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Chaos inpp-wave spacetimes
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We demonstrate the chaotic behavior of timelike, null, and spacelike geodesics in nonhomogeneous vacuum
pp-wave solutions by analytic and fractal methods. This seems to be the first known example of a chaotic
motion in exact radiative spacetin{&0556-282198)50418-3

PACS numbg(s): 04.30—~w, 04.20.Jb, 05.45:b

In the context of general relativity the first system for b= LU-Y2ri—(f+f)U2— 5
which a chaotic behavior of solutions to the Einstein equa- vt [2¢6=( ) €l- ®

tions has been recognized and thoroughly studied were BWe considelU#0 [for U=0 Eqgs.(2)—(4) can be integrated

anchi type IX cosmological modelsee, for exampld,1,2], Co - . ; I

; : ; ielding only some trivial geodesitsBy differentiating Eqg.
and references therginComplicated nonlinear effects also y . . - . .
occur in systems with coupled gravitational and scalar fieldéS) and using E.Q(Z) we |mmed|atgly obtqm Eq4) .Wh'Ch
[3-6] can thus be omitted. Hence it suffices to find solutions of Eq.

- . . (2) sincev(7) can then be obtained by integrating E§),
Other types of problems providing nonlinear dynammalandu(T):UTJr Uo.

systems in general relativity are the studies of geodesic mo- . L
tion in given spacetimes. In particular, the chaotic behavior The remaining Ea(2) h"’.‘s the same form for t'm‘_a“ke’
of geodesics in the relativistic analogue of the two fixed-nu“’ and space'llke geodesics. Introdu_cmg regl coordinates
centers problenimodeled by extreme black hojewas ex- andy by {=x+iy we geta _SVS“?”‘ which, fdrindependent
amined in[7-10]. Chaotic geodesic motion was also found of u, follows from the Hamiltonian
in (perturbed Schwarzschild spacetimgll-14, in some Lo
static axisymmetric spacetimgk5,16 and in a topologically H= 3 (pxtpy) +V(XY), (6)
nontrivial Robertson-Walker univer$é&7,18.

Here we investigate motion in exact gravitational waveswhere the potential i&(x,y)=3U? Ref. For nonhomoge-
namely, in the widely known class of vacuupp waves neouspp-wave spacetimes given by=C¢{", C=const-0,
[19], the metric of which can be written in the form n=3,4;--, the corresponding potential

ds?=2dzd¢—2dudv — (f+f)du?, (D) V(X,y)= % CU%Re " )

wheref(u,{) is an arbitrary function ofi and the complex . . . . . . .
coordinate{ spanning the plane wave surfaces const. is called “n saddle.” It can be_wsua}llze.d in polar coordi-
Whenf is linear in¢, the metric(1) represents a Minkowski Natesp, ‘Z’lWhezref:p exp(i¢), in which it takes the form
universe. The casé=g(u)? describes plane gravitational V(p,¢)=3CU%" cosd). .
waves(“homogeneous”pp waves which have thoroughly NOV.V’. It was _shown previously by Rod, Churchlll, and
been investigate@see[19] for references This simple ex- Pece]h In a series of pgper[$22—25 that motlorj In t.he
ample of an exact radiative spacetime has also been used fogmilionian system(6) with the n-saddle potential7) is

the construction of sandwich and impulsive way28,21]. chaotic. , . . . .
However, here we wish to study geodesics in more gen- Let us first briefly summarize their results for the. simplest

eral, nonhomogeneous vacuymp waves and demonstrate ca_sen=3. The c_or_respondmg potentl(ad_tfter removing an

their chaotic behavior. The geodesic equations for(Exare unimportant multiplicative factor by a suitable rescalingrpf

i VOy)= $x-xy? ®)

N| =

fu?=o, 2)

is called a “monkey saddle.” Interestingly, this is a special

u=U = const, (3) case of famous Heon-Heiles Hamiltoniar(26] which is
known to be a “textbook” example of a chaotic system

