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Quantum creation of a universe with VÞ1: Singular and nonsingular instantons

Raphael Bousso and Andrei Linde
Department of Physics, Stanford University, Stanford, California 94305

~Received 23 March 1998; published 1 September 1998!

We propose two new classes of instantons which describe the tunneling and/or quantum creation of closed
and open universes. The instantons leading to an open universe can be considered as generalizations of the
Coleman–De Luccia solution. They are nonsingular, unlike the instantons recently studied by Hawking and
Turok, whose prescription has the problem that the singularity is located on the hypersurface connecting to the
Lorentzian region, which makes it difficult to remove. We argue that such singularities are harmless if they are
located purely in the Euclidean region. We thus obtain new singular instantons leading to a closed universe;
unlike the usual regular instantons used for this purpose, they do not require complex initial conditions. The
singularity gives a boundary contribution to the action which is small for the instantons leading to sufficient
inflation, but changes the sign of the action for smallf corresponding to short periods of inflation.
@S0556-2821~98!08016-3#
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I. INTRODUCTION

It is well known that most of the models of inflationar
cosmology predictV5161024. It is possible to have infla-
tion with VÞ1, but it is rather difficult. The basic idea is t
solve the homogeneity and isotropy problem not by
long stage of inflation, but by quantum tunneling to a st
describing an open or closed universe. Then the unive
will be homogeneous if the probability of tunneling is suf
ciently and strongly suppressed. In this scenario an infi
number of open universes can be created in one of two w
One may consider a purely classical evolution of an in
tionary universe in the false vacuum and a subsequent
ation of inflating open universes by tunneling to the tr
vacuum@1–3#. Alternatively, one may consider the quantu
creation from nothing of a closed inflationary univers
which later decays into an infinite number of open univer
by the process described above@4,5#. In all such models, it is
necessary to assume a potential with a false vacuum.

Recently, Hawking and Turok claimed that open u
verses can be obtained without an intermediate stage inv
ing false vacua. They described a process in which an o
universe is created from nothing in the chaotic inflation s
nario with a generic effective potential@6#. They used the
standard deformed-four-sphere Euclidean solution, in wh
the inflaton field is constant on the lines of constant latitu
This solution generically has a singularity on one of t
poles. Usually it is cut along the equator; the singular he
sphere is discarded, and the regular one is analytically c
tinued to yield a closed Lorentzian universe.

Instead, Hawking and Turok cut the Euclidean soluti
through the poles, thus including the singularity on the h
persurface through which the Euclidean and Lorentzian s
tors are joined. The hypersurfaces of constant inflaton fi
will then form infinite open spacelike sections in a part of t
resulting Lorentzian universe.

This approach suffers from two problems. The first pro
lem is that they obtainV51022 for the ratio of the presen
density to the critical density. This contradicts observatio
data by almost two orders of magnitude, and even this re
0556-2821/98/58~8!/083503~7!/$15.00 58 0835
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was obtained only after invoking the anthropic princip
without which one would getV50. The prediction comes
from the probability measure associated with the Har
Hawking wave function. In@5# it was argued that, accordin
to @7,8#, this wave function should not be used for the d
scription of the creation of the universe and it was sho
that the use of the tunneling proposal would typically lead
V'1. It thus appears that with either choice of the wa
function of the universe we are not currently in a position
obtain a realistic value ofV50.3 unless customized poten
tials are employed.

The second problem is associated with the presence
singularity on the nucleation surface. Vilenkin@9# argued
that instantons of the Hawking-Turok type lead to vacuu
instability and should therefore be excluded from the p
integral. In@5# it was shown that not every instanton is pe
mitted even if it is nonsingular. On the other hand, it w
suggested that singular instantons are not necessarily fo
den, but one should be extremely careful about the analyt
continuation involving singularities which was used in@6#.
For other problems associated with this issue see also@10#.

In this paper, we will perform a more detailed investig
tion of these issues. We will suggest two ways of avoidi
the problems associated with the Hawking-Turok singular
First, we will consider potentials with a local maximum, fo
which there are non-singular solutions. They include
Coleman–De Luccia instantons as well as some new, rel
solutions that we found. We will discuss the structure a
application of these solutions in Sec. II. They describe
nucleation of open universes, and allow the correct pred
tion of V for suitable potentials. Of course, this means th
the generality claimed by Hawking and Turok is lost, but
we pointed out above, generic inflaton potentials do not se
very promising in any case when one tries to predict u
verses which are both non-flat and non-empty.

