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Chaos in pp-wave spacetimes
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We demonstrate the chaotic behavior of timelike, null, and spacelike geodesics in nonhomogeneous vacuum
pp-wave solutions by analytic and fractal methods. This seems to be the first known example of a chaotic
motion in exact radiative spacetime.@S0556-2821~98!50418-3#

PACS number~s!: 04.30.2w, 04.20.Jb, 05.45.1b
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In the context of general relativity the first system f
which a chaotic behavior of solutions to the Einstein eq
tions has been recognized and thoroughly studied were
anchi type IX cosmological models~see, for example,@1,2#,
and references therein!. Complicated nonlinear effects als
occur in systems with coupled gravitational and scalar fie
@3–6#.

Other types of problems providing nonlinear dynamic
systems in general relativity are the studies of geodesic
tion in given spacetimes. In particular, the chaotic behav
of geodesics in the relativistic analogue of the two fixe
centers problem~modeled by extreme black holes! was ex-
amined in@7–10#. Chaotic geodesic motion was also foun
in ~perturbed! Schwarzschild spacetime@11–14#, in some
static axisymmetric spacetimes@15,16# and in a topologically
nontrivial Robertson-Walker universe@17,18#.

Here we investigate motion in exact gravitational wav
namely, in the widely known class of vacuumpp waves
@19#, the metric of which can be written in the form

ds252dzdz̄22dudv2~ f 1 f̄ !du2, ~1!

where f (u,z) is an arbitrary function ofu and the complex
coordinatez spanning the plane wave surfacesu5const.
When f is linear inz, the metric~1! represents a Minkowsk
universe. The casef 5g(u)z2 describes plane gravitationa
waves~‘‘homogeneous’’pp waves! which have thoroughly
been investigated~see@19# for references!. This simple ex-
ample of an exact radiative spacetime has also been use
the construction of sandwich and impulsive waves@20,21#.

However, here we wish to study geodesics in more g
eral, nonhomogeneous vacuumpp waves and demonstrat
their chaotic behavior. The geodesic equations for Eq.~1! are

z̈1
1

2
f̄ ,z̄U

250, ~2!

u̇5U5const, ~3!

v̈1~ f ,zż1 f̄ ,z̄z
G !U1

1

2
~ f 1 f̄ ! ,uU250, ~4!

where the dot denotesd/dt with t being an affine paramete
Assuming also a condition normalizing the four-veloc
such thatUmUm5e, wheree521,0,11 for timelike, null,
or spacelike geodesics, we get
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v̇5 1
2 U21@2żzG 2~ f 1 f̄ !U22e#. ~5!

We considerUÞ0 @for U50 Eqs.~2!–~4! can be integrated
yielding only some trivial geodesics#. By differentiating Eq.
~5! and using Eq.~2! we immediately obtain Eq.~4! which
can thus be omitted. Hence it suffices to find solutions of
~2! sincev(t) can then be obtained by integrating Eq.~5!,
andu(t)5Ut1u0 .

The remaining Eq.~2! has the same form for timelike
null, and spacelike geodesics. Introducing real coordinatex
andy by z5x1 iy we get a system which, forf independent
of u, follows from the Hamiltonian

H5 1
2 ~px

21py
2!1V~x,y!, ~6!

where the potential isV(x,y)5 1
2 U2 Re f. For nonhomoge-

neouspp-wave spacetimes given byf 5Czn, C5const.0,
n53,4,̄ , the corresponding potential

V~x,y!5 1
2 CU2Re zn ~7!

is called ‘‘n saddle.’’ It can be visualized in polar coord
natesr, f wherez5r exp(if), in which it takes the form
V(r,f)5 1

2 CU2rn cos(nf).
Now, it was shown previously by Rod, Churchill, an

Pecelli in a series of papers@22–25# that motion in the
Hamiltonian system~6! with the n-saddle potential~7! is
chaotic.

Let us first briefly summarize their results for the simple
casen53. The corresponding potential~after removing an
unimportant multiplicative factor by a suitable rescaling oft!

