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An optimized perturbation theor§OPT) at finite temperaturd, which resums higher order terms in the
naive perturbation, is developed @(N) ¢* theory. It is proved thati) the renormalization of the ultraviolet
divergences can be carried out systematically in any given order of OPTiianithe Nambu-Goldstone
theorem is satisfied for arbitrafy and for any given order of OPT. The method is applied forGHd) o
model to study the soft modes associated with the chiral transition in quantum chromodynamics. Threshold
enhancement of the spectral functions at firlitén the scalar and pseudoscalar channels is shown to be a
typical signal of the chiral transitionS0556-282(98)04617-7

PACS numbgs): 11.10.Wx, 11.30.Rd, 12.38.Cy, 12.38.Mh

I. INTRODUCTION description of our previous analysis but also further investi-
gations.

One of the main goals of the ultrarelativistic heavy-ion  The purpose of the present paper is twofold. First, we will
experiments planned at the BNL Relativistic Heavy lon Col-develop an improved loop-wise expansion at finite Our
lider (RHIC) and CERN Large Hadron CollidétHC) [1]is ~ starting point is optimized perturbation theo(@PT) (or
to observe the structural change of the ground state of quagometimes called delta expansion, variational perturbation
tum chromodynamics(QCD) at finite temperature T),  theory, etd. which is a generalization of the mean-field
namely, the phase transition to the quark-gluon plasma. Th@ethod[11] and is known to work in various quantum sys-
numerical simulation based on lattice QCD is a powerful toolt€MS[12]. Its application to field theory at finit& has been
to study the static nature of this phase transition, in which th&onsidered in Refg13,14 for the first time. We will further
critical temperature and the critical exponents are activel evelop the idea and prove the renormalizability and the

- i 4 .—
studied[2]. In particular, there exists numerical evidence that .?n]rbu §O|%Ston§N(.3) tcr;;_(l)_recr)n |nO(N)d¢ theory att flt d
the chiral transition for massless two flavors is of second! . Order by orderin - SUF second purpose I to study

. he soft modes associated with the chiral transition in QCD
cJ)rrder, althgygh Lhe case ;;Irghe trealt;:v%dWO é'ght quarks by taking into account interactions among the soft modes
one medium-neavy quarks not setie yel ]', .. (mode couplings The use of OPT is essential for this pur-

If the phase transition is of second order or is close to it,

. . ) i ose, which will be demonstrated using B¢4) o model.
there arises long range fluctuations in both spatial and tem- 4,4 organization of this paper is as follows. In Sec. II, we

poral (real-time directions. The latter is usually called the jniroduce a loop-wise expansion on the basis of OPT. The
soft mode and has been used as a probe to study phase r@gnormalization of UV divergences and the realization of the
sitions of solid states and condensed méfidr NG theorem in this method are also discussed. In Sec. IIl, we
Despite the experimental significance of the soft modes ifil| apply the OPT developed in Sec. Il for th@(4) o
QCD, lattice QCD simulations cannot treat such real-timemodel to study the spectral functions of theneson and the
modes in a straightforward manner. This is why effective; meson aflf #0. The detectability of the soft modes by the
theories of QCD have been adopted to study time-dependeaiphoton process— 2y in hot hadronic matter is also ex-
phenomenasee the reviews in5,6] and references cited amined. Section IV is devoted to a summary and concluding
therein. However, even in tractable effective theories suchremarks.
as the linears model, there exist subtleties at finife In
fact, the necessity of the resummation of higher order terms Il. OPTIMIZED PERTURBATION AT T#0
in perturbative expansions both at higtand lowT has been
known for a long timg7,8]. Also, the renormalization of the
ultraviolet (UV) divergences and related issues in resumed It has been known that naive perturbations either by a
perturbation theories have been discussed in the literatuupling constant or by number of loops break dowrrat
especially for theories with spontaneous symmetry breaking:0, and a proper resummation of higher orders is necessary
(SSB [9]. [7]. In fact, no matter what small dimensionless coupling
Recently, we have reported our analysis of a particulafsay, A) seems to control the perturbative expansion, the
resummation method and its application to the soft modes ipowers ofT compensate the powers ®f which invalidates
QCD [10]. The present paper contains not only a detailedhe naive expansion.