We will allow generic potentials in Sec. III, where we wi
use variants of the deformed-four-sphere instanton to nu
ate closed universes. We cut them along the equator
discard theregular hemisphere. The Hawking-Turok singu
larity will be present in this case. It will not, however, lie o
© 1998 The American Physical Society03-1
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RAPHAEL BOUSSO AND ANDREI LINDE PHYSICAL REVIEW D58 083503
the nucleation hypersurface. Therefore it can be ‘‘surgica
removed,’’ or viewed as a small region of Planckian dens
We calculate the boundary contribution to the action a
show that it is small in all cases where sufficient inflati
ensues. We discuss a possible interpretation of these s
tions as the birth of a closed inflationary universe by tunn
ing from space-time foam. Finally, we construct instanto
that are symmetric about the equator and contain two sin
larities. They allow the construction of nucleation paths
which all variables are everywhere real.

II. NONSINGULAR INSTANTONS

Suppose we have an effective potentialV(f) with a local
minimum at f1 , and a global minimum atf50, where
V50 ~see Fig. 1!. In anO(4)-invariant Euclidean spacetim
with the metric

ds25dt21a2~t!~dc21sin2cdV2
2!, ~1!

the scalar fieldf and the three-sphere radiusa obey the
equations of motion

f913
a8

a
f85V,f , a952

8pG

3
a~f821V!, ~2!

where primes denote derivatives with respect tot.
These equations have several nonsingular solutions,

simplest of which are theO(5) invariant four-spheres on
obtains when fieldf sits at one of the extrema of its pote
tial. In this case the first of the two equations above is tri
ally satisfied, anda(t)5H21sinHt. Here H258pV/3Mp

2.
Using the solution for whichf5f1 , Hawkins and Moss
@11# found the rate at which fieldf in a single Hubble vol-
ume tunnels to the top of the potential, from which it can r
down towards the true vacuum. For a recent discussion
this instanton and its interpretation see@5#. The main other
use of these trivial instantons is to find the action of the fa
vacuum background solution, which must be subtracted fr
the bounce action to obtain a tunneling rate.

We shall consider potentials for whichV,ff@H2 in the
region where the tunneling occurs. In this case, tunneling
of the false vacuum does not occur primarily on the scale
an entire Hubble volume via the Hawking-Moss instanto
Instead the transition will proceed via more complicated E

FIG. 1. Effective potentialV(f)5 m2/2 @f2(f2v)21Bf4# for
m252, B50.12, andv50.5. It has a shallow minimum atf0

;0.357 and a local maximum atf150.312. All quantities in the
figures in this section are in units ofMp /A8p.
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clidean solutions with varying fieldf. These include the
Coleman–De Lucia instanton, and related instantons tha
found.

A. Bubble instantons

A Euclidean solution that describes the creation of
open universe was first found by Coleman and De Luccia
1980 @12#. It is given by a slightly distorted de Sitter four
sphere of radiusH21(f0). Typically, fieldf is very close to
false vacuumf0 throughout the four-sphere except in
small region~whose center we may choose to lie att50!, in
which it lies on the ‘‘true vacuum’’ side of the maximum o
V. The behavior of the field and scale factor for the poten
in Fig. 1 is shown in Fig. 2. The scale factor vanishes at
points t50 andt5t f'p/H, which we will call the north
and south pole of the four-sphere. In order to get
singularity-free solution, one must havef850 anda8561
on the poles.

This solution can be cut in half along the linec5p/2,
which removes half of each three-sphere. Then one can
tinue analytically to a Lorentzian spacetime@13,6# with the
time variables, given byc5p/21 is. This gives region II
of the Lorentzian universe~see Fig. 3!

ds252a2~t!ds21dt21a2~t!cosh2sdV2
2 . ~3!

