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Chern-Simons state for the nondiagonal Bianchi type IX model
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The Bianchi type IX mixmaster model is quantized in its nondiagonal form, imposing spatial diffeomor-
phism, time reparametrization, and Lorentz invariance as constraints on physical state vectorsbeforegauge
fixing. The result turns out to be different from quantizing the diagonal model obtained by gauge fixing already
on the classical level. For the nondiagonal model a generalized nine-dimensional Fourier transformation over
a suitably chosen manifold connects the representations in metric variables and in Ashtekar variables. A space
of five states in the metric representation is generated from the single physical Chern-Simons state in Ashtekar
variables by choosing five different integration manifolds, which cannot be deformed into each other. For the
case of a positive cosmological constantL we extend our previous study of these five states for the diagonal
Bianchi type IX model to the nondiagonal case. It is shown that additional discrete~permutation! symmetries
of physical states arise in the quantization of thenondiagonalmodel, which are satisfied by two of the five
states connected to the Chern-Simons state. These have the characteristics of a wormhole ground state and a
Hartle-Hawking ‘‘no-boundary’’ state, respectively. We also exhibit a special gauge fixing of the time re-
parametrization invariance of the quantized system and define an associated manifestly positive scalar product.
Then the wormhole ground state is left as the only normalizable physical state connected to the Chern-Simons
state.@S0556-2821~98!04316-1#

PACS number~s!: 98.80.Hw, 03.65.Bz, 04.60.Ds
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I. INTRODUCTION

Quantum general relativity has advanced over the last
cade at a remarkable and accelerating pace. The introdu
of Ashtekar’s new variables@1–3# to replace the earlier met
ric representation soon afterwards led to the discovery o
formally exact physical state of the canonically quantiz
theory with a nonvanishing cosmological constant,
Chern-Simons state@4,5#. Then the introduction of the loop
representation@6# permitted us to reexpress the Cher
Simons state as a topological invariant of framed loops
three-space@7#, the Kauffman brackets@8#. It also led to the
discovery of further physical states lacking, however, o
important general property of the Chern-Simons sta
namely, a well-defined nondegenerate space-time in the c
sical limit. The Chern-Simons state semiclassically descri
a de Sitter~or anti–de Sitter! space-time for a positive~nega-
tive! cosmological constant, respectively@4#. Subsequent im-
portant advances were the introduction of spin networks@9#
and quantum spin networks@10# as a discretized descriptio
of three-space in which areas and volumes are quantize
Planck units and which furnish yet another representation
physical states.

The choice of different variables and representations
therefore played, and continues to play, a crucial role in
development of the theory. It is not always clear, however
which extent the different representations are equivalen
each other. This question is particularly relevant for the c
nection between the metric representation and the repre
tation in Ashtekar variables. In fact it was shown in@11# that
the two representations are, in general, not equivalent.
may therefore wonder: Has the Chern-Simons state, the
known physical state with a well-defined classical limit,
counterpart in the metric representation and is it unique?
general, the answer to this question is still unknown.
0556-2821/98/58~8!/083501~22!/$15.00 58 0835
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Recently we examined this question for a spatially hom
geneous minisuperspace model of Bianchi type IX with
diagonal metric tensor in the cases of a positive@12# and
negative@13# cosmological constantL. A diagonal form of
the metric tensor can be assumed in theclassical theory
without the restriction of generality, because it is a perm
sible gauge-fixing condition for the remnant of the spat
diffeomorphism group in the Bianchi type IX model. Takin
also the matrix of Ashtekar variables as diagonal amount
addition to a gauge fixing of the Lorentz gauge group. Qu
tizing such a diagonal model therefore means to apply ga
fixing of the diffeomorphism group and the Lorentz grou
beforequantization. The result of our study of the diagon
Bianchi type IX model was that actually five distinct phys
cal states in the metric representation are generated by tr
forming the Chern-Simons state from Ashtekar variables
metric variables. This change of representation takes
form of a generalized multidimensional Fourier transform
tion in the space spanned by the complex Ashtekar varia
along arbitrary paths or, more precisely, integration ma
folds with boundaries pinned by the condition that part
integration without boundary terms must be allowed.

In the present work we take our investigation of this ba
question a step further and examine the metric represe
tions of the Chern-Simons state for thenondiagonalBianchi
type IX model. Why is this step interesting, and why cann
the results of our study of the diagonal case just be ta
over? Quantizing the nondiagonal model amounts to in
changing the steps of gauge fixing and quantizing: the ga
fixing of the spatial diffeomorphism group and Loren
group is now doneafter the quantization. The result is, i
general, not the same as before the exchange of these s
In fact, in Sec. III A we give a very simple example from
quantum mechanics which shows that gauge fixingafter
quantization is preferable, in general, because it takes
© 1998 The American Physical Society01-1
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symmetries into account in the quantization process i
natural manner. The example also makes clear that the re
in general, differs from that offirst gauge fixing andthen
quantizing by~i! quantum corrections in the Hamiltonian,~ii !
weight functions in the naturally defined scalar product, a
~iii ! additional discrete symmetry requirements to be satis
by the solutions.

We shall see that all three differences also show up in
study of the nondiagonal Bianchi type IX model. In fact t
noncommutativity of gauge fixing and quantization in t
Bianchi type IX model was previously discussed by Ma
and Smolin within the framework of path integral quantiz
tion @16,17#. Our investigation here differs by the use
canonical quantization and, in particular, by studying a s
cial quantum state, the Chern-Simons state. Comparing
two ways of quantization we find that on the leading sem
classical level the solutions for the nondiagonal model
the same as in the diagonal case. However, in the nex
leading semiclassical order they already differ due to
quantum corrections in the Hamiltonian and due to chan
in the naturally defined scalar product. Even more imp
tantly, the additional discrete symmetry requirements
only met by two of the five linearly independent states, le
ing just two physical states in the metric representation of
nondiagonal model which are generated by the Che
Simons state, a generalized wormhole state and a Ha
Hawking state@14,15#. It is remarkable that states of bot
kinds are related to the Chern-Simons state and that the
different semiclassical boundary conditions singling out
ther one of them can still be satisfied at this stage.

In a final step we also gauge-fix~after quantization! the
time reparametrization invariance and introduce a manife
positive scalar product on the space of physical states
will be shown in a separate paper only the generalized wo
hole state is normalizable in this scalar product. Gauge fix
of the time reparametrization invariance in theclassicalBi-
anchi type IX model was discussed in@18#. However, the
particular class of gauge-fixing conditions considered th
would not lead to a positive scalar product quantum m
chanically.

The rest of this paper is organized as follows: In Sec
we define our notation and set up the metric representatio
the constraint equations of the nondiagonal model~Sec.
II A !, extract a well-known exact solution forL50, the
wormhole state~Sec. II B!, and give the representation of th
constraint equations in Ashtekar variables~Sec. II C!. In Sec.
III we discuss in detail the differences between the diago
and the nondiagonal Bianchi type IX model. We first give
simple quantum mechanical example, the harmonic oscill
in two dimensions with a rotational gauge symmetry~Sec.
III A !. Then the corresponding comparison for the Bian
type IX model is given~Sec. III B!. We also mention here
briefly a gauge fixing of the time reparametrization symm
try and an accompanying physical inner product on the sp
of physical states~Sec. III C! but a more detailed presenta
tion of this point is beyond the scope of the present pa
and will be given separately@19#. In Sec. IV the transforma
tion of the Chern-Simons state of the nondiagonal Bian
type IX model from the Ashtekar representation~Sec. IV A!
08350
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to the metric representation~Sec. IV B! is given, leading to a
general integral representation over a suitably chosen th
dimensional manifoldS3. In Sec. V various asymptotic
forms of this integral representation are evaluated. The lim
considered arefirst \→0 ~Sec. V A! and theneitherL→0
~Sec. V A 1! or La2→0 ~Sec. V A 2!, wherea is the geo-
metrical mean of the scale parameters, andL→0 ~Sec. V B!
without necessarily taking a second limit. In Sec. VI we e
hibit for the general case, i.e., without taking asymptotic li
its, five possible and topologically distinct choices of t
integration manifoldsS3 leading to five exact solutions o
the constraint equations in the metric representation. We
discuss their relation with the asymptotic results of Sec
and their normalizability with respect to the inner product
Sec. III C. Our conclusions are then summarized in Sec. V
Three appendixes deal with certain technical details. T
limit L→0, the results of which are discussed in Sec. V B
quite subtle and therefore done in some detail~Appendix A!.
It leads to a nice integral representation of the vacuum~i.e.,
L50) solutions~Appendix B!. Finally we check certain re-
quired nontrivial continuity and differentiability properties o
the integrand of the integral representation of Sec. IV B
the integration manifoldsS3 ~Appendix C!.

II. QUANTUM CONSTRAINT EQUATIONS

In this section we shall set up our notation and give a b
derivation of the quantum Einstein equations for the hom
geneous Bianchi type IX model. While the classical co
straint equations for this model are determined uniquely,
quantum operators associated with these constraints s
from the well-known ambiguity of the factor ordering, i
particular in the Hamiltonian constraint. The main purpose
the following will be the motivation of a special choice o
factor ordering. Technical details of the derivation will b
summarized rather briefly.

A. Metric representation of the constraint equations

Let us start with the Einstein Hilbert action for a gravit
tional field with a cosmological constantL:

SEH@gmn#5E
M

d4xA2g~4R22L!. ~2.1!

Here M is the space-time manifold,g5(gmn) the four-
metric onM, g5det (gmn), and 4R the curvature scalar o
the four-metric. The common prefactor 1/16pG of Eq. ~2.1!
has been avoided by picking units withG5(16p)21. As is
well known, the Arnowitt-Deser-Misner~ADM ! space-time
split and a subsequent Legendre transform with respect toḣi j
yield the following equivalent expression for the Einstei
Hilbert action@20#:

SEH5E dtE d3x~p̃ i j ḣi j 2NHG2NiH i !, ~2.2!

with
1-2
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CHERN-SIMONS STATE FOR THE NONDIAGONAL . . . PHYSICAL REVIEW D 58 083501
HG5Gi jkl p̃
i j p̃kl2Ah~3R22L!, H i522p̃ i j

u j ,
~2.3!

where

Gi jkl :5
1

2Ah
~hikhjl 1hil hjk2hi j hkl!. ~2.4!

In the transition from Eq.~2.1! to Eq.~2.2! a surface term has
been omitted, since it will have no effect on the constra
equations.N andNi are the lapse function and the shift ve
tor, respectively, and the three-metric (hi j ) of the spatial
manifold t5const is used to raise and lower the spatial in
ces i , j ,k, . . . . A stroke denotes covariant derivatives w
respect to the three-metric,3R is the curvature scalar of th
spatial manifold, andh denotes the determinant of the thre
metric.

Let us now consider ahomogeneousthree-manifold of
one of the Bianchi types; then there exists an invariant b
of one-formsvp5v i

p(x) dxi , such that any homogeneou
tensor field on the manifold has spatially constant com
nents when expanded in this basis@21,22#. In particular, we
have

dv p5
1

2
mpq«qrsv

r`vs, ~2.5!

with a constant structure matrixmpq. In the following we
shall be interested in the Bianchi type IX case, where
structure matrix is of the simple formmpq5dpq. If all the
tensor fields occurring in Eq.~2.2! are expanded in the in
variant basis, we arrive at the following expression for t
Einstein Hilbert action:1

SEH5E dt LEH5E dtE d3xv~p̃pqḣpq2NH02NpHp!,

~2.6!

H05Gpqrsp̃
pqp̃ rs2Ah~3R22L!,

Hp52«prqmqnhnsp̃
sr, ~2.7!

where

h 3R5
1

2
~mpshsp!

