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The Bianchi type IX mixmaster model is quantized in its nondiagonal form, imposing spatial diffeomor-
phism, time reparametrization, and Lorentz invariance as constraints on physical state lvefdrgauge
fixing. The result turns out to be different from quantizing the diagonal model obtained by gauge fixing already
on the classical level. For the nondiagonal model a generalized nine-dimensional Fourier transformation over
a suitably chosen manifold connects the representations in metric variables and in Ashtekar variables. A space
of five states in the metric representation is generated from the single physical Chern-Simons state in Ashtekar
variables by choosing five different integration manifolds, which cannot be deformed into each other. For the
case of a positive cosmological constantve extend our previous study of these five states for the diagonal
Bianchi type IX model to the nondiagonal case. It is shown that additional disgreteutation symmetries
of physical states arise in the quantization of ttediagonalmodel, which are satisfied by two of the five
states connected to the Chern-Simons state. These have the characteristics of a wormhole ground state and a
Hartle-Hawking “no-boundary” state, respectively. We also exhibit a special gauge fixing of the time re-
parametrization invariance of the quantized system and define an associated manifestly positive scalar product.
Then the wormhole ground state is left as the only normalizable physical state connected to the Chern-Simons
state.[S0556-282(98)04316-1

PACS numbgs): 98.80.Hw, 03.65.Bz, 04.60.Ds

[. INTRODUCTION Recently we examined this question for a spatially homo-
geneous minisuperspace model of Bianchi type IX with a
Quantum general relativity has advanced over the last dediagonal metric tensor in the cases of a posifit&] and
cade at a remarkable and accelerating pace. The introductioregative[ 13] cosmological constamk. A diagonalform of
of Ashtekar's new variablgll—3] to replace the earlier met- the metric tensor can be assumed in tHassical theory
ric representation soon afterwards led to the discovery of avithout the restriction of generality, because it is a permis-
formally exact physical state of the canonically quantizedsible gauge-fixing condition for the remnant of the spatial
theory with a nonvanishing cosmological constant, thediffeomorphism group in the Bianchi type IX model. Taking
Chern-Simons statet,5]. Then the introduction of the loop also the matrix of Ashtekar variables as diagonal amounts in
representation[6] permitted us to reexpress the Chern-addition to a gauge fixing of the Lorentz gauge group. Quan-
Simons state as a topological invariant of framed loops orizing such a diagonal model therefore means to apply gauge
three-spacg7], the Kauffman bracketg8]. It also led to the fixing of the diffeomorphism group and the Lorentz group
discovery of further physical states lacking, however, onebeforequantization. The result of our study of the diagonal
important general property of the Chern-Simons stateBianchi type IX model was that actually five distinct physi-
namely, a well-defined nondegenerate space-time in the clasal states in the metric representation are generated by trans-
sical limit. The Chern-Simons state semiclassically describeforming the Chern-Simons state from Ashtekar variables to
a de Sitter(or anti—de Sitterspace-time for a positivehega- metric variables. This change of representation takes the
tive) cosmological constant, respectivgélf]. Subsequent im- form of a generalized multidimensional Fourier transforma-
portant advances were the introduction of spin netw@8s tion in the space spanned by the complex Ashtekar variables
and quantum spin network40] as a discretized description along arbitrary paths or, more precisely, integration mani-
of three-space in which areas and volumes are quantized fiolds with boundaries pinned by the condition that partial
Planck units and which furnish yet another representation oihtegration without boundary terms must be allowed.
physical states. In the present work we take our investigation of this basic
The choice of different variables and representations haguestion a step further and examine the metric representa-
therefore played, and continues to play, a crucial role in théions of the Chern-Simons state for thendiagonalBianchi
development of the theory. It is not always clear, however, tdype IX model. Why is this step interesting, and why cannot
which extent the different representations are equivalent tthe results of our study of the diagonal case just be taken
each other. This question is particularly relevant for the conover? Quantizing the nondiagonal model amounts to inter-
nection between the metric representation and the represechanging the steps of gauge fixing and quantizing: the gauge
tation in Ashtekar variables. In fact it was showr{id] that  fixing of the spatial diffeomorphism group and Lorentz
the two representations are, in general, not equivalent. Ongroup is now donefter the quantization. The result is, in
may therefore wonder: Has the Chern-Simons state, the onlgeneral, not the same as before the exchange of these steps.
known physical state with a well-defined classical limit, aln fact, in Sec. Ill A we give a very simple example from
counterpart in the metric representation and is it unique? lgquantum mechanics which shows that gauge fixafter
general, the answer to this question is still unknown. quantization is preferable, in general, because it takes all
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symmetries into account in the quantization process in o the metric representatigSec. IV B) is given, leading to a
natural manner. The example also makes clear that the resuffeneral integral representation over a suitably chosen three-
in general, differs from that ofirst gauge fixing andhen  dimensional manifold®3. In Sec. V various asymptotic
quantizing by(i) quantum corrections in the Hamiltonigii) ~ forms of this integral representation are evaluated. The limits
weight functions in the naturally defined scalar product, and:onsidered arérst 4 —0 (Sec. V A andtheneither A—0
(iii) additional discrete symmetry requirements to be satisfie§Sec. VA D or Aa’—0 (Sec. V A2, wherea is the geo-
by the solutions. metrical mean of the scale parameters, and0 (Sec. V B
We shall see that all three differences also show up in oupvithout necessarily taking a second limit. In Sec. VI we ex-
study of the nondiagonal Bianchi type IX model. In fact the hibit for the general case, i.e., without taking asymptotic lim-
noncommutativity of gauge fixing and quantization in thelts, five possible and topologically distinct choices of the
Bianchi type IX model was previously discussed by Majorintegration _manlfold.sEg’ leading to five exact solutions of
and Smolin within the framework of path integral quantiza-the constraint equations in the metric representation. We also
tion [16,17. Our investigation here differs by the use of discuss their relation with the asymptotic results of Sec. V
canonical quantization and, in particular, by studying a speand their normallzablllty with respect to the inner product of
cial quantum state, the Chern-Simons state. Comparing thaec. Ill C. Our conclusions are then summarized in Sec. VIL.
two ways of quantization we find that on the leading semi-Three appendixes deal with certain technical details. The
classical level the solutions for the nondiagonal model ardimit A—0, the results of which are discussed in Sec. V B, is
the same as in the diagonal case. However, in the next tguite subtle and therefore done in some defipendix A).
leading semiclassical order they already differ due to thdt leads to a nice integral representation of the vacuuen,
quantum corrections in the Hamiltonian and due to changed =0) solutions(Appendix B. Finally we check certain re-
in the naturally defined scalar product. Even more imporquired nontrivial continuity and differentiability properties of
tantly, the additional discrete symmetry requirements ardéhe integrand of the integral representation of Sec. IV B on
only met by two of the five linearly independent states, leavthe integration manifold&*® (Appendix Q.
ing just two physical states in the metric representation of the
n(_)ndiagonal model whigh are generated by the Chern- Il. QUANTUM CONSTRAINT EQUATIONS
Simons state, a generalized wormhole state and a Hartle-
Hawking state[14,15. It is remarkable that states of both  In this section we shall set up our notation and give a brief
kinds are related to the Chern-Simons state and that the tw@erivation of the quantum Einstein equations for the homo-
different semiclassical boundary conditions singling out ei-geneous Bianchi type IX model. While the classical con-
ther one of them can still be satisfied at this stage. straint equations for this model are determined uniquely, the
In a final step we also gauge-fiafter quantizationthe = quantum operators associated with these constraints suffer
time reparametrization invariance and introduce a manifestijrom the well-known ambiguity of the factor ordering, in
positive scalar product on the space of physical states. Agarticular in the Hamiltonian constraint. The main purpose of
will be shown in a separate paper only the generalized wormthe following will be the motivation of a special choice of
hole state is normalizable in this scalar product. Gauge fixingactor ordering. Technical details of the derivation will be
of the time reparametrization invariance in ttlassicalBi- ~ summarized rather briefly.
anchi type IX model was discussed [ih8]. However, the
particular class of gaugeff_ixing conditions considered there 5 metric representation of the constraint equations
would not lead to a positive scalar product quantum me- ) ) o ) )
chanically. . Let us start with the Ems_teln Hilbert action for a gravita-
The rest of this paper is organized as follows: In Sec. litional field with a cosmological constant:
we define our notation and set up the metric representation of
the constraint equations of the nondia_lgonal mogigbc. SEH[QM]ZJ d“x\/—_g(“R—ZA). (2.2
Il A), extract a well-known exact solution fok =0, the M
wormhole statéSec. Il B), and give the representation of the
constraint equations in Ashtekar variab(&ec. Il Q. In Sec. Here M is the space-time manifoldg=(g,,,) the four-
Il we discuss in detail the differences between the diagonametric on M, g=det @,,), and 4R the curvature scalar of
and the nondiagonal Bianchi type IX model. We first give athe four-metric. The common prefactor 1/6 of Eq. (2.1)
simple quantum mechanical example, the harmonic oscillatofias been avoided by picking units wi@= (167) . As is
in two dimensions with a rotational gauge symmetBec.  well known, the Arnowitt-Deser-MisnefADM) space-time
[l A). Then the corresponding comparison for the BlanChISp"t and a subsequent Legendre transform with respdq} to

type IX model is given(Sec. Il B). We also mention here yie|q the following equivalent expression for the Einstein-
briefly a gauge fixing of the time reparametrization symme-jipert action[20]:

try and an accompanying physical inner product on the space

of physical stategSec. Il ) but a more detailed presenta-

tion of this point is beyond the scope of the present paper SEHZJ dtf d3x(7r”hij ~NHg—N/H), 2.2
and will be given separate[9]. In Sec. IV the transforma-

tion of the Chern-Simons state of the nondiagonal Bianchi

type IX model from the Ashtekar representati@ec. IV A  with
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He=G IJk|7TJ7TI< _ \/ﬁ(3R 2MN), Hi= _z%ij“’ with H, and H, being phase space~functions of the funda-
(2.3  mental variables,, and the momentar” only.? If we make
use of the remarkable identity
where

Vh 3R=—mPIG M, (2.10

Gijui 1= (hikhji +hjthj—hijhy). (2.9

1
m which is valid for the general Bianchi type A case, the
Hamiltonian constraint{y may be written in one of the two

In the transition from Eq(2.1) to Eq.(2.2) a surface term has following forms:
been omitted, since it will have no effect on the constraint
equationsN andN; are the lapse function and the shift vec- Ho=[7PI=imPIG o d 7SFim™]+2AVh. (2.12)
tor, respectively, and the three-metrib;;) of the spatial
manifoldt=const is used to raise and lower the spatial indi-Let us first restrict ourselves to the kinetic panthich be-
cesi,j,k, ... . A stroke denotes covariant derivatives with comes the full Hamiltonian constraint for the Bianchi type |
respect to the three-metriéR is the curvature scalar of the mode)
spatial manifold, andh denotes the determinant of the three-
metric. T=7PIG 7™, (212

Let us now consider daomogeneoushree-manifold of
one of the Bianchi types; then there exists an invariant basigescribing a particle moving freely on a six-dimensional
of one-forms w= wh(x) dx', such that any homogeneous manifold with coordlnateiaapq and the(lndeflnlte) supermet-
tensor field on the manifold has spatially constant comportic GP9'S, which is the inverse OqurS To quantize such a
nents when expanded in this bag?d,22. In particular, we system, we may employ new coordina of the minisu-
have perspace such that, at least locally, the supermetric takes a

diagonal form: i.e.,

1
dwP==mPl, 0 /\w° (2.5 -, -,

2 ars T=7PY mpqrs™'® (2.13
with a constant structure matrix®9. In the following we i
shall be interested in the Bianchi type IX case, where the
structure matrix is of the simple forrmP3=sP9. If all the -1 if p=q=r=s=1
tensor fields occurring in Eq2.2) are expanded in the in- 1 ’ '
variant basis, we arrive at the following expression for the = 7pgrs:= ;

; R . = + otherwise.

