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Magnetohydrodynamics in the early universe and the damping of nonlinear Alfve´n waves

Kandaswamy Subramanian* and John D. Barrow
Astronomy Centre, University of Sussex, Brighton BN1 9QJ, United Kingdom

~Received 8 December 1997; published 31 August 1998!

The evolution and viscous damping of cosmic magnetic fields in the early universe is analyzed. Using the
fact that the fluid, electromagnetic, and shear viscous energy-momentum tensors are all conformally invariant,
the evolution is transformed from the expanding universe setting into that in flat spacetime. Particular attention
is paid to the evolution of nonlinear Alfve´n modes. For a small enough magnetic field, which satisfies our
observational constraints, these wave modes either oscillate negligibly or, when they do oscillate, become
overdamped. Hence they do not suffer Silk damping on galactic and subgalactic scales. The smallest scale
which survives damping depends on the field strength and is of the order of a dimensionless Alfve´n velocity
times the usual baryon-photon Silk damping scale. After recombination, nonlinear effects can convert the
Alfvén-type mode into compressional, gravitationally unstable waves and seed cosmic structures if the cosmic
magnetic field is sufficiently strong.@S0556-2821~98!02718-0#

PACS number~s!: 98.80.Cq, 52.35.Bj, 95.30.Qd
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I. INTRODUCTION

The origin of ordered, large-scale cosmic magnetic fie
remains a challenging problem. It is widely assumed t
magnetic fields in astronomical objects, such as galax
grew by turbulent dynamo amplification of small seed ma
netic fields@1#. There have been many suggestions for p
ducing the small seed magnetic fields required to prime
amplification process@2#. Some of these proposals appeal
processes which might operate in the very early universe@3#.
Moreover, the efficiency with which known turbulent dy
namo mechanisms can produce the observed fields is
being debated@4#. An alternate possibility is that the galact
field could be the remnant of a larger cosmological field
primordial origin@5#, although, as yet, there is no compellin
mechanism for producing the required field. It could for
part of the initial conditions, arise at a phase transition, or
produced in some way at the end of a period of inflation@3#.
If the primordial field is homogeneous then the isotropy
the microwave background places a limit
3.431029(V0h50

2 )1/2 G on its present strength@6#. This lim-
its the strength of any primordial field on scales greater t
the horizon at last scattering.

Dissipative processes play a key role in fashioning
spectrum of irregularities that survive the radiation era. I
well known that density fluctuations in the baryons suf
‘‘Silk’’ damping in the early universe, due to radiative vis
cosity @7#. This leads one to wonder whether fluctuati
magnetic fields produced in the early universe, which cou
to the baryons, will also be damped by similar process
This problem was considered by Jedamzik, Katalinic a
Olinto ~JKO! @8#, who examined the damping of linearize
magnetohydrodynamical~MHD! wave modes in an expand
ing universe. However, there remain subtleties about the
mulation of the problem, and the damping processes, wh
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prompt us to reanalyze the problem in a completely differ
fashion that also allows non-linear effects to be consider

The study of early universe MHD can be considerab
simplified by exploiting the conformal invariance of the rel
tivistic fluid, electromagnetic, and shear viscous ener
momentum tensors. We do this here. This invariance allo
one to transform viscous relativistic MHD from the expan
ing universe setting to a simpler problem in flat spacetim
This transformation is explained in detail in the next sect
and in Appendix A. The non-relativistic limit of the resultin
MHD equations is given in Sec. III. In the early universe, t
radiation-baryon pressure is much larger than the magn
pressure for the magnetic field strengths that are gene
considered. This means that one can treat the motions
duced by any tangled field as being largely incompressi
so long as long as the photon mean-free path is smaller
the scale of the magnetic tangles. In this situation,
Alfvén-type wave modes are the most important. Therefo
in Sec. IV, we shall focus attention onnonlinear Alfvén-
wave solutions and study the damping of a special non-lin
mode. For this mode, the magnetic field has a tangled c
ponent of arbitrary strength perpendicular to a uniform fie
Also, its spatial configuration can vary arbitrarily along th
large-scale field. The analysis of this case is particula
simple because the nonlinear MHD equations can be tra
formed into a linear wave equation by a conformal transf
mation. We should stress, however, that the field is no
linear perturbation, since the amplitude of the tangled co
ponent can be taken to be arbitrarily large compared to
amplitude of the uniform field~so long as the metric pertur
bations it creates do not distort the Friedmann backgro
expansion!. This solution can serve as a qualitative guide
understanding the evolution of general tangled fields. For
sake of completeness, the compressible MHD modes are
briefly treated using conformal transformation, in their li
earized limit, in Sec. V.

As the universe expands, the relevant mean-free-pat
the particle responsible for the damping eventually exce
the wavelength of a given mode. After this point conform
transformation is no longer a useful tool and one has to

In-
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back to the non-transformed equations. The evolution
various MHD motions in this free-streaming regime, is co
sidered in Sec. VI. The results of our work in the abo
sections on the damping scales of magnetically induced fl
perturbation agree with the work of JKO, and support th
general conclusions on damping of motions induced
tangled fields.

Eventually, the universe recombines to form atoms a
the tangles in the magnetic field that survive damping,
create gravitationally unstable perturbations. We extend
considerations of JKO by discussing in greater detail, in S
VII, the evolution of the field and its associated perturbatio
in this post-recombination era. We also give in Appendix B
generalized linear perturbation theory which takes expl
account of the zeroth order magnetic inhomogeneities, g
ity and pressure forces. We point out how tangled magn
fields, associated with what can be initially thought of
approximately incompressible ‘‘modes,’’ can induce co
pressible motions after recombination. Our work in this s
tion extends the considerations of Wasserman@16#, and con-
nects it to other work on early-universe MHD discussed
the previous sections and by JKO. We also use the resul
the above sections in another paper, to estimate the m
wave background signals due to tangled magnetic fields@22#.
In Sec. VIII, we bring together all our ideas to discuss how
given spectrum of magnetic inhomogeneities evolves,
Sec. IX summarizes our conclusions.

II. CONFORMAL INVARIANCE OF RELATIVISTIC,
VISCOUS MHD

We shall make use of a conformal invariance property
the field equations of general relativity. Consider two metr
which are related by conformal transformations of the fo

gmn* 5V2gmn . ~2.1!

whereV[V(xa). Suppose the cosmic fluid is described
an energy-momentum tensor, sayTmn. If this is traceless,
Tm

m50, then the equations of motion of the fluid are invaria
under conformal transformations. That is, we have

Tmn
;n50⇔T* mn

;* n50 with T* mn5V26Tmn.
~2.2!

Here ;* denotes a covariant derivative with respect to
metric gmn* . This result is straightforward to demonstrate
direct calculation.

We apply this result to the early universe setting. Fir
note that the Friedmann-Robertson-Walker~FRW! metric is
conformally flat. We will only need to consider the zer
curvature metric with line element

ds25gmndxmdxn5a2~t!@2dt21dx21dy21dz2#,
~2.3!

wheret is conformal time anda(t) is the scale factor. We
also define the comoving proper timet usingdt5adt. We
can relate this metric to flat spacetime,hmn , by a conformal
transformation,hmn5gmn* 5a22(t)gmn , with V5a21(t).
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So, if the energy-momentum tensor of the matter in the ea
universe is trace-free and transforms under conformal tra
formations as in Eq.~2.2!, then we can transform the fluid
equation of motion to a simpler equation in flat spacetim
This approximation method allows us to transform no
linear solutions to the MHD equations, for a fluid with trac
free energy-momentum tensor, from flat spacetime into
expanding FRW universe. We are, of course, neglecting
back-reaction of those motions upon the form of the met
That is, the gravitational potential~metric! perturbations due
to the inhomogeneous motions must be small for this
proximation to hold. For example, if the inhomogeneous m
tions of a radiation fluid give rise to energy density inhom
geneities of amplitudedr/r over a length scalel, then the
metric perturbations induced are of order (dr/r)(l/ct)2.
These are small because, for the parameters we cons
dr/r!1 and the perturbations are on sub-horizon scales

The energy-momentum tensor in the early universe w
be modelled by a linear combination of ideal fluid, non-ide
fluid, and electromagnetic fields. We have

Tmn5TI
mn1TNI

mn1TEM
mn , ~2.4!

where we have separated the energy-momentum tensor
an ideal fluid partTI

mn , a non-ideal fluid partTNI
mn and an

electromagnetic partTEM
mn . We take the ideal part to be

perfect fluid with equation of statep5r/3, wherep is the
pressure andr is the energy density~we have set the spee
of light c[1.) For most of the period before decoupling, t
early universe is radiation dominated and one can use
above equation of state. Later, we will comment on the
fects of matter-domination (p50) before decoupling. Thus
we have

TI
mn5~p1r!UmUn1pgmn. ~2.5!

whereUm is the normalized four-velocity of the plasma, sa
isfying the conditionUmUm521. Note that forp5r/3, we
haveTIm

m 50. Under a conformal transformation, the comp
nents ofTI

mn transform to a new set of~starred! variables as
follows:

p* 5V24p, r* 5V24r, U* m5V21Um ~2.6!

and the ideal fluid energy-momentum tensor transforms
TI*

mn5V26TI
mn .

The non-ideal fluid part of the energy-momentum ten
can be written as@9#

TNI
mn52hHmaHnbWab , ~2.7!

where

Hab[gab1UaUb; Wab[Ua;b1Ub;a2
2

3
gabU ;g

g

~2.8!

and h is the effective shear viscosity coefficient, given b
~see Weinberg@9#!;
2-2
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h5
4

15
g

p2

30
T4l d , ~2.9!

whereT is the temperature of the radiation-dominated u
verse,g the statistical weight andl d the mean-free-path o
the diffusing particle. In the radiation-dominated epoch,
bulk viscosity is zero and we have neglected the ther
conductivity term since it does not affect the Alfve´n wave
mode that we will focus upon.

One can easily check that the traceTNIm
m 50. Also, under

conformal transformation, usingU* a5V21Ua and Ua*
5VUa , we have

Wab* 5VWab2FUa

]V

]xb
1Ub

]V

]xaG ~2.10!

andH* maH* nb5V24HmaHnb; so the non-ideal stress con
formally transforms as

TNI* mn52h* V23HmaHnbWab5V26TNI
mn ,

if h* [V23h. ~2.11!

