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Comparing cosmic microwave background datasets
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To extract reliable cosmic parameters from cosmic microwave background datasets, it is essential to show
that the data are not contaminated by residual non-cosmological signals. We describe general statistical ap-
proaches to this problem, with an emphasis on the case in which there are two datasets that can be checked for
consistency. A first visual step is the Wiener filter mapping from one set of data onto the pixel basis of another.
For more quantitative analyses, we develop and apply both Bayesian and frequentist techniques. We define the
‘‘contamination parameter’’ and advocate the calculation of its probability distribution as a means of examin-
ing the consistency of two datasets. The closely related ‘‘probability enhancement factor’’ is shown to be a
useful statistic for comparison; it is significantly better than a number ofx2 quantities we consider. Our
methods can be used internally~between different subsets of a dataset! or externally ~between different
experiments!, for observing regions that completely overlap, partially overlap or overlap not at all, and for
observing strategies that differ greatly. We apply the methods to check the consistency~internal and external!
of the MSAM92, MSAM94 and Saskatoon Ring datasets. From comparing the two MSAM datasets, we find
that ~given a particular model of the contaminant! the most probable level of contamination is 12%, with no
contamination only 1.05 times less probable, 50% contamination about 8 times less probable and 100%
contamination strongly ruled out at over 23105 times less probable. From comparing the 1992 MSAM flight
with the Saskatoon data, we find the most probable level of contamination to be 50%, with no contamination
only 1.6 times less probable and 100% contamination 13 times less probable. Our methods can also be used to
calibrate one experiment off of another. To achieve the best agreement between the Saskatoon and MSAM92
data, we find that the MSAM92 data should be multiplied by~or Saskatoon data divided by! 1.0620.26
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I. INTRODUCTION

The cosmic microwave background~CMB! is blackbody
radiation with a mean temperature of 2.72860.004 K with
95% confidence@1#. This mean is modulated by a dipole du
to our peculiar motion with respect to the radiation field.
one removes the dipole, the temperature is uniform in ev
direction to6100 mK. Precision measurement of these tin
deviations from isotropy can tell us much about the Unive
@2#.

Unfortunately, precision measurement of 100mK fluctua-
tions is not an easy task. Even given sufficient detector s
sitivity and observing time, one still has to contend w
many possible contaminants such as side lobe pickup of
300° Kelvin Earth and atmospheric noise~even from high-
altitude balloons!. In addition, there can be contamination
CMB observations by astrophysical foregrounds.

Despite these difficulties, there is good reason to beli
that, at least for some experiments, the signals observed
sub-orbital platforms are not dominated by contaminan
One of the best reasons for believing this comes from
comparisons that have been done—between FIRS and
ferential Microwave Radiometer~DMR! @3#, Tenerife and
DMR @4#, MSAM92 and Saskatoon@5#, MSAM92 and
MSAM94 @7#, and two years of Python data@6#. Especially
for the case when data being compared are from two dif
ent instruments, almost the only thing their acquisitions h
in common is that they were observing the same piece
0556-2821/98/58~8!/083004~15!/$15.00 58 0830
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sky—each dataset has entirely different sources of syst
atic error.

In addition to confirming the astrophysical origin of th
estimated signal, comparison can greatly improve the ab
to detect foreground contamination. Perhaps the best
dence for the thermal nature of anisotropy comes from
comparison between the MSAM92 and Saskatoon datas
Together, these observations span a frequency range from
GHz to greater than 170 GHz. In@5# it was found that the
spectral indexb „dT}(n/n0)b

… is constrained to beb
520.160.2. For CMB, free-free and dust over this fre
quency range, we expectb50, 21.45 and 2.25 respectively
The authors conclude that the signals~in the region of over-
lap! are not dominated by contamination from known ast
physical foregrounds, but are, rather, primarily CMB.

We should not let this apparent success fool us into thi
ing that going to the next level of precision will be eas
There is a big difference in the level of toleration of contam
nants when the goal switches from detection to precis
measurement. It is likely that there will be significant leve
of contamination~from the atmosphere, side lobes, and fo
grounds! in future missions. It may be difficult to demon
strate convincingly that contamination is low without com
parison.

Given the importance of comparison, we feel it is wor
improving upon the methods used previously. Past tre
ments have had to ignore much relevant data, and make
controlled approximations. This is due to the fact that gen
ally the two datasets being compared were obtained fr
© 1998 The American Physical Society04-1
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instruments observing the sky in different ways. The be
patterns and differencing schemes may differ as in the c
of the MSAM92/Saskatoon comparison. In@5# one of the
MSAM92 differencing schemes was approximately recrea
in software in order to do the comparison. However, no
of software could change the fact that the MSAM92 a
Saskatoon beam patterns, although they have fairly sim
full-widths at half-maximum, differ significantly in shape
Even when the differencing schemes and beam patterns
the same, there can still be barriers to a direct compari
The two MSAM flights ~one in 1992 called MSAM92 and
one in 1994 called MSAM94! took data with essentially the
same beam pattern and applied the same differencing, b
this case the direct comparison is frustrated by the fact
the pixels do not all line up exactly. Therefore in@7#, pixels
within half a beam width of each other were approximated
being at the same point, and those pixels with no part
from the other dataset within this distance were ignored. H
of the data were lost this way.

Here we develop methods of comparing datasets tha
not require any information to be thrown away. Differenc
in demodulation schemes, and effects due to n
overlapping pixels are automatically taken into account. T
inevitable price we pay for this is model-dependence. Ho
ever, we generally expect the model-dependence to be s
and indeed find it to be so in the case studies shown he

An extremely useful tool for visual comparison is th
Wiener filter. Roughly speaking, it allows us to interpola
the results from one experiment onto the expected results
another experiment that has observed the sky differently.
ter some notational preliminaries in Sec. II, in Sec. III, w
introduce the Wiener filter in the context of the probabil
distribution of the signal, given the data. Also in this sectio
we describe the datasets and apply the Wiener filter to th

When comparing datasets, we are testing the consiste
of our model of the datasets. We emphasize that meanin
model consistency testing demands the existence of o
models with which to compare. Therefore we extend o
model of the data to include a possible contaminant and
culate the probability distribution of its amplitude, given th
data. We find a more limited extension of the model spac
also be useful, in which we only consider one alternative
no contamination: complete contamination. We define
‘‘probability enhancement factor’’ as the logarithm of th
ratio of the probability of no contamination to the probabili
of complete contamination. This Bayesian approach to co
parison is described and applied in Sec. IV.

In Sec. V we discuss and apply frequentist techniq
such asx2 tests. The probability enhancement factor can a
be used as the basis for a frequentist test—and it is in fac
well-known likelihood ratio test. We demonstrate that t
probability enhancement factor has more discriminat
power than any of the other tests considered.

After a further look at the data with the probability e
hancement factor in Sec. VI, we discuss the fixing of relat
calibration in Sec. VII and possible contamination due
dust in Sec. VIII. Finally we summarize our results in Se
IX.
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II. PRELIMINARIES

Before moving on to a discussion of the various statist
to be used in comparing datasets, we give some rev
which will serve to define our notation, following Ref.@8#.

