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To extract reliable cosmic parameters from cosmic microwave background datasets, it is essential to show
that the data are not contaminated by residual non-cosmological signals. We describe general statistical ap-
proaches to this problem, with an emphasis on the case in which there are two datasets that can be checked for
consistency. A first visual step is the Wiener filter mapping from one set of data onto the pixel basis of another.
For more quantitative analyses, we develop and apply both Bayesian and frequentist techniques. We define the
“contamination parameter” and advocate the calculation of its probability distribution as a means of examin-
ing the consistency of two datasets. The closely related “probability enhancement factor” is shown to be a
useful statistic for comparison; it is significantly better than a numbeg®fjuantities we consider. Our
methods can be used internalligetween different subsets of a dataset externally (between different
experiments for observing regions that completely overlap, partially overlap or overlap not at all, and for
observing strategies that differ greatly. We apply the methods to check the consigtéanyal and external
of the MSAM92, MSAM94 and Saskatoon Ring datasets. From comparing the two MSAM datasets, we find
that (given a particular model of the contaminpttie most probable level of contamination is 12%, with no
contamination only 1.05 times less probable, 50% contamination about 8 times less probable and 100%
contamination strongly ruled out at ovekA0° times less probable. From comparing the 1992 MSAM flight
with the Saskatoon data, we find the most probable level of contamination to be 50%, with no contamination
only 1.6 times less probable and 100% contamination 13 times less probable. Our methods can also be used to
calibrate one experiment off of another. To achieve the best agreement between the Saskatoon and MSAM92
data, we find that the MSAM92 data should be multiplied (oy Saskatoon data divided byl.06"32.
[S0556-282(98)05320-X

PACS numbegps): 98.70.Vc

[. INTRODUCTION sky—each dataset has entirely different sources of system-
atic error.
The cosmic microwave backgroui@MB) is blackbody In addition to confirming the astrophysical origin of the

radiation with a mean temperature of 2.228.004 K with  estimated signal, comparison can greatly improve the ability
95% confidenc¢l]. This mean is modulated by a dipole due to detect foreground contamination. Perhaps the best evi-
to our peculiar motion with respect to the radiation field. If dence for the thermal nature of anisotropy comes from the
one removes the dipole, the temperature is uniform in evergomparison between the MSAM92 and Saskatoon datasets.
direction to+ 100 uK. Precision measurement of these tiny Together, these observations span a frequency range from 36
deviations from isotropy can tell us much about the Univers€3Hz to greater than 170 GHz. [i5] it was found that the
[2]. spectral indexB (8T« (v/vy)?) is constrained to bed
Unfortunately, precision measurement of 1@ fluctua- = —0.1£0.2. For CMB, free-free and dust over this fre-

tions is not an easy task. Even given sufficient detector serflu€ncy range, we expegt=0, —1.45 and 2.25 respectively.
sitivity and observing time, one still has to contend with 1€ authors conclude that the signéfsthe region of over-

many possible contaminants such as side lobe pickup of tH@P) &€ not dominated by contamination from known astro-

o : ; ; - hysical foregrounds, but are, rather, primarily CMB.
300° Kelvin Earth and atmospheric noigaven from high- P : . .
altitude balloons In addition, there can be contamination of . We should not let this apparent success fool us into think-

: . ing that going to the next level of precision will be easy.
cMB ob.servatlons.b_y as_trophysmall foregrounds. . There is a big difference in the level of toleration of contami-
Despite these difficulties, there is good reason to believ

h I f : he sianals ob P ants when the goal switches from detection to precision
that, at least for some experiments, the signals observed rofe 5 rement. It is likely that there will be significant levels

sub-orbital platforms are not dominated by contaminants contamination(from the atmosphere, side lobes, and fore-
One of the best reasons for believing this comes from th rounds in future missions. It may be difficult to demon-

comparisons that have been done—between FIRS and Diktrate convincingly that contamination is low without com-
ferential Microwave RadiometefDMR) [3], Tenerife and  parison.

DMR [4], MSAM92 and Saskatoori5], MSAM92 and Given the importance of comparison, we feel it is worth
MSAM94 [7], and two years of Python dalé]. Especially  improving upon the methods used previously. Past treat-
for the case when data being compared are from two differments have had to ignore much relevant data, and make un-
ent instruments, almost the only thing their acquisitions haveontrolled approximations. This is due to the fact that gener-
in common is that they were observing the same piece oélly the two datasets being compared were obtained from
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instruments observing the sky in different ways. The beam Il. PRELIMINARIES
patterns and differencing schemes may differ as in the case
of the MSAMQZ/S@skatoon comparison. ﬂ“f’] one of the 0 be used in comparing datasets, we give some review
MSAMB92 differencing schemes was approximately recreate hich will serve to define our notation, following Ré8].

in software in order to do the comparison. However, no use In general, CMB observations are reduced to a set of
of software could change the fact that the MSAM92 andpinned observations of the sky, or pixels,, i=1..N to-

Saskatoon beam patterns, although they have fairly similagether with a noise covariance matri,;; . We model the

full-widths at half-maximum, differ significantly in shape. opservations as contributions from signal and noise,

Even when the differencing schemes and beam patterns are

the same, there can still be barriers to a direct comparison. Ai=s+n;. (2.2

The two MSAM flights(one in 1992 called MSAM92 and

one in 1994 called MSAM94took data with essentially the We assume that the signal and noise are independent with

same beam pattern and applied the same differencing, but irero mean, with correlation matrices given by

this case the direct comparison is frustrated by the fact that

the pixels do not all line up exactly. Therefore[if], pixels Criir=(sisi");  Cniir=(nini») (2.2

within half a beam width of each other were approximated as

being at the same point, and those pixels with no partnef0

from the other dataset within this distance were ignored. Half

of the data were lost this way. (AjAi)=Criir +Cpiv 2.3
Here we develop methods of comparing datasets that do

not require any information to be thrown away. DifferencesWhere(... indicate an ensemble average. With the further
assumption that the data are Gaussian, these two-point func-

in demodulation schemes, and effects due to non* I that | ¢ : <tical d
overlapping pixels are automatically taken into account. The'0ns are all that is necessary for a complete statistical de-

inevitable price we pay for this is model-dependence. HowScription of the data.

ever, we generally expect the model-dependence to be small One important _compllcatlon to t_he above description
! o . . comes from the existence of constraints. Often the dxta,
and indeed find it to be so in the case studies shown here.