The electromagnetic part of the energy-momentum ten
is given by

TEM
mn 5

1

4pFFg
mFng2

1

4
gmnFgdFgdG , ~2.12!

whereFmn[An;m2Am;n5An,m2Am,n is the Maxwell tensor,
Am the four-potential, and a comma denotes an ordinary
rivative. This is also traceless:TEMm

m 50. The evolution of
the electromagnetic field is governed by the Maxwell eq
tions

Fmn
;n54pJm, F [mn,g]50. ~2.13!

Here, Jm is the four-current density. Under a conform
transformation, these equations are also invariant provi
we transform the electromagnetic field tensor and curr
density as follows:

F* mn5V24Fmn; J* m5V24Jm. ~2.14!

Under these transformations we verify that

TEM* mn5V26TEM
mn . ~2.15!

Finally, consider the relativistic generalization of Ohm’s la

Jm1JnUnUm5sFmnUn , ~2.16!

wheres is the conductivity of the fluid, measured in the flu
rest frame. Transforming the four-current and velocity to
starred frame, we can see that Ohm’s law also remains
variant under conformal transformations if we define
starred conductivity,s* 5V21s.

From these preliminaries, we see that the total ener
momentum tensor consisting of an ideal fluid, non-id
fluid, and electromagnetic field is trace-free, and also tra
forms as in Eq.~2.2! under a conformal transformation. Su
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pose we chooseV5a21(t), with the scale factor normal
ized such thata(t0)51 at present conformal timet0 . Define
a new set of starred variables as in Eqs.~2.6!, ~2.11! and
~2.14!. The evolution equations of the starred variables th
become

T* mn
,n5T* mn

I ,n1T* mn
NI,n1T* mn

EM,n50

F* mn
,n54pJ* m, F @mn,g#

* 50

J* m1J* nUn* U* m5s* F* mnUn* . ~2.17!

Since these equations are simply the flat spacetime equa
of relativistic, viscous MHD, we can carry over all resul
obtained in the flat spacetime context to MHD in FR
spacetime on scales such that the metric perturbations
ated by the magnetic inhomogeneities and their resulting
tions are small. The only extra complication introduced
cosmology is the time-variability of the viscosity and co
ductivity coefficients.~The transformation of MHD equa
tions from the FRW universe to flat space, has also b
explicitly constructed in Ref.@10#. However, they did not
include the viscous stress, nor exploit the simple conform
invariance properties stressed here. The idea that flat s
solutions can be taken over to FRW universe in the radia
era, has also been used by Liang@11#, to study shock waves
in the radiation era; but, without the inclusion of magne
fields!.

At this stage, it is useful to point out that any partic
species which does not interact with the relativistic fluid
also easy to take into account. Such a non-interacting c
ponent may be any species of dark matter, or neutrinos, a
they have decoupled from the rest of the matter. The ene
momentum tensor for this component will then be separa
conserved. As long as this component perturbs the form
the FRW metric negligibly, the above treatment of conform
transformation of relativistic MHD to flat spacetime will g
through. This also means that the MHD equations in
above form can be applied to the baryon-photon-magn
field system, even after dark matter domination, until t
baryon density becomes comparable to the radiation den
which happens close to decoupling. In the sections to follo
we will use these equations to examine the evolution
MHD waves, in particular the non-linear Alfve´n mode, after
taking the non-relativistic limit of the equations.

III. NON-RELATIVISTIC LIMIT

Suppose the universe was seeded with magnetic field
some early epoch in its radiation-dominated phase. We c
sider the subsequent evolution. For magnetic fields of rea
tic strengths~i.e., that are not going to produce highly di
cordant microwave background fluctuations or radica
change the course of primordial nucleosynthesis!, the in-
duced bulk fluid velocities are in general highly no
relativistic. Suppose we write the four-velocity in the tran
formed metric asU* m[(g,gv), where g[(12v2)21/2.
This form satisfies the normalization condition on the fou
velocity andv5dx/dt5adx/dt is exactly the peculiar bulk
2-3
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KANDASWAMY SUBRAMANIAN AND JOHN D. BARROW PHYSICAL REVIEW D 58 083502
velocity of the fluid in the FRW metric. The non-relativist
limit corresponds to takinguvu!1 in the fluid conservation
equation in Eq.~2.17! .

If we define the electric fieldE* [(E* 1,E* 2,E* 3) and
the magnetic fieldB* [(B* 1,B* 2,B* 3) in the starred metric
by

F* 0i5E* i , F* 125B* 3, F* 235B* 1, F* 315B* 2,
~3.1!

then the time component of the fluid equation in Eq.~2.17!,
in the non-relativistic limit, is

]r*

]t
1¹•@~r* 1p* !v#2E* •J* 2h* ¹•f50. ~3.2!

Here,J* is the current-density vector whose components
the spatial components of the transformed four-currentJ* m,
and f5¹(v2/2)2(2/3)v¹•v. The spatial components giv
the Euler equation

]

]t
@~r* 1p* !v#1~v•¹!@~r* 1p* !v#1v¹•@~r* 1p* !v#

52¹p* 1J* 3B* 1h* F¹2v1
1

3
¹~¹•v!G . ~3.3!

We have assumed here that the net charge density (J* 0) is
negligible.

The Maxwell equations in the starred metric, are

¹3B* 54pJ* 1
]E*

]t
, ¹3E* 52

]B*

]t
,

¹•B* 50, ¹•E* 54pJ* 0. ~3.4!

They are supplemented by the non-relativistic limit of Ohm
law

E* 1v3B* 5
J*

s*
. ~3.5!

The Maxwell equations in a ‘‘lab frame,’’ with fieldsE and
B defined using the fundamental observers of FRW spa
time, are also easy to write down and are given in Appen
A.

In what follows we shall make the usual assumption th
for non-relativistic velocities, the displacement current te
can be neglected. In this case, we can split up the Lore
force term in the canonical way asJ* 3B* 52¹B* 2/(8p)
1(B* •¹)(B* /4p). We also assume that the early univer
was a perfect conductor~see for example Ref.@3#! and take
the limit of s}s*→`, in Ohm’s law. The magnetic field
then satisfies the ideal limit of the induction equation

]B*

]t
5¹3@v3B* #. ~3.6!

In terms of the ‘‘lab’’ magnetic field, defined in Appendix A
the ideal-limit induction equation is
08350
e
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t,
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]~a2B!

]t
5

1

a

]~a2B!

]t
5

1

a
¹3@v3~a2B!#. ~3.7!

Let us turn now to consider solutions of the above equatio
Consider first the unperturbed evolution, with a zero p

culiar velocity and negligible magnetic fields. The solutio
of the fluid equations is thenp* 5r* /35C1 with C1 a posi-
tive constant. This implies that, in the original variables,p
5r/35C1 /a4, as expected for the radiation-dominated u
verse. ~Furthermore, for zero peculiar velocity, for an
‘‘test’’ magnetic field,B* is constant in time, orB}a22, a
result which is intuitively expected for the ‘‘lab’’ magneti
field due to flux freezing in the expanding universe.! Now
consider the effect of introducing tangled magnetic fields
the universe. The Lorentz force associated with a tang
field will cause the fluid to move and induce a non-ze
peculiar velocity. The coupled system of equations desc
ing the evolution of the velocity and magnetic fields is high
non-linear. For this reason, the authors of Ref.@8# examined
only the case of weak perturbations around a quasi-unifo
field. We shall to begin with, follow a complementary a
proach and look at special non-linear solutions. This w
also give some feel for how a general tangled field confi
ration will evolve.

IV. NONLINEAR ALFVE´ N WAVES IN THE EARLY
UNIVERSE

A. The ideal non-viscous regime

At sufficiently early times~or, equivalently, for the field
and velocity on sufficiently large scales!, one may assume
the matter is a perfect fluid and neglect any viscous effe
Also, the fluid radiation pressure in the early universe
typically much larger than the magnetic pressure, for
field strengths we are considering. Their ratio is given by

B* 2

8pp*
5

B2

8pp
'331027B29

2 , ~4.1!

whereB29 is the present-day magnetic field in units of 1029

G. Here, we have assumed that the fields are simply fro
into the uniformly expanding universe, neglecting the effe
of the peculiar velocity. SinceB* 2/(8pp* )!1, to an excel-
lent approximation, one can take the motions induced by
magnetic field to be almost incompressible, withp*
1B* 2/(8p)'p* 5const and drop the pressure gradie
term in the reduced Euler equation~3.3!. In this limit we
have filtered out ‘‘fast’’ compressible motions and we c
look for solutions with¹•v50. Equation~3.2! then gives, in
the ideal and non-viscous limit,]r* /]t50. Also, the Euler
equation reduces to

]v

]t
1~v•¹!v5

~B* •¹!B*

4p~r* 1p* !
; ~4.2!

while the induction equation is
2-4
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]B*

]t
1~v•¹!B* 5~B* •¹!v. ~4.3!

These equations have a wide class of exact, stable solu
of the form @12#

v56
B*

A4p~r* 1p* !
,

]v

]t
50, ¹•v50. ~4.4!

In these solutions the nonlinear terms in Eqs.~4.2! and~4.3!
exactly cancel. Any complicated tangled field pattern is p
sible, if accompanied by a velocity along the magnetic fi
at the local Alfvén speed.

A particular case of this solution is one where the ma
netic field is split up asB* 5B0* 1b* , into a uniform and
constant component,B0* , and a tangled componentb* (x,t).
Fix the co-ordinates such thatB0* lies along thez -axis, that

is B0* 5B0* ẑ, whereẑ is the unit vector alongz. Now choose
v5b* /(4p(r* 1p* ))1/2; the nonlinear terms in the Eule
and induction equations cancel out and we have

]b*

]t
2VA

]b*

]z
50,

]v

]t
2VA

]v

]z
50, ~4.5!

where we have defined the Alfve´n velocity by

VA5
B0*

„4p~r* 1p* !…1/2
5

B

„4p~r1p!…1/2
'3.831024B29 .

~4.6!