22mpshsqm
qrhrp . ~2.8!

Herev5det (v i
p) in Eq. ~2.6! contains the only spatial de

pendence ofSEH , which therefore can be integrated out e
plicitly. Afterwards, the Lagrangian equations with respect
N andNp imply the following set of first class constraints

H050, Hp50, ~2.9!

1The following expressions are valid not only for the Bianchi ty
IX model with mpq5dpq, but even for a general Bianchi type A
model characterized bympq5mqp.
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with H0 andHp being phase space functions of the fund
mental variableshpq and the momentap̃pq only.2 If we make
use of the remarkable identity

Ah 3R52mpqGpqrsm
rs, ~2.10!

which is valid for the general Bianchi type A case, th
Hamiltonian constraintH0 may be written in one of the two
following forms:

H05@p̃pq6 impq#Gpqrs@p̃ rs7 imrs#12LAh. ~2.11!

Let us first restrict ourselves to the kinetic part~which be-
comes the full Hamiltonian constraint for the Bianchi type
model!

T5p̃pqGpqrsp̃
rs, ~2.12!

describing a particle moving freely on a six-dimension
manifold with coordinateshpq and the~indefinite! supermet-
ric Gpqrs, which is the inverse ofGpqrs.

3 To quantize such a
system, we may employ new coordinateshpq8 of the minisu-
perspace such that, at least locally, the supermetric tak
diagonal form: i.e.,

T5p̃pq8hpqrsp̃
rs8, ~2.13!

with

hpqrs :5H 21, if p5q5r 5s51,

1

2
~dprdqs1dpsdqr!, otherwise.

In these ‘‘free falling’’ superspace coordinates the associa
quantum operator is expected to be

T̂52\2
]

]hpq8
hpqrs

]

]hrs8
, ~2.14!

and, transforming back to thehpq coordinates, we arrive at

2According to Eq.~2.6! p̃pq are not the canonically conjugate
momenta tohpq ; they differ from them by a rescaling facto
V:5*d3x v. Consequently, the canonical Poisson brackets rea

$p̃pq,hrs%52
1

V
d rs

pq

with

d rs
pq :5

1

2
~d r

pd s
q1d s

pd r
q!,

and the additional factor 1/V should be carried over to the canonic
commutation relations of the quantized theory. There, it can
eliminated by a rescaling of Planck’s constant\. Since we are
mainly interested in the quantized theory, we will use this freed
to setV51 in the following.

3More precisely, we requireGpqmnGmnrs5d rs
pq .
1-3
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ROBERT PATERNOGA AND ROBERT GRAHAM PHYSICAL REVIEW D58 083501
T̂52\2
1

AG

]

]hpq
AGGpqrs

]

]hrs
, ~2.15!

which is easily recognized as the invariant Laplace-Beltra
operator on minisuperspace. HereG is the absolute value o
the determinant of the supermetricGpqrs, which can be
shown to be proportional toh21.

These considerations suggest the following factor ord
ing for the quantum version of the Hamiltonian constra
~2.11!:

Ĥ05
1

AG
F2 i\

]

]hpq
1 impqGAGGpqrs

3F2 i\
]

]hrs
2 imrsG12LAh

52\2Ah
]

]hpq

1

Ah
Gpqrs

]

]hrs

2\Ah
]

]hpq
S 1

Ah
Gpqrsm

rsD 2Ah~3R22L!,

~2.16!

where we have chosen the signs ofimpq in the first line to
make the special physical state defined below in Eq.~2.24!
become an exponentially decaying solution. We end up w
a Wheeler-DeWitt operator, which, apart from a special f
tor ordering in the kinetic term, contains a quantum corr
tion to the potential, due to the action of the derivative o
erators on the supermetric. Such a term is well known fr
the diagonal model; cf.@12#. The factor ordering chosen i
Eq. ~2.16! has the nice implication that the Chern-Simo
state becomes an exact solution to all quantum constrain
the Ashtekar representation, as will be shown in Sec. IV

To put the diffeomorphism constraint in more concre
terms, we should be further interested in ahpq representation
of p̃pq, obeying the canonical commutation relations

@p̃pq,hrs#52 i\ d rs
pq . ~2.17!

Moreover, we wishp̃pq to be a Hermitian operator with
respect to the natural auxiliary inner product on the extan
Hilbert space, in which the Wheeler-DeWitt operator~2.16!
is Hermitian:

^CuF&5E d9hpq)
p.q

d~hpq2hqp!AGC~hrs!F~hrs!.

~2.18!

Here the components ofhpq range over all real values whic
08350
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are consistent with (hpq) having positive eigenvalues.4 As is
known from the quantization on a curved manifold, thehpq
representation of the momentum operator has to be corre
with a relative weight factorG1/4, leading to

p̃pq52 i\ G21/4
1

2S ]

]hpq
1

]

]hqp
DG1/4

52 i\ h1/4
]

]h~pq!
h21/4. ~2.19!

Using thishpq representation, we may rewriteĤ0 andĤp in
the form

Ĥ05~apq!†Gpqrsa
rs12LAh5Ĥ0

† , ~2.20!

with

apq:5h21/4@p̃pq2 impq#h1/4,

and

Ĥp52«prqmqnhnsp̃
sr52«prqmqnhnsa

sr

522i\ «prqmqnhns

]

]h~sr!
5Ĥp

† . ~2.21!

That the diffeomorphism constraints can indeed be written
the form of Eq.~2.21! is checked easily by using the identit

h1/4
]

]h~pq!
h21/452

1

4
hpq, ~2.22!

which implies that there is no additional contribution toĤp
arising from the determinant factor, as one might expe
With Eqs. ~2.20! and ~2.21! we have now nice, self-adjoin
operators, which, moreover, form a closed algebra, as
will see in Eq.~2.38! below.

B. Wormhole state

As is immediately seen from Eq.~2.16!, the wave func-
tion

CWH :5expF2
1

\
mpqhpqG5:expF2

F

\ G ~2.23!

is a solution to the Hamiltonian constraint forL50, which
moreover satisfiesapqCWH50 and therefore solves the dif
feomorphism constraint~2.21! as well. For the Bianchi type
IX model, Eq.~2.23! may also be written in the form

CWH5exp F2
1

\
~l11l21l3!G , ~2.24!

4The so-defined integration regime for the auxiliary inner prod
has a nontrivial boundary ath50, where at least one of the thre
eigenvalues of (hpq) vanishes. Consequently, we have to restr
ourselves to statesC, which vanish forh→0 in a suitable manner
to assure Hermiticity of the differential operators occurring in E
~2.16!.
1-4
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wherelp are the eigenvalues of the three-metrichpq , and
this state is known as the ‘‘wormhole’’ state from the dia
onal model.5 The fact that it will occur as a prefactor to a
further wave functions discussed within this paper sugg
to perform the following similarity transformation:

C5e2F/\C8, Ĥp5e2F/\Ĥp8e
F/\, Ĥ05e2F/\Ĥ08e

F/\.
~2.25!

In this new representation, the transformed operators take
form

Ĥp8522i\«prqmqnhns

]

]h~sr!
, ~2.26!

Ĥ085
1

AG
F i\

]

]hpq
22impqGAGGpqrsi\

]

]hrs
12LAh,

~2.27!

which will be recovered from a very different approach
the next section.

C. Representation of the constraint equations in Ashtekar
variables

In this section we want to derive the so-called Ashte
representation@1,2# of the quantized nondiagonal Bianc
type IX model using the inverse densitized triad of the thr
metric hpq and complexified canonically conjugate variabl
thereof. The first step in this direction has already been p
formed in the last section by splitting off the wormhole sta
~2.23!. What remains to be done now is to introduce t
inverse, densitized triad of the three-metrichpq , defined via

h•hpq5ẽ a
p
•ẽ a

q . ~2.28!

Here and in the followinga,b,c, . . . areflat, internal indices
running from 1 to 3; they are raised and lowered with the
metric dab and will therefore always be chosen to be low
indices without any restriction. The introduction of a tria
has the great advantage that the three-metric defined via
~2.28! is automatically positive definite, at least as long
the triad is real valued, and this is favorable for a definiti
of an inner product on the space of wave functions. Ho
ever, as is well known, we gain three additional degrees
freedom by introducing such a triad, corresponding to
three possible rotations in the flat local tangent space. Th
redundant rotational degrees of freedom are accompanie
three additional first class constraints referred to as the G
constraints.

5This name derives from the fact thatF solves the Euclideanized
Hamilton-Jacobi equation with Euclidean four-geometry at a la
scale parameter. We shall use this name in the following to refe
the state~2.23! or ~2.24! for L50 or its generalization forLÞ0,
without entering a discussion of wormholes, however.
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To construct the generators of these constraints we
serve that Eq.~2.28! is invariant under rotations ofẽ a

p in the
local tangent space, generated by

Ja85 i«abcA pbẽ
p

c , ~2.29!

with

Aqa :52
\

2

]

]ẽ a
q

.

The Ja8 satisfy the angular momentum algebra

@Ja8 ,Jb8#5 i\«abcJc8 ~2.30!

and commute withĤp8 and Ĥ08 . They are the generators o
the Gauss constraints. The general solution of the Gauss
straintsJa8c850 is obviously given by wave functions of th
form

c8~ ẽ a
p !5C8~hpq!, ~2.31!

wherehpq is a function of theẽ a
p via Eq. ~2.28!. Acting on

solutions of the Gauss constraints the operator]/]ẽ a
p can be

written as

Apa52
\

2

]

]ẽ a
p

5
\

e
Gmnpqẽ a

q ]

]hmn
, ~2.32!

wheree is the square root of the determinant ofẽp
a . This

permits us to rewrite the constraint operators~2.26! and
~2.27! in terms of the operatorsẽp

a andApa as6

Hp8 :52i«pqrm
rsẽ a

q Asa , ~2.33!

H08 :5e21«abc«pqrẽ
p

aẽq
bQ r

c , ~2.34!

with the operators

Q a
p :5F a

p 1
L

3
ẽ a

p :5mpqAqa1
1

2
«pqr«abcAqbArc1

L

3
ẽ a

p .

~2.35!

The operatorsQ a
p are very convenient and can also be us

to reexpress theJa8 andHp8 as

Ja8 :5
3i

L
«abcApbQ c

p , ~2.36!

Hp852i ~«pqrẽ a
q Q a

r 2ApaJa8!. ~2.37!

e
to

6In Eq. ~2.34! we have to order the field-strength operatorsQ a
p to

the right; otherwiseĤ08 would not give Eq.~2.27! when acting on
Gauss invariant states.
1-5
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ROBERT PATERNOGA AND ROBERT GRAHAM PHYSICAL REVIEW D58 083501
By constructionHp8 andH08 coincide with Ĥp8 and Ĥ08 de-
fined in Eqs.~2.26! and ~2.27! when acting on the invarian
subspace spanned by the solutions of the Gauss constr
~but they extend these operators also to nonphysical s
outside this subspace, which are of no interest to us, h
ever!. The commutation relations ofHp8 andH08 are particu-
larly easy to evaluate in the representation~2.33!,~2.34!:

@Hp8 ,Hq8#5 i\«pqrm
rsHs8 , @H08 ,Hp8#50. ~2.38!

They imply the same commutator algebra for theĤp8 , Ĥ08 ,

and, via the similarity transformation~2.25!, also for theĤp ,
Ĥ0.