An extremelv useful tool for visual comparison is the are susceptible to some large source of noise, or a not-well-
. . y . ) paris understood source of noise that contaminates only one mode
Wiener filter. Roughly speaking, it allows us to interpolate

. of the data. For example, there may be an unknown offset in
the results from one experiment onto the expected results fQpe g4t n this case, the average is usually subtracted from

another experiment that has observed the sky differently. Af'Ai. Similarly, the monopole and dipole are explicitly sub-

ter some notational preliminaries in Sec. Il, in Sec. lll, Weacted from the all-sky COBE/DMR data, because the

introduce the Wiener filter in the context of the probability monopole is not determined by the data and the dipole is

distribution of the signal, given the data. Also in this section, ¢4 in origin. In general, placing any constraint on the data

we describe the datasets and apply the Wiener filter to themy some subset thereof, such as insisting that its average be
When comparing datasets, we are testing the consistenGgrg results in additional correlations &y . We take this

of our model of the datasets. We emphasize that meaningfulis account by adding these additional correlatidds, to

model consisten_cy testing demands the existence of othgke noise matrix to create a “generalized noise matrig,,
models with which to compare. Therefore we extend OUlyhereCy=C,+Cec. In the limit that the amplitude o€
n .

model of the data to include a possible contaminant and calyets |arge, this is equivalent to projecting out those modes
culate the probability distribution of its amplitude, given the \ ik are now unconstrained by the data, but we find this
data. We find a more limited extension of the model space tQ:heme simpler to implement numerically. Thus in the text
also be useful, in which we only consider one alternative tq,qw we always write the noise matrix @g instead ofC

.

no contamination: complete contamination. We define therpg getajls of this procedure for handling the effect of con-
probability enhancement factor” as the logarithm of the i oinie are explained if8].

ratio of the probability of no contamination to the probability b6 15 finite angular resolution and switching strategies
of complete contamination. This Bayesian approach to cOMgegigned to minimize contributions from spurious signals

parison is described and applied in Sec. IV. _(such as from the atmosphgrehe signal is generally not
In Sec. V we discuss and apply frequentist techniques.

such asy? tests. The probability enhancement factor can als |mply_ the temperature of the sky in some directi®x),
be used as the basis for a frequentist test—and it is in fact th ut a linear combination of temperatures:
well-known likelihood ratio test. We demonstrate that the
probability enhancement factor has more discriminatory Si:f d2xH; (X) T(X) (2.4)
power than any of the other tests considered.

After a further look at the data with the probability en- R
hancement factor in Sec. VI, we discuss the fixing of relativewhere H;(x) is sometimes called the “beam map,” “an-
calibration in Sec. VIl and possible contamination due totenna pattern” or “synthesis vector.” If we discretize the
dust in Sec. VIII. Finally we summarize our results in Sec.temperature on the sky, then we can write the beam map in
IX. matrix form,s;=2,H;,T,.

Before moving on to a discussion of the various statistics
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The temperature on the sky, like any scalar field on a Ill. WIENER FILTERS
sphere, can be decomposed into spherical harmonics A Derivation
Bayes’ theoren}9]
T(0’¢):/2m AmY (0. 4). 29 P(s|Al)=P(s|l)P(A|s)/P(A|I) (3.1

follows from elementary rules of probability. If we take
P(s|l) to be a Gaussian distribution with zero mean and
covarianceC; and P(A|sl) to be a Gaussian with mean
and varianceC,, then with a little algebra it follows that the
probability distribution for the signal, given the da@y; and

If the anisotropy isstatistically isotropic, i.e., there are no
special directions in the mean, then the variance of the mul
tipole momentsa,,,, is independent ain and we can write:

(@/m@ 1) =C, 8,1 S - 26y, is
For theories with statistically isotropic Gaussian initial con- exd — (1/2)(s—wA)"™M " H(s—wA)]
ditions, the angular power spectruf@, , is the entire statis- P(s|A.Cr.Cn)= [(2m)N2M|¥2] '
tical content of the theory in the sense that any possible 3.2
predictions of the theory for the temperature of the micro-
wave sky can be derived fromit. whereM =((s—wA)(s—wA)")=C;—wC; and
The theoretical covariance matri€y;;/ , is related to the
angular power spectrum by w=C(Cr+Cy) ! (3.3
2/+1 , is the Wiener filter[10]. As one can immediately see from
CTii’ZZ a7 CWir(£), (2.7)  Eq. (3.2, the most probable value of the signal is given by

wA. As with all Gaussian distributions, this most probable

value is also the meas= [sP(s|A,C;,Cy)ds=wA.
where Thus the Wiener filter operating on the data provides us
with the most probable estimate of the underlying signal. Of
‘ course, this is the most probable signal only once we assume
Wii'(/)ZE HinHi/n P (COS Onp) (28 a power spectrumC,, which is used to calculat€;. For-
nn tunately, this model dependence is quite weak: the Wiener
filter provides a robust estimate of the underlying signal pro-
is called the window function of the observations &g is  vided theories are not chosen which are clearly incompatible
the angular separation between the points on the sphere Igith the data.
beled byn andn’. The Wiener filter can be very helpful for visualizing the
Within the context of a model, thé, depend on some underlying signal. For example, often the data are over-
parametersa,, p=1..N, which could be the Hubble con- sampled; that is, there are closely spaced data points with
stant, baryon density, redshift of reionization, etc. The theo'plenty of scatter and large error bars. In a sense, the Wiener
retical covariance matrix will depend on these parametersilter knows that the high spatial frequency scatter is due to
through its dependence @iy . We can now write down the noise and not signal and performs a smoothing of the
probability distribution for the data, given the model param-data—an interpolation controlled by the different statistical
eters,a,: properties of the noise and signal.
One can also use the dataset to calculate the most prob-
1 able signal in some other datadéet us call the two datasets
2m)VCr(ay) + Co 7 Ag and_Az, where the subscrlpt_s refer here to the entire
LN N appropriate data vector, not the single element at a particular

P(A[Cr(ap))=

1 pixel. Before getting toP(s,|A;), we describe some nota-
X exp< 3 AT(Cr(ap)+Cn) 1A . tion for joint datasets. We represent the total data vector as
(2.9 Ay
A=| ). (3.9
2

The | here stands generically for information—in this case
the information that the noise is Gaussian-distributed withThis vector will have a total covariance matrix
zero mean and variancgy .

2In Ref. [18] the Wiener filter was used to calculate the most
INon-linear evolution will produce non-Gaussianity from Gauss-probable signal in the Tenerife data, given the Cosmic Background
ian initial conditions, but this is quite sub-dominant {6 1000. Explorer (COBE) DMR data.
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(A1AD) (Aq40) [ ]
<AA*>=( h aal - -
(A241) (Az47) I ]
B ( Cr11+Chut Cri2 ) | I |
Cra1 Cra2t Cnzz i |
(3.9
whereCq;; represents the theoretical covariance between the i
pixels of experiments andj, andCy;;= C%i . We will also =

define Cj;=Cyj;+Cy;;. We assume that the experiments

have no common noise sourcéss would be the case for 0.5 = ]
instrument noise and atmospheric ngiaad thusCy,=0. r T
With this notation established we can now write - .
P(s|A1,Cr,Cy) : :
ex — (1/2)(5;~ Wprd 1) TM (s~ WpiA 1) ] 0 | | | .
[(2m)NM[]M 0 200 400 600
(3.6) multipole moment ¢
whereM = C95—W51C12, FIG. 1. The diagonal elements of the window function matrix
Wj;; for the four SK95 ring antenna pattergsolid) and the two
W1=C121(Cr11+ Cn1t) 1 (3.7 MSAM antenna pattern@ashegd which are the same for MSAM92

and MSAM94. These show how the power spectrum contributes to
and we refer to the Wiener-filtering of dataset one “onto” the variance of the daf@ee Eq(2.7)].
dataset two.