In general, CMB observations are reduced to a set
binned observations of the sky, or pixels,D i , i 51...N to-
gether with a noise covariance matrix,Cnii 8 . We model the
observations as contributions from signal and noise,

D i5si1ni . ~2.1!

We assume that the signal and noise are independent
zero mean, with correlation matrices given by

CTii 85^sisi 8&; Cnii 85^nini 8& ~2.2!

so

^D iD i 8&5CTii 81Cnii 8 ~2.3!

where ^...& indicate an ensemble average. With the furth
assumption that the data are Gaussian, these two-point f
tions are all that is necessary for a complete statistical
scription of the data.

One important complication to the above descripti
comes from the existence of constraints. Often the data,D i ,
are susceptible to some large source of noise, or a not-w
understood source of noise that contaminates only one m
of the data. For example, there may be an unknown offse
the data. In this case, the average is usually subtracted
D i . Similarly, the monopole and dipole are explicitly su
tracted from the all-sky COBE/DMR data, because t
monopole is not determined by the data and the dipole
local in origin. In general, placing any constraint on the d
or some subset thereof, such as insisting that its averag
zero, results in additional correlations inD i . We take this
into account by adding these additional correlations,CC , to
the noise matrix to create a ‘‘generalized noise matrix,’’CN ,
whereCN5Cn1CC . In the limit that the amplitude ofCC
gets large, this is equivalent to projecting out those mo
which are now unconstrained by the data, but we find t
scheme simpler to implement numerically. Thus in the t
below we always write the noise matrix asCN instead ofCn .
The details of this procedure for handling the effect of co
straints are explained in@8#.

Due to finite angular resolution and switching strateg
designed to minimize contributions from spurious sign
~such as from the atmosphere!, the signal is generally no
simply the temperature of the sky in some direction,T( x̂),
but a linear combination of temperatures:

si5E d2x̂Hi~ x̂!T~ x̂! ~2.4!

where Hi( x̂) is sometimes called the ‘‘beam map,’’ ‘‘an
tenna pattern’’ or ‘‘synthesis vector.’’ If we discretize th
temperature on the sky, then we can write the beam ma
matrix form,si5(nHinTn .
4-2
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COMPARING COSMIC MICROWAVE BACKGROUND DATASETS PHYSICAL REVIEW D58 083004
The temperature on the sky, like any scalar field on
sphere, can be decomposed into spherical harmonics

T~u,f!5(
l m

al mYl m~u,f!. ~2.5!

If the anisotropy isstatistically isotropic, i.e., there are no
special directions in the mean, then the variance of the m
tipole moments,al m , is independent ofm and we can write:

^al mal 8m8
* &5Cl d l l 8dmm8 . ~2.6!

For theories with statistically isotropic Gaussian initial co
ditions, the angular power spectrum,Cl , is the entire statis-
tical content of the theory in the sense that any poss
predictions of the theory for the temperature of the mic
wave sky can be derived from it.1

The theoretical covariance matrix,CTii 8 , is related to the
angular power spectrum by

CTii 85(
l

2l 11

4p
Cl Wii 8~ l !, ~2.7!

where

Wii 8~ l !5(
nn8

HinHi 8n8Pl ~cosunn8! ~2.8!

is called the window function of the observations andunn8 is
the angular separation between the points on the spher
beled byn andn8.

Within the context of a model, theCl depend on some
parameters,ap , p51...Np which could be the Hubble con
stant, baryon density, redshift of reionization, etc. The th
retical covariance matrix will depend on these parame
through its dependence onCl . We can now write down the
probability distribution for the data, given the model para
eters,ap :

P„DuCT~ap!I …5
1

~2p!N/2uCT~ap!1CNu1/2

3expS 2
1

2
DT

„CT~ap!1CN…
21D D .

~2.9!

The I here stands generically for information—in this ca
the information that the noise is Gaussian-distributed w
zero mean and varianceCN .

1Non-linear evolution will produce non-Gaussianity from Gau
ian initial conditions, but this is quite sub-dominant forl &1000.
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III. WIENER FILTERS

A. Derivation

Bayes’ theorem@9#

P~suDI !5P~suI !P~DusI!/P~DuI ! ~3.1!

follows from elementary rules of probability. If we tak
P(suI ) to be a Gaussian distribution with zero mean a
covarianceCT and P(DusI) to be a Gaussian with means
and varianceCN , then with a little algebra it follows that the
probability distribution for the signal, given the data,CT and
CN , is

P~suD,CT ,CN!5
exp@2~1/2!~s2wD!†M 21~s2wD!#

@~2p!N/2uM u1/2#
,

~3.2!

whereM[^(s2wD)(s2wD)†&5CT2wCT and

w[CT~CT1CN!21 ~3.3!

is the Wiener filter @10#. As one can immediately see from
Eq. ~3.2!, the most probable value of the signal is given
wD. As with all Gaussian distributions, this most probab
value is also the mean:s̄[*sP(suD,CT ,CN)ds5wD.

Thus the Wiener filter operating on the data provides
with the most probable estimate of the underlying signal.
course, this is the most probable signal only once we ass
a power spectrum,Cl , which is used to calculateCT . For-
tunately, this model dependence is quite weak: the Wie
filter provides a robust estimate of the underlying signal p
vided theories are not chosen which are clearly incompat
with the data.

The Wiener filter can be very helpful for visualizing th
underlying signal. For example, often the data are ov
sampled; that is, there are closely spaced data points
plenty of scatter and large error bars. In a sense, the Wie
filter knows that the high spatial frequency scatter is due
noise and not signal and performs a smoothing of
data—an interpolation controlled by the different statistic
properties of the noise and signal.

One can also use the dataset to calculate the most p
able signal in some other dataset;2 let us call the two dataset
D1 and D2 , where the subscripts refer here to the ent
appropriate data vector, not the single element at a partic
pixel. Before getting toP(s2uD1), we describe some nota
tion for joint datasets. We represent the total data vector

D[S D1

D2
D . ~3.4!

This vector will have a total covariance matrix

-

2In Ref. @18# the Wiener filter was used to calculate the mo
probable signal in the Tenerife data, given the Cosmic Backgro
Explorer ~COBE! DMR data.
4-3
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^DD†&5S ^D1D1
†& ^D1D2

†&

^D2D1
†& ^D2D2

†&
D

5S CT111CN11 CT12

CT21 CT221CN22
D

~3.5!

whereCTi j represents the theoretical covariance between
pixels of experimentsi and j , andCTi j5CT ji

† . We will also
define Ci j 5CTi j1CNi j . We assume that the experimen
have no common noise sources~as would be the case fo
instrument noise and atmospheric noise! and thusCN1250.

With this notation established we can now write

P~s2uD1 ,CT ,CN!

5
exp@2~1/2!~s22w21D1!†M 21~s22w21D1!#

@~2p!NuM u#1/2

~3.6!

whereM5CT222w21CT12,

w21[CT21~CT111CN11!
21 ~3.7!

and we refer to the Wiener-filtering of dataset one ‘‘onto
dataset two.