Summarizing our results so far, we have shown that,
suming thatc8(ẽ a

p ) is a solution to the constraints~2.29!,
~2.33!, and ~2.34!, the transformed wave functionC(hpq),
connected withC8 via Eq. ~2.25!, is a solution to the con-
straints~2.20! and~2.21! in the metric representation. In pa
ticular, if we are able to solve the more restrictive but si
pler set of equations

Q a
p c8~ ẽ a

p !50, ~2.39!

it is clear from the definitions given in Eqs.~2.34!, ~2.36!,
and ~2.37! that we have also found a quantum state of
full, nondiagonal Bianchi type IX model with a nonvanishin
cosmological constant in the metric representation. This
only be a special class of solutions, however, because
~2.39! represents nine conditions, while the Hamiltonian, d
feomorphism, and Gauss constraints together const
seven conditions only.

III. COMPARISON BETWEEN THE DIAGONAL
AND NONDIAGONAL BIANCHI TYPE IX MODEL

We shall now adress the interesting question of whet
the nondiagonal Bianchi type IX model presented in Sec
and the diagonal Bianchi type IX model discussed in@12#
have the same physical content. On the classical level, it i
course unnecessary to distinguish between these two mo
because we can use the gauge freedom of the diffeom
phism constraints to transform the nondiagonal Bianchi t
IX model to the diagonal one. When discussing thequan-
tized Bianchi type IX model, most authors restricted the
selves to the diagonal case; i.e., they solved for the diff
morphism constraints on the classical level, and perform
the canonical quantization procedure for the effective thr
dimensional system. This approach immediately suggest
self, and one may hope that a quantization of the full Bian
type IX model ~on a six-dimensional configuration spac!
with diffeomorphism constraints imposed on the quant
mechanical level should physically lead to the same resu

In the following, we shall first discuss a very simple e
ample, which immediately shows that this belief is in gene
not true; we will then show in Sec. III B that the two qua
tization procedures used for the diagonal and nondiago
Bianchi type IX model indeed differ drastically.
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A. Example: The two-dimensional harmonic oscillator
with L 50

Let us consider a well-known example, the tw
dimensional harmonic oscillator with unit mass and unit f
quency, but with the additional constraint that the angu
momentum should vanish:

H5H01NL,

H05 1
2 ~p1

21p2
2!1 1

2 ~q1
21q2

2!, L5q1p22q2p1 .
~3.1!

HereH0 is the Hamiltonian of the unconstrained system a
N is a Lagrangian multiplier. As for the Bianchi type IX
model, we have the nice property that the constraint is gi
by a conserved quantity, butL generatesgaugetransforma-
tions only if we identify all the directions, in which the ef
fective one-dimensional oscillator can move.

If we first quantize this system similarly to the diagon
Bianchi type IX case, we have to solveL50 on the classical
level, which is done by

q250⇒p25q̇250. ~3.2!

In this gauge we arrive at the effective Hamiltonian

He f f5
1

2
p21

1

2
q2, q[q1 , ~3.3!

which is easily quantized because it simply describes a o
dimensional harmonic oscillator:

Ĥe f f52
\2

2

]2

]q2
1

1

2
q2, ^CuF&5E

2`

1`

dq C* ~q!F~q!.

~3.4!

Let us now, second, proceed in analogy to the nondiago
Bianchi type IX case. Then we have to quantize first, a
obtain

Ĥ5Ĥ01NL̂, ^cuf&5E
R2

d2qc* ~q1 ,q2!f~q1 ,q2!,

~3.5!

with

Ĥ052
\2

2 S ]2

]q1
2

1
]2

]q2
2D 1

1

2
~q1

21q2
2!,

L̂52 i\S q1

]

]q2
2q2

]

]q1
D . ~3.6!

Solving L̂c50, the wave function must be of the form

c~q1 ,q2!5C~q!, q5Aq1
21q2

2. ~3.7!

However, to ensure thatc is a differentiable function with
respect toq1 and q2, we must requireC(q) to be an even
function in q:
1-6
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C~q!5C~2q!. ~3.8!

Furthermore, if we compute the action ofĤ on such a solu-
tion C(q), we effectively have

Ĥe f f52
\2

2

1

q

]

]q
q

]

]q
1

1

2
q252

\2

2

]2

]q2
2

\2

2q

]

]q
1

1

2
q2,

~3.9!

and the effective scalar product for solutions to the angu
momentum constraint becomes

^cuf&5E
R2

d2qc* ~q1 ,q2!f~q1 ,q2!

52pE
0

`

dq qC* ~q!F~q!5^CuF&e f f. ~3.10!

As a result, we have three important differences between
quantization procedures pointed out above:~i! The effective
Hamilton operators~3.4! and~3.9! differ by a factor ordering
term 2(\2/2q)]/]q, which becomes singular where the c
ordinate transformation fromq1 ,q2 to polar coordinates with
radiusq is not invertible;~ii ! the scalar products~3.4! and
~3.10! contain different weight functions and different int
gration regimes;~iii ! for the second quantization procedur
we get a parity requirement~3.8! being absent in the firs
case, because we originally start with differentiable functio
on a higher dimensional configuration space.

All three differences will now be recovered when com
paring the diagonal and nondiagonal Bianchi type IX mo
els.

B. Three differences between the quantized diagonal
and nondiagonal Bianchi type IX models

To compare our results of Sec. II for the nondiagon
Bianchi type IX model to the diagonal case discussed in@12#,
let us try to solve the diffeomorphism constraints~2.21! on
the quantum mechanical level. Three special, regular s
tions to these constraint equationsĤpC(hpq)50 are the in-
variants of the three-metric, which read

T:5Tr ~hpq!, Q:5dmn«
mpq«nrshprhqs , h5det ~hpq!.

~3.11!

Therefore the general solution toĤpC50 is any function of
these three invariants:

C~hpq!5x~T,Q,h!, ~3.12!

wherex(T,Q,h) is a differentiable function with respect t
its three argumentsT,Q,h. We may now express this gener
solution in terms of the three eigenvalueslp of the three-
metric, which, however, arenot C1(R6) functions of hpq ,
because of the cubic roots which are needed to express
lp in terms ofhpq . Nevertheless, a functionC(hpq) solving
ĤpC50 according to Eq.~3.12! actually is C1(R6) with
respect tohpq , and so
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c~lp!5C~hpq!

5x~l11l21l3 ,l1l21l2l31l3l1 ,l1l2l3!

~3.13!

is a regular function inhpq , too. We observe that, as a con
sequence,c(lp) is symmetric under arbitrary permutation
of the lp , while any wave function which is not symmetri
under these permutations will not be differentiable with
spect tohpq . This symmetry requirement is the analogue
the parity requirement~3.8! of our example in Sec. III A.

It will be convenient to introduce new variables

sp :5
2

\
Alql r.0, ~3.14!

with

«pqr51,

instead of the eigenvalueslp . In the diagonal gauge the
play the role of the inverse densitized triad. The inve
transformation reads

lp5
\

2

sqs r

sp
, ~3.15!

and we arrive at the representation

C~sp!5c~lp!5cS \

2

sqs r

sp
D ; ~3.16!

so the wave functionC(sp) is not only invariant under ar-
bitrary permutations of thesp , but in addition invariant un-
der reflectionssp→2sp ,sq→2sq ,s r→s r . These are
necessarysymmetry requirements for the wave functions
the sp representation, which were absent in the diago
case; cf.@12#. The result is independent of the factor orderi
chosen for the Hamiltonian constraint, since we only ma
use of the diffeomorphism constraints, which have a uniq
geometrically fixed factor ordering.

The effective Hamiltonian constraint in thesp represen-
tation becomes

H08C8}As1s2s3F 1

s1
Q11

1

s2
Q21

1

s3
Q3GC850,

~3.17!

where

Qp :5]q] r2]p1
sq] r2s r]q

sq
22s r

2
1

l

2
sp , «pqr51,

~3.18!

where

l:5\
L

3
, ]q :5

]

]sq
. ~3.19!
1-7
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It is possible to show that the very restrictive conditi
~2.39! now implies that each operatorQp annihilatesC8
separately. A comparison with the corresponding result
the diagonal model@cf. Eq. ~2.23! of @12## reveals that, apar
from a global factorAs1s2s3, we have an additional facto
ordering term in Eq.~3.18!, which becomes singular wher
two of thesp become identical.7 The occurrence of the sin
gularities in these terms and the zeros in the measure of
~3.21! ~see below! reflect the fact that the transformatio
~3.20! between the variableshpq in which the quantization is
performed and the variables$sp ,wa%, which separate the
gauge degrees of freedom from the physical degrees of f
dom, is not invertible whenever two of thesp take the same
value. However, this factor ordering term is just a quant
correction, which does not affect the semiclassical lim
\→0, and should be expected to appear; cf.~i! of Sec. III A.

To conclude this discussion, we should remark on
inner product on the Hilbert space of wave functions, b
longing to the two different models. In a first step we want
compute the auxiliary inner product~2.18! for the nondiago-
nal model, which remains for diffeomorphism invaria
wave functions. Let us therefore rewrite the fundamen
variableshpq in the form

hpq5(
r 51

3

Vprl rVqr , ~3.20!

where the SO~3! matrix (Vpr) depends on three Euler angle
wa . After a subsequent transformation to thesp defined in
Eq. ~3.14! the auxiliary scalar product~2.18! transforms into

^CuF&}E dV~wa!E d3sp

u~s1
22s2

2!~s2
22s3

2!~s3
22s1

2!u

~s1s2s3!3/2

3C* ~sp!F~sp!, ~3.21!

where dV(wa) is the invariant Haar measure on the gro
manifold of SO~3! and the variablessp must be positive
and of a fixed order, e.g.,s3.s2.s1.0.8 The Euler angles
are pure gauge degrees of freedom and have to be g
fixed at some arbitrary value in the physical scalar produ
which is simply done by dropping the factor*dV in Eq.
~3.21!, which is just a constant prefactor, anyway.

Remarkably, we get the same result for the effective in
product, if we start from an auxiliary inner product in th
triad variablesepa , which are defined via

epa•eqa5hpq . ~3.22!

If we impose the simple inner product

7Such a factor ordering term is well known from earlier work; c
@23#.

8The transformation~3.20! turns out to be invertible only for a
fixed order of thelp ~or, eqivalently, of thesp), because permuta
tions of thelp may be realized by suitable rotations with SO~3!
matricesVpr .
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^CuF&5E
R9

d9epac* ~epa!f~epa! ~3.23!

in these triad coordinates, we have to eliminate the ga
freedoms with respect to the diffeomorphismand the Gauss
constraints. To fix all these gauge freedoms, we may imp
the six gauge conditions

x a
p 5ẽ a

p 50, pÞa, ~3.24!

which require the triad to be diagonal. Then the effect
measure in the scalar product~3.23! can be calculated as
Faddeev-Popov determinant of the commutators between
generatorsHp ,Ja8 of the gauge transformations and th
gauge conditions~3.24!. If we denote the remaining diagona
elements ofẽ a

p by sp , and, moreover, take into conside
ation all the symmetries of the wave functions with resp
to permutations of thesp , we arrive exactly at the scala
product given in Eq.~3.21!.

In the diagonal Bianchi type IX model a natural sca
product is

^CuF&}E
R3

da db1 db2C* ~a,b6!F~a,b6!,

~3.25!

because the variablesa, b1 , andb2 introduced in@12# are
the free falling coordinates on minisuperspace for the dia
nal model. Transforming this to thesp representation, we
arrive at

^CuF&}E
sp.0

ds1 ds2 ds3

s1s2s3
C* ~sp!F~sp!, ~3.26!

where the threesp integrals have to be performed along th
positive real axes now. Obviously, the additional facto
sp

22sq
2 occurring in Eq.~3.21! are absent in the diagona

case; i.e., the measures in the scalar product of the diag
and the nondiagonal model differ, as was already expec
when discussing point~ii ! in Sec. III A.

