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Magnetohydrodynamics in the early universe and the damping of nonlinear Alfva waves
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The evolution and viscous damping of cosmic magnetic fields in the early universe is analyzed. Using the
fact that the fluid, electromagnetic, and shear viscous energy-momentum tensors are all conformally invariant,
the evolution is transformed from the expanding universe setting into that in flat spacetime. Particular attention
is paid to the evolution of nonlinear Alfvemodes. For a small enough magnetic field, which satisfies our
observational constraints, these wave modes either oscillate negligibly or, when they do oscillate, become
overdamped. Hence they do not suffer Silk damping on galactic and subgalactic scales. The smallest scale
which survives damping depends on the field strength and is of the order of a dimensionléssvalbeity
times the usual baryon-photon Silk damping scale. After recombination, nonlinear effects can convert the
Alfvén-type mode into compressional, gravitationally unstable waves and seed cosmic structures if the cosmic
magnetic field is sufficiently stronS0556-282(98)02718-0

PACS numbg(s): 98.80.Cq, 52.35.Bj, 95.30.Qd

[. INTRODUCTION prompt us to reanalyze the problem in a completely different
fashion that also allows non-linear effects to be considered.
The origin of ordered, large-scale cosmic magnetic fields The study of early universe MHD can be considerably
remains a challenging problem. It is widely assumed thakimplified by exploiting the conformal invariance of the rela-
magnetic fields in astronomical objects, such as galaxiesivistic fluid, electromagnetic, and shear viscous energy-
grew by turbulent dynamo amplification of small seed mag-momentum tensors. We do this here. This invariance allows
netic fields[1]. There have been many suggestions for pro-one to transform viscous relativistic MHD from the expand-
ducing the small seed magnetic fields required to prime théng universe setting to a simpler problem in flat spacetime.
amplification procesg2]. Some of these proposals appeal toThis transformation is explained in detail in the next section
processes which might operate in the very early univi8se  and in Appendix A. The non-relativistic limit of the resulting
Moreover, the efficiency with which known turbulent dy- MHD equations is given in Sec. Ill. In the early universe, the
namo mechanisms can produce the observed fields is stihdiation-baryon pressure is much larger than the magnetic
being debate@4]. An alternate possibility is that the galactic pressure for the magnetic field strengths that are generally
field could be the remnant of a larger cosmological field ofconsidered. This means that one can treat the motions in-
primordial origin[5], although, as yet, there is no compelling duced by any tangled field as being largely incompressible,
mechanism for producing the required field. It could formso long as long as the photon mean-free path is smaller than
part of the initial conditions, arise at a phase transition, or behe scale of the magnetic tangles. In this situation, the
produced in some way at the end of a period of inflaf®h  Alfvén-type wave modes are the most important. Therefore,
If the primordial field is homogeneous then the isotropy ofin Sec. IV, we shall focus attention amonlinear Alfvén-
the microwave background places a limit of wave solutions and study the damping of a special non-linear
3.4x107%(Qgh3) Y G on its present strengfB]. This lim-  mode. For this mode, the magnetic field has a tangled com-
its the strength of any primordial field on scales greater thaponent of arbitrary strength perpendicular to a uniform field.
the horizon at last scattering. Also, its spatial configuration can vary arbitrarily along the
Dissipative processes play a key role in fashioning thdarge-scale field. The analysis of this case is particularly
spectrum of irregularities that survive the radiation era. It issimple because the nonlinear MHD equations can be trans-
well known that density fluctuations in the baryons sufferformed into a linear wave equation by a conformal transfor-
“Silk” damping in the early universe, due to radiative vis- mation. We should stress, however, that the field is not a
cosity [7]. This leads one to wonder whether fluctuating linear perturbation, since the amplitude of the tangled com-
magnetic fields produced in the early universe, which couplg@onent can be taken to be arbitrarily large compared to the
to the baryons, will also be damped by similar processesamplitude of the uniform fieldso long as the metric pertur-
This problem was considered by Jedamzik, Katalinic andations it creates do not distort the Friedmann background
Olinto (JKO) [8], who examined the damping of linearized expansioi This solution can serve as a qualitative guide for
magnetohydrodynamicdMHD) wave modes in an expand- understanding the evolution of general tangled fields. For the
ing universe. However, there remain subtleties about the forsake of completeness, the compressible MHD modes are also
mulation of the problem, and the damping processes, whicbriefly treated using conformal transformation, in their lin-
earized limit, in Sec. V.
As the universe expands, the relevant mean-free-path of
*On leave from National Centre for Radio Astrophysics, TIFR the particle responsible for the damping eventually exceeds
Pune, Poona University Campus, Ganeshkhind, Pune 411 077, lthe wavelength of a given mode. After this point conformal
dia. transformation is no longer a useful tool and one has to go

0556-2821/98/5@)/08350218)/$15.00 58 083502-1 © 1998 The American Physical Society



KANDASWAMY SUBRAMANIAN AND JOHN D. BARROW PHYSICAL REVIEW D 58 083502

back to the non-transformed equations. The evolution ofo, if the energy-momentum tensor of the matter in the early
various MHD motions in this free-streaming regime, is con-universe is trace-free and transforms under conformal trans-
sidered in Sec. VI. The results of our work in the aboveformations as in Eq(2.2), then we can transform the fluid
sections on the damping scales of magnetically induced flui¢quation of motion to a simpler equation in flat spacetime.
perturbation agree with the work of JKO, and support theirThis approximation method allows us to transform non-
general conclusions on damping of motions induced bylinear solutions to the MHD equations, for a fluid with trace-
tangled fields. free energy-momentum tensor, from flat spacetime into an
Eventually, the universe recombines to form atoms andxpanding FRW universe. We are, of course, neglecting the
the tangles in the magnetic field that survive damping, catrback-reaction of those motions upon the form of the metric.
create gravitationally unstable perturbations. We extend th&hat is, the gravitational potenti@netric) perturbations due
considerations of JKO by discussing in greater detail, in Sedo the inhomogeneous motions must be small for this ap-
VII, the evolution of the field and its associated perturbationgroximation to hold. For example, if the inhomogeneous mo-
in this post-recombination era. We also give in Appendix B ations of a radiation fluid give rise to energy density inhomo-
generalized linear perturbation theory which takes explicitgeneities of amplitudép/p over a length scala, then the
account of the zeroth order magnetic inhomogeneities, gravmetric perturbations induced are of ordesp(p)(\/ct)?.
ity and pressure forces. We point out how tangled magneti@These are small because, for the parameters we consider,
fields, associated with what can be initially thought of asép/p<1 and the perturbations are on sub-horizon scales.
approximately incompressible “modes,” can induce com- The energy-momentum tensor in the early universe will
pressible motions after recombination. Our work in this seche modelled by a linear combination of ideal fluid, non-ideal
tion extends the considerations of Wasserifi8], and con-  fluid, and electromagnetic fields. We have
nects it to other work on early-universe MHD discussed in
the previous sections and by JKO. We also use the results of TH=TP"+TRI+TEY, (2.9
the above sections in another paper, to estimate the micro-
wave background signals due to tangled magnetic fi@ds  where we have separated the energy-momentum tensor into
In Sec. VIII, we bring together all our ideas to discuss how aan ideal fluid partT{*”, a non-ideal fluid parfT§; and an
given spectrum of magnetic inhomogeneities evolves, andlectromagnetic parTgy,. We take the ideal part to be a

Sec. IX summarizes our conclusions. perfect fluid with equation of statp=p/3, wherep is the
pressure ang is the energy densitgjwe have set the speed
Il. CONFORMAL INVARIANCE OF RELATIVISTIC, of light c=1.) For most of the period before decoupling, the
VISCOUS MHD early universe is radiation dominated and one can use the

above equation of state. Later, we will comment on the ef-

We shall make use of a conformal invariance property okaciq of matter-dominationp=0) before decoupling. Thus,
the field equations of general relativity. Consider two metrics, o have

which are related by conformal transformations of the form

TF'=(p+p)Ur*U"+pg™”. 2.
g;\—w:QZgMV (2.1) | (p+p) pg (2.9
whereU* is the normalized four-velocity of the plasma, sat-
isfying the conditionU#U ,=—1. Note that forp=p/3, we
haveT{,=0. Under a conformal transformation, the compo-
nents of T{*” transform to a new set dbtarred variables as
follows:

whereQ)=Q(x%). Suppose the cosmic fluid is described by
an energy-momentum tensor, s&y”. If this is traceless,
T+ =0, then the equations of motion of the fluid are invariant
under conformal transformations. That is, we have

my  — *UYV ; *uv_— ()—6 wv
T, 0T . 0 with T O °T 22 p*=Q_4p, p*:Q_4P, Urt=0 "1y~ (2.6)

Here ;* denotes a covariant derivative with respect to the2Nd the ideal fluid energy-momentum tensor transforms as

metricgy,, . This result is straightforward to demonstrate by Ti MZQ?GTfW- )

direct calculation. The non-ideal fluid part of the energy-momentum tensor
We apply this result to the early universe setting. First,c&n be written a$o]

note that the Friedmann-Robertson-WalkERW) metric is v P

conformally flat. We will only need to consider the zero- Tar=—7H " H W, 27

curvature metric with line element
where

ds?=g,, dx“dx"=a?(7)[ —dr*+dx*+dy*+dZ], ,
2'3 ap—~«& a . J—
@3 H*f=g*#+U*UP  W,z=U, 3+ Uz, 39asY7
where 7 is conformal time and@(r) is the scale factor. We (2.9
also define the comoving proper timausingdt=adr. We
can relate this metric to flat spacetimg,,, by a conformal and » is the effective shear viscosity coefficient, given by
transformation, ,,=g%,=a"%(7)g,,, with Q=a"*(7).  (see Weinberd9]);
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4 2 . pose we choos€ =a (7), with the scale factor normal-
7=715939 1 la- (2.9 ized such thaa(r,) =1 at present conformal timg,. Define
a new set of starred variables as in E¢&6), (2.11) and
whereT is the temperature of the radiation-dominated uni-(2.14). The evolution equations of the starred variables then
verse,g the statistical weight antl; the mean-free-path of become
the diffusing particle. In the radiation-dominated epoch, the

bulk viscosity is zero and we have neglected the thermal THRY ST A TN, A T ey, =0
conductivity term since it does not affect the Alfvevave
mode that we will focus upon. Fewr ,=4md*# Ff,, ,=0
One can easily check that the tratg, ,=0. Also, under
conformal transformation, using)**=Q"U® and U* JFELIFPUTU* A= g  FF AU . (2.17