A. Necessity of resummation at finiteT
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Here we have explicitly written the argumept in £ for
This is easily illustrated inp* theory: later use. The mass-independent renormalization scheme
with dimensional regularization is assumed in E8). Just
for notational simplicity, the factok*~™ to be multiplied to
N\ is omitted (x is the renormalization point and is the
number of dimensionsin the actual calculations below, we
Let us first consider the cage?>0. The lowest order self- ta1e the modified minimal subtractioMg) scheme.
energy diagram Fig. (B) is O(AT?) at highT. However, The c-number counterterr® x#, which was not consid-
Fig. 1(B) IS_O()}TZX AT/w). Furthermore, higher powers of gred in[14], is necessary to make the thermal effective po-
T/p arise in higher loops; e.g., theloop diagram in Fig. tential finite. Also, it plays a crucial role for renormalization
1(C) is O(A"T?"~1/42"~3). Thus, one should at least resum jn, OPT as will be shown in Sec. 11 D.
cactus diagrams to get sensible results at Aigf,15]. Phys- The thermal effective actiofi 2] is written as the Eu-
ics behind this resummation is of course the Debye screeningigean functional integrdl17]
mass in the hot plasma.

FIG. 1. Bubble and cactus diagrams.

1 N
EIE[(0¢)Z—M2¢2]—E¢4- 1)

The naive loop expansion breaks down also fdr<0. 5 1w, )
The tree-level mass, in this case is defined as I'le ]=|nf [d¢]ex Efo d*X[L(¢+ @;u7) +IP]|,
, A (4)
mg=u?+ §§Z(T), 2

whered=—dl'[¢]/de and [§d*x=[3"drfd%x. The “na-
. . . ive” loop expansion afl # 0 is defined as an expansion b

yvhereg(T) is thezthermal expectat_lon value ¢fé Sinceu? [18] witr? theptree-level masg2+ \ ¢2/2. P y

is negative and;- decreases a$ increasesm;, becomes Under the naive loop expansion with E@) for u2>0,

tachyonic even below the critical temperatie Therefore, one can completely fix the renormalization constants. Since

iiisgzlvt?) \I/(v)cc))rrll gcgﬁnsggreu?;\lg Sthrﬁn:;?f'Ifgstlogt?c’;:%:tk%ﬂItraviolet divergences do not depend Brin the naive loop
1€ symmetry ; .eskpansior{lg], A, B, C, andD are independent of, and
place, and a proper resummation of higher loop diagrams iSre expanded as

necessary8]. Note that, forT<T,, there is no reason to
believe that only the cactus diagrams shown in Fig. 1 are

A a
dominant; there exists a three-point verte¥$* which is - '
not negligible forT~ &(T). B b |
=21 . |9 (5)
C =11 ¢
B. Resummation method D d,

For theories without SSB, a systematic resummation o _ _
method to obtain a sensible “weak-coupling” expansion atThe coefficients & ,b;,c,,d,) are independent g&?, since

high T was formulated and applied to gauge theory @fd we use the mass-independent renormalization scheme. Also,
theory successfully16]. the UV divergences in the symmetry-broken phage® (
For theories with SSB, however, the loop expansion<0) can be removed by the same counterterms determined
rather than the weak-coupling expansion is relevant, sincéor x?>0 [20,21.
one needs to treat the thermal effective potential or the Gibbs The relations ofA,B,C, andD with the standard renor-
free energy. We find that optimized perturbation theory,malization constants aréA=Z-1, B=Z,Z—1, and C
which was applied to finitd system in[13,14, can be for- =2Z,7>—1, where Z's are defined by ¢o=\Z¢, \g
mulated in such a way that an improved loop expansion is=Z,\, and,ugzzwuz, with suffix O indicating unrenormal-
carried out systematically. Also, the method leads to a transzed quantities.
parent renormalization procedure and guarantees the Nambu- Step 2.Rewrite the LagrangiafB) by introducing a new
Goldstone theorem order by order in the improved loop exmass parametan? following the idea of OPT12]:
pansion.
In the following, we divide our resummation procedure w?=m?—(m?—u?)=m?—y. (6)
into three steps and apply it t¢* theory. The case for
O(N) ¢* theory will be discussed in Sec. Il E. This identity should be used not only in the standard mass
Step 1.Start with a renormalized Lagrangian with coun- term but also in the counterternj®2], which is crucial to
terterms show the order by order renormalization in OPT:
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L(p;u?)=L+ L (7) potential[24]. We will, however, concentrate on the simplest
version (g ;= y=0) in the following discussions.
1 s o N o1 Step 3.The final step is to find an optimal value wof by
Li=50(04)"—m ¢"] = 7 d"+ S xé (8  imposing physical conditions in the manner of Stevenson
[25] such as the following.
1 (a) The PMS: this condition requires that a chosen quan-
EC=EA(8¢>)2— EB(mZ—X)d)2 tity calculated up td_th loops 0,) should be stationary by
the variation ofm:

