region where the tunneling occurs. In this case, tunneling ouime variableo, given by = m/2+i0o. This gives region ||

of the false vacuum does not occur primarily on the scale obf the Lorentzian universésee Fig. 3

an entire Hubble volume via the Hawking-Moss instanton. ) ) _ )

Instead the transition will proceed via more complicated Eu- ds’=—a*(r)do?+dr*+a’(7)costtadQ;.  (3)
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tons, is actually consistent with this formal requirement,
since the instantons may be connected by virtual domain
walls after small(Planck size four-balls are removed. This
will cause the background instanton to contribute to the total
action with a negative sign. If one connects the background
instanton to the region of the bubble instanton wherés
closest to its false vacuum, the discontinuity gnwill be
small, so the volume contributions of the removed regions

FIG. 3. The Lorentzian de Sitter-like spacetime obtained fromc@ncel almost exactly. Requiring continuous instantons,
the analytic continuation of Coleman—-De Luccia instantons coniherefore, does not change the pair creation rate significantly

tains three regions. In regions | and Il the hypersurfaces of consta

4iL4).

field ¢ form open spacelike sections. Region Il is a shell separating Cosmological instantons have frequently been interpreted

the two bubbles.

Field ¢ will still depend onrin the same way as before, and
will be independent ofs. This describes a shell of width

to describe the creation of a universe from nothing, i.e. with-
out a pre-existing background. This case is considerably less
well-defined than the quantum nucleation of structures on a
given background solution. In particular, the sign with which

H~1, which is mostly near the false vacuum and expandg;he Iargg, negative action enters the gxponent in the path
exponentially. The shell separates two bubbles, regions | anéitegral is subject to debaf6,5,15. Leaving such questions

I, in which the universe looks open.
Region | is obtained by taking=i=/2+ x and r=it,
giving the metric
ds?=—dt?+ a?(t)(dyx?+sint? xdQ3), (4)
where a(t) = —ia[ 7(t)]. Its spacelike section&lefined by
the hypersurfaces of constant inflaton fjelde open. Thus,

region | looks from the inside like an infinite open universe,

which inflates while field¢ slowly rolls down to the true

vacuum. The evolution will then undergo a transition to a

radiation or matter-dominated open Friedmann-Robertso
Walker universe.

In region lll, which is obtained by choosing=iw/2
+x and 7= 71+ it, field ¢ rolls to the local minimum at,
and one gets indefinite open inflation in the false vacuum.

The analytic continuations we have given support the in

terpretation of such solutions as the spontaneous nucleatio
of a bubble of true vacuum on the background of de Sitte
space expanding in the false vacuum. For this reason we will

call them “bubble instantons.” The nucleation rate is given
by
=e S

©)

where AS is the difference between the action of the full

Euclidean bubble solution, and the action of a Euclidean so-

lution describing the background spacetime. Except for nea%reation of bubbles of open inflation on the background of

Planckian potentials, both actions will be large and negativ
(about—2.6x 10% in our examplé The background solution
is given by an exact Euclidean four-sphere on which figld
is constant and equal i, the false vacuum. Its action will
be —(3M3)/8V(¢0). Subtracting this from the action of the
bubble solution, one obtains a positides (=4.9 in our ex-
ample. This means that bubble formation by tunneling is
suppressed, as it should be.

F

aside for now, we will take the position that isolated cosmo-

logical instantons are indeed related to universe creation, in-
dependently of the formalism used to assign probabilities to
such processes.

B. Double-bubble instantons

We have found a new instanton in which there are two
bubbles, one on each pole. In this solutighjs in the do-
main of the true vacuum in small regions near the poles, and
near the false vacuum elsewhere; this can be seen from the
dashed line in Fig. 2. The geometry is still approximately a

rH‘bur—sphere. As beforep’ vanishes on the poles; but now it

also vanishes on the equator,7at 7,,,. The Northern and
Southern hemispheres are exactly symmetric.

Not surprisingly, the action of the double-bubble solution,
after the background subtraction described above, is approxi-

mnately twice that of the bubbléColeman—De Lucciain-
stanton. For the instanton shown in Fig. 2 one RS,
~=9.8.

