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Monte Carlo simulation calculation of the critical coupling constant for two-dimensional
continuum f4 theory
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We perform a Monte Carlo simulation calculation of the critical coupling constant for the continuum
two-dimensional (l/4) f4 theory. The critical coupling constant we obtain is@l/m2#crit510.262.04

1.08.
@S0556-2821~98!07219-1#

PACS number~s!: 11.10.Kk, 05.50.1q, 11.15.Ha
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I. INTRODUCTION

The two-dimensionalf4(f2
4) field theory, specified by

the ~Euclidean! Lagrangian

LE5
1

2
~¹f!21

1

2
m0

2f21
l

4
f4, ~1!

has solutions in a symmetric phase in which the discr
symmetry of the Lagrangian,f→2f, is manifest, i.e.,
^f&50 and there is no trilinear coupling. It also has so
tions in a broken symmetry phase with^f&Þ0 and induced
trilinear couplings proportional tôf&.

There exist both elegant heuristic@1# and rigorous@2#
mathematical proofs of the existence of this phase struct
but there is no rigorous result for the critical value of som
coupling constant which separates these two phases. T
do exist numerous approximate calculations, and in the c
of the lattice model~lattice spacinga.0), the critical line in
the m0

2 ,l plane which separates the two phases is known
some numerical accuracy by Monte Carlo simulation.

For the Euclidean quantum field theory~EQFT!, which is
the continuum limit (a→0) of the lattice model, the first ste
is to specify what finite dimensionless coupling constant is
be used to parametrize the solutions and for which we ar
determine the critical value.

For the lattice model, these considerations are straight
ward. There are two parameters,m0

2 ,l in LE , and there is
the lattice spacinga. In d52 bothm0

2 andl have dimension
mass squared.~We assume the infinite volume limit,L
→`.) So there are two independent dimensionless par
eters which may be taken to be the two Lagrangian par
eters measured in units of inverse lattice spacing square

l l 5la2, m0l

2 5m0
2a2. ~2!
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In this parametrization, the phase diagram of the latt
model consists of the critical line in them0l

2 ,l l plane, de-

termined by Monte Carlo simulation~Fig. 1!.
The situation for the EQFT is more complicated. There

an infinite mass renormalization. The bare mass param
has to be tuned to infinity as the continuum limit is take
m0

2;m2ln(1/a), wherem2 is some finite renormalized mas
squared. Thusm0

2 cannot be used as a parameter of the c
tinuum solution. Ind52, the field strength and couplin
constant renormalizations (Zf ,Zl) are finite and can be dis
regarded in the study of the phase structure of the the
Furthermore, since the dimensionful coupling constantl is
independent ofa, andm0

2 diverges only logarithmically with
a, both l l ,m0l

2 go to zero in the continuum limit,a→0.

That is, the EQFT limit is the single point at the origin of th
m0l

2 ,l l plane in Fig. 1. Taking the limita→0 reduces the

number of independent dimensionless parameters from
to one.

The required mass renormalization can be written a
simple reparametrization ofLE ~1!. Let

m0
25m22dm2. ~3!

Then

FIG. 1. Phase transition line in thel l ,m0l
2 plane.
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LE5
1

2
~¹f!21

1

2
m2f21

l

4
f42

1

2
dm2f2. ~4!

There is still a substantial freedom of choice in the definit
of the finite renormalized mass parameter,m2. The ultravio-
let, ln(1/a), dependence ofm0

2 is moved entirely to the coun
tertermdm2, but the separation of the finite part ofm0

2 into
m2 anddm2 is only determined when a renormalization co
dition is specified. The dimensionless effective coupling c
stant f m25 l/m2 then manifestly depends on the choice
renormalization condition which fixes the finite part ofdm2.
For example, we could takem25m

*
2 , the pole mass, by

choice of renormalization condition

05G21~p252m
*
2 ! ~5!

and dimensionless coupling

g5
l

m
*
2

. ~6!

A closely related choice, convenient for lattice Monte Ca
measurement, is to takem25m82, defined by the renormal
ization condition

m825G21~p250! ~7!

and

g85
l

m82
. ~8!

