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Optimized perturbation theory at finite temperature
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An optimized perturbation theory~OPT! at finite temperatureT, which resums higher order terms in the
naive perturbation, is developed inO(N) f4 theory. It is proved that~i! the renormalization of the ultraviolet
divergences can be carried out systematically in any given order of OPT and~ii ! the Nambu-Goldstone
theorem is satisfied for arbitraryN and for any given order of OPT. The method is applied for theO(4) s
model to study the soft modes associated with the chiral transition in quantum chromodynamics. Threshold
enhancement of the spectral functions at finiteT in the scalar and pseudoscalar channels is shown to be a
typical signal of the chiral transition.@S0556-2821~98!04617-7#

PACS number~s!: 11.10.Wx, 11.30.Rd, 12.38.Cy, 12.38.Mh
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I. INTRODUCTION

One of the main goals of the ultrarelativistic heavy-i
experiments planned at the BNL Relativistic Heavy Ion C
lider ~RHIC! and CERN Large Hadron Collider~LHC! @1# is
to observe the structural change of the ground state of q
tum chromodynamics~QCD! at finite temperature (T),
namely, the phase transition to the quark-gluon plasma.
numerical simulation based on lattice QCD is a powerful t
to study the static nature of this phase transition, in which
critical temperature and the critical exponents are activ
studied@2#. In particular, there exists numerical evidence th
the chiral transition for massless two flavors is of seco
order, although the case for the real world~two light quarks
1 one medium-heavy quark! is not settled yet@3#.

If the phase transition is of second order or is close to
there arises long range fluctuations in both spatial and t
poral ~real-time! directions. The latter is usually called th
soft mode and has been used as a probe to study phase
sitions of solid states and condensed matter@4#.

Despite the experimental significance of the soft mode
QCD, lattice QCD simulations cannot treat such real-ti
modes in a straightforward manner. This is why effect
theories of QCD have been adopted to study time-depen
phenomena~see the reviews in@5,6# and references cited
therein!. However, even in tractable effective theories su
as the linears model, there exist subtleties at finiteT. In
fact, the necessity of the resummation of higher order te
in perturbative expansions both at highT and lowT has been
known for a long time@7,8#. Also, the renormalization of the
ultraviolet ~UV! divergences and related issues in resum
perturbation theories have been discussed in the litera
especially for theories with spontaneous symmetry break
~SSB! @9#.

Recently, we have reported our analysis of a particu
resummation method and its application to the soft mode
QCD @10#. The present paper contains not only a detai
0556-2821/98/58~7!/076001~17!/$15.00 58 0760
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description of our previous analysis but also further inve
gations.

The purpose of the present paper is twofold. First, we w
develop an improved loop-wise expansion at finiteT. Our
starting point is optimized perturbation theory~OPT! ~or
sometimes called delta expansion, variational perturba
theory, etc.! which is a generalization of the mean-fie
method@11# and is known to work in various quantum sy
tems@12#. Its application to field theory at finiteT has been
considered in Refs.@13,14# for the first time. We will further
develop the idea and prove the renormalizability and
Nambu-Goldstone~NG! theorem inO(N) f4 theory at fi-
nite T order by order in OPT. Our second purpose is to stu
the soft modes associated with the chiral transition in Q
by taking into account interactions among the soft mod
~mode couplings!. The use of OPT is essential for this pu
pose, which will be demonstrated using theO(4) s model.

The organization of this paper is as follows. In Sec. II, w
introduce a loop-wise expansion on the basis of OPT. T
renormalization of UV divergences and the realization of
NG theorem in this method are also discussed. In Sec. III,
will apply the OPT developed in Sec. II for theO(4) s
model to study the spectral functions of thes meson and the
p meson atTÞ0. The detectability of the soft modes by th
diphoton processs→2g in hot hadronic matter is also ex
amined. Section IV is devoted to a summary and conclud
remarks.

II. OPTIMIZED PERTURBATION AT TÞ0

A. Necessity of resummation at finiteT

It has been known that naive perturbations either by
coupling constant or by number of loops break down aT
Þ0, and a proper resummation of higher orders is neces
@7#. In fact, no matter what small dimensionless coupli
~say, l) seems to control the perturbative expansion,
powers ofT compensate the powers ofl, which invalidates
the naive expansion.
© 1998 The American Physical Society01-1
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This is easily illustrated inf4 theory:

L5
1

2
@~]f!22m2f2#2

l

4!
f4. ~1!

Let us first consider the casem2.0. The lowest order self-
energy diagram Fig. 1~A! is O(lT2) at high T. However,
Fig. 1~B! is O(lT23lT/m). Furthermore, higher powers o
T/m arise in higher loops; e.g., then-loop diagram in Fig.
1~C! is O(lnT2n21/m2n23). Thus, one should at least resu
cactus diagrams to get sensible results at highT @7,15#. Phys-
ics behind this resummation is of course the Debye scree
mass in the hot plasma.

The naive loop expansion breaks down also form2,0.
The tree-level massm0 in this case is defined as

m0
25m21

l

2
j2~T!, ~2!

wherej(T) is the thermal expectation value off. Sincem2

is negative andj2 decreases asT increases,m0
2 becomes

tachyonic even below the critical temperatureTc . Therefore,
the naive loop expansion using the tree-level propag
ceases to work even before the symmetry restoration ta
place, and a proper resummation of higher loop diagram
necessary@8#. Note that, forT,Tc , there is no reason to
believe that only the cactus diagrams shown in Fig. 1
dominant; there exists a three-point vertexljf3 which is
not negligible forT;j(T).

B. Resummation method

For theories without SSB, a systematic resummat
method to obtain a sensible ‘‘weak-coupling’’ expansion
high T was formulated and applied to gauge theory andf4

theory successfully@16#.
For theories with SSB, however, the loop expans

rather than the weak-coupling expansion is relevant, si
one needs to treat the thermal effective potential or the G
free energy. We find that optimized perturbation theo
which was applied to finiteT system in@13,14#, can be for-
mulated in such a way that an improved loop expansion
carried out systematically. Also, the method leads to a tra
parent renormalization procedure and guarantees the Nam
Goldstone theorem order by order in the improved loop
pansion.

In the following, we divide our resummation procedu
into three steps and apply it tof4 theory. The case for
O(N) f4 theory will be discussed in Sec. II E.

Step 1.Start with a renormalized Lagrangian with cou
terterms

FIG. 1. Bubble and cactus diagrams.
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L~f;m2!5
1

2
@~]f!22m2f2#2

l

4!
f4

1
1

2
A~]f!22

1

2
Bm2f22

l

4!
Cf41Dm4.

~3!

Here we have explicitly written the argumentm2 in L for
later use. The mass-independent renormalization sch
with dimensional regularization is assumed in Eq.~3!. Just
for notational simplicity, the factork (42n) to be multiplied to
l is omitted (k is the renormalization point andn is the
number of dimensions!. In the actual calculations below, w
take the modified minimal subtraction (MS) scheme.

The c-number countertermDm4, which was not consid-
ered in@14#, is necessary to make the thermal effective p
tential finite. Also, it plays a crucial role for renormalizatio
in OPT as will be shown in Sec. II D.

The thermal effective actionG@w2# is written as the Eu-
clidean functional integral@17#

G@w2#5 lnE @df#expF1

dE0

1/T

d4x@L~f1w;m2!1Jf#G ,
~4!

whereJ[2]G@w#/]w and*0
1/Td4x[*0

1/Tdt*d3x. The ‘‘na-
ive’’ loop expansion atTÞ0 is defined as an expansion byd
@18# with the tree-level massm21lw2/2.