Einstein Hilbert actiort: (OprSsT Gpsar)

In these “free falling” superspace coordinates the associated

SEHZJ dt EEH:I dtf dxe(mP%pq—NHo— N"Hp), guantum operator is expected to be

(2.6
P 3 Toop2 ’ 2.1
— rs = —
HQ—qurSrﬂ'pq'ﬂ' —\/ﬁ( R—ZA), [?h’ npqrsﬁhr’s| ( . 4)
— qnp  —sr . ) )
Hp=2e prgM s, 2.7 and, transforming back to thg,, coordinates, we arrive at
where
1 2According to Eq.(2.6) 7P h icall '
35— T (mPSh \2_ nPS qr g to Eq.(2.6) #P9 are not the canonically conjugate
h*R Z(m Nsp) "= M NsgmThy, . 28 momenta toh,,; they differ from them by a rescaling factor

V:=[d® w. Consequently, the canonical Poisson brackets read
Here w=det (%) in Eq. (2.6) contains the only spatial de-
pendence o6g,, which therefore can be integrated out ex-
plicitly. Afterwards, the Lagrangian equations with respect towith
N andNP imply the following set of first class constraints:

1
{77 ha=—5 5pq

1
510:= 5 (6P53+5059),

Ho=0, 7,=0, (2.9 and the additional factor ¥/should be carried over to the canonical

commutation relations of the quantized theory. There, it can be
eliminated by a rescaling of Planck’s constant Since we are
The following expressions are valid not only for the Bianchi type mainly interested in the quantized theory, we will use this freedom
IX model with mP%= P9, but even for a general Bianchi type A to setV=1 in the following.
model characterized byP9=maP, 3More precisely, we requir&?I™G,, ;=6 PJ.
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. 1 4 9 are consistent withi(,,) having positive eigenvaluésAs is
T=—-182— —J@qurs—, (2.15 known from the quantization on a curved manifold, thg
VG Mg s representation of the momentum operator has to be corrected
with a relative weight facto64, leading to

which is easily recognized as the invariant Laplace-Beltrami

~ 1 d
operator on minisuperspace. Hegeis the absolute value of mPi=—i#h Gll4§(W+ W) G4
the determinant of the supermetr®&Pd's, which can be pa ar
shown to be proportional th™ . o 9 s
These considerations suggest the following factor order- =—ifi h7"=——h""" (2.19
ing for the quantum version of the Hamiltonian constraint (PQ)
(2.11: Using thish,,, representation, we may rewrifé, and7{,, in
the form
Fo= = —in - +imm| GG To=(a")'Gpqa®+2AVh=75,  (2.20
0 \/6 ahpq pars '
with
X| =i ——im" +2A+\h aP%=h~ Y 7Pa—imPa)nY4
rs
1 5 and
= — 2 _ [ ~ ~
Atho Jn Crarsan, Fly= 26 prqm¥hy 7' = 26 My 25"

=—2ifi &pqmih =H}. (2.2

d 1 -
_h\/ﬁﬁ(_epqrsmrs) - \/E(SR_ 2A), nS(3)h(s.r)

al vh

That the diffeomorphism constraints can indeed be written in

(2.18 the form of Eq.(2.21) is checked easily by using the identity
where we have chosen the signsiof®? in the first line to h”“ih*l"‘: - Ehpq, (2.22
make the special physical state defined below in R4 N (pg) 4

become an exponentially decaying solution. We end up with =~~~ ) " A
a Wheeler-DeWitt operator, which, apart from a special fac\Which implies that there is no additional contribution,
tor ordering in the kinetic term, contains a quantum correc&1Sing from the determinant factor, as one might expect.
tion to the potential, due to the action of the derivative op-Vith EGs.(2.20 and(2.21) we have now nice, self-adjoint
erators on the supermetric. Such a term is well known fronPerators, which, moreover, form a closed algebra, as we
the diagonal model; cf12]. The factor ordering chosen in Wil s€€ in Eq.(2.38 below.
Eqg. (2.16 has the nice implication that the Chern-Simons
state becomes an exact solution to all quantum constraints in
the Ashtekar representation, as will be shown in Sec. IV A.  As is immediately seen from E@2.16), the wave func-
To put the diffeomorphism constraint in more concretetion
terms, we should be further interested ih g representation

~ : : : : 1
of 7P9, obeying the canonical commutation relations ‘I’WH1=9XF{ — =mP%h,,

B. Wormhole state

f

_ P
= .EX[{ - %} (2.23

[7P9h J=—i# &P (2.17) is a solution to the Hamiltonian constraint far=0, which
v s ' moreover satisfiea?™¥,,,,=0 and therefore solves the dif-
feomorphism constrain2.21) as well. For the Bianchi type

Moreover, we wish7Pd to be a Hermitian operator with X Model, Eq.(2.23 may also be written in the form

respect to the natural auxiliary inner product on the extanded

1
Hilbert space, in which the Wheeler-DeWitt operat@rl6 Vwhu=exp| — %()‘1+)‘2+ N3) |, (2.29
is Hermitian:
4 . . . - e .
_ 9 _ The so-defined integration regime for the auxiliary inner product
(¥|®) f d hpqpl;[q d(Npq=hgp) \/E\I’(hrs)d)(hrs). has a nontrivial boundary dt=0, where at least one of the three

(2.18 eigenvalues of ff,) vanishes. Consequently, we have to restrict
ourselves to state¥, which vanish forh—0 in a suitable manner
to assure Hermiticity of the differential operators occurring in Eq.

Here the components tf,, range over all real values which (2.16.
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where\, are the eigenvalues of the three-methig,, and To construct the generators of these constraints we ob-
this state is known as the “wormhole” state from the diag- serve that Eq(2.28) is invariant under rotations @, in the
onal modeF The fact that it will occur as a prefactor to all |gca] tangent space, generated by

further wave functions discussed within this paper suggests

to perform the following similarity transformation: JézisaboAprpr (2.29
=g iy ﬂp: e—@/ﬁﬂ{)ezb/ﬁ, ﬂo: e—rb/hﬂée@ﬁ' with
(2.29
_ h 9
In this new representation, the transformed operators take the Aga:="7 Geu
form a
The J] satisfy the angular momentum algebra
“ J
[——X] an ’ ’ : ’
Hp= = 2o pgM s 5, (2.29 [35,3]=iheapcd, (2.30
1 and commute WitW:(,’) and . They are the generators of
72[6:_[ ih _'? — 2impq} JGG it LJF 2A+h, the Gauss constraints. The general solution of the Gauss con-
JGL  dhyg PATS s straintsJ; ' =0 is obviously given by wave functions of the
(2.27  form
which will be recovered from a very different approach in ,/,'('épa):qf'(hpq), (2.3)

the next section.
whereh is a function of the~e”a via Eq.(2.28. Acting on

C. Representation of the constraint equations in Ashtekar solutions of the Gauss constraints the operat€9~epEl can be
variables written as
In this section we want to derive the so-called Ashtekar
representatiorf1,2] of the quantized nondiagonal Bianchi A :_f J ZEG ~q 9 (2.32
type IX model using the inverse densitized triad of the three- pa 2 Jger, e m”pqeaahmn’ '

metric h,, and complexified canonically conjugate variables
]Ehereodf'.TTﬁ fllrsttstept_ln tT)'S dlrﬁgtmn ?fat?] alreadyhb:aentpter\;vheree is the square root of the determinanteft,. This
ormed in the fast section by spiitting olf the wormnhole Saepermits us to rewrite the constraint operatd®s26 and
(2.23. What remains to be done now is to introduce the ) £ th =~ $

inverse, densitized triad of the three-methig,, defined via (2.27 in terms of the operators®; and Ay, &

h-hPI=gR.3q . (2.28 H, = 2iepqmehAg,, (2.33

Here and in the following,b,c, . . . areflat, internal indices Ho:=€ 'eapcepqr€aQ ¢, (2.39
running from 1 to 3; they are raised and lowered with the flat

metric 8,, and will therefore always be chosen to be lowerWith the operators

indices without any restriction. The introduction of a triad A 1 A
has the great advantage that the three-metric defined via E L L r

(2.28 is automatically positive definite, at least as long as(]Q 2= Flat g = mP et 5P eapcAgp e 3€%.
the triad is real valued, and this is favorable for a definition (2.35

of an inner product on the space of wave functions. How-

ever, as is well known, we gain three additional degrees ofhe operatorgQ", are very convenient and can also be used
freedom by introducing such a triad, corresponding to theo reexpress thé, andHr’, as

three possible rotations in the flat local tangent space. These

redundant rotational degrees of freedom are accompanied by , 3 0

three additional first class constraints referred to as the Gauss Jai= XsaboApr c (236
constraints.

Hp=2i(8pqe%Q s~ Apady)- (2.37

5This name derives from the fact thdt solves the Euclideanized
Hamilton-Jacobi equation with Euclidean four-geometry at a large
scale parameter. We shall use this name in the following to refer to °In Eq. (2.34 we have to order the field-strength operat@/§ to
the state(2.23 or (2.24) for A=0 or its generalization foA #0, the right; otherwisei:((’) would not give Eq.2.27 when acting on
without entering a discussion of wormholes, however. Gauss invariant states.
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By constructionH") and A, coincide with 7‘_['; and 72[6 de- A. Example: The two-dimensional harmonic oscillator
fined in Egs.(2.26 and(2.27) when acting on the invariant with L=0
subspace spanned by the solutions of the Gauss constraintsiLet us consider a well-known example, the two-
(but they extend these operators also to nonphysical statefmensional harmonic oscillator with unit mass and unit fre-
outside this subspace, which are of no interest to us, howguency, but with the additional constraint that the angular
eve). The commutation relations 6f, and’+; are particu- momentum should vanish:
larly easy to evaluate in the representati@r83),(2.34):
H="Ho+NL,
H) Hel=ithe qmSHs, [Hy, Hyl=0. (2.3
o Pl ZhopqmHs. Lo 7% (238 Ho=3 (PI+p3)+ 3 (Ai+03), L=01po—0Ps.

