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Monte Carlo simulation calculation of the critical coupling constant for two-dimensional
continuum ¢* theory
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We perform a Monte Carlo simulation calculation of the critical coupling constant for the continuum
two-dimensional X/4) ¢* theory. The critical coupling constant we obtain ¥/ 2] =10.2 ;82.
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I. INTRODUCTION In this parametrization, the phase diagram of the lattice
model consists of the critical line in th/eg/,)\/ plane, de-

The two-dimensionalp*(¢3) field theory, specified by termined by Monte Carlo simulatiofFig. 1).
the (Euclidean Lagrangian The situation for the EQFT is more complicated. There is
an infinite mass renormalization. The bare mass parameter
has to be tuned to infinity as the continuum limit is taken,
ﬁEZE(V(b)zJF Eﬂ(2)¢2+ §¢4' 1) wi~ u?In(1/a), whereu? is some finite renormalized mass
2 2 4 squared. Thug3 cannot be used as a parameter of the con-
tinuum solution. Ind=2, the field strength and coupling
) . ) . . . constant renormalizationZ;,Z,) are finite and can be dis-
has solutions in a symmetric phase in which the discreteggarded in the study of the phase structure of the theory.
symmetry of the Lagrangiang— —¢, is manifest, i.., Fyrthermore, since the dimensionful coupling constaris

(¢)=0 a”g tEere is no triIiner?r coupling. It alsao_ ho?s sglu'independent of, andu? diverges only logarithmically with
tions in a broken symmetry phase witth)#0 and induced , "}, N, .15, go to zero in the continuum limita—0.

trilinear couplings proportional t¢¢). . o . . .
There exist both elegant heuristi¢] and rigorous[2] That is, the EQFT limit is the single point at the origin of the

mathematical proofs of the existence of this phase structurds -\~ plane in Fig. 1. Taking the limia—0 reduces the
but there is no rigorous result for the critical value of somenumber of independent dimensionless parameters from two
coupling constant which separates these two phases. Thei@ one.
do exist numerous approximate calculations, and in the case The required mass renormalization can be written as a
of the lattice modellattice spacinga>0), the critical line in  simple reparametrization afg (1). Let
the ,ug,)\ plane which separates the two phases is known to
some numerical accuracy by Monte Carlo simulation. 2 9 2
For the Euclidean quantum field thediQFT), which is Mo= K = Su”. 3
the continuum limit 6— 0) of the lattice model, the first step
is to specify what finite dimensionless coupling constant is t
be used to parametrize the solutions and for which we are to
determine the critical value.

For the lattice model, these considerations are straightfor- i
ward. There are two parametelzsé,)\ in Lg, and there is
the lattice spacing. In d=2 bothx3 and\ have dimension 0.8r
mass squared(We assume the infinite volume limit., Lambda
—o0,) So there are two independent dimensionless param 0.6r
eters which may be taken to be the two Lagrangian param:
eters measured in units of inverse lattice spacing squared, 0.4y
0.2}
a2 2 _ 2.2
-1.2 -1 -0.8 -0.6 =-0.4 =-0.2 0.2
mug 1.2 -0.2¢
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TEmail address: willey@vms.cis.pitt.edu FIG. 1. Phase transition line in thg ,,u,cz,I plane.
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EEZE(V¢)2+ §M2¢2+ Z¢>4—§5M2¢2- 4

There is still a substantial freedom of choice in the definition
of the finite renormalized mass parametef, The ultravio- FIG. 2. Leaf diagram.
let, In(1/), dependence qfcé is moved entirely to the coun-

terterm su?, but the separation of the finite part pf into  On the lattice,

w? and 5u? is only determined when a renormalization con-

dition is specified. The dimensionless effective coupling con- 1 NN 1
stantf 2= M u? then manifestly depends on the choice of A, 2= — 2 2 2 2 2 .
renormalization condition which fixes the finite part &2. Nki=1 kp=1 py+4sirt wky /N +4sirt 7k, /N

For example, we could takazzmi, the pole mass, by (12)

choice of renormalization condition The “leaf” diagram (Fig. 2) which gives the integrah 2 is

0=G (p?=—m2) (5) the only divergent Feynman diagram of the theondin?2.
* Thus the renormalization condition

and dimensionless coupling

Su?= 3\A 2 (13
g= L (6)  removes all ultraviolet divergence from the perturbation se-
mi ries based on the renormalized parametrization given by Egs.