Thus Wiener-filtering provides us with an excellent to
for visual comparison of datasets. Even if each datase
expressed in different generalized pixels, since we
Wiener filter one onto the other, we can compare the sig
predictions in the same space. We will see applications
this following the next section, which describes the MSA
and Saskatoon datasets.

The Wiener filter can also be derived without reference
anything other than the two-point correlation function of t
signal and noise. Assume we wantw to be such that the
variance ^(s2wD)(s2wD)†& is minimal. Differentiating
with respect towi j , setting to zero and solving forwi j results
in w5CT(CT1CN)21. Thus the minimum-variance est
mate of the signal does not depend on the Gaussianity o
signal and noise distributions. Although, of course, the
certainty in the estimate does@10#.

One final expression we will need below is the probabil
distribution for the data itself,D2 ~as opposed to thesignal in
the second dataset! given D1 and relevant matrices. It is th
same as the above after changings2 to D2 and M to M
1CN22.

B. Applications

For Gaussian signal and noise, the Wiener filter provi
the maximum-likelihood reconstruction of the signal; it
also optimal in the minimum-variance sense discus
above. One can construct a Wiener filter from the pixeliz
data space onto the same space or from the pixelized
space to any other linear combination of map pixels—s
as the map pixels themselves. Wiener filter maps have b
made for the SK dataset@11# and the COBE/DMR datase
@12#. Map-making though is not the most useful means
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comparing observations that are not themselves maps, a
is not suggested by the statistical techniques we discu
earlier. Here we Wiener filter onto the experimental pix
space itself.

1. Description of the datasets

Before jumping into the applications to the Saskatoon a
MSAM datasets, we must describe them. They have con
erable spatial overlap and similar angular resolutions. Oth
wise, however, the two datasets are very different and a c
parison provides a strong check on systematic errors.

MSAM is a balloon-borne bolometric instrument with a
proximately half-degree~fwhm! resolution in 4 frequency
bands centered at 170, 280, 500 and 680 GHz@13#. The data,
at each frequency, are binned into pixels on the sky with t
different antenna patterns,H, referred to as 2-beam and 3
beam or single-difference and double-difference~see corre-
sponding window functions in Fig. 1!. Simultaneously, long
time-scale drifts are removed which has the effect of int
ducing off-diagonal noise correlations. From this mul
frequency data, a fit is made to temperature fluctuati
about a 2.73 K black-body component and the optical de
of a dust component. The dust is assumed to have a temp
ture of 20 K and emissivity that varies with frequency to t
1.5 power.

The MSAM instrument flew in 1992@14#, 1994@15# and
1995 @16#. In each year a narrow strip of sky with near
constant declination was observed. The purpose of the 1
flight was to confirm the results from the 1992 flight and
each targeted the same strip of sky atd582° ~see Fig. 1!.
Note that, due to, for example, imperfect pointing contr
the two flights have slightly different sky coverage. The fin

FIG. 1. The diagonal elements of the window function mat
Wli j for the four SK95 ring antenna patterns~solid! and the two
MSAM antenna patterns~dashed! which are the same for MSAM92
and MSAM94. These show how the power spectrum contribute
the variance of the data@see Eq.~2.7!#.
4-4
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COMPARING COSMIC MICROWAVE BACKGROUND DATASETS PHYSICAL REVIEW D58 083004
flight in 1995 observed near declinationd580.5°, chosen to
be sufficiently far away from the first two flights for th
signal correlations to be negligible. Therefore we do not c
sider the 1995 flight any further in this paper.

The SK data are reported as complicated chopping
terns ~i.e., beam patterns,H, above! in a circle of radius
about 8° around the North Celestial Pole. The data w
taken over 1993–1995. Here we only use the 1995 d
which were taken with angular resolution 0.5° FWHM
approximately 40 GHz. More details can be found in@5#.

The bulk of the data were in the ‘‘cap’’ configuration
constant-elevation scans tracing out curved rays from
pole, which were then binned in RA and subjected to vario
sinusoidal demodulation templates in software. Some of
1995 data (0.5° beam!, however, were taken in the ‘‘ring’’
configuration, which isolated the data taken atd582°, put
into 96 RA bins, and then subjected to 3, 4, 5 and 6 po
sinusoidal demodulations, this time along lines of const
declination. The ring data window functions are in Fig.
The region of overlap of the SK95 ring data with the tw
MSAM datasets can be seen in Fig. 2. Throughout when
refer to the SK95 data, we mean only the ring data.

The calibration of the SK dataset was performed by co
paring with the supernova remnant Casseiopia A. This st
30–40 GHz flux itself is poorly determined; hence, the ori
nal SK dataset was reported with a 14% calibration er
More recently, Leitch@17# in turn used the brightness o
Jupiter~known to 3% in this band! to determine the absolut
flux of Cas A; this has resulted in a 5% increase in
temperature of the SK data~and errors!, with a reduced cali-
bration error of 7%~the flux of Cas A itself is now deter
mined to;5%, but there are additional sources of calib
tion error@18#!. Except for Sec. VII, in the following we do
not include the effects of calibration uncertainty.

2. Wiener-filtering MSAM92

An example of Wiener filtering with Eq.~3.3! is shown in
Fig. 3. The data points are the values of the pixelized d
located horizontally according to the right ascension of
center of the pixel. The dependence of the pixels on decl
tion and twist has been suppressed. The error bars are

FIG. 2. Observation locations. The SK95 ring data covered
entire circle of radius 8 degrees around the NCP. The centers o
MSAM92 ~MSAM94! pixels are indicated with triangles~squares!.
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the diagonal part of the~non-diagonal! noise covariance ma
trix. The central curve is the Wiener-filtered data and t
bounding curves indicate the 68% confidence region for
signal. Because of the difference between the noise cov
ance matrix and the signal matrix, the Wiener filter ess
tially assumes that the high frequency behavior is noise
therefore smooths out the data. This smoothing is com
cated by the off-diagonal noise correlations which expla
some apparent disagreements between the data and
Wiener-filtered data. For example, around 20 hours in the
panel, the Wiener-filtered data are consistently above a n
ber of the data points.

The Wiener filter is model-dependent—one must kn
~or assume! covariance matrices for the noise and sign
Presumably, the noise covariance matrix is well-known a
so the model-dependence resides in the choice of ang
power spectrum. Of course, we can gain some knowledg
the angular power spectrum by performing a likeliho
analysis of the data. The Wiener filter is generally quite
bust to changes in the angular power spectrum that
smaller than those that significantly alter the likelihood
even large changes usually have very little effect. We de
onstrate this robustness here with Fig. 4 which shows
Wiener-filtered data for a standard CDM spectral shape
also for a flat spectrum (Cl 5constant).