The analytic continuations will be the same as before,
with a different result. Region Il will be mostly in the do-
main of the false vacuum. Regions | and Il will be identical,
each containing an open inflating universe in which the field
rolls down to the true vacuum. Globally, therefore, we obtain
two bubbles of true vacuum separated by a shell which in-
flates in the false vacuum.

This solution can be interpreted as the spontaneous pair-

alse vacuum inflation. Alternatively, one may view it as the
creation from nothing of two open inflating universes sepa-
rated by a metastable shell.

C. Anti-double-bubble instantons

In addition we have found another family of instantons,
two examples of which are shown in Fig. 4. In these instan-

One usually requires instanton solutions to interpolate betons, the field is in the domain of the false vacuum in two

tween the initial and final spacelike sectiofis this case, a
section of pure de Sitter space in the false vacuum and
similar section containing a bubble of true vacyurfihe

regions surrounding the poles. They are separated by a thin
shell at the equator, where the field is in the true vacuum
domain. These instantons have a much greater action differ-

above description, which seems to use two disjoint instanence to the background instanton, since the true-vacuum re-
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FIG. 4. Two examples of “anti-double-bubble” instantons in 60000
which the field is in the false vacuum domain near the poles and 40000
reaches into the domain of the true vacuum on a shell near the 000
equator. It can be cut through the poles to describe shell nucleation _ . T
e . . 50000 100000 150000 200000 250000
or across the equator, describing the tunneling to true-vacuum in-
flation in a closed universe. FIG. 5. The standard solution. The scalar field is in unit¥gf

Field ¢ as well as the curvature are singular at the south pole. Note
gion is significantly larger than in the previous two cases. Inthat¢’ does not vanish at the equator, so one should complexify the
particular, AS=93.6 for the instanton shown by the solid scalar field in order to make the analytical continuation to a closed
line in Fig. 4, andA S=124.7 for the instanton shown by the universe. The analytic continuation to an open universe suggested
dashed line. by Hawking and TuroK6] involves the singularity on the nucle-

ation surface, which makes it rather problematic.

1. Open cut

With the analytic continuation used for the previous twois entirely in the domain of the true vacuum. A much more
instantons, regions | and Il will become open inflationary interesting interpretation is the one associated with a pre-
universes in which the field rolls down to the false vacuum existing background of false vacuum inflation. In this case,
They are separated by the region 11, which contains a shell OH']e anti-double-bubble instanton is seen to describe the spon-
which ¢ is in the domain of the true vacuum. taneous tunneling to the true vacuum in an entire Hubble-

Therefore we may interpret this solution as the nucleatiorvolume of de Sitter space. Unlike the Coleman—De Luccia
of a shell of true vacuum on a false vacuum inflationarybubbles, these regions will not contain an open universe. In
background, or alternatively, as the creation of such a unithe example we consider, for which Hawking-Moss tunnel-
verse from nothing. Because of the larger action differencelng is not possible, this shows that one can nevertheless
spontaneous shell creation will be quite suppressed conflucleate true vacuum bubbles containing a closed universe.
pared to bubble formation.

2 Closed cut IIl. SINGULAR INSTANTONS

A more intriguing application of this instanton can be A. Standard instantons
found by choosing a different analytic continuation. Instead \We now assume a generic effective potential of chaotic
of cutting at y==/2, we may choose to leave the three-inflation, with a minimumV=0, at $=0, and no other sta-
spheres intact, and cut across the equator. Lorentzian timgnary points. The standard Euclidean solution used in quan-
will be defined byr= 7,,+iT, and we obtain a metric with  tum cosmology is obtained by requiring regularity at the

closed spacelike sections: north pole, atr=0. This means one must také =1 and
>, 2 2 ¢'=0 there. A Euclidean solution with these initial condi-
ds’=—dT?+a%(T)dQs. ®)  tions is shown in Fig. 5 for a massive scalar field.