. ' ] (4) and(13).
A closely related choice, convenient for lattice Monte Carlo

measurement, is to take’=m’?, defined by the renormal- 1 , 1, n , 3 )
ization condition Le=5 (V) +ou ¢+ "= S\A 2¢
2 2 4 2
12 _~—1/r2_
=G =0 7
m (p*=0) () 1 1N,
and ZE(V(ZS) +§,LL ¢ +Z:¢:M2. (14)
. A In the last normal ordered form, we have dropped a constant
9= m2 (8) piece. The dimensionless coupling constant suggested by Eq.

(14) we denote simply by :

In fact, neither of these choices provide a dimensionless cou-
pling constant whose value distinguishes between the two o A (15
phases of the theory—because the renormalization condi- o2 )

tions themselves do not distinguish between the two phases.

Either renormalization condition, Eq$5) or (7), can be  gince the normal order prescription in Ed4) is relative to
implemented perturbatively in either the symmetric phase ofye vacuum of the symmetric phase theory, we may investi-
the broken symmetry phase. The phase has to be specified yte the possibility of a critical value of the coupling con-

ansatz{¢)=0 or(¢)#0, so that one can perturb about the stant f. Using Eg.(15), the first line of Eq.(14) may be
correct stable vacuum. Thenor g’ can take on arbitrarily  ewritten as

small values in either phase.

A dimensionless coupling constant whose critical value 1 1 fu2
separates the two phases is provided by choosing the mass  Lg=5(V¢)?+ S u?(1-3fA,2) >+ —o¢*.  (16)
renormalization to be equivalent to normal ordering the in- 2 2 4

teraction in the interaction picture in the symmetric phase. o o
From Egs.(1) and(3), On the lattice(fixed a>0), A .2 is finite, and we can argue

that for small enougti, the exact effective potential is well
G HpY)=p®+ud+3o(p)=p>+u?+3(p?>) (9 approximated by the classical effective potential with its
single minimum aip,,=0. For largef, the coefficient ofp?
and, foru?>0, in Eq. (16) becomes negative, suggesting a transition to the
broken symmetry phase. However the argument falls short at
this point because for strong coupling one cannot argue that
the effective potential is well approximated by its tree level
form. The argument was completed by Chddg by con-
structing a duality transformation from the strong coupling
42 1 regime of Eq.(14) to a weakly coupled theory normal or-
A o= f _p_. (11  dered with respect to the vacuum of the broken symmetry
# (2m)% p?+ u? phase.

S(p?) =3 NA,2— Su?+two-loop. (10)

A2 in the continuum limit is the ultraviolet divergent Feyn-
man integral:
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TABLE I. Analytic approximations of the critical value dt

Approximation Result Reference
Non-Gaussian variational 6.88 [6]
Discretized light-front 7.316, 5.500 [8], [9]
Coupled cluster expansion 3:80,.<8.60 [7]
Connected Green function 9.784 [5]
Gaussian effective potential 10.211 [1]
10.272 [5]

There are several attempts in the literat(gee Table)lto
compute the critical valud,., by various analytic approxi-

PHYSICAL REVIEW D 58 076003

m
-1.275 -1.27 -1.265 -1.26 -1.255 -1.25 0

. . . 2 H
mations, with a rather large spread of answers. In this paper FIG. 3. Plots ofCy vs ug . From lowest to highest, curves are
we report an accurate numerical value by Monte Carlo simufor L=32,64,128,256.

lation. The first step is to obtain the critical line in the

p3 .\, plane. This determinesg (\,)cric (see Fig. 1 Re-

Measurement of lattice quantities was performed every

call that these values are infinite volume extrapolations ofén Metropolis-cluster cycles. Each data collection run con-

finite volume Monte Carlo data. Then, combining E¢R).
and (13), we obtain
2 _ 2
Mo, = my—3 N A2 17
In the infinite volume limitA ;2 (12) has the integral repre-
sentation

A, 2= f:dtexp(— wit)(exp(—2t)14(2t))%. (18

For any point away from the origin, Eq&l7), (18) can be
solved numerically to determinei()\/)crit. This is then ex-
trapolated into the origin to determine