Under the naive loop expansion with Eq.~3! for m2.0,
one can completely fix the renormalization constants. Si
ultraviolet divergences do not depend onT in the naive loop
expansion@19#, A, B, C, andD are independent ofT, and
are expanded as

S A

B

C

D

D 5(
l 51

` S al

bl

cl

dl

D d l . ~5!

The coefficients (al ,bl ,cl ,dl) are independent ofm2, since
we use the mass-independent renormalization scheme. A
the UV divergences in the symmetry-broken phase (m2

,0) can be removed by the same counterterms determ
for m2.0 @20,21#.

The relations ofA,B,C, andD with the standard renor
malization constants areA5Z21, B5ZmZ21, and C
5ZlZ221, where Z’s are defined by f05AZf, l0

5Zll, andm0
25Zmm2, with suffix 0 indicating unrenormal-

ized quantities.
Step 2.Rewrite the Lagrangian~3! by introducing a new

mass parameterm2 following the idea of OPT@12#:

m25m22~m22m2![m22x. ~6!

This identity should be used not only in the standard m
term but also in the counterterms@22#, which is crucial to
show the order by order renormalization in OPT:
1-2
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L~f;m2!5Lr1Lc ~7!

Lr5
1

2
@~]f!22m2f2#2

l

4!
f41

1

2
xf2 ~8!

Lc5
1

2
A~]f!22

1

2
B~m22x!f2

2
l

4!
Cf41D~m22x!2. ~9!

A, B, C, andD in Lc were already determined in step 1
On the basis of Eq.~7!, we define a ‘‘modified’’ loop

expansion in which the tree-level propagator has a massm2

1lw2/2 instead ofm21lw2/2. The major difference be
tween this expansion and the naive one is the following
signment:

m25O~d0!, x5O~d!. ~10!

The physical reason behind this assignment is the fact thx
reflects the effect of interactions. If one adopts an assignm
m25O(d0),x5O(d0), the modified loop expansion imme
diately reduces to the naive one.

As will be shown explicitly in Sec. II D, all the UV di-
vergences in the modified loop expansion are removed by
counterterms determined in the naive loop expansion.

Since Eq.~7! is simply a reorganization of the Lagrang
ian, any Green’s functions~or its generating functional! cal-
culated in the modified loop expansion should not depend
the arbitrary massm if they are calculated in all orders
However, one needs to truncate perturbation series at a
tain order in practice. This inevitably introduces an expli
m dependence in Green’s functions. Procedures to determ
m are given in step 3 below.

To find the ground state of the system, one should lo
for the stationary point of the thermal effective potent
V(w2) defined by

V~w2!52
G@w25const#

E
0

1/T

d4x

. ~11!

As mentioned above,V calculated up toLth loopsVL(w2;m)
has an explicitm dependence. Thus the stationary conditi
reads

]VL~w2;m!

]w
50, ~12!

where the derivative with respect tow does not act onm by
definition. Equation~12! gives a stationary point ofVL for
given m.

One may generalize step 2 by adding and subtrac
a0(]0f)2, a1(] if)2, and gf4 @23# with a0 , a1 , and g
being finite parameters to be determined by the principle
minimal sensitivity ~PMS! or fastest apparent convergen
~FAC! conditions~see step 3!. a0 anda1 are especially im-
portant for theories with fermions at finiteT and chemical
07600
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potential@24#. We will, however, concentrate on the simple
version (a0,15g50) in the following discussions.

Step 3.The final step is to find an optimal value ofm by
imposing physical conditions in the manner of Stevens
@25# such as the following.

~a! The PMS: this condition requires that a chosen qu
tity calculated up toLth loops (OL) should be stationary by
the variation ofm:

]OL

]m
50. ~13!

~b! The criterion of the FAC: this condition requires th
the perturbative corrections inOL should be as small as pos
sible for a suitable value ofm:

OL2OL2n50, ~14!

wheren is chosen in the range 1<n<L.
The above conditions reduce to self-consistent gap eq

tions whose solution determines the optimal parameterm for
a givenL. Thusm becomes a nontrivial function ofw, l,
andT @26#. This together with the solution of Eq.~12! com-
pletely determines the thermal expectation valuej(T)
[^f& as well as the optimal parameterm(T). Through this
self-consistent process, higher order terms in the naive l
expansion are resumed.

The choice ofOL in step 3 depends on the quantity on
needs to improve most. To study the static nature of
phase transition, the thermal effective potentialVL(w2;m) is
most relevant. Applying the PMS condition forVL reads

]VL~w2;m!

]m
50, ~15!

which gives a solutionm5m(w). This can be used to im
prove the effective potential at finiteT @13#:

VL~w2;m!→VL„w
2;m~w!…. ~16!

Also, j(T) and m(T) are obtained by solving Eq.~12! to-
gether with Eq.~15!. In this case, the following relation
holds:dV„w2;m(w)…/dwuw5j5]V„w2;m(w)…/]wuw5j .

To improve particle properties at finiteT, it is more effi-
cient to apply PMS or FAC conditions directly to the two
point functions@27#. In Ref. @14#, FAC with L5n52 was
used for the boson self-energy calculated up to two loo
We will adopt a similar condition in Sec. III when we ana
lyze spectral functions of the soft modes.

C. UV divergence in the resumed perturbation

We briefly mention here the reason why the renormali
tion in resumed perturbation is not a trivial issue.

In the naive perturbation theory, there arises no new
divergences atTÞ0 because of the natural cutoff from th
Boltzmann distribution function. Therefore, all the UV dive
gences at finiteT are canceled by the counterterms prepa
at T50. This statement has been proved in imaginary-ti
and real-time formalisms@19#.
1-3
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On the other hand, in self-consistent methods atTÞ0, the
situation is not so simple since the tree-level propaga
haveT-dependent mass@such asm(T) in the above# which
contains higher loop contributions through the self-consis
gap equation@9#.

In fact, in most of the self-consistent methods applied
far ~except for Ref.@14#!, the renormalization is taken int
account ‘‘after’’ imposing the gap equation. This procedu
not only makes the renormalization nontrivial and hard
higher orders, but also obscures the origin of the UV div
gences. On the contrary, in OPT explained in the previ
subsection, the renormalization is performed ‘‘before’’ im
posing the gap equation. In other words, the UV divergen
are already removed in step 2, and a ‘‘finite’’ gap equation
obtained from the outset in step 3.

D. Renormalization in OPT

We now prove the order-by-order renormalization
OPT. Let us first rewrite Eq.~7! as

L~f;m2!5L~f;m2!1
1

2
xf21F1

2
Bxf21Dx222Dm2xG .

~17!

Since we use the symmetric and mass independent renor
ization scheme~such as theMS scheme!, any Green’s func-
tion generated byL(f;m2) can be renormalized solely b
the coefficientsA, B, C, andD in L(f;m2).

Suppose we make a multiple insertion of the compo
operator (1/2)xf2 to the Green’s function generated b
L(f;m2). The question is whether new divergences induc
by the operator insertion are made finite only by the l
three counterterms in Eq.~17!. ~Note thatB and D are al-
ready fixed in step 1, and we do not have any freedom
change them.!

The above problem is obviously related to the renorm
ization of composite operators. In fact, the standard met
@29# tells us that necessary counterterms to remove the di
gences induced by the insertion of (1/2)xf2 are written as

1

2
~ZZf2

21
21!xf21D2x21D1x. ~18!