We conclude that quantization and gauge fixing are ess
tially not interchangeable for the model under investigatio
The quantization procedure followed in Sec. II seems pr
erable because it seems much nearer to a quantization o
full, inhomogeneous field than the methods used for the
agonal case. Moreover, all four constraintsHm are quantized
and in this sense treated in a similar way, as one wo
expect from the viewpoint of general covariance.

To complete our discussion of the inner product on
space of wave functions, we should give thephysical inner
product, which is obtained from theauxiliary inner product
~3.21! or ~3.26! by eliminating the last gauge degree of fre
dom corresponding to the Hamiltonian constraintH0.

C. Physical inner product on the Hilbert space
of wave functions

To shorten the present paper, we want to postpone a
tailed motivation and derivation of the physical inner produ
1-8
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to a future paper@19#. There, we will also investigate th
normalizability of the wave functions constructed in Sec. I
and it will turn out that the physical inner product unique
determines one normalizable state in both of the two ca
L50 andL.0. In this subsection we only want to give th
final form of the physical inner product on the space of wa
functions and some main ideas how to arrive there@24–26#.

The effective inner product for a constrained system w
constraintT50 is generally obtained by first choosing a su
able gauge conditionx and, second, calculating the follow
ing expectation value with respect to the auxiliary~or ‘‘ki-
nematic’’! inner product:

^CuuF&phys5^CuuJud~x!uF&aux , ~3.27!

with

J:5 i @T,x#.

Here J is the so-called Faddeev-Popov determinant. T
definition makes sense wheneverT is a first order derivative
operator on configuration space, because thenuJu will be a
positive real number and Eq.~3.27! defines a positive Her
mitian product. However, in the present caseT5Ĥ0 is a
second order derivative operator, and we have to deal w
two problems.

~i! At first sight, uJu seems to be a mysterious quantit
becauseJ itself is a first order derivative operator on co
figuration space. However, sinceJ is a self-adjoint operator
we may decompose any stateC in terms of eigenstates ofJ
to arrive at a very natural notion ofuJu. This operatoruJu then
is itself self-adjoint and, moreover,positive.

~ii ! In general,uJu and d(x) will not commute, and so
^CuuF&phys will neither be Hermitian nor positive. This
would give a rather miserable physical inner product. S
prisingly, there exists a small set of gauge conditonsx such
that the gauge condition commutes with the Faddeev-Po
determinant, i.e., such thatx solves

†@T,x#,x‡50. ~3.28!

It seems that this set of gauge conditions does not only e
for the case under study,T5Ĥ0, but for any physically in-
teresting case of constraints which are described by sec
order derivative operators. Using these special gauge co
tions the physical inner product~3.27! obviously is positive
and Hermitian.

Having solved these two problems, we are now ready
perform the last step in the construction of the physical in
product for the nondiagonal Bianchi type IX model. It
easily seen that the gauge condition

x~s1 ,s2 ,s3!5
2

\
ln

s3

s3,0
~3.29!

is a solution to Eq.~3.28!. It fixes the variables3 to have a
specific value s3[s3,0. Performing suitable coordinat
transformations the associated inner product finally takes
following form:
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^CuuF&s3
5E

0

`

db2E
0

`

dvC̄* U i\ ]

]vUF̄, ~3.30!

with

C̄5F ~s1
22s2

2!~s2
22s3

2!~s3
22s1

2!

s1s2s3
G1/2

C,

~3.31!

v5a35S \

2D 3/2

As1s2s3, b25
1

2A3
ln

s2

s1
.

This inner product has now an intrinsic ‘‘time’’ paramet
s3, which must be given to compute probability distributio
with respect tob2 andv, the remaining physical degrees o
freedom.

IV. SOLUTIONS GENERATED
FROM THE CHERN-SIMONS FUNCTIONAL

A. Ashtekar representation of the Chern-Simons state

As pointed out in Sec. II, we can find a special exa
quantum state for the nondiagonal Bianchi type IX mod
with a nonvanishing cosmological constant, if we are able
determine a functionc8 lying in the kernel ofQ a

p defined in
Eq. ~2.35!. To proceed in this way, let us consider the Fo
rier transformed version of Eq.~2.39!, where it is essential to
perform not a customary, but a generalized Fourier transfo
introduced in@12#:

c8~ ẽ a
p !}E

S9
d9Apa expF2

\
Apaẽ a

p GC̃~Apa!. ~4.1!

Here S9,C9 is any 9-dimensional manifold in the 18
dimensional space of the complexApa , which allows for
partial integration without getting any boundary terms. Th
c8(ẽ a

p ) is a solution to Eq.~2.39!, if C̃(Apa) solves the
following set of equations:

FmpqAqa2
1

2
«pqr«abcAqbArc1

l

2

]

]Apa
GC̃~Apa!50.

~4.2!

A special solution to Eq.~4.2! is the Bianchi type IX restric-
tion of the well-known Chern-Simons functional:

C̃CS5expF1

l
@2Apam

pqAqa12 det~Apa!#G . ~4.3!

In the following we shall be interested in the transformati
of this state to the metric representation, i.e., in the eva
tion of integrals of the form~4.1!. Topologically different
choices ofS9 ~i.e., choices which cannot be deformed in
each other without passing a singularity! will lead to differ-
ent states in the metric representation.
1-9
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B. Metric representation of the Chern-Simons state

It will be convenient to introduce new variables

k a
p :5

l

\
ẽ a

p 5
L

3
ẽ a

p . ~4.4!

Then the wave function in the metric representation takes
form

CCS8 }E
S9

d9Apa expF2

l S k a
p Apa2

1

2
Apam

pqAqa

1 det~Apa! D G , ~4.5!

where suitable integration manifoldsS9 remain to be deter-
mined. Here and in the following, constant prefactors, a
also prefactors depending onl, are absorbed in the propo
tionality sign ‘‘},’’ since such a factor will always remain a
a freedom of the wave function. Surprisingly, six of the ni
Apa integrals turn out to be Gaussian integrals and can
evaluated analytically, namely, the integrals with respec
A11, A12, A13, A21, A22, andA23. Lengthy calculations
finally give the result

CCS8 }E
S3

dx dy dz

12rW2
expF 1

l S 2rW212kW 3•rW

1
kW 1

21kW 2
212kW 13kW 2•rW2~rW•kW 1!22~rW•kW 2!2

12rW2 D G ,

~4.6!

where we have introduced the abbreviationsrW5(x,y,z)
:5(A31,A32,A33) and kW p :5(k 1

p ,k 2
p ,k 3

p ). It is clear that
the three-direction is distinguished by the order in which
integrals are performed. As we know from Sec. II,CCS8 ac-
cording to Eq.~4.6! is automatically Gauss and diffeomo
phism invariant, because it is a solution to Eq.~2.39!. This
means thatCCS8 can only depend on the eigenvalueslp of
the three-metrichpq , or, equivalently, on thesp introduced
in Eq. ~3.14!. So we are free to choose a diagonal gauge
the triad in Eq.~4.6!; i.e., we may take

~k a
p !5diag ~k1 ,k2 ,k3!, ~4.7!

with

k3>k2>k1 ,

where

kp :5
l

2
sp5

L

12
Alql r , «pqr51. ~4.8!

This special ordering of the threekp ~or, equivalently, of the
lp) is always possible, because permutations of the diag
elements of a diagonal metrichpq correspond to diffeomor-
phisms, which leave the wave functions invariant. Moreov
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such an ordering is even necessary to have a unique map
(k a

p )→(k1 ,k2 ,k3) under Gauss and diffeomorphism tran
formations, and we will adopt the convention~4.7! through-
out the following. In the gauge~4.7! the integral~4.6! takes
the form

CCS8 }E
S3

dx dy dz

12r 2
expF 1

l S 2r 212k3z

1
k1

21k2
212k1k2z2k1

2x22k2
2y2

12r 2 D G , ~4.9!

wherer 2:5x21y21z2. We will see in Secs. V and VI tha
there are choices forS3 in Eq. ~4.9! leading to asymmetric
wave functions under~formal! permutations of thekp .9

However, as we know from Sec. III@cf. after Eq.~3.16! with
kp5(l/2)sp], only wave functions which are symmetric un
der permutations of thekp and under reflectionskp
→2kp ,kq→2kq ,k r→k r are of interest to us, and this wil
be an important restriction to select the physically interest
wave functions.

V. ASYMPTOTIC FORMS OF THE CHERN-SIMONS
INTEGRAL

In order to get information about possible integrati
manifoldsS3 which can be used in Eq.~4.9! we begin by
discussing the asymptotic behavior of the Chern-Simons
tegral in several asymptotic regimes. It will thereby beco
obvious that we deal with five linearly independent solutio
and the integration contours will be given in Sec. VI afte
wards.

A. Semiclassical limit\˜0

Let us first of all examine the semiclassical behavior
the solutions described by Eq.~4.9!. Surely, the semiclassica
limit could have also been discussed by starting from
nine-dimensional integral~4.5!, but, of course, an expansio
of the three-dimensional integral~4.9! is much simpler. The
saddle point form of Eq.~4.9! is displayed nicely by writing
it in the form

CCS8 }E dx dy dz

12r 2
expF 3F

\L G , ~5.1!

with

F:52r 212k3z1
k1

21k2
212k1k2z2k1

2x22k2
2y2

12r 2
,

~5.2!

9In complete analogy there are eigenstates of the effective Ha
tonian ~3.9! of a two-dimensional harmonic oscillator withL50
which do not obey C(q)5C(2q), but these are of no physica
interest.
1-10
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where we have insertedl according to Eq.~3.19!. Since the
kp defined in Eq.~4.8! do not depend on\, we approach a
Gaussian integral in the limit\→0, L fixed, which has to be
evaluated at one of the saddle points of the exponent. H
ever,which of the possible saddle point contributions aris
for the integral under consideration is determined by the
tegration surfaceS3 and requires a detailed discussion of t
contours of steepest descent. Here we only want to give
possibleasymptotic results for\→0 which may be realized
by suitable choices of the integration contours. The integ
tion contours are discussed in Sec. VI.

The saddle points of the exponent are obtained by solv
the equations

]F

]x
50,

]F

]y
50,

]F

]z
50. ~5.3!

One can show that fors1 ,s2 ,s3 pairwise different, i.e., in
particular on the sectors3.s2.s1.0 of interest, the only
solution to Eq.~5.3! is given by

x5y50, ~z2k3!~12z2!25~k11k2z!~k21k1z!.
~5.4!

A comparison with the diagonal model@12# reveals that for
x5y50 the exponents of Eq.~5.1! and of the one-
dimensional integral~4.17! of @12# become identical. Conse
quently, also the saddle point equations with respect tz
coincide; cf. Eqs.~5.4! and ~4.7! of @12#. As a result, the
semiclassical actions of the wave functions approache
the limit \→0 must be the same, since they are given as
saddle point values of the integrand’s exponents. This is
course exactly what we expected to happen, because
Wheeler-DeWitt equations for the classically equivalent
agonal and nondiagonal Bianchi type IX models give rise
the same Hamilton-Jacobi equation in the limit\→0. How-
ever, the quantum corrections to this leading order beha
are rather different, first because of the different dimensi
ality of the integrals, and second because of a new prefa
to the exponential function. Performing a Gaussian sad
point approximation, we get, for the nondiagonal case,

CCS8 }
\→0F ~22pl!3

detS ]2F
]r a]r b

D G
1/2

eF/l

12r 2U
rW5rWs

}F ]2F

]x2

]2F

]y2

]2F

]z2 G21/2
eF/l

12r 2U
rW5rWs

. ~5.5!