=QU,, we have
Since these equations are simply the flat spacetime equations
of relativistic, viscous MHD, we can carry over all results
(210 obtained in the flat spacetime context to MHD in FRW
spacetime on scales such that the metric perturbations cre-
andH* “@H*vA= () ~4H#*H"P: 50 the non-ideal stress con- ated by the magnetic inhomogeneities and their resulting mo-
formally transforms as tions are small. The only extra complication introduced by
cosmology is the time-variability of the viscosity and con-
TN == 9* Q7 3HFHPW, 5= Q 8T, ductivity coefficients.(The transformation of MHD equa-
tions from the FRW universe to flat space, has also been
if 7*=Q 3%7. (2.1)  explicitly constructed in Ref[10]. However, they did not
include the viscous stress, nor exploit the simple conformal
The electromagnetic part of the energy-momentum tensgfyvariance properties stressed here. The idea that flat space

Q) Q)
Uaﬁ_FU,B_

W ,=QW,;—
A s Ix*

is given by solutions can be taken over to FRW universe in the radiation
era, has also been used by Lidrid], to study shock waves
T’éﬁﬁi FAEYY— lgm: SE70, (2.12 in the radiation era; but, without the inclusion of magnetic
4m| 7 4% 7 fields).

_ _ . At this stage, it is useful to point out that any particle
WheLEFfﬂVzAV?#_Aff?”_'g‘vvﬂ_Au,v |sdthe Maxwell tg-nsor,d species which does not interact with the relativistic fluid is
A, the four-potential, and a comma enotes an ordinary dez s, easy to take into account. Such a non-interacting com-
rivative. This is also tracelesdgy,=0. The evolution of  ,,hant may be any species of dark matter, or neutrinos, after
the electromagnetic field is governed by the Maxwell equathey have decoupled from the rest of the matter. The energy-
tions momentum tensor for this component will then be separately

FAv,=4mdt,  Fp,, ;=0 2.13 conserved. As_ long as this component perturbs the form of

' : the FRW metric negligibly, the above treatment of conformal

transformation, these equations are also invariant providefirough. This also means that the MHD equations in the
we transform the electromagnetic field tensor and currengbove form can be applied to the baryon-photon-magnetic

density as follows: field system, even after dark matter domination, until the
baryon density becomes comparable to the radiation density,
Fruv=Q 4Fur,  Jxu=("4Jk, (2.149  which happens close to decoupling. In the sections to follow,
) ) we will use these equations to examine the evolution of
Under these transformations we verify that MHD waves, in particular the non-linear Alfsemode, after
king the non-relativistic limit of th ions.
TrEr— Q- 6TAY 219 taking the non-relativistic limit of the equations
Finally, consider the relativistic generalization of Ohm’s law, I1l. NON-RELATIVISTIC LIMIT
J4+J"U Uk=gFH*U,, (2.16 Suppose the universe was seeded with magnetic fields at

some early epoch in its radiation-dominated phase. We con-

whereo is the conductivity of the fluid, measured in the fluid sider the subsequent evolution. For magnetic fields of realis-
rest frame. Transforming the four-current and velocity to thetic strengths(i.e., that are not going to produce highly dis-
starred frame, we can see that Ohm’s law also remains incordant microwave background fluctuations or radically
variant under conformal transformations if we define achange the course of primordial nucleosynthesike in-
starred conductivityg* =Q 0. duced bulk fluid velocities are in general highly non-

From these preliminaries, we see that the total energyrelativistic. Suppose we write the four-velocity in the trans-
momentum tensor consisting of an ideal fluid, non-ideaformed metric asU**=(y,yv), where y=(1—v?) "2
fluid, and electromagnetic field is trace-free, and also transthis form satisfies the normalization condition on the four-
forms as in Eq(2.2) under a conformal transformation. Sup- velocity andv=dx/dr=adx/dt is exactly the peculiar bulk
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velocity of the fluid in the FRW metric. The non-relativistic d(a’B) 14(a’B) 1 )
limit corresponds to takingv|<1 in the fluid conservation " a o _avXlvx@B)l @7
equation in Eq(2.17) .

If we define the electric fieldE* =(E*,E*? E*®) and _ _ _
the magnetic field* = (B**,B*2,B*3) in the starred metric Let us turn now to consider solutions of the above equations.

by Consider first the unperturbed evolution, with a zero pe-
culiar velocity and negligible magnetic fields. The solution
FrOi—p*i  pxl2_p*3 p*23_pxl p*3l_p*2 of the fluid equations is thep* = p* /3=C; with C; a posi-
(3.2 tive constant. This implies that, in the original variablgs,

] ) o =p/3=C,/a* as expected for the radiation-dominated uni-
then the time component of the fluid equation in E17,  verse. (Furthermore, for zero peculiar velocity, for any
in the non-relativistic limit, is “test” magnetic field,B* is constant in time, oBxa 2, a

oot result which is intuitively expected for the “lab” magnetic
p +V-[(p* +p*)V]—E*.J*—*V.f=0. (3.2 field due to flux freezing in the expanding univejsdow
JT consider the effect of introducing tangled magnetic fields in
) ) the universe. The Lorentz force associated with a tangled
Here,J*_ls the current-density vector whose components argio|q will cause the fluid to move and induce a non-zero
the spatial Zcomponents of the transformed four-curdrt,  ocyjjiar velocity. The coupled system of equations describ-
and f=V(v*/2)—(2/3)vV-v. The spatial components give jng the evolution of the velocity and magnetic fields is highly
the Euler equation non-linear. For this reason, the authors of R8f.examined
J only the case of weak perturbations around a quasi-uniform
07_7[([,* +p* V] + (V- V)[(p* +p* V] +VV-[(p* +p*)V] field. We shall to begin vylth, foIIqw a compl_ementary ap-
proach and look at special non-linear solutions. This will
also give some feel for how a general tangled field configu-
. (3.3 ration will evolve.

1
=—Vp*+J* XB* + 5*| Viv+ 3V

We have assumed here that the net charge den3it) (is IV. NONLINEAR ALFVE N WAVES IN THE EARLY
negligible. UNIVERSE

The Maxwell equations in the starred metric, are . . :
A. The ideal non-viscous regime

. N JE* . oB* At sufficiently early times(or, equivalently, for the field
VXB*=4m)* + ar ' VXE*=- ar ' and velocity on sufficiently large scaje®ne may assume
the matter is a perfect fluid and neglect any viscous effects.
V.-B*=0, V-E*=47J*C (34  Also, the fluid radiation pressure in the early universe is

L ,_typically much larger than the magnetic pressure, for the
lThey are supplemented by the non-relativistic limit of Ohm'sfjg|q strengths we are considering. Their ratio is given by
aw

B*Z BZ
* = _—~3x10"7B%,, (4.2)
E* +vXB*=—. (3.5 8mp* 87p
(o

whereB_g is the present-day magnetic field in units of 20

B defined using the fundamental observers of FRW space>- Here, we have assumed that the fields are simply frozen
time, are also easy to write down and are given in Appendiinto the uniformly expanding universe, neglecting the effects
A of the peculiar velocity. SincB*?/(8mp*)<1, to an excel-

' In what follows we shall make the usual assumption that,lent approximation, one can take the motions induced by the

for non-relativistic velocities, the displacement current termMagnetic field to be almost incompressible, witst

2 - _ .
can be neglected. In this case, we can split up the Lorentz B" /(8 m)~p*=const and drop the pressure gradient
force term in the canonical way @& X B* = — VB*2/(8) term in the reduced Euler equati@B.3). In this limit we

+(B*-V)(B*/47). We also assume that the early universenave filtered out “fast” compressible motions and we can

was a perfect conductdsee for example Ref3]) and take look for solutions withV - v=0. Equation(3.2) then gives, in
the limit of oo™ 0, in Ohm’s law. The magnetic field the ideal and non-viscous limifip*/97=0. Also, the Euler

then satisfies the ideal limit of the induction equation equation reduces to

The Maxwell equations in a “lab frame,” with field& and

JoB* * *
—VX[vXB*]. (3.6 ANV S C Al DL
4m(p* +p*)

e o 42

In terms of the “lab” magnetic field, defined in Appendix A,
the ideal-limit induction equation is while the induction equation is
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oB* . . of Bg . We also take the peculiar velocity to lie perpen-
ar +(v-V)B*=(B* - V)v. 43 gicular to Bs and assume that all the variables depend only
onz andr. In this case, the velocity perturbation automati-
These equations have a wide class of exact, stable solutiorally satisfiesV - v=0. Further, the ratio of the magnetic en-

of the form[12] ergy density to the fluid energy densityB?/(8mp)
. ~10‘6839<1. So even when there is strong damping of
B av - . . . g .
V= Y0, Vov=0. (424 motions induced by the field, and a significant fraction of the

T am(p*+p*) 9T field energy density goes into heatwill be perturbed neg-
ligibly. It is an excellent approximation to neglect the vis-