Here, for the numerical estimate, we have taken the do
nant contribution to the energy densityr5rg , the photon
energy density, as would be appropriate in the radiati
dominated era, after the epoch ofe1e2 annihilation. The
general solution of Eq.~4.5! is therefore a nonlinear Alfve´n
wave travelling antiparallel toB0* , with v5b* /„4p(r*
1p* )…1/25F(x,y,z1VAt) with an arbitrary functionF. One
can also have another class of solutions withv5
2b* /„4p(r* 1p* )…1/2, where the wave travels in the sam
direction asB0* . Both these solutions are stable and th
exist as long as the two sets of waves do not overlap in sp
@12#.

It is not possible to generalize these nonlinear solution
the diffusive viscous regime, in the above form, for arbitra
viscosity and conductivity coefficients. However, there exi
a special case~see Landau and Lifshitz@13#!, with the veloc-
ity and tangled magnetic field having arbitrary strengths,
aligned perpendicular toB0* and depending only onz, where
such a generalization is possible. We now look at this cas
more detail.

B. Nonlinear Alfvén waves in the viscous regime

We begin by reinstating the viscous term in the Eu
equation~3.3!. As before, assume that the magnetic field c
be written asB* 5B0* 1b* , with a uniformB0* . We assume
b* is perpendicular toB0* , but do not put any restriction on
the strength ofb* so that it neednot be a smallperturbation
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of B0* . We also take the peculiar velocityv to lie perpen-
dicular toB0* and assume that all the variables depend o
on z andt. In this case, the velocity perturbation automa
cally satisfies¹•v50. Further, the ratio of the magnetic en
ergy density to the fluid energy density,B2/(8pr)
;1026B29

2 !1. So even when there is strong damping
motions induced by the field, and a significant fraction of t
field energy density goes into heat,r will be perturbed neg-
ligibly. It is an excellent approximation to neglect the vi
cous term in Eq.~3.2!. Then, in the ideal limit, Eq.~3.2!
implies (]r* /]t)50. The nonlinear terms in the Euler an
induction equations are individually zero because there is
variation ofb* andv along the fields. These equations th
reduce to

]v

]t
52S 1

r* 1p*
D ¹@p* 1B* 2/~8p!#

1S B0*

4p~r* 1p* !
D ]b*

]z
1

h*

~r* 1p* !
¹2v ~4.7!

]b*

]t
5B0*

]v

]z
. ~4.8!

Note that the left-hand side~LHS! of Eq. ~4.7! has zero di-
vergence. The RHS will also have zero divergence only
the total pressurep* 1B* 2/(8p) is uniform in space. As
mentioned above, this is likely to be a good approximat
for this mode since the radiation pressure in the early u
verse is typically much larger than the magnetic pressu
One can therefore drop the pressure gradient term in
reduced Euler equation~4.7!. Writing b* 5b0(t,z)n and v
5v0(t,z)n, eliminatingv0 from Eqs.~4.7! and~4.8!, gives a
damped wave equation forb0(t,z),

]2b0

]t2
2

h* ~t!

~r* 1p* !

]

]z2S ]b0

]t D2VA
2 ]2b0

]z2
50, ~4.9!

where we have defined the Alfve´n velocity, VA , as before.
This linear equation generalizes the nonlinear Alfve´n mode
to the viscous regime. It can easily be solved by taking
spatial Fourier transform. For any modeb0(t,z)5 f (t)eikz,
we have

f̈ 1
h* ~t!k2

~r* 1p* !
ḟ 1k2VA

2 f 50 ~4.10!

which is the equation for a damped harmonic oscillator.
The behavior of solutions to the damped oscillator eq

tion depends on the relative strengths of the driving a
damping terms. Suppose we define

v05kVA ; D5
h* ~t!k2

~r* 1p* !
}t2. ~4.11!

If v0@D, then we will have damped oscillatory motion. I
the other extreme limit ofD@v0 , the motion becomes over
2-5
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damped. While one solution of the second-order differen
equation suffers strong damping, the other independent s
tion is negligibly damped. The physical reason for this
that, under strong friction, any oscillator displaced fro
equilibrium and released from rest has only to acquire
small ‘‘terminal’’ velocity, so that friction balances the driv
ing force. An oscillator starting from this ‘‘phase’’ of oscil
lation, will then almost freeze, and the associated energ
the oscillator will decrease negligibly. On the other hand,
oscillator mode with a large initial velocity will be signifi
cantly damped by the strong friction. Therefore, it is impo
tant to consider the ratioD/v0 to determine which limit
applies for the nonlinear Alfve´n modes.

We focus primarily on damping by photon viscosity. Th
is the most important source of viscosity, aftere1e2 annihi-
lation. Also, it is the dissipative process with the potential
damp the largest scales.~Smaller-scale damping by neutrino
is briefly discussed in Sec. VII and Appendix C.! The radia-
tive viscosity coefficient is given by Eq.~2.9!, with g5gg
52, and the photon mean-free-path is

l g~t!5
1

sTne~t!

'9.531021 cmS T

0.25 eVD
23S Vbh2

0.0125D
21

xe
21 .

~4.12!

Here, sT is the Thomson cross-section for electron-pho
scattering,ne is the electron number density,xe the ioniza-
tion fraction, andVb is the baryon density of the univers
rb , in units of the closure density.~For later convenience we
define the quantityf b[(Vb/0.0125h22), which measures
the baryon density, in terms of the preferred value given
Walker et al. @14#. This used to be the canonical value d
termined from nucleosynthesis constraints, although
present there is some debate on this issue@15#!. In the early
universe, the energy density of the baryon-photon fluid
dominated by the photon energy, densityrg; so, usingp*
5r* /3, r5r* /a4, h* 5a3h, we have for the damping co
efficient

D5
h* k2

~r* 1p* !
5a3

4

15

rg~t!l g~t!k2

„4rg~t!a4/3…
5

1

5
k2l g~t0!a2~t!,

~4.13!

where we have used the fact thatl g(t)}ne
21(t)}a3(t) and,

as before,t0 is the conformal time today. Hence, th
damping-to-driving ratio is

D

v0
5

h* k2

kVA~r* 1p* !
5

1

5

kp~t!l g~t!

VA
'526.3

kp~t!l g~t!

B29
.

~4.14!

We have defined the proper wavenumberkp(t)5(k/a(t)),
of a Fourier component and substituted for the Alfve´n veloc-
ity in terms of the field strength usingVA'3.831024B29 .
For the diffusion approximation to be valid, we requi
08350
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kpl g,1; that is, we must consider only wavelengths larg
than the mean-free-path. Nevertheless, one expects a
range of wavelengths for which modes will fall in the ove
damped regime.

In order to consider the evolution of modes of differe
wavelengths, one has first to look at the quantitative solut
of Eq. ~4.10!. For this, substituting

f ~t!5expS 2E D~t!

2
dt DW~t! ~4.15!

into Eq. ~4.10!, the evolution ofW is given by

Ẅ1p~t!W50 with p~t!5v0
22

Ḋ

2
2S D

2 D 2

.

~4.16!

When v0@D, we havep'v0
2 in Eq. ~4.16! and then the

solution is W5exp(6iv0t). Therefore, in the oscillatory
limit we have

b0~t,z!5expS 2E D~t!

2
dt De6 iv0t1 ikz, v0@D.

~4.17!

In the opposite limit,D@v0 , we have to solve the oscillato
with a time-dependent friction coefficient. One can obtain
approximate WKBJ solution,

W~t!5
1

~2p!1/4
expF6E ~2p!1/2~t!dt G . ~4.18!

This solution is valid as long asp(t) does not vary too
rapidly. In the overdamped regime, this condition can
shown to be equivalent to neglectingḊ compared toD2. In
the limit Ḋ!D2, the two solutions are given by

f ~t!5A0

1

D1/2
expS 2E t

D~t8!dt8 D ;

f ~t!5B0

1

D1/2
expS 2E t v0

2

D~t8!
dt8D . ~4.19!

As advertised, in the overdamped limit, one solution~the
A0 mode! is strongly damped while the other solution~with
B0Þ0) is weakly damped.

For damping by photon viscosity, we haveD}a2

}(t/t0)2 in the radiation-dominated epoch. It is more use
to consider an alternate treatment to that of the WKBJ so
tion, for the rapidly varying, strongly overdamped regim
One notes that, as the damping increases with time toD

@v0 , ḟ will tend to adjust itself so that the acceleratio
vanishes, sof̈ '0. For example, consider initially the cas
f .0, ḟ,0 andD ḟ .v0

2f . Then f̈ .0 and so the magnitude

of ḟ decreases~while remaining negative! until we have
D ḟ 52v0

2f , when the acceleration vanishes. On the ot

hand, if D ḟ ,v0
2f , then f̈ ,0 and the magnitude ofḟ in-
2-6



,
f

ty
un
y

th

a
g
ed
t,

D
ie
m
a

n-

ib

pe

-

e

es
so-

r

ion

tion
l in

a

of

ved
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creases until we havef̈ 50. Subsequently asD keeps in-
creasing,ḟ can continue to adjust itself to maintain zerof̈ .
One can argue similarly for all other cases. Therefore
seems plausible to consider an alternate approximation
the overdamped case, whereby, after the time whenf̈ first
vanishes,f satisfies the equation

D ḟ 1v0
2f 50; D@v0 . ~4.20!

We will refer to this approximation as the terminal-veloci
approximation. The solution in the overdamped regime,
der the terminal-velocity approximation, is simply given b

f ~t!5 f ~tT!expS 2E
tT

t v0
2

D~t8!
dt8D . ~4.21!

Here,tT is the conformal time when the mode reaches
terminal-velocity regime, or when the acceleration,f̈ , first
vanishes. As we explained earlier, for an oscillator with
initial phase such thatḟ is already large, this implies stron
damping by the time the terminal-velocity regime is reach
On the other hand, for an oscillator which starts from resḟ
will have to increase negligibly for theD@v0 regime, so
that f̈ vanishes and Eq.~4.21! applies.

We now move from the study of the non-linear Alfve´n
modes to consider the damping of all the different MH
modes in their linearized limit. This has already been stud
by JKO @8#. However, we shall do this using the formalis
developed here to bring out the links with the non-line
situation. We will return to the further evolution of the no
linear Alfvén mode in Sec. VI.