C. Wiener-filtering MSAM94 onto MSAM92

Besides Wiener filtering the data onto its own pixel spa
we can Wiener filter it onto another pixel space@Eq. ~3.7!#.
This provides an excellent visual tool for checking comp
ibility of results. We show this first for the Wiener filterin
of MSAM94 onto MSAM92, together with MSAM92 onto
MSAM92 from the previous subsection. Notice that in Fig

e
he

FIG. 3. An example of Wiener filtering. The points with erro
bars are the MSAM92 pixelized data. Two-beam in top panel,
beam in bottom panel. The three curves in each panel are
Wiener-filtered data bounded by6 one standard deviation.
4-5
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the 68% confidence regions mostly overlap each other.
can see the MSAM94 region get wider at either extreme
RA. This is because the MSAM94 pixels have a sligh
shorter RA extent than the MSAM92 pixels (14.9h to 20.1h

compared to 14.5h to 20.3h).
One can see in the figure that many features are see

both datasets; they agree quite well. The most signific
differences between the two estimates of the signal are in
region of 15.5 hours for the 2-beam signal and 14.5 hours

FIG. 4. Wiener filter model-dependence for MSAM92. Th
standard CDM~flat! spectrum was assumed for the solid~dashed!
curve.

FIG. 5. Wiener filters onto MSAM92 pixels for MSAM92 dat
~vertical lines! and MSAM94 data~horizontal lines!. The curves are
realizations consistent with the MSAM94 data. Two-beam in
panel, three-beam in bottom panel.
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the 3-beam signal. We will discuss these slight anoma
later.

D. SK95 onto MSAM92 and MSAM92 onto SK95

Figure 6 shows the same thing as Fig. 5 except t
MSAM94 has been replaced with SK95. Once again, the fi
impression is of general agreement, although the discrep
cies here~at large RA! appear to be more significant tha
those seen in the MSAM92/MSAM94 comparison.

We can also filter the MSAM92 data onto the four SK9
~ring! templates, as shown in Fig. 7. We have chosen
range of this plot to extend in RA further than the MSAM9

FIG. 6. The MSAM92~vertical lines! and MSAM95 data~hori-
zontal lines! Wiener-filtered onto the MSAM92 pixels.

FIG. 7. Wiener filters onto SK95 pixels for MSAM92 data~ver-
tical lines! and SK95 data~horizontal lines!.
4-6
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COMPARING COSMIC MICROWAVE BACKGROUND DATASETS PHYSICAL REVIEW D58 083004
coverage. This allows one to see how the constraint beh
outside of the region of MSAM92’s influence. Notice th
the errors do not become infinite. This is because of the p
information that went into the estimate of the probabil
distribution, i.e., the assumed power spectrum. Also note
the data have some influence slightly beyond the limit of
sky coverage. The dominant reason for this is the spa
extent of the antenna patterns. In addition, the intrinsic c
relations ~assumed in the prior! extend the influence to
slightly beyond where the antenna response is zero.

With two dimensional Wiener filter maps~as with any
two dimensional map!, it is difficult to plot both the map and
a confidence region expressing the level of uncertainty as
have done here for essentially one dimensional data. In 2
is therefore often useful to show, in addition to the me
signal, several realizations consistent with its probability d
tribution @Eq. ~3.2! or ~3.6!#. Looking at several realization
allows one to see which features are significant and wh
are not. Realizations can also be useful in the 1D cas
make up for the fact that the confidence region does
contain any information about correlated uncertainties.
the applications here, though, we have not found them to
useful and so have not shown any.

IV. BAYESIAN COMPARISON

A natural question to ask is, ‘‘How consistent are the tw
datasets?’’ The Wiener filter gives a visual, qualitative a
swer to the question, but we would also like some quant
tive answers as well. A better-formulated question is, ‘‘Is m
model of the data an adequate description of the two data
together?’’ To answer this question, one can extend
model of the data to include a residual and then check to
if this extension increases the likelihood. For example, o
could add a residual that is Gaussian-distributed with z
mean:

D i5si1ni1r i

^D iD j&5CT,i j 1CN,i j 1Cres,i j .
~4.1!

Further restrictions on the form ofCres,i j must be made for
the problem to not be degenerate. One could chooseCres,i j to
be appropriate for a particular foreground contaminant@19#,
increased noise@12#, or anything else that inspection of th
data, combined with prior knowledge, has led the analyze
suspect.

Below we describe a particular choice ofCres,i j that is
useful in the absence of any hints as to the likely nature
possible contaminant. One of its virtues is that it tests
agreementbetweenthe two datasets, rather than anythi
internal to them. This is because the residual can only
constrained by the comparison of the two datasets;
datasets individually cannot distinguish this residual from
signal itself. Another virtue of the residual model is that
statistic based on it has advantages over variousx2 statistics,
as is discussed in the next section. We point out though
discovering a residual as modeled below may be only
first step in uncovering the true nature of the residual. O
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a specific hypothesis is advanced, it could be tested wit
Cres,i j more appropriate than the one described here.

A. The contamination parameter, g

To test the consistency of the pairs of datasets—or rat
to test the adequacy of our model of the datasets—we in
duce the following residual:

D15s11n11g1r 1 ~4.2!

and likewise forD2 . To reduce the number of parameters
this model for the residual, we setg5g15g2 . Now we must
specify the probability distribution ofr . For simplicity, let us
take it to be a Gaussian random variable with zero me
Clearly, we want the cross-term in the variance to be z
(^r 1r 2

†&50), since we have in mind contaminants that a
particular to each dataset. There is a lot of freedom in
choice of^r 1r 1

†& and^r 2r 2
†&—once again for simplicity let us

take these to be equal toCT11 andCT22.
We have just added one parameter to whatever other

rameters we were using to define the power spectrum.
model for the power spectrum we use here is standard
dark matter~CDM!, with the amplitude as the only free pa
rameter. We have expressed the amplitude ass8—the rms
fluctuations in mass in 8h21 Mpc spheres. The experimen
in question do not have sufficient dynamic range to constr
strongly more than this one parameter. For COB
normalized standard CDM,s851.2.

We can now explicitly show the complete parameter d
pendence of the covariance matrix in our model, by modi
ing Eq. ~3.5! to

C5S s8
2~11g2!C̃T111CN11 s8

2C̃T12

s8
2C̃T21 s8

2~11g2!C̃T221CN22
D
~4.3!

where the tilde means the quantity is evaluated fors851.
We prefer to work with a slightly different parameteriz

tion ~spanning the same model space! by replacings8
2 with

(s88)
2[s8

2(11g2) which is the amplitude for the varianc
of the signal and the contaminant combined. We prefers88 to
s8 since its probability distribution of this quantity should b
relatively independent of the level of contamination. Furth
we prefer to use the fraction of contamination,g/A(11g2)
rather than the contamination parameter itself. Probab
distributions fors88 andg/A(11g2) can be seen in Fig. 8.

One can see from the shape of the contour curves
g/A(11g2) ands88 are very nearly uncorrelated. The reas
is that the dominant contribution to the determination ofs8
comes from terms in the likelihood proportional toD iD j
whereD i and D j are in the same dataset, whereasg is en-
tirely determined by the cross-terms.

The most probable level of contamination indicated by
MSAM92/MSAM94 comparison is about 12%. Howeve
there is virtually no evidence for non-zero contaminati
since the probability of zero contamination is only about 5
less. Complete contamination is strongly ruled out at m
than exp(52/2).2.73105 times less probable. The
4-7
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MSAM92/SK95 datasets are much less constraining on
amount of contamination that may be present. While 50%
the most probable value, total contamination and no conta
nation are only about 13 and 1.6 times less likely, resp
tively.