Here the second proportionality stems from a special pr
erty of the exponentF, namely, the fact that the mixed de
rivatives ofF vanish forx5y50. Comparing this with the
asymptotic results obtained in the diagonal case@12#, we find
that corresponding results differ only by a factor

g:5F ~12z2!
]2F

]x2

]2F

]y2G
x5y50,z5zs

21/2

. ~5.6!
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Since we already know the asymptotic results for the dia
nal Bianchi type IX model, we only have to expand th
additional factor at the saddle points to get the quantum c
rections for the nondiagonal Bianchi type IX model. As
the diagonal case, we therefore have to deal with a sa
point equation of fifth order, and so analytical results a
only available in additional asymptotic regimes. Because
the existence of five saddle points, one has five linearly
dependent solutions.

1. Limit L˜0

One asymptotic regime which allows for an expansion
the five saddle points is that of small cosmological const
L→0. Since we are in the additional limit\→0, the quan-
tity l5\L/3 defined in Eq.~3.19! tends to zero, too. In this
limit one saddle point is given by

z ;
l→0 1

2
s3l →

l→0
0. ~5.7!

The contribution from this saddle point yields

CCS8 }
l→0

const, ~5.8!

and therefore approaches the well-known wormhole stat10

Four further saddle points asymptotically lie at11

z ;
l→0

216
l
4 ~s22s1!, z ;

l→0
16

l
4 ~s21s1!, ~5.9!

giving rise to an asymptotic behavior

CCS8 }
l→0 e2s37~s22s1!

A~s22s1!~s36s2!~s37s1!
,

CCS8 }
l→0 es37~s21s1!

A~s11s2!~s37s1!~s37s2!
, ~5.10!

respectively. These solutions are the generalizations of
diagonal analogues~2.25! and~2.26! given in @12#. The sin-
gularities which occur in the denominators of the asymme
solutions of Eq.~5.10! are cancelled by the weight functio
of the inner product~3.21! and therefore do not constitut
any physical problems.

2. Limit k˜`

A second regime which allows for an analytical expans
of the semiclassical limit\→0 is the casek→`, where the
‘‘mean’’ k is understood ask:5(k1k2k3)1/3. The threekp
were defined in Eq.~4.8!. For a fixed cosmological constan

10We remind the reader that the prime atCCS8 denotes the fact tha
this wave function has to be mutliplied byCWH defined in Eq.
~2.24! to become a solution of the Wheeler-DeWitt equation in t
metric representation.

11The following expansions are only valid fors2.s1, but we
restricted ourselves to this case anyway.
1-11
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this is the limit of the large overall scale paramter. In th
limit, two of the saddle points behave according to

z ;
k→`

6A2
k1k2

k3
, ~5.11!

and turn out to be complex valued. This gives rise to a co
plex action of the wave function, describing a universe w
a Lorentzian signature of the four-metric; cf.@12#. The lead-
ing order behavior for these solutions is given by

CCS8 }
k→`

k29/4 expF6
4ik3/2

l G ; ~5.12!

for a more detailed asymptotic result we refer to@12#. Three
further saddle points have an asymptotic expansion

z ;
k→`

2
k1

k2
, z ;

k→`

2
k2

k1
, z ;

k→`

11k3 , ~5.13!

and lead to wave functions of the form

CCS8 }
k→`

@~k2
22k1

2!~k3
22k2

2!#21/2ek2
2/l,

CCS8 }
k→`

@~k2
22k1

2!~k3
22k1

2!#21/2ek1
2/l, ~5.14!

CCS8 }
k→`

@~k3
22k1

2!~k3
22k2

2!#21/2ek3
2/l,

respectively. These saddle point contributions are kno
from the diagonal model for the ‘‘asymmetric’’ solution
introduced there; however, here we have additional pre
tors, which become divergent on the symmetry lin
sp5sq ,pÞq, but again these singular terms are cancel
by the measure of the scalar product~3.21!.

B. Solutions to the vacuum model approached
in the limit L˜0

In order to get solutions of the nondiagonal Bianchi ty
IX model for L→0 ~without taking the semiclassical limi
\→0 first! we now want to discuss the behavior of th
Chern-Simons integral in this limit. While one of the sol
tions approached forL→0 again turns out to be the worm
hole state~2.24!, the other four solutions arenot given by the
asymptotic results~5.10!, as one might think at first sight
The reason for this is the fact that we are not allowed
perform the usual Gaussian saddle point expansion, sinc
exponent and, in particular, the prefactor to the exponen
function become singular in the limitL→0, wherer ap-
proaches61. Comparing the situation with the diagon
model, where a saddle point expansion in the same l
actuallywasallowed, one might ask for a difference betwe
the two models that forbids an analogous expansion in
present case. The answer to this question lies hidden in
prefactor to the exponential function: while we dealed w
an integrable square-root singularity in the diagonal case
here have to integrate into a singularity of first order, even
the caseL50, and this requires much caution. In fact,
turns out that the calculation of the limitL→0 of the Chern-
Simons integral is very subtle and worth discussing in
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separate section in Appendix A. Moreover, we show in A
pendix B that the solutions derived in Appendix A can
written in another, very nice and compact form, which rea

C%8 ;
l→0

5E
C%

ds es)
n50

3

~s2sn!21/2. ~5.15!

Here the integration contourC% is one of the four curves
shown in Fig. 1, and thesn are special sums of thesp ,
defined by

s05s11s21s3 , s15s12s22s3 ,
~5.16!

s252s11s22s3 , s352s12s21s3 .

For a detailed discussion of these wave functions and a c
ment on their symmetries with respect to permutations of
sp we refer to Appendixes A and B.

Altogether, we find in the limitL→0 again five linearly
independent solutions associated with the Chern-Sim
wave function~4.5!.

VI. THREE-DIMENSIONAL INTEGRATION MANIFOLDS
FOR FIVE EXACT SOLUTIONS

In this section we want to define explicitly five integratio
contoursS3 for the integral~4.9!, leading to five linearly
independent solutions of the Wheeler-DeWitt equat
~3.17!. To have a better view of the symmetries of the so
tions, let us, for a moment, go back to the nine-dimensio
integral representation~4.5!. It can be verified easily that the
two different integration surfaces

S6
9 :5$~Apa!eC9uApaPRe6 ip/6% ~6.1!

lead to a finite integral, because the cubic terms in the ex
nent of Eq.~4.5! remain purely imaginary, while all the qua
dratic terms have a negative real part. Moreover, since

FIG. 1. Integration curves in the complexs plane which lead to
linearly independent vacuum solutions. The dashed line indic
that one has to evaluate the integrand in the second Rieman
branch after having crossed one of the cuts. The two cuts are
resented by wavy lines.
1-12
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only border of this surface lies at infinity, it is clear that th
integral~4.5!, performed overS6

9 , must lead to a solution o
the nondiagonal Bianchi type IX model. In particular, w
then know that these wave functions are Gauss and dif
morphism invariant, and we may again choose the diago
gauge~4.7! for the matrix (k a

p ). Then Eq.~4.5! takes the
form

CCS,68 }E
S6

9
d9ApaexpF2

lS k1A111k2A221k3A33

2
1

2
Apam

pqAqa1 det~Apa! D G . ~6.2!

If we now consider a formal permutationk1↔k2 in Eq.
~6.2!, we can reestablish the original integral by a suita
transformation in the Apa space, namely
A11↔A22,A32↔A13,A23↔A31. Since all integration vari-
ablesApa are integrated along the same axes in the comp
Apa planes, the integration contour remains unchanged un
this coordinate transformation and we regain the integ
~6.2!. Furthermore, the two integrals~6.2! are invariant under
a substitutionk1→2k1 ,k2→2k2, which may be seen by a
transformationA1a→2A1a ,A2a→2A2a in the Apa space.
Thus we conclude that both wave functions are comple
symmetric under arbitrary permuations of thekp , and also
under reflectionskp→2kp ,kq→2kq ,k r→k r , a symmetry
property which is possessed only by two of the five solutio
which are generated by the Chern-Simons functional.

Performing the six Gaussian integrations which lead fr
Eq. ~4.5! to Eq. ~4.9!, we reach the following three
dimensional integration surface for the integral~4.9!:

S6
3 :5$rWPC3ur aPRe6 ip/6%. ~6.3!

In the following it will be convenient to introduce the tw
superpositions

CWH,L8 }CCS,18 1CCS,28 , C0123,L8 }CCS,18 2CCS,28 ,
~6.4!

and also new integration variables

x5rA12h2cosw, y5rA12h2sinw, z5rh,
~6.5!

for thex,y,z integral, which may be understood as spheri
coordinates withh5cosq. For the transformation~6.5! the
volume element simply transforms like dx dy dz
5r 2dr dh dw, and the conditionr 25x21y21z2 is obeyed
even for complex values ofr ,h,w. With this new parametri-
zation, the integration surfaces for the two solutions defin
in Eq. ~6.4! can now be written in the following form:

SWH
3 5$rWPC3u21,h,1,0,w,2p,r PR1 i« %, «.0,

~6.6!
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S0123
3 5$rWPC3u21,h,1,0,w,2p,r PK~1,R!%,

R,2. ~6.7!

In Eq. ~6.7! K(1,R) denotes a pole integral aroundr 51 with
radiusR; cf. Appendix A. Let us try to interpret these inte
gration surfaces: in the first case~6.6! we simply integrate
over a sphere with radiusr in the complexrW space; however,
this radius is not chosen to be real valued as usual,
slightly imaginary to avoid the singularities of the integra
lying at r 561. The integration manifoldS0123

3 also de-
scribes an integral over a full sphere, but now the rad
describes itself as a circle around the singularity atr 511 in
the complexr plane. While the two parametrizations give
in Eqs. ~6.6! and ~6.7! will prove useful for an asymptotic
expansion in the limitL→0, which is performed in Appen-
dix A, they now allow for a further study of the semiclassic
behavior of the corresponding solutions.

If we consider the wave functionC0123,L8 in the semiclas-
sical limit \→0, we get the dominant contributions to th
integral forh561, so that the integrand becomes indepe
dent ofw. The remainingr variable then coincides with the
6z variable, which was the only integration variable in th
diagonal Bianchi type IX model discussed in@12#. For a
discussion of the curves of steepest descent in thez plane we
refer to this earlier work. However, if one has finally d
formed a desired integration contour into the curves of ste
est descent, there remains one remarkable difference betw
the two models: while in the diagonal case we had a cu
the complexz plane for uRezu.1, this cut is absent in the
present nondiagonal case, owing to the different prefactor
the exponential function. So integrals along parts of the r
axis of thez plane, which cancelled in the diagonal cas
may now be different from zero, and vice versa. A detai
discussion of the curves of steepest descent and the resu
asymptotic contributions finally gives the following result fo
the wave functionsC, being connected withC8 via Eq.
~2.25!.

In the semiclassical limit\→0 the wave functionC0123,L
shows a no-boundary behavior fora→0; i.e., the four-
manifolds which correspond to the semiclassical trajecto
in minisuperspace are regular at the pointa50. For a→`,
the integration surfaceS0123

3 picks up several saddle poin
contributions: the two complex conjugate saddle poi
~5.11! contribute as well as the two real-valued, negat
saddle points in Eq.~5.13!. These latter two saddle points a
the reason whyC0123,L is not normalizable in the physica
inner product~3.30!, as will be shown in a future paper@19#.