¢ Thus \|N|ener-f|I_ter|ng fp:jovtldest USEW'th in exc;]el(ljer:t tof[)l.comparing observations that are not themselves maps, and it
or visual comparison of datasets. tven It each dataset Iy, suggested by the statistical techniques we discussed

ex-presse_d in different generalized pixels, since We Callarlier. Here we Wiener filter onto the experimental pixel
Wiener filter one onto the other, we can compare the sign pace itself

predictions in the same space. We will see applications o
this following the next section, which describes the MSAM
and Saskatoon datasets. ) o o

The Wiener filter can also be derived without reference to Before jumping into the applications to the Saskatoon and
anything other than the two-point correlation function of theMSAM datasets, we must describe them. They have consid-
signal and noise. Assume we wantto be such that the er_able spatial overlap and similar angular resolutlons. Other-
variance ((s—wA)(s—wA)') is minimal. Differentiating WiS€; however, the two datasets are very different and a com-

with respect taw;; , setting to zero and solving fov;; results parison provides a strong check on systematic errors.
in w=C(Cy+Cy) % Thus the minimum-variance esti- MSAM is a balloon-borne bolometric instrument with ap-

mate of the signal does not depend on the Gaussianity of tiyoximately half-degregfwhm) resolution in 4 frequency
signal and noise distributions. Although, of course, the unPands centered at 170, 280, 500 and 680 E¥8t The data,
certainty in the estimate do%0]. af[ each frequency, are binned into pixels on the sky with two
One final expression we will need below is the probability different antenna patternsi, referred to as 2-beam and 3-
distribution for the data itself\, (as opposed to theignalin beam or single-difference and double-differerisee corre-

the second datagegiven A, and relevant matrices. It is the SPonding window functions in Fig.)1Simultaneously, long
same as the above after changisgto A, and M to M time-scale drifts are removed which has the effect of intro-

+ Cpa. ducing off-diagonal noise correlations. From this multi-
frequency data, a fit is made to temperature fluctuations
about a 2.73 K black-body component and the optical depth
of a dust component. The dust is assumed to have a tempera-
For Gaussian signal and noise, the Wiener filter providesure of 20 K and emissivity that varies with frequency to the
the maximum-likelihood reconstruction of the signal; it is 1.5 power.
also optimal in the minimum-variance sense discussed The MSAM instrument flew in 199914], 1994[15] and
above. One can construct a Wiener filter from the pixelizedl995[16]. In each year a narrow strip of sky with nearly
data space onto the same space or from the pixelized datanstant declination was observed. The purpose of the 1994
space to any other linear combination of map pixels—sucHlight was to confirm the results from the 1992 flight and so
as the map pixels themselves. Wiener filter maps have bearach targeted the same strip of skydat82° (see Fig. L
made for the SK datas¢fll] and the COBE/DMR dataset Note that, due to, for example, imperfect pointing control,
[12]. Map-making though is not the most useful means forthe two flights have slightly different sky coverage. The final

1. Description of the datasets

B. Applications
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FIG. 2. Observation locations. The SK95 ring data covered the 0 i é
entire circle of radius 8 degrees around the NCP. The centers of the r ]
MSAM92 (MSAM94) pixels are indicated with triangldsquares —-50 [~ 3

._\
S
—
o

flight in 1995 observed near declinatios 80.5°, chosen to 18

be sufficiently far away from the first two flights for the RA (hours)
signal correlations to be negligible. Therefore we do not con- , . : _
sider the 1995 flight any further in this paper. FIG. 3. An example of Wiener filtering. The points with error

The SK d d i d ch . bars are the MSAM92 pixelized data. Two-beam in top panel, 3-
e_ ata are reported as CO!’T’Ip ICa_te ¢ opplng pa‘iieam in bottom panel. The three curves in each panel are the
terns (i.e., beam patterngl, above in a circle of radius

. Wiener-filtered data bounded by one standard deviation.
about 8° around the North Celestial Pole. The data were

taken over 1993-1995. Here we only use the 1995 dat
which were taken with angular resolution 0.5° FWHM at
approximately 40 GHz. More details can be found%i.

The bulk of the data were in the “cap” configuration:

the diagonal part of théhon-diagonal noise covariance ma-

trix. The central curve is the Wiener-filtered data and the
bounding curves indicate the 68% confidence region for the
signal. Because of the difference between the noise covari-

constant-elevation scans tracing out curved rays from th(gmce matrix and the signal matrix, the Wiener filter essen-

pole, which were then binned in RA and subjected to varlou%a"y assumes that the high frequency behavior is noise and
sinusoidal demodulation templates in software. Somg of th(tnherefore smooths out the data. This smoothing is compli-
1995 data (0.5° beamhowever, were taken in the “ring cated by the off-diagonal noise correlations which explains

configuration, which isolated the data takendat82°, put __some apparent disagreements between the data and the

into 96 RA bins, and then subjected to 3, 4, 5 and 6 POINtyiener-filtered data. For example, around 20 hours in the top

sinu;oid@l demodylations, th_is time alon_g lines O.f CO.nStanbanel the Wiener-filtered data are consistently above a num-
declination. The ring data window functions are in Fig. L per of, the data points

The region of overiap of the .SKQS fing data with the two The Wiener filter is model-dependent—one must know
MfSA'\tA q{ﬁtagitgg:zn tbe seen in Fig. |2.t'rl;hro_ugh(§)utt when W?or assumg covariance matrices for the noise and signal.
refer to the Sit ata, we mean only the ring data. Presumably, the noise covariance matrix is well-known and

The calibration of the SK dataset was performed by com-

paring with the supernova remnant Casseiopia A. This star so the model-dependence resides in the choice of angular
: . . ' .~. power rum. Of rse, w n gain some knowl f
30-40 GHz flux itself is poorly determined; hence, the or|g|-BO er spectrum. Of course, we can gain some knowledge o

- L the angular power spectrum by performing a likelihood
nal SK dataset was reported with a 14% calibration error ; . S . )
More recently, Leitch[17] in turn used the brightness of analysis of the data. The Wiener filter is generally quite ro

. = . bust to changes in the angular power spectrum that are
0,
Jupiter(known to 3.’@ in this ban)dto.determm(_a the absqlute smaller than those that significantly alter the likelihood—
flux of Cas A; this has resulted in a 5% increase in the

. . ven lar han lly have very little effect. W m-
temperature of the SK datand error§, with a reduced cali- even large changes usually have very little effect. We de

' . ; onstrate this robustness here with Fig. 4 which shows the
br_atlon error of 7%(the flux of Ca§_ A itself is now detgr- Wiener-filtered data for a standard CDM spectral shape and
mined to~5%, but there are additional sources of calibra-

. . ; also for a flat spectru =constant).
tion error[18]). Except for Sec. VI, in the following we do P mc )
notinclude the effects of calibration uncertainty.

C. Wiener-filtering MSAM94 onto MSAM92

2. Wiener-filtering MSAM92 Besides Wiener filtering the data onto its own pixel space,
An example of Wiener filtering with Eq3.3) is shown in  we can Wiener filter it onto another pixel spdéey. (3.7)].
Fig. 3. The data points are the values of the pixelized datalhis provides an excellent visual tool for checking compat-
located horizontally according to the right ascension of thebility of results. We show this first for the Wiener filtering
center of the pixel. The dependence of the pixels on declinasf MSAM94 onto MSAM92, together with MSAM92 onto
tion and twist has been suppressed. The error bars are froMSAM92 from the previous subsection. Notice that in Fig. 5
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< f ] or ]
| L i L il
N-10 - - - 1
r ] —20 —
720 ; '?: i 1 | | | 1 | ‘ | | Il ‘ Il il

L | T T | T T T ‘ T T T ‘ T
. 20 — 20 [ ]
o | | L ]
v i ] - 5% :
f 0 - 0 z;‘ 7
™ i ] i 7‘ ]
r 1 —20 —
720 — — | -
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starflii.r d4éDVI\\//I|§I21 %r sfllgirtrrrgdviggZzestcgsgg?oiotrhyssc;ﬂo\ﬁhgzﬁé;he FIG. 6. The MSAM92(vertical lines and MSAM95 datghori-
curve P zontal lineg Wiener-filtered onto the MSAM92 pixels.