~ 2 Cgt (M- 02, © 70,
41 —=0. (13
am
A, B, C, andD in £; were already determined in step 1. o i N )
On the basis of Eq(7), we define a “modified” loop (b) The criterion of the FAC: this condition requires that
expansion in which the tree-level propagator has a mass the perturbative corrections @, should be as small as pos-
+N¢?2 instead ofu?+\¢?/2. The major difference be- sible for a suitable value ah:

tween this expansion and the naive one is the following as-
signment: OL=0L-n=0, (14)

m2=0(8%, x=0(d). (100  Wheren is chosen in the rangesin<L.
The above conditions reduce to self-consistent gap equa-
The physical reason behind this assignment is the factythat tions whose solution determines the optimal parammitéor
reflects the effect of interactions. If one adopts an assignmerat givenL. Thusm becomes a nontrivial function af, \,
m?=0(8%,x=0(4°, the modified loop expansion imme- andT [26]. This together with the solution of E¢12) com-
diately reduces to the naive one. pletely determines the thermal expectation valg€r)

As will be shown explicitly in Sec. Il D, all the UV di- =(¢) as well as the optimal parametexT). Through this
vergences in the modified loop expansion are removed by theelf-consistent process, higher order terms in the naive loop
counterterms determined in the naive loop expansion. expansion are resumed.

Since Eq.(7) is simply a reorganization of the Lagrang-  The choice ofO, in step 3 depends on the quantity one
ian, any Green'’s functionr its generating functionpktal- needs to improve most. To study the static nature of the
culated in the modified loop expansion should not depend ophase transition, the thermal effective potentia{¢?;m) is
the arbitrary massn if they are calculated in all orders. most relevant. Applying the PMS condition fof reads
However, one needs to truncate perturbation series at a cer-
tain order in practice. This inevitably introduces an explicit V(% m)
m dependence in Green'’s functions. Procedures to determine om
m are given in step 3 below.

To find the ground state of the system, one should lookvhich gives a solutioom=m(¢). This can be used to im-
for the stationary point of the thermal effective potential prove the effective potential at finifé [13]:

V(¢?) defined by

=0, (15)

Vi(e%m) =V (9% m(e)). (16)
) I'[ %= consi _ _
V() == ——7— (11)  Also, &T) andm(T) are obtained by solving Eq12) to-
d?x gether with Eq.(15). In this case, the following relation
0 holds: dV(e?m(e))/del,— = V(e?m(e)) de|,—;.

) ) To improve particle properties at finitg, it is more effi-
As mentioned abové/ calculated up ta.th loopsV, (¢";m)  cient to apply PMS or FAC conditions directly to the two-
has an explicim dependence. Thus the stationary conditionygint functions[27]. In Ref.[14], FAC with L=n=2 was

reads used for the boson self-energy calculated up to two loops.
N, (o%:m) We will adopt a similar condition in Sec. Ill when we ana-
% =0, (12)  lyze spectral functions of the soft modes.
¢
where the derivative with respect todoes not act om by C. UV divergence in the resumed perturbation
definition. Equation(12) gives a stationary point o, for We briefly mention here the reason why the renormaliza-
givenm. tion in resumed perturbation is not a trivial issue.

One may generalize step 2 by adding and subtracting In the naive perturbation theory, there arises no new UV
ao(dod)?, ay(di¢)?, and yé* [23] with ay, a;, andy  divergences aT #0 because of the natural cutoff from the
being finite parameters to be determined by the principle oBoltzmann distribution function. Therefore, all the UV diver-
minimal sensitivity (PMS) or fastest apparent convergence gences at finitd are canceled by the counterterms prepared
(FAC) conditions(see step B ag and @y are especially im- at T=0. This statement has been proved in imaginary-time
portant for theories with fermions at finifE and chemical and real-time formalismgl9].
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On the other hand, in self-consistent method$ 40, the | |
situation is not so simple since the tree-level propagators
have T-dependent magsuch asm(T) in the abové which
contains higher loop contributions through the self-consistent
gap equatiorf9].