Here Zf2 is the renormalization constant for the compos
operatorf2, and is necessary to remove the divergence
Fig. 2~A!. D2 and D1 are necessary to remove the over
divergences in Fig. 2~B! and in Fig. 2~C!, respectively.

Now, one can prove that Eq.~18! coincides with the last
three terms in Eq.~17!:

ZZf2
21

215B, D25D, and D1522Dm2. ~19!

The first equation is obtained by the definitionB5ZmZ21
and an identity

Zf25Zm
21 . ~20!
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The overall divergence of the vacuum diagram with no e
ternal legs is removed by thec-number countertermDm4 in
L(f;m2). Therefore, the last two equations in Eqs.~19! are
obtained as

D152S ]

]m2D @Dm4#522Dm2, ~21!

2D25S ]

]m2D 2

@Dm4#52D. ~22!

For completeness, an explicit proof of Eqs.~20!, ~21!, ~22! is
given in Appendix A.

Equation ~19! shows clearly that all the necessa
counterterms in OPT are supplied solely by the origin
LagrangianL(f;m2). Let us now definex jGR

(n, j )(l,m2) as a
renormalized n-point proper vertex with insertion o
(1/2)xf2 by j times.~Here the external momentums are n
written explicitly.! The counterterms in Eq.~18! together
with Eqs. ~19! assure the finiteness ofGR

(n, j ) . Since the
proper vertex can be expanded asx jGR

(n, j )5d j ( l 50
` g ld

l ,
each coefficientg l is also finite. This implies thatx jGR

(n, j )

can be made finite order by order in OPT.
Three comments are in order here.
~i! Because the renormalization is already carried ou

step 2, one obtains finite gap equations from the beginnin
step 3. Our procedure ‘‘resummation after renormalizatio
has several advantages over the conventional procedure
summation before renormalization’’ where UV divergenc
are hoped to be canceled after imposing the gap equa
The difference between the two is prominent especially
higher order calculations.

~ii ! The decomposition~6! should be done both in the
mass term and the counterterms. This guarantees the o
by-order renormalization in our modified loop expansion.
Ref. @14#, the order-by-order renormalization was check
up to two-loop order inf4 theory at highT. Our proof
shows that this nice feature holds in any higher orders
OPT. On the other hand, if one keeps the original coun
term (1/2)Bm2f21Dm4 without the decomposition~6!,
L-loop diagrams withL.M must be taken into account t
remove the UV divergences in theM -loop order~see, e.g.,
the last reference in@16#!. This is an unnecessary complica
tion due to the inappropriate treatment of the counterterm

FIG. 2. Diagrams which contain UV divergences as a resul
the multiple insertion of (1/2)xf2. ~A! corresponds to a single
insertion with two external lines.~B! and~C! have no external lines
with a single insertion and a double insertion, respectively.
1-4
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~iii ! As long as we stay in the low energy region far belo
the Landau pole, we need not address the issue of the t
ality of f4 theory@28#: Perturbative renormalization in OP
works in the same sense as that in the naive perturbatio

E. Nambu-Goldstone theorem

The procedure and the renormalization in OPT discus
above do not receive modifications even if the Lagrang
has global symmetry. ForO(N) f4 theory, one needs to
replacef and f2 by fW 5(f0 ,f1 , . . . ,fN21) and fW 2, re-
spectively, in all the previous formulas. In the symmet
broken phase of such theory, the NG theorem and mass
NG bosons are guaranteed in each order of the modified
expansion in OPT for arbitraryN. To show this, it is most
convenient to start with the thermal effective potent
V(wW 2). By the definition of the effective potential,V(wW 2)
has manifestO(N) invariance if it is calculated in all orders

In OPT,V calculated up toLth loopsVL(wW 2;m) has also
manifestO(N) invariance, because our decomposition~6!
used in Eq.~7! does not breakO(N) invariance. OnceVL has
invariance under theO(N) rotation (w i→w i1 iuaTi j

a w j ), the
immediate consequence is the standard identity

]VL~wW 2;m!

]w j
Tji

a 52
]2VL~wW 2;m!

]w i]w j
Tjk

a wk , ~23!

with Ta being the generator of theO(N) symmetry. Equa-
tion ~23! is valid for arbitraryL, m, andN.

At the stationary point where the left-hand side~LHS!
of Eq. ~23! vanishes, there arises massless NG bos
for Tjk

a wkÞ0, since the RHS of Eq.~23! is equal to
2D i j

21(0)Tjk
a fk whereDi j (0) is the Matsubara propagato

at zero frequency and momentum calculated up toLth loops.
Thus the existence of the NG bosons is proved indepen
of the structure of the gap equation in step 3.

It is instructive here to show some unjustified approxim
tions which lead to the breakdown of the NG theorem. Ma
of the self-consistent methods applied so far suffer fr
these problems@30#.

~i! Suppose one takes into account only a part of the
grams for a given number of loops. Then the pion is
longer massless even if the symmetry is spontaneously
ken. Although this is a trivial point, sometimes such an a
proximation is adopted in the literature: taking only the se
energy from the four-point vertex and neglecting that fro
the three-point vertex is a typical example.

~ii ! Introducingm2 in theO(N)-symmetric way as Eq.~6!
is a key for the NG theorem to hold in each order of the lo
expansion in OPT. Suppose that we make a general dec
position such as

m2d i j 5mi j
2 2~mi j

2 2m2d i j !, ~24!

with mi j
2 Þm2d i j . This leads to anO(N) noninvariant effec-

tive potential, and the relation~23! is not guaranteed in an
finite order of the loop expansion. For example, when
O(N) symmetry is spontaneously broken down toO(N
21), one may be tempted to make a decompositionmi j

2
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5m0
2 (i5j50), mij

25m1
2 (i5jÞ0), andmi j

2 50 (iÞ j ). This
leads to an effective potentialVL(w0

2 ,( i 51
N21w i

2 ;m0 ,m1)
which has onlyO(N21) invariance. It implies that Eq.~23!
holds only for generators which do not mixw0 with w iÞ0 .
However, Eq.~23! for those generators alone is not enou
to prove the existence of NG bosons: In fact,wkÞ0 on the
RHS of Eq.~23! vanishes in theO(N21)-symmetric ground
state, and no constraints are obtained forD i j

21(0).

III. APPLICATION TO THE O„4… s MODEL

Let us apply OPT to study the soft mode associated w
chiral transitions. Our main goal is to investigate the spec
functions of the soft modes at finiteT:

rf~v,k;T!52
1

p
Im Df

R~v,k;T!. ~25!

HereDf
R is the retarded correlation function

Df
R~v,k;T!52 i E d4xeikxu~ t !^@f~ t,x!,f~0,0!#&,

~26!

where^•& denotes thermal expectation value, andf(t,x) is
q̄q(t,x) or q̄ig5tWq(t,x) in QCD.

This spectral function was first studied using the Namb
Jona-Lasinio model of QCD in the largeNc limit @31#. The
analysis shows that the scalar mesons, which has a large
width due to the strong decays→2p, decreases its mass a
T increases. Eventually,s shows up as a sharp resonan
near the critical point of the chiral transition. The detectab
ity of such a resonance was studied in the context of
trarelativistic heavy-ion collisions@32#. Also, the spectral in-
tegrals in QCD at finiteT were studied using the operato
product expansion@33#.