) A 3.1
They imply the same commutator algebra for g, Hj, @)
and, via the similarity transformatid2.25, also for theff-[p, HereH, is the Hamiltonian of the unconstrained system and
ﬁo- N is a Lagrangian multiplier. As for the Bianchi type IX

Summarizing our results so far, we have shown that, asmodel, we have the ni_ce property that the constraint is given
suming thaty’ (épa) is a solution to the constrain(@.29), by a conserved quantity, blt generategaugetransforma-

. tions only if we identify all the directions, in which the ef-
(2.33, and(2.34, the transformed wave functiow (h,), fective oze-dimensionfgl oscillator can move
connected witi' via Eq. (2.29, is a solution to the con- :

. : . . If we first quantize this system similarly to the diagonal
§tra|nts(2.2@ and(2.23) in the metric represent_at!on. In Par gianchi type IX case, we have to solize=0 on the classical
ticular, if we are able to solve the more restrictive but sim-

pler set of equations level, which is done by

~ q2=0=p,=0,=0. (3.2
QR (%)=0, (239
In this gauge we arrive at the effective Hamiltonian

it is clear from the definitions given in Eq§2.34), (2.36), 1 1
and (2.37 that we have also found a quantum state of the Hop==p2+ =02, q=q;, (3.3
full, nondiagonal Bianchi type IX model with a honvanishing 2 2
cosmological constant in the metric representation. This will ) _ o _
only be a special class of solutions, however, because E/Nich is easily quantized because it simply describes a one-
(2.39 represents nine conditions, while the Hamiltonian, dif-dimensional harmonic oscillator:
feomorphism, and Gauss constraints together constitute -

. R 1 + o0
seven conditions only. o — = L 22, <q,|q)>:J' dg U+ () (q).
2 aqz 2 —o0

Ill. COMPARISON BETWEEN THE DIAGONAL 3.4

AND NONDIAGONAL BIANCHI TYPE IX MODEL Let us now, second, proceed in analogy to the nondiagonal

We shall now adress the interesting question of whetheBianchi type IX case. Then we have to quantize first, and
the nondiagonal Bianchi type IX model presented in Sec. [obtain
and the diagonal Bianchi type IX model discussed i2]
have the same physical c_or)tent.. On the classical level, it is of ﬂ=ﬂo+ NL, (Y| ¢>:f d2qy* (91,02) (1, 02),
course unnecessary to distinguish between these two models, R?
because we can use the gauge freedom of the diffeomor- (3.5
phism constraints to transform the nondiagonal Bianchi type .

IX model to the diagonal one. When discussing thean- with

tized Bianchi type 1X model, most authors restricted them- w2l 2 g 1

selves to the diagonal case; i.e., they solved for the diffeo- Ho=— = — + — | +=(q3+03),

morphism constraints on the classical level, and performed 21692 oq5 2

the canonical quantization procedure for the effective three-

dimensional system. This approach immediately suggests it- L——inlq i—q i) 3.6
self, and one may hope that a quantization of the full Bianchi Yog, 2aqq) '

type IX model (on a six-dimensional configuration space
with diffeomorphism constraints imposed on the quantumSolvingL =0, the wave function must be of the form
mechanical level should physically lead to the same results.

In the following, we shall first discuss a very simple ex- (01,02, ="(q), gq=+gi+0s. (3.7
ample, which immediately shows that this belief is in general
not true; we will then show in Sec. Ill B that the two quan- However, to ensure thag is a differentiable function with
tization procedures used for the diagonal and nondiagonakspect toq,; andqg,, we must requireV(q) to be an even
Bianchi type IX model indeed differ drastically. function inq:
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V(q)=¥(-q). (3.8 Pp(Ap)=W(hpg)

Furthermore, if we compute the action &f on such a solu- =XM1+ Aot hg Mhot Aohat Aghs M ihohs)

tion ¥(q), we effectively have (3.13
. 2140 o9 1 , K2 2 B2 5 1 R is a regular function irh,,, too. We observe that, as a con-
Hett=— ) a % % + Eq ) (9—qz - E % +§q , sequenceys(\p) is symmetric under arbitrary permutations

of the \,, while any wave function which is not symmetric
under these permutations will not be differentiable with re-
pect toh,,. This symmetry requirement is the analogue to
he parity requirement3.8) of our example in Sec. Il A.
It will be convenient to introduce new variables

and the effective scalar product for solutions to the angulal
momentum constraint becomes

— 20y, /%
<¢|¢>—JRZd a7 (d1,02) $(d1,02) o_p::%\/m>0’ (3.14

:2wf:dq qP* () P(q)=(V|P)err. (B.10  with

As a result, we have three important differences between the par=1,

guantization procedures pointed out abofigThe effective
Hamilton operator$3.4) and(3.9) differ by a factor ordering
term — (%2/29) 9/ 9q, which becomes singular where the co-
ordinate transformation from, ,q, to polar coordinates with
radiusq is not invertible;(ii) the scalar product§3.4) and PN

(3.10 contain different weight functions and different inte- No=7 ar (3.15
gration regimes(iii) for the second quantization procedure, 2 op

we get a parity requiremen(8.8) being absent in the first ) ,

case, because we originally start with differentiable function@nd We arrive at the representation

on a higher dimensional configuration space.

instead of the eigenvalues,. In the diagonal gauge they
play the role of the inverse densitized triad. The inverse
transformation reads

Al three differences will now be recovered when com- V(op)= (N = n m); (3.16
paring the diagonal and nondiagonal Bianchi type IX mod- 2 op
els.

so the wave functionV (o) is not only invariant under ar-
bitrary permutations of ther,, but in addition invariant un-
der reflectionso,— —o,,04q——0q,0,—0,. These are
necessansymmetry requirements for the wave functions in
To compare our results of Sec. Il for the nondiagonalthe o, representation, which were absent in the diagonal
Bianchi type IX model to the diagonal case discussdd®),  case; cf[12]. The result is independent of the factor ordering
let us try to solve the diffeomorphism constraiti®s21) on  chosen for the Hamiltonian constraint, since we only made
the quantum mechanical level. Three special, regular solugse of the diffeomorphism constraints, which have a unique,
tions to these constraint equatiohg¥ (h,,) =0 are the in-  geometrically fixed factor ordering.
variants of the three-metric, which read The effective Hamiltonian constraint in the, represen-
tation becomes

B. Three differences between the quantized diagonal
and nondiagonal Bianchi type IX models

T:=Tr (hyg), Qi=3me™%"*h,hys, h=det(hy,).

(3.1) . 1 1 1 )

R HO‘I’ X\ 0102073 O_—Q1+O_—Q2+O_—Qg v'=0,
Therefore the general solution 16, ¥ =0 is any function of ! 2 3 (317
these three invariants: ’

where
. . . . . g0y — 0 dg M\

where x(T,Q,h) is a differentiable function with respect to Q. =0dyd;— 9 NI L e =1,
its three argument§,Q,h. We may now express this general P a P a'g— crr2 2°°P pa
solution in terms of the three eigenvalueg of the three- (3.18

metric, which, however, araot C'(R®) functions ofhyg,

because of the cubic roots which are needed to express thighere
\p in terms ofh,,. Nevertheless, a functicir (h,,) solving

H,¥'=0 according to Eq(3.12 actuallyis C*(R®) with N=h=.  gy=—— (3.19
respect tch,q, and so 3 a
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It is possible to show that the very restrictive condition

(2.39 now implies that each operata®, annihilates¥’ <‘I’|‘1’>:ngdgepaiﬂ*(epa)fﬁ(epa) (3.23

separately. A comparison with the corresponding result for

the diagonal modedicf. Eq.(2.23 of [12]] reveals that, apart in these triad coordinates, we have to eliminate the gauge

from a global factor/o,0,03, we have an additional factor freedoms with respect to the diffeomorphismnd the Gauss

ordering term in Eq(3.18), which becomes singular where constraints. To fix all these gauge freedoms, we may impose

two of the o, become identical. The occurrence of the sin- the six gauge conditions

gularities in these terms and the zeros in the measure of Eq.

(3.2) (see below reflect the fact that the transformation x%=e%=0, p#a, (3.29

(3.20 between the variablds,, in which the quantization is

performed and the variablelsr,,¢,}, which separate the which require the triad to be diagonal. Then the effective

gauge degrees of freedom from the physical degrees of freeneasure in the scalar produ@&.23 can be calculated as a

dom, is not invertible whenever two of ths, take the same Faddeev-Popov determinant of the commutators between the

value. However, this factor ordering term is just a quantumgenerators¥,,J; of the gauge transformations and the

correction, which does not affect the semiclassical limitgauge condition§3.24). If we denote the remaining diagonal

f—0, and should be expected to appear(igfof Sec. Il A. elements ofe?, by o, and, moreover, take into consider-
To conclude this discussion, we should remark on theyion il the symmetries of the wave functions with respect

inner product on the Hilbert space of wave functions, beyg hermutations of ther,, we arrive exactly at the scalar
longing to the two different models. In a first step we want toproduct given in Eq(3.2’])).

compute the auxiliary inner produ€2.18 for the nondiago- In the diagonal Bianchi type IX model a natural scalar
nal model, which remains for diffeomorphism invariant roduct is

wave functions. Let us therefore rewrite the fundamentaP
variablesh,q in the form

(Vo) [ da 9. 4B W (0810 e ),
(3.2

because the variables 8., andB_ introduced in[12] are

the free falling coordinates on minisuperspace for the diago-
nal model. Transforming this to the, representation, we
arrive at

3
hpq=21 Qo Qqr,s (3.20

where the SC8) matrix (2,,;) depends on three Euler angles

¢4 After a subsequent transformation to tirg defined in

Eq. (3.19 the auxiliary scalar produ¢®.18 transforms into
dO'l d0'2 d0'3

(o= 03 (05— 05) (a5~ o)) <\P|q)>°cfa e MCHLICARIERE
)3/2 p

(wi@)= [ ey [ do,
(010203
where the threer,, integrals have to be performed along the
positive real axes now. Obviously, the additional factors
2 2 . . . .
here d) is the invariant Haar measure on the group®p_ “q occurring in Eq.(3.2]) are absent in the d|agqnal
w (¢a) | mvarl Y 9 LIIC)case; i.e., the measures in the scalar product of the diagonal

manifold of S@3) and the variablesr, must be positive . i
and of a fixed order, e.go;3> 0,> 01 >0 2 The Euler angles and the_ nond!agona_l mo.dEI differ, as was already expected
P I8 T2 UL fhen discussing poirtii) in Sec. Il A.

are pure gauge degrees of freedom and have to be gau&v L -
e at some anivay val n e physical sclar product/® 2709 L UATZ1Cn w1606 P 2t e
which is simply done by dropping the factgidQ in Eq. y 9 gation.

(3.21), which is just a constant prefactor, anyway. The quantizatior) procedure followed in Sec. Il seems pref-
Remarkably, we get the same result for the effective inne rab_le because it Seems much nearer to a quantization of t_he
product, if we start from an auxiliary inner product in the ull, |nr|10moge'\:|1eous fleldlman ihe ”19‘.*;;"5 used fo,[. thg oi-
triad variablesey,, which are defined via :ﬁgni{; (t:ﬁize.senosrgot\r/s;ts d i%ugcgi?silg Wgaare quantize
y, as one would
(3.22 expect from the viewpoint of general covariance.
' To complete our discussion of the inner product on the
space of wave functions, we should give thigysicalinner
product, which is obtained from theuxiliary inner product
(3.2)) or (3.26) by eliminating the last gauge degree of free-
dom corresponding to the Hamiltonian constrakfy.
’Such a factor ordering term is well known from earlier work; cf.
[23].