FIG. 2. The upper panel shows the behavior of scalar fieldf for
examples of the Coleman–De Luccia ‘‘bubble’’ instanton~solid
line! and the new ‘‘double-bubble’’ instanton that we found~dashed
line!. For both instantons, the field is in the domain of the tr
vacuum at smallt, forming a bubble. For the bubble instanton, th
field is closest to the false vacuum at the pole opposite the bub
For the double-bubble instanton, this happens on the equator a
moment of the maximal expansion. The behavior of the thr
sphere radiusa(t) shown in the lower panel is very similar for bot
instantons, though it is not identical.
3-2
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QUANTUM CREATION OF A UNIVERSE WITHVÞ1: . . . PHYSICAL REVIEW D 58 083503
Field f will still depend ont in the same way as before, an
will be independent ofs. This describes a shell of width
H21, which is mostly near the false vacuum and expan
exponentially. The shell separates two bubbles, regions I
III, in which the universe looks open.

Region I is obtained by takings5 ip/21x and t5 i t ,
giving the metric

ds252dt21a2~ t !~dx21sinh2 xdV2
2!, ~4!

wherea(t)52 ia@t(t)#. Its spacelike sections~defined by
the hypersurfaces of constant inflaton field! are open. Thus
region I looks from the inside like an infinite open univers
which inflates while fieldf slowly rolls down to the true
vacuum. The evolution will then undergo a transition to
radiation or matter-dominated open Friedmann-Roberts
Walker universe.

In region III, which is obtained by choosings5 ip/2
1x andt5t f1 i t , field f rolls to the local minimum atf0 ,
and one gets indefinite open inflation in the false vacuum

The analytic continuations we have given support the
terpretation of such solutions as the spontaneous nuclea
of a bubble of true vacuum on the background of de Si
space expanding in the false vacuum. For this reason we
call them ‘‘bubble instantons.’’ The nucleation rate is giv
by

G5e2DS, ~5!

where DS is the difference between the action of the fu
Euclidean bubble solution, and the action of a Euclidean
lution describing the background spacetime. Except for ne
Planckian potentials, both actions will be large and nega
~about22.63104 in our example!. The background solution
is given by an exact Euclidean four-sphere on which fieldf
is constant and equal tof0 , the false vacuum. Its action wil
be 2(3Mp

4)/8V(f0). Subtracting this from the action of th
bubble solution, one obtains a positiveDS ~'4.9 in our ex-
ample!. This means that bubble formation by tunneling
suppressed, as it should be.

One usually requires instanton solutions to interpolate
tween the initial and final spacelike sections~in this case, a
section of pure de Sitter space in the false vacuum an
similar section containing a bubble of true vacuum!. The
above description, which seems to use two disjoint inst

FIG. 3. The Lorentzian de Sitter-like spacetime obtained fr
the analytic continuation of Coleman–De Luccia instantons c
tains three regions. In regions I and III the hypersurfaces of cons
field f form open spacelike sections. Region II is a shell separa
the two bubbles.
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tons, is actually consistent with this formal requireme
since the instantons may be connected by virtual dom
walls after small~Planck size! four-balls are removed. This
will cause the background instanton to contribute to the to
action with a negative sign. If one connects the backgrou
instanton to the region of the bubble instanton wheref is
closest to its false vacuum, the discontinuity inf will be
small, so the volume contributions of the removed regio
cancel almost exactly. Requiring continuous instanto
therefore, does not change the pair creation rate significa
@14#.

Cosmological instantons have frequently been interpre
to describe the creation of a universe from nothing, i.e. wi
out a pre-existing background. This case is considerably
well-defined than the quantum nucleation of structures o
given background solution. In particular, the sign with whi
the large, negative action enters the exponent in the p
integral is subject to debate@6,5,15#. Leaving such questions
aside for now, we will take the position that isolated cosm
logical instantons are indeed related to universe creation
dependently of the formalism used to assign probabilities
such processes.

B. Double-bubble instantons

We have found a new instanton in which there are t
bubbles, one on each pole. In this solution,f is in the do-
main of the true vacuum in small regions near the poles,
near the false vacuum elsewhere; this can be seen from
dashed line in Fig. 2. The geometry is still approximately
four-sphere. As before,f8 vanishes on the poles; but now
also vanishes on the equator, att5tmax. The Northern and
Southern hemispheres are exactly symmetric.