In the following, we will adopt a toy model@O(4) linear
s model# to study the effect of mode couplings~interaction
among the soft modes! in the one-loop level at finiteT. This
model shares a common symmetry and dynamics with Q
and has been used to study real-time dynamics and cri
phenomena@34,35#.

A. Determination of the parameters atT50

The O(4) s model reads

L5
1

2
@~]fW !22m2fW 2#2

l

4!
~fW 2!21hs

1
1

2
A~]fW !22

1

2
Bm2fW 22

l

4!
C~fW 2!21Dm4, ~27!

with fW 5(s,pW ). hs is an explicit chiral-symmetry-breaking
term @36#. A, B, C, andD in one-loop order are

A50, B5
l

16p2

1

«̄
, C5

l

8p2

1

«̄
, D52

1

16p2

1

«̄
,

~28!
1-5
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TABLE I. Vacuum parameters corresponding toms
peak5550, 750, 1000 MeV.

ms
peak (Mev) m2 (MeV2) l h (MeV3) k (MeV) G (MeV)

550 22842 73.0 1233 255 260
750 23752 122 1243 325 657
1000 24692 194 1253 401 995
-
ia

-

n

r

e

r

-

b

n-

ry.
ion

ial

is

ne-

The

old

m
n-

e

where 1/«̄[2/(42n)2g1 log(4p), with g being the Euler
constant.

When SSB takes place (m2,0), the replacements→s
1j in Eq. ~27! leads to the tree-level masses ofs andp:

m0s
2 5m21

l

2
j2, m0p

2 5m21
l

6
j2. ~29!

The expectation valuej at T50 is determined by the sta
tionary condition for the standard effective potent
]V(wW )/]w j50.

Later we will take a special FAC condition in whichm2

deviates fromm2 only atTÞ0, so that the naive loop expan
sion at T50 is valid. The renormalized couplingsm2, l,
andh can thus be determined by the following physical co
ditions in the naive loop expansion at zeroT.

~i! The on-shell condition for the pion,Dp
21(k25mp

2 )
50, wheremp5140 MeV, andDp is the causal propagato
for the pion in one-loop order.

~ii ! Partially conserved axial-vector current~PCAC! rela-
tion in one loop:f pmp

2 5hAZp. Here f p593 MeV, andZp

is the finite wave function renormalization constant for th
pion on its mass shell.

~iii ! The peak position of the spectral function in thes
channel ([ms

peak) is taken to be 550 MeV, 750 MeV, o
1000 MeV.

ms
peak5550 MeV in ~iii ! is consistent with recent re

analyses of thep-p scattering phase shift@37#. However,
our main conclusions do not suffer a qualitative change
07600
l

-

y

other choices, 750 MeV and 1000 MeV. Instead ofms
peak,

one may take thep-p scattering phase shift itself as a co
dition to determine parameters@34#. However, for the discus-
sions in the following, such sophistication is not necessa

We still have the freedom to choose the renormalizat
point k. Instead of trying to determine optimalk by the
renormalization group equation for the effective potent
@38#, we take a simple and physical conditionm0p5mp

5140 MeV which is suitable for our later purpose. Th
choice has two advantages:~a! The one-loop pion self-
energy Sp(k2) vanishes at the tree mass,Sp(k25m0p

2 )
5Sp(k25mp

2 )50, where we have used condition~i! to-
gether withm0p5mp . ~b! The spectral function in thes
channel starts from a correct continuum threshold in the o
loop level. @In the loop expansion,rs(v,0) has a physical
threshold atv52mp5280 MeV only if m0p5mp .]

The resultant parameters are summarized in Table I.
spectral functionsrs andrp defined in Eq.~25! at T50 with
s[v22k2 are shown in Fig. 3. In thep channel, there are
one particle pole and a continuum starting from the thresh
Asth5m0p1m0s . Asth is the point where the channelp
1s opens. In thes channel, the spectral function starts fro
the threshold 2m0p5280 MeV and shows a broad peak ce
tered aroundAs5ms

peak. The half width of the peak is 260
MeV, 657 MeV, and 995 MeV forms

peak5550 MeV, 750
MeV, and 1000 MeV, respectively. The large width ofs is
due to a strongs-2p coupling in the linears model. The
correspondings pole is located far from the real axis on th
complexs plane.
FIG. 3. Spectral functions atT50 in thep channel~A! and in thes channel~B! for ms
peak5550 MeV, 750 MeV, and 1000 MeV.
1-6
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FIG. 4. One-loop self-energyS11 for s andp in the modified loop expansion at finiteT.
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B. Application of OPT

Now let us proceed to step 2 in OPT and rewrite Eq.~27!
as

L5
1

2
@~]fW !22m2fW 2#2

l

4!
~fW 2!21

1

2
xfW 21hs

2
1

2
Bm2fW 22

l

4!
C~fW 2!21Dm4. ~30!

Since x(5m22m2) is already a one-loop order, we hav
neglected the terms proportional toBx, Dx2, and Dx
which are two-loop or higher order.

When SSB takes place (s→s1j), the tree-level masse
to be used in the modified loop expansion read

m0s
2 5m21

l

2
j2, m0p

2 5m21
l

6
j2. ~31!

Sincem2 will eventually be a function ofT, the tree masse
running in the loops are not necessary tachyonic at finitT
contrary to the naive loop expansion~see the discussion in
Sec. II A!.

The thermal effective potentialV(wW ;m) is calculated in
the standard manner except for the extra terms proporti
to x. The Gibbs free energyG(j;m)[V„wW 5(j,0);m… in the
one-loop level reads

G~j;m!5
1

2
m2j21

l

4!
j42hj

1
1

64p2Fm0s
4 lnU m0s

2

k2e3/2U13m0p
4 lnU m0p

2

k2e3/2UG
1TE d3k

~2p!3 @ ln~12e2Es /T!13 ln~12e2Ep /T!#,

~32!

whereEf[Ak21m0f
2 . Although this has a similar structur

to the standard free energy in the naive loop expansion,
coefficient of the first term in the RHS of Eq.~32! is m2

instead ofm2. This is because we have an extra mass te
proportional tox in the one-loop level. The stationary poin
j is obtained by
07600
al

he

m

]V~wW ;m!

]w i
uwW 5~j,0!5

]G~j;m!

]j
50. ~33!

Since the derivative with respect toj does not act onm, this
gives a solutionj as a function ofT and m. By imposing
another condition onm ~step 3!, one eventually determine
both j andm for given T.

At finite T, the retarded propagator has the general fo

iD f
R~v,k;T!5

i

k22m0f
2 2Sf

R~v,k;T!
, ~34!

with k25v22k2. The spectral function is then written as

rf~v,k;T!52
1

p

Im Sf
R

~k22m0f
2 2Re Sf

R!21~ Im Sf
R!2

.

~35!

The retarded self-energySf
R is related to the 11-componen

of the 232 self-energy in the real-time formalism@39#:

Re Sf
R~v,k;T!5Re $Sf

11~v,k!1Sf
11~v,k;T!%

Im Sf
R~v,k;T!5tanhS v

2TD Im$Sf
11~v,k!

1Sf
11~v,k;T!%. ~36!