On most of the manifold, the solution will be almost a

The inflaton field is in the domain of the true vacuum on thefour-sphere, withg increasing very slowly:

nucleation surfacéthe equator;, so it will start rolling down
towards the absolute minimum. During this time, the space- a(r)=H sinHr, ¢(7)=dy, 8
like three-spheres grow exponentially:

where ¢y denotes the value of the inflaton field on the regu-
a(T)”H_l(T)COShJ H(T)dT. (7)  lar pole. A first approximation to the Euclidean action of the
standard instanton will therefore be given by the volume
Thus we obtain a closed inflationary universe in which theterm for a four-sphere of radiusl~*(¢y), S~—(3Mp)/
scalar field rolls towards the true vacuum. 8V(¢y). This will be a good approximation for large values
One could interpret this instanton as describing the creef ¢y leading to long periods of inflation.
ation of such a universe from nothing. But this would just Near the south pole, at=7, the anti-damping term
add an alternative to the usual instantons on which the field-¢’'b’/b starts to dominate the equation of motion r
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The field diverges logarithmically, and the potential terms 1. Closed cut

can be neglected. Approximate solutions are giver&g] This Euclidean solution can be cut in different ways to

obtain an instanton that allows an analytic continuation to a
Lorentzian spacetime. The standard method is to cut along
the equator, at= 7, and to discard the Southern hemi-
sphere, which contains the singularity. With= 75, +iT,
¢(r)=- \/Em(ﬁ_THd’m’ (10 one can join the regular hemisphere across the equator to
Lorentzian de Sitter space with the metric given by EGs.
whereA and ¢, are constants. and(?)_. The.surfa}ces of constant inflaton field will be clt_)sed
There are many questions associated with this singularitys.pace“ke slices in the Lorentzian sector. Therefore this cut

First of all, even though the divergence of the scalar field iscorresponds to,clqsed infiation.
In general,¢’ will be small but non-zero on the equator.

only logarithmic, the energy density and curvature divergel_his means that it will acquire an imaginary part in the

according to a power-law. If the singularity is part of the Lorentzian sector. But at late Lorentzian times, when mea-
nucleation geometry, i.e. if it is included in the Euclidean ) ! i
surements are made, one must demand that all variables be

instanton and its Lorentzian analytic continuation, the corre- wactly real. It is therefore necessary to compensate by add-
sponding method can no longer be called “the no-boundar y " . >ary P .y
ng a small imaginary part to the initial value @f[17,18:

a(r)=A(r—n%, (9)

proposal.”
The boundary at; contributes a Gibbons-Hawkind 6] M2
term to the action dn= PRE—i P (14)

8n°

(1)) where the superscript Re denotes the real part of a quantity.

=T For nucleation geometries which are everywhere real, the
real part of the Euclidean action comes entirely from the

whereh is the determinant of the three-methg , andK is  Eyclidean sector, since the Lorentzian sector contributes
the trace ofKj;, the second fundamental form. For anonly a purely imaginary part. But in the current case, the
O(4)-invariant metric, we fin&K=3a’/a. This yields Lorentzian sector will not be purely real for a time of order
H~1 after the nucleation hypersurface. It will therefore give
a further correction to the real part of the Euclidean action. It
can be easily checked both analytically and numerically that
the ratio of this term to the the total action is of ordkg?.
This corrects claims if17] that the correction is of the same
order as the total action.

2
S =— % f d3xh¥K
Tt 8w

ko

d(a®)
__ T2
Sr 4'\/Ip dr

12

T=T;

By Eq. (9), a(r) goes like ¢;— 7)Y near the singularity.
Therefore, the boundary term will be positive and firfite.
Note that for any power other than 1/3, the boundary term
would either vanish, or diverge.

The contribution of this boundary term to the total action Hawking and Turol{6] have suggested using the same
is relatively small if one considers the creation of an infla-analytic continuation for the standard solution that had been
tionary universe. For example, numerical investigationtraditionally used for the Coleman—De Luccia solution,
shows that in the theomyn?$2/2 this correction, as compared which we gave explicitly in Sec. . This involves cutting the
to the action— (3M3)/8V(¢N), is suppressed by a factor Euclidean space through the poles, thus including half of the

2. Open cut

O(M,/¢y) for py=>M: singularity on the nucleation surface. The resulting Lorentz-
ian solution contains regions | and Il of Fig. 3, while region
3|\/|:)1 Mp Il is cut off by the singgle}ri'ty. In region | the hyper_surfaces
Seif~ — - . (13)  of constantg trace out infinite open spacelike sections.
8V(¢n) 2¢n

The interpretation of this instanton and the analytical con-
tinuation proposed if6] may be rather problematic. It was
argued in[5] that even if instantons are nonsingular, they do
‘not always describe tunneling. But in this case one has addi-
tional problems associated with cutting the singularity in half
and performing the analytical continuation th¢sé.