In these solutions the nonlinear terms in E@s2) and(4.3) cous term in Eq(3.2). Then, in the ideal limit, Eq(3.2)
exactly cancel. Any complicated tangled field pattern is posimplies (9p*/d7)=0. The nonlinear terms in the Euler and
sible, if accompanied by a velocity along the magnetic fieldinduction equations are individually zero because there is no
at the local Alfven speed. variation ofb* andv along the fields. These equations then

A particular case of this solution is one where the mag+educe to
netic field is split up aB* =B +b*, into a uniform and

constant componenBj , and a tangled componebt (x, 7). ﬂ _ 1 V[p* +B*2(8m)]
Fix the co-ordinates such thBf lies along thez -axis, that ks p* +p*
is BE =Bz, wherez is the unit vector along. Now choose . . .
v=b*/(4m(p* +p*))¥% the nonlinear terms in the Euler N Bo b L7 VA (47)
and induction equations cancel out and we have Am(p*+p*)) 92 (p*+p*) '

Jb* Jb* ov ov

_ — oy D ab* v

gr VAT 70 G Vag, =0 @9 o =B 4.9

where we have defined the Affwevelocity by Note that the left-hand sid&.HS) of Eq. (4.7) has zero di-
« vergence. The RHS will also have zero divergence only if
Bo B 8X1074B_,. the total pressur@* +B*?/(8) is uniform in space. As

mentioned above, this is likely to be a good approximation
(4.69  for this mode since the radiation pressure in the early uni-
verse is typically much larger than the magnetic pressure.
Here, for the numerical estimate, we have taken the domi©ne can therefore drop the pressure gradient term in the
nant contribution to the energy density=p,, the photon  reduced Euler equatiof4.7). Writing b* =by(7,z)n andv
energy density, as would be appropriate in the radiation=y (r,z)n, eliminatingv, from Egs.(4.7) and(4.8), gives a
dominated era, after the epoch efe™ annihilation. The damped wave equation fduy(7,2),
general solution of Eqi4.5) is therefore a nonlinear Alfwe
wave travelling antiparallel toBf, with v=b*/(47(p* 9%, 7*(1) 4 (dbg , 9°by
+p*)Y2=F(x,y,z+ V,7) with an arbitrary functiorF. One > T % w _2( F) Va5 T
can also have another class of solutions with= o (p™+p7) 0z Iz
—b*/(4m(p* +p*))"? where the wave travels in the same yhere we have defined the Alfwevelocity, V,, as before.
direction asBf . Both these solutions are stable and theyThis linear equation generalizes the nonlinear Atfwaode
exist as long as the two sets of waves do not overlap in spagg the viscous regime. It can easily be solved by taking a
[12]. spatial Fourier transform. For any mobg(r,z)= f(7)e'*?,
It is not possible to generalize these nonlinear solutions tgye have
the diffusive viscous regime, in the above form, for arbitrary

VAT @ 1 ) @r(pt P

0, (4.9

viscosity and conductivity coefficients. However, there exists . (K2
a special casésee Landau and Lifshifa 3]), with the veloc- f+ ﬁf + kzv,if =0 (4.10
ity and tangled magnetic field having arbitrary strengths, but (p*+p*)

: . . .
e ok s 1E e eation o  damped Famoni ocilor
more detail ' . The behavior of squtlons to the damped oscnla_tqr equa-
' tion depends on the relative strengths of the driving and
) damping terms. Suppose we define
B. Nonlinear Alfven waves in the viscous regime

We begin by reinstating the viscous term in the Euler i 7* (1)K 2
equation(3.3). As before, assume that the magnetic field can wo=kVa; D= (p* +p*) xT (4.19
be written asB* = Bj + b*, with a uniformBj . We assume
b* is perpendicular tdj , but do not put any restriction on If w,>D, then we will have damped oscillatory motion. In
the strength ob* so that it needhot be a smalperturbation  the other extreme limit ob > w,, the motion becomes over-
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damped. While one solution of the second-order differentiak,| ,<1; that is, we must consider only wavelengths larger

equation suffers strong damping, the other independent solthan the mean-free-path. Nevertheless, one expects a large

tion is negligibly damped. The physical reason for this isrange of wavelengths for which modes will fall in the over-

that, under strong friction, any oscillator displaced fromdamped regime.

equilibrium and released from rest has only to acquire a In order to consider the evolution of modes of different

small “terminal” velocity, so that friction balances the driv- wavelengths, one has first to look at the quantitative solution

ing force. An oscillator starting from this “phase” of oscil- of Eq. (4.10. For this, substituting

lation, will then almost freeze, and the associated energy in D(%)

the oscillator will decrease negligibly. On the other hand, an _ T

oscillator mode with a large initial velocity will be signifi- f(T)_EXF( _J' 2 dT) W(r) (4.19

cantly damped by the strong friction. Therefore, it is impor-

tant to consider the rati®/w, to determine which limit into Eq.(4.10, the evolution ofW is given by

applies for the nonlinear Alfwe modes. . )
We focus primarily on damping by photon viscosity. This WHp(rW=0 with p(r)=wi— E _ E

is the most important source of viscosity, afedre” annihi- P P 0 2 2) "

lation. Also, it is the dissipative process with the potential to (4.1

damp the largest scalg§maller-scale damping by neutrinos 5.

is briefly discussed in Sec. VIl and Appendix) Ghe radia- When wo>D, we havep~w; in Eq. (4.16 and then the

tive viscosity coefficient is given by Eq2.9), with g=g., s_,olgtlon is W=exp(xiwg7). Therefore, in the oscillatory

=2, and the photon mean-free-path is limit we have

D(r . .
bO(T,Z)ZeX[{—f ( )dT)eilon+lkZ, wO>D.

l(7)= ——— 2
Y
orNe(7) (4.17)
T -3 Qbhz -1 _ L .
~9.5x10?' cm Xt In the opposite limitD> w,, we have to solve the oscillator
0.25 eV 0.012 with a time-dependent friction coefficient. One can obtain an

(4.12 approximate WKBJ solution,

Here, o1 is the Thomson cross-section for electron-photon
scattering,n, is the electron number density, the ioniza- (—p)Y
tion fraction, and(}, is the baryon density of the universe

Py, in units of the closure densityFor later convenience we This solution is valid as long ap(r) does not vary too
define the quantityf,=(,/0.012%17?), which measures rapidly. In the overdamped regime, this condition can be

the baryon density, in terms of the preferred value given by un to be equivalent to neglectifyycompared tdD2. In
Walker et al. [14]. This used to be the canonical value de

termined from nucleosynthesis constraints, although
present there is some debate on this iddig). In the early

W(7)= exr{ij(—p)m(r)dr. (4.18

;J[he limit D<D?, the two solutions are given by

universe, the energy density of the baryon-photon fluid is f(T):AO%eXF<—fTD(T’)dT' ;

dominated by the photon energy, density, so, usingp* D

=p*13, p=p*la*, 5*=a3y, we have for the damping co-

efficient 1 T )
f(7)=Bp——ex —f dr' |. 4.1
(N=Bo-5 50 (4.19

:Lkzz 31M:Ek2| (r )32(7.)
(p* +p*) 15@4p,(ma%3) 5 7 0 ’ As advertised, in the overdamped limit, one solutighe
(4.13 Ao mods is strongly damped while the other soluti@mith

By#0) is weakly damped.

where we have used the fact th@(r)ocngl(r)oca%r) and, For damping by photon viscosity, we havlxa?
as before, 7y is the conformal time today. Hence, the «(7/7,)? in the radiation-dominated epoch. It is more useful
damping-to-driving ratio is to consider an alternate treatment to that of the WKBJ solu-
tion, for the rapidly varying, strongly overdamped regime.
D n*k? 1 ky(Dl,(7) 526 okp(r)l,/(r) One notes that, as the damping increases with tim® to

B_q >w,, f will tend to adjust itself so that the acceleration
(4.14  vanishes, sd~0. For example, consider initially the case

, f>0, f<0 andDf>w3f. Thenf>0 and so the magnitude
We have defined the proper wavenumkgfr) = (k/a(7)),

of a Fourier component and substituted for the Affweloc- Of. f decreasegwhile remaining negativeuntil we have

For the diffusion approximation to be valid, we require hand, ifDi‘<w§f, then f<0 and the magnitude of in-

wo  KVa(p*+p*) 5  Va
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creases until we havé=0. Subsequently aB keeps in- ity v=(9&/dr)=¢. An integration of the perturbed continu-
creasing,f can continue to adjust itself to maintain zefro ity equation(5.1) and induction equatioff.3) then gives
One can argue similarly for all other cases. Therefore, it
seems plausible to consider an alternate approximation for
the overdamped case, whereby, after the time whdinst
vanishesf satisfies the equation

4
Pf:_gpévf' b* =V X[£XBE]. (5.5

Substituting Eq(5.5) into the perturbed Euler equation, we
Df+wf=0; D> w,. (420 9et

We will refer to this approximation as the terminal-velocity &= EV(V~§)+[V><(V><[§XVA])]XVA

approximation. The solution in the overdamped regime, un- 3

der the terminal-velocity approximation, is simply given by 3¢

37
4pg

2

T a)o
f(r)="f(rr)exp — Dy dr’
D7) where we have defined,=Vz. This linear equation de-
Here, 7, is the conformal time when the mode reaches the_scrlbes the evplutlon and damping of linearized MHD modes
. . . i in the expanding universe. One can look for plane wave so-
terminal-velocity regime, or when the acceleratidn,first

. ) . ; ; lutions of the formé= ¢(7)exp(k-x). This leads to a re-
vanishes. As we explained earlier, for an oscillator with an . . ;
o o L placement ofV by ik and leads to an evolution equation for
initial phase such that is already large, this implies strong e amplitudey:

damping by the time the terminal-velocity regime is reached.

vzéﬁwvff)} (5.6
. , .