Here Sf
11(v,k;T) is defined as a part with an explicitT

dependence through the Bose-Einstein distribution, wh
Sf

11(v,k) is the part which has only an implicitT depen-
dence throughm(T) and j(T). In the one-loop level,Sf

11

can be calculated only by the 11-component of the f
propagator:

iD 0f
11 ~k2;T!5

i

k22m0f
2 1 i e

12pnBd~k22m0f
2 !, ~37!

with nB5@ev/T21#21.
One-loop diagrams in OPT forSf

11 are shown in Fig. 4.
Their explicit forms are given in Appendix B. The NG theo
rem discussed in Sec. II E can be explicitly checked by co
paring Eq.~33! and the inverse pion propagator at zero m
mentum,@Dp

R(0,0;T)#21.
1-7
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C. Cancellation of T-dependent infinities

It is instructive here to show explicitly how the UV dive
gences discussed in Sec. II D are canceled in one-loop o
The divergent part ofSp

R(v,k;T) from the diagrams of Figs
4~h!, 4~i!, 4~j! reads

Sp
R@~h!1~ i !1~ j !#→2

l

16p2«̄

3S 5

6
m0p

2 ~T!1
1

6
m0s

2 ~T!1
lj2~T!

9 D
52

l

16p2«̄
S m2~T!1

1

3
lj2~T! D

52Sp
R@~ l !1~m!#, ~38!

where Eq.~31! has been used. Namely, the terms prop
tional to m2(T) in Figs. 4~h!, 4~i! are canceled by the coun
terterm proportional toBm2, while the terms proportional to
j2(T) in Figs. 4~h!, 4~i!, 4~j! are canceled by the usual cou
terterms proportional toC. In this way, theT-dependent di-
vergences proportional tom2(T) newly appearing in OPT
are automatically canceled by theT-dependent counterterm
obtained by the shiftm25m22x. The divergence of the free
energy proportional tom4 is also canceled by the last cou
terterm in Eq.~17!.

Note that the divergences proportional tox start to appear
from the two-loop level. They are removed by the count
terms proportional tox obtained by the shiftm25m22x.

D. FAC condition for m2

Since we are interested in the spectral functions in
one-loop level, a best way to determinem2 is to use the
two-point function in thep channel. In@14#, a FAC condi-
tion ~14! for the two-loop self-energy at zero momentu
(L5n52) was taken to obtain a gap equation forf4 theory
aboveTc .

The corresponding condition in our model withL5n51
reads

Sp
R~v50,0;T!5Sp

11~v50,0!1Sp
11~v50,0;T!50.

~39!

This is a condition that the one-loop correction to the se
energy must be as small as possible in the resumed pe
bation theory.@Note that Im Sp

R(v50,0;T) vanishes identi-
cally.# Unfortunately, Eq. ~39! is incompatible with the
condition which we adopted atT50 in Sec. III A to find an
optimal renormalization pointk:

Sp
R~v5m0p ,0;T50!50. ~40!

A hybrid condition which does not destroy Eq.~40! and si-
multaneously leads to a valid gap equation is

Sp
11~v5m0p ,0!1Sp

11~v50,0;T!50. ~41!
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The explicit form of this FAC condition can be read fro
Eq. ~B2! in Appendix B:

m25m21
l

6F5 Ĩ p
~1!1 Ĩ s

~1!2 i
2

3
lj2 Ĩ ~3!G

v5m0p

1
l

6F5Fp
~1!1Fs

~1!2 i
2

3
lj2~F ~4!1F ~5!!G

v50

. ~42!

The first ~second! line is from the first~second! term on the
LHS of Eq.~41!. The functionsI andF are given in Appen-
dix B ( Ĩ is defined as the finite part ofI ).

At T50, the second term on the LHS of Eq.~41!,
Sp

11(v,k;T50), vanishes by definition, and Eq.~41! for-
mally reduces to Eq.~40!. However, we calculate Eq.~40! in
the naive loop expansion without introducingm2 as dis-
cussed in Sec. III A, while Eq.~41! is calculated withm2

even atT50. Therefore, they are consistent only when

m2~T50!5m2. ~43!

In other words, OPT with the FAC condition~41! applied at
T50 is equivalent to the naive loop expansion.

In the symmetric phase at highT wherej(T).0, Eq.~42!
reduces to

m25m21lF E d3k

~2p!3

nB„E~m!…

E~m!
1

m2

16p2 ln
m2

ek2G , ~44!

with E(m)5Am21k2. If T2@m2, the first term on the RHS
of Eq. ~44! dominates and the following solution is obtaine

m2~T!5m21
l

12
T2, ~45!

which implies that the Debye screening mass at highT can
be properly taken into account. Also, both Eqs.~41! and~39!
have the same solution~45! for T2@m2 and are consisten
with each other. For realistic values ofl in Table I, the
conditionT2@m2 is not well satisfied and one needs to sol
Eq. ~41! numerically which will be shown in Sec. III E.

For intermediate values ofT, Eq.~41! can effectively sum
not only the contributions from the diagrams in Figs. 4~a!,
4~b!, 4~h!, 4~i!, but also from those in Figs. 4~c!, 4~d!, 4~j!.
Thus, OPT can go beyond the cactus approximation wh
sums only Fig. 4~a!, 4~b!, 4~h!, 4~i!.

Three remarks are in order here.
~i! For sufficiently highT with fixed k, Eq. ~44! ceases to

have a solution. In fact, the RHS of Eq.~44! is always larger
than the LHS above a limiting temperatureTl

5500,430,420 MeV for ms
peak(T50)5500,750,1000

MeV, respectively. This indicates that our one-loop analy
in OPT is not sufficient forT.Tl . One may try a renormal-
ization group improvement by choosing, e.g.,k5T to cure
this problem. However, sincel in Table I is rather large,
one encounters the Landau pole in the running coup
l(T) located at T5440,450,490 MeV forms

peak(T50)
1-8
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FIG. 5. ~A! Masses in the tree levelm0p(T) andm0s(T), shown with left vertical scale, and the mass parameterm2(T) with the right
vertical scale.~B! j(T) for mp(T50)5140 MeV and 30 MeV withms

peak(T50)5550 MeV.
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5500,750,1000 MeV, respectively. This again sets an up
bound ofT beyond which the one-loop analysis in OPT
not reliable.

~ii ! To study the possible variations of the FAC conditio
Eq. ~41!, we have examined the following three cases.~a!
Taking the highT formula, Eq.~45!, in place of Eq.~41!. ~b!
Replacing the second term on the LHS of Eq.~41! by C1

[Sp
11(v5m0p ,0;T). ~c! Replacing the second term on th

LHS of Eq. ~41! by C2[Re Sp
11(v5m0p ,0;T). In case~a!,

because of the lack of self-consistency at lowT, m0p(T)
deviates substantially frommp(T). This leads to an incorrec
threshold for the spectral function in thes channel. In case
~b!, a real solution form2 is not guaranteed, becauseC1 is a
complex function due to the Landau damping. In case~c!, a
discontinuity ofm2 at certainT appears, becauseC2 has a
cusp structure as a function ofv as shown in Fig. 8~C!,
below. ~We will discuss this cusp in Sec. III G.! Therefore,
within the FAC condition for the one-loop self-energy, E
~41! is almost a unique choice in the sense that it give
smooth and physically acceptable solution form2.

~iii ! In place of the FAC condition, one may take the PM
condition. However, to get a sensible gap equation from
PMS condition for the thermal effective potentialV, one
needs to calculateV at least up to two loops@13#. Unlike the
optimized expansion considered in the first reference in@13#,
we have both Hartree and Fock diagrams in the two-lo
order. This complicates the PMS analyses which will be
ported elsewhere.

E. Behavior of m„T…, m0f„T…, and j„T…

In Fig. 5~A! the tree-level masses in Eq.~31! andm2(T)
are shown forms

peak(T50)5550 MeV. m0f
2 (T) is not ta-

chyonic and approachesm2(T) in the symmetric phase. Thi
confirms that our resummation procedure cures the tach
problem in Sec. II A.