In fact, neither of these choices provide a dimensionless c
pling constant whose value distinguishes between the
phases of the theory—because the renormalization co
tions themselves do not distinguish between the two pha
Either renormalization condition, Eqs.~5! or ~7!, can be
implemented perturbatively in either the symmetric phase
the broken symmetry phase. The phase has to be specifie
ansatz,̂ f&50 or ^f&Þ0, so that one can perturb about th
correct stable vacuum. Theng or g8 can take on arbitrarily
small values in either phase.

A dimensionless coupling constant whose critical va
separates the two phases is provided by choosing the m
renormalization to be equivalent to normal ordering the
teraction in the interaction picture in the symmetric pha
From Eqs.~1! and ~3!,

G21~p2!5p21m0
21(0~p2!5p21m21(~p2! ~9!

and, form2.0,

(~p2!53 lAm22dm21two-loop. ~10!

Am2 in the continuum limit is the ultraviolet divergent Feyn
man integral:

Am25E d2p

~2p!2

1

p21m2
. ~11!
07600
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On the lattice,

Am25
1

N2 (
k151

N

(
k251

N
1

m l
2 14sin2 pk1 /N 14sin2 pk2 /N

.

~12!

The ‘‘leaf’’ diagram ~Fig. 2! which gives the integralAm2 is
the only divergent Feynman diagram of the theory ind52.

Thus the renormalization condition

dm253lAm2 ~13!

removes all ultraviolet divergence from the perturbation
ries based on the renormalized parametrization given by E
~4! and ~13!.

LE5
1

2
~¹f!21

1

2
m2f21

l

4
f42

3

2
lAm2f2

5
1

2
~¹f!21

1

2
m2f21

l

4
:f4:m2. ~14!

In the last normal ordered form, we have dropped a cons
piece. The dimensionless coupling constant suggested by
~14! we denote simply byf :

f 5
l

m2
. ~15!

Since the normal order prescription in Eq.~14! is relative to
the vacuum of the symmetric phase theory, we may inve
gate the possibility of a critical value of the coupling co
stant f . Using Eq. ~15!, the first line of Eq.~14! may be
rewritten as

LE5
1

2
~¹f!21

1

2
m2~123 f Am2!f21

f m2

4
f4. ~16!

On the lattice~fixed a.0), Am2 is finite, and we can argue
that for small enoughf , the exact effective potential is we
approximated by the classical effective potential with
single minimum atfcl50. For largef , the coefficient off2

in Eq. ~16! becomes negative, suggesting a transition to
broken symmetry phase. However the argument falls sho
this point because for strong coupling one cannot argue
the effective potential is well approximated by its tree lev
form. The argument was completed by Chang@1# by con-
structing a duality transformation from the strong coupli
regime of Eq.~14! to a weakly coupled theory normal or
dered with respect to the vacuum of the broken symme
phase.

FIG. 2. Leaf diagram.
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MONTE CARLO SIMULATION CALCULATION OF THE . . . PHYSICAL REVIEW D 58 076003
There are several attempts in the literature~see Table I! to
compute the critical value,f c , by various analytic approxi-
mations, with a rather large spread of answers. In this pa
we report an accurate numerical value by Monte Carlo sim
lation. The first step is to obtain the critical line in th
m0l

2 ,l l plane. This determinesm0l

2 (l l )crit ~see Fig. 1!. Re-

call that these values are infinite volume extrapolations
finite volume Monte Carlo data. Then, combining Eqs.~3!
and ~13!, we obtain

m0l

2 5m l
2 23 l l Am2. ~17!

In the infinite volume limitAm2 ~12! has the integral repre
sentation

Am25E
0

`

dtexp~2m l
2 t !„exp~22t !I 0~2t !…2. ~18!

For any point away from the origin, Eqs.~17!, ~18! can be
solved numerically to determinem l

2 (l l )crit . This is then ex-
trapolated into the origin to determine

f c5 lim
l l ,m l

2→0

l l

m l
2 U

crit

. ~19!

II. SIMULATIONS

The Monte Carlo simulation is based on the lattice act
which regularizes the continuum theory~1!:

A5(
nW

H 1

2(
n51

d

„w~nW 1eW n!2w~nW !…2

1
1

2
m0l

2 w~nW !21
l l

4
w~nW !4J . ~20!