8The transformatior(3.20 turns out to be invertible only for a
fixed order of thex, (or, eqivalently, of ther,), because permuta-
tions of theh, may be realized by suitable rotations with 8D To shorten the present paper, we want to postpone a de-
matrices(},, . tailed motivation and derivation of the physical inner product

XU* () D (o), (3.21)

€pa’ €ga= hpq.

If we impose the simple inner product

C. Physical inner product on the Hilbert space
of wave functions
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to a future papefl19]. There, we will also investigate the o S —
normalizability of the wave functions constructed in Sec. IV, (‘I’||<D>03=f d,B,J doW*
and it will turn out that the physical inner product uniquely 0 0
determines one normalizable state in both of the two cases

A =0 andA >0. In this subsection we only want to give the With

final form of the physical inner product on the space of wave

functions and some main ideas how to arrive tH&#-26. _

The effective inner product for a constrained system with =

0l —
ih—‘(b, (3.30
Jv

2 2 2 2 2 2\71/2
(01— 03) (05— 03) (05— 07)

constrainflT =0 is generally obtained by first choosing a suit- 719293
e . (3.3)
able gauge conditioly and, second, calculating the follow- .
ing expectation value with respect to the auxilidoy “ki- L, |h 1 o
nematic”) inner product: v=at=l 5] NO1020s, '8__2\/5 '”U_l-
<\I,||q)>phys:<qf||‘]|5(X)|(I)>auxv (3.27 o o )
This inner product has now an intrinsic “time” parameter
with o3, Which must be given to compute probability distributions
with respect to3_ anduv, the remaining physical degrees of
J:=i[T,x]. freedom.

Here J is the so-called Faddeev-Popov determinant. This
definition makes sense whenevieis a first order derivative
operator on configuration space, because fld¢will be a

IV. SOLUTIONS GENERATED
FROM THE CHERN-SIMONS FUNCTIONAL

positive real number and E@3.27) defines a positive Her- A. Ashtekar representation of the Chern-Simons state

mitian product. However, in the present cabe7, iS @ Ag pointed out in Sec. II, we can find a special exact
second order derivative operator, and we have to deal W'tlauantum state for the nondiagonal Bianchi type IX model
two problems. with a nonvanishing cosmological constant, if we are able to

(i) At first sight, |J| seems to be a mysterious quantity,
because] itself is a first order derivative operator on con-

figuration space. However, sindes a self-adjoint operator, e transformed version of E42.39, where it is essential to

we may decompose any staiein terms of eigenstates df e rform not a customary, but a generalized Fourier transform
to arrive at a very natural notion ¢J|. This operatofJ| then  ntroduced in[12]:

is itself self-adjoint and, moreoveppsitive

(i) In general,|J| and 8(x) will not commute, and so - o 2 -
(W||®)pnys Will neither be Hermitian nor positive. This l//'(epa)“J-Eg d"Apa eXF{gApaepa
would give a rather miserable physical inner product. Sur-
prisingly, there exists a small set of gauge conditgrsuch

9—9 i i ; ; ;
that the gauge condition commutes with the Faddeev—Popog.ere 2. CCI IS any f9t-r(]j|men5|olnal mar;:forlld II? thef 18-
determinant, i.e., such that solves imensional space of the complé,,, which allows for

partial integration without getting any boundary terms. Then
[[T,x],x]=0. (329  ¢'(e%) is a solution to Eq.2.39, if W(A,,) solves the
following set of equations:
It seems that this set of gauge conditions does not only exist

for the case under studiﬂ=ﬂo, but for any physically in- o oqr ~ B
teresting case of constraints which are described by second |™M Aga~ 5% €ancAgphrc T 2 (;Ta W (Apa)=0.
order derivative operators. Using these special gauge condi- P 4.2
tions the physical inner produ¢8.27) obviouslyis positive

and ngmitian. A special solution to Eg4.2) is the Bianchi type IX restric-
Having solved these two problems, we are now ready Qi of the well-known Chern-Simons functional:

perform the last step in the construction of the physical inner
product for the nondiagonal Bianchi type IX model. It is

determine a functiony’ lying in the kernel of@®, defined in
Eqg. (2.35. To proceed in this way, let us consider the Fou-

T(AL). (4.0

- L - 1
easily seen that the gauge condition S eXF{x[—Apamquanfz detA,)]|. (4.3
23 3.2
X(Ul'az’a"‘)_h n0'3'0 (329 In the following we shall be interested in the transformation

of this state to the metric representation, i.e., in the evalua-
is a solution to Eq(3.28). It fixes the variabler; to have a tion of integrals of the form4.1). Topologically different
specific value o3=03(. Performing suitable coordinate choices of2? (i.e., choices which cannot be deformed into
transformations the associated inner product finally takes theach other without passing a singulayityill lead to differ-
following form: ent states in the metric representation.
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B. Metric representation of the Chern-Simons state such an ordering is even necessary to have a unique mapping
It will be convenient to introduce new variables (k%)= (k1,K2,k3) under Gauss and diffeomorphism trans-
formations, and we will adopt the conventi¢h7) through-
A Al out the following. In the gaugé4.7) the integral(4.6) takes
kP =—el=—¢eP . (4.9
ar~ pva 3va the form
Then the wave function in the metric representation takes the dx dy dz 1 )
4 exg—| —r+2
form cs Ls 1,2 X X K3Z
W d°A,, ex E kP A —EA mPYIA K2+ K2+ 2K KpZ— K2X2— K2Y?
CS 9 pa N a"tpa o 'pa ga n 1 2 12 1 2 (4.9)
1-r?
+ detA , 4. . .
( pa)) 4.5 wherer?: =x?+y2+z2. We will see in Secs. V and VI that

) ) ) _ _ there are choices fax? in Eq. (4.9 leading to asymmetric
where suitable |ntegrat|0n man|f0|§ remain to be deter- wave functions undel(formaD permutations of ther'g
mined. Here and in the following, constant prefactors, andyowever, as we know from Sec. [itf. after Eq.(3.16) with
also prefactors depending an are absorbed in the propor- . = (\/2),], only wave functions which are symmetric un-
tionality sign “=,” since such a factor will always remain as ger permutations of thex, and under reflectionsx,

a freedom of the wave function. Surprisingly, six of the nine_, _ Kp,Kq— — Kq,K;— K, are of interest to us, and this will
Apa integrals turn out to be Gaussian integrals and can bge an important restriction to select the physically interesting
evaluated analytically, namely, the integrals with respect tqyave functions.

A1, Ao, Az, Asq, Ay, andA,s. Lengthy calculations

finally give the result V. ASYMPTOTIC FORMS OF THE CHERN-SIMONS

INTEGRAL
dx dy dz 1 . .-

L | ————exg—| —r2+2ks-r ; ; e i :
cs Ls 1—r2 \ 3 In order to get information about possible integration

manifolds 33 which can be used in Ed4.9 we begin by
K2+ K3+ 2Kk X Ky T — (1 K)2— (T K3)? discussing the asymptotic behavior of the Chern-Simons in-
= , tegral in several asymptotic regimes. It will thereby become
1-r obvious that we deal with five linearly independent solutions,

(4.6) and the integration contours will be given in Sec. VI after-
wards.

where we have introduced the abbreviations (x,y,z)
1= (As1,A32,A33) and k,:=(k",«%,x%). It is clear that A. Semiclassical limit7:—0
the three-direction is distinguished by the order in which the | ot ys first of all examine the semiclassical behavior of
integrals are performed. As we know from Sec.Wgsac-  the solutions described by E@.9). Surely, the semiclassical
cording to Eq.(4.6) is automatically Gauss and diffeomor- |imit could have also been discussed by starting from the
phism invariant, because it is a solution to E8.39. This  nine-dimensional integrdl.5), but, of course, an expansion
means that¥ g can only depend on the eigenvalues of  of the three-dimensional integréd.9) is much simpler. The
the three-metric,,, or, equivalently, on ther, introduced saddle point form of Eq(4.9) is displayed nicely by writing
in Eq. (3.14. So we are free to choose a diagonal gauge foit in the form
the triad in Eq.(4.6); i.e., we may take

. , dx dy dz 3F
(Kpa)Zdlag(Kl,Kz,K;;), (47) ‘PCSOCJ ? ex m , (51)
with ]
with
K32K2>K1,
2, .2 202 2.2
K{+ K5+ 2K1{K2Z— KX — K
where Fr=—r242k52+ 17 K2 1K2 1 2Y ,
1-r?
A (5.2
Kp:=§crp=l—2\/)\q)\r, Epqr=1. (4.8

This special ordering of the threg, (or, equivalently, of the 9y complete analogy there are eigenstates of the effective Hamil-
Ap) is always possible, because permutations of the diagon@bnian (3.9 of a two-dimensional harmonic oscillator with=0
elements of a diagonal metrig,, correspond to diffeomor-  which do not obey ¥ (q)=¥(—q), but these are of no physical
phisms, which leave the wave functions invariant. Moreoverjnterest.
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where we have inserted according to Eq(3.19. Since the  Since we already know the asymptotic results for the diago-
K, defined in Eq.(4.8) do not depend ort, we approach a nal Bianchi type IX model, we only have to expand this
Gaussian integral in the limit— 0, A fixed, which has to be additional factor at the saddle points to get the quantum cor-
evaluated at one of the saddle points of the exponent. Howections for the nondiagonal Bianchi type IX model. As in
ever,which of the possible saddle point contributions arisesthe diagonal case, we therefore have to deal with a saddle
for the integral under consideration is determined by the inpoint equation of fifth order, and so analytical results are
tegration surfac& ® and requires a detailed discussion of theonly available in additional asymptotic regimes. Because of
contours of steepest descent. Here we only want to give thiie existence of five saddle points, one has five linearly in-
possibleasymptotic results fofi—0 which may be realized dependent solutions.

by suitable choices of the integration contours. The integra-

tion contours are discussed in Sec. VI. 1. Limit A—0
The saddle points of the exponent are obtained by solving  one asymptotic regime which allows for an expansion of
the equations the five saddle points is that of small cosmological constant
A—0. Since we are in the additional limit— 0, the quan-
i _ f _ f =0 (5.3 tity A=A A/3 defined in Eq(3.19 tends to zero, too. In this
ox o9y gz ' limit one saddle point is given by
One can show that for,,0,,05 pairwise different, i.e., in A—01 A—0
particular on the sectar;>o,>0;>0 of interest, the only z~ 5"3}‘ — 0. (5.7

solution to Eq.(5.3) is given by
The contribution from this saddle point yields
x=y=0, (z—k3)(1—7%)2=(ky+ Kky2)(Kp+ K12Z). .
54 Wig o« const, (5.8

A comparison with the diagonal modgl2] reveals that for
x=y=0 the exponents of Eq(5.1) and of the one-
dimensional integral4.17) of [12] become identical. Conse-
quently, also the saddle point equations with respect to A—0 A A=0 N
coincide; cf. Egs.(5.4) and (4.7) of [12]. As a result, the z~ —1*xg(oy=01), z~ 1xz(ot0y), (5.9
semiclassical actions of the wave functions approached in
the limit #— 0 must be the same, since they are given as th@iving rise to an asymptotic behavior
saddle point values of the integrand’s exponents. This is of B
course exactly what we expected to happen, because the , A0 g 73* (0271
Wheeler-DeWitt equations for the classically equivalent di- cs
agonal and nondiagonal Bianchi type X models give rise to
the same Hamilton-Jacobi equation in the lifit>0. How- 027 (gt q)

: . . . A—0 gUa*(oatoy
ever, the quantum corrections to this leading order behavior Wi o . (5.10
are rather different, first because of the different dimension- (o1t oy) (037 01) (037 09)
ality of the integrals, and second because of a new prefactor
to the exponential function. Performing a Gaussian saddléespectively. These solutions are the generalizations of the

point approximation, we get, for the nondiagonal case,  diagonal analogue&.25 and(2.26) given in[12]. The sin-
gularities which occur in the denominators of the asymmetric

solutions of Eq.5.10 are cancelled by the weight function
of the inner produc{(3.21) and therefore do not constitute
r=r any physical problems.