. . 1 _ (however, their quadratic terms are absent in our )cadas
v+(f L+E0OU+ §(f+f),uU2=0, (4)  particular case of the H®n-Heiles Hamiltonian has been
investigated by Rof22]. He concentrated on bounded orbits

where the dot denote/dr with 7 being an affine parameter. in the energy manifoldsi(x,y,py,py) =E>0. The homoge-
Assuming also a condition normalizing the four-velocity Neity of V guarantees that the orbit structure for any two

such thatU ,U#=¢, wheree=—1,0+1 for timelike, null, positive values oE is isomorphic modulo a constant scale

or spacelike geodesics, we get factor and adjustment of time—Xx=Ax, y—>y=\y and r
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— 7=\, results inE—E=\3E. Therefore, without loss
of generality one can restrict to one particular valuéeof

In order to describe the topological structure of all
bounded orbits Rod first constructed three basistable pe-
riodic orbits (denoted byll;) which areisolated invariant
setsfor the flow. The region in which these bounded orbits
occur can be decomposed into three disjoint cBljs(see
[22] or [27] for detailg; each contains only one orldit; and
no other bounded orbits. Hendd; is the only invariant set
in R, i.e., itis isolated.

Subsequently, Rod investigatedbits asymptotic tdasic
orbits IT; as 7— * and showed that these asymptotic sets
intersect transversely. This gives the existence of orbits that
“connect” the orbitsll; : they arehomoclinic(asymptotic to
the same periodic orbit in both time directionsr hetero-
clinic (asymptotic to two different periodic orbits, one in
each time direction It is the existence of these orbits that
illustrates complicated chaotic structure of the flow.

The topology of possible orbits in phase space can also be
represented by symbolic dynamics given here by a set of
bi-infinite sequencess=--- ,S;,Sx+1,Sk+2:""* , where s,
e{1,2,3, s#sc.1. Using a topological version of the
Smale horseshoe map, it was showr{22] that to any bi-
infinite sequence of symbo{4,2,3 there exists amncount-
able number of bounded orbitsinning through the blocks
R; in the prescribed order asgoes from— to +. Also,
the flow admits at least a countable number of nondegenerate
homoclinic and heteroclinic orbits.

Rod remarked that these results could be refined if the
unstable periodic orbitsl; were known to be hyperbolic so
that they would admit stable and unstable asymptotic mani-
folds. Consequently, to each periodic symbol sequence there
would correspond a countable collection mériodic orbits. FIG. 1. Geodesics starting from a unit circle escape to infinity
The difficulties in proving the hyperbolicity dfl; were sub- only along one of the channels.
sequently overcome if23]. In [24], summarizing and gen-
eralizing some previous resulig5], the Hamiltonians(6), Chaos is usually indicated by a sensitive dependence of
(8) were presented as examples of a system for which ththe evolution on the choice of initial conditions. The coordi-
Smale horseshoe map cerplicitly be embedded as a sub- nate independent fractal meth¢gee for examplé2,7,8,1Q)
system into the flow along the homoclinic and heteroclinicstarts with a definition of different asymptotic outcomes

orbits. This completed the proof of chaotic behavior of the(given here by “types of ends” of all possible trajectolies
studied system. A set of initial conditions is evolved numerically until one of

Similar results hold for geodesic motion in arbitrary non- the outcome states is reached. Chaos is uncovered if the ba-

homogeneoupp waves with the structural function of the sin boundaries that separate initial conditions leading to dif-
form f=C¢", wheren=4, i.e., for a generat-saddle poten- ferent outcomes are fractal. Such fractal partitions are the

tial (7). It was shown if 22,25 that the decomposition into result of chaotic dynamics. As we shall now demonstrate, we
isolating cellsR;, j=1,2; -+ ,n, each containing exactly one observe exactly these structures in the studied system.

of the basic unstable periodic solutiof, is analogous to ~ We intégrate numerically the equations of motion given
the caser=3. Subsequently, the orbif§; were proven to be by Egs.(6), (7). The initial conditions are chosen such that
hyperbolic[23] and the existence of homoclinic and hetero-the geodesics start ai=0 from a unit circle in the X,y)
clinic orbits was establishefi24]. Again, given any bi- Plane(because of the homogeneity of thesaddle potential
infinite sequence, uncountably many orbits can be foundll other geodesics can simply be obtained by a suitable re-
which pass from one block containifig to the other in the scaling. It is natural to parametrize the initial positions by an

specified order. angle ¢ e[ — 7r,7) such thatx(0)=cos¢, y(0)=sin¢. In
In order to independently support these arguments for th&ig- 1 we present typical trajectories of geodesics fior
chaotic behavior of geodesics in nonhomogengousvaves  =3,4,5, whenx(0)=0=y(0). We observe that each un-