Periodic boundary conditions were imposed onN3N square
lattices withN532,64,128,256, and 512. To reduce critic
slowing down, our updating algorithm consisted of a sta
dard Metropolis update~i.e., with a symmetric transition ma
trix! alternating with a cluster algorithm updating the embe
ded Ising model. The procedure is similar to that of Brow
and Tamayo@3#, but we substitute a Wolff-type single
cluster algorithm@10# for the Swendsen-Wang multiple
cluster algorithm used there.

TABLE I. Analytic approximations of the critical value off .

Approximation Result Reference

Non-Gaussian variational 6.88 @6#

Discretized light-front 7.316, 5.500 @8#, @9#

Coupled cluster expansion 3.80, f c,8.60 @7#

Connected Green function 9.784 @5#

Gaussian effective potential 10.211 @1#

10.272 @5#
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Measurement of lattice quantities was performed ev
ten Metropolis1cluster cycles. Each data collection run co
sisted of 104 to 105 measurements, after an initial therma
zation of at least 104 cycles. To assess the effective numb
of statistically independent measurements, the integrated
tocorrelation time (t INT) was calculated for each run,

t INT5
1

2
1(

i 51

M
s~ i !

s~0!
~21!

where s( i ) is the autocorrelation separated byi measure-
ments andM is some number of measurement such t
s(M ) is essentially noise. The largestt INT measured in our
simulations was 8 measurements~80 update cycles! and was
typically much smaller. Thus, in every case the thermali
tion time exceeded 100t INT , so we expect that our lattice
were well thermalized before we began collecting data.
also tried to measure the exponential autocorrelation t
tEXP from the first few~time! autocorrelation functions, bu
these did not appear to fall off as a single exponential.
expected, however, the measured values were slig
smaller than the correspondingt INT for that run. As a result
of the smallt INT and large number of measurements, sta
tical errors are typically quite small, generally smaller th
the systematic errors in the determination of the critical l
in the lL ,mL

2 plane for finite volumes and in the extrapol
tion to the infinite-volume limit.

For each size lattice, we looked atl l

51.0,0.7,0.5,0.25,0.1 and 0.05, and for eachl l scanned in
m0l

2 , starting in the symmetric phase and ending in the b

ken symmetry phase. We used two diagnostics to determ
the critical value ofm0l

2 . The first is that value ofm0l

2 which

produced the maximum of the variance of the action~specific
heat!, which should diverge as
CH; lnum0l

2 2m0l c
2 u as lattice sizeL→` @4#. This is illus-

trated in Fig. 3, where we give the plots ofCH vs m0l

2 , for

l l 51.0, for lattice sizesL532,64,128,256. The narrowin
and strengthening of the peak as L increases is seen. On
also see that estimate of criticalm0l

2 in the infinite volume is

very close to21.27 forl l 51.0.

FIG. 3. Plots ofCH vs m0l

2 . From lowest to highest, curves ar
for L532,64,128,256.
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The second is based on the shape of the histogram o
distribution of ^w&. In the symmetric phase withL@j, the
spatial correlation length, the probability distribution of^w&
should be a single peak centered about zero, while in
broken-symmetry phase withL@j, the distribution should
consist of two identical peaks at equal distance from^w&
50. For a fixed value ofm0l

2 , histograms of̂ w& will ap-

proach one of these distributions forL sufficiently large. To
quantify the bimodality of the distribution, we bin the da
and defineh to be the ratio of the number in the central b
to the largest number in any outlying bin. For a histogra
which is a single peak centered about zero,h.1. For a his-
togram which is two peaked, around1^uwu& and 2^uwu&,
h!1. The diagnostic for a givenm0l

2 is the behavior ofh as

the lattice size is increased. Form0l

2 ’s which lead to symmet-

ric phase in the infinite volume limit,h increases withL until
it exceeds one. Form0l

2 ’s which lead to broken symmetr

phase in the infinite volume limit,h is rapidly decreasing
with increasingL. For a narrow range ofm0l

2 around the

infinite volume critical value, this behavior may not sta
out until one gets to quite large lattices. This is illustrated
Fig. 4 which shows interpolating curves forh(L), for l l

51.0, for m0l

2 fixed at 21.26,21.27,21.28. From the be-

havior of these curves, it is clear that form0l

2 521.26, the

infinite volume limit will be in the symmetric phase (h
.1); while for m0l

2 521.28, the infinite volume limit will

be in the broken symmetry phase (h→0). The curve for
m0l

2 521.27 is much closer to critical behavior than are t

curves form0l

2 521.26 or 21.28. Figures 3 and 4 are th

basis for the first entry in Table II,m0l

2 (l l 51.0)crit5

21.270(3). Theother entries are obtained by similar ana
sis.