V~x,y!5 1
3 x32xy2 ~8!

is called a ‘‘monkey saddle.’’ Interestingly, this is a spec
case of famous He´non-Heiles Hamiltonian@26# which is
known to be a ‘‘textbook’’ example of a chaotic syste
~however, their quadratic terms are absent in our case!. This
particular case of the He´non-Heiles Hamiltonian has bee
investigated by Rod@22#. He concentrated on bounded orbi
in the energy manifoldsH(x,y,px ,py)5E.0. The homoge-
neity of V guarantees that the orbit structure for any tw
positive values ofE is isomorphic modulo a constant sca
factor and adjustment of time,x→ x̃5lx, y→ ỹ5ly andt
© 1998 The American Physical Society01-1
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→t̃5t/Al, results inE→Ẽ5l3E. Therefore, without loss
of generality one can restrict to one particular value ofE.

In order to describe the topological structure of
bounded orbits Rod first constructed three basicunstable pe-
riodic orbits ~denoted byP j ) which are isolated invariant
setsfor the flow. The region in which these bounded orb
occur can be decomposed into three disjoint cellsRj ~see
@22# or @27# for details!; each contains only one orbitP j and
no other bounded orbits. Hence,P j is the only invariant set
in Rj , i.e., it is isolated.

Subsequently, Rod investigatedorbits asymptotic tobasic
orbits P j ast→6` and showed that these asymptotic s
intersect transversely. This gives the existence of orbits
‘‘connect’’ the orbitsP j : they arehomoclinic~asymptotic to
the same periodic orbit in both time directions! or hetero-
clinic ~asymptotic to two different periodic orbits, one
each time direction!. It is the existence of these orbits th
illustrates complicated chaotic structure of the flow.

The topology of possible orbits in phase space can als
represented by symbolic dynamics given here by a se
bi-infinite sequences,s[¯ ,sk ,sk11 ,sk12 ,¯ , where sk
P$1,2,3%, skÞsk11 . Using a topological version of the
Smale horseshoe map, it was shown in@22# that to any bi-
infinite sequence of symbols$1,2,3% there exists anuncount-
able number of bounded orbitsrunning through the blocks
Rj in the prescribed order ast goes from2` to 1`. Also,
the flow admits at least a countable number of nondegene
homoclinic and heteroclinic orbits.

Rod remarked that these results could be refined if
unstable periodic orbitsP j were known to be hyperbolic s
that they would admit stable and unstable asymptotic m
folds. Consequently, to each periodic symbol sequence t
would correspond a countable collection ofperiodic orbits.
The difficulties in proving the hyperbolicity ofP j were sub-
sequently overcome in@23#. In @24#, summarizing and gen
eralizing some previous results@25#, the Hamiltonians~6!,
~8! were presented as examples of a system for which
Smale horseshoe map canexplicitly be embedded as a sub
system into the flow along the homoclinic and heterocli
orbits. This completed the proof of chaotic behavior of t
studied system.

Similar results hold for geodesic motion in arbitrary no
homogeneouspp waves with the structural function of th
form f 5Czn, wheren>4, i.e., for a generaln-saddle poten-
tial ~7!. It was shown in@22,25# that the decomposition into
isolating cellsRj , j 51,2,̄ ,n, each containing exactly on
of the basic unstable periodic solutionsP j , is analogous to
the casen53. Subsequently, the orbitsP j were proven to be
hyperbolic@23# and the existence of homoclinic and heter
clinic orbits was established@24#. Again, given any bi-
infinite sequence, uncountably many orbits can be fou
which pass from one block containingP j to the other in the
specified order.

In order to independently support these arguments for
chaotic behavior of geodesics in nonhomogeneouspp waves
we investigate the motion also by a fractal method. Comp
mentary to the analysis described above, we concentrat
unboundedgeodesics and we do not restrict to the same
ergy manifoldE5const.
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Chaos is usually indicated by a sensitive dependenc
the evolution on the choice of initial conditions. The coord
nate independent fractal method~see for example@2,7,8,10#!
starts with a definition of different asymptotic outcom
~given here by ‘‘types of ends’’ of all possible trajectories!.
A set of initial conditions is evolved numerically until one o
the outcome states is reached. Chaos is uncovered if the
sin boundaries that separate initial conditions leading to
ferent outcomes are fractal. Such fractal partitions are
result of chaotic dynamics. As we shall now demonstrate,
observe exactly these structures in the studied system.