(4.20)

On the other hand, for an oscillator which starts from rést, 1 2 2 2 2 2n
will have to increase negligibly for th®> w, regime, so ¢:_k[(k'¢) §+VA _VAKZ‘WZ}_VAKM_ ko(k- ¢)Viaz
that f vanishes and Eq4.21) applies.

We now move from the study of the non-linear Alfve 3 377*[k2ip+ Ek(k~ ) 5.7
modes to consider the damping of all the different MHD 4p% 3 : :

modes in their linearized limit. This has already been studied
by JKO[8]. However, we shall do this using the formalism Here a subscript “z” denotes the-component of the rel-

developed here to bring out the links with the non-lineareyant quantity. We can now look at various types of solution
situation. We will return to the further evolution of the non- 5 the above equation.

linear Alfven mode in Sec. VI. First, consider the incompressible mode, wWithé=0, or
k- ¢=0. In this case taking the dot product of E§.7) with
V. DAMPING OF LINEARIZED COMPRESSIBLE MHD k, we also havey,=0 (provided k,=kcos9#0). For this
WAVES mode, Eq.(5.7) reduces to
Let us begin with the linearized MHD equations describ- *
, - ok %k L3
ing small perturbations to density] =p* —pg, pressure b+ k2¢//+V,§cos’-0k2¢/= 0. (5.9
pT=p*—pg ., and magnetic field* =B* —Bf . We have 4pp
ap¥ This is, as gxpected, is almost exactly the evolution equation
W+V'[(p3 +pg)vl=0 (5.1)  for the Alfven mode encountered and discussed in detail in

the last section. The only difference is thgt is replaced by
P [V X b* X B VA CO09Y, ggnerglizing the Alfve mode propagation to be in a
—[(pE+pE)v]=—Vp* + 0 general direction inclined at an angteto the zero-order
ot 4 magnetic field(Although this generalization is at the cost of
introducing the linear approximation.
(5.2) The evolution of the compressible modes, can be derived

by taking the dot product of E5.7) with k andz. Defining
A=Kk- ylk, we have

1
+ 7% | Viv+ 3V

ab*
=VX[vXB§] (5.3
arT |1 n* .
A+ §+v,§ k?A—V2k?cos 0y, + —k?A=0, (5.9
* * Po
V.b*=0, pi=bC pr=tL (5.4
3 3 * *
o1 3" - o, -
o ) . h,+ =Kk“CoOhA+ k“y,+ ——k“cos#A=0.
Suppose the perturbation is described in terms of the per- 3 4p5 4pg
turbed comoving positiodx= &(x, 7). The perturbed veloc- (5.10
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Consider first the undamped limit with* =0. In this case, Here,R=3py/4p, andf,=3/4 if the effects of polarization
looking for modes withA« ¢,0ce'®”, we can easily derive are included and,=1 otherwise. Notice that, in the limit
the dispersion relations R<1 applicable to epochs where the radiation density domi-
nates baryon density, arfg=1, the damping scales exactly
w?> 1 2 v Lo oo, - 1o match, withkp =Kkp 0. The effects of non-zerR constitute
@ SlcstVal=51(cs+Va) —4cgVcos 0], at most about a 20—25 % correction to the damping scale we
(5.11) derive. In the radiation-dominated epoch one Hgs'
= (4/45)Y2L 4(t)/a(t) ~0.3g(t)/a(t), where  Lg(t)
Here, we have defined the sound speed in the relativistie (1,1)*? is the Silk scale. The largest scales which suffer
limit c=1/y/3. The plus sign in the above equation corre-appreciable damping are the modes with wavelengths
sponds to the fast MHD mode while the negative sign cor{27k5"), of orderLs [7].
responds to the slow mode. In the limify<cs, which is In the other extreme case, whénis perpendicular to
generally applicable to our early universe context, the disperBg , co¥¥=k,/k=0, and the equation foh reduces to
sion relation for the fast mode become&k~cg, while that
of the slow mode becomas/k~V ,cosh. . n
The general solution of Eq$5.9) and (5.10 when the A
damping terms are reinstated is quite complicated to analyze
analytically, since it involves a fourth-order differential 1pjs describes a damped fast-magnetosonic wave. The real
equation with time-dependent coe_ff|0|ents and the dlspersmBart of the oscillation frequency iSszk(ciJrVi)l’z
relation is a fourth—or_der polynom.|al. .However, we can I°°k>kVA, since in generaV/,<c,. One can see that the damp-
at some simple special cases which illustrate the general b‘?ﬁg of these modes is very similar to that of the sound waves

*

K2A+

1 2 (1,2
3+ VA k*A=0. (5.16

*

Po

havior. . :
. . . (and in fact is exactly the same when we neglgtcom-
* .
F[St’ cgn5|de_r the case whekeis parallel toB; ; then pared toc). Again, we expect modes with wavelengths less
cosf=k,/k=1, A=4¢,, and the equation foh reduces to than the Silk scale to be significantly damped.

Now we turn to the damping of modes with arbitrary di-

(5.12 rection k. In the undamped case, with* =0, and when

Va<<Cg, We have seen that the fast mode has the same os-

cillation frequency as the sound wave and the slow mode as
This describes a damped sound wave, well studied in ththe Alfvenwave. This suggests an approximation to capture
literature in connection with the Silk damping of acoustic the damped counterparts of these modes in the limit of weak
baryon-photon fluctuations. Therefore we only look at itmagnetic field. Let us write the time variation Afand ¢, as
briefly, to estimate the Silk damping scale. Because thé\(7)xy,>xexp(fwd7r). Supposew is dominated by its real
sound-wave oscillation frequency is such that=kc,  part, and this is of order the undamped frequency of oscilla-
>kV,, these modedo notbecome overdamped in general, tion. We shall later check the consistency of this assumption.
and the damped oscillatory solutions of Sec. IV can be use€onsider first the damped counterpart of the slow mode, in
to describe their evolution. Specifically, we have the limit VA<c2=1/3. For this mode, the ratio of the first

v two terms in Eq.(5.9), is A/(c2k?A)~Va/c2<1. Also, the
- _ ) . ;
A r)zexp{ _J s dr) el D, (5.13 rat|o. of2 the last term in (5.9 to the second is
2 ~DA/(csk2A)~VAkay/5< 1. So, these two terms can be
0 et w neglected when compared to the second term in(&§), so
whereDs=k"(7*/pg). These modes get damped by a factor2,2a~v2k2cosy,. For the same reason, one can neglect

2 the last term in Eq(5.10 compared to the second term in
D
exp{ —f S(T)dr)zexp{—— :

2 k%

.ot
A+ —K?A+cZk’A=0.
Po

this equation. Substituting?k?A~Vak?cosfy, in Eq. (5.10),
' we then have for the damped counterpart of the slow mode,

—2 2 lvdt i,b+37]*
where kg =15 20 (5.149 z 4p}

k2, + Vak?cog 0ir,=0. (5.17

This agrees quite well with the Silk damping of sound wavealve see that this is exactly the same equation as that obtained

in the radiation era, derived in more detailed treatmécits for the damped Alfve mode, analyzed in the last section.

[17,2Q), in the appropriate limit. In fact, the more detailed 'rll'herefore, t?et' S'OVV.HTOO'GI? 'Vl\nl:" 3'50 be OV,[erdngGQ’ _anld
derivation of Silk damping, using a Boltzmann treatment ave one soiution with negligible damping rate. ur origina

. . 2 assumption thatv is dominated by its real part is valid for
gives a damping factor ekp (i /k%’b°')]’ where this solution, showing the self-consistency of our assump-

tions. Also, for this mode we havl~ (V4/c2)costy, <y,
(5.15  for a generalf; that is, the mode is almost incompressible.
(The strongly damped mode has to be analyzed differently.

s :EJ |,dt[ (1+R)f,+5R%4
D.bol™ 15 ag(t)\- (1+R)2
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Now consider the fast mode in a similar fashion. We haveevolution of such modes. The Euler equation for the bary-
already derived the exact evolution for the special case wheanic component then becomes
cos#=0. Suppose cas=0; assume, as before, that is

i i isi v 1 1
dominated by its real part, and this is of order the undamped H(V+v-Vv=— vatﬁ p_‘]X B
b b

frequency of oscillation. Then, substituting for the time de- ot

pendence oA and,, and taking the real part of E¢6.10),

we havey,~Acos. So the ratio of thef, term in Eq.(5.9 _ EVg{)— ﬁn y 6.2
i 212 _ 3 eV TV .

compared to the second term-g(V4/cZ)cogd<1. Neglect a Pb

ing the y, term, and neglectingya compared toc? in Eq.

(5.9), results once again in the same equation,(Bd.2, for

the fast wave as was found for the damped sound waves.
In summary, the above analysis for linear MHD waves, in

Here, py, is the baryon densityp, the fluid pressure, and
H(t)=(da/dt)/a is the Hubble parameter. We have also in-
cluded the gravitational force, @)V ¢, due to any pertur-
bation in the density. Note that we have written this equation

the limit of weak fields withVa<<c,, shows that the fast é'n the unstarred conformal framéwith the magnetic field
magnetosonic waves generally damp like sound wave defined in the “lab” frame; see Appendix)Asince confor-

while there is one mode of the Slow magnetosonic WaVenal transformation to flat spacetime is no longer a useful
which hehaves exactly as the Alfvenode and gets over- ol in the matter-dominatedpera We have aIsogtransformed
damped. This also agrees with the conclusions reached bttﬁ . ; ) . o
IKO e time co-ordinate, from conformal time, back to “proper

' time” dt=adr.