For simplicity, the contaminant is modeled as being u
correlated between the two datasets and yet boosting
variance of each by the same amount. It is highly unlik
that a real contaminant would have this property. Again
one suspects one experiment of being contaminated m
than another, it is straightforward to changeCres,i j accord-
ingly. We point out though that even as modeled here
contaminant in just one of the experiments will still push t
most likely g away from zero. This will happen to accom
modate the fact that the contaminant is not contributing
the dataset 1—dataset 2 cross-terms.

B. The probability enhancement factor,b

For many purposes, a much smaller extension into al
native hypothesis space may be useful. In particular, ins
of examining a continuum, one could just compare the mo
with g50 to the model withg5`, at fixeds88 . The inter-
esting quantity is how much more probable one mode
than the other, a quantity referred to as the odds. This
ticular odds, or rather its logarithm, we refer to asb and call
it the probability enhancement factor:

b[ ln
P~D1D2uH0!

P~D1D2uH`!
~4.4!

FIG. 8. Contours of the likelihood ofs88 vs the fractional con-
tamination for the MSAM92 and MSAM94 datasets~top panel! and
the MSAM92 and SK95 datasets~bottom panel!. The contours in-
dicate reductions in probability from the maximum by factors

e12/2, e22/2, e32/2, etc.
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whereH0 ~not to be confused with the present value of t
Hubble constant! is the hypothesis thatg50 andH` is the
hypothesis thatg5`. Both hypotheses are understood to
fixed at the sames88 . One can see from Eq.~4.3! that the
cross-terms connecting the two different datasets in the
variance matrixC vanish wheng→` with s88 fixed. There-
fore we can also writeb as

b5 ln
P~D1D2uC!

P~D1uC!P~D2uC!
5 ln

P~D1uD2 ,C!

P~D1uC!
~4.5!

whereC is understood to beC in Eq. ~4.3! with g50 and
the second equality follows from the use ofP(ABuC)
5P(AuBC)P(BuC). This second equality gives rise to an
other interpretation ofb: b indicates how much more prob
able dataset 1 is given that dataset 2 exists than it would
without the existence of dataset 2. And by the symmetry
the definition ofb, we know that the statement is true und
switching of 1 and 2.3

The probability enhancement factor, like the Wiener filt
depends on the assumed power spectrum used to calc
the theoretical covariance matrices. We find that for our
rametrized model, within the most likely region of parame
space, the dependence ofb on the parameter is weak. In Fig
9 we see the dependence ofb~92,95! andb~94,95! on s8 .4

Notice that this dependence is quite weak near the maxim
of the joint and individual likelihoods. Thatb is minimized
near the maximum of the likelihoods, is due to the fact th
the joint likelihood@proportional toP(D1D2uC)# is broader
than the product of the two individual likelihoods@propor-
tional to P(D1uC)P(D2uC)#; see Eq.~4.5!.

As can be seen from the log likelihood curves, the diffe
ent datasets prefer slightly different values ofs8 .5 For all
calculations ofb below and for the Wiener filtering in the
previous section, we have chosen a value ofs851.2, in
between the preferred values for SK, MSAM92 a
MSAM94. It is also the normalization for this power spe
trum suggested by the DMR data.

V. FREQUENTIST STATISTICS

We now discussb from the frequentist perspective. Th
frequentist approach to checking the consistency of a dat
is to invent some function of the data, called a statistic, a
then to compare the measured value of the statistic to
probability distribution under various hypotheses. The pro

3There is even a third interpretation ofb as the log of the ratio of
probability of no relative pointing error, to that of a gross relati
pointing error which leaves the fields completely uncorrelated.

4To be precise, we means88 , but in the following, we drop this
prime for simplicity and also because keeping the prime does
make sense in the context of the interpretation ofb as the increase
in probability of one dataset given the other dataset.

5Some of this discrepancy may be due to calibration uncerta
which is not included in these log likelihood curves. We addre
this issue in a later section.

f

4-8
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COMPARING COSMIC MICROWAVE BACKGROUND DATASETS PHYSICAL REVIEW D58 083004
ability enhancement factor,b, can be viewed as a statist
since it is a function of the data. In fact, it is the logarithm
the well-known likelihood ratio statistic—in this case th
ratio of the likelihood ofH0 to the likelihood ofH` .

Some statistics are better than others at distinguish
among competing hypotheses. In this section, we see hob
and other statistics fare at discriminating between hypothe
H0 andH` .

A. Probability distributions of quadratic statistics

We restrict ourselves to studying quadratic functions
the data, for which we have analytic expressions for
mean and variance. In addition to various differentx2 quan-
tities ~to be defined below!, the probability enhancemen
factor—due to the logarithm in the definition—is also a qu
dratic function of the data:

b5~N/2!lnuCu1 1
2 DTC21D2~N1/2!lnuC11u2

1
2 D1

TC11
21D1

2~N2/2!lnuC22u2
1
2 D2

TC22
21D2 , ~5.1!

which follows from Eq.~4.5!. Since it is a quadratic function
of the data, it is straightforward to calculate the mean a
variance.

In general, any quadratic function of the data,Q
[D†MD1constant, has a mean under hypothesisX of

Q̄X[^Q&X5Tr~CXM !1const ~5.2!

and a variance of

dQX
2[^~Q̄X2Q!2&X52 Tr~CXMCXM ! ~5.3!

FIG. 9. Probability enhancement factorb~92,95! ~top panel! and
b~94,95! ~bottom panel! as a function ofs8 ~solid curves!. Also
shown are2d ln L for individual and joint datasets. Identifying
these curves by their minima, they are, from left to right: MSAM9
MSAM921SK, SK in the top panel and MSAM94
MSAM941SK, SK in the bottom panel.
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where hypothesisX is specified byCX[^DD†&X .
For the case ofb we have, for hypothesesH0 andH` :

^b&05
1

2
lnS uC11uN1uC22uN2

uCuN D
^~b2^b&0!2&05Tr~w12w21!

^b&`5^b&01
1

2
Tr~12C`C21!

^~b2^b&`!2&`5
1

2
Tr@~12C`C21!~12C`C21!#.

~5.4!

Note that if the experiments have nothing to do with ea
other (C1250), then the numerator and denominator of t
argument of the logarithm are equal and therefore^b&050
as we expect from the definition ofb in Eq. ~4.4!.

Given the observed value ofb, we can assess the validit
of the two hypotheses by calculating the probability distrib
tion of b under each hypothesis. As shown above, we
calculate the mean and variance analytically. To calculate
entire ~non-Gaussian! distribution function though, we have
used the Monte Carlo method. The results are plotted in
10 for the three possible pairings of the three datasets.
Monte Carlo method is quick because we first rotate to
basis where everything is diagonal and then make the r
izations. The rotation to the diagonal basis only needs to
found once. The plots shown use between 4000 and 17

,

FIG. 10. The measured values ofb ~vertical lines! and its~ar-
bitrarily normalized! probability distribution functions under the
two hypotheses. From top to bottom:b~92,94!, b~92,95! and
b~94,95!. The curves peaking at positiveb are estimates of
P(buH0) and those peaking at negativeb are estimates of
P(buH`). The points with error bars are the results of a Mon
Carlo calculation, while the solid curves are Gaussians with
analytically calculated means and variances.
4-9
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realizations. Notice that the distribution ofb under H0 is
well-approximated by a Gaussian. The deviations fr
Gaussianity are larger underH` .