A
fo= lim —=%

N, l%,3*>()1Ll‘/

19

crit

Il. SIMULATIONS

sisted of 10 to 1P measurements, after an initial thermali-
zation of at least 1Dcycles. To assess the effective number
of statistically independent measurements, the integrated au-
tocorrelation time ¢) was calculated for each run,

1 M o5

TINT=§+i:1 (0) (21)

where s(i) is the autocorrelation separated bymeasure-
ments andM is some number of measurement such that
s(M) is essentially noise. The largest,s measured in our
simulations was 8 measuremef®§ update cyclésand was
typically much smaller. Thus, in every case the thermaliza-
tion time exceeded 10Qyt, SO we expect that our lattices
were well thermalized before we began collecting data. We
also tried to measure the exponential autocorrelation time
Texp from the first few(time) autocorrelation functions, but
these did not appear to fall off as a single exponential. As
expected, however, the measured values were slightly
smaller than the corresponding, for that run. As a result

of the smallr,r and large number of measurements, statis-

The Monte Carlo simulation is based on the lattice actionjca| errors are typically quite small, generally smaller than

which regularizes the continuum theaofd):
1 d
A=2 [521 (e(n+e,)—¢(n))*
n V=
1 A
-2 o N2y
+ 5 mo,e(N)"+ 2 ¢(n) ] (20

Periodic boundary conditions were imposedNX N square

lattices withN=32,64,128,256, and 512. To reduce critical heaj,

the systematic errors in the determination of the critical line
in the A, ,uf plane for finite volumes and in the extrapola-
tion to the infinite-volume limit.

For each size lattice, we looked at\,
=1.0,0.7,0.5,0.25,0.1 and 0.05, and for eachscanned in
/,Lg/, starting in the symmetric phase and ending in the bro-

ken symmetry phase. We used two diagnostics to determine
the critical value of,ug/. The first is that value oﬁg/ which

produced the maximum of the variance of the actepecific
which should diverge as

slowing down, our updating algorithm consisted of a stanCH~|n|#§/—Mg/c| as lattice sizeL—o [4]. This is illus-

dard Metropolis updaté.e., with a symmetric transition ma- t
trix) alternating with a cluster algorithm updating the embed- _ . )
ded Ising model. The procedure is similar to that of Brower/ = 1.0, for lattice sizes =32,64,128,256. The narrowing
and Tamayo[3], but we substitute a Wolff-type single- and strengthenln.g of the pe.a'k as L mcregsg; is seen. Qne can
cluster algorithm[10] for the Swendsen-Wang multiple- also see that estimate of crlthaE/ in the infinite volume is
cluster algorithm used there. very close to—1.27 forx ,=1.0.

rated in Fig. 3, where we give the plots 6f, vs Mg/, for
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. TABLE II. Determination of the phase transition line for differ-
' ent, .
0.175
0.15 A ,U«gc :U“(Z: A
0.125 Mz
0.1
. 075\_/ 1.0 -1.2703) 0.098@8) 10.20480)
' 0.7 —0.95168) 0.0684423) 10.22833)
oo 0.5 —0.721G10) 0.04893) 10.22563)
‘“’25\ 0.25 —0.40355) 0.02422) 10.3398)
55 s 5 5 Togn 0.10 —0.18385) 0.009615%140 10.4Q15)
0.05 —0.09983) 0.004929) 10.1619

FIG. 4. Plot of h vs log(L); from top to bottom curves are for
ng,=—1.26-127-1.28.

lating from much smaller lattices. Within the estimated er-
The second is based on the shape of the histogram of thers they are consistent, except for the smallest which is

distribution of (¢). In the symmetric phase with>¢, the  closest to the continuum limit and requires larger lattices to
spatial correlation length, the probability distribution(@fy =~ accommodate both larde and smalla. In the third column
should be a single peak centered about zero, while in thef Table II, we give the corresponding critical valuesof
broken-symmetry phase with>¢, the distribution should as determined from Eqg$17) and (18), and in the fourth
consist of two identical peaks at equal distance from) column we give the corresponding values\djx? which are
=0. For a fixed value ofug/, histograms of ¢) will ap- to be extrapolated to the infinite volume continuum limit.