In fact, in most of the self-consistent methods applied so
far (except for Ref[14]), the renormalization is taken into
account “after” imposing the gap equation. This procedure |
not only makes the renormalization nontrivial and hard in *) ®) ©
higher orders, but also obscures the origin of the UV diver- _ _ _ _
gences. On the contrary, in OPT explained in the previous F!G: 2- Diagrams which contain UV divergences as a result of
subsection, the renormalization is performed “before” im- "€ Multiple insertion of (1/3)¢". (A) corresponds o a single
posing the gap equation. In other words, the UV divergenceg].semor? with two e_xternal linesB) an_d(C) have no extgrnal lines
are already removed in step 2, and a “finite” gap equation isW|th a single insertion and a double insertion, respectively.

obtained from the outset in step 3. The overall divergence of the vacuum diagram with no ex-

o ternal legs is removed by tteenumber counterterr®m? in
D. Renormalization in OPT L($;m?). Therefore, the last two equations in E¢9) are
We now prove the order-by-order renormalization inobtained as
OPT. Let us first rewrite Eq(7) as

1 1 A1=—(—ﬁz)[Dm4]=—2Dm2, (21)
L(¢pipu®) = L(d;mP) + S xp?+| 5By ™+ DXZ_ZDmZX}- om
2

12 2A2=(%) [Dm*]=2D. (22)

Since we use the symmetric and mass independent renormal-

ization schemésuch as théMS schemg any Green's func- For completeness, an explicit proof of E¢g0), (21), (22) is

tion generated by’(¢:m?) can be renormalized solely by given in Appendix A.

the coefficientsA, B, C, andD in £(¢;u?). Equation (19 shows clearly that all the necessary
Suppose we make a multiple insertion of the compositecounterterms in OPT are supplied solely by the original

operator (1/2y¢? to the Green’s function generated by LagrangianC(¢;u?). Let us now defing/T§ (A, m?) as a

L(¢:m?). The question is whether new divergences inducedenormalized n-point proper vertex with insertion of

by the operator insertion are made finite only by the las{1/2)x#? by j times.(Here the external momentums are not

three counterterms in Eq17). (Note thatB andD are al-  written explicitly) The counterterms in Eq18) together

ready fixed in step 1, and we do not have any freedom tavith Egs. (19) assure the finiteness dTg"”. Since the

change then). proper vertex can be expanded gd'§=4&37 (34,
The above problem is obviously related to the renormaleach coefficienty, is also finite. This implies thag! T

ization of composite operators. In fact, the standard methogdgn be made finite order by order in OPT.

[29] tells us that necessary counterterms to remove the diver- Three comments are in order here.

gences induced by the insertion of (1¥2)? are written as (i) Because the renormalization is already carried out in
step 2, one obtains finite gap equations from the beginning in

1 1 5 , step 3. Our procedure “resummation after renormalization”
5(ZZ2 = x ¢+ Aox "+ Agx. (18 has several advantages over the conventional procedure “re-

summation before renormalization” where UV divergences
are hoped to be canceled after imposing the gap equation.

Here 2, '2 the rgnormallzatlon constant for th? compositeryq gifference between the two is prominent especially in
operator¢-, and is necessary to remove the divergence Mhigher order calculations

Fig. 2A). A, and A, are necessary to remove the overall “jj) The decompositior(6) should be done both in the
divergences in Fig. &) and in Fig. ZC.)’ r_espect_|vely. mass term and the counterterms. This guarantees the order-
Now, one can prove that E¢L8) coincides with the last  _qrger renormalization in our modified loop expansion. In
three terms in Eq(17): Ref. [14], the order-by-order renormalization was checked
up to two-loop order ing* theory at highT. Our proof
ZZ(;zl—lzB, A,=D, and A;=-2Dm? (19 shows that this nice feature holds in any higher orders in
OPT. On the other hand, if one keeps the original counter-
term (1/2Bu?¢p?+Du* without the decomposition6),
L-loop diagrams withL>M must be taken into account to
remove the UV divergences in thd-loop order(see, e.g.,
. the last reference ifiL6]). This is an unnecessary complica-
Zyp=7,". (200 tion due to the inappropriate treatment of the counterterms.