] ) the 3-beam signal. We will discuss these slight anomalies
the 68% confidence regions mostly overlap each other. Onger.
can see the MSAM94 region get wider at either extreme in

RA. This is because the MSAM94 pixels have a slightly D. SK95 onto MSAM92 and MSAM92 onto SK95
shorter RA extent than the MSAM92 pixels (1219 20.T ' oo an oo
compared to 14/5to 20.3). Figure 6 shows the same thing as Fig. 5 except that

One can see in the figure that many features are seen BSAM94 has been replaced with SK95. Once again, the first
both datasets; they agree quite well. The most significanipression is of general agreement, although the discrepan-
differences between the two estimates of the signal are in théi€s here(at large RA appear to be more significant than

region of 15.5 hours for the 2-beam signal and 14.5 hours fothose seen in the MSAM92/MSAM94 comparison.
We can also filter the MSAM92 data onto the four SK95

(ring) templates, as shown in Fig. 7. We have chosen the

T | T T T R .
i 2_beam i range of this plot to extend in RA further than the MSAM92
20 - -
i i 200 E
ol 1 100 =
B B 0 =
i 1 - 100 =
-20 [ = ~200 ]
L ] 100 -
_ ] 0 ]
r ] ~100 =
R0 - - 3
o 4
C ] -100
—-20 — —
L | : \ ]
14 18 20
RA (hours)
FIG. 5. Wiener filters onto MSAM92 pixels for MSAM92 data RA (hours)

(vertical lines and MSAM94 datdhorizontal line$. The curves are
realizations consistent with the MSAM94 data. Two-beam in top  FIG. 7. Wiener filters onto SK95 pixels for MSAM92 daeer-
panel, three-beam in bottom panel. tical lines and SK95 datdhorizontal lines.
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coverage. This allows one to see how the constraint behaves specific hypothesis is advanced, it could be tested with a
outside of the region of MSAM92’s influence. Notice that C,.s;; more appropriate than the one described here.

the errors do not become infinite. This is because of the prior

information that went into the estimate of the probability A. The contamination parameter, y

distribution, i.e., the assumed power spectrum. Also note that . .
the data have some influence slightly beyond the limit of the To test the consistency of the pairs of datasets—or rather,

sky coverage. The dominant reason for this is the spatiatl0 test the adequacy of our model of the datasets—we intro-

extent of the antenna patterns. In addition, the intrinsic cor—duce the following residual:

relations (assumed in the priprextend the influence to
slightly beyond where the antenna response is zero.
With two dimensional Wiener filter map&@s with any  and likewise forA,. To reduce the number of parameters in
two dimensional map it is difficult to plot both the map and  this model for the residual, we sgt y;=y,. Now we must
a confidence region expressing the level of uncertainty as wepecify the probability distribution af. For simplicity, let us
have done here for essentially one dimensional data. In 2D thke it to be a Gaussian random variable with zero mean.
is therefore often useful to show, in addition to the meanClearly, we want the cross-term in the variance to be zero
signal, several realizations consistent with its probability dis-(<r1r2>:0), since we have in mind contaminants that are
tribution [Eq. (3.2 or (3.6)]. Looking at several realizations particular to each dataset. There is a lot of freedom in the
allows one to see which features are significant and whiclungice of(r,rT) and(r,r ))—once again for simplicity let us
are not. Realizations can also be useful in the 1D case tQq these to be equal ©r,, and Cr,.
make_ up for. the fac't that the confidence region d'oes not \we have just added one parameter to whatever other pa-
contain any information about correlated uncertainties. FOf;meters we were using to define the power spectrum. The
the applications here, though, we have not found them t0 bg,oqe| for the power spectrum we use here is standard cold

Aj=si+ny+yirg 4.2

useful and so have not shown any. dark matter(CDM), with the amplitude as the only free pa-
rameter. We have expressed the amplitudergs-the rms
IV. BAYESIAN COMPARISON fluctuations in mass in 81 Mpc spheres. The experiments

A natural question to ask is, “How consistent are the tWOin guestion do not have sufficient dynamic range to constrain
i strongly more than this one parameter. For COBE-

datasets?” The Wiener filter gives a visual, qualitative an- )

swer to the question, but we would also like some quantitan©rmalized standard CDMrg=1.2.

tive answers as well. A better-formulated question is, “Is my W& can now explicitly show the complete parameter de-
model of the data an adequate description of the two datasefgndence of the covariance matrix in our model, by modify-
together?” To answer this question, one can extend thd'd Ed-(3.9 to

model of the data to include a residual and then check to see

if this extension increases the likelihood. For example, one ~_
could.add a residual that is Gaussian-distributed with zero o2Crm 02(1+ ¥?)Cropt Craz
mean: @3

Aj=sj+ni+r; where the tilde means the quantity is evaluateddge 1.
We prefer to work with a slightly different parameteriza-
(AiAj)=Crij+ Cpij + Cresjj - tion (spanning the same model spabg replacingss with
(4. (aé)zzaé(lJr ¥?) which is the amplitude for the variance
of the signal and the contaminant combined. We prefgto

051+ y*)Cry+Cynn o5Cr12

Further restrictions on the form & .g; must be made for ) : o o Al tiia X i
the problem to not be degenerate. One could ch@ysg to 78 since its probability distribution of this quantity should be
be appropriate for a particular foreground contamir[ajgﬂ relatively independent of the level of contamination. Further,
increased noisgl2], or anything else that inspection of the We prefer to use the fraction of contaminatiopiy(1+ )

data, combined with prior knowledge, has led the analyzer tgather than the contamination parameter itself. Probability

suspect. distributions forog and y/~/(1+ %) can be seen in Fig. 8.
Below we describe a particular choice Gf.g;; that is One can see from the shape of the contour curves that

useful in the absence of any hints as to the likely nature of &/+(1+ %) anda} are very nearly uncorrelated. The reason
possible contaminant. One of its virtues is that it tests thas that the dominant contribution to the determinatiorugf
agreementbetweenthe two datasets, rather than anythingcomes from terms in the likelihood proportional A
internal to them. This is because the residual can only bwhereA; andA; are in the same dataset, whereas en-
constrained by the comparison of the two datasets; thérely determined by the cross-terms.

datasets individually cannot distinguish this residual from the The most probable level of contamination indicated by the
signal itself. Another virtue of the residual model is that aMSAM92/MSAM94 comparison is about 12%. However,
statistic based on it has advantages over varidustatistics,  there is virtually no evidence for non-zero contamination
as is discussed in the next section. We point out though thaince the probability of zero contamination is only about 5%
discovering a residual as modeled below may be only théess. Complete contamination is strongly ruled out at more
first step in uncovering the true nature of the residual. Onc¢han exp(5/2)=2.7x10° times less probable. The
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2.0f whereH, (not to be confused with the present value of the
1.8¢ Hubble constantis the hypothesis thag=0 andH., is the
1.6¢ hypothesis thaty=«. Both hypotheses are understood to be
1.4 L fixed at the samerg. One can see from Ed4.3) that the
58’ 1oL cross-terms connecting the two different datasets in the co-

10k variance matrixC vanish wheny— o with o fixed. There-
0.8E fore we can also writg8 as
0.6} : :

0.0 0.2 0.4 0.6 0.8 1.0 B=In P(A14,|C) =In P(A4]4,,C) (4.5

P(A4|C)P(A,|C) P(A,4|C)