Not surprisingly, the action of the double-bubble solutio
after the background subtraction described above, is appr
mately twice that of the bubble~Coleman–De Luccia! in-
stanton. For the instanton shown in Fig. 2 one hasDS2
'9.8.

The analytic continuations will be the same as befo
with a different result. Region II will be mostly in the do
main of the false vacuum. Regions I and III will be identica
each containing an open inflating universe in which the fi
rolls down to the true vacuum. Globally, therefore, we obta
two bubbles of true vacuum separated by a shell which
flates in the false vacuum.

This solution can be interpreted as the spontaneous p
creation of bubbles of open inflation on the background
false vacuum inflation. Alternatively, one may view it as t
creation from nothing of two open inflating universes sep
rated by a metastable shell.

C. Anti-double-bubble instantons

In addition we have found another family of instanton
two examples of which are shown in Fig. 4. In these inst
tons, the field is in the domain of the false vacuum in tw
regions surrounding the poles. They are separated by a
shell at the equator, where the field is in the true vacu
domain. These instantons have a much greater action di
ence to the background instanton, since the true-vacuum

-
nt
g
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RAPHAEL BOUSSO AND ANDREI LINDE PHYSICAL REVIEW D58 083503
gion is significantly larger than in the previous two cases
particular, DS593.6 for the instanton shown by the sol
line in Fig. 4, andDS5124.7 for the instanton shown by th
dashed line.

1. Open cut

With the analytic continuation used for the previous tw
instantons, regions I and III will become open inflationa
universes in which the field rolls down to the false vacuu
They are separated by the region II, which contains a she
which f is in the domain of the true vacuum.

Therefore we may interpret this solution as the nucleat
of a shell of true vacuum on a false vacuum inflationa
background, or alternatively, as the creation of such a u
verse from nothing. Because of the larger action differen
spontaneous shell creation will be quite suppressed c
pared to bubble formation.

2. Closed cut

A more intriguing application of this instanton can b
found by choosing a different analytic continuation. Inste
of cutting at c5p/2, we may choose to leave the thre
spheres intact, and cut across the equator. Lorentzian
will be defined byt5tmax1iT, and we obtain a metric with
closed spacelike sections:

ds252dT21a2~T!dV3
2 . ~6!

The inflaton field is in the domain of the true vacuum on t
nucleation surface~the equator!, so it will start rolling down
towards the absolute minimum. During this time, the spa
like three-spheres grow exponentially:

a~T!'H21~T!coshE H~T!dT. ~7!

Thus we obtain a closed inflationary universe in which
scalar field rolls towards the true vacuum.

One could interpret this instanton as describing the c
ation of such a universe from nothing. But this would ju
add an alternative to the usual instantons on which the fi

FIG. 4. Two examples of ‘‘anti-double-bubble’’ instantons
which the field is in the false vacuum domain near the poles
reaches into the domain of the true vacuum on a shell near
equator. It can be cut through the poles to describe shell nuclea
or across the equator, describing the tunneling to true-vacuum
flation in a closed universe.
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is entirely in the domain of the true vacuum. A much mo
interesting interpretation is the one associated with a p
existing background of false vacuum inflation. In this ca
the anti-double-bubble instanton is seen to describe the s
taneous tunneling to the true vacuum in an entire Hubb
volume of de Sitter space. Unlike the Coleman–De Luc
bubbles, these regions will not contain an open universe
the example we consider, for which Hawking-Moss tunn
ing is not possible, this shows that one can neverthe
nucleate true vacuum bubbles containing a closed unive

III. SINGULAR INSTANTONS

A. Standard instantons

We now assume a generic effective potential of chao
inflation, with a minimum,V50, at f50, and no other sta-
tionary points. The standard Euclidean solution used in qu
tum cosmology is obtained by requiring regularity at t
north pole, att50. This means one must takea851 and
f850 there. A Euclidean solution with these initial cond
tions is shown in Fig. 5 for a massive scalar field.

On most of the manifold, the solution will be almost
four-sphere, withf increasing very slowly:

a~t!5H21sin Ht, f~t!5fN , ~8!

wherefN denotes the value of the inflaton field on the reg
lar pole. A first approximation to the Euclidean action of t
standard instanton will therefore be given by the volum
term for a four-sphere of radiusH21(fN), S;2(3Mp

4)/
8V(fN). This will be a good approximation for large value
of fN leading to long periods of inflation.