The solutionCWH,L is a generalization of the wormhol
state~2.23! for a positive cosmological constantL.0. For
a→`, we again gather contributions from the two compl
conjugate saddle points~5.11! and now, in addition, from the
real-valuedpositivesaddle pointz;11k3 of Eq. ~5.13!. In
@19# we will see that these latter three saddle points give
to finite contributions in the physical norm of the wave fun
tion. We will show this by evaluating the physical nor
according to Eq.~3.30! in the semiclassical limit\→0. As a
result, CWH,L turns out to be the only Chern-Simons-lik
quantum state, which is normalizable in the physical inn
product~3.30! andsymmetric under permutations and refle
1-13
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ROBERT PATERNOGA AND ROBERT GRAHAM PHYSICAL REVIEW D58 083501
tions of the sp . The existence of a normalizable Cher
Simons-like state is in remarkable contrast to earlier work
special spatially homogeneous models discussed by Maru´n
@27#.

Finally, we still have to define three further integratio
contoursS3 to obtain the complete set of Chern-Simons-li
solutions. The construction of the vacuum solutions in A
pendix A suggests three new possibilities to create line
independent integrals. One of these further integration
faces can simply be written in the form

S12
3 5$rWPC3u2`,h,21,0,w,2p,r PK~1,R!%,

~6.8!

while the other two have a very complicated form and m
be read off from the representations~A20! and~A21! in Ap-
pendix A. That these latter two integration manifolds, desp
their strangeh junctions at2s1 /s2 and2s2 /s1, give rise
to analytical solutions of our model even forLÞ0 is shown
in Appendix C. However, these solutions do not obey
necessary symmetry properties which were derived in S
III, and are therefore of no further interest to us.

One may now finally ask how the four solutions defin
in Eqs. ~A18!–~A21! of Appendix A are connected to th
‘‘asymmetric’’ solutionsC%8 of the diagonal model discusse
in @12#. An investigation of the semiclassical behavior, t
gether with a discussion of the singularities on the lin
sp5sq ,pÞq, shows that the solutionsC18 , C128 , C1238 ,
andC01238 are actually thesumsof these states as indicate
through the choice of their indices; i.e., we have

C128 5C181C28 , C1238 5C181C281C38 ,

C01238 5C081C181C281C38 , s3.s2.s1 .

~6.9!

By inverting these relations with respect toC%8 one may
further define asymmetric solutions corresponding to th
of the diagonal model, with the same symmetry proper
that have been pointed out in@12#.

VII. DISCUSSION AND CONCLUSION

In this paper we have examined the transformation c
necting the representations of quantum general relativity
metric variables and in Ashtekar’s variables for the spe
case of spatially homogeneous but anisotropic space-time
a Bianchi type IX model with anondiagonalmetric tensor.
While classically the nondiagonal case and the diagonal c
are equivalent~in the absence of matter! due to the freedom
of gauge fixing, there is a subtle difference quantum m
chanically, because the steps of gauge fixing and quan
tion, in general, do not commute. This was explained vi
simple example in Sec. III A. The example also made cl
that gauge fixingafter quantization is preferable because
symmetries are then implemented automatically and de
cratically. Once the two steps have been completed in
order it is then also cleara posteriori how to proceed cor-
rectly in the quantization after the gauge fixing has be
08350
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performed on the classical level. Performed in this w
quantization and gauge fixing of course commute by c
struction.

For the nondiagonal Bianchi type IX model we have co
sidered in detail the transformation of the Chern-Simo
state from Ashtekar variables to metric variables. The Che
Simons state, including its limit for vanishing cosmologic
constant, deserves a thorough study because it is undo
edly the most important exact solution of all constraints
quantum general relativity found up until now. This is s
because, unlike all other exact solutions, it describes a w
defined nondegenerate space-time in its classical limit
also because it makes an obvious connection between q
tum general relativity and topological field theory@7,8#. In-
deed it is remarkable that the general Chern-Simons sta
Ashtekar variables makes no reference to metric concept
the spacelike three-manifold. It should be noted, howev
that writing down a physical state in Ashtekar variables do
not yet define it completely, because ‘‘reality conditions
must still be imposed before a physical interpretation can
attempted. Imposing the reality conditions is a very no
trivial task and, as our results indicate, might not have
uniquesolution. We circumvent this problem completely b
transforming back to the real metric representation bef
applying a gauge fixing and giving a physical interpretatio

The Ashtekar variables and the densitized inverse tr
form canonically conjugate pairs. Hence, for our Bianc
type IX model the generalized multidimensional Four
transformation we discussed in Secs. IV, V, and VI can
used to transform the Chern-Simons state to the metric
resentation. This is ageneralizedFourier transformation be
cause neither the integration contours, which are here n
dimensional manifolds, nor their boundaries are fixeda
priori , except for the condition that partial integration wi
the Chern-Simons state under the integral must be perm
without contribution from the boundaries. The boundar
are therefore determined entirely by thesingularitiesof the
Chern-Simons state. On the other hand, for fixed bounda
the different integration manifolds one can find may be d
formed without changing the result, or may be combined
first running through one integration manifold and th
through other inequivalent ones, leading to linear combi
tions of the physical states defined by each integration m
fold separately.

In Eq. ~4.9!, with the five integration manifoldsS3 given
by Eqs. ~6.6!, ~6.7!, ~6.8!, ~A20!, and ~A21!, we have ob-
tained integral representations of fiveexactsolutions to all
constraints of quantum general relativity and we stud
various limits of these solutions in Sec. V. In the leadi
semiclassical order the result for the nondiagonal and
diagonal model is the same, as one would expect from
classical equivalence of both cases. However, differences
pear already in the next to leading order, obtained in
semiclassical expansion of our results in Sec. V A. It sho
be noted that even studying the next to leading semiclass
order of a physical state in quantum general relativity
rather nontrivial. It requires one to address operator orde
ambiguities in the Hamiltonian, which we have done in S
II A, to take proper account of quantum corrections in t
1-14
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CHERN-SIMONS STATE FOR THE NONDIAGONAL . . . PHYSICAL REVIEW D 58 083501
Hamiltonian implied by symmetries, which we have done
Sec. III B, and to apply a complete set of gauge-fixing co
ditions including a fixing of the time reparametrization sym
metry, which we have done in Sec. III C. Only then is t
next to leading semiclassical order of a physical state un
biguously defined.

Only two of the five solutions we constructed satisfy t
complete permutation symmetry between the three main a
of the Bianchi type IX three-geometry, which, as shown
Sec. III B, is implied by the quantization of thenondiagonal
model. These are the states corresponding to the integra
contours~6.6! and ~6.7!. Their semiclassical limits identify
them as a wormhole state and a Hartle-Hawking ‘‘n
boundary’’ state, respectively. It is remarkable that thesame
Chern-Simons state in Ashtekar variables can yield such
verse states depending on the choice of the integration m
fold. This is a striking example that a physical state in As
tekar variables is not yet defined before further conditio
~here the choice of integration contours! are specified.

In the Hartle-Hawking proposal for the semiclassical i
tial condition of the classical evolution of the Universe it
not required that the ‘‘no-boundary’’ state be a normaliza
vector in a Hilbert space. Rather the condition by which it
defined at least semiclassically is that the Euclidean fo
geometries defined by the semiclassical wave function fill
in the three-geometries on a spacelike slice are regular
a→0. A further requirement for the Hartle-Hawking state
to give a well-defined probability distribution at the sem
classical caustic surface where the semiclassical evolu
given by the wave function, switches from a Riemann
~‘‘Euclidean’’! to a pseudo-Riemannian~‘‘Lorentzian’’ !
space-time. This requirement is met by the Hartle-Hawk
‘‘no-boundary’’ state obtained here, and only by this sta
among the five Chern-Simons-like solutions, as was sho
already in@12#.

The wormhole state, on the other hand, one expects t
a normalizable vector in a Hilbert space with a well-defin
scalar product, in which other state vectors describe, e
excited states of the wormhole. Without going into deta
which will be given elsewhere@19#, we have defined such
scalar product in Sec. III C by gauge fixing all gauge sy
metries. It turns out that the wormhole state is, in fact, n
malizable in this scalar product, while the ‘‘no-boundary
state is not. Thus imposing either the ‘‘no-boundary’’ con
tion or normalizability in the Hilbert space of physical stat
equipped with a fully gauge-fixed scalar product, one finds
each case auniquebut mathematically and physically vast
different state as a metric representation of the Chern-Sim
state.

One may hope that the nondiagonal quantization pro
dure presented here might be applicable even to the ful
homogeneous case, because all constraints are treated
tum mechanically in a similar way, and a solution to t
quantum constraints is available in terms of the gene
Chern-Simons functional. Work in this direction is
progress.
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APPENDIX A: THE CHERN-SIMONS INTEGRAL
IN THE LIMIT L˜0

In the following we want to examine the possible limi
L→0 of the Chern-Simons integral given in Eq.~4.9!. First
of all, we shall briefly recover the wormhole state, which
approached for the choiceS35SWH

3 given in Eq.~6.6!. Us-
ing this integration manifold, we may write

CWH8 }E
21

11

dh E
0

2p

dwE
2`1 i«

1`1 i« r 2 dr

12r 2
expS F

l D , ~A1!

where we made use of the spherical coordinates in
(x,y,z) space, which were introduced in Eq.~6.5!. Easy es-
timates show that forL→0 just an infinitesimal region
aroundr 50 contributes to the innerr integral, and so we
have the following asymptotic behavior:12

CWH8 }
l→0E

21

11

dh E
0

2p

dwE
2«

1« r 2 dr

12r 2
expS 2r 2

l D
;

l→0
4pl3/2E

2`

1`

dj j2e2j2
52~pl!3/2

}const, r 5Alj. ~A2!

According to the transformation rule~2.25! we obviously
approach the wormhole stateCWH in the limit L→0, which
was defined in Eq.~2.24!.

Let us now turn to the much more complicated cases,
which the ‘‘wormhole saddle point’’x5y5z50 is not
passed through by the integration surfaceS3. For such solu-
tions, we shall try to set not all borders ofS3 at infinity;
instead we shall make use of the existence of two furt
singularities of the integrand with respect tor , namely, those
at r 561. If we integrate into these singularities in a suitab
manner, we expect to create further solutions of o
Wheeler-DeWitt equation~3.17!, because boundary term
generated by partial integrations will vanish at these bord
In the following it will be in fact sufficient to consider only
one of the two singularities, say,r 511, since anyr integral
in the neighborhood ofr 521 can be mapped onto a regio
around r 511 by a transformh→2h in the h integral.
This is due to the fact that theh,r dependence of the inte
grand in Eq.~4.9! is given in terms ofr 2,rh, andh2 only; cf.
Eq. ~A4! below. Thus we will be interested in integratio
contours for ther integral, which have one end point a
r 51. It turns out that, for a positive cosmological consta
L, there are only two curves of interest: first, we may p
form our r integration along the real axis fromr 51 to r 5
1`; second, we can also consider a pole integral, encirc
the singularity atr 51 in the mathematically positive sens

12As \ is kept fixed, alsol5\L/3 @cf. ~3.19!# tends to zero in the
limit L→0.
1-15
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To shorten our notation, we should establish the follow
nomenclature: a circle with radiusR, which is centered atr 0
and passed through in the mathematically positive sense,
be denoted byK(r 0 ,R). Then we can write the integrals o
interest in the form
he
th
ion
.

er

08350
g
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CCS8 5E dhE dwE

C

r 2 dr

12r 2
expFG

l G , ~A3!

with
,

e
once at
G:512r 212k3rh1
1

2
~k1

21k2
2!1

1

2

~k1
21k2

2!~11r 2h2!14k1k2rh1r 2~k1
22k2

2!~h221!cos2w

12r 2
, ~A4!

whereC is one of the two contours ]1,1`@ or K(1,R), 0,R,2. The equality sign in Eq.~A3! indicates that, from now on
all prefactors of the integral will be taken into account. To proceed in our calculation of the limitL→0, we can uniformly
estimate those parts of the integral~A3!, which lie outside an« neighborhood ofr 51 by a function, which vanishes
exponentially forL→0. Therefore, just an« neighborhood ofr 51 contributes to the integral~A3!, where« may be chosen
arbitrarily small. As a consequence, all terms of the integrand, which remain regular atr 51, can be substituted by their valu
taken atr 51, and only ther dependence of singular parts remains to be taken into consideration. Thus we arrive at

CCS8 ;
l→0 1

2E dh es3hE dwE
C«

dr
12r expF2

l ~12r !1
l
8

a222abcos2w1b2

12r G , ~A5!

where we made use of the definitions

a:5
s11s2

2
~11h!, b:5

s12s2

2
~12h!. ~A6!