V. DAMPING OF LINEARIZED COMPRESSIBLE MHD
WAVES

Let us begin with the linearized MHD equations descr
ing small perturbations to densityr1* 5r* 2r0* , pressure
p1* 5p* 2p0* , and magnetic fieldb* 5B* 2B0* . We have

]r1*

]t
1¹•@~r0* 1p0* !v#50 ~5.1!

]

]t
@~r0* 1p0* !v#52¹p1* 1

@¹3b* #3B0*

4p

1h* F¹2v1
1

3
¹~¹•v!G ~5.2!

]b*

]t
5¹3@v3B0* # ~5.3!

¹•b* 50, p0* 5
r0*

3
, p1* 5

r1*

3
. ~5.4!

Suppose the perturbation is described in terms of the
turbed comoving positiondx5j(x,t). The perturbed veloc-
08350
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ity v5(]j/]t)[j̇. An integration of the perturbed continu
ity equation~5.1! and induction equation~5.3! then gives

r1* 52
4

3
r0* ¹•j, b* 5¹3@j3B0* #. ~5.5!

Substituting Eq.~5.5! into the perturbed Euler equation, w
get

j̈5
1

3
¹~¹•j!1@¹3~¹3@j3vA# !#3vA

1
3h*

4r0*
F¹2j̇1

1

3
¹~¹• j̇ !G , ~5.6!

where we have definedvA5VAẑ. This linear equation de-
scribes the evolution and damping of linearized MHD mod
in the expanding universe. One can look for plane wave
lutions of the formj5c(t)exp(ik•x). This leads to a re-
placement of¹ by ik and leads to an evolution equation fo
the amplitudec:

c̈52kF ~k•c!F1

3
1VA

2 G2VA
2kzczG2VA

2kz
2c2kz~k•c!VA

2 ẑ

2
3h*

4r0*
Fk2ċ1

1

3
k~k•ċ !G . ~5.7!

Here a subscript ‘‘z’’ denotes thez-component of the rel-
evant quantity. We can now look at various types of solut
to the above equation.

First, consider the incompressible mode, with¹•j50, or
k•c50. In this case taking the dot product of Eq.~5.7! with
k, we also havecz50 ~provided kz[kcosuÞ0). For this
mode, Eq.~5.7! reduces to

c̈1
3h*

4r0*
k2ċ1VA

2cos2uk2c50. ~5.8!

This is, as expected, is almost exactly the evolution equa
for the Alfvén mode encountered and discussed in detai
the last section. The only difference is thatVA is replaced by
VAcosu, generalizing the Alfve´n mode propagation to be in
general direction inclined at an angleu to the zero-order
magnetic field.~Although this generalization is at the cost
introducing the linear approximation.!

The evolution of the compressible modes, can be deri
by taking the dot product of Eq.~5.7! with k andẑ. Defining
A5k•c/k, we have

Ä1F1

3
1VA

2 Gk2A2VA
2k2cos2ucz1

h*

r0*
k2Ȧ50, ~5.9!

c̈z1
1

3
k2cosuA1

3h*

4r0*
k2ċz1

h*

4r0*
k2cosuȦ50.

~5.10!
2-7
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Consider first the undamped limit withh* 50. In this case,
looking for modes withA}cz}eivt, we can easily derive
the dispersion relations

v2

k2
5

1

2
@cs

21VA
2 #6

1

2
@~cs

21VA
2 !224cs

2VA
2cos2u#1/2.

~5.11!

Here, we have defined the sound speed in the relativ
limit cs51/A3. The plus sign in the above equation corr
sponds to the fast MHD mode while the negative sign c
responds to the slow mode. In the limitVA!cs , which is
generally applicable to our early universe context, the disp
sion relation for the fast mode becomesv/k'cs , while that
of the slow mode becomesv/k'VAcosu.

The general solution of Eqs.~5.9! and ~5.10! when the
damping terms are reinstated is quite complicated to ana
analytically, since it involves a fourth-order differenti
equation with time-dependent coefficients and the disper
relation is a fourth-order polynomial. However, we can lo
at some simple special cases which illustrate the genera
havior.

First, consider the case wherek is parallel toB0* ; then
cosu5kz/k51, A5cz, and the equation forA reduces to

Ä1
h*

r0*
k2Ȧ1cs

2k2A50. ~5.12!

This describes a damped sound wave, well studied in
literature in connection with the Silk damping of acous
baryon-photon fluctuations. Therefore we only look at
briefly, to estimate the Silk damping scale. Because
sound-wave oscillation frequency is such thatvs5kcs
@kVA , these modesdo notbecome overdamped in genera
and the damped oscillatory solutions of Sec. IV can be u
to describe their evolution. Specifically, we have

A~t!5expS 2E Ds~t!

2
dt De6 ivst, vs@Ds ~5.13!

whereDs5k2(h* /r0* ). These modes get damped by a fac

expS 2E Ds~t!

2
dt D5expF2

k2

kD
2 G ;

where kD
225

2

15E l gdt

a2~ t !
. ~5.14!

This agrees quite well with the Silk damping of sound wav
in the radiation era, derived in more detailed treatments~cf.
@17,20#!, in the appropriate limit. In fact, the more detaile
derivation of Silk damping, using a Boltzmann treatme
gives a damping factor exp@2(k2/kD,bol

2 )#, where

kD,bol
22 5

2

15E l gdt

a2~ t !
F ~11R! f 2

2115R2/4

~11R!2 G . ~5.15!
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Here,R53rb/4rg and f 253/4 if the effects of polarization
are included andf 251 otherwise. Notice that, in the limi
R!1 applicable to epochs where the radiation density do
nates baryon density, andf 251, the damping scales exactl
match, withkD5kD,bol . The effects of non-zeroR constitute
at most about a 20–25 % correction to the damping scale
derive. In the radiation-dominated epoch one haskD

21

5(4/45)1/2LS(t)/a(t);0.3LS(t)/a(t), where LS(t)
5( l gt)1/2 is the Silk scale. The largest scales which suf
appreciable damping are the modes with waveleng
(2pkD

21), of orderLS @7#.
In the other extreme case, whenk is perpendicular to

B0* , cosu5kz/k50, and the equation forA reduces to

Ä1
h*

r0*
k2Ȧ1F1

3
1VA

2 Gk2A50. ~5.16!

This describes a damped fast-magnetosonic wave. The
part of the oscillation frequency isvR5k(cs

21VA
2)1/2

@kVA , since in generalVA!cs . One can see that the damp
ing of these modes is very similar to that of the sound wa
~and in fact is exactly the same when we neglectVA com-
pared tocs). Again, we expect modes with wavelengths le
than the Silk scale to be significantly damped.

Now we turn to the damping of modes with arbitrary d
rection k. In the undamped case, withh* 50, and when
VA!cs , we have seen that the fast mode has the same
cillation frequency as the sound wave and the slow mode
the Alfveń wave. This suggests an approximation to capt
the damped counterparts of these modes in the limit of w
magnetic field. Let us write the time variation ofA andcz as
A(t)}cz}exp(i*vdt). Supposev is dominated by its rea
part, and this is of order the undamped frequency of osci
tion. We shall later check the consistency of this assumpt
Consider first the damped counterpart of the slow mode
the limit VA

2!cs
251/3. For this mode, the ratio of the firs

two terms in Eq.~5.9!, is Ä/(cs
2k2A);VA

2/cs
2!1. Also, the

ratio of the last term in ~5.9! to the second is
;DȦ/(cs

2k2A);VAkpl g/5!1. So, these two terms can b
neglected when compared to the second term in Eq.~5.9!, so
cs

2k2A'VA
2k2cosucz. For the same reason, one can negl

the last term in Eq.~5.10! compared to the second term
this equation. Substitutingcs

2k2A'VA
2k2cosucz in Eq. ~5.10!,

we then have for the damped counterpart of the slow mo

c̈z1
3h*

4r0*
k2ċz1VA

2k2cos2ucz50. ~5.17!

We see that this is exactly the same equation as that obta
for the damped Alfve´n mode, analyzed in the last sectio
Therefore, the slow modes will also be overdamped, a
have one solution with negligible damping rate. Our origin
assumption thatv is dominated by its real part is valid fo
this solution, showing the self-consistency of our assum
tions. Also, for this mode we haveA'(VA

2/cs
2)cosucz!cz,

for a generalu; that is, the mode is almost incompressib
~The strongly damped mode has to be analyzed differen!
2-8
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Now consider the fast mode in a similar fashion. We ha
already derived the exact evolution for the special case w
cosu50. Suppose cosuÞ0; assume, as before, thatv is
dominated by its real part, and this is of order the undam
frequency of oscillation. Then, substituting for the time d
pendence ofA andcz , and taking the real part of Eq.~5.10!,
we havecz;Acosu. So the ratio of thecz term in Eq.~5.9!
compared to the second term is;(VA

2/cs
2)cos2u!1. Neglect-

ing the cz term, and neglectingVA
2 compared tocs

2 in Eq.
~5.9!, results once again in the same equation, Eq.~5.12!, for
the fast wave as was found for the damped sound wave

In summary, the above analysis for linear MHD waves,
the limit of weak fields withVA!cs , shows that the fas
magnetosonic waves generally damp like sound wav
while there is one mode of the slow magnetosonic wa
which behaves exactly as the Alfven´ mode and gets over
damped. This also agrees with the conclusions reache
JKO.

VI. THE FREE-STREAMING REGIME

As the universe expands, the mean-free-path of the p
ton increases asa3, while the proper length of any perturbe
region increases asa. So the photon mean-free-path ca
eventually become larger than the proper wavelength o
given mode. When this happens for any given mode, we
say that the mode has entered the free-streaming reg
Modes with progressively larger wavelengths enter the fr
streaming regime up to a proper wavelength; l g(Td)
;1022 cm @see Eq.~4.12!#, or a comoving wavelength o
;3 Mpc, at the epoch of decoupling. After~re!combination
of electrons and nuclei into atoms,l g increases to a value
larger than the present Hubble radius, and all modes ente
free-streaming regime.~We will consider the pre- and pos
recombination epochs separately below.!