Near the south pole, att5t f , the anti-damping term
;f8b8/b starts to dominate the equation of motion forf.

d
he
n,
n-

FIG. 5. The standard solution. The scalar field is in units ofMp .
Field f as well as the curvature are singular at the south pole. N
thatf8 does not vanish at the equator, so one should complexify
scalar field in order to make the analytical continuation to a clo
universe. The analytic continuation to an open universe sugge
by Hawking and Turok@6# involves the singularity on the nucle
ation surface, which makes it rather problematic.
3-4
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QUANTUM CREATION OF A UNIVERSE WITHVÞ1: . . . PHYSICAL REVIEW D 58 083503
The field diverges logarithmically, and the potential term
can be neglected. Approximate solutions are given by@6,9#

a~t!5A~t f2t!1/3, ~9!

f~t!52
1

A12p
ln~t f2t!1fm, ~10!

whereA andfm are constants.
There are many questions associated with this singula

First of all, even though the divergence of the scalar field
only logarithmic, the energy density and curvature dive
according to a power-law. If the singularity is part of th
nucleation geometry, i.e. if it is included in the Euclide
instanton and its Lorentzian analytic continuation, the cor
sponding method can no longer be called ‘‘the no-bound
proposal.’’

The boundary att f contributes a Gibbons-Hawking@16#
term to the action

St f
52

Mp
2

8p E d3xh1/2KU
t5t f

, ~11!

whereh is the determinant of the three-metrichi j , andK is
the trace of Ki j , the second fundamental form. For a
O(4)-invariant metric, we findK53a8/a. This yields

St f
52

p

4
Mp

2 d~a3!

dt U
t5t f

. ~12!

By Eq. ~9!, a(t) goes like (t f2t)1/3 near the singularity.
Therefore, the boundary term will be positive and finite1

Note that for any power other than 1/3, the boundary te
would either vanish, or diverge.

The contribution of this boundary term to the total acti
is relatively small if one considers the creation of an infl
tionary universe. For example, numerical investigat
shows that in the theorym2f2/2 this correction, as compare
to the action2 (3Mp

4)/8V(fN), is suppressed by a facto
O(Mp /fN) for fN@Mp :

Sstd'2
3Mp

4

8V~fN! S 12
Mp

2fN
D . ~13!

There is also a correction to the volume term becausef is
not exactly constant anywhere; we will not discuss this c
rection here.

As is obvious from this result, at smallfN the total action
including the boundary term may become positive. One
confirm numerically that this is indeed the case. This i
rather unexpected conclusion as it indicates that the abso
value of the action reaches its maximum not atfN50 but at
fN;Mp .

1This result was also independently found by Vilenkin@9#.
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1. Closed cut

This Euclidean solution can be cut in different ways
obtain an instanton that allows an analytic continuation t
Lorentzian spacetime. The standard method is to cut al
the equator, att5tmax and to discard the Southern hem
sphere, which contains the singularity. Witht5tmax1iT,
one can join the regular hemisphere across the equato
Lorentzian de Sitter space with the metric given by Eqs.~6!
and~7!. The surfaces of constant inflaton field will be clos
spacelike slices in the Lorentzian sector. Therefore this
corresponds to closed inflation.

In general,f8 will be small but non-zero on the equato
This means that it will acquire an imaginary part in th
Lorentzian sector. But at late Lorentzian times, when m
surements are made, one must demand that all variable
exactly real. It is therefore necessary to compensate by a
ing a small imaginary part to the initial value off @17,18#:

fN5fN
Re2 i

Mp
2

8fN
Re ~14!

where the superscript Re denotes the real part of a quan
For nucleation geometries which are everywhere real,

real part of the Euclidean action comes entirely from t
Euclidean sector, since the Lorentzian sector contribu
only a purely imaginary part. But in the current case, t
Lorentzian sector will not be purely real for a time of ord
H21 after the nucleation hypersurface. It will therefore gi
a further correction to the real part of the Euclidean action
can be easily checked both analytically and numerically t
the ratio of this term to the the total action is of orderfN

22 .
This corrects claims in@17# that the correction is of the sam
order as the total action.