2.0F
1.8¢

1.6]
1.4]
0'8’ 1.2F

whereC is understood to b€ in Eq. (4.3) with y=0 and

the second equality follows from the use &f(AB|C)
=P(A|BC)P(B|C). This second equality gives rise to an-
other interpretation of3; B8 indicates how much more prob-
able dataset 1 is given that dataset 2 exists than it would be

1'05 ] without the existence of dataset 2. And by the symmetry of
08 a - the definition of3, we know that the statement is true under
0.6 : — switching of 1 and 2.
0.0 0.2 0.4 0.6 0.8 1.0 The probability enhancement factor, like the Wiener filter,
depends on the assumed power spectrum used to calculate
v/(1 49372 fractional contamination the theoretical covariance matrices. We find that for our pa-

rametrized model, within the most likely region of parameter
FIG. 8. Contours of the likelihood afg vs the fractional con-  space, the dependence®bn the parameter is weak. In Fig.
tamination for the MSAM92 and MSAM94 datasétsp panel and 9 we see the dependence g(02,95 and 8(94,95 on 0-8_4
the MSAM92 and SK95 datasetottom panel The contours in-  Notice that this dependence is quite weak near the maximum
dicate reductions in probability from the maximum by factors of of the joint and individual likelihoods. Tha is minimized
2 2 2
el? &2, %72 etc. near the maximum of the likelihoods, is due to the fact that

- the joint likelihood[proportional toP(A;A,|C)] is broader
MSAM92/SK95 datasets are much less constraining on th?nar{ the product o[fpthg two individfjall Iililalial]oocﬂpropor-

amount of contamination that may be present. While 50% is: )
the most probable value, total contamination and no contam?—log\asI ::(;rF: (t)Aeché)el:’\(f? él,r?zr]]’eslﬁg :lzlge(lﬁhg)o d curves. the differ-

tr;\e/lglc;/n are only about 13 and 1.6 times less likely, r€SPECent datasets prefer slightly different values «f.> For all

For simolicity. the contaminant is modeled as bein un_calculations ofB below and for the Wiener filtering in the
plctty, 9 revious section, we have chosen a valueogf=1.2, in

O B e ocoinip eticen the prefered values for SK, NSANS2 anc
that a real contaminant would have thié property. Again ifMSAM94. It is also the normalization for this power spec-
) . " ' “trum suggested by the DMR data.
one suspects one experiment of being contaminated more

than another, it is straightforward to chan@g.;; accord-
ingly. We point out though that even as modeled here, a V. FREQUENTIST STATISTICS
contaminant in just one of the experiments will still push the

most likely y away from zero. This will happen to accom-
modate the fact that the contaminant is not contributing t
the dataset 1—dataset 2 cross-terms.

We now discusg3 from the frequentist perspective. The
drequentist approach to checking the consistency of a dataset
Is to invent some function of the data, called a statistic, and
then to compare the measured value of the statistic to its

B. The probability enhancement factor, 8 probability distribution under various hypotheses. The prob-

For many purposes, a much smaller extension into alter
native hypothesis space may be useful. In particular, instead, ) o _ _
of examining a continuum, one could just compare the model Tgel;ﬁ_ IS e;/en a tlh"_d interpretation Sfas ";]e 'O% of the ratlol of

. _ . — - ’ . _ probability of no relative pointing error, to that of a gross relative
\(;vslttrl]ng qgatr?tii?/eismf?g\;evl m&rg’] r‘:IC(;rgt ;Ir):)ebdaz?é IE: Irrr]1toe(:e| i é)ointing error which leaves the fields completely uncorrelated.
\ ) “To be precise, we meamy, but in the following, we drop this
than the other, a quantity referred to as the odds. This pal P 8 g b

icul her its | ith f I Ib—rime for simplicity and also because keeping the prime does not
.IICU ar odds, .o.r rather its logarithm, we refer to/aand ca make sense in the context of the interpretatiorBafs the increase
it the probability enhancement factor:

in probability of one dataset given the other dataset.

P(A,A |H ) SSome of this discrepancy may be due to calibration uncertainty
=l ——122 0 (4.4  which is not included in these log likelihood curves. We address
P(A1A5[H..) this issue in a later section.
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FIG. 9. Probability enhancement facig(92,93 (top panel and FIG. 10. The measured values gf(vertical lineg and its(ar-
(94,95 (bottom panel as a function ofag (solid curves. Also bitrarily normalizedl probability distribution functions under the
shown are— 6 In £ for individual and joint datasets. Identifying two hypotheses. From top to bottong(92,94, 592,95 and
these curves by their minima, they are, from left to right: MSAM92, B(94,95. The curves peaking at positiv@ are estimates of
MSAM92+SK, SK ' in the top panel and MSAM94, p gy and those peaking at negativé are estimates of
MSAM94+SK, SK in the bottom panel. P(B|H..). The points with error bars are the results of a Monte

. . . . Carlo calculation, while the solid curves are Gaussians with the
ability enhancement factog, can be viewed as a statistic naytically calculated means and variances.

since it is a function of the data. In fact, it is the logarithm of
the well-known likelihood ratio statistic—in this case the yhere hypothesiX is specified byCy=(AAT)y.

I‘atiO Of the ||kel|h00d Oﬂ_|o to the I|ke||h00d OfHoo . For the case of)) we have’ for hypotheséso and HOC:
Some statistics are better than others at distinguishing
among competing hypotheses. In this section, we seefow 1

and other statistics fare at discriminating between hypotheses (B)o= 2 In
Ho andH,,.

|Cq)N1[C g N2
ic

((B=(B)0)*)o=Tr(W1Wp1)

A. Probability distributions of quadratic statistics

We restrict ourselves to studying quadratic functions of (B)=(B)o+ E Tr(1-C..C™Y
the data, for which we have analytic expressions for the 2
mean and variance. In addition to various differgAtquan- 1
tities (to be defined beloyy the probability enhancement _ 2 = T(1-Cc.c YH1-c.c 1!
factor—due to the logarithm in the definition—is also a qua- ((B=(B)=x)")- 2 i =C =C 91
dratic function of the data: (5.9

,8=(N/2)In|C|+%ATC*A—(N1/2)In|C11|—%AIC[llAl Note that if the experiments have nothing to do with each
other (C,,=0), then the numerator and denominator of the
~(No/2)In|Cp) — 3A7C55 A, (5.1 argument of the logarithm are equal and therefgs,=0
as we expect from the definition ¢f in Eq. (4.4).
Wh|Ch fOIIOWS from Eq(45) Since |t iS a quadl‘atiC fUnCtion Given the observed Va|ue a we can assess the Va||d|ty
of the data, it is straightforward to calculate the mean anchf the two hypotheses by calculating the probability distribu-

variance. . . tion of B8 under each hypothesis. As shown above, we can

In general, any quadratic function of the dat®  calculate the mean and variance analytically. To calculate the
=A'MA+constant, has a mean under hypothésisf entire (non-Gaussiandistribution function though, we have

_ used the Monte Carlo method. The results are plotted in Fig.