In order to get a feel for the systematic errors, we have
done the extrapolation in a number of different ways. We
have plottedu? vs A and taken the inverse of the slope at the
origin to determine the critical value df This is shown in
Fig. 5. Note that the data fall very well on a straight line
togram which is two peaked, around(|e|) and —(|¢|), (x?=0.65) which passes thro_ugh the _origin within the esti-
h<1. The diagnostic for a giveng is the behavior oh as mated_error. A.S a small variation on this, we hav_e redone the

o T fit forcing the line to go exactly through the origin. The two
the lattice size is increased. F,oﬁ/’s which lead to symmet- y3jues of f, determined in this manner are 10(28 and
ric phase in the infinite volume limit) increases with. until 10.243), respectively. Alternatively, we have extrapolated
it exceeds one. Fopg/’s which lead to broken symmetry the values oﬂ\/,uﬁ to the continuum limit § ,=\a?—0) as

phase in the infinite volume limith is rapidly decreasing Shown in Fig. 6.

with increasingL. For a narrow range op(z)/ around the N

infinite volume critical value, this behavior may not stand ——=f+constx\a’. (22
out until one gets to quite large lattices. This is illustrated in pe(N)

Fig. 4 which shows interpolating curves fbiL), for A,
=1.0, for ,u,é/ fixed at —1.26,—1.27—1.28. From the be-

proach one of these distributions forsufficiently large. To
quantify the bimodality of the distribution, we bin the data
and defineh to be the ratio of the number in the central bin
to the largest number in any outlying bin. For a histogram
which is a single peak centered about zdrp,1. For a his-

The fit to a linear function ok , accommodates the discreti-
zation error of ordern?.

havior of these curves, it is clear that fprS/= —1.26, the This extrapolation gives.=10.347).
infinite volume limit will be in the symmetric phaseh ( Although the errors originated as statistical errors in simu-
>1); while for ,u%/z —1.28, the infinite volume limit will  lations on finite lattices the subsequent extrapolations have

be in the broken symmetry phasa—0). The curve for introduced systematic errors larger than the statistical errors.

MS/: —1.27 is much closer to critical behavior than are theThus the assignment of the final result and errors are just
curves for,ué/z —1.26 or—1.28. Figures 3 and 4 are the g 2
basis for the first entry in Table Il,ué/ (N ,=1.0)sit= 0.1
- 1.27Q3). Theother entries are obtained by similar analy- 0 08
sis.
0.06
I1l. ANALYSIS 0.04
In the second column of Table Il we give our estimates of

the critical value of,ué/ for each of the values of , listed
above, extrapolated to the infinite volume lim{They are s lambday,

the input for Fig. 1. They may be compared with the values 0.2 0.4 0. 0.8

found by Toral and Chakrabaf#] seven years ago, extrapo-  FIG. 5. Plot of phase transition line in the ,\, plane.
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A compendium of nonperturbative analytic approximate
calculations has been compiled in Ref]. We include these
10.5 results for purposes of comparison with the numerical MC
simulation result.

There is also the issue of the order of the phase transition.
103 According to the Simon-Griffiths theorefll], the phase
transition is second order. In the analytic approximations, the

10.4

10.2 order of the phase transition is determined; the one-loop ef-
101 fective potential and the Gaussian effective potential predict

' a first-order phase transition, while the other correctly predict

- N R e 5 N a second-order phase transition. In our numerical calculation

of the critical coupling constant, we have made no effort to

FIG. 6. Extrapolation to determine the critical valuefof distinguish between weakly first-order and second-order

phase transitions.
based on the consistency of the above numbers. We conclude
that the critical value ok/u? is 10.26 05 V. CONCLUSIONS

We have calculated an accurate numerical value of the

IV. ANALYTIC APPROXIMATIONS critical coupling constant using Monte Carlo simulation.
.With this we can evaluate the accuracy of analytic approxi-

The above result may be compared with various approXis,ation methods. It is interesting to observe that the Gaussian

mate analytic calculations. The simplest approach would b@tsective potential result for the critical coupling is consistent
to consider the one-loop effective potential.dm2 thisis  jith the accurate numerical result, although it gives incor-
rectly the order of the phase transition.
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