The solid line in Fig. 5~B! shows the chiral condensa
j(T) obtained by minimizing the free energy for the ca
mp(T50)5140 MeV, with ms

peak(T50)5550 MeV.
j(T) decreases uniformly asT increases, which is a typica
07600
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a
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behavior of the chiral order parameter at finiteT away from
the chiral limit. As we approach the chiral limit (h→0 or
equivalentlymp→0), j(T) develops multiple solutions for a
givenT, which could be an indication of a first order trans
tion. This will be discussed in more detail in the next su
section. The critical value of the quark massmq

crit below
which the multiple solutions arise is

mq
crit/mq

phys5~mp
crit/mp

phys!250.08, ~46!

where we have used Gell-Mann–Oakes–Renner relation@40#
to relate the pion mass with the quark mass.mq

phys is the
physical light-quark mass corresponding tomp

phys

5140 MeV. The critical temperature formq
crit/mq

phys50.08
is Tc.170 MeV. The behavior ofj(T) for mp(T50)
530 MeV ~just below the critical valuemp

crit) is also shown
by the dashed line in Fig. 5~B! for comparison.

Figure 6~A! shows m0f
2 (T) for ms

peak(T50)
5750,1000 MeV. The qualitative behaviors are similar
Fig. 5~A!. The chiral condensatej(T) for ms(T50)
5750,1000 MeV is also shown in Fig. 6~B!. j(T) is rather
insensitive to the change ofms

peak as far asmp(T50)
5140 MeV is imposed.

F. Chiral limit „h50…

In the chiral limit, the FAC condition and the resulta
gap equation are drastically simplified and some analyt
study becomes possible. Let us carry out this analysis
reveal the nature of the chiral transition near the chiral lim

For h50, the NG theorem is satisfied for a givenm2 as
shown in Sec. II E. Therefore, as far asjÞ0 ~the NG phase!,
the total self-energy of the pion must vanish at (v,p)
5(0,0):

m0p
2 1Sp

R~0,0;T!50. ~47!

A simultaneous solution of Eq.~47! and the FAC condition
~41! is m0p

2 5Sp
R(0,0;T)50, which leads to
1-9
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FIG. 6. ~A! Masses in the tree level,m0p(T) and m0s(T). ~B! j(T) for ms
peak(T50)5750 MeV and 1000 MeV withmp

5140 MeV.
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j2, m0p

2 50, and m0s
2 5

l

3
j2. ~48!

The stationary condition~33! always has a solutionj50 for
h50 ~the Wigner phase!. The gap equation to determine th
other solutions in the NG phase is obtained by substitu
Eq. ~48! into Eq. ~33!:

05m21
l

6
j21

l2

96p2 j2lnU lj2

3k2eU
1

l

2E d3k

~2p!3S nB~Es!

Es
1

nB~Ep!

Ep
D , ~49!

whereEs5Ak21lj2/3 andEp5uku.
The numerical solution of Eq.~49! is given by the solid

line in Fig. 7. As can be seen from the figure, there are t
nonvanishing solutions forj in the rangeT15126 MeV
,T,T25153 MeV, which is a typical behavior of the firs

FIG. 7. j(T) for ms
peak(T50)5550 MeV with mp50 MeV

andmp510 MeV.
07600
g

o

order phase transition. For comparison, the case slig
away from the chiral limit is shown by the dashed lines
Fig. 7.

T1 and the behavior ofj(T) for T;T1 can be solved
analytically by expanding Eq.~49! in terms of j near j
50: Only the first termm2 and the last two terms propor
tional to the Bose-Einstein distribution are relevant, and o
obtains

T15A12

l
umu, j~T.T1!.

4p

A3l
~T2T1!. ~50!

The existence of multiple solutions of the gap equation
the O(4) s model in the mean-field approach has be
known for a long time@41#. Our analyses above confirm th
feature within the framework of OPT. However, as is d
cussed in the second reference of@41#, this first order nature
is likely to be an artifact of the mean-field approach, sin
the higher loops of masslessp and almost masslesss are not
negligible nearT1 , and they could easily change the order
the transition@42#. In fact, renormalization group analyses
well as direct numerical simulation on the lattice indica
that theO(4) s model has a second order phase transit
@43#.

In the following, we will go back to the the real world
with mp(T50)5140 MeV, where the gap equation ha
only one solution for a givenT.

G. Spectral function at TÞ0

In Figs. 8~A!, 8~B!, we show the spectral function
rp,s(v,0;T) for T550,120,145 MeV withms

peak(T50)
5550 MeV.

In the p channel, a continuum develops for 0,v,m0s

2m0p . This originates from the induced ‘‘decay’’ by th
scattering with thermal pions in the heat bath:p1p thermal

→s. Because of this process, the pion acquires a wi
;50 MeV at T5145 MeV, while the peak position doe
not show appreciable modification. They are in accorda
with the Nambu-Goldstone nature of the pion, and are c
1-10
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FIG. 8. Spectral function in thep channel~A! and in thes channel~B! for T550,120,145 MeV withms
peak(T50)5550 MeV. The real

part of @Ds
R(v,0;T)#21 as a function ofv is shown in~C!.
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sistent with other calculations based on the lowT expansion
@44#.

In the s channel for 0,T,145 MeV, there are two no
ticeable modification of the spectral function. One is the s
of the s peak toward the low mass region. The other is
sharpening of the spectral function just above the continu
threshold starting atv52m0p(T).

These features are simply controlled by zeros or appr
mate zeros of

Re@Ds
R~v,0W !#215v22m0f

2 2Re Ss
R~v,0W ;T!, ~51!

which appears in the denominator of the spectral funct
~35!. Note that the imaginary part of@Ds

R(v,0W )#21 is a
smooth function ofv and does not develop zeros above t
threshold. Equation~51! is plotted in Fig. 8~C!. For T

,145 MeV, Re@Ds
R(v,0W )#21 has only one zero for a give

T. This zero corresponds to an ‘‘effective’’ mass of thes
meson at finiteT and roughly corresponds to the position
the broad peak in Fig. 8~B!.

On the other hand, asT increases, the cusp in the lowv
region starts to create an approximate zero
Re@Ds

R(v,0W )#21. @At T5145 MeV, the cusp creates an e
act zero as shown in Fig. 8~C!.# This is why the peak jus
above the threshold develops asT increases as shown in Fig
8~B!. The cusp originates from thes-p-p coupling ~the
fourth diagram for the sigma self-energy in Fig. 4! and is
related to the the continuum threshold by analyticity. T
position of the cusp is exactly the point where the continu
starts:v52m0p(T).

The approximate shape of the spectral function forv
.2m0p(T) with T.145 MeV can be estimated as follow
The first term in the denominator of Eq.~35! approaches zero
smoothly asv→2m0p :

@v22m0f
2 2Re Ss

R~v,0W !#v→2m0p
→0. ~52!

On the other hand, the imaginary part of the self-energy
phase space factor multiplied by a smooth and nonzero fu
tion f :
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Im Ss
R~v,0W ;T!5u~v22m0p!A12

4m0p
2

v2
f ~v,T!.

~53!

Substituting Eqs.~52! and ~53! into Eq. ~35!, one finds

rs~v.2m0p ,0W ;T!5u~v22m0p!

3
1

A12
4m0p

2

v2
f ~2m0p ,T!