we investigate the motion also by a fractal method. Complebounded geodesic escapes to infinftyhere forn=3 the
mentary to the analysis described above, we concentrate aurvature singularity is locatg¢donly along one of then
unboundedyeodesics and we do not restrict to the same enehannels in the potential. The axes of these outcome chan-
ergy manifoldE = const. nels are given in polar coordinates by the condition
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FIG. 3. The fractal structure described pfp) and 75(¢) is
clearly confirmed here by zooming in the interval aroubr O for
n=3.
ol 10

assign them symbgl which takes one of the corresponding
values,j €{1,2,... ,n} (thus, for examplej=1 means that
FIG. 2. The functiong(¢) andry(¢) indicate that basin bound- the geodesic approach infinity at= > through the first chan-
aries separating different outcomes are fractal. nel with the axis¢,=m/n as r— 7s>0). From Fig. 1 we
observe that in certain regions the functipfyp) depends
cosfig)=—1, j=1,-- ,n, and represent radial lines “of very sensitively on the initial position given ky. We cal-
steepest descent” sindé— — o asp— x most rapidly along culated_j(cﬁ) numencall_y for n=3,4,5_—the results are
them. (For nonzero initial velocities more geodesics preferShOWn in Fig. 2. Also, in the same diagrams we plot the
one of the channels but the character of motion does ndtnction 7¢(¢) which takes the value of the parameter
change significantly27].) when the singularity gb = is reached by a given geodesic.

In fact, any unbounded geodesic oscillates around the ra- Cléarly, the boundaries between the outcomes appear to
dial axis ¢; =(2j — 1)/n of the correspondingth outcome be fractal which can be conflrmgd on the enlgrged detayl of
channel. Introducing ¢;(7) = ¢(7) — ¢; we find asymptoti- the image and the enlarged detail of the detail, etc. In Fig. 3

cally that p~[(n/2 — 1)CUZ( r.— 2lo—n) as and we show such zooming in of the fractal interval Iocali_zed
y = ) (75=7)] p=e around the valuep~0 for n=3 (there are two symmetric

|
3 2 4 0 1 2 3¢

A (7)~(re— )%A cogb In(re—7)] fractal intervals in this case arourig =+ 5 7r) up to the sixth
: s s level. At each levelthe structure has the same property,
+B sinb In(7s—7)]), (9 namely, that between two larger connected sets of geodesics

with outcome channelg,; and j,#j, there is always a
where a=3(n+2)/(n—2), b=31\7n’-4n—4/(n—2), smaller connected set of geodesics with outcome chagnel
andA, B are constants. As the geodesics approach the sirsuch thaf;# j, andj;#j,. Similarly as in[7,10], the struc-
gularity atp=o, 7— 74, the frequency of their oscillations ture of the initial conditions resembles three mixed Cantor
around¢; grows to infinity while the amplitude of oscilla- sets, and this fact is a manifestation of chaos.
tions tends to zero. The above structure of(¢) has its counterpart in the

Let us return back to our observation that all unboundedractal structure ofrs(¢), see Fig. 2 and Fig. 3. We observe
geodesics approach infinity through omiydistinct channels  that the value ofrg goes to infinity on each discontinuity of
These represent possible outcomes of our system and wé¢), i.e., on any fractal basin boundary between the differ-
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ent outcomes. There is an infinite set of peaks correspondingethods. As far as we know, this is the first explicit demon-
to chaotic bounded orbits which never “decide” on a par- stration of chaos iexactradiative spacetime&haotic inter-
ticular outcome, and so never escape to infinity. The value céction of particles with linearized gravitational waves on
75 also increases in nonchaotic regionsfods one zooms in  given backgrounds has already been studiefilin13,28—
the higher levels of the fractal. This is natural since thesegq)). Sincepp-wave solutions are the simplest gravitational

levels are given by geodesics which undergo “morewaves it would be an interesting task to search for a chaotic
bounces” on the potential walls before falling into one of the yyotion in other radiative spacetimes.

outcome channels so that their valuesrgfare greater.
We demonstrated chaotic behavior of geodesics in nonho- We acknowledge the support of Grant No. GACR-202/96/
mogeneougpp waves by invariant analytic and numerical 0206 and Grant No. GAUK-230/1996.
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