Qx=(Q)x=Tr(CxM) + const (5.2 10 for the three possible pairings of the three datasets. The

] Monte Carlo method is quick because we first rotate to a

and a variance of basis where everything is diagonal and then make the real-

5 _ ) izations. The rotation to the diagonal basis only needs to be
0Q%=((Qx—Q)Ix=2Tr(CxMCxM) (5.3 found once. The plots shown use between 4000 and 17000
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realizations. Notice that the distribution @f underH, is

well-approximated by a Gaussian. The deviations from

Gaussianity are larger undetr., .
We see in the figure tha®(92,94)= 13 which is consis-
tent with the expected range for hypothesis 0 of#51. As

a measure of the consistency, we have calculated the prob-
ability of getting aB greater than this to be 0.70. We also see

that under hypothesisl,, such a value ofg is extremely
unlikely; the probability of getting @ greater than the mea-
sured one is less than 1%. We also find consistency Mith
for the other two pairs of dataset$(92,95)=2.1 (c.f.
(B)o=7.4+3.2) andB(94,95)=2.4 (c.f. (B)o=4.4+=2.6).
For both of these, under hypothesisc, the probability of

getting a value of3 as high or higher than the measured one

is 1%.

B. Comparison of comparisons

PHYSICAL REVIEW [»8 083004

VT

20

10

LA

separation factor 9294

separation factor 9295
o
R REREmmma

There are a handful of other quadratic functions of the 0.6 - : : 1.6

data one might consider using for comparison of datasets.

Here we define the ones under consideration by specifying FIG. 11. Separation factors fo8 (blue, solid, x2,, (green,

the data vectors on which they are based:

X5:A (5.5
X2 :A—wA (5.6)
Xan (A=Wl ) (5.7
Xz (8= WA y) (5.8
Xan2: (Wi —WyiA ) (5.9

X3v213(W21A1_W22A2)-

(5.10
We clarify what we mean by two examples:
x5=ATM 1A (5.11)
whereM =(AA"),=C, and
Xa12= (W28, = WA 1) M (WA, — WA y),
(5.12

where
M= (W18, —Wq341) (WA, — W11A1)T>0

= (W13 = W1 W51) Cry1+ (W1o—W11W19) Crpr.
(5.13

The J stands for joint, since this is thg? quantity in the
joint likelihood function, P(A|C). It is straightforward to
show that x5=x2, but, other than this relationship, the
abovey?s are all independent quantities.

To judge the discriminating power of all our quadratic

statistics, we use thgeparation factor

|Qo—Qxl/5Qo, (5.14

dashed and X§ (magenta, dot-dashgdThe top panel is for the
92/94 comparison and the bottom panel for the 92/95 comparison.
For x2,, the smaller dataset is taken to be dataset 1.

whereQg, Q.. are the means under the two hypotheses and
6Qy is the standard error undet,. The separation factor is
shown as a function ofg in Fig. 11. To avoid clutter, only
two of the x? quantities are showry? and x2,,. The sepa-
ration factors for the othey?s are bounded by these two.

One can clearly see the superiority, under this measure, of
the Bayesian-motivated probability enhancement factor. For
example, forog=0.6, if we assumé, it requires an &
fluctuation to ge3={(B).., but only a Zr (30) fluctuation to
get x3=(x3. (x21,=(x21»-). The increase in all the
separation factors with increasing; is expected since dis-
criminating power should increase with increasing signal-to-
noise of the measurements.

The separation factor, as we have defined it, is the sepa-
ration between the expected value of the two hypotheses in
units of the standard error assumihig (6Qy). One might
also choose as another measure of discriminating power, this
separation in units of the standard error assumiig
(6Q.). In showing tha{B performs well under this measure,
we are assisted by a theorem: the likelihood ratio testast
powerful

A simple hypothesis test can be made from any statistic
by choosing some critical valu@*: if Q>Q*, then reject
H,o; otherwise, acceptl,.® Statisticians discuss ttsizeand
power of a test designed to discriminate between two hy-
potheses. The size of the test is the probability of rejecting
Hy if Hy is true, while the power is the probability of reject-
ing Hy, if H,, is true. Clearly, we want the test to be such
that the size is small and the power is large. By changing
Q*, we can choose the size. The test based on the likelihood

5This assume®,<Q.., if not then the test should be changed so
thatH, is rejected wherQ>Q*.
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TABLE I. The probability enhancement factor is symmetric under the interchange of the two datasets, but
X2, [defined in Eq(5.9)] is not so we must specify that the datasets column has the format dataset 1, dataset

2.
Datasets B (BYo= 3B (B 5B Xand v v
92,94 2 5.7 10.9-3.6 —37.6+20.0 1.08 218
92,94 3 145 11.2-3.6 ~39.0+20.1 1.05 218
92,94 128 15.84.1 —58.4+27.4 1.02 218
92,95 3 ~25 44225 —8.5+5.4 112 218
92,95 4 4.6 3.202.2 ~5.3+3.6 1.11 218
92,95 5 ~1.2 1.6-1.7 ~2.031+1.4 1.05 218
92,95 6 ~0.29 0.56-1.03 ~0.61+0.49 1.06 218
92,95 213 7.43.2 ~15.6+8.1 115 218
94,95 3 26 2.71-2.08 —4.27+3.05 1.02 170
94,95 4 1.4 1.94-1.82 —2.69+2.01 1.05 170
94,95 5 -0.31 0.99-1.35 ~1.14+0.85 1.06 170
94,95 6 ~0.99 0.35-0.82 —0.365-0.29 0.96 170
94,95 2.437 4.42.63 —7.29+4.2 1.05 170
92.2,92 3 8.29 8.82:3.185 —31.6+18.775 1.16 109
942,94 3 6.81 11.1-3.418 —52.4+30.4 0.93 85
95 3,95 4 1.72 5.2-2.99 ~7.12+3.12 1.25 95
95 3,95 5 0.65 1.3-1.59 —1.40+0.62 1.09 95
95 3,95 6 1.29 0.39:0.87 —0.40+0.216 1.08 95
95 4,95 5 ~1.03 2.14-2.00 ~2.46+1.19 1.48 95
95 4,95 6 2.26 0.32:0.88 ~0.40+0.18 1.05 95
95 5,95 6 ~0.10 0.232:0.68 —0.24+0.13 1.08 95

ratio statistic has the property that, for a given size, it is mosslightly different, then it will almost certainly be the case that
powerful—that is, no other test with the same size has @ set of map pixels can be found that gives a redycedear
greater power. For a discussion of the likelihood ratio statisunity. The problem is that this sky map may contain sharp

tic in the context of CMB observations see, €20]. spikes, highly inconsistent with our prior assumptions.
To see the relevance with our separation factor, let's set
Q* =Qq. Let’s further assume that we are in the asymptotic VI. APPLYING B TO SUBSETS OF DATA

limit of large datasets so that all probability distributions are

Gaussian. WitlQ* =Qy, the size of the test will be 0.5 for We have also calculatefl for various pairings of subsets

all statistics. Since the size of this test is the same for albf the data; the results are in Table I. All but one pairitg

statistics, we know that the likelihood ratio teQ+€ 8) will be discussed latghave values of3 within 2o of ( 8),. Note

have the largest power. FQ* =Q, the power is given by that the last 8 rows of the table are the results for internal
consistency checks.

Qw0 ) ) Also included in the table are the values ,,. Under
power=1/2+ 250, Jo exp(Q—Q.)(26Qx) the separation factor criterion, this was the best other qua-
w e dratic statistic. It is also of particular relevance to Figs. 5, 6

= 1/2+ erf((Qq— Q..)/\[25Q2)/2. (5.15 gggeg since these show the data vectors on whith, is

. . . . . 2
Since the error function monotonically increases with its ar- Most of the reduced,;;, values are comfortably close to
gument, we see that the separation betw&grand Q.. in unity. The probability of exceeding? is less than 5% for

units of Q.. will always be largest for the likelihood ratio ©nly one of the entries—the 98,95 5 internal consistency
statistic, 8. check for which the probability is less than 1%.