. ~54!

This explains the enhancement just above the threshold
to the phase space factor.

There is another explanation of the threshold enhan
ment. Let us start with a sum rule for the spectral functi
which can be proved by the spectral decomposition ofrf :

E
0

`

rf~v,k;T!dv25~A11!21, ~55!

where Z5A11 is the wave function renormalization con
stant and does not depend onT. Since A50 in one-loop
order, the spectral integral is unity for arbitraryT. This fact
together with the positivity ofrf implies that there is a spec
tral concentration near the threshold asms

peak(T) decreases.
Beyond one loop,A is divergent in perturbation theory

However, one can always define a finite andT-independent
spectral integral as

E
0

`

@rf~v,k;T!2rf~v,k;T50!#dv250. ~56!

Therefore, the same argument with the one-loop case h
and a spectral concentration near threshold will occur e
beyond one loop. The threshold enhancement in Fig. 8~B!,
although it occurs at relatively lowT, is caused by a com
bined effect of the partial restoration of chiral symmetry~de-
1-11



S. CHIKU AND T. HATSUDA PHYSICAL REVIEW D 58 076001
FIG. 9. ~A! Spectral functions in thep ands channels atT5180 MeV. ~B! The real part of@Dp
R(v,0;T)#21 and@Ds

R(v,0;T)#21 as
a function ofv at T5180 MeV with ms

peak(T50)5550 MeV.
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creasing the ‘‘effective’’ mass! and the strongs22p cou-
pling. In the chiral limit, the continuum threshold starts fro
v50, and the enhancement occurs exactly at the crit
temperature of chiral transition.

A similar threshold enhancement in thep channel be-
comes prominent just belowv5m0s2m0p for T
.165 MeV. The basic mechanism of this enhancemen
the same for thes case except that Re@Dp

R(v,0W )#21 is a
deceasing function ofT.

The spectral functions ofp (s) at higher temperature
exhibits the standard behavior as expected from prev
analyses@31,33#. Shown in Fig. 9 are simples andp poles
and a continuum atT5180 MeV. As T increases, these
poles gradually merge into a degenerate~chiral symmetric!
states. Because of this approximate degeneracy, the no
decay of s through s→2p and the induced decay ofp
through p1p→s are kinematically forbidden at highT.
This is why the width ofs andp vanishes.

For sufficiently highT, the system is supposed to be
the deconfined phase and the decay (s,p)→qq̄ must occur.

FIG. 10. Diphoton yield per unit space-time volume in the ba
to-back kinematics atT5145 MeV for ms

peak(T50)5550 MeV.
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This is not taken into account in the present linears model.
A calculation based on the Nambu–Jona-Lasinio mo
shows, however, that there is still a chance for collect
modes to survive as far asT/Tc is not so far from unity@31#.

H. Diphoton emission rate throughs˜2g

As one of the experimental candidates to see the thres
enhancement in thes channel, we evaluated the diphoto
emission rate from the decays→2g in hot hadronic matter
@45#. The diphoton yield~with back-to-back kinematics! per
unit space-time volume of a hot hadronic plasma can be w
ten as@46#

dRs

d4xd4k
5

1

~2p!4gs
2 uFsgg~k2!u2v4

rs~v,k50;T!

ev/T21
,

~57!

where km5(v,k) denotes the total four-momentum of th
diphoton. gs is the sgg vertex at zero momentum an
Fsgg(k2) is a corresponding form factor.gsFsgg has a short
distant contribution from the constituent-quark loop and
long distant contribution from the pion loop. We took th
estimates given in@47# for these contributions. The formul
for p0→2g is obtained by the replacements→2g in Eq.
~57!. In this case,gp is fixed by the axial anomaly, andFpgg
is taken from an estimate using the chiral quark model@48#.

The main background for the above processes is the t
mal annihilation of pions:p1p2→2g. The diphoton yield
from s→2g andp0→2g together with this background a
T5145 MeV is shown in Fig. 10. The threshold enhanc
ment in thes→2g process is significant only in a narrow
region of the diphoton invariant mass and in a narrow reg
of T. A similar conclusion is drawn in another analysis@49#.

IV. SUMMARY

In this paper, we have examined optimized perturbat
theory ~OPT! in detail at finiteT. For theories with sponta

-
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neous symmetry breaking, the loop-wise expansion in O
is shown to be a suitable scheme to resum higher o
terms.

We have shown that OPT naturally cures the two ma
problems of the naive loop expansion, namely, the bre
down of perturbation series at highT.Tc and the existence
of tachyon poles forT,Tc .

We have also shown that OPT has several advanta
over other resummation methods proposed so far. First of
the renormalization of the UV divergences, which is no
trivial issue in other methods, can be carried out system
cally in the loop expansion in OPT. This is because one
separate the the self-consistent procedure~step 3 in Sec. II B!
from the renormalization procedure~step 2 in Sec. II B! in
OPT.

Whether the Nambu-Goldstone~NG! theorem is satisfied
in resummation methods has been discussed in the litera
We found that the loop expansion in OPT can give a cl
view of this problem. The NG theorem is a direct cons
quence of the invariance of the effective action. Since
OPT presented in this paper does not break the global s
metry of the effective potential in each order of the pert
bation, one can prove, without much difficulty, that the N
theorem is satisfied in any give order of the loop expans
in OPT.

In the latter part of this paper, we have applied OPT to
O(4) s model to study the spectral functions at finiteT.
The OPT in one-loop order together with a FAC conditi
for the pion self-energy, we have successfully summed
only the cactus diagrams but also other loop diagrams.
have demonstrated that the spectral function ofs, which
does not show a clear resonance atT50, develops a sharp
enhancement near the 2p threshold asT approachesTc .
This is due to a combined effect of the partial restoration
chiral symmetry and the strongs-2p coupling. Although it
is rather difficult to observe this enhancement in the dipho
spectrum, further studies will be necessary to reveal the p
nomenological implications of this phenomena.

The basic idea of OPT examined in detail in this pap
will also have relevance to develop an improved perturba
theory for gauge theories in which the weak-coupling exp
sion is known to break down in high orders@50#. A gener-
alization of OPT, such as that discussed at step 2 in Sec.
will be necessary for this purpose.
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APPENDIX A: COUNTERTERMS IN OPT

Consider the Lagrangian L(f;m2) and define
GR

(n, j )(l,m2) as the the renormalizedn-point proper vertex
with insertion of the composite operatorf2(x)/2 by j times.
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~We do not write the external momenta explicitly.! Applying
the counterterms in Eq.~18!, GR

(n, j ) is written by the unrenor-
malized proper vertexG0

(n, j ) and the renormalization con
stants (Z, Zf2, D1 andD2) as @29#

GR
~n, j !~l,m2!5Zn/2Zf2

2 jG0
~n, j !~l0 ,m0

2!

1~2D2d j 21D1d j 1!dn0 , ~A1!

where the bare quantities with a suffix ‘‘0’’ are related to t
renormalized quantities asl05Zll, m0

25Zmm2 and f0

5AZf.
To show Eq. ~20!, consider the proper self-energ

GR
(2,0)(l,m2) and its derivative with respect tom2. After a

straightforward algebra using Eq.~A1!, one finds

]

]m2 GR
~2,0!~l,m2!52ZZmG0

~2,1!~l0 ,m0
2!

52ZmZf2GR
~2,1!~l,m2!. ~A2!