It should be pointed out that the dramatic drop in the
VI. THE FREE-STREAMING REGIME pressure, by a factor of order the very small baryon to photon

As the universe expands, the mean-free-path of the phdatio ~10"°, when a mode enters the free-streaming regime,
ton increases as°®, while the proper length of any perturbed has important consequences. F|rst,. in the a.bs_ence of radia-
region increases aa. So the photon mean-free-path can tion pressure, the effect of magnetic presslifet greatly
eventually become larger than the proper wavelength of £xceeds the fluid pressyre to convert what was initially an
given mode. When this happens for any given mode, we willhcompressible Alfvermode into a compressible modsee
say that the mode has entered the free-streaming regim@€low. Second, the effective baryonic Jeans mass decreases
Modes with progressively larger wavelengths enter the freedramatically and compressible modes can become gravita-
streaming regime up to a proper wavelengthl (Ty) tionally ungtable. Thus, we h.ave to retain thg grawtauonql
~10% cm [see Eq.(4.12], or a comoving wavelength of force term in thg above equathn: The magnetic pressure waI
~3 Mpc, at the epoch of decoupling. Aftée)combination also play a dominant role, providing pressure support against

of electrons and nuclei into atom, increases to a value 9ravity on sufficiently small scales. _
larger than the present Hubble radius, and all modes enter the 1n€ €volution of modes which enter the free-streaming
free-streaming regimeWe will consider the pre- and post- '€9ime depends on the strength of the magnetic fields, in
recombination epochs separately below. particular whether the magnetic pressyrg is greater or
When photons start to free stream on a given scale ofmaller than the fluid pressurp,. For the magnetic pres-

perturbation, the tight-coupling diffusion approximation no SUré, we have

longer provides a valid des.cription of the evolution of t_he B2 147\

perturbed photon-baryon flgld on that scale. One has to inte- Pe=——(1+2)*~4xX 10—882_9(_> dyn/cn?.

grate the Boltzmann equation for the photons together with 8m

the MHD equations for the baryon-magnetic field system. A (6.3
simpler approximate method of examining the evolution of . o

such modes in the linear regime is to treat the radiation a¥Vhile the fluid pressure is given by

isotropic and homogeneous, and only consider its frictional 147\

damping force on the fluid(The radiative flux could have _ ~ -0 = ' <

also contributed to the force on the baryons; however, for Pp=2nckT=~1.1x10 ( 103 ) fo dynicn?, (6.4
modes with wavelengths smaller thiy, this flux is negli-

gible since the associated compressible motions have sufvhere we have assumed that the fluid temperature is locked
fered strong Silk damping at earlier epochs; when the waveto the radiation temperature, and that the gas is an electron-
length was larger thah,.) The drag force on the baryon Pproton gas. By taking the ratio of the two pressures, one can
fluid per unit volume due to the radiation energy denpify ~ See that magnetic pressure dominates the fluid presgire,

is given by pg>pp for B>B,;~5x10 ! G). For magnetic fields
smaller tharB,,;;, the fluid pressure dominates.
4 Consider first the case where the fi@ds much smaller
Fo=— 3NeTPyV- 6. than Beit - In this case the motions can be assumed incom-

pressible. The Alfve modes which enter the free-streaming

Since, typically, less than one electron-photon scatteringegime, remain Alfvaic. Following the ideas of Sec. IV, we
occurs within a wavelength, the pressure and inertia contribl20k again at nonlinear Alfire modes withB= (B, + b)/a?,
uted by the radiation can be neglected when considering thehere  By=B,z, with  Bg=constant, b=nbg(z,t)
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Now consider the casg>B,,;; , when magnetic pressure
dominates over the fluid pressure. Fy>p,, incompress-
ibility is no longer a good assumption, and we necessarily
will also have gravitationally unstable, magneto-acoustic

andv=nu(z,t), with n perpendicular ta. Recall thatb| is
not necessarily smattompared tdBy|. We assume,, to be
uniform (but not independent df), use the Euler equation

(6.2 and the induction equatiof8.7), change to conformal - _
time = and look for solutions in the formE(z ) modes. In gengral, the pressure—gr'adlent 'tén‘ummated_ by

— ks _ _ 0% the magnetic fieldand the magnetic tension are of similar
=f(t)e™* following the same procedure as in Sec. [For  grder, The non-uniform magnetic field@ssociated with
the rotational Alfvei-type mode, the gradient terms .2 what were initially Alfven-type modes can seed compress-
do not contributg. We obtain an equation for the evolution jpje motions and their associated density fluctuations. These

of f(7) density fluctuations, can grow by gravitational instability
. . into non-linear structures. Before recombination, there is still

d>f —df —— significant drag due to the free-streaming photons. But once

ﬁ+[aH+ Dl +@of=0, (6.5  atoms form, the density of free electrons decreases and the

photon mean-free-path becomes larger than the Hubble ra-
dius. In the free-streaming regime, the evolution equations of

where these gravitationally unstable MHD modes are the same be-
. 4p \V2 4p fore and after recombination. We consider a unified analysis
w0=kVA(3—y> ;. D=ngora 3—7 ) (6.69  of this evolution in the next section.
Pb Pb

Here,Vi=SB(2)/(16qrpy)=constant, is the same as defined VII. THE POST-RECOMBINATION REGIME

in terms of the starred variables in Sec. IV. We assume that the perturbations in density and velocity

The evolution of this nonlinear Alfve mode depends are small enough so that nonlinear terms in the perturbed
once again on the relative strengths of the damping and drivgensity and velocity can be neglected. In the Euler equation
ing te.rms_. The ratio of the viscous damping to expansiort6_2), one can neglect the nonlinear teaVv and take the
damping is given by density p,, to be that of the unperturbed FRW background
density. This equation has to be supplemented by the conti-
nuity equation for the perturbed fluid density, the Poisson
equation for the potential, and the induction equaiidry).
These equations are given explicitly in Appendix B. In the
since the Hubble radiugHEH*1>|y, so one can neglect Poisson equation, we take account of the possibility that
the damping due to Hubble expansion. Also, the ratio of théhere may be other forms of collisionless dark matter by
viscous damping to the driving terms in the oscillator equa-writing

D (4p./3py)neora 4p, D
D _eBeoineomd 4p, D,
aH aH 3pp |,

tion (6.5) is
B V2p=4nGatdpr=4nGaypydp+pcd.]. (7.0
D (4p,/3pp)neora p )1/2 1
—= 3.04x10°| 2| —————. i i i
oo kVA(4p7/3pb)1/2 o) Ko(DI (DB g Here, Sp+ is the total perturbed densitydue to both fluid

plus dark matter &, is the fractional perturbation in the
fluid, while p, and é. describe the dark matter density and its

When a given mode enters the free-streaming limit we willfractional perturbation, respectively. We Sha2” adopt the
have ky(t)l,(t)~1. So, for the field strengths €guation of statep,=2nckT= py(2kT/my) = py,Cy, where

B_o<(B.it/10 °G)<1 that we are considering, all the Al- Mp 1S protonlmass. i field will b it h

fvén modes are strongly overdamped. As the universe exfhelnmgoedneer:r{térs &]ngrr]gg-cstiamvivr: rZ q%rgur\}{/grwo\t'é ?r?at
pands, the produdatp(t)ly(t)oca2 increases, and at late times h he back d fluid g reg .I h ’
any given mode enters the damped oscillatory regime. On en the background fluid pressure was large,the non-

. L . LT uniform magnetic field may have originally been part of an
can again apply the terminal-velocity approximation of SeC'Avaén-type incompressible mode. However, as we men-

IVin the overdamped regime onck/dr has adjusted itself (i5neq earlier, once this mode enters the free-streaming re-
to the “zero acceleration” solution. Therf,is given by gime, there is a dramatic fall in the fluid pressure, by a factor
of order the very small baryon to photon raticl0 °. As a

— — result, the pressure of the non-uniform magnetic field, asso-
; D>wo. (69 (iated with what might well have been an Alfvéype mode,
can no longer be ignored, especially if the field exceeds
Berit - (Only a perfectly circularly-polarized Alfiewave has
uniform magnetic pressujeThis non-uniform field associ-
ated with what started off as an Alfwetype mode, will now
B(s) also induce gravitationally unstable, compressible motions.
rall T ot T At this stage, it is important to clarify the following point.
f—exp( _f 2 dT)e ° ©o>D. (610 Suppose the zeroth-order field is inhomogeneous over some

At sufficiently late times, such th5/50<1, the damped
oscillatory solutions are appropriate, so
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comoving scaleL. The compressible motions induced by (7.2) can be solved, under the terminal velocity approxima-
this inhomogeneity may be damped, say, by Silk dampingtion, simply equating viscous damping and the Lorentz force.
But this need not necessarily imply the damping of the fieldWe obtain
tangles, because the induced compressible motions may im-
ply particle displacements witldx<<L. This situation can 8y,  So
apply to compressible motions induced in the radiation era T
(before free-streamingwhere we expect §x/ L)~Vi. We a
hope to return to this issue in later work. . . . .
In treating the resulting evolution, it is usual to assumeHere.’IB IS a.typ|cal co-moving coherencg scale qver.whlch
(cf. Wasserma16] and Peeble§l7]) that perturbations to the fu_eld varies. Note that th? RHS of t_h|s equathn IS con-
the Lorentz force, due to that the perturbed velocity, are sub§tant. in time and so the densny contrdgtlncregses_‘ linearly
dominant with respect to the zeroth-order contribution of the" this epoch. I—_Ience, at th_e t|_me of recombinatign, the
Lorentz force itself. So one tak@&=B(x)/a?, which solves mduged baryonic perturbfition &= va(t —ty), wheret is
the induction equatiofB.7), if v is neglected. Of course, this e time when the scalk, *(t)~lga(t), becomes smaller
approximation will break down once significant peculiar ve-than the photon mean-free-path. For a flat universe, domi-
locities have been developed, as will always happen on syfated by da_rk matter, the total fractional density contrast in
ficiently small scales, or at sufficiently late times, for any € matter is, 6= (pudy+ pcdc)/ (po+ pc) ~Qpdp . At the
given magnetic field. For galactic scales, it turns out that thdMe of recombination, we then have
distortions to the magnetic field will become important only

4py

4p, | (to) _
3pp

-1
neO'Ta) =V,2A |2 =%Y4q- (75)
B

-2
at late times, even foB_g~1. So the above assumption of 5(t.)~3.8x 10 5B2 hs( s ) 1—t./t
retaining only the zeroth-order contribution to the Lorentz (t)=3. -9 1 Mpc ( /).
force is expected to be reasonalilEhe equations governing (7.6)

the more general case are derived in Appendix B, and we
hope to return to an analysis of this full system elsewhere.On galactic scales withs~1 Mpc, we have;/t,~0.4, and
Making these assumptions, standard linear perturbatiothen &(t,)~2.1X 10*5h’382_9. This turns out to be small
analysis(cf. [16—-18), leads to the evolution equation for compared to th& induced in the post-recombination regime
Sy, (see below.
Next, consider the post-recombination evolution. The
9% mean-free-path of the photon now increases rapidly to a
W—vazéb value exceeding the Hubble radius and viscous damping be-
comes subdominant compared to expansion damping. Thus,
1 we can neglect the viscous damping term. Also, Br
=47Ga ppdy+ pede]+ — So(X) (720 >Bcrit, we can neglect the fluid pressure term. Now sup-
a’ pose the baryons contribute a fractifg to the matter den-
sity while the cold dark matter contributes a fraction 1

9?5, N
at?