N vVilenkin [9] has argued that the admission of such nucle-
tion geometries, in which there is a singularity on the hy-
rsurface of the vanishing second fundamental form, leads
to problems of vacuum instability. Such instantons exist for a
én~Mp. Minkowski space background, where they may cause an al-
most unsuppressed nucleation of singular bubbles spreading
out nearly at the speed of light. Clearly, this is physically
This result was also independently found by Vilenke. unacceptable. It poses a problem for the prescription sug-

There is also a correction to the volume term becafise
not exactly constant anywhere; we will not discuss this cor
rection here.

As is obvious from this result, at sma#l the total action
including the boundary term may become positive. One cal
confirm numerically that this is indeed the case. This is
rather unexpected conclusion as it indicates that the absolu
value of the action reaches its maximum notpat=0 but at
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gested by Hawking and Turok unless one finds sound argu- The Euclidean region looks mostly like a four-sphere of
ments why such instantons should be admitted for inflationfadius~H ~1(¢y). But there will be a region near the sin-
ary universes, but not for flat space. gularity, where the curvature and energy density diverge. We

According to[9], singular instantons may not be allowed may impose a Planck-scale cut-off here, and consider the
at all because they are not tr@ieonsingular solutions of  singularity and its vicinity as a small Planckian region im-
equation of motion that would correspond to an extremum ofnersed in the large four-sphere. The presence of this region
action. However, the singularity is not really a part of theon the south pole is the crucial difference between this nucle-
manifold. Moreover, one can sometimes cut it out, and conation geometry and the one studied in Sec. IIl A 1.
sider a configuration that is nonsingular but coincides with a How should we interpret this difference? The regular in-
singular instanton everywhere except for a small vicinity ofstanton, viewed in isolation, has often been interpreted as
the singularity. If the action of the instanton converges, themmepresenting the creation of the universe from nothing. This
for a sufficiently small size of the patch replacing the singu-was motivated by its self-contained nature; one might think
lar region, the action will differ from the instanton action by of “nothing” as the vanishing of the scale factar, which
less thamAS=1. Such “almost solutions” are perfectly ad- occurs on the regular north pole. In contrast, the interpreta-
missible and play the same role in the functional integral asion of the singular hemisphere actually seems less vague.
the true solutions, see e[d.9,14]. However, if one makes an We can think of this instanton as an interpolation between a
analytical continuation through the singularity, one cannotPlanckian regime, and a large closed inflating universe.
easily remove it by the method described above, and then iTherefore we propose that it describes the spontaneous igni-
may pose a real problem. tion of inflation from a bubble of spacetime foam. In fact,

A possible way out of this problem would be to use non-this agrees with the interpretation of creation from “noth-
singular instantons of the type we described in Sec. Il. Theyng” proposed in[7]. We are speaking about a state where
require special potentials with a false vacuum. This has théhe classical part of metric strongly fluctuates, so that one
advantage that one can, in principle, obtain any given valueannot measure distance using any measuring devices. This
Q<1. The price we pay is some loss of generaity. is what may happen at the Planckian epoch. But at the

An interesting result which appears after the boundaryPlanck time one would expect all physical fields to take large
term is taken into account is that the action at very srpall and strongly fluctuating values, rather than a definite value
changes its sign and becomes positive. This means that tleerresponding to the north pole of the usual nonsingular de
maximal absolute value of the action is reached not at th&itter instanton atr=0. In this sense the use of singular
point whenV(¢)=0, but at some other point, where infla- instantons seems quite appropriate for the description of
tion is still possible. It would be very interesting if this point quantum creation of a closed universe from space-time foam.
were at a sufficiently large value of, which would provide The main difference of this use of the singular instanton
a realistic value ofQ) within the Hartle-Hawking approach to that proposed by Hawking and Turok is that the singular-
without any use of the anthropic principle. Unfortunately, ity in our case does not reach into the Lorentzian sector. It is
however, our numerical investigation of this question showdimited to a tiny region in the Euclidean regime, where it can
that in all realistic models with potentials ¢", the absolute easily be smoothed out, or removed. Since the neither the
value of the action is maximal ab<<M,, which does not boundary term nor the volume term have divergences near
lead to long inflation, and which, consequently, yields anthe singularity, the action will be finite. For largg, it will
exponentially small value of). not differ noticeably from the action of the other hemisphere,