We see in the figure thatb(92,94)513 which is consis-
tent with the expected range for hypothesis 0 of 1564.1. As
a measure of the consistency, we have calculated the p
ability of getting ab greater than this to be 0.70. We also s
that under hypothesisH` such a value ofb is extremely
unlikely; the probability of getting ab greater than the mea
sured one is less than 1%. We also find consistency withH0
for the other two pairs of datasets:b(92,95)52.1 ~c.f.
^b&057.463.2) andb(94,95)52.4 ~c.f. ^b&054.462.6).
For both of these, under hypothesisH`, the probability of
getting a value ofb as high or higher than the measured o
is 1%.

B. Comparison of comparisons

There are a handful of other quadratic functions of
data one might consider using for comparison of datas
Here we define the ones under consideration by specify
the data vectors on which they are based:

xJ
2 :D ~5.5!

xw
2 :D2wD ~5.6!

xw1
2 :~D12w12D2! ~5.7!

xw2
2 :~D22w21D1! ~5.8!

xw12
2 :~w12D22w11D1! ~5.9!

xw21
2 :~w21D12w22D2!.

~5.10!

We clarify what we mean by two examples:

xJ
25D†M 21D ~5.11!

whereM5^DD†&05C, and

xw12
2 5~w12D22w11D1!†M 21~w12D22w11D1!,

~5.12!

where

M[^~w12D22w11D1!~w12D22w11D1!†&0

5~w112w12w21!CT111~w122w11w12!CT21.
~5.13!

The J stands for joint, since this is thex2 quantity in the
joint likelihood function, P(DuC). It is straightforward to
show that xJ

25xw
2 , but, other than this relationship, th

abovex2s are all independent quantities.
To judge the discriminating power of all our quadra

statistics, we use theseparation factor,

uQ02Q`u/dQ0 , ~5.14!
08300
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whereQ0 , Q` are the means under the two hypotheses
dQ0 is the standard error underH0 . The separation factor is
shown as a function ofs8 in Fig. 11. To avoid clutter, only
two of thex2 quantities are shown,xJ

2 andxw12
2 . The sepa-

ration factors for the otherx2s are bounded by these two.
One can clearly see the superiority, under this measure

the Bayesian-motivated probability enhancement factor.
example, fors850.6, if we assumeH0 , it requires an 8s
fluctuation to getb5^b&` , but only a 2s ~3s! fluctuation to
get xJ

25^xJ
2&` (xw12

2 5^xw12
2 &`). The increase in all the

separation factors with increasings8 is expected since dis
criminating power should increase with increasing signal-
noise of the measurements.

The separation factor, as we have defined it, is the se
ration between the expected value of the two hypothese
units of the standard error assumingH0 (dQ0). One might
also choose as another measure of discriminating power,
separation in units of the standard error assumingH`

(dQ`). In showing thatb performs well under this measure
we are assisted by a theorem: the likelihood ratio test ismost
powerful.

A simple hypothesis test can be made from any stati
by choosing some critical valueQ* : if Q.Q* , then reject
H0 ; otherwise, acceptH0 .6 Statisticians discuss thesizeand
power of a test designed to discriminate between two h
potheses. The size of the test is the probability of reject
H0 if H0 is true, while the power is the probability of rejec
ing H0 , if H` is true. Clearly, we want the test to be su
that the size is small and the power is large. By chang
Q* , we can choose the size. The test based on the likelih

6This assumesQ0,Q` , if not then the test should be changed
that H0 is rejected whenQ.Q* .

FIG. 11. Separation factors forb ~blue, solid!, xw12
2 ~green,

dashed! and xJ
2 ~magenta, dot-dashed!. The top panel is for the

92/94 comparison and the bottom panel for the 92/95 compari
For xw12

2 the smaller dataset is taken to be dataset 1.
4-10



ts, but
ataset

COMPARING COSMIC MICROWAVE BACKGROUND DATASETS PHYSICAL REVIEW D58 083004
TABLE I. The probability enhancement factor is symmetric under the interchange of the two datase
xw12

2 @defined in Eq.~5.9!# is not so we must specify that the datasets column has the format dataset 1, d
2.

Datasets b ^b&06db0 ^b&`6db` xw12
2 /n n

92,94–2 5.7 10.963.6 237.6620.0 1.08 218
92,94–3 14.5 11.263.6 239.0620.1 1.05 218
92,94 12.8 15.064.1 258.4627.4 1.02 218
92,95–3 22.5 4.462.5 28.565.4 1.12 218
92,95–4 4.6 3.262.2 25.363.6 1.11 218
92,95–5 21.2 1.661.7 22.03161.4 1.05 218
92,95–6 20.29 0.5661.03 20.6160.49 1.06 218
92,95 2.13 7.463.2 215.668.1 1.15 218
94,95–3 2.6 2.7162.08 24.2763.05 1.02 170
94,95–4 1.4 1.9461.82 22.6962.01 1.05 170
94,95–5 20.31 0.9961.35 21.1460.85 1.06 170
94,95–6 20.99 0.3560.82 20.36560.29 0.96 170
94,95 2.437 4.462.63 27.2964.2 1.05 170
92–2,92–3 8.29 8.8063.185 231.6618.775 1.16 109
94–2,94–3 6.81 11.163.418 252.4630.4 0.93 85
95–3,95–4 1.72 5.262.99 27.1263.12 1.25 95
95–3,95–5 0.65 1.361.59 21.4060.62 1.09 95
95–3,95–6 1.29 0.3960.87 20.4060.216 1.08 95
95–4,95–5 21.03 2.1462.00 22.4661.19 1.48 95
95–4,95–6 2.26 0.3960.88 20.4060.18 1.05 95
95–5,95–6 20.10 0.23260.68 20.2460.13 1.08 95
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ratio statistic has the property that, for a given size, it is m
powerful—that is, no other test with the same size ha
greater power. For a discussion of the likelihood ratio sta
tic in the context of CMB observations see, e.g.@20#.

To see the relevance with our separation factor, let’s
Q* 5Q0 . Let’s further assume that we are in the asympto
limit of large datasets so that all probability distributions a
Gaussian. WithQ* 5Q0 , the size of the test will be 0.5 fo
all statistics. Since the size of this test is the same for
statistics, we know that the likelihood ratio test (Q5b) will
have the largest power. ForQ* 5Q0 the power is given by

power51/21
1

A2pdQ`

E
Q0

Q`
exp~Q2Q`!2/~2dQ`

2 !

51/21erf„~Q02Q`!/A2dQ`
2
…/2. ~5.15!

Since the error function monotonically increases with its
gument, we see that the separation betweenQ0 and Q` in
units of dQ` will always be largest for the likelihood ratio
statistic,b.

We end this section with a brief consideration of o
more x2 quantity. One could ask if there is a set of m
pixels,T, that is consistent with the noise distribution:

xn
2[~D2s!†Cn

21~D2s!; s[HT. ~5.16!