We end this section with a brief consideration of one We have also found another breakup of the data to be
more x2 quantity. One could ask if there is a set of mapuseful. To identify localized problems in the data, we have

pixels, T, that is consistent with the noise distribution: calculatedg as a function of the amount of data mcluded
For example, in Fig. 12, we have plott@{92,95") vs ao*,
x2=(A-s)'C Y(A—s); s=HT. (5.16  where the star in 95 indicates that only 95 data with RA

a<a* have been included. One can see here features asso-
Because of its model independence, one might also think thajjated with the discrepancies seen in the Wiener filter figures.
x2 is a compelling choice for testing the consistency of twoFigures 13 and 14 show the results of similar calculations.
datasets. However, if the pixels for the two datasets ar€or Fig. 14, the order in which the data is included is re-

083004-11



KNOX, BOND, JAFFE, SEGAL, AND CHARBONNEAU PHYSICAL REVIEW [»8 083004

5 j T T T T T I_7 15 T T T T T t
@ of £ - ]
r 3] ] r B
-5 = TR R A R N T NN ST T AT S N N R SR R L ]
5 _\ T T | T T T ‘ T T T | T T T | T T T | T T I_ [ _
: ] 5 F 7
w 0 —: C ]
. FBpit(4pt) ] 0 .
. 0 :* *: 15 __ __
[ 3pt+4pt+(5pt) ] L ]
75 _\ Il 1 | 1 1 1 ‘ 1 Il 1 | 1 1 1 | Il 1 Il | Il 1 I_ - =
5 | T T | T T T ‘ T T T | T T T | T T T | T T ] L _
E 1 10 - 7
= oF E [ 3—beam + (2—beam) T ]
r 3pt+4pt+5pt+(6pt) ] = 4
-5k, vl v b b Ly T 5 L | L | L L |
12 14 16 18 20 22 24 16 } 18 <0
o (hours) o” (hours)
FIG. 12. The probability enhancement facfg(92,95 ), where FIG. 14. The probability enhancement factg(92,94 ), where

the* indicates that only data with right ascensian,less thane* ~ heré indicates that only data with right ascension greaterthan
are included. In the top panel, only the 3 point data are included for™ are included. In the top panel, only the 3-beam data are being

95. In the panel one lower, in addition to all the 3 point data, thosdncluded for 94. In the bottom panel, all the 3-beam data are in-
4 point data witha< a* are included, etc. cluded, but only those 2-beam data points with «* . The dashed

lines are(B(92,94)), and one standard deviation above and be-

L . . low.
versed(see captionin order not to overemphasize the dis-

crepant data at low RA.

From the first two entries of Table | and also from Fig. 14 Wiener-filtered data shown in Fig. 5. Possibly confusing is
we see that the 3-beam datasets are more consistent withat in Fig. 5 the discrepancy looks stronger in the 3-beam
each other than the 2-beam datasets, where there is a hint \8fiener-filtered data. However, this is because the 2-beam
a problem at low RA. This hint can also be seen in thedata has significant influence on the best estimate of the 3-

beam signal. Evidence for this relevance of the 2-beam data
br——— T — for the 3-beam datéand vice-versacomes from the fact that

(2-beam) 4 B(92_2,92_3) and B(94_2,94_3) are large at 8.3 and 6.8,

L 1 respectively. A further clue that the problem is with the 2-

L 4 beam data is in Fig. 13 where there is a suggestion of a
| _ problem at low RA with the 2-beam, but not the 3-beam.

0 - The better agreement between the 3-beam datasets than
L i between the 2-beam datasets is possibly due to the greater
L ] susceptibility of the 2-beam data to atmospheric contamina-
tion. In particular, the 2-beam data is susceptible to atmo-
spheric gradients, while the 3-beam is not. A gradient can
arise as the pendulating motion of the gondola causes the
motion of the chopping flat to be slightly different from con-

] stant elevatiori21]. Presumably, one could test this hypoth-
esis by searching for signals in the time stream with the
balloon pendulation period.

Both from the Wiener filter figures and the cumulatjge
plot (Fig. 14 we can see that the MSAM92 and MSAM94
e B data agree very well at large RA and therefore what is ob-

16 “ (h 18) =0 served is really on the sky and not some instrumental artifact.
& ours In contrast, the MSAM92/SK Wiener filter figures and cu-

FIG. 13. The probability enhancement factef95,92'). Thet ~ Mulative B plots show discrepancies. These may be due to
indicates that only data with right ascensian, less thana* are  instrumental problems—in which case the problem must be
included. In the top panel, only the 2-beam data are included for 92With SK95—or foreground contamination which could affect
In the bottom panel, in addition to all the 2-beam data, the 3-beangither instrument. We discuss the possibility of foreground
data withe<a* are included. contamination in Sec. VIII on dust.

| 2-beam + (3—beam)
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VII. FIXING CALIBRATIONS
BY COMPARING DATASETS

We now give an example of searching for a particular
“contaminant,” relative calibration uncertainty. Every
dataset must be calibrated by using the same apparatus to
observe a radiation source of known brightness. This obser-
vation allows for the conversion of the data from some arbi- -2
trary units to temperature or brightness units. Often the
brightness of the source in the passband of interest is only
known to 10% or so in which case the calibration is a sig-
nificant source of uncertainty. K’ is the uncalibrated data,
then we define the calibration factbrasA=fA’, whereA
is the calibrated data. Similarly, the uncalibrated noise cova- ¢
riance matrix gets adjusted §¥: C,=f2C/,, since the noise
is determined from the data itself.

One can do likelihood analysis on the uncalibrated data,
but with the appropriate covariance matrix: - | P B |

18 20
RA (hours)

™
LA I I B Y I O Y L B B

.d
N
—_

Og

C'=(A" (AN =((s/f )(s/f )N +Ch=| 5

2
) Ci+Cl. FIG. 15. Wi . o
. 15. Wiener-filtered dust. The points with error bars are the
(7.2 MSAM92 pixelized dust data. Two-beam in top panel, 3-beam in
bottom panel. The three curves in each panel are the Wiener-filtered
For a joint datasetA; and A,, we have(dropping the data bounded by- one standard deviatiofssuming Gaussianity
primes: The open squares are the results of convolving the IRAS data with
the MSAM beam pattern; the scale is set by a fit to the MSAM92
data.

2
Og| ~ Og Og
1 1 2

Og\ | 0g
FlEe
Note that this covariance matrix, and hence the likelihood, Elz(flz)“f dXa L(X1,X2) 8(X1 = F12%2) (7.3
depends only omrg/f; andog/f,. The degeneracy among

the three parameters is broken by the calibration measuravherex;=f;/og andx,=f,/og. We find that, once again
ments of each experiment, which are usually modeled by &estricting the SK95 data to between 13 and 22 h that

T12

We can also neglect the calibration measurements entirely
and use the two datasets themselves to find the best relative

) :
Og| ~ . .
T21 E) Cra2t Cnzz calibration, fy=f,/f5.

Gaussian: fymsamoz sk=1.06"22. Netterfield et al. [5] find from their
analysis thaf \,samez sk=1.22+0.24.
05 O (fl_f_l)z (fz—f_2)2 Note that_th_ere is a possi_ble problem for joint_power spec-
In Lig(og,f1,f2)=In ﬁ(f_f_) - —— > trum analysis if relative calibration uncertainty is not taken
172 207 205 into account. For overlapping experiments, neglect of this

(7.2) uncertainty could artificially boost high frequency power.