When photons start to free stream on a given scale
perturbation, the tight-coupling diffusion approximation n
longer provides a valid description of the evolution of t
perturbed photon-baryon fluid on that scale. One has to i
grate the Boltzmann equation for the photons together w
the MHD equations for the baryon-magnetic field system
simpler approximate method of examining the evolution
such modes in the linear regime is to treat the radiation
isotropic and homogeneous, and only consider its frictio
damping force on the fluid.~The radiative flux could have
also contributed to the force on the baryons; however,
modes with wavelengths smaller thanl g , this flux is negli-
gible since the associated compressible motions have
fered strong Silk damping at earlier epochs; when the wa
length was larger thanl g .) The drag force on the baryo
fluid per unit volume due to the radiation energy densityrg ,
is given by

FD52
4

3
nesTrgv. ~6.1!

Since, typically, less than one electron-photon scatte
occurs within a wavelength, the pressure and inertia cont
uted by the radiation can be neglected when considering
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evolution of such modes. The Euler equation for the ba
onic component then becomes

]v

]t
1H~ t !v1v•¹v52

1

arb
¹pb1

1

rb
J3B

2
1

a
¹f2

4rg

3rb
nesTv. ~6.2!

Here, rb is the baryon density,pb the fluid pressure, and
H(t)5(da/dt)/a is the Hubble parameter. We have also i
cluded the gravitational force, (1/a)¹f, due to any pertur-
bation in the density. Note that we have written this equat
in the unstarred conformal frame,~with the magnetic field
defined in the ‘‘lab’’ frame; see Appendix A!, since confor-
mal transformation to flat spacetime is no longer a use
tool in the matter-dominated era. We have also transform
the time co-ordinate, from conformal time, back to ‘‘prop
time’’ dt5adt.

It should be pointed out that the dramatic drop in t
pressure, by a factor of order the very small baryon to pho
ratio ;1029, when a mode enters the free-streaming regim
has important consequences. First, in the absence of ra
tion pressure, the effect of magnetic pressure~if it greatly
exceeds the fluid pressure! is to convert what was initially an
incompressible Alfven´ mode into a compressible mode~see
below!. Second, the effective baryonic Jeans mass decre
dramatically and compressible modes can become gra
tionally unstable. Thus, we have to retain the gravitatio
force term in the above equation. The magnetic pressure
also play a dominant role, providing pressure support aga
gravity on sufficiently small scales.

The evolution of modes which enter the free-stream
regime depends on the strength of the magnetic fields
particular whether the magnetic pressurepB is greater or
smaller than the fluid pressure,pb . For the magnetic pres
sure, we have

pB5
B2

8p
~11z!4'431028B29

2 S 11z

103 D 4

dyn/cm2.

~6.3!

While the fluid pressure is given by

pb52nekT'1.1310210S 11z

103 D 4

f b dyn/cm2, ~6.4!

where we have assumed that the fluid temperature is loc
to the radiation temperature, and that the gas is an elect
proton gas. By taking the ratio of the two pressures, one
see that magnetic pressure dominates the fluid pressure~i.e.
pB@pb for B@Bcrit;5310211 G). For magnetic fields
smaller thanBcrit , the fluid pressure dominates.

Consider first the case where the fieldB is much smaller
thanBcrit . In this case the motions can be assumed inco
pressible. The Alfve´n modes which enter the free-streamin
regime, remain Alfve´nic. Following the ideas of Sec. IV, we
look again at nonlinear Alfve´n modes withB5(B01b)/a2,
where B05B0ẑ, with B05constant, b5nb̄0(z,t)
2-9
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andv5nv̄0(z,t), with n perpendicular toẑ. Recall thatubu is
not necessarily smallcompared touB0u. We assumerb to be
uniform ~but not independent oft), use the Euler equation
~6.2! and the induction equation~3.7!, change to conforma
time t, and look for solutions in the formb̄0(z,t)
5 f̄ (t)eikz, following the same procedure as in Sec. IV.@For
the rotational Alfvén-type mode, the gradient terms in~6.2!
do not contribute.# We obtain an equation for the evolutio
of f̄ (t)

d2 f̄

dt2
1@aH1D̄#

d f̄

dt
1v̄0

2 f̄ 50, ~6.5!

where

v̄05kVAS 4rg

3rb
D 1/2

; D̄5nesTaS 4rg

3rb
D . ~6.6!

Here, VA
253B0

2/(16prg)5constant, is the same as defin
in terms of the starred variables in Sec. IV.

The evolution of this nonlinear Alfve´n mode depends
once again on the relative strengths of the damping and d
ing terms. The ratio of the viscous damping to expans
damping is given by

D̄

aH
5

~4rg/3rb!nesTa

aH
5

4rg

3rb

DH

l g
@1 ~6.7!

since the Hubble radiusDH[H21@ l g , so one can neglec
the damping due to Hubble expansion. Also, the ratio of
viscous damping to the driving terms in the oscillator eq
tion ~6.5! is

D̄

v̄0

5
~4rg/3rb!nesTa

kVA~4rg/3rb!1/2
'3.043103S rg

rb
D 1/2 1

kp~ t !l g~ t !B29
.

~6.8!

When a given mode enters the free-streaming limit we w
have kp(t) l g(t);1. So, for the field strength
B29,(Bcrit /1029G)!1 that we are considering, all the A
fvén modes are strongly overdamped. As the universe
pands, the productkp(t) l g(t)}a2 increases, and at late time
any given mode enters the damped oscillatory regime. O
can again apply the terminal-velocity approximation of S
IV in the overdamped regime onced f̄ /dt has adjusted itsel
to the ‘‘zero acceleration’’ solution. Then,f̄ is given by

f̄ ~t!5C̄ expS 2E tv̄0
2~t8!

D̄~t8!
dt8D ; D̄@v̄0 . ~6.9!

At sufficiently late times, such thatD̄/v̄0!1, the damped
oscillatory solutions are appropriate, so

f̄ 5expS 2E D̄~t!

2
dt D e6 i v̄0t, v̄0@D̄. ~6.10!
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Now consider the caseB@Bcrit , when magnetic pressur
dominates over the fluid pressure. ForpB@pb , incompress-
ibility is no longer a good assumption, and we necessa
will also have gravitationally unstable, magneto-acous
modes. In general, the pressure-gradient term~dominated by
the magnetic field! and the magnetic tension are of simil
order. The non-uniform magnetic fields~associated with
what were initially Alfvén-type modes!, can seed compress
ible motions and their associated density fluctuations. Th
density fluctuations, can grow by gravitational instabili
into non-linear structures. Before recombination, there is s
significant drag due to the free-streaming photons. But o
atoms form, the density of free electrons decreases and
photon mean-free-path becomes larger than the Hubble
dius. In the free-streaming regime, the evolution equation
these gravitationally unstable MHD modes are the same
fore and after recombination. We consider a unified analy
of this evolution in the next section.

VII. THE POST-RECOMBINATION REGIME

We assume that the perturbations in density and velo
are small enough so that nonlinear terms in the pertur
density and velocity can be neglected. In the Euler equa
~6.2!, one can neglect the nonlinear term,v•¹v and take the
densityrb to be that of the unperturbed FRW backgrou
density. This equation has to be supplemented by the co
nuity equation for the perturbed fluid density, the Poiss
equation for the potential, and the induction equation~3.7!.
These equations are given explicitly in Appendix B. In t
Poisson equation, we take account of the possibility t
there may be other forms of collisionless dark matter
writing

¹2f54pGa2drT54pGa2@rbdb1rcdc#. ~7.1!

Here, drT is the total perturbed density~due to both fluid
plus dark matter!, db is the fractional perturbation in the
fluid, while rc anddc describe the dark matter density and
fractional perturbation, respectively. We shall adopt t
equation of statepb52nekT5rb(2kT/mp)5rbcb

2 , where
mp is proton mass.

In general, the magnetic field will be non-uniform whe
the mode enters the free-streaming regime. We note t
when the background fluid pressure was large,the n
uniform magnetic field may have originally been part of
Alfvén-type incompressible mode. However, as we m
tioned earlier, once this mode enters the free-streaming
gime, there is a dramatic fall in the fluid pressure, by a fac
of order the very small baryon to photon ratio;1029. As a
result, the pressure of the non-uniform magnetic field, as
ciated with what might well have been an Alfve´n-type mode,
can no longer be ignored, especially if the field excee
Bcrit . ~Only a perfectly circularly-polarized Alfve´n wave has
uniform magnetic pressure.! This non-uniform field associ-
ated with what started off as an Alfve´n-type mode, will now
also induce gravitationally unstable, compressible motion

At this stage, it is important to clarify the following poin
Suppose the zeroth-order field is inhomogeneous over s
2-10
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comoving scaleL. The compressible motions induced b
this inhomogeneity may be damped, say, by Silk dampi
But this need not necessarily imply the damping of the fi
tangles, because the induced compressible motions may
ply particle displacements withdx!L. This situation can
apply to compressible motions induced in the radiation
~before free-streaming! where we expect (dx/L);VA

2 . We
hope to return to this issue in later work.

In treating the resulting evolution, it is usual to assum
~cf. Wasserman@16# and Peebles@17#! that perturbations to
the Lorentz force, due to that the perturbed velocity, are s
dominant with respect to the zeroth-order contribution of
Lorentz force itself. So one takesB5B0(x)/a2, which solves
the induction equation~3.7!, if v is neglected. Of course, thi
approximation will break down once significant peculiar v
locities have been developed, as will always happen on
ficiently small scales, or at sufficiently late times, for a
given magnetic field. For galactic scales, it turns out that
distortions to the magnetic field will become important on
at late times, even forB29;1. So the above assumption o
retaining only the zeroth-order contribution to the Loren
force is expected to be reasonable.~The equations governing
the more general case are derived in Appendix B, and
hope to return to an analysis of this full system elsewhe!
Making these assumptions, standard linear perturba
analysis~cf. @16–18#!, leads to the evolution equation fo
db ,

]2db

]t2
1F2H1

4rg

3rb
nesTaG]db

]t
2cb

2¹2db

54pGa2@rbdb1rcdc#1
1

a3
S0~x! ~7.2!

where the source termS0 is given by

S05
¹•@B03~¹3B0!#

4prb~ t0!
. ~7.3!

Here,rb(t0) is the fluid density at the present time,t0 . If we
assume the dark matter to be cold, one can also deriv
similar equation for its fractional perturbed densitydc . One
finds

]2dc

]t2
12H

]db

]t
54pGa2@rbdb1rcdc#. ~7.4!