S

and therefore approaches the well-known wormhole $fate.
Four further saddle points asymptotically li¢‘at

) J(o— ) (03= o) (057 07)

/ 50 (_277)\)3 12 eF/)\
Wes °F 1_2
de( )

5ra&rb

2FE 9%F 92F —12 gF/\ 2. Limit k—
“1 72 2 2 1-r2 ‘ (5.9 A second regime which allows for an analytical expansion
X Iy oz - r=re of the semiclassical limit —0 is the casec— o, where the

“mean” « is understood ag: = (k;x,k3)3 The threex,
Here the second proportionality stems from a special propwere defined in Eq4.8). For a fixed cosmological constant,
erty of the exponenE, namely, the fact that the mixed de-
rivatives of F vanish forx=y=0. Comparing this with the
asymptotic resu!ts obtained n the diagonal dds8, we find %We remind the reader that the primedat s denotes the fact that
that corresponding results differ only by a factor this wave function has to be mutliplied b¥y, defined in Eq.

12 (2.24 to become a solution of the Wheeler-DeWitt equation in the

2F 42 K .
=l (1=72 9°F o°F (5.6 metric representation.
7= ) 2 2 ’ UThe following expansions are only valid far,> o, but we
oxc ay<| : .
x=y=02=z restricted ourselves to this case anyway.
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this is the limit of the large overall scale paramter. In this ! !
limit, two of the saddle points behave according to | :
SGC : C/ : COIZ.?
k= K1K3 A “ /I\
Z~ T\ (5.11 :
3 ¢ ;/0123
and turn out to be complex valued. This gives rise to a com- : :
plex action of the wave function, describing a universe with s, | S 5 5
a Lorentzian signature of the four-metric; ££2]. The lead-
ing order behavior for these solutions is given by
eSS 4i K3/2
Wig o k™ exp{i | (5.12
for a more detailed asymptotic result we refef 1@]. Three
further saddle points have an asymptotic expansion FIG. 1. Integration curves in the complexplane which lead to
linearly independent vacuum solutions. The dashed line indicates
K—® K K— 0 K K— 0 . . . .
7 ~ — _1’ 7 ~ — _2' z~ 1+ks, (513 that one has to _evaluate the integrand in the second Riemannian
K2 K1 branch after having crossed one of the cuts. The two cuts are rep-
. resented by wavy lines.
and lead to wave functions of the form y waw
T T VI R Ty separate section in Appendix A. Moreover, we _show in Ap-
Wes = [(k5— kD) (k53— K3)] e, pendix B that the solutions derived in Appendix A can be
. written in another, very nice and compact form, which reads
— 00 B 2
Ves = [k DG r) ] W™, (519 - 3
o , v, ~ =f ds €[] (s—s,) 12 (5.15
\P/CS o [(Kg_ K%)(Kg— K%)]—l/ZeK?,/)\, CQ v=0

respectively. These saddle point contributions are knowrrere the integration contouf, is one of the four curves
from the diagonal model for the “asymmetric” solutions shown in Fig. 1, and the, are special sums of the,,
introduced there; however, here we have additional prefacdefined by
tors, which become divergent on the symmetry lines
o,=0q,p#0, but again these singular terms are cancelled Sg=01tosto3, S1=0,—0,— 03,
by the measure of the scalar prod(8i21). (5.16
S,=—01+0,—03, S3=—0;—0,t03.
B. Solutions to the vacuum model approached

in the limit A—0 For a detailed discussion of these wave functions and a com-

In order to get solutions of the nondiagonal Bianchi typement on their symmetri_es with respect to permutations of the
IX model for A—0 (without taking the semiclassical limit “p We refer to Appendixes A and B. o
#—0 first we now want to discuss the behavior of the Altogether, we find in the limitA—0 again five linearly
Chern-Simons integral in this limit. While one of the solu- independent solutions associated with the Chern-Simons
tions approached foh —0 again turns out to be the worm- Wave function(4.5).
hole statg2.24), the other four solutions areot given by the
asymptotic result$5.10, as one might think at first sight. v|. THREE-DIMENSIONAL INTEGRATION MANIFOLDS
The reason for this is the fact that we are not allowed to EOR EIVE EXACT SOLUTIONS
perform the usual Gaussian saddle point expansion, since the ) ] . S )
exponent and, in particular, the prefactor to the exponential !N this sgctlon we want to define explicitly five integration
function become singular in the limih—0, wherer ap- pontoursE for the. integral(4.9), leading to f|v¢ Ilnearly.
proaches+1. Comparing the situation with the diagonal independent solutions of the Wheeler-DeWitt equation
model, where a saddle point expansion in the same limit3-17- To have a better view of the symmetries of the solu-
actuallywasallowed, one might ask for a difference betweentions, let us, for a moment, go back to the nine-dimensional
the two models that forbids an analogous expansion in thétegral representatiof.5). It can be verified easily that the
present case. The answer to this question lies hidden in tH¥o different integration surfaces
prefactor to the exponential function: while we dealed with ,
an integrable square-root singularity in the diagonal case, we 39 :={(Apa) €C%|Ap e R ™0} (6.9
here have to integrate into a singularity of first order, even in
the caseA =0, and this requires much caution. In fact, it lead to a finite integral, because the cubic terms in the expo-
turns out that the calculation of the limit— 0 of the Chern-  nent of Eq.(4.5 remain purely imaginary, while all the qua-
Simons integral is very subtle and worth discussing in adratic terms have a negative real part. Moreover, since the
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pnly border of this surface Iieg, at infinity, it is clear t.hat the 33 L, {reCd-1<9<1,0<e<2mreK(1R)},
integral(4.5), performed ovel.> , must lead to a solution of

the nondiagonal Bianchi type IX model. In particular, we R<2. (6.7)
then know that these wave functions are Gauss and d|ffec1— Eq.(6.7) K(1R) denotes a pole integral arounet 1 with

morphLZm |?varlsnt, and_ Wepma){_rr:\galré chzose tEe d'ﬁgona}adiusR; cf. Appendix A. Let us try to interpret these inte-
gauge(4.7) for the matrix (c5). Then Eq.(4.5) takes the gration surfaces: in the first ca$6.6) we simply integrate

form . . - )

over a sphere with radiusin the complex space; however,
this radius is not chosen to be real valued as usual, but
slightly imaginary to avoid the singularities of the integrand
lying at r==x1. The integration manifoltﬁg123 also de-
scribes an integral over a full sphere, but now the radius
} describes itself as a circle around the singularity=at+ 1 in

2
\I,CS.J:OC JEQ dgApan%x( K1A11+ K2A22+ K3A33

1
— 5ApaMPAG+ delAp,)

2 62 the complexr plane. While the two parametrizations given

in Egs. (6.6) and (6.7) will prove useful for an asymptotic
. . . expansion in the limitA — 0, which is performed in Appen-
If we now consider a formal p.er.mutgtloan Kz 1N EC." dix A, they now allow for a further study of the semiclassical
(6.2, we can rees;abllsh the original integral by a suitableyonavior of the corresponding solutions.
transformation  in ~ the Ap,  space,  namely, e consider the wave functiod .5, in the semiclas-
A117Az2,A32- A3, Azz—~Agy. Since all integration vari- - gicq) |imit 40, we get the dominant contributions to the
ablesA,, are |nt'egrated' along the same axes in the complemtegraﬂ for »= =1, so that the integrand becomes indepen-
Apa Planes, the integration contour remains unchanged undgfent of . The remaining variable then coincides with the
this coordinate transformation and we regain the integrak 7 variable, which was the only integration variable in the
(6.2). Furthermore, the two integral6.2) are invariant under  diagonal Bianchi type IX model discussed [in2]. For a
a substitutionk; — — k1, k;— — Kk, which may be seen by a discussion of the curves of steepest descent itz fllane we
transformationA;,— — A14,Aza— — Ay, in the Ap, space.  refer to this earlier work. However, if one has finally de-
Thus we conclude that both wave functions are completelyormed a desired integration contour into the curves of steep-
symmetric under arbitrary permuations of tkg, and also  est descent, there remains one remarkable difference between
under reflections,— — k, ,kq— — Kq,K— Kk, @ Symmetry  the two models: while in the diagonal case we had a cut in
property which is possessed only by two of the five solutionghe complexz plane for|Rez|>1, this cut is absent in the
which are generated by the Chern-Simons functional. present nondiagonal case, owing to the different prefactors to
Performing the six Gaussian integrations which lead fromthe exponential function. So integrals along parts of the real
Eg. (4.5 to Eg. (4.9, we reach the following three- axis of thez plane, which cancelled in the diagonal case,
dimensional integration surface for the integl9): may now be different from zero, and vice versa. A detailed
discussion of the curves of steepest descent and the resulting

3._(7_3 “inl6 asymptotic contributions finally gives the following result for
2ii={reClracRe - ©.3 the wave functions?, being connected with"’ via Eg.
o . . (2.25.
In the foll_qwmg it will be convenient to introduce the two In the semiclassical limit— 0 the wave function¥' ;5
superpositions shows a no-boundary behavior fa—O0; i.e., the four-
manifolds which correspond to the semiclassical trajectories
Yona*Vesit¥es-y Vor3n*Ves+ —Ves- s in minisuperspace are regular at the pant0. Fora— o,

(6.4  the integration surfac&3,,, picks up several saddle point
contributions: the two complex conjugate saddle points

and also new integration variables (5.11) contribute as well as the two real-valued, negative
saddle points in Eq5.13. These latter two saddle points are
x=rV1— 2 72cose, y=r\/1——7725in<p, z=ry, the reason why¥ 1,3, is not normalizable in the physical

6.5 inner product3.30), as will be shown in a future papgt9].
The solution¥, » is a generalization of the wormhole
state(2.23 for a positive cosmological constat>0. For
a—oo, we again gather contributions from the two complex
conjugate saddle point5.11) and now, in addition, from the
real-valuedpositivesaddle poinz~1+ x5 of Eq. (5.13. In
[19] we will see that these latter three saddle points give rise
(%0 finite contributions in the physical norm of the wave func-
ion. We will show this by evaluating the physical norm
according to Eq(3.30 in the semiclassical limit—0. As a
R result, ¥\yy o turns out to be the only Chern-Simons-like
E\s;VH={r eCq-1<y<1,0<e<2mreR+ic}, &>0, quantum state, which is normalizable in the physical inner
(6.9 product(3.30 andsymmetric under permutations and reflec-

for the x,y,z integral, which may be understood as spherical
coordinates withnp=cosd. For the transformatioii6.5) the
volume element simply transforms like xdly dz
=r2dr dz de, and the conditiorr®>=x?+y?+z? is obeyed
even for complex values af, , ¢. With this new parametri-
zation, the integration surfaces for the two solutions define
in Eq. (6.4) can now be written in the following form:
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tions of theo,. The existence of a normalizable Chern- performed on the classical level. Performed in this way

Simons-like state is in remarkable contrast to earlier work omquantization and gauge fixing of course commute by con-

special spatially homogeneous models discussed by Marugatruction.