If one is exploring this likelihood space by direct evaluation, VIIl. DUST

note that one can first evaluate fnon a two dimensional

grid (og/f;, og/f,) and then evaluate the three-dimensional Via the application ofg and Wiener-filtering, we have

In £,,; by adding in the(very easy to calculajecalibration discovered a marginally significant discrepancy between the

measurement terms. The data as we receive it has alrea#§SAM92 observations and those of Saskatoon at large RA.

been calibrated so we usually take 1. In this_ section we investigate the poss_ibility that the discrep-
We have evaluated this i, for the MSAM92 dataset ancy is due to foreground contamination of Qlthgr the SK or

and a subset of the SK95 ring dataset, fronf 18 22", MSAMQZ datasets. The foreground contamination hypoth-

covering the range of influence of the MSAM92 data. For®SIS IS supported by the fact that the discrepancy occurs

B B where the observations are closest to the plane of the galaxy.
MSAM92 we takefysauoz=1 andousawe,=0.1. For SK Further, from the MSAM92 interstellar dust data, one can

we use the Netterfieleet al. calibration fsx=1 and osk  see that the discrepancy occurs roughly where the dust is
=0.14. We find in this case that f, is minimized at  prightest—see Fig. 15.

fumsame2=0.99, f5¢=0.99 andog=1.13. If the Leitch reca- Besides different spectral dependence from the CMB, in-
libration is used {gk=1.05, 0g«=0.07), then InC; is terstellar dust also has a different spatial frequency depen-
minimized atf\samo2=1.02, f5x=1.02 andog=1.13. dence than the CMB. Gautiet al. [22], using the 100 mi-
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cron IRAS data, and Wright23], using the DIRBE data, 200E 3pt” T T T T T
both found that, away from the plane of the galaxy, the dust 100 & - 3
has an angular power spectru®, =/ 3. Schlegel, Fink- 0
beiner, and Davi$24], using a dust map produced by com- :;88 3 3
bining DIRBE and IRAS data, have inferred a slightly less 549 E =
steep spectrum witl =/~ 2% For Fig. 15 we have used a 100 & 3
power spectrum withC,x/"25 to Wiener filter the 0E -
MSAM92 dust data. Using >/ 2 produces very similar —-100 = =
results. The dust is known to be highly non-Gaussian. While ~%90 = =
the mean signal does not depend on the statistics of the sig- ;& 3
nal, the uncertainties in the signal do. Therefore one should E E
bear this in mind when interpreting the graph, since the error __ £ E
bars in the figure were calculated assuming Gaussianity. ~100 E 3
Along with the MSAM92 dust data is the result of convolv- 50 & E
ing the MSAM beam pattern with the IRAS SISSA 240 mi- c 3
cron map[25]. The IRAS data have been scaled to fit the 05

MSAM92 data. Note that the agreement for the 3-beam data _ ., E

is much better than for the 2-beam data, once again suggest-
ing that it is a more reliable dataset. 14 R1A6 (hourl’z) =0 g2
What we have referred to as the MSAM92 CMB and dust

data are obtained by fitting each pixel of the four frequency FiG. 16. The MSAM92 dust datéheavy solid ling, MSAM92
channels(170 GHz, 220 GHz, 500 GHz, 680 GH@of  CwMB data(light solid line) and SK95 data all Wiener-filtered on to
MSAM92 data to a CMB component and a dust componentthe SK95 pixels.

From this fit we get the CMB temperature and dust optical
depth. The dust is assumed to be a “gray” body with tem-The SK team also did some internal consistency checks on
peratureT =20 K and emissivity indexx=1.5. their data, one of which is the A-B test. Their A and B
Using this model, the dust feature at large RA should nodetectors measured orthogonal linear polarizations, and thus
be showing up in the lowest frequency channel. Thereforéor an unpolarized, or weakly polarized, signal, A-B should
the fit ascribes the structure seen in the 170 GHz channel toe consistent with zero. However, for the region of overlap
CMB. However, the model may be an inadequate descripwith MSAM92, they find y2 _g/v=1.55 for 80 degrees of
tion; there may be a component correlated with the dust withreedom. The origin of this asymmetry is unclear, possibly
stronger emission at 170 GHz than the thermal dust emissiogin instrumental artifact. It could possibly be explained by
itself. Indeed, the shape of the dust feature at large RA igotational emission from dust grains; Draine and Lazarian
somewhat similar to the MSAM92 CMB feature at large RA. predict that this component of the dust emission is between
The Saskatoon data is single frequency and thus harder ®1% and 10% polarized.
check directly for contamination. Despite the low frequency,
dust (or a source correlated with diistontamination is a IX. SUMMARY
possibility. Several datasets point to a correlation between
high frequency maps dominated by thermal emission from We have demonstrated the usefulness of the Wiener filter
dust and lower frequency measuremefit6]. A weak, but  for making visual comparisons of datasets. We have empha-
significant, correlation has been sd@,19 in a correlation  sized that meaningful consistency testing requires alternative
analysis of the entire SK dataset with DIRBE and IRAS dustmodels with which to compare. Thus we have explicitly ex-
maps. Although weak, the correlation is measured by avertended our model of the data to include a possible contami-
aging over all the SK data; the effect may be large in certaimant and calculated the probability distribution of the ampli-
regions, such as the one in question here near 18 h. THade of this contaminant. For purposes of extracting just one
cause of this correlation is not yet known, although an hy-number from the comparison, we advocate calculating the
pothesis has been advanced by Draine and Lazf2Binhat  ratio of the probability of no contamination to the probability
it is due to dipole emission from spinning dust grains. of infinite contamination. Viewed as a statistic, we have
To investigate this possibility, we have Wiener-filtered shown this “probability enhancement factor” to be better
the MSAM92 dust measurements onto the SK95 data in théhan variousy? statistics at discriminating between compet-
region of overlap with MSAM9Zsee Fig. 15 For the shape ing hypotheses.
of the dust power spectrum, we us€do/ 25 [24] with The utility of our comparison statistics was shown by ex-
amplitude chosen to maximize the likelihood given theercising them on the MSAM92, MSAM94 and SK95 data.
MSAM92 dust data. Although, as expected, the dust idVe have found from comparing MSAM92 and MSAM94
brightest in the region of the discrepancy, we have been urthat the most probable level of contamination is 12%, with
able to identify any more detailed relation between the prezero contamination only 1.05 times less probable, and total
dicted dust signal and the discrepancy. contamination over X 10° times less probable. From com-
There is another reason, besides the observed dust corfgaring MSAM92 and SK95, we have found that the most
lation, for believing the problem may lie with the SK data. probable level of contamination is 50%, with zero contami-
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nation only 1.6 times less probable, and total contaminatioioo large for the type of complete statistical analysis de-
13 times less probable. Looking at subsets of the data, wecribed here. However, any approximate methods developed
find a region at large RA where the SK and MSAM92 mea-for extracting the power spectrum or parameters will also be
surements disagree. From IRAS and from the MSAM92 dushpplicable to the statistical procedures introduced here.
measurements, we know that this region is also the dustiest

region of the overlap between SK and MSAM92. The origin

of the discrepancy is unclear and may be due to instrumental ACKNOWLEDGMENTS
artifacts in SK, or foreground contamination of either the SK
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