We integrate numerically the equations of motion giv
by Eqs.~6!, ~7!. The initial conditions are chosen such th
the geodesics start att50 from a unit circle in the (x,y)
plane~because of the homogeneity of then-saddle potential
all other geodesics can simply be obtained by a suitable
scaling!. It is natural to parametrize the initial positions by a
anglefP@2p,p) such thatx(0)5cosf, y(0)5sinf. In
Fig. 1 we present typical trajectories of geodesics forn

53,4,5, whenẋ(0)505 ẏ(0). We observe that each un
bounded geodesic escapes to infinity~where for n>3 the
curvature singularity is located! only along one of then
channels in the potential. The axes of these outcome ch
nels are given in polar coordinates by the conditi

FIG. 1. Geodesics starting from a unit circle escape to infin
only along one of then channels.
1-2
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cos(nfj)521, j 51,̄ ,n, and represent radial lines ‘‘o
steepest descent’’ sinceV→2` asr→` most rapidly along
them. ~For nonzero initial velocities more geodesics pre
one of the channels but the character of motion does
change significantly@27#.!

In fact, any unbounded geodesic oscillates around the
dial axisf j5(2 j 21)p/n of the correspondingj th outcome
channel. IntroducingDf j (t)5f(t)2f j we find asymptoti-
cally thatr'@(n/221)ACU2(ts2t)#2/(22n) asr→` and

Df j~t!'~ts2t!a~A cos@b ln~ts2t!#

1B sin@b ln~ts2t!#!, ~9!

where a5 1
2 (n12)/(n22), b5 1

2 A7n224n24/(n22),
and A, B are constants. As the geodesics approach the
gularity atr5`, t→ts , the frequency of their oscillation
aroundf j grows to infinity while the amplitude of oscilla
tions tends to zero.

Let us return back to our observation that all unbound
geodesics approach infinity through onlyn distinct channels.
These represent possible outcomes of our system and

FIG. 2. The functionsj (f) andts(f) indicate that basin bound
aries separating different outcomes are fractal.
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assign them symbolj which takes one of the correspondin
values, j P$1,2,. . . ,n% ~thus, for example,j 51 means that
the geodesic approach infinity atr5` through the first chan-
nel with the axisf15p/n as t→ts.0). From Fig. 1 we
observe that in certain regions the functionj (f) depends
very sensitively on the initial position given byf. We cal-
culated j (f) numerically for n53,4,5—the results are
shown in Fig. 2. Also, in the same diagrams we plot t
function ts(f) which takes the value of the parametert
when the singularity atr5` is reached by a given geodesi

Clearly, the boundaries between the outcomes appea
be fractal which can be confirmed on the enlarged detai
the image and the enlarged detail of the detail, etc. In Fig
we show such zooming in of the fractal interval localiz
around the valuef'0 for n53 ~there are two symmetric
fractal intervals in this case aroundf'6 2

3 p) up to the sixth
level. At each levelthe structure has the same proper
namely, that between two larger connected sets of geode
with outcome channelsj 1 and j 2Þ j 1 there is always a
smaller connected set of geodesics with outcome channej 3
such thatj 3Þ j 1 and j 3Þ j 2 . Similarly as in@7,10#, the struc-
ture of the initial conditions resembles three mixed Can
sets, and this fact is a manifestation of chaos.

The above structure ofj (f) has its counterpart in the
fractal structure ofts(f), see Fig. 2 and Fig. 3. We observ
that the value ofts goes to infinity on each discontinuity o
j (f), i.e., on any fractal basin boundary between the diff

FIG. 3. The fractal structure described byj (f) and ts(f) is
clearly confirmed here by zooming in the interval aroundf'0 for
n53.
1-3
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ent outcomes. There is an infinite set of peaks correspon
to chaotic bounded orbits which never ‘‘decide’’ on a pa
ticular outcome, and so never escape to infinity. The valu
ts also increases in nonchaotic regions off as one zooms in
the higher levels of the fractal. This is natural since the
levels are given by geodesics which undergo ‘‘mo
bounces’’ on the potential walls before falling into one of t
outcome channels so that their values ofts are greater.

We demonstrated chaotic behavior of geodesics in non
mogeneouspp waves by invariant analytic and numeric
.
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methods. As far as we know, this is the first explicit demo
stration of chaos inexactradiative spacetimes~chaotic inter-
action of particles with linearized gravitational waves
given backgrounds has already been studied in@11,13,28–
30#!. Sincepp-wave solutions are the simplest gravitation
waves it would be an interesting task to search for a cha
motion in other radiative spacetimes.

We acknowledge the support of Grant No. GACR-202/9
0206 and Grant No. GAUK-230/1996.
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