Because of its model independence, one might also think
xn

2 is a compelling choice for testing the consistency of t
datasets. However, if the pixels for the two datasets
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slightly different, then it will almost certainly be the case th
a set of map pixels can be found that gives a reducedxn

2 near
unity. The problem is that this sky map may contain sha
spikes, highly inconsistent with our prior assumptions.

VI. APPLYING b TO SUBSETS OF DATA

We have also calculatedb for various pairings of subset
of the data; the results are in Table I. All but one pairing~to
be discussed later! have values ofb within 2s of ^b&0 . Note
that the last 8 rows of the table are the results for inter
consistency checks.

Also included in the table are the values ofxw12
2 . Under

the separation factor criterion, this was the best other q
dratic statistic. It is also of particular relevance to Figs. 5
and 7, since these show the data vectors on whichxw12

2 is
based.

Most of the reducedxw12
2 values are comfortably close t

unity. The probability of exceedingx2 is less than 5% for
only one of the entries—the 95–4,95–5 internal consistency
check for which the probability is less than 1%.

We have also found another breakup of the data to
useful. To identify localized problems in the data, we ha
calculatedb as a function of the amount of data include
For example, in Fig. 12, we have plottedb(92,95* ) vs a* ,
where the star in 95* indicates that only 95 data with RA
a,a* have been included. One can see here features a
ciated with the discrepancies seen in the Wiener filter figu
Figures 13 and 14 show the results of similar calculatio
For Fig. 14, the order in which the data is included is
4-11
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versed~see caption! in order not to overemphasize the di
crepant data at low RA.

From the first two entries of Table I and also from Fig.
we see that the 3-beam datasets are more consistent
each other than the 2-beam datasets, where there is a h
a problem at low RA. This hint can also be seen in t

FIG. 12. The probability enhancement factorb(92,95* ), where
the* indicates that only data with right ascension,a, less thana*
are included. In the top panel, only the 3 point data are included
95. In the panel one lower, in addition to all the 3 point data, th
4 point data witha,a* are included, etc.

FIG. 13. The probability enhancement factorb(95,92* ). The*
indicates that only data with right ascension,a, less thana* are
included. In the top panel, only the 2-beam data are included for
In the bottom panel, in addition to all the 2-beam data, the 3-be
data witha,a* are included.
08300
ith
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Wiener-filtered data shown in Fig. 5. Possibly confusing
that in Fig. 5 the discrepancy looks stronger in the 3-be
Wiener-filtered data. However, this is because the 2-be
data has significant influence on the best estimate of th
beam signal. Evidence for this relevance of the 2-beam d
for the 3-beam data~and vice-versa! comes from the fact tha
b~92–2,92–3! and b~94–2,94–3! are large at 8.3 and 6.8
respectively. A further clue that the problem is with the
beam data is in Fig. 13 where there is a suggestion o
problem at low RA with the 2-beam, but not the 3-beam.

The better agreement between the 3-beam datasets
between the 2-beam datasets is possibly due to the gre
susceptibility of the 2-beam data to atmospheric contam
tion. In particular, the 2-beam data is susceptible to atm
spheric gradients, while the 3-beam is not. A gradient c
arise as the pendulating motion of the gondola causes
motion of the chopping flat to be slightly different from con
stant elevation@21#. Presumably, one could test this hypot
esis by searching for signals in the time stream with
balloon pendulation period.

Both from the Wiener filter figures and the cumulativeb
plot ~Fig. 14! we can see that the MSAM92 and MSAM9
data agree very well at large RA and therefore what is
served is really on the sky and not some instrumental artif
In contrast, the MSAM92/SK Wiener filter figures and c
mulative b plots show discrepancies. These may be due
instrumental problems—in which case the problem must
with SK95—or foreground contamination which could affe
either instrument. We discuss the possibility of foregrou
contamination in Sec. VIII on dust.

r
e

2.
m

FIG. 14. The probability enhancement factor,b(92,94* ), where
here* indicates that only data with right ascension,a, greater than
a* are included. In the top panel, only the 3-beam data are be
included for 94. In the bottom panel, all the 3-beam data are
cluded, but only those 2-beam data points witha.a* . The dashed
lines are^b(92,94* )&0 and one standard deviation above and b
low.
4-12
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VII. FIXING CALIBRATIONS
BY COMPARING DATASETS

We now give an example of searching for a particu
‘‘contaminant,’’ relative calibration uncertainty. Ever
dataset must be calibrated by using the same apparatu
observe a radiation source of known brightness. This ob
vation allows for the conversion of the data from some ar
trary units to temperature or brightness units. Often
brightness of the source in the passband of interest is
known to 10% or so in which case the calibration is a s
nificant source of uncertainty. IfD8 is the uncalibrated data
then we define the calibration factorf asD5 f D8, whereD
is the calibrated data. Similarly, the uncalibrated noise co
riance matrix gets adjusted byf 2: Cn5 f 2Cn8 , since the noise
is determined from the data itself.

One can do likelihood analysis on the uncalibrated da
but with the appropriate covariance matrix:

C8[^D8~D8!†&5^~s/ f !~s/ f !†&1Cn85S s8

f D 2

C̃T1Cn8 .

~7.1!

For a joint dataset,D1 and D2 , we have ~dropping the
primes!:

C5S S s8

f 1
D 2

C̃T111Cn11 S s8

f 1
D S s8

f 2
D C̃T12

S s8

f 1
D S s8

f 2
D C̃T21 S s8

f 2
D 2

C̃T221Cn22

D .

Note that this covariance matrix, and hence the likeliho
depends only ons8 / f 1 ands8 / f 2 . The degeneracy amon
the three parameters is broken by the calibration meas
ments of each experiment, which are usually modeled b
Gaussian:

ln Ltot~s8 , f 1 , f 2!5 ln LS s8

f 1
,
s8

f 2
D2

~ f 12 f̄ 1!2

2s1
2 2

~ f 22 f̄ 2!2

2s2
2 .

~7.2!

If one is exploring this likelihood space by direct evaluatio
note that one can first evaluate lnL on a two dimensiona
grid (s8 / f 1 , s8 / f 2) and then evaluate the three-dimension
ln Ltot by adding in the~very easy to calculate! calibration
measurement terms. The data as we receive it has alr
been calibrated so we usually takef̄ 51.

We have evaluated this lnLtot for the MSAM92 dataset
and a subset of the SK95 ring dataset, from 13h to 22h,
covering the range of influence of the MSAM92 data. F
MSAM92 we take f̄ MSAM9251 andsMSAM9250.1. For SK
we use the Netterfieldet al. calibration f̄ SK51 and sSK
50.14. We find in this case that lnLtot is minimized at
f MSAM9250.99, f SK50.99 ands851.13. If the Leitch reca-
libration is used (f̄ SK51.05, sSK50.07), then lnLtot is
minimized atf MSAM9251.02, f SK51.02 ands851.13.
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We can also neglect the calibration measurements ent
and use the two datasets themselves to find the best rel
calibration, f 12[ f 1 / f 2 .