[27]. For the nondiagonal Bianchi type IX model we have con-
Finally, we still have to define three further integration sidered in detail the transformation of the Chern-Simons

contours3® to obtain the complete set of Chern-Simons-like state from Ashtekar variables to metric variables. The Chern-

solutions. The construction of the vacuum solutions in Ap-Simons state, including its limit for vanishing cosmological

pendix A suggests three new possibilities to create _"”earhéonstant, deserves a thorough study because it is undoubt-
independent integrals. One of these further integration SUladly the most important exact solution of all constraints of

faces can simply be written in the form quantum general relativity found up until now. This is so
3 _ > -3 because, unlike all other exact solutions, it describes a well-
3,={reC’l-oe<9y<—-1,0<e<2mreK(1R)}, defined nondegenerate space-time in its classical limit and

(6.8 also because it makes an obvious connection between quan-

, i tum general relativity and topological field thedry,8]. In-
while the other two have a very complicated form and mayqee it is remarkable that the general Chern-Simons state in

be read off from the representatio&20) and(A21) in Ap-  aghtekar variables makes no reference to metric concepts on
pendix A. That these latter two integration manifolds, despitg,q spacelike three-manifold. It should be noted, however,

their strangey junctions at— o, /o, and—o/04, give ise  that writing down a physical state in Ashtekar variables does
to analytical solutions of our model even far#0 is shown . yet define it completely, because “reality conditions”

in Appendix C. However, these solutions do not obey theyst still be imposed before a physical interpretation can be
necessary symmetry properties which were derived in SeGitempted. Imposing the reality conditions is a very non-
IIl, and are therefore of no further interest to us. _trivial task and, as our results indicate, might not have a
~ One may now finally ask how the four solutions definedniquesolution. We circumvent this problem completely by

in Egs. (A18)—(A21) of A,ppendlx A are connected (0 the yansforming back to the real metric representation before
“asymmetric” solutions¥' , of the diagonal model discussed applying a gauge fixing and giving a physical interpretation.
in [12]. An investigation of the semiclassical behavior, to- * The Ashtekar variables and the densitized inverse triad
gether with a discussion of the singularities on the linesgrm canonically conjugate pairs. Hence, for our Bianchi

op=0q,p#0, shows that the solution¥;, ¥i,, Wi,  type IX model the generalized multidimensional Fourier

and W, ,; are actually thesumsof these states as indicated transformation we discussed in Secs. 1V, V, and VI can be

through the choice of their indices; i.e., we have used to transform the Chern-Simons state to the metric rep-
resentation. This is generalized~ourier transformation be-
Vi,=V1+V¥,, V=V +¥,+¥;, cause neither the integration contours, which are here nine-

dimensional manifolds, nor their boundaries are fixed

priori, except for the condition that partial integration with
6.9  the Chern-Simons state under the integral must be permitted

without contribution from the boundaries. The boundaries
By inverting these relations with respect mé one may are therefore determined entirely by te@gularitiesof the
further define asymmetric solutions corresponding to thos&hern-Simons state. On the other hand, for fixed boundaries
of the diagonal model, with the same symmetry propertieghe different integration manifolds one can find may be de-
that have been pointed out ft2]. formed without changing the result, or may be combined by
first running through one integration manifold and then
through other inequivalent ones, leading to linear combina-
tions of the physical states defined by each integration mani-

In this paper we have examined the transformation confold separately.

necting the representations of quantum general relativity in In Eq. (4.9), with the five integration manifold& 3 given
metric variables and in Ashtekar’'s variables for the speciaby Egs.(6.6), (6.7), (6.8, (A20), and (A21), we have ob-
case of spatially homogeneous but anisotropic space-times tdined integral representations of fiezactsolutions to all
a Bianchi type IX model with anondiagonalmetric tensor.  constraints of quantum general relativity and we studied
While classically the nondiagonal case and the diagonal casarious limits of these solutions in Sec. V. In the leading
are equivalentin the absence of mattedue to the freedom semiclassical order the result for the nondiagonal and the
of gauge fixing, there is a subtle difference quantum mediagonal model is the same, as one would expect from the
chanically, because the steps of gauge fixing and quantiza&iassical equivalence of both cases. However, differences ap-
tion, in general, do not commute. This was explained via gear already in the next to leading order, obtained in the
simple example in Sec. lll A. The example also made cleasemiclassical expansion of our results in Sec. V A. It should
that gauge fixingafter quantization is preferable because all be noted that even studying the next to leading semiclassical
symmetries are then implemented automatically and demasrder of a physical state in quantum general relativity is
cratically. Once the two steps have been completed in thigsather nontrivial. It requires one to address operator ordering
order it is then also cleaa posteriorihow to proceed cor- ambiguities in the Hamiltonian, which we have done in Sec.
rectly in the quantization after the gauge fixing has beerl A, to take proper account of quantum corrections in the

Wioro= VotV +V+VL,  03>0,>0;.

VIl. DISCUSSION AND CONCLUSION
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Hamiltonian implied by symmetries, which we have done inund grosse Fluktuationen™ is gratefully acknowledged.

Sec. Il B, and to apply a complete set of gauge-fixing con-

ditions including a fixing of the time reparametrization sym- APPENDIX A: THE CHERN-SIMONS INTEGRAL

metry, which we have done in Sec. Il C. Only then is the .IN THE LIMIT A—0

next to leading semiclassical order of a physical state unam-

biguously defined. In the following we want to examine the possible limits
Only two of the five solutions we constructed satisfy the A .0 of the Chern-Simons integral given in E¢.9). First

complete permutation symmetry between the three main ax&s all, we shall briefly recover the wormhole state, which is

of the Bianchi type IX three-geometry, which, as shown ingn,95ched for the choic®3=323... given in Eq.(6.6). Us-
Sec. Il B, is implied by the quantization of ti@ndiagonal in%pthis integration maniﬁd Vzvév%gy write a.(6.6.

model. These are the states corresponding to the integration
contours(6.6) and (6.7). Their semiclassical limits identify o,
them as a wormhole state and a Hartle-Hawking “no- ./ ch“ d F”d jﬂws rear ex F (A1)
boundary” state, respectively. It is remarkable that shene WH™ |, n 0 ¢ —ootie 1—r2 A
Chern-Simons state in Ashtekar variables can yield such di-

verse states depending on the choice of the integration manyhere we made use of the spherical coordinates in the
fold. This is a striking example that a physical state in Ash-(X y,2) space, which were introduced in E@.5). Easy es-
tekar variables is not yet defined before further conditions“n’]a'tes show, that forA—0 just an infinitesimal region

(here the choice of integration contouese specified. aroundr =0 contributes to the inner integral, and so we

In the Hartle-Hawking proposal for the semiclassical ini- have the following asvmptotic behavid:
tial condition of the classical evolution of the Universe it is g asymp )

not required that the “no-boundary” state be a normalizable ) )
vector in a Hilbert space. Rather the condition by which it is . ”;Of“ q fz" q f” dr ex;{l)
defined at least semiclassically is that the Euclidean four- LIRS PR P B X
geometries defined by the semiclassical wave function filling . N
in the three-geometries on a spacelike slice are regular for A= * _e2
a—0. A further requirement for the Hartle-Hawking state is - 477)‘3/2f L gPe ' =2(m\)*
to give a well-defined probability distribution at the semi-
classical caustic surface where the semiclassical evolution, xconst, r=X¢. (A2)
given by the wave function, switches from a Riemannian
(“Euclidean”) to a pseudo-Riemanniari“Lorentzian™) According to the transformation rul€.25 we obviously
space-time. This requirement is met by the Hartle-HawkingaPproach the wormhole sta¥é,y in the limit A—0, which
“no-boundary” state obtained here, and only by this statewas defined in Eq(2.24.
among the five Chern-Simons-like solutions, as was shown Let us now turn to the much more complicated cases, for
already in[12]. which the “wormhole saddle point"’x=y=z=0 is not
The wormhole state, on the other hand, one expects to beassed through by the integration surface For such solu-
a normalizable vector in a Hilbert space with a well-definedtions, we shall try to set not all borders &f at infinity;
scalar product, in which other state vectors describe, e.ginstead we shall make use of the existence of two further
excited states of the wormhole. Without going into details,singularities of the integrand with respectrtonamely, those
which will be given elsewherEl9], we have defined such a atr==*1. If we integrate into these singularities in a suitable
scalar product in Sec. Ill C by gauge fixing all gauge sym-manner, we expect to create further solutions of our
metries. It turns out that the wormhole state is, in fact, norWheeler-DeWitt equatior(3.17), because boundary terms
malizable in this scalar product, while the “no-boundary” generated by partial integrations will vanish at these borders.
state is not. Thus imposing either the “no-boundary” condi- In the following it will be in fact sufficient to consider only
tion or normalizability in the Hilbert space of physical statesone of the two singularities, say= + 1, since any integral
equipped with a fully gauge-fixed scalar product, one finds inn the neighborhood of=—1 can be mapped onto a region
each case aniquebut mathematically and physically vastly aroundr=+1 by a transformy— — #» in the # integral.
different state as a metric representation of the Chern-Simorighis is due to the fact that the,r dependence of the inte-
state. grand in Eq(4.9) is given in terms of 2,r 5, and»? only; cf.
One may hope that the nondiagonal quantization proceEq. (A4) below. Thus we will be interested in integration
dure presented here might be applicable even to the full ineontours for ther integral, which have one end point at
homogeneous case, because all constraints are treated quas-1. It turns out that, for a positive cosmological constant
tum mechanically in a similar way, and a solution to the A, there are only two curves of interest: first, we may per-
guantum constraints is available in terms of the generaform ourr integration along the real axis from=1 tor=
Chern-Simons functional. Work in this direction is in +; second, we can also consider a pole integral, encircling
progress. the singularity ar =1 in the mathematically positive sense.
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To shorten our notation, we should establish the following r2 dr G
nomenclature: a circle with radil®, which is centered at, \If(’;szf dnf d(pj zexp{x , (A3)
and passed through in the mathematically positive sense, will cl-r
be denoted b¥(ry,R). Then we can write the integrals of
interest in the form with
|
1 1 (K3+ k) (1+ 1292 + A kof p+1r2(k2— k3 (7%—1)cos2p
G:=1-r2+2ksr p+ E(K%‘FK%)"‘E 2 : f 2 L 2 , (A4)
—r

where(C is one of the two contours J4,0[ or K(1,R), 0<R<2. The equality sign in Eq(A3) indicates that, from now on,

all prefactors of the integral will be taken into account. To proceed in our calculation of theAimi®, we can uniformly
estimate those parts of the integi@3), which lie outside anc neighborhood ofr=1 by a function, which vanishes
exponentially forA —0. Therefore, just a@ neighborhood of =1 contributes to the integréA3), wheres may be chosen
arbitrarily small. As a consequence, all terms of the integrand, which remain regukatlatcan be substituted by their value
taken atr=1, and only the dependence of singular parts remains to be taken into consideration. Thus we arrive at once at