2. Open cut

Hawking and Turok@6# have suggested using the sam
analytic continuation for the standard solution that had b
traditionally used for the Coleman–De Luccia solutio
which we gave explicitly in Sec. II. This involves cutting th
Euclidean space through the poles, thus including half of
singularity on the nucleation surface. The resulting Loren
ian solution contains regions I and II of Fig. 3, while regio
III is cut off by the singularity. In region I the hypersurface
of constantf trace out infinite open spacelike sections.

The interpretation of this instanton and the analytical co
tinuation proposed in@6# may be rather problematic. It wa
argued in@5# that even if instantons are nonsingular, they
not always describe tunneling. But in this case one has a
tional problems associated with cutting the singularity in h
and performing the analytical continuation there@5#.

Vilenkin @9# has argued that the admission of such nuc
ation geometries, in which there is a singularity on the h
persurface of the vanishing second fundamental form, le
to problems of vacuum instability. Such instantons exist fo
Minkowski space background, where they may cause an
most unsuppressed nucleation of singular bubbles sprea
out nearly at the speed of light. Clearly, this is physica
unacceptable. It poses a problem for the prescription s
3-5
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RAPHAEL BOUSSO AND ANDREI LINDE PHYSICAL REVIEW D58 083503
gested by Hawking and Turok unless one finds sound a
ments why such instantons should be admitted for inflati
ary universes, but not for flat space.

According to@9#, singular instantons may not be allowe
at all because they are not true~nonsingular! solutions of
equation of motion that would correspond to an extremum
action. However, the singularity is not really a part of t
manifold. Moreover, one can sometimes cut it out, and c
sider a configuration that is nonsingular but coincides wit
singular instanton everywhere except for a small vicinity
the singularity. If the action of the instanton converges, th
for a sufficiently small size of the patch replacing the sing
lar region, the action will differ from the instanton action b
less thanDS51. Such ‘‘almost solutions’’ are perfectly ad
missible and play the same role in the functional integra
the true solutions, see e.g.@19,14#. However, if one makes an
analytical continuation through the singularity, one can
easily remove it by the method described above, and the
may pose a real problem.

A possible way out of this problem would be to use no
singular instantons of the type we described in Sec. II. T
require special potentials with a false vacuum. This has
advantage that one can, in principle, obtain any given va
V,1. The price we pay is some loss of generality.2

An interesting result which appears after the bound
term is taken into account is that the action at very smaf
changes its sign and becomes positive. This means tha
maximal absolute value of the action is reached not at
point whenV(f)50, but at some other point, where infla
tion is still possible. It would be very interesting if this poin
were at a sufficiently large value off, which would provide
a realistic value ofV within the Hartle-Hawking approach
without any use of the anthropic principle. Unfortunate
however, our numerical investigation of this question sho
that in all realistic models with potentials;fn, the absolute
value of the action is maximal atf,Mp , which does not
lead to long inflation, and which, consequently, yields
exponentially small value ofV.

3. Closed cut revisited

We will now turn to a different possibility. We wish to
study the consequences of allowing the singularity to be
of the nucleation geometry but not of the hypersurface jo
ing the Euclidean and Lorentzian section. The simplest s
instanton is obtained by cutting the standard solution, o
again, across the equator, but discarding theregular hemi-
sphere, and keeping thesingular hemisphere.

The instanton thus corresponds to the intervaltmax<t
<tf . The Lorentzian section is obtained by takingt5tmax
1iT, so it will be the same as that in Sec. III A 1: a clos
inflationary universe.

2There is a second, more brute-force way of eliminating the s
gularity. One may take a spherical region around the regular p
and join it to its mirror image across a domain wall of positi
energy density. This method, which will be described in a sepa
publication@20#, does not require false vacua, but assumes the p
ence of fields supporting the topological defect.
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The Euclidean region looks mostly like a four-sphere
radius;H21(fN). But there will be a region near the sin
gularity, where the curvature and energy density diverge.
may impose a Planck-scale cut-off here, and consider
singularity and its vicinity as a small Planckian region im
mersed in the large four-sphere. The presence of this re
on the south pole is the crucial difference between this nu
ation geometry and the one studied in Sec. III A 1.