III. ANALYSIS

In the second column of Table II we give our estimates
the critical value ofm0l

2 for each of the values ofl l listed

above, extrapolated to the infinite volume limit.~They are
the input for Fig. 1.! They may be compared with the value
found by Toral and Chakrabarti@4# seven years ago, extrapo

FIG. 4. Plot of h vs log2(L); from top to bottom curves are fo
m0l

2 521.26,21.27,21.28.
07600
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lating from much smaller lattices. Within the estimated e
rors they are consistent, except for the smallestl l , which is
closest to the continuum limit and requires larger lattices
accommodate both largeL and smalla. In the third column
of Table II, we give the corresponding critical values ofm2

as determined from Eqs.~17! and ~18!, and in the fourth
column we give the corresponding values ofl/m2 which are
to be extrapolated to the infinite volume continuum limit.

In order to get a feel for the systematic errors, we ha
done the extrapolation in a number of different ways. W
have plottedm2 vs l and taken the inverse of the slope at t
origin to determine the critical value off . This is shown in
Fig. 5. Note that the data fall very well on a straight lin
(x250.65) which passes through the origin within the es
mated error. As a small variation on this, we have redone
fit forcing the line to go exactly through the origin. The tw
values of f c determined in this manner are 10.23~3! and
10.24~3!, respectively. Alternatively, we have extrapolate
the values ofl/mc

2 to the continuum limit (l l 5la2→0) as
shown in Fig. 6.

l

mc
2~l!

5 f c1const3la2. ~22!

The fit to a linear function ofl l accommodates the discret
zation error of ordera2.

This extrapolation givesf c510.32(7).
Although the errors originated as statistical errors in sim

lations on finite lattices the subsequent extrapolations h
introduced systematic errors larger than the statistical err
Thus the assignment of the final result and errors are

TABLE II. Determination of the phase transition line for differ
ent l l .

l m0C
2 mC

2
l

m2

1.0 21.270~3! 0.0980~8! 10.204~80!

0.7 20.9516~8! 0.06844~23! 10.228~33!

0.5 20.7210~10! 0.0489~3! 10.225~63!

0.25 20.4035~5! 0.0242~2! 10.33~8!

0.10 20.1838~5! 0.009615~140! 10.40~15!

0.05 20.0998~3! 0.00492~9! 10.16~19!

FIG. 5. Plot of phase transition line in them l
2 ,l l plane.
3-4
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based on the consistency of the above numbers. We conc
that the critical value ofl/m2 is 10.262.04

1.08.

IV. ANALYTIC APPROXIMATIONS

The above result may be compared with various appro
mate analytic calculations. The simplest approach would
to consider the one-loop effective potential. Ind52 this is

Ve f f5
m2

2
f21

l

4
f42

m213lf2

8p

3S ln
m213lf2

k2
21D . ~23!

With the assignmentk25m2, this Ve f f gives a first-order
phase transition forf c56.6.

FIG. 6. Extrapolation to determine the critical value off .
-

Z.
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A compendium of nonperturbative analytic approxima
calculations has been compiled in Ref.@5#. We include these
results for purposes of comparison with the numerical M
simulation result.

There is also the issue of the order of the phase transit
According to the Simon-Griffiths theorem@11#, the phase
transition is second order. In the analytic approximations,
order of the phase transition is determined; the one-loop
fective potential and the Gaussian effective potential pre
a first-order phase transition, while the other correctly pred
a second-order phase transition. In our numerical calcula
of the critical coupling constant, we have made no effort
distinguish between weakly first-order and second-or
phase transitions.

V. CONCLUSIONS

We have calculated an accurate numerical value of
critical coupling constant using Monte Carlo simulatio
With this we can evaluate the accuracy of analytic appro
mation methods. It is interesting to observe that the Gaus
effective potential result for the critical coupling is consiste
with the accurate numerical result, although it gives inc
rectly the order of the phase transition.
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