Prior to recombination, as pointed out in the previous s
tion @Eq. ~6.7!#, the viscous damping dominates damping
the Hubble expansion. ForB0.Bcrit , the fluid pressure term
can be neglected. Let us also assume that the magnetic
was the only source of initial density perturbations. Then,
compressible modes start their free-streaming evolution w
negligible initial db since modes smaller than the Silk sca
have been significantly damped and modes on larger sc
have a negligible source of pressure perturbations in the
diation era because;3VA

2/c2;331027B29 . Thus, Eq.
08350
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~7.2! can be solved, under the terminal velocity approxim
tion, simply equating viscous damping and the Lorentz for
We obtain

]db

]t
5

S0

a3S 4rg

3rb
nesTaD 21

5VA
2 l g~ t0!

l B
2

[gd . ~7.5!

Here, l B is a typical co-moving coherence scale over whi
the field varies. Note that the RHS of this equation is co
stant in time and so the density contrastdb increases linearly
in this epoch. Hence, at the time of recombination,t r , the
induced baryonic perturbation isdb5gd(t r2t f), wheret f is
the time when the scalekp

21(t); l Ba(t), becomes smaller
than the photon mean-free-path. For a flat universe, do
nated by dark matter, the total fractional density contras
the matter is,d5(rbdb1rcdc)/(rb1rc);Vbdb . At the
time of recombination, we then have

d~ t r !'3.831025B29
2 h23S l B

1 MpcD
22

~12t f /t r !.

~7.6!

On galactic scales withl B;1 Mpc, we havet f /t r;0.4, and
then d(t r);2.131025h23B29

2 . This turns out to be smal
compared to thed induced in the post-recombination regim
~see below!.

Next, consider the post-recombination evolution. T
mean-free-path of the photon now increases rapidly to
value exceeding the Hubble radius and viscous damping
comes subdominant compared to expansion damping. T
we can neglect the viscous damping term. Also, forB
.Bcrit , we can neglect the fluid pressure term. Now su
pose the baryons contribute a fractionf B to the matter den-
sity while the cold dark matter contributes a fraction
2 f B . Then, multiplying Eq.~7.2! by f B , ~7.4! by 12 f B ,
and adding the resulting equations, we get for the total d
sity contrastd5(rbdb1rcdc)/(rb1rc),

]2d

]t2
12H

]d

]t
24pGa2rmd5

1

a3
f BS0~x!. ~7.7!

Here, rm is the total matter density. Let us assume that
recombinationd'0 and (]d/]t)'0; that is, initially there
are negligible fluctuations in density and velocity dive
gence. Note that this is valid for scales much larger th
galactic scales. For scales withl B;Mpc, it turns out that, the
post recombination evolution induces ad much larger than
that given in Eq.~7.6!, within an expansion time. So includ
ing this initial d(t r) gives negligible corrections. The pa
ticular solution of~7.7! for a flat matter-dominated univers
is given by

d~ t !5
9

10
f Bt0

2S0F S t

t r
D 2/3

2
5

3
1

2

3S t

t r
D 21G . ~7.8!

This implies that the magnetic field induces a present-
fractional density contrastd05d(t0), with
2-11
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d05
9

10
f Bt0

2S0~11zr !'
9

10
f BS VAb~ t0!t0

l B
D 2

~11zr !

~7.9!

where (11zr)5(t/t r)
2/3 andVAb(t0) is the Alfvén velocity

with respect to the baryons given by

VAb~ t0!

c
5

B0

A4prb~ t0!c2
'1.931025B29f b

21/2 ~7.10!

Adopting h51/2, 11zr51100, and a flat universe, witht0
52/(3H0), f B50.05, we have

d0'2.96B29
2 S l B

1 MpcD
22

. ~7.11!

We see therefore that a magnetic field withB0;1029 G is
needed to impact significantly on galaxy formation. Su
fields will also induce rotational perturbations and give s
nificant angular momentum to protogalaxies@16#.

From Eqs.~7.8! and ~7.11!, it would seem that for suffi-
ciently small,l B5 l s , say, one can have adb;1, even close
to recombination. However, the calculation leading to E
~7.8! would break down on such small scales because
field distortions induced by the motions, which we have n
glected, will become dominant. The resulting magnetic pr
sures will oppose gravity when the Alfve´n crossing time be-
comes of order the dynamical time; that is, for proper leng
a(t) l B, l J(t);VAb(t)t, where t is the relevant dynamica
time ~the age of the universe! andl J(t) is the magnetic Jean
length. Noting thatVAb(t)5VAb(t0)a21/2(t) and t5t0a3/2

for a flat universe, the comoving magnetic Jeans lengt
given by

lJ5
l J~ t !

a
;VAb~ t0!t0;3.831022B29h21f b

21/2 Mpc.

~7.12!

Our treatment of how inhomogeneous magnetic fields ind
structure formation is valid only forl B@lJ . On smaller
scales one has to solve the full set of equations outline
Appendix B. We expect strong magneto-sonic waves to
induced by such small scale inhomogeneities in a sufficie
strong magnetic field. These may suffer strong dissipa
and so input energy into the IGM. We hope to return to t
issue elsewhere.

VIII. DISCUSSION

We have studied the evolution and damping of inhom
geneous magnetic fields in various regimes. It is of interes
synthesise our results and discuss how a given spectru
magnetic inhomogeneities evolves. We make a few gen
points and then describe the fate of magnetic inhomoge
ities after they enter the Hubble radius.

As we noted in Sec. IV, for magnetic field strengt
B29,1, the pressure perturbations are negligible. The
compressible waves induced by these perturbations, ha
phase velocity of order the relativistic sound speed, but n
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2/cs

2;3VA
2/c2. The motions

induced by the field can then be treated as incompressibl
least until they enter the free-streaming regime. These s
residual motions occur no faster than the Alfve´n timescale,
and pressure can constantly readjust on the fast so
crossing time scale to preserve the incompressibility con
tion. In this case, Alfve´n modes, both non-linear and linea
and the incompressible limit of the slow mode, that we stu
ied in previous sections, are indeed the most relevant.

It is important to note that linearisation about a const
background field is not a good approximation when follo
ing the evolution of magnetic fields which are inhomog
neous with roughly similar power on a multitude of scale
This was one of our motivations for concentrating on t
nonlinear Alfvén mode, and studying its evolution and
damping through various epochs. Although this analysis e
ployed special exact solutions, the amplitude of the tang
component of the magnetic field could be taken to be a
trarily large compared to the amplitude of the large-sc
field. Also, its spatial configuration can be arbitrarily spe
fied, by the free functionb0(t0 ,z). So, one expects the be
havior of this mode to reflect, at least qualitatively, the b
havior of general incompressible motions driven
magnetic-field inhomogeneities.

A comoving scalel B , which enters the Hubble radius i
the radiation-dominated epoch, does so at an epochte , speci-
fied by l Ba(te)52te . Suppose we define this epoch by th
radiation temperatureT(t)5T0 /a(t), where T0 is the
present-day microwave background radiation temperat
then we have@18#

T~ te!5Te563 eVS l B

1 MpcD
21

. ~8.1!

In models which produce the field during an inflationary e
och, the initial condition for the nonlinear Alfve´n wave at
the time of horizon entry could be taken to be that the fluid
at rest but the field is tangled. The Lorentz force due to t
tangled field will then start pushing on the fluid, when t
scale of the tangle becomes smaller than the Hubble rad
On the other hand, if the fields are produced in an ea
universe phase transition, they could be associated with la
initial velocities.

In the cosmological context, it should be kept in mind th
there is only a finite time for the Alfve´n wave to develop and
induce motions in the fluid, if they were initially absent. F
example, on a comoving scale ofk21, by the time of recom-
bination, att5t r , ~or at a temperatureT5Tr), the Alfvén
wave would have oscillated at most by a phase angle of

x5kVA~t r2te!,kVAt r

;1.831021B29S k21

1 MpcD
21S Tr

0.25 eVD
21

. ~8.2!

Here, te is the conformal time when a mode enters t
Hubble radius, and we have expressedx in terms of the
inverse of the wave number,k21. Thus, only small-scale
magnetic inhomogeneities, with scales k21, l s
2-12
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'0.1B29 Mpc, will have had time to oscillate by more tha
p/2 in phase. Modes on scalesk21@ l s , which started with
zero initial peculiar velocity, and oscillated by a phasex
!1 when damping is ignored, cannot damp their tang
even if damping is included. This situation applies to ma
netic fields tangled on galactic scales, withk21;Mpc. Thus
galactic-scale magnetic inhomogeneities, withB29,1, do
not get damped by photon viscosity, simply because the
compressible wavelike motions they induce, oscillate ne
gibly before recombination.

As the photon mean-free-path grows, the fast compre
ible motions, induced by the magnetic field or due to exist
‘‘adiabatic’’ density fluctuations, are damped on sca
smaller than the Silk scale, that is on scalesk21 less than
about 0.3LS;0.3„l g(t)t…1/2. The comoving Silk damping
scale,LS

C5LS /a, at any timet ~or temperatureT) in the
radiation era, is given by

LS
C~T!'8.531025S T

0.25 eVD
23/2

f b
21/2 cm. ~8.3!

After matter domination, when the scale factora(t)}t2/3, the
co-moving Silk scale is given by

LS
C~T!'631025S T

0.25 eVD
25/4

h21/2f b
21/2 cm. ~8.4!

~It should also be recalled that for initially inhomogeneo
fields the damping of compressible motions need not im
the damping of field tangles on the same scale.!

By contrast, the evolution of nonlinear Alfve´n wave
modes depends on the ratioD/v0 . Nonlinear Alfvén wave
modes which enter the Hubble radius when the tempera
of the universeT.2.5 eV, do so whenD/v0,1, and the
mode is then initially in the damped oscillatory regime. B
the photon mean-free-path grows asa3 while wavelengths
grow asa, and soon tangles on some scale are in the o
damped regime, withD/v0.1. For a given scale,k21, this
happens at a timetOD , when the temperature of the univer
drops toT,TOD , where

TOD510.8 eV3B29
21/2S k21

1 MpcD
21/2

f b
21/2. ~8.5!

So, tangles on smaller scales not only enter the Hubble
dius at an earlier epoch, but are overdamped at an ea
epoch.