How should we interpret this difference? The regular
stanton, viewed in isolation, has often been interpreted
representing the creation of the universe from nothing. T
was motivated by its self-contained nature; one might th
of ‘‘nothing’’ as the vanishing of the scale factora, which
occurs on the regular north pole. In contrast, the interpre
tion of the singular hemisphere actually seems less vag
We can think of this instanton as an interpolation betwee
Planckian regime, and a large closed inflating univer
Therefore we propose that it describes the spontaneous
tion of inflation from a bubble of spacetime foam. In fac
this agrees with the interpretation of creation from ‘‘not
ing’’ proposed in@7#. We are speaking about a state whe
the classical part of metric strongly fluctuates, so that o
cannot measure distance using any measuring devices.
is what may happen at the Planckian epoch. But at
Planck time one would expect all physical fields to take la
and strongly fluctuating values, rather than a definite va
corresponding to the north pole of the usual nonsingular
Sitter instanton att50. In this sense the use of singula
instantons seems quite appropriate for the description
quantum creation of a closed universe from space-time fo

The main difference of this use of the singular instant
to that proposed by Hawking and Turok is that the singul
ity in our case does not reach into the Lorentzian sector.
limited to a tiny region in the Euclidean regime, where it c
easily be smoothed out, or removed. Since the neither
boundary term nor the volume term have divergences n
the singularity, the action will be finite. For largefN it will
not differ noticeably from the action of the other hemisphe
or the action of the Hawking-Turok instanton.

B. Gondola instantons

In the previous subsection we argued that weak locali
singularities inside the Euclidean sector of a tunneling geo
etry can be interpreted as interpolations to space-time fo
and can thus be quite useful. Once this point of view
adopted, however, it is easy to see that the standard Eu
ean solution is only a special case in a one-parameter fa
of solutions. Generically, these solutions will have singula
ties on both poles.

We will now focus on a particular member of this fami
that is exactly symmetric about the equator, shown in Fig
It can be constructed by specifying very simple bound
conditions on the equator: one is free to choose the in
value of the field,f5fE ; the derivatives of all fields and
metric components are set to zero. There will thus be id
tical singularities on the north and south pole. We will c
this the ‘‘gondola’’ solution.

If we cut this solution along the equator, we obtain tw
identical hemispheres, each containing a small Planckian
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gion at its pole. As we discussed above, we may cons
this region to interpolate to spacetime foam. Performing
usual analytic continuation,t5tmax1iT, we obtain, once
more, a closed Lorentzian universe. But the gondola ins
tons have the great advantage that the second fundam
form, and all field derivatives, vanishes on the nucleat
hypersurface by construction. This means that all variab
will be perfectly real in the entire Euclidean and Lorentzi
sectors. There is no need for introducing complex initial co
ditions in this case.

The gondola solution has two boundaries that contrib
terms to the action. For comparable values offE on the
equator, we found numerically that these terms add up

FIG. 6. Gondola solution. Fieldf as well as the curvature ar
singular at the south and north poles. Unlike the standard solu
this one is symmetric about the equator, where all derivatives v
ish.
o-
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i-
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most exactly to the contribution of the single boundary te
in the standard solution. The instanton given by half of t
gondola solution will contain only one Planckian bounda
Therefore, compared to the singular instanton studied in S
III A 3, the boundary contribution will be only half as larg
here.

For small values offE , which give barely enough infla
tion, this means that the absolute value of the action is la
est for the regular closed instanton of Sec. III A 1, follow
by the gondola instanton, and the singular instanton of S
III A 3. For large values offE , which lead to a long period
of inflation and a very flat universe, the difference is co
pletely negligible. Then the gondola instanton will be t
most practical to use, since it requires no analysis of comp
variables.

IV. SUMMARY

We have described a number of nonsingular instant
leading to open inflating universes. They include t
Coleman–De Luccia solution, in which a bubble of tru
vacuum expands inside a universe inflating in the fa
vacuum. We found new solutions that contain two bubbl
or a shell of true vacuum.

We also constructed instantons with a singularity. If t
singularity does not lie on the hypersurface of nucleation
causes no problems in the Lorentzian region, and can
interpreted as a small region of Planckian density. Such
stantons can be used to describe the quantum creation
closed inflationary universe from space-time foam witho
the need to use complex solutions.
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