L A=01 dr 2 A a’—2abcos2p+ b?
Ves~ gf dz e"”J d@fcﬁex N(1-n+g T : (A5)

where we made use of the definitions

+ —
a:=01202(1+77), b::(rlzaz(l—n). (A6)

Here(, is either equal to ]1,% e[ or given byK(1,). After the transformatiog=(4/\)(r —1) we arrive at

a0 1 dé¢ & a?—2abcos2p+b?
Vig~ _IJ dy e"3”J d(pJ’C,? expg — 5 - 7% , (A7)

where nowC’ is the positive real axis d{(0,R). The two possible integrals can now easily be performed, leading to

(A8)

A0 —imlo[ Va?—2abcos2p+b?] . C'=K(OR),
Vig ~ fdn e"3’7f de > > ,
—Ko[Va?—2abcos2p+b?] . €' =[0,+].

choice of the integration contours; any other choice for the
r-integration contour would have given a linear combination
of the two results given in EQA8) or a constant as in Eq.

(A2). While the  dependence of EGA8), hidden ina and TKo(@)lo(b), a,b>0. (AL2)
b, is too complicated to be integrated out analytically, thereO
are several possibilities to evaluate thentegral, which be-
come more transparent in the new variable cos2p. With

the abbreviatiorX: =a?—2abu+b? we find

Up to now we have taken into acount all freedom in the fﬂc

du
T VX)=1(a)Ko(b)

+1 U

bviously, the first two integrals correspond to an integra-
tion over real angleg, while the latter two integrals require
for ¢ values to lie on the imaginary axis. The first three
integrals are tabulated in mathematical tables [iRg], but
the integral(A12) seems to be a new result. Thus we shall
shortly comment on a proof of this formula, which, by the
way, also holds for the other integrds9)—(A11): The idea
is to show that the integral on the left hand side solves the
‘1 ody Qi;ferential eqtrjlation of the mggifiz?t Bessel func';ic:n_s with
_ index zero with respect ta andb. After some partial inte-
J—1 \/1—u2|0( \/X) mo(@)lo(b), (A10) grations it turns out that this is indeed the case; however, we
thereby gather a boundary term, which exclusively vanishes
for the boundaries chosen in Eq#\9) to (A12). For these

f“ u Ko(VX)=mlo(@)Ko(b), b>a>0,  (A9)

~1y1-u?

f_l du Ko(VX)=Ko(a)Ko(b), a,b>0 (A11)  choices we then know that the integrals must be equal to a
—=ut—1 o ' linear combination of the four possible productd gandK
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at arguments andb. The coefficients of these possible four 1] ems (52— 1)
contributions can then be determined by evaluating the inte- ]flllf(’:szz —— 5 103ll1(a)lg(b) +1g(a)l1(b)]
grals ata=b and, if necessary, by an additional investigation 02703
of the limitsa—0 andb—0. n=-1

With the integrals/A9)—(A12) we may now perform the — il L(b)+1 I (b AL7
o integration in Eq(A8) and get a result of the form o2 11(@)11(b) Flo(2)lo(b) ]} - (ALD)

n— — 0
A—0
Ves~ J dy e?37z{P(a)Z2? (b), (A13)

That this is indeed equal to zero is easily seenqfor—1
with Z§" and Z§? being modified Bessel functions with in- and, after some asymptotic expansions of the Bessel func-
dex zero. However, not any combination B§" and Z{?)  tions, also forp— —c. Similar results hold for the other
with » borders at=1 or =< will lead to a solution of the solutions, where one of the two Bessel functions might be

three equations substituted by, or —Kj. In such cases the vanishing of the
boundary terms aty=+1 becomes a nontrivial question,
0qdr— 010 because th& ,- Bessel function might become singular at
FoWlai=0ulr—oWha=| dgdy— dp+——— 9| WL =0, thes, €l function mig g
p¥ csi= Qpla-oWes=| dadr=dp o2—o? cs these points. A detailed investigation shows that there are

(A14)  only the four possibilities given in EqgA15) and (A16) to
. ] o avoid contributions from these boundaries.
which necessarily should be the case for the litit:0 of The question which remains to be answered at this point
the Chern-Simons integral because of E]18. The reason s whjch integration contours for the integral give rise to
for this is that, due to the complexification of the sphericaly, integrands in Eq¥A15) and (A16). For the wave func-
coordinateg6.5), we might have integrated effectively over tions W1, and W}, the answer is easily found with help of

a three-dimensional manifol®®, which produces boundary
terms for partial integrations. For example, there is no the integral(A10), and we find the explicit representations

reason why a surface described by
re]l,+~o[,peiR,ne]—1,+1[ should lead to an integral

solving Eq.(A14), although this integration contour leads to W — I|m d 2“ ex E
a finite integral. It will be a nice explicit check of solvability 127 Ty ol - K K(LR)1—r2 A
to investigate for which choices df{" and z{?) and for (A18)

which 7z bordersW ¢ according to Eq.(A13) becomes a
solution to the three equatiorid14):
While the operatorF; annihilates the integrand of Eq.

277 2
(A13) for arbitrary values ofp, and thereforel' ¢ for arbi- W10 — I|m f dﬂf j dr xr{g}
trary borders of they integral, we have to perform suitable Tr—0 KR 11— A
partial integrations to show the vanishing & ¥ ,¢ and (A19)

F,¥s. Consequently, we get some boundary terms, which

will not vanish for all possible forms of EqA13). A de-

tailed discussion of these boundary terms reveals that theMhere the radiuR of ther integral has to be chosen with
are exactly four possiblities to arrive at solutions of Eq.R<2.However, for the other two wave functions the answer

(A14). For the adopted ordering of the threg these solu- is more difficult, because, according to Eq89)—(A12),

tions are given by the following integrals: there is no easy possibility to generate their integrands uni-
formly for all % values of their integration regime. So we
/ have to cut they integral artificially at thosey values, for
V= dne?37l y(a)Kq(|bl), . )
1 f_m K o(@)Ko([bD) which we get a=*b, which actually happens at

(A15) n=—0,/01<—1 and p=—01/0,>—1. Suitable linear

o -1 . combinations of the result?d9) and (A12) then reveal the
‘1’122'77]700 dne”"lg(a)lo(b), following integral representations:
f+l
1o3= dne’3"Ky(|al)lq(b), 2m
123 | 07 o(|al)lo(b) \I’:_Z_I'm(f dﬂf d""f
(A16) TA—0
f+l / 2 +
! —1i a3 —oolo T ©
Wopo=im » dn e737Ig(a)lo(b). _ZJ' 2 ldﬂf dsof
—®© 0 1
As an example, we want to discuss the action of the operator Cole i 2 G
F1 on the wave function?;,, which can be written in the _f 2 ldﬂJ dgoJ ) rar ex;{— . (A20)
form —o i K(LR) /1—r2 A
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[l
—oqlop 2m + o
—2f e
—oyloq 0 1
J*(rl/(rz j f ) ;{
de 5 ex
—oplog K(1,R)
Considering the representatio®18)—(A21) it is now pos-
sible to read off the integration manifold® which lead to
solutions of the Wheeler-DeWitt equation even for a nonva-
nishing cosmological constart. Although the representa-
tions (A20) and (A21) look very strange because of the

junctions at—o,/0, and — o, /05, they lead indeed to dif-
ferentiable solutions. Since this is a nontrivial claim, it will

I|m
A—»O

r_
1237

r2dr G

A

} (A21)

be proved in Appendix C, where we show that the integrand

of the outer» integral is a continuous and differentiable
function at the junction points, even far+0.

APPENDIX B: ALTERNATIVE INTEGRAL
REPRESENTATIONS FOR THE VACUUM SOLUTIONS

We will now bring the one-dimensional integral represen-

tations found in Appendix A into a new, unified form, which

will display nicely the symmetries of these solutions. The

PHYSICAL REVIEW [»8 083501
L[f](s):=f dt e SH(t).
0
Using the inverse Laplace transform

1 S+io
f(t)= ﬁféim ds e[ f](s), (B5)

where s has to lie to the right of all singularities of the
integrand in Eq.(B5), Laplace’s convolution theorem can
also be written in the form

1 (s+ie
(a2 (0= 5 |75 L1119 L15).
(86)

With the aid of the Laplace transform of defined in Eq.
(B2),

£L01(9)= | at e Mgt =[ (e 97 57
(87)

motivation of this new representation arises from the fact

that one of they integrals, namely,¥(;,; given in Eq.

we arrive at once at the identity

(A15), turns out to be a convolution integral, and may there-

fore be simplified with the aid of Laplace’s convolution theo-
rem. To become more precise, let us write

1
W (105 2 fo dre” 737l [(o1— 0y) 7]
xe N [ (o1 +05)(1-7)], (B

where we have substituted=(1— 7)/2 in Eq.(Al16). If we
denote

g(a,B;t):=eg[ Bt], (B2)

we may also write

03,0,—01;1)xg(03,05F 01 ;1) |i—1;

(B3)

W h105=2mig(—

i.e., Eq.(B1) is a convolution integral, evaluatedtat 1. Let
us recall Laplace’s convolution theorem, which states