While the Alfvén mode is in the damped oscillatory re
gime, its evolution can be described by Eq.~4.17!, and so all
the modes damp by a factor of order exp„2*t(D/2)…;
exp@2(3/4)„4kp

2(t)LS
2(t)/45…#. This is almost the same a

the Silk damping factor, for the usual baryon-photon sou
waves. Hence, all modes which are smaller than the
scale will get significantly damped by photon viscosity b
fore the nonlinear Alfve´n mode enters the overdampe
regime. The largest comoving scale, sayk215kosc

21 ,
which gets damped while the mode is in the damp
oscillatory regime, can be estimated by equat
@koscLS

C(TOD ,kosc)#/1551. This gives
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21'4.431027B29

3 f b Mpc. ~8.6!

In the damped oscillatory regime, a mode which sta
initially from rest (ḟ 50), can be described by the solutio
f (t)' f 0cos@x(t2te)#exp@2*(D/2)#. Even modes which
damp negligibly in this above regime, will oscillate by
phase of order

x~tOD!;kVAtOD'4.1431023B29
3/2S k21

1 MpcD
21/2

f b
1/2

~8.7!

when the mode enters the overdamped regime. Modes
x(tOD).1 will acquire a largeḟ by the time they enter the
overdamped regime and will be strongly damped. This w
happen for any mode with k215kOD

21,1.7
31025B29

3 f b Mpc.
It turns out that, for the Alfve´n-type modes withk21

.5kOD
21 , which enter the Hubble radius with zero initial ve

locity, there is negligible further damping while the mode
in the overdamped regime. When these modes enter
overdamped regime, withv0 /D51, we find that they do not
have sufficient velocity (ḟ ) for friction to be important. With
increasing time, the velocity grows,D increases, andv0 /D
decreases. Eventually, the mode enters the terminal-velo
regime, at say a timetT , where friction balances the Lorent
force ~see Sec. IV!. This happens roughly when tan„x(tT)…
'„v0 /D(tT)…!1 and f (tT); f 0 . In the terminal velocity
regime, we have from Eq.~4.21!, that

f ~t!5 f ~tT!expF2E
tT

t v0
2

D
dtG

' f ~tT!expF20.91024S TT2T

0.25 eVDB29
2 G . ~8.8!

For all modes withl B.5l OD , one finds that there is no
significant damping.

When the photon mean-free-path increases above
wavelength of a given mode, one enters the free-stream
regime. As we discussed in Sec. VI, the further evolution
the Alfvén-type mode depends on the whether magne
pressure at this time dominates the fluid pressure, or v
versa. This is determined by the ratioB/Bcrit . For the case
of B!Bcrit , one can again treat the evolution as incompre
ible. The resulting Alfve´n modes are already in the ove
damped regime when they start to free-stream and their e
lution is governed by Eq.~6.9!,

f̄ ~t!5 f̄ ~t f !expF2E
t f

t v̄0
2

D̄
dtG

5 f̄ ~t f !expF2VA
2E

t f

t

kp
2~ t !l g~ t !dtG . ~8.9!

Hence, f̄ (t)5 f̄ (t f)exp(2k2/kfs
2 ), where the free-streaming

damping scalekf s
21 is given by
2-13
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kf s
225VA

2E
t f

t l g~ t !dt

a2~ t !
. ~8.10!

Modes with a scale for the magnetic fieldk21,kf s
21 , get

damped significantly during the free streaming evolutio
We see that the damping in this regime is similar to S
damping, except that the usual Silk damping integral wit
the exponential@cf. Eq. ~5.14!# is multiplied by an extra fac-
tor of (15/2)VA

2!1. For the linearized modes where the wa
vector makes an angleu to the zero-order field, one has t
replace VA by VAcosu. After recombination, the viscou
damping is subdominant, compared to expansion damp
~since l g exceeds the Hubble radius!, and so can be ne
glected. So the largest scale to be damped is found by ev
ating kf s

21 at the recombination redshift. Assuming that t
universe is matter dominated at recombination, we getkf s

21

'(3/5)1/2VALS
C(t r). Hence, the damping scale is of order t

Alfvén velocity times the Silk scale. The largest waveleng
mode to be damped, sayLD

A[2pkf s
21(t r) is given by

LD
A52pS 3

5D 1/2

VA

LS~ t r !

a~ t r !
'1.131023B29f b

21/2h21/2 cm.

~8.11!

For B.Bcrit , we noted in Sec. VI that the evolution be
comes compressible, and gravitationally unstable for sc
larger than the magnetic Jeans length,lJ . On such scales
we showed that a field withB29;1, is needed to produce
density perturbation large enough to significantly affect g
axy formation. We did not treat the evolution on sca
smaller than the magnetic Jeans length in any detail,
though the governing equations are given in Appendix B@cf.
Eq. ~B8!#. The solution of these equations, as we noted
Sec. VII, is complicated by the presence of an inhomo
neous zero-order magnetic field. Nevertheless, we ex
that fast compressible motions on scales smaller thanlJ will
drive oscillations close to the baryonic Alfve´n frequency,
and will be initially overdamped by the action of photo
viscosity, in the pre-recombination era. The damping sc
for such motions will then be similar tokf s

21 , as deduced
above. For modes similar to the slow magneto-sonic wa
we expect that forB@Bcrit , the phase velocity will be
roughly equal tocb , the baryon sound speed, and the cor
sponding damping scale will bekf s

21 with VA replaced bycb.
These expectations are borne out by the linearized calc
tions of JKO, although they ignore the inhomogeneous
ture of the zero-order magnetic field.~For a general tangled
zero order field, the counterpart of the slow wave may no
easy to excite!. Clearly, more detailed computations a
needed to get the exact damping scales, in this case.

One can consider the damping due to neutrino viscosit
the early universe@23#, in an exactly analogous manner
the Silk damping effects treated in detail above. We brie
describe below some of the consequences of damping du
neutrinos. These damping effects are largest around the
of neutrino decoupling, at a temperature ofT5Tn

;1 MeV. During this epoch, the number density of weak
interacting particles isnW;T3 ~cf. @19,18#!. The cross-
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section for interaction with neutrinos, is typically the wea
interaction cross-sectionsW;GF

2T2, whereGF is the Fermi
constant. The neutrino mean-free-path is then given by

l n5
1

sWnW
'1.431011 cmS T

MeVD 25

. ~8.12!

Note that l n becomes comparable to the Hubble radiu
H2152t'4.431010 cm(T/MeV)22, at T;1 MeV. The
comoving damping scale for fast modes, sayLS

Cn , due to
neutrino viscosity, can be derived in exactly analogous m
ner to the Silk damping scale, derived in Sec. V. We g
LS

Cn5@ t(Tn) l n(Tn)#1/2/a(Tn) ; l n(Tn)/a(Tn) ' 0.931020

cm. As with the damping by photon viscosity, the maximu
damping of Alfvén ~or the slow! modes occur when they
enter the free-streaming regime. We analyze the dampin
the nonlinear Alfve´n wave in the neutrino free-streaming r
gime, in Appendix C. We show there that damping in th
regime is similar to Silk damping except that the usual S
damping integral within the exponential@cf. Eq. ~5.14!# is
multiplied by an extra factor of (15/2)VAn

2 !1, andl g is re-
placed byl n . Here, VAn is the Alfvén velocity defined in
terms of the conserved, neutrino energy dens
rn(Tn)a4(Tn). Since l n}T25}t5/2 in the radiation-
dominated epoch, we can estimate the largest wavele
Alfvén mode that is appreciably damped, by neutrino visc
ity, in the free streaming regime. This comoving waveleng
is given byLDn

A ;2p(2/5)1/2VAnLS
Cn;1017B29 cm. We can

generalize these results given any initial spectrum of m
netic inhomogeneities, by replacingVA by a suitably aver-
aged scale-dependentVA(k21).

IX. CONCLUSIONS

We have considered the evolution and viscous dampin
cosmic magnetic fields in the early universe in detail. Us
the fact that the fluid, electromagnetic, and shear visc
energy-momentum tensors are all conformally invariant,
showed in Sec. II that the MHD equations in the FRW u
verse, including viscous effects, can be transformed i
their special-relativistic counterpart when the metric pert
bations from inhomogeneous motions are small. This
abled us to transform known nonlinear Alfve´n-wave solu-
tions, from flat spacetime, into the expanding FRW univer
Although our analysis of the nonlinear Alfve´n mode em-
ployed a special exact solution and resulted in a linear w
equation after conformal transformation, we stress that
tangled field is not a linear perturbation on a uniform fie
Its amplitude can be taken to be large compared to the
plitude of the uniform component. This solution serves a
useful guide for understanding more general cases.

We considered in detail the evolution and damping
these modes in various regimes. First, on galactic scale
larger, the Alfvén mode oscillates negligibly before recom
bination, for magnetic field strengths,B29,1 ~or a present
day magnetic fieldB,1029 G). So there is then no ques
tion of strong ‘‘Silk’’ damping of these modes, due to photo
viscosity, as occurs for compressional baryon-photon os
lations. Furthermore, Alfve´n waves with small enough wave
2-14
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length, which can oscillate appreciably before recombi
tion, become overdamped. In this case, the long
wavelength which suffers appreciable damping by pho
viscosity, has a scalek21;VALS

C , where LS
C is the usual

comoving Silk scale. Since the Alfve´n speed isVA;
3.831024B29!1, only comoving wavelengths smaller tha
1023B29 cm suffer appreciable damping. We also brie
considered analogous results for damping of very sm
scales by neutrino viscosity following neutrino decoupling
t;1s. The results of our work on the damping scales
magnetically induced fluid perturbation agrees with the w
of JKO.

After recombination, the fluid pressure drops enormou
roughly by the baryon to photon ratio. The Lorentz force d
to a tangled magnetic field associated with an initia
Alfvén-like mode before recombination can seed gravitati
ally unstable compressional perturbations after recomb
tion, provided the field is strong enough and tangled eno
on scales larger than the magnetic Jeans length,lJ . We
examined the post-recombination evolution of scales lar
than lJ in Sec. VII, including the effect of a passive da
matter component, and showed that magnetic fields w
B29;1 are needed to impact significantly on galaxy form
tion. Our work extends the considerations of Wasserm
@16#, and connects it to work on early-universe MHD, d
cussed here and in JKO. The evolution equations for per
bations with scales smaller thanlJ are derived in Appendix
B, but their solution is much more complicated and will
examined elsewhere.