L12~ f 12!}E dx2L~x1 ,x2!d~x12 f 12x2! ~7.3!

wherex15 f 1 /s8 andx25 f 2 /s8 . We find that, once again
restricting the SK95 data to between 13 and 22 h t
f MSAM92,SK51.062.26

1.22. Netterfield et al. @5# find from their
analysis thatf MSAM92,SK51.2260.24.

Note that there is a possible problem for joint power sp
trum analysis if relative calibration uncertainty is not tak
into account. For overlapping experiments, neglect of t
uncertainty could artificially boost high frequency power.

VIII. DUST

Via the application ofb and Wiener-filtering, we have
discovered a marginally significant discrepancy between
MSAM92 observations and those of Saskatoon at large R
In this section we investigate the possibility that the discr
ancy is due to foreground contamination of either the SK
MSAM92 datasets. The foreground contamination hypo
esis is supported by the fact that the discrepancy occ
where the observations are closest to the plane of the gal
Further, from the MSAM92 interstellar dust data, one c
see that the discrepancy occurs roughly where the dus
brightest—see Fig. 15.

Besides different spectral dependence from the CMB,
terstellar dust also has a different spatial frequency dep
dence than the CMB. Gautieret al. @22#, using the 100 mi-

FIG. 15. Wiener-filtered dust. The points with error bars are
MSAM92 pixelized dust data. Two-beam in top panel, 3-beam
bottom panel. The three curves in each panel are the Wiener-filt
data bounded by6 one standard deviation~assuming Gaussianity!.
The open squares are the results of convolving the IRAS data
the MSAM beam pattern; the scale is set by a fit to the MSAM
data.
4-13
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cron IRAS data, and Wright@23#, using the DIRBE data
both found that, away from the plane of the galaxy, the d
has an angular power spectrum,Cl }l 23. Schlegel, Fink-
beiner, and Davis@24#, using a dust map produced by com
bining DIRBE and IRAS data, have inferred a slightly le
steep spectrum withCl }l 22.5. For Fig. 15 we have used
power spectrum withCl }l 22.5 to Wiener filter the
MSAM92 dust data. UsingCl }l 23 produces very similar
results. The dust is known to be highly non-Gaussian. W
the mean signal does not depend on the statistics of the
nal, the uncertainties in the signal do. Therefore one sho
bear this in mind when interpreting the graph, since the e
bars in the figure were calculated assuming Gaussian
Along with the MSAM92 dust data is the result of convol
ing the MSAM beam pattern with the IRAS SISSA 240 m
cron map@25#. The IRAS data have been scaled to fit t
MSAM92 data. Note that the agreement for the 3-beam d
is much better than for the 2-beam data, once again sugg
ing that it is a more reliable dataset.

What we have referred to as the MSAM92 CMB and d
data are obtained by fitting each pixel of the four frequen
channels~170 GHz, 220 GHz, 500 GHz, 680 GHz! of
MSAM92 data to a CMB component and a dust compone
From this fit we get the CMB temperature and dust opti
depth. The dust is assumed to be a ‘‘gray’’ body with te
peratureT520 K and emissivity indexa51.5.

Using this model, the dust feature at large RA should
be showing up in the lowest frequency channel. Theref
the fit ascribes the structure seen in the 170 GHz chann
CMB. However, the model may be an inadequate desc
tion; there may be a component correlated with the dust w
stronger emission at 170 GHz than the thermal dust emis
itself. Indeed, the shape of the dust feature at large RA
somewhat similar to the MSAM92 CMB feature at large R

The Saskatoon data is single frequency and thus hard
check directly for contamination. Despite the low frequen
dust ~or a source correlated with dust! contamination is a
possibility. Several datasets point to a correlation betw
high frequency maps dominated by thermal emission fr
dust and lower frequency measurements@26#. A weak, but
significant, correlation has been seen@27,19# in a correlation
analysis of the entire SK dataset with DIRBE and IRAS d
maps. Although weak, the correlation is measured by a
aging over all the SK data; the effect may be large in cert
regions, such as the one in question here near 18 h.
cause of this correlation is not yet known, although an
pothesis has been advanced by Draine and Lazarian@28# that
it is due to dipole emission from spinning dust grains.

To investigate this possibility, we have Wiener-filtere
the MSAM92 dust measurements onto the SK95 data in
region of overlap with MSAM92~see Fig. 16!. For the shape
of the dust power spectrum, we usedCl }l 22.5 @24# with
amplitude chosen to maximize the likelihood given t
MSAM92 dust data. Although, as expected, the dust
brightest in the region of the discrepancy, we have been
able to identify any more detailed relation between the p
dicted dust signal and the discrepancy.

There is another reason, besides the observed dust c
lation, for believing the problem may lie with the SK dat
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The SK team also did some internal consistency checks
their data, one of which is the A-B test. Their A and
detectors measured orthogonal linear polarizations, and
for an unpolarized, or weakly polarized, signal, A-B shou
be consistent with zero. However, for the region of over
with MSAM92, they findxA2B

2 /n51.55 for 80 degrees o
freedom. The origin of this asymmetry is unclear, possi
an instrumental artifact. It could possibly be explained
rotational emission from dust grains; Draine and Lazar
predict that this component of the dust emission is betw
0.1% and 10% polarized.

IX. SUMMARY

We have demonstrated the usefulness of the Wiener fi
for making visual comparisons of datasets. We have emp
sized that meaningful consistency testing requires alterna
models with which to compare. Thus we have explicitly e
tended our model of the data to include a possible conta
nant and calculated the probability distribution of the amp
tude of this contaminant. For purposes of extracting just o
number from the comparison, we advocate calculating
ratio of the probability of no contamination to the probabili
of infinite contamination. Viewed as a statistic, we ha
shown this ‘‘probability enhancement factor’’ to be bett
than variousx2 statistics at discriminating between compe
ing hypotheses.

The utility of our comparison statistics was shown by e
ercising them on the MSAM92, MSAM94 and SK95 dat
We have found from comparing MSAM92 and MSAM9
that the most probable level of contamination is 12%, w
zero contamination only 1.05 times less probable, and t
contamination over 23105 times less probable. From com
paring MSAM92 and SK95, we have found that the mo
probable level of contamination is 50%, with zero contam

FIG. 16. The MSAM92 dust data~heavy solid line!, MSAM92
CMB data~light solid line! and SK95 data all Wiener-filtered on t
the SK95 pixels.
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nation only 1.6 times less probable, and total contamina
13 times less probable. Looking at subsets of the data,
find a region at large RA where the SK and MSAM92 me
surements disagree. From IRAS and from the MSAM92 d
measurements, we know that this region is also the dus
region of the overlap between SK and MSAM92. The orig
of the discrepancy is unclear and may be due to instrume
artifacts in SK, or foreground contamination of either the S
or MSAM92 measurements.

A revolution is underway in the quality and quantity
CMB data—a revolution generated by the satellites M
and Planck@29# as well as by a number of balloon an
ground-based programs. The amount of data may soon
v
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too large for the type of complete statistical analysis d
scribed here. However, any approximate methods develo
for extracting the power spectrum or parameters will also
applicable to the statistical procedures introduced here.
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