4p
2H+ —Yn.oa
3Pb eV T

where the source terrg, is given by —fg. Then, multiplying Eq.(7.2) by fg, (7.4 by 1—fg,
and adding the resulting equations, we get for the total den-
V- [BoX(VXBp)] sity contrasté= (p,Sp+ pcdc)/ (ppt+pc),
4mpp(to)
a0

06 1
7 70 _ 2 o T
Here,py(to) is the fluid density at the present tintg, If we o2 +2H - —4AnGatpnd= 23 feSo(x). (7.7

assume the dark matter to be cold, one can also derive a

similar equation for its fractional perturbed densdly. One e |, s the total matter density. Let us assume that at

finds recombinationd~0 and @4&/dt)~0; that is, initially there

are negligible fluctuations in density and velocity diver-

gence. Note that this is valid for scales much larger than

galactic scales. For scales wlig~Mpc, it turns out that, the

post recombination evolution induceséamuch larger than
Prior to recombination, as pointed out in the previous secthat given in Eq(7.6), within an expansion time. So includ-

tion [Eq. (6.7)], the viscous damping dominates damping bying this initial 5(t;) gives negligible corrections. The par-

the Hubble expansion. F&,> B, , the fluid pressure term fucul_ar solution of(7.7) for a flat matter-dominated universe

can be neglected. Let us also assume that the magnetic fiefl 9iven by

was the only source of initial density perturbations. Then, the 23 1

compressible modes start their free-streaming evolution with S(t) = Ef 123, i) _ §+ E(i)

negligible initial 6, since modes smaller than the Silk scale 10 B0 t, 3 3\t '

have been significantly damped and modes on larger scales

have a negligible source of pressure perturbations in the rafhis implies that the magnetic field induces a present-day

diation era because-3Va/c?~3x10 'B_g. Thus, Eq. fractional density contrast,= &(to), with

96,
at?

95, ,

(7.9
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Vap(to)to) 2

9 9
5021_0th%SO(l+Zr)%1_OfB( I (1+z)

(7.9

where (1+z,)=(t/t,)?® and V(t,) is the Alfven velocity
with respect to the baryons given by
Van(to) _ Bo

¢ Vampp(to)C

Adoptingh=1/2, 1+2z,=1100, and a flat universe, with
=2/(3Hy), fg=0.05, we have

1.9x10 5B_of, ¥? (7.10

8o~2.968%,

-2
B
1 Mpc) . (7.11

We see therefore that a magnetic field wgh~10"° G is

needed to impact significantly on galaxy formation. Suc
fields will also induce rotational perturbations and give sig-

nificant angular momentum to protogalax{é$].

From Eqgs.(7.8) and(7.11), it would seem that for suffi-
ciently small,lz=Ig, say, one can have &~ 1, even close
to recombination. However, the calculation leading to Eq.
(7.8 would break down on such small scales because th
field distortions induced by the motions, which we have ne-
glected, will become dominant. The resulting magnetic pres
sures will oppose gravity when the Alfuecrossing time be-
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ligible amplitudes with8,~V4/c2~3Va/c2. The motions
induced by the field can then be treated as incompressible, at
least until they enter the free-streaming regime. These slow
residual motions occur no faster than the Aliviimescale,

and pressure can constantly readjust on the fast sound-
crossing time scale to preserve the incompressibility condi-
tion. In this case, Alfvea modes, both non-linear and linear,
and the incompressible limit of the slow mode, that we stud-
ied in previous sections, are indeed the most relevant.

It is important to note that linearisation about a constant
background field is not a good approximation when follow-
ing the evolution of magnetic fields which are inhomoge-
neous with roughly similar power on a multitude of scales.
This was one of our motivations for concentrating on the
nonlinear Alfven mode, and studying its evolution and
damping through various epochs. Although this analysis em-
ployed special exact solutions, the amplitude of the tangled

pcomponent of the magnetic field could be taken to be arbi-
trarily large compared to the amplitude of the large-scale
field. Also, its spatial configuration can be arbitrarily speci-
fied, by the free functiomy(7,2). So, one expects the be-
havior of this mode to reflect, at least qualitatively, the be-
havior of general incompressible motions driven by
gwagnetic-field inhomogeneities.

A comoving scaldg, which enters the Hubble radius in
the radiation-dominated epoch, does so at an epocspeci-
fied bylga(te) =2t.. Suppose we define this epoch by the

comes of order the dynamical time; that is, for proper lengthdadiation temperatureT(t)=To/a(t), where T, is the

a(t)lg<lj(t)~Vap(t)t, wheret is the relevant dynamical
time (the age of the univergandl ;(t) is the magnetic Jeans

length. Noting thatV,(t) =Vap(to)a Y4t) and t=tya>?

for a flat universe, the comoving magnetic Jeans length is

given by

5(t
)\J=£~VAb(to)to~3.8><10‘28_gh_1fg1/2 Mpc.

a
(7.12

present-day microwave background radiation temperature,
then we havg18]

lg |2
T(te)=To=63 ev(l Mpc) .

In models which produce the field during an inflationary ep-
och, the initial condition for the nonlinear Alfwewave at

the time of horizon entry could be taken to be that the fluid is
at rest but the field is tangled. The Lorentz force due to this

8.9

Our treatment of how inhomogeneous magnetic fields inducéangled field will then start pushing on the fluid, when the
structure formation is valid only fotg>\;. On smaller scale of the tangle becomes smaller than the Hubble radius.
scales one has to solve the full set of equations outlined i®n the other hand, if the fields are produced in an early-
Appendix B. We expect strong magneto-sonic waves to b&niverse phase transition, they could be associated with large
induced by such small scale inhomogeneities in a sufficientlynitial velocities.

strong magnetic field. These may suffer strong dissipation In the cosmological context, it should be kept in mind that
and so input energy into the IGM. We hope to return to thisthere is only a finite time for the Alfiewave to develop and
issue elsewhere. induce motions in the fluid, if they were initially absent. For
example, on a comoving scale kf!, by the time of recom-
bination, atr=r,, (or at a temperaturg=T,), the Alfven
wave would have oscillated at most by a phase angle of

We have studied the evolution and damping of inhomo-
geneous magnetic fields in various regimes. It is of interest to X=KkVa(7,— 7¢) <KVaT,
synthesise our results and discuss how a given spectrum of 11 1
magnetic inhomogeneities evolves. We make a few general ~1.810°'B 9( ) ( T, ) . (8.2
points and then describe the fate of magnetic inhomogene- ““\1 Mpc 0.25 eV
ities after they enter the Hubble radius.

As we noted in Sec. IV, for magnetic field strengths Here, 7, is the conformal time when a mode enters the
B_y<1, the pressure perturbations are negligible. The fastiubble radius, and we have expressedn terms of the
compressible waves induced by these perturbations, haveiaverse of the wave numbek™!. Thus, only small-scale
phase velocity of order the relativistic sound speed, but negnagnetic  inhomogeneities, ~ with  scalesk <l

VIIl. DISCUSSION
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~0.1B_g Mpc, will have had time to oscillate by more than Koe~4.4x 107 "B 4, Mpc. (8.6)
/2 in phase. Modes on scalks!> |, which started with
zero initial peculiar velocity, and oscillated by a phage In the damped oscillatory regime, a mode which starts

<1 when damping is ignored, cannot damp their tanglesinitially from rest (f=0), can be described by the solution
even if damping is included. This situation applies to mag-f(r)~f,cog x(r—7)lexd —[(D/2)]. Even modes which
netic fields tangled on galactic scales, wkth'~Mpc. Thus  damp negligibly in this above regime, will oscillate by a
galactic-scale magnetic inhomogeneities, wgho<1, do  phase of order
not get damped by photon viscosity, simply because the in-
compressible wavelike motions they induce, oscillate negli- a3 2
gibly before recombination. X(700) ~kVa7op=~4.14x10 "BZ5| Ty-c) T

As the photon mean-free-path grows, the fast compress- (8.7)
ible motions, induced by the magnetic field or due to existing
“adiabatic” density fluctuations, are damped on scaleswhen the mode enters the overdamped regime. Modes with

smaller than the Silk scale, that is on _scdlé_§ less than  (7,,)>1 will acquire a largef by the time they enter the
about 0.8s~0.3(1,(t)t)*2. The comoving Silk damping overdamped regime and will be strongly damped. This wil
scale,LS=Lg/a, at any timet (or temperatureT) in the happen for any mode with k™ l=kgi<1.7
radiation era, is given by X 10583 o, Mpc.