HereC« is either equal to ]1,11«@ or given byK(1,«). After the transformationj5(4/l)(r 21) we arrive at

CCS8 ;
l→0

2
1
2E dh es3hE dwE

C8

dj
j expF2

j
2 2

a222abcos2w1b2

2j G , ~A7!

where nowC8 is the positive real axis orK(0,R). The two possiblej integrals can now easily be performed, leading to

CCS8 ;
l→0E dh es3hE dwH 2 ipI 0@Aa222abcos2w1b2# , C85K~0,R!,

2K0@Aa222abcos2w1b2# , C85@0,1`#.
~A8!
ra-

e

all
e

the
ith

we
hes

to a
Up to now we have taken into acount all freedom in t
choice of the integration contours; any other choice for
r -integration contour would have given a linear combinat
of the two results given in Eq.~A8! or a constant as in Eq
~A2!. While theh dependence of Eq.~A8!, hidden ina and
b, is too complicated to be integrated out analytically, th
are several possibilities to evaluate thew integral, which be-
come more transparent in the new variableu5cos2w. With
the abbreviationX:5a222abu1b2 we find

E
21

11 du

A12u2
K0~AX!5pI 0~a!K0~b!, b.a.0, ~A9!

E
21

11 du

A12u2
I 0~AX!5pI 0~a!I 0~b!, ~A10!

E
2`

21 du

Au221
K0~AX!5K0~a!K0~b!, a,b.0, ~A11!
e

e

E
11

1` du

Au221
I 0~AX!5I 0~a!K0~b!

1K0~a!I 0~b!, a,b.0. ~A12!

Obviously, the first two integrals correspond to an integ
tion over real anglesw, while the latter two integrals require
for w values to lie on the imaginary axis. The first thre
integrals are tabulated in mathematical tables like@28#, but
the integral~A12! seems to be a new result. Thus we sh
shortly comment on a proof of this formula, which, by th
way, also holds for the other integrals~A9!–~A11!: The idea
is to show that the integral on the left hand side solves
differential equation of the modified Bessel functions w
index zero with respect toa andb. After some partial inte-
grations it turns out that this is indeed the case; however,
thereby gather a boundary term, which exclusively vanis
for the boundaries chosen in Eqs.~A9! to ~A12!. For these
choices we then know that the integrals must be equal
linear combination of the four possible products ofI 0 andK0
1-16
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at argumentsa andb. The coefficients of these possible fo
contributions can then be determined by evaluating the i
grals ata5b and, if necessary, by an additional investigati
of the limits a→0 andb→0.

With the integrals~A9!–~A12! we may now perform the
w integration in Eq.~A8! and get a result of the form

CCS8 ;
l→0E dh es3hZ0

~1!~a!Z0
~2!~b!, ~A13!

with Z0
(1) andZ0

(2) being modified Bessel functions with in
dex zero. However, not any combination ofZ0

(1) and Z0
(2)

with h borders at61 or 6` will lead to a solution of the
three equations

FpCCS8 :5QpuL50CCS8 5F ]q] r2]p1
sq] r2s r]q

sq
22s r

2 GCCS8 50,

~A14!

which necessarily should be the case for the limitL→0 of
the Chern-Simons integral because of Eq.~3.18!. The reason
for this is that, due to the complexification of the spheric
coordinates~6.5!, we might have integrated effectively ove
a three-dimensional manifoldS3, which produces boundar
terms for partial integrations. For example, there is
reason why a surface described
r P]1,1`@ ,wP iR,he#21,11@ should lead to an integra
solving Eq.~A14!, although this integration contour leads
a finite integral. It will be a nice explicit check of solvabilit
to investigate for which choices ofZ0

(1) and Z0
(2) and for

which h bordersCCS8 according to Eq.~A13! becomes a
solution to the three equations~A14!:

While the operatorF3 annihilates the integrand of Eq
~A13! for arbitrary values ofh, and thereforeCCS8 for arbi-
trary borders of theh integral, we have to perform suitabl
partial integrations to show the vanishing ofF1CCS8 and
F2CCS8 . Consequently, we get some boundary terms, wh
will not vanish for all possible forms of Eq.~A13!. A de-
tailed discussion of these boundary terms reveals that t
are exactly four possiblities to arrive at solutions of E
~A14!. For the adopted ordering of the threesp these solu-
tions are given by the following integrals:

C185E
2`

21

dhes3hI 0~a!K0~ ubu!,

~A15!

C128 5 ipE
2`

21

dhes3hI 0~a!I 0~b!,

C1238 5E
2`

11

dhes3hK0~ uau!I 0~b!,

~A16!

C01238 5 ipE
21

11

dh es3hI 0~a!I 0~b!.

As an example, we want to discuss the action of the oper
F1 on the wave functionC128 , which can be written in the
form
08350
e-

l

o

h

re
.

or

F1CCS8 5
1

2Fes3h~h221!

s2
22s3

2 $s3@ I 1~a!I 0~b!1I 0~a!I 1~b!#

2s2@ I 1~a!I 1~b!1I 0~a!I 0~b!#%G
h→2`

h521

. ~A17!

That this is indeed equal to zero is easily seen forh521
and, after some asymptotic expansions of the Bessel fu
tions, also forh→2`. Similar results hold for the othe
solutions, where one of the two Bessel functions might
substituted byK0 or 2K1. In such cases the vanishing of th
boundary terms ath561 becomes a nontrivial question
because theKn- Bessel function might become singular
these points. A detailed investigation shows that there
only the four possibilities given in Eqs.~A15! and ~A16! to
avoid contributions from these boundaries.

The question which remains to be answered at this p
is which integration contours for thew integral give rise to
the integrands in Eqs.~A15! and ~A16!. For the wave func-
tions C128 andC01238 the answer is easily found with help o
the integral~A10!, and we find the explicit representations

C128 52
1

2p
lim
L→0

E
2`

21

dhE
0

2p

dwE
K~1,R!

r 2 dr

12r 2
expFG

l G ,
~A18!

C01238 52
1

2p
lim
L→0

E
21

11

dhE
0

2p

dwE
K~1,R!

r 2dr

12r 2
expFG

l G ,
~A19!

where the radiusR of the r integral has to be chosen wit
R,2. However, for the other two wave functions the answ
is more difficult, because, according to Eqs.~A9!–~A12!,
there is no easy possibility to generate their integrands
formly for all h values of their integration regime. So w
have to cut theh integral artificially at thoseh values, for
which we get a56b, which actually happens a
h52s2 /s1,21 and h52s1 /s2.21. Suitable linear
combinations of the results~A9! and ~A12! then reveal the
following integral representations:

C1852
1

2p
lim
L→0

S E
2`

21

dhE
0

2p

dwE
1

1`

22E
2`

2s2 /s1
dhE

0

2p

dwE
1

1`

2E
2`

2s2 /s1
dhE

2 i`

1 i`

dwE
K~1,R!

D r 2dr

12r 2
expFG

l G , ~A20!
1-17
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C1238 52
1

2p
lim
L→0

S E
2`

11

dhE
0

2p

dwE
1

1`

22E
2s2 /s1

2s1 /s2
dhE

0

2p

dwE
1

1`

2E
2s2 /s1

2s1 /s2
dhE

2 i`

1 i`

dwE
K~1,R!

D r 2dr

12r 2
expFG

l G . ~A21!

Considering the representations~A18!–~A21! it is now pos-
sible to read off the integration manifoldsS3 which lead to
solutions of the Wheeler-DeWitt equation even for a non
nishing cosmological constantL. Although the representa
tions ~A20! and ~A21! look very strange because of theh
junctions at2s2 /s1 and2s1 /s2, they lead indeed to dif-
ferentiable solutions. Since this is a nontrivial claim, it w
be proved in Appendix C, where we show that the integra
of the outerh integral is a continuous and differentiab
function at the junction points, even forLÞ0.

APPENDIX B: ALTERNATIVE INTEGRAL
REPRESENTATIONS FOR THE VACUUM SOLUTIONS

We will now bring the one-dimensional integral represe
tations found in Appendix A into a new, unified form, whic
will display nicely the symmetries of these solutions. T
motivation of this new representation arises from the f
that one of theh integrals, namely,C01238 given in Eq.
~A15!, turns out to be a convolution integral, and may the
fore be simplified with the aid of Laplace’s convolution the
rem. To become more precise, let us write

C01238 52p i E
0

1

dte2s3tI 0@~s12s2!t#

3es3~12t!I 0@~s11s2!~12t!#, ~B1!

where we have substitutedt5(12h)/2 in Eq. ~A16!. If we
denote

g~a,b;t !:5eatI 0@bt#, ~B2!

we may also write

C01238 52p ig~2s3 ,s22s1 ;t !!g~s3 ,s21s1 ;t !u t51 ;
~B3!

i.e., Eq.~B1! is a convolution integral, evaluated att51. Let
us recall Laplace’s convolution theorem, which states

L@ f 1! f 2#~s!5L@ f 1#~s!•L@ f 2#~s!, ~B4!

with
08350
-

d

-

t

-

L@ f #~s!:5E
0

`

dt e2stf ~ t !.

Using the inverse Laplace transform

f ~ t !5
1

2p i Eŝ2 i`

ŝ1 i`
ds estL@ f #~s!, ~B5!

where ŝ has to lie to the right of all singularities of th
integrand in Eq.~B5!, Laplace’s convolution theorem ca
also be written in the form

~ f 1! f 2!~ t !5
1

2p i Eŝ2 i`

ŝ1 i`
ds estL@ f 1#~s!•L@ f 2#~s!.

~B6!

With the aid of the Laplace transform ofg defined in Eq.
~B2!,

L@g#~s!5E
0

`

dt e~a2s!tI 0@bt#5@~a2s!22b2#21/2,

~B7!

we arrive at once at the identity

C01238 5E
ŝ2 i`

ŝ1 i`
ds es )

n50

3

~s2sn!21/2, ~B8!

if we employ Eq.~B6! with t51. Here we have introduced
the four quantitiessn via Eq. ~5.16!, which are ordered ac
cording tos1,s2,s3,s0 for s1,s2,s3. Since the quan-
tity ŝ occurring in Eq.~B8! must be placed to the right of a
the sn , it must be chosen asŝ.s0. With Eq. ~B8! we have
reached a very nice representation forC01238 , which imme-
diately shows up the symmetry with respect to arbitrary p
mutations of thesn : As the integrand obviously obeys th
symmetry, and the integration curve which is placed to
right of all thesn can be chosen to be the same after two
the sn have been permuted, the integral must be invari
under such permutations. Translated to thesp , we first have
a symmetry under permutations of thesp themselves. Sec
ond, the additional symmetry under permutations of the fo
s0↔sp implies that the wave functionC01238 is invariant un-
der a reflections1→2s1, s2→2s2 ,s3→s3, and cyclic
permutations thereof. Thus we directly recover the symme
properties ofC01238 , which we already claimed in Sec. VI.