SinceGR
(n, j ) is finite, Eq. ~A2! implies thatZmZf2 must be

finite in four dimensions. Now, in the loop expansion wi
the MS scheme,Zm andZf2 have expansions of the form 1
1( l 51

` ald
l with al containing only the powers of 1/«̄. This

fact together with the finiteness ofZmZf2 for «̄→0 immedi-
ately leads to Eq.~20!, ZmZf251.

To show Eq.~21!, consider the proper vertex without ex
ternal legs:GR

(0,0)(l,m2). This quantity is a sum of all the
one-particle irreducible diagrams1 the c-number counter-
termDm4. Therefore, taking a derivative with respect tom2

and using Eq.~A1!, one finds

]

]m2 GR
~0,0!~l,m2!52ZZm

1

V4
E

V4

d4xK f2~x!

2 L
1PI

12Dm2

52@GR
~0,1!~l,m2!2D1#12Dm2. ~A3!

Here^•&1PI denotes the one-particle irreducible contributio
V4 denotes the Euclidean four-volume: AtTÞ0, V4

5V3 /T with V3 being the three-volume. SinceGR
(n, j ) is fi-

nite, Eq.~A3! implies that 2Dm21D1 must be finite in four
dimensions. D and D1 have expansions of the form
( l 51

` ald
l , with al containing only the powers of 1/«̄. Thus

one arrives at Eq.~21!, 2Dm21D150.
To show Eq.~22!, one needs to take the derivative wi

respect tom2 one more time:

S ]

]m2D 2

GR
~0,0!~l,m2!

5Z2Zm
2 1

V4
E

V4

d4xE
V4

d4yK f2~x!

2

f2~y!

2 L
1PI

12D

5@GR
~0,2!~l,m2!22D2#12D. ~A4!

By a similar argument as above,D2D250 follows from Eq.
~A4!.
1-13



S. CHIKU AND T. HATSUDA PHYSICAL REVIEW D 58 076001
APPENDIX B: ONE-LOOP FORMULA FOR THE SELF-ENERGY AT TÞ0

Formulas corresponding to Fig. 4 read

2 iSs
11~v,k!2 iSs

11~v,k;T!52 i
l

2
@ I p

~1!1Fp
~1!1I s

~1!1Fs
~1!#1S 2 i

lj

3 D 23

2
@ I p

~2!12Fp
~2!1Fp

~3!#

1~2 ilj!2
1

2
@ I s

~2!12Fs
~2!1Fs

~3!#1 i ~m22m2!1counterterms, ~B1!

2 iSp
11~v,k!2 iSp

11~v,k;T!52 i
5l

6
@ I p

~1!1Fp
~1!#2 i

l

6
@ I s

~1!1Fs
~1!#1S 2 i

lj

3 D 2

@ I ~3!1F ~4!1F ~5!#

1 i ~m22m2!1counterterms, ~B2!

with

I f
~1!5k2«E d4p

~2p!4

i

p22m0f
2 1 i e

, ~B3!

I f
~2!5k2«E d4p

~2p!4

i

p22m0f
2 1 i«

i

~p1k!22m0f
2 1 i e

, ~B4!

I ~3!5k2«E d4p

~2p!4

i

p22m0s
2 1 i«

i

~p1k!22m0p
2 1 i e

, ~B5!

Ff
~1!5E d4p

~2p!4
2pnB~ up0u!d~p22m0f

2 !, ~B6!

Ff
~2!5 i E d4p

~2p!4

2pnB~ up0u!d~p22m0f
2 !

~p1k!22m0f
2 1 i e

, ~B7!

Ff
~3!5E d4p

~2p!4
~2p!2nB~ up0u!nB~ up01vu!d~p22m0f

2 !d„~p1k!22m0f
2
…, ~B8!

F ~4!5 i E d4p

~2p!4

2pnB~ up0u!d~p22m0s
2 !

~p1k!22m0p
2 1 i e

1~m0s↔m0p!, ~B9!

F ~5!5E d4p

~2p!4
~2p!2nB~ up0u!nB~ up01vu!d~p22m0s

2 !d„~p1k!22m0p
2
…. ~B10!

Here«5(42n)/2, p25p0
22p2, k25v22k2, andnB(v)5@ev/T21#21.

The explicit forms of Eqs.~B3!, ~B4!, ~B5! for k2.0 are

I f
~1!52

m0f
2

16p2S 1

«̄
112 log

m0f
2

k2 D , ~B11!
076001-14



OPTIMIZED PERTURBATION THEORY AT FINITE . . . PHYSICAL REVIEW D 58 076001
I f
~2!55 2 i

1

16p2F1

«̄
2 log

m0f
2

k2
121q2S log

12q2

11q2
1 ip D G for k2.4m0f

2 ,

2 i
1

16p2F1

«̄
2 log

m0f
2

k2
1222q2arctan

1

q2
G for 0,k2,4m0f

2 ,

~B12!

I ~3!52 i
1

16p2F1

«̄
2 log

m0p
2

k2
121

k21m0s
2 2m0p

2

2k2
log

m0p
2

m0s
2

25
q3S log

~2k2q31k22m0s
2 1m0p

2 !~2k2q31k21m0s
2 2m0p

2 !

~2k2q32k21m0s
2 2m0p

2 !~2k2q32k22m0s
2 1m0p

2 !
22ip D G for ~m0s1m0p!2,k2,

2q3S arctan
k22m0s

2 1m0p
2

2k2q3

1arctan
k21m0s

2 2m0p
2

2k2q3
D G for ~m0s2m0p!2,k2,~m0s1m0p!2,

q3log
~2k2q31k22m0s

2 1m0p
2 !~2k2q31k21m0s

2 2m0p
2 !

~2k2q32k21m0s
2 2m0p

2 !~2k2q32k22m0s
2 1m0p

2 !
G for 0,k2,~m0s2m0p!2,

~B13!

with

q25AU4m0f
2

k2
21U , q35

Au~k21m0s
2 2m0p

2 !224k2m0s
2 u

2k2
.

Equations~B6!, ~B7!, ~B8!, ~B9!, and~B10! for k50 read

Ff
~1!5E

0

` dp

2p2

p2nB„E~m0f!…

E~m0f!
, ~B14!

Ff
~2!5 i E

0

` dp

2p2

p2nB„E~m0f!…

E~m0f!

1

v224E2~m0f!
1u~v224m0f

2 !
Av224m0f

2

16pv
nBS v

2 D , ~B15!

Ff
~3!5u~v224m0f

2 !
Av224m0f

2

8pv
nB

2 S v

2 D , ~B16!

F ~4!5 i E
0

` dp

~2p!2

p2nB„E~m0s!…

E~m0s! H 1

@v1E~m0s!#22E~m0p!2
1

1

@v2E~m0s!#22E~m0p!2J
15

1

16pv2
A~v21m0s

2 2m0p
2 !224m0s

2 v2nBS uv21m0s
2 2m0p

2 u
2v D

@ for 0,v2,~m0s2m0p!2,~m0s1m0p!2,v2#

0 @ for ~m0s2m0p!2,v2,~m0s1m0p!2#
6 1~m0s↔m0p!, ~B17!

F ~5!55
1

8pv2
A~v21m0s

2 2m0p
2 !224m0s

2 v2nBS uv21m0s
2 2m0p

2 u
2v DnBS uv22m0s

2 1m0p
2 u

2v D
for 0,v2,~m0s2m0p!2,~m0s1m0p!2,v2,

0 for ~m0s2m0p!2,v2,~m0s1m0p!2,

~B18!

whereE(m)5Ap21m2.
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