_3p It turns out that, for the Alfve-type modes withk *
—) fl;1/2 cm. (8.3 >5k5é, which enter the Hubble radius with zero initial ve-
0.25 eV locity, there is negligible further damping while the mode is
in the overdamped regime. When these modes enter the
overdamped regime, witkh,/D =1, we find that they do not

have sufficient velocity () for friction to be important. With
—5/4 e — 12 increasing time, the velocity growB) increases, and,/D
h™"4f, % cm. (8.4 decreases. Eventually, the mode enters the terminal-velocity
regime, at say a time;, where friction balances the Lorentz
(It should also be recalled that for initially inhomogeneousforce (see Sec. IY. This happens roughly when tgy( 1))
fields the damping of compressible motions need not imply~(wo/D(71))<<1 and f(r)~f,. In the terminal velocity
the damping of field tangles on the same sgale. regime, we have from Ed4.21), that
By contrast, the evolution of nonlinear Alfaewave
modes depends on the raf w,. Nonlinear Alfven wave T Wg
modes which enter the Hubble radius when the temperature f(T):f(TT)eXF{ - JTTBdT
of the universeT>2.5 eV, do so whe/wy<1, and the
mode is then initially in the damped oscillatory regime. But
the photon mean-free-path grows @$ while wavelengths
grow asa, and soon tangles on some scale are in the over-
damped regime, witlD/wy>1. For a given scal&™ %, this  For all modes withlg>5lop, one finds that there is no
happens at a timegp, when the temperature of the universe significant damping.
drops toT<Tgp, where When the photon mean-free-path increases above the
1 Wa\_/elength of a.given que, one enters the free—strgaming
) -1 8.5 regime. As we discussed in Sec. VI, the further evolution of
1 Mpc b ' the Alfven-type mode depends on the whether magnetic
pressure at this time dominates the fluid pressure, or vice
So, tangles on smaller scales not only enter the Hubble rasersa. This is determined by the rasB,,;,. For the case
dius at an earlier epoch, but are overdamped at an earligff B<B,,;,, one can again treat the evolution as incompress-
epoch. i ible. The resulting Alfvea modes are already in the over-
While the Alfven mode is in the damped oscillatory re- damped regime when they start to free-stream and their evo-
gime, its evolution can be described by E4.17), and so all  |ution is governed by Eq6.9),
the modes damp by a factor of order éxg"(D/2))~
exy] —(3/4)(4k3(7)LE(7)/45)]. This is almost the same as L r w2
the Silk damping factor, for the usual baryon-photon sound f(r)=f(rf)ex;{ —f —dt
waves. Hence, all modes which are smaller than the Silk Tt
scale will get significantly damped by photon viscosity be- . t
fore the nonlinear Alfva mode enters the overdamped =f(rf)ex;{—vf\f kﬁ(t)ly(t)dt}. (8.9
regime. The largest comoving scale, sdy =k 1, t
which gets damped while the mode is in the damped — — )
oscillatory regime, can be estimated by equatingHence, f(r)="f(r;)exp(-K¥k;), where the free-streaming
[Kosd S(Top . Kosd 1/15=1. This gives damping scald;.! is given by

-1 )1/2

LS(T)~8.5% 1025(

After matter domination, when the scale facagt)«t?3 the
co-moving Silk scale is given by

CiT) 5
Ls(T)~6x10° 025 oV

T—T) ,
0.25 eV BZ5|. (83

~f(TT)exp[—o.91cr4(

-1
Top=10.8 eV B:g'Z(
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tl(t)dt section for interaction with neutrinos, is typically the weak
ki 2=V2 f 72 . (8.10 interaction cross-sectiomy~ G2T?, whereGg. is the Fermi
tr a%(t) constant. The neutrino mean-free-path is then given by

Modes with a scale for the magnetic fiekd 1<k, get

damped significantly during the free streaming evolution. l,=
We see that the damping in this regime is similar to Silk

damping, except that the usual Silk damping integral withiny e that!, becomes comparable to the Hubble radius,
the exponentiafcf. Eq. (5.14)] is multiplied by an extra fac- |1-1_ 2t~ 4.4x 10 cm(T/MeV) 2, at T~1 MeV. The

tor of(15/2)V,§< 1. For the linearized modes where the WaVeomoving damping scale for fast modes dagp due to
vector makes an anglé to the zero-order field, one has 0 e ring viscosity, can be derived in exactly analogous man-
replace Vy by Vcos. After recombination, the viscous ner to the Silk damping scale, derived in Sec. V. We get
damping is subdominant, compared to expansion damplnggvz[t(T M (T)]M2a(T,) ~1,(T,)/a(T,) ~ 0.9x10%°
(since |, exceeds the Hubble radiusand SO can be ne- cm. As with the damping by photon viscosity, the maximum
gllected;lSO the largest spalg to be damped is foynd by eva"d'amping of Alfven (or the slow modes occur when they
ating kis~ at the recombination redshift. Assuming that the gpter the free-streaming regime. We analyze the damping of
universe is matter dominated at recombination, Welget  the nonlinear Alfve wave in the neutrino free-streaming re-
~(3/5) 2VA'—_s(tr_)- Hence, the damping scale is of order the gime, in Appendix C. We show there that damping in this
Alfven velocity times the Silk scale. The largest wavelengthregime is similar to Silk damping except that the usual Silk

T -5
~1.4X 1 _— . .
p— 1.4x< 10 Cm(MeV) (8.12

mode to be damped, say =27k '(t,) is given by damping integral within the exponentipdf. Eq. (5.14)] is
312 |1 multiplied by an extra factor of (15/2/)iy< 1, andl, is re-
A_ S\t 3 —12—1/2 placed byl,. Here,V,, is the Alfven velocity defined in
= = ———=~1.1X _ : v v . .
Lo 277(5) Va a(t,) LIX107B_qf5 em terms of the conserved, neutrino energy density

(8.1)  p(T,)a*T,). Since |,xT 5xt>2 in the radiation-
) . dominated epoch, we can estimate the largest wavelength
For B>B.;, we noted in Sec. VI that the evolution be- airén mode that is appreciably damped, by neutrino viscos-
comes compressible, a_nd gravitationally unstable for scale,gy, in the free streaming regime. This comoving wavelength
larger than the magnetic Jeans length, On such scales, o given byl_gV~277(2/5)1/2\/AVL§V~ 10B_, cm. We can

we showed that a fielld witB,9~1h, is ”?e‘?'f?d tolprof?uce al generalize these results given any initial spectrum of mag-
density perturbation large enough to significantly affect galyetic inhomogeneities, by replacing, by a suitably aver-
axy formation. We did not treat the evolution on scales

, ) : le-d devig (k™).
smaller than the magnetic Jeans length in any detail, alz—iged scale-dependewi (k)

though the governing equations are given in Append[xiB
Eqg. (B8)]. The solution of these equations, as we noted in

Sec. VI, is complicated by the presence of an inhomoge- \ve have considered the evolution and viscous damping of
neous zero-order magnetic field. Nevertheless, we expeghsmic magnetic fields in the early universe in detail. Using
that fast compressible motions on scales smaller lyanill  the fact that the fluid, electromagnetic, and shear viscous
drive oscillations close to the baryonic Alfvefrequency, energy-momentum tensors are all conformally invariant, we
and will be initially overdamped by the action of photon showed in Sec. Il that the MHD equations in the FRW uni-
viscosity, in the pre-recombination era. The damping scal§erse, including viscous effects, can be transformed into
for such motions will then be similar ti;', as deduced their special-relativistic counterpart when the metric pertur-
above. For modes similar to the slow magneto-sonic wavepations from inhomogeneous motions are small. This en-
we expect that forB>B;, the phase velocity will be abled us to transform known nonlinear Alfvavave solu-
roughly equal tccy,, the baryon sound speed, and the corre+ions, from flat spacetime, into the expanding FRW universe.
sponding damping scale will Uq;l with V, replaced bycy,. Although our analysis of the nonlinear Alfaemode em-
These expectations are borne out by the linearized calculgloyed a special exact solution and resulted in a linear wave
tions of JKO, although they ignore the inhomogeneous naequation after conformal transformation, we stress that the
ture of the zero-order magnetic fieldzor a general tangled tangled field is not a linear perturbation on a uniform field.
zero order field, the counterpart of the slow wave may not béts amplitude can be taken to be large compared to the am-
easy to excite Clearly, more detailed computations are plitude of the uniform component. This solution serves as a
needed to get the exact damping scales, in this case. useful guide for understanding more general cases.