o or the action of the Hawking-Turok instanton.
3. Closed cut revisited

We will now turn to a different possibility. We wish to B. Gondola instantons

study the consequences of allowing the singularity to be part | the previous subsection we argued that weak localized
of the nucleation geometry but not of the hypersurface joinsjngularities inside the Euclidean sector of a tunneling geom-
ing the Euclidean and Lorentzian section. The simplest sucBtry can be interpreted as interpolations to space-time foam
instanton is obtained by cutting the standard solution, oncgnd can thus be quite useful. Once this point of view is
again, across the equator, but discarding ibgular hemi-  adopted, however, it is easy to see that the standard Euclid-
sphere, and keeping trengular hemisphere. ean solution is only a special case in a one-parameter family
The instanton thus corresponds to the interval,<7  of solutions. Generically, these solutions will have singulari-
<. The Lorentzian section is obtained by taking 7max  ties on both poles.
+iT, so it will be the same as that in Sec. Il A1: a closed  We will now focus on a particular member of this family
inflationary universe. that is exactly symmetric about the equator, shown in Fig. 6.
It can be constructed by specifying very simple boundary
conditions on the equator: one is free to choose the initial
*There is a second, more brute-force way of eliminating the sinValue of the field,¢= ¢ ; the derivatives of all fields and
gularity. One may take a spherical region around the regular polénetric components are set to zero. There will thus be iden-
and join it to its mirror image across a domain wall of positive tical singularities on the north and south pole. We will call
energy density. This method, which will be described in a separatéhis the “gondola” solution.
publication[20], does not require false vacua, but assumes the pres- If we cut this solution along the equator, we obtain two
ence of fields supporting the topological defect. identical hemispheres, each containing a small Planckian re-
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10} most exactly to the contribution of the single boundary term
in the standard solution. The instanton given by half of the
gondola solution will contain only one Planckian boundary.
Therefore, compared to the singular instanton studied in Sec.

5.5

5.4

5.3 Il A 3, the boundary contribution will be only half as large
5.2 here.
5.1 For small values ofpg, which give barely enough infla-

T tion, this means that the absolute value of the action is larg-

-100000 -50000 50000 100000

est for the regular closed instanton of Sec. Il A 1, followed
by the gondola instanton, and the singular instanton of Sec.
a Il A 3. For large values ofpg, which lead to a long period

of inflation and a very flat universe, the difference is com-
pletely negligible. Then the gondola instanton will be the

100000

80000 most practical to use, since it requires no analysis of complex
60000 variables.
40000
20000 IV. SUMMARY
- T

-100000 -50000 ' 50000 100000

We have described a number of nonsingular instantons

FIG. 6. Gondola solution. Fiele as well as the curvature are leading to open inflating universes. They include the
singular at the south and north poles. Unlike the standard solutiorColeman—De Luccia solution, in which a bubble of true
this one is symmetric about the equator, where all derivatives vanvacuum expands inside a universe inflating in the false
ish. vacuum. We found new solutions that contain two bubbles,
or a shell of true vacuum.

gion at its pole. As we discussed above, we may consider, We qlso construct.ed instantons with a singularity. .If th?

this region to interpolate to spacetime foam. Performing thesmgularlty does not I'e. on the hypergurface .Of nucleation, it

usual analytic continuationt= 7,5, +iT, we obtain, once causes no problems in the Lorent2|an_ reglon,_and can_be

more, a closed Lorentzian universe. But the gondola instarf—nterpreted as a small region OT Planckian density. Sl.mh In-

tons have the great advantage that the second fundamenﬁ% htons can be usedi to describe the quantum creation of a

form, and all field derivatives, vanishes on the nucleatiorC osed inflationary universe frc_)m space-time foam without

hypersurface by construction. This means that all variableg1e need to use complex solutions.

will be perfectly real in the entire Euclidean and Lorentzian ACKNOWLEDGMENTS

sectors. There is no need for introducing complex initial con-
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