Magnetic fields withB29;1, may be constrained by ob
servations of quasar rotation measures@21#. The fluid veloci-
ties induced by the tangled field, oscillating as an Alfv´n
mode in the pre-recombination era, can also produce s
angular scale anisotropies in the microwave backgrou
through the Doppler effect@22#. This may provide anothe
constraint on such fields. The dissipation of magnetic fie
due to neutrino or photon viscosity will also leave an impr
on the spectrum of neutrinos and photons respectively.
neutrino spectrum could be probed using nucleosynth
and there already exist strong limits on the spectral dis
tions of the microwave background. Scenarios of galaxy f
mation that appeal to strong enough magnetic fields of o
1029 G are potentially testable. We hope to return to a f
ther consideration of some of these observational issue
future work.
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APPENDIX A: MAXWELL’S EQUATION
IN THE ‘‘LAB’’ FRAME

In the main text we defined the electric fieldE*
[(E* 1,E* 2,E* 3) and magnetic fieldB* [(B* 1,B* 2,B* 3)
in the starred metric by
08350
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F* 0i5E* i , F* 125B* 3, F* 235B* 1, F* 315B* 2.
~A1!

This can be written in more compact way in term of a fou
vector electric fieldEm* and magnetic fieldBm* as

Bm* 5
1

2
emnrl* V* nF* rl; Em* 5Fmn* V* n, ~A2!

where V* m[@1,0,0,0# is the four-velocity of fundamenta
observers at rest in the starred metric frame. We have
used the Levi-Civita tensoremnrl* 5A2g*Amnrl , with
Amnrl , the totally antisymmetric symbol such thatA0123
51 and61 for any even or odd permutations of (0,1,2,3
Note that the four-vectorsBm* and Em* have purely spatial
components andEi* 5E* i , Bi* 5B* i for the spatial compo-
nents of the field 4-vector. First, let us transform the elec
and magnetic four-vectors to the unstarred~FRW! conformal
frame, and denote the resulting electric and magnetic fo
vectors byEm8 andBm8 , respectively. Making use of the con
formal transformation properties,

F* mn5V24Fmn; emnrl* 5V4emnrl ; V* n5V21Vn,
~A3!

we get

Bm8 5VBm* 5
1

a
Bm* ; Em8 5VEm* 5

1

a
Em* . ~A4!

We now make a coordinate transformation to the FR
proper ‘‘lab’’ co-ordinates (t,r ) defined bydt5adt, dr
5adx. Denote the co-ordinate-transformed, ‘‘lab’’ electr
and magnetic four-vectors byEm andBm , respectively. We
have

Bm5
1

a
Bm8 5

1

a2
Bm* ; Em5

1

a
Em8 5

1

a2
Em* . ~A5!

Note that these 4-vectors are also purely spatial. Simila
we can define the current density in the Lab frame byJL

m

5aJm5aV4J* m5a23J* m. Now, denote the spatial compo
nentsBm , Em and JL

m by the spatial 3-vectorsB, E and J
respectively. Then, in terms of these spatial vectors, we h

B5
B*

a2
; E5

E*

a2
; J5

J*

a3
. ~A6!

The four-current density will also have a time compone
the charge densityrq5JL

05(J* 0/a3). Using the Maxwell
equations,~3.4!, in the starred metric, one can write the Ma
well equations in terms of these ‘‘lab’’ fields. We have

¹3~a2B!54pa3J1
]~a2E!

]t
; ¹•B50 ~A7!

¹3~a2E!52
]~a2B!

]t
; ¹•~a2E!54pa3rq .

~A8!
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The non-relativistic limit of Ohm’s law in terms of th
‘‘lab’’ fields is simply

E1v3B5
J

s
. ~A9!

In the ideal limit, the ‘‘lab’’ magnetic field then satisfies th
induction equation

]~a2B!

]t
5

1

a

]~a2B!

]t
5

1

a
¹3@v3~a2B!#. ~A10!

So, whenv50, we haveB}a22, a result which is intuitively
expected for the ‘‘lab’’ magnetic field due to flux freezing
the expanding universe. It is also of interest to express
Euler equation~3.3! for the fluid in the radiation-dominate
era, in terms of the ‘‘lab’’ fields. We obtain

1

a4

]

]t
@~r1p!a4v#1

~v•¹!

a
@~r1p!v#1

v

a
¹•@~r1p!v#

52
1

a
¹p1J3B1

h

a2F¹2v1
1

3
¹~¹•v!G . ~A11!

APPENDIX B: GENERALIZED LINEAR PERTURBATION
THEORY IN THE FREE-STREAMING AND

POST-RECOMBINATION REGIMES

Begin with the linearized evolution equations for th
baryonic fluid, including the effects of the magnetic field a
gravity. We have

]v

]t
1H~ t !v52

1

arb
¹p11

1

rb
J3B2

1

a
¹f2

4rg

3rb
nesTv

~B1!

]db

]t
1

1

a
¹•v50 ~B2!

¹2f54pGa2drT54pGa2@rbdb1rcdc#. ~B3!

Here p15cb
2rbdb is the perturbed pressure. We takeB

5@B0(x)1b(x)#/a2, with ubu!uB0u. The linearized induc-
tion equation,~A10!, then becomes

]b

]t
5

1

a
¹3@v3B0#; ¹•b50. ~B4!

Suppose the perturbation is described in terms of the
turbed position of the baryonic component bydxb5j(x,t).
The perturbed velocity isv5a(]j/]t). An integration of the
perturbed continuity equation~B2! and induction equation
~B4! then gives

db52¹•j, b5¹3@j3B0#. ~B5!

Similarly, one can define the perturbed comoving position
the cold dark matter component bydxc5jc(x,t). An inte-
gration of the perturbed continuity equation for this comp
08350
e

r-

f

-

nent givesdc52¹•jc . The Poisson equation~B3! for the
potential can then be integrated once to give

2
1

a
¹f54pGa@rbj1rcjc#. ~B6!

The perturbed pressure-gradient term can be written as

2
1

arb
¹pb5

cb
2

a
¹~¹•j!. ~B7!

Using Eqs.~B5!, ~B6! and~B7!, the perturbed Euler equatio
becomes

]2j

]t2
1F2H1

4rg

3rb
nesTG]j

]t

5
cb

2

a2
¹~¹•j!14pGa@rbj1rcjc#

1
~¹3B0!3B0

~4prba3!a3
1

@¹3~¹3@j3B0# !#3B0

~4prba3!a3

1
~¹3B0!3@~¹3@j3B0!#

~4prba3!a3
. ~B8!

This linear equation describes the gravitationally unsta
evolution. and damping of linearized MHD modes in th
free-streaming and post-recombination regime. Howev
one cannot perform a simple Fourier analysis of this eq
tion, sinceB0 is also a function ofx. In the main text we
have simplified the equation by neglecting the last two term
While this approximation is likely to be valid for large-sca
modes at early times, it will break down once the distorti
of the magnetic field due to the motions become significa
We hope to return to the study of this equation elsewher

APPENDIX C: VISCOUS DAMPING DUE TO NEUTRINOS
IN THE FREE-STREAMING REGIME

Modes whose wavelengths become longer than the n
trino mean-free-path, enter the neutrino free-streaming
gime. The evolution and damping of nonlinear Alfve´n wave
solutions can be examined in this regime, analogous to
case of photon-free streaming, treated in Sec. VI. First
viscous force due to coupling of the relativistic plasma a
the neutrinos is given by@23#

FD
n 52

4

3
nWsWrnv5

4

3
rn

v

l n
. ~C1!

Here, rn is the energy density of neutrinos, and we ha
replaced (nWsW)21 by the neutrino mean-free-pathl n . We
can also use the form of the Euler and induction equati
~as derived in Appendix A!; except that the viscous force i
as given by Eq.~C1! and the fluid inertia/pressure does n
include the neutrino contributions. Following the ideas
Secs. IV and VI, we look again at non-linear Alfve´n modes
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with B5(B01b)/a2, where B05B0ẑ, with B05const, b
5ng(t)eikz and v5nv̄g(t)eikz, with n perpendicular toẑ.
Recall thatubu is not necessarily smallcompared touB0u.
Also, since the universe is still radiation dominated at
epochs near neutrino decoupling, withp@B2/(8p), we can
treat the motions as nearly incompressible. The Euler eq
tion gives

4rRa4

3

]v

]t
5

B0

4p

]b

]z
2

4

3
rna

v

l n
~C2!

whererR is the fluid density, excluding the neutrino contr
bution. The induction equation gives

]b

]t
5B0

]v

]z
. ~C3!

These can be combined to give an equation for the evolu
of g(t)

d2g

dt2
1Dn

dg

dt
1vn

2g50, ~C4!

where

vn5kVAR ; Dn5
a

l n
S 4rn

3rR
D}t24. ~C5!
-
n-

,

,
nd

re

.
.

-

tt

08350
e

a-

n

Here,VAR
2 53B0

2/(16prRa4)5const, is the Alfve´n velocity
defined with the inertia contributed byrR .

The evolution of this non-linear Alfve´n mode depends
once again on the relative strengths of the damping and d
ing terms. When modes enter the neutrino free-stream
regime, the Alfve´n waves are again strongly overdampe
with Dn /vn@1, for B29,1. One can again apply th
terminal-velocity approximation of Sec. IV in the ove
damped regime, oncedg/dt has adjusted itself to the ‘‘zero
acceleration’’ solution. Then,g is given by

g~t!5g~t i !expS 2E
t i

t

k2VAn
2 l n

a
dt D , ~C6!

where

VAn
2 5

B0
2

4p~4rna4/3!
~C7!

is the Alfvén velocity defined in terms of the conserved ne
trino energy densityrna4. We see that the damping of thes
Alfvén modes by neutrino viscosity is similar to Silk dam
ing except that the usual Silk damping integral within t
exponential@cf. Eq.~5.14!# is multiplied by an extra factor of
(15/2)VAn

2 !1, andl g is replaced by the neutrino mean-fre
path l n .
s
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