One can consider the damping due to neutrino viscosity in  We considered in detail the evolution and damping of
the early univers¢23], in an exactly analogous manner to these modes in various regimes. First, on galactic scales or
the Silk damping effects treated in detail above. We brieflylarger, the Alfven mode oscillates negligibly before recom-
describe below some of the consequences of damping due bination, for magnetic field strengthB, o<1 (or a present
neutrinos. These damping effects are largest around the timday magnetic fielB<10 ° G). So there is then no ques-
of neutrino decoupling, at a temperature &f=T, tion of strong “Silk” damping of these modes, due to photon
~1 MeV. During this epoch, the number density of weakly viscosity, as occurs for compressional baryon-photon oscil-
interacting particles isny~T3 (cf. [19,18). The cross- lations. Furthermore, Alfv@waves with small enough wave-

IX. CONCLUSIONS
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length, which can oscillate appreciably before recombina- F*Oi—p*i  p*l2_pg*3 pEx23_pg*1 p*3l_p*2
tion, become overdamped. In this case, the longest (A1)

wavelength which suffers appreciable damping by photon ) ] ]
viscosity, has a scale ~V,LS, whereL$ is the usual ~This can be written in more compact way in term of a four-

comoving Silk scale. Since the Alfmespeed isV,~  Vector electric fieldE}, and magnetic field}, as
3.8x10 *B_g<1, only comoving wavelengths smaller than 1
10°B_4 cm suffer appreciable damping. We also briefly B:-:EE::VP)\V* VE* P EZ:FZVV* v (A2)

considered analogous results for damping of very small

scales by neutrino viscosity following neutrino decoupling at . .
t~1s. T>P/1e results of ourywork ongthe damping scglesg ofWhere V*#=[1,0,00 is the four-velocity of fundamental

magnetically induced fluid perturbation agrees with the Workobservers at re_st _|n_ the St""”ei' metric fra;me. we h"’?VG also
of JKO. used the Levi-Civita tensore,, , =vV—9 Apvpr s With

After recombination, the fluid pressure drops enormously/Aurer » the totally antisymmetric symbol such thaly, 3

roughly by the baryon to photon ratio. The Lorentz force due= L @nd=1 for any even or odd pe*rmutatlons of (0,1,2,3).
to a tangled magnetic field associated with an initially Note that the four-vector8, and E, have purely spatial
Alfvén-like mode before recombination can seed gravitationcomponents an&;" =E*', Bf =B*' for the spatial compo-
ally unstable compressional perturbations after recombina?ents of the field 4-vector. First, let us transform the electric
tion, provided the field is strong enough and tangled enougRnd magnetic four-vectors to the unstar(E&W) conformal

on scales larger than the magnetic Jeans length, We  frame, and denote the resulting electric and magnetic four-
examined the post-recombination evolution of scales largeyectors byE, andB,,, respectively. Making use of the con-
than \; in Sec. VII, including the effect of a passive dark formal transformation properties,

matter component, and showed that magnetic fields with
B_g~1 are needed to impact significantly on galaxy forma-
tion. Our work extends the considerations of Wasserman
[16], and connects it to work on early-universe MHD, dis-
cussed here and in JKO. The evolution equations for pertur-
bations with scales smaller thany are derived in Appendix 1 1

B, but their solution is much more complicated and will be BL:QBZZEBZJ E,’LZQEZ:aEZ- (A4)
examined elsewhere.

Magnetic fields withB_o~1, may be constrained by ob- We now make a coordinate transformation to the FRW
servations of quasar rotation measUyi&s. The fluid velo,ci- proper “lab” co-ordinates (,r) defined bydt=adr, dr
ties induced by the tangled field, oscillating as an Atfve =adx. Denote the co-ordinate-transformed, “lab” electric
mode in the pre-recombination era, can also produce smafind magnetic four-vectors by, andB,,, respectively. We
angular scale anisotropies in the microwave backgroundygyve
through the Doppler effedi22]. This may provide another
constraint on such fields. The dissipation of magnetic fields 1 1
due to neutrino or photon viscosity will also leave an imprint Bu:gBL:;BZ , Eu= EE,'F;EZ . (A5)
on the spectrum of neutrinos and photons respectively. The

neutrino spectrum could be probed using nucleosynthesigqe that these 4-vectors are also purely spatial. Similarly,

and there already exist strong limits on the spectral d|stor\-Ne can define the current density in the Lab frameJy

tions of the microwave background. Scenarios of galaxy for_ _ ju_ j4g%u_ g-33%u Now, denote the spatial compo-

mation that appeal to strong enough magnetic fields of order “ .
"9 . nentsB,, E, andJ{* by the spatial 3-vectorB, E andJ

10°% G are potentially testable. We hope to retur to a fur'res ectliLveI ”Then in terms of these spatial vectors, we have

ther consideration of some of these observational issues i " y: ' P '

future work. B* £ J*
B= =

\V*V= Qflvv,
(A3)

*uv_ ()~ 4puv. * — 04 .
F Q F ’ euvp)\ Q E/.va}u

e get

M

(AB)

a2 ! a2 ! aS'
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in the starred metric by (A8)

083502-15



KANDASWAMY SUBRAMANIAN AND JOHN D. BARROW PHYSICAL REVIEW D 58 083502

The non-relativistic limit of Ohm’s law in terms of the nent givess,=—V-¢&.. The Poisson equatiofB3) for the
“lab” fields is simply potential can then be integrated once to give

J 1
E+vxB=". (A9) — Vé=47Galpoé + petcl. (B6)

In the ideal limit, the “lab” magnetic field then satisfies the The perturbed pressure-gradient term can be written as

induction equation 5

1 b
d(a’B) 14(a’B) 1 , a5 VPo= VIV 9). (B7)
o —a ar an[vx(a B)]. (A10) Po

Using Eqs(B5), (B6) and(B7), the perturbed Euler equation
So, wherv=0, we haveBxa™ <, a result which is intuitively becomes
expected for the “lab” magnetic field due to flux freezing in
the expanding universe. It is also of interest to express the?¢ 4p,
Euler equation(3.3) for the fluid in the radiation-dominated FJ{Z"H 3—pbne0T
era, in terms of the “lab” fields. We obtain

2

9¢
at

C2
[(p+p)V]+ Y (p+p)V] =a—ZV<V-§>+4wGa[pb§+pc§c]

19 (
gl mati+

, +(VXBo)XBoL[VX(VX[§><Bo])]><Bo
=——Vp+J>< B+ v S V(V v)|. (A11) Gmpgadad Ao
(V><|3o)><[(V><[§>< Bo)]
APPENDIX B: GENERALIZED LINEAR PERTURBATION (B8)
THEORY IN THE FREE-STREAMING AND (47pra )

POST-RECOMBINATION REGIMES . . . I
This linear equation describes the gravitationally unstable

Begin with the linearized evolution equations for the evolution. and damping of linearized MHD modes in the
baryonic fluid, including the effects of the magnetic field andfree-streaming and post-recombination regime. However,
gravity. We have one cannot perform a simple Fourier analysis of this equa-

5 . L L 4 tion, sinceBy is also a function of. In the main text we

v . Py have simplified the equation by neglecting the last two terms.

ot THOV= a_prp1+ R‘]X B-3Vé 3p, eV While this approximation is likely to be valid for large-scale
(B1) modes at early times, it will break down once the distortion
of the magnetic field due to the motions become significant.

d9 We hope to return to the study of this equation elsewhere.
a—tb+ av v=0 (B2) P y q
APPENDIX C: VISCOUS DAMPING DUE TO NEUTRINOS
V2¢p=4nGa’spr=4nGaypydp+pcd.]. (B3) IN THE FREE-STREAMING REGIME
Here p;=c2pyd, is the perturbed pressure. We taBe Modes whose wavelengths become longer than the neu-

=[By(x) +b(x)]/a2, with Ib|<|By|. The linearized induc- tr_ino mean—free—path, enter thg neutrino.free-sgreaming re-
tion equation (A10), then becomes gime. The evolution anq damplng of n(_)nllnear Alfverave
solutions can be examined in this regime, analogous to the
b 1 case of photon-free streaming, treated in Sec. VI. First the
e an[vx Bol; V-b=0. (B4)  viscous force due to coupling of the relativistic plasma and
the neutrinos is given bj23]

Suppose the perturbation is described in terms of the per-

turbed position of the baryonic component by,= &(x, 7). Fi=— fnwgwpv 4py v (C1)
The perturbed velocity ig=a(dé&/at). An integration of the 3 37,
perturbed continuity equatiofB2) and induction equation _ ) )
(B4) then gives Here, p, is the energy density of neutrinos, and we have
replaced Qo) ! by the neutrino mean-free-path. We
Sp=—V-& b=VX[£XBg]. (B5)  can also use the form of the Euler and induction equations

(as derived in Appendix A except that the viscous force is
Similarly, one can define the perturbed comoving position ofas given by Eq(C1) and the fluid inertia/pressure does not
the cold dark matter component .= &.(x,7). An inte-  include the neutrino contributions. Following the ideas of
gration of the perturbed continuity equation for this compo-Secs. IV and VI, we look again at non-linear Alfvenodes
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with B=(By+b)/a2, where By=B,z, with By=const, b  Here,Vaz=3BJ/(16mpga®) = const, is the Alfve velocity
=ng(7)e** andv= nv_g(T)eikz with n perpendicular te. defined with the inertia contributed kpg.

Recall that|b| is not necessarily smakompared toBy). The evolution of this non-linear Alfie mode (depends
Also, since the universe is still radiation dominated at thePNCe again on the relative strengths of the damping and driv-
epochs near neutrino decoupling, wiik- B2/(8), we can ing terms. When modes enter the neutrino free-streaming
treat the motions as nearly incompressible. The Euler equd€9iMme. the Alfvé waves are again strongly overdamped,

tion gives with_DV/wV>_1, for B_o<1. One can agair_l apply the
terminal-velocity approximation of Sec. IV in the over-
4pra* ov By ob 4 v damped regime, onagg/d has adjusted itself to the “zero
3 ogr 4moz §pvaE (C2 acceleration” solution. Therg is given by
wherepg is the fluid density, excluding the neutrino contri- 4 I,
bution. The induction equation gives g(T):g(Ti)eXF( - L sz/z*VEdT)’ (CH)
3_b -B N (C3  Wwhere
ar %oz’
These can be combined to give an equation for the evolution V2 = BS €7
of g(7) A 4m(4p,a%l3)
@Jr D @Jr 2. _ is the Alfven velocity defined in terms of the conserved neu-
” w,9=0, (C9 : 4 4 )
d-2 dr trino energy density,a*. We see that the damping of these
Alfvén modes by neutrino viscosity is similar to Silk damp-
where ing except that the usual Silk damping integral within the
exponentia[cf. Eq.(5.14)] is multiplied by an extra factor of
aldp 2 ; ;
©,=KVag: DVZ—( V) — (C5) (15/2)Vy,<1, andl, is replaced by the neutrino mean-free-
[,\3pr pathl,,.
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