Regarding the result~B8! in more detail, one may now
ask if there could be further integration curves, apart fro
the one used in Eq.~B8!, leading also to vacuum solutions
Investigating the action of the operatorsFp defined in Eq.
~A14! we find the following result:
1-18
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F3F E ds es)
n50

3

~s2sn!21/2G5
1

2E ds
d

dsF S 2
1

s2s0
1

1

s2s1
1

1

s2s2
2

1

s2s3
Des)

n50

3

~s2sn!21/2G , ~B9!

and similar results hold for the action of the operatorsF1 andF2 on thes integral. Thus we conclude that all four integratio
curves shown in Fig. 1 lead to solutions ofFpC850, because the boundary term~B9! vanishes at the end points of the
curves. However, up to now it remains unclear how these vacuum solutions are connected to those which were
Appendix A. In the following, we shall be interested in a direct transformation between the two representations, which i
tricky and therefore should be presented in detail at least for one of the remaining solutions. In our calculations, we w
the following two integrals:

eatI 0@bt#5
1

2p i Eŝ2 i`

ŝ1 i` ds est

A~a2s!22b2
, ŝ.a6b, ~B10!

E
2`

1`

dt eatK0@butu#5
p

Ab22a2
. ~B11!

Let us now choose as an example the transformation of the wave functionC18 :

C1852E
0

`

dt e2s3~t11!K0@~s22s1!~t11!#e2s3tI 0@~s11s2!t# ;t52
11h

2

5
~B10! 1

ipE0

`

dt e2s3~t11!K0@~s22s1!~t11!#E
ŝ2 i`

ŝ1 i` ds8 es8t

A~s81s0!~s81s3!
; ŝ.2s0 ,2s3

5
s52s8

t8511t 1
ip
E

ŝ2 i`

ŝ1 i`
ds es @~s2s0!~s2s3!#21/2E

1

`

dt8 e2~s31s!t8K0@~s22s1!ut8u# ; ŝ,s0 ,s3.

~B12!

To allow for the interchange of thet8 and thes integral performed in the last two lines, we further have to make sure
ŝ.s1; otherwise thet8 integral in the last line would not exist. If we further requireŝ,s2, thet8 integral will exist even for
an extension of thet8 integral to2`. Let us consider the additional contribution which we would get in case of this exten

~B13!
ing
a

tio

la

ve

-
n

that
Here the lasts integral vanishes, because, without meet
any singularity of the integrand, the integration contour c
be deformed to the negative real axis, where thes integrand
vanishes exponentially. Thus, we still have a representa
of C18 , if we extend thet8 integral in the last line of Eq.
~B12! to the whole real axis. After employing the formu
~B11! we arrive at

C185
1

i Eŝ2 i`

ŝ1 i`
ds @~s2s0!~s2s3!#21/2

3@~s22s!~s2s1!#21/2

5E
ŝ2 i`

ŝ1 i`
ds es)

n50

3

~s2sn!21/2, s1, ŝ,s2 .

~B14!

Similar calculations reveal the remaining two identities
08350
n

n

C128 5E
ŝ2 i`

ŝ1 i`
ds es )

n50

3

~s2sn!21/2, s2, ŝ,s3 , ~B15!

C1238 5E
ŝ2 i`

ŝ1 i`
ds es)

n50

3

~s2sn!21/2, s3, ŝ,s0 . ~B16!

It is now easy to comment on the symmetries of the wa
functions~B14!–~B16!: While C1238 obviously is symmetric
under permutations of thesp and therefore under permuta
tions of thesp , it is not symmetric under a permutatio
sp↔s0 as the wave functionC01238 . The vacuum stateC128 is
only symmetric under the permutations1↔s2 and, conse-
quently, unders1↔s2; the solutionC18 has no symmetry of
this form at all.

Finally, we shall be interested in the limit\→0 of our
vacuum solutions, where we should remind the reader
1-19
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the \ dependence is hidden in thesn via the sp , which
depend on\ according to Eq.~3.14!. As an example, let us
compute the limit\→0 of the wave functionC18 : First of
all, the integration contourC1 can be deformed to the nega
tive real axis, giving

C18522E
2`

s1
ds es )

n50

3

~s2sn!21/2. ~B17!

Substitutings̄n5\sn and j̄5\(s12s) we get

C18522\es1E
0

` dj̄

Aj̄
e2 j̄/\

3@~ j̄2 s̄11 s̄2!~ j̄2 s̄11 s̄0!~ j̄2 s̄11 s̄3!#21/2.

~B18!

In the limit \→0 just an infinitesimal neighborhood aroun
j̄50 contributes to thej̄ integral; thus we may expand

C18 ;
\→0

22\ es1E
0

« dj̄

Aj̄
e2 j̄/\@~ s̄12 s̄2!~ s̄12 s̄0!

3~ s̄32 s̄1!#21/2, ~B19!

where we have substitutedj̄50 in those parts of the inte
grand, which remain regular for\→0,j̄→0, since we may
choose« arbitrarily small. In the new variablej5 j̄/\, we
finally arrive at

lim
\→0

C185
2es1

A2~s22s1!~s21s3!~s32s1!
E

0

` dj

Aj
e2j

52Ap

2

es12s22s3

A~s22s1!~s21s3!~s32s1!
. ~B20!

The limit \→0 of the other vacuum solutions may be calc
lated analogously. As a result, we obtain the sa
asymptotic behavior as in the limit\→0,L→0, which we
discussed in Eq.~5.10! of Sec. V; i.e., the result is indepen
dent of the order in which these two limits are taken.

APPENDIX C: CONTINUITY AND DIFFERENTIABILITY
OF THE INTEGRAND ON THE ASYMMETRIC

INTEGRATION SURFACES

We finally want to show that the two integrals~A20! and
~A21! given in Appendix A give analytical solutions of th
Wheeler-DeWitt equation~3.17! not only forL→0, but also
for LÞ0. To show this we have to prove that the effecti
integrand of theh integral is continuous and differentiable
the junctionsh52s1 /s2 and h52s2 /s1; the Wheeler-
DeWitt operator would otherwise produce boundary ter
when acting on the wave functionsC18 andC1238 , and they
could not be solutions. In the following, we will restrict ou
selves to the solutionC18 in the caseL.0 defined in Eq.
~A21!, which can be written in the form
08350
-
e

s

2pC1852E
2`

21

dhE
0

2p

dwE
1

` r 2 dr

12r 2
expFG

l G
1E

2`

2s2 /s1
dhS 2E

0

2p

dwE
1

`

1E
2 i`

1 i`

dw E
K~1,R!

D
3

r 2 dr

12r 2
expFG

l G . ~C1!

With the abbreviationsP andQ defined via

P:5E
0

2p

dw E
1

` r 2 dr

12r 2
expFG

l G ,
~C2!

Q:5
1

2E2 i`

1 i`

dw E
K~1,R!

r 2 dr

12r 2
expFG

l G ,
we can rewrite Eq.~C1! as a piecewise definedh integral:

2pC185E
2`

21

dhH P12Q, h,2s2 /s1 ,

2P, h.2s2 /s1 .
~C3!

To show the continuity and differentiability of the integran
with respect toh at theh junction we then have to show th
following two properties ofP andQ:

~P1Q!Uh52s2 /s1
50,

d

dh
~P1Q!U

h52s2 /s1

50.

~C4!

To proceed in this direction let us try to evaluate thew inte-
grals inP andQ. Thew integral forP can be interchanged
with the r integral and is then peformed easily, leading to

P52pE
1

` r 2 dr

12r 2
I 0Fl

2
ab

r 2

12r 2GexpFG8

l G , ~C5!

with

G8:512r 212k3rh1
1

2
~k1

21k2
2!~12h2!

1
l2

4

a21b2

12r 2
2

2k1k2h

11r
. ~C6!

TheQ integral is more complicated, because it is not allow
to interchange ther and thew integrals which have to be
performed there: after such an exchange thew integral would
not exist. However, we are free to open ther -integration
contour K(1,R) at r→1`, and the resulting integration
curve can be deformed into a line integralr 02 iR, where we
can choose21,r 0,0. For this r -integration contour we
may then interchange ther and thew integrals, because th
w integral exists for anyr value along the contour. Thus w
can write
1-20
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2Q5E
r 01 i`

r 02 i` r 2 dr

12r 2E2 i`

1 i`

dw expFG

l G
52i E

r 01 i`

r 02 i` r 2 dr

12r 2
K0Fl

2
ab

r 2

12r 2GexpFG8

l G , ~C7!

and in the last line ther integral can be deformed back to th
positive real axis, giving an integral around the cut atr .1,
which is generated by theK0-Bessel function. Let us defin
this cut integral explicitly in terms of the contourCcut via

Ccut :5K~1,R! % $r 2 i0u11R,r ,`%

*$r 1 i0u11R,r ,`%. ~C8!

Obviously,Ccut is a superposition of a pole integral and tw
line integrals along the cut, where one of these line integ
is performed in the upper half plane, while the other one
to be evaluated in the lower half plane. The integral over
integration curve~C8! is independent of the radiusR, as long
as this ranges betweenR52 andR50. Using the formulas

K0~2t6 i0!57 ipI 0~ t !1K0~ t !, t.0, ~C9!

we can evaluate the two line integrals which are containe
Eq. ~C8!, where it turns out that theK0 contributions cancel,
while we get theI 0 contributions twice. Thus we can rewrit
Eq. ~C7! as

2Q524pE
11R

` r 2 dr

12r 2
I 0Fl

2
ab

r 2

12r 2GexpFG8

l G
12i E

K~1,R!

r 2 dr

12r 2
K0Fl

2
ab

r 2

12r 2GexpFG8

l G .
~C10!

If we now consider the limitR→0 in Eq. ~C10!, the first
integral takes the form of theP integral @cf. Eq. ~C5!#, and
we get
ty

s

08350
ls
s
e

in

2Q522P12i lim
R→0

E
K~1,R!

r 2 dr

12r 2
K0Fl

2
ab

r 2

12r 2GexpFG8

l G .
~C11!

Comparing this result with the desired claim~C4!, all that
remains to be shown is that the pole integral in Eq.~C11! and
its h derivative vanish in the limitR→0. In this limit
R→0 the only contribution to the integral arises from a
infinitesimal region aroundr 51, and so we can expand th
K0-Bessel function for large arguments; furthermore, parts
the integrand, which remain regular forr→1, may be sub-
stituted by their values taken atr 51. We then find, for the
pole integral,

E
K~1,R!

r 2 dr

12r 2
K0Fl

2 ab
r 2

12r 2GexpFG8
l G

}
R→0E

K~1,R!

dr

A12r
expFl8 ~a2b!2

12r G , ~C12!

where we have only taken into account ther -dependent parts
of the integral, while asp-dependent prefactor has bee
omitted. If we now consider the right hand side of Eq.~C12!
at theh junction h52s2 /s1, a andb become coincident.
Thus the essential singularity of the integrand disappe
and all that remains is an integrable square-root singula
for which the pole integral vanishes in the limitR→0. Simi-
lar arguments show that also theh derivative of the pole
integral in Eq.~C11! vanishes forR→0; so, after all, we
have proved our claim~C4! and, therefore, the continuity an
differentiability of theh integrand in Eq.~C1!. Analogous
calculations may be performed for the second nontrivial
tegration surfaceS123

3 , where we have to deal with two dif
ferenth junctions.
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