LI f2](s)=L[f1](s)- L[ T2](s), (B4)

with

3

as e [ (s-s,)
r=0

i s 1o
Wo125= |.
S—I|®

(B8)

if we employ Eq.(B6) with t=1. Here we have introduced
the four quantitiess, via Eq. (5.16), which are ordered ac-
cording tos;<s,<s3<s, for o1 <o,< 3. Since the quan-
tity s occurring in Eq.(B8) must be placed to the right of all
thes,, it must be chosen as>s,. With Eq. (B8) we have
reached a very nice representation W§,;,;, which imme-
diately shows up the symmetry with respect to arbitrary per-
mutations of thes,: As the integrand obviously obeys this
symmetry, and the integration curve which is placed to the
right of all thes, can be chosen to be the same after two of
the s, have been permuted, the integral must be invariant
under such permutations. Translated to dhe we first have
a symmetry under permutations of thg themselves. Sec-
ond, the additional symmetry under permutations of the form
SoSp implies that the wave functiol ;,,5is invariant un-
der a reflectiono— — 04, 05— —05,03— 03, and cyclic
permutations thereof. Thus we directly recover the symmetry
properties of¥,,5, which we already claimed in Sec. VI.
Regarding the resulfB8) in more detail, one may now
ask if there could be further integration curves, apart from
the one used in EqB8), leading also to vacuum solutions.
Investigating the action of the operataf§ defined in Eq.
(A14) we find the following result;
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3
fds el] (s—s,) 12
v=0

and similar results hold for the action of the operatgisand 7, on thes integral. Thus we conclude that all four integration
curves shown in Fig. 1 lead to solutions BV’ =0, because the boundary teli®9) vanishes at the end points of these
curves. However, up to now it remains unclear how these vacuum solutions are connected to those which were found in
Appendix A. In the following, we shall be interested in a direct transformation between the two representations, which is rather
tricky and therefore should be presented in detail at least for one of the remaining solutions. In our calculations, we will need
the following two integrals:

f
8 2 ds —Sy S—S; S—S, S—S3 =0

3
=1fdsi[<—sl P e[] (s—sv)‘l’z}, (B9)

1 S+ioo ds eSt

7 A

s>a* B, (B10)

e at 7T
. dt e KO['BM]:W. (Bll)
Let us now choose as an example the transformation of the wave funktion
! “ — +1 _ 1+’r]
V=2 dre UK [ (0= 0y)(T+1)]e” 7 o[ (a1+ o) 7] T T T
0
B (= srie  ds’ €7 .
= — dre o3(7 )KO[(UZ_UI)(T+1)] . ;S>_So,_S3
1 Jo s=i* \(S" +50)(S" +S3)
=1+7 S+ioo o , ~
T L Asfl ds es[(s_so)(s_53)]_1/2f dr’ e (" ITK (0o~ )| 7'[] 15<S0,Ss.
s=—8 |qrJs—ix 1 (BlZ)

To allow for the interchange of the’ and thes integral performed in the last two lines, we further have to make sure that

s> s;; otherwise ther’ integral in the last line would not exist. If we further requ?resz, the 7’ integral will exist even for
an extension of the’ integral to—o. Let us consider the additional contribution which we would get in case of this extension:

§4i oo -1 +1 '
/ * dse’ [(s— so)(5 — s3)] : / dr’ e~ (o3t K [(o2 — o1)|7']]
§—io0 —00
So (B13)
+1 ; , 41 00 1—7+ _1
= / dr' e " Ko[(o2 — a1)|'[] / L 45t M(5—s0)(s—s3)] "7 =0 .

§—1 00

. 3
any singularity of the integrand, the integration contour can¥’ ;,= s+mds e H (s—s,) Y2 s,<s<ss, (B15
be deformed to the negative real axis, whereglietegrand * v=0
vanishes exponentially. Thus, we still have a representation
of W1, if we extend ther’ integral in the last line of Eq. Stioo 3 .

(B12) to the whole real axis. After employing the formula ¥ 125= f - ds eSVHO (s—s,) "% s3<s<sy. (B16)

(B11) we arrive at

Here the last integral vanishes, because, without meeting f

s—i

;1 (s+ie 1 It is now easy to comment on the symmetries of the wave
q’ﬁfkfiw ds [(s—Sp)(s—s3)] functions (B14)—(B16): While ¥, obviously is symmetric
under permutations of thg, and therefore under permuta-
><[(82—s)(s—sl)]‘1/2 tions of the oy, it is not symmetric under a permutation
. 3 Sp—Sp as the wave functioW’ 4,5 The vacuum stat@ ;, is
_ f“'*ds esH (s—s,)" Y2 s,<3<s,. only symmetric under the permutatia« s, and, conse-
s—io »=0 ’ ' quently, undewr; o5; the solution¥; has no symmetry of

(B14) this form at all.
Finally, we shall be interested in the limit—0 of our
Similar calculations reveal the remaining two identities vacuum solutions, where we should remind the reader that
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the 2 dependence is hidden in tt& via the o, which
depend orfi according to Eq(3.14). As an example, let us
compute the limiti—0 of the wave function¥’; : First of

all, the integration contout; can be deformed to the nega-

tive real axis, giving
S1 3
\If£=—2J ds & [] (s—s,) 12 (B17)
—®© v=0
Substitutings, =#s, and é=%(s;—s) we get
odé  —
V= —Zﬁeslf % e
o e

X[(E—81+8,)(E—S1+Sg)(E—8y+55)] Y2
(B18)

In the limit 2#—0 just an infinitesimal neighborhood around

£=0 contributes to the integral; thus we may expand

fi—

0 B d_ -
v~ —2h eslfo Té;—e_glﬁ[(sl—sz)(sl_so)

X (s3—s)] 2, (B19)

where we have substituteg=0 in those parts of the inte-
grand, which remain regular fdgr—0,6—0, since we may

choosee arbitrarily small. In the new variablé= &/#, we
finally arrive at

J— eS]_

[, Se
—e
V2(a,— 01) (0t 0g) (o3—aq) Jo \E

o \/g\/(Uz

lim¥;=
h—0

60170270'3

(B20)

—o01)(oyto3) (03— 0y

The limit #— 0 of the other vacuum solutions may be calcu-
lated analogously. As a result, we obtain the same

asymptotic behavior as in the limit—0,A —0, which we

discussed in Eq5.10 of Sec. V; i.e., the result is indepen-

dent of the order in which these two limits are taken.

APPENDIX C: CONTINUITY AND DIFFERENTIABILITY
OF THE INTEGRAND ON THE ASYMMETRIC
INTEGRATION SURFACES

We finally want to show that the two integrgla20) and

PHYSICAL REVIEW [»8 083501

, -1 2m w12 dr G
Zw\Plz—lednfo d(pfl 1_rzex N

—oylog 2 % +ijo
+J’ dn(ZJ’ dcpJ’ +J de f )
— 0 1 —ioe K(1R)

" r2 dr G o1
1—r2 ex x . ( )
With the abbreviation® andQ defined via
5 fZWd fwrz dr F{G
1= exp—|,
o T )i1r2 A
(C2

o 1J‘+iood f r2dr F{G
== expg —
2) i ¢ K(1L,R)1—r2 A

we can rewrite Eq(C1) as a piecewise defined integral:

-1 P+2Q,
27T\II:ILZJ' dn _p

n<—oyloq,
20y ©3

7]>_O'2/0'1.

To show the continuity and differentiability of the integrand
with respect toy at the % junction we then have to show the
following two properties of? and Q:

=0.

n=—o0,l0q

d
E(P+Q)

(P+Q)

n=—0, /u’l: 0’
(C4)

To proceed in this direction let us try to evaluate thénte-
grals inP andQ. The ¢ integral forP can be interchanged
with ther integral and is then peformed easily, leading to

P=2 focrz drI ¢ C5
=477 11_r2 0 ex )\ ) ( )

A o r2
2% 2

with

1
G':=1=r?+2kar n+ 5 (ki+ k3) (1= 7%)

)\2 a2+ b2 2K1K27]
+ — _
4 1_r2 1+r

(C6)

(A21) given in Appendix A give analytical solutions of the TheQ integral is more complicated, because it is not allowed

Wheeler-DeWitt equatioB.17) not only for A—0, but also

to interchange the and thee integrals which have to be

for A+0. To show this we have to prove that the effective performed there: after such an exchangedtiategral would
integrand of they integral is continuous and differentiable at not exist. However, we are free to open théntegration

the junctionsp=—o4/0, and n=—o0,/04; the Wheeler-

contour K(1,R) at r—+o, and the resulting integration

Dewitt operator would otherwise produce boundary termsurve can be deformed into a line integrghiR, where we

when acting on the wave functions; and¥ ;,5, and they

can choose-1<ry<0. For thisr-integration contour we

could not be solutions. In the following, we will restrict our- may then interchange theand theo integrals, because the

selves to the solutiod’; in the caseA>0 defined in Eqg.
(A21), which can be written in the form

¢ integral exists for any value along the contour. Thus we
can write
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20 ro—ier? drf+iocd %G} 2Q=—2P+2i r2 drK A b r2 F{G,}
= exg — =— i lim —~a expg—|.
roriz 1—12) w0 N Ro0JKARL—12 0|27 112 A

(C11)
2.jfoiocr2 dr < A o r2 F{G’} -
=2i -a exg —1|,
rori= 1—r2 (27 12 A

Comparing this result with the desired clai{@4), all that
and in the last line the integral can be deformed back to the remains to be shown is that the pole integral in &j1) and

positive real axis, giving an integral around the cut atl, its » derivative vanish in the limitR—0. In this limit
which is generated by thi€o-Bessel function. Let us define R—0 the only contribution to the integral arises from an
this cut integral explicitly in terms of the contod,, via infinitesimal region around=1, and so we can expand the

L . Ko-Bessel function for large arguments; furthermore, parts of
Cour =K(LR)®{r —i0]1+R<r<ee} the integrand, which remain regular for~1, may be sub-
O{r+i0|1+R<r <o}, (c8)  stituted by their values taken at=1. We then find, for the

. . . ) pole integral,
Obviously,C,,; is a superposition of a pole integral and two

line integrals along the cut, where one of these line integrals

is performed in the upper half plane, while the other one has r2 dr A r2 G’
to be evaluated in the lower half plane. The integral over the f —K, 7ab— eXF{T}
integration curvéC8) is independent of the radiu® as long KR 1—r2 1—r?
as this ranges betwedt=2 andR=0. Using the formulas
R—0 dr N (a—b)?
Ko(—t£i0)=Fimlo(t) +Ko(t), t>0,  (C9) * fm,R) — eXF{E ?} (€12

we can evaluate the two line integrals which are contained in

Eq. (C8), where it turns out that thk contributions cancel, ]
while we get thd , contributions twice. Thus we can rewrite Where we have only taken into account thdependent parts

Eq. (C7) as of the integral, while ao,-dependent prefactor has been
omitted. If we now consider the right hand side of E§12
o r2dr [\ r2 G’ at the » junction = —o,/0,, @ andb become coincident.
2Q:—47Tf 2IO Eab > ex;{r} Thus the essential singularity of the integrand disappears,
14R1—r 1-r and all that remains is an integrable square-root singularity,
2 dr N (2 G’ for which the pole integral vanishes in the linit—0. Simi-
+2iJ Kol =ab exr{—} lar arguments show that also the derivative of the pole
KaR1—r2 |2 " 1-r2 A integral in Eq.(C11) vanishes forR—0; so, after all, we

(C10 have proved our clairfC4) and, therefore, the continuity and
differentiability of the » integrand in Eq.(C1). Analogous

If we now consider the limitR—0 in Eq. (C10), the first  calculations may be performed for the second nontrivial in-

integral takes the form of the integral[cf. Eq. (C5)], and  tegration surfac& 3,5, where we have to deal with two dif-

we get ferent » junctions.
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