The first equation is obtained by the definitiB=2,Z—1
and an identity
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(iii) As long as we stay in the low energy region far below =m{ (i=j=0), mf=mj (i=j#0), andm’>=0 (i#]j). This
the Landau pole, we need not address the issue of the trivieads to an effective potentiaV, (¢3,=N"1e?;mg,my)
ality of ¢* theory[28]: Perturbative renormalization in OPT \yhich has onlyO(N—1) invariance. It implies that Eq23)
works in the same sense as that in the naive perturbation. holds only for generators which do not miy with ¢;_. .

However, Eq.(23) for those generators alone is not enough
E. Nambu-Goldstone theorem to prove the existence of NG bosons: In fagt,., on the

The procedure and the renormalization in OPT discussefHS of EQ.(23) vanishes in thé)(Nl—l)—sXTmetric ground
above do not receive modifications even if the Lagrangiarftate, and no constraints are obtainedZgy~(0).
has global symmetry. FOB(N) #* theory, one needs to

replace and ¢2 by $:(¢0y¢11 .. én_q) and (2)2, re- Ill. APPLICATION TO THE 0O(4) o MODEL

broken phase of such theory, the NG theorem and masslegfjra] transitions. Our main goal is to investigate the spectral
NG bosons are guaranteed in each order of the modified l00g,,ctions of the soft modes at finife

expansion in OPT for arbitraril. To show this, it is most

convenient to start with the thermal effective potential

V(¢?). By the definition of the effective potential/(¢?)

has manifesO(N) invariance if it is calculated in all orders.
In OPT,V calculated up td_th loopsV, (¢%m) has also HereDg is the retarded correlation function

manifestO(N) invariance, because our decompositi@

gsed.in Eq(7) does not brea(N) invariancg. Onc#&/| has Dz(w,k;T)z _if d*x € 0(t)([ b(t,%), 5(0.0)]),

invariance under th@(N) rotation (¢;— ¢;+i6°T} ¢;), the

immediate consequence is the standard identity

p¢,(w,k;T)=—%Im D (w.k;T). (25)

(26)

- - where(-) denotes thermal expectation value, ,X) is
aVL(¢2’m) (92V|_((,D2;m) e < > = N ) p aﬁa )
—Tﬁ=——Tf‘k<pk, (23 qq(t,x) or giys7q(t,x) in QCD.
9] d¢ide This spectral function was first studied using the Nambu—

with T2 being the generator of th@(N) symmetry. Equa- Jona—l_.asm|o model of QCD in the lardé, .I'm't [31]. The
. . . : analysis shows that the scalar mespnwhich has a large
tion (23) is valid for arbitraryL, m, andN. idth due to the st d o d i

Al the stationary point where the lefthand sideHS) 0o c e i o up as a sharp resonance
of Eq. (23 vanishes, there arises massless NG bosonnear the critical point of the chiral transition. The detectabil-

N . ;
ffrDTk(gkff’ smﬁe t?)e SHS tﬁf :\E/qu[%i) is equal tci ity of such a resonance was studied in the context of ul-
ij (O)Tjhi whereD;;(0) is the Matsubara propagator - e avivistic heavy-ion collisiong32]. Also, the spectral in-

at zero frequency and momentum calculated upttoloops. tegrals in QCD at finiteT were studied using the operator
Thus the existence of the NG bosons is proved independer["strgduCt ex(gansioﬁ?,S] g P

of the structure of the gap equation in step 3.
It is instructive here to show some unjustified approxima-
tions which lead to the breakdown of the NG theorem. Man

of the self-consistent methods applied so far suffer fron%odel shares a common symmetry and dynamics with QCD

the?"' problem§30]. . ._and has been used to study real-time dynamics and critical
(i) Suppose one takes into account only a part of the d'af)henomeni34 35
0 e

grams for a given number of loops. Then the pion is n
longer massless even if the symmetry is spontaneously bro-
ken. Although this is a trivial point, sometimes such an ap-
proximation is adopted in the literature: taking only the self- The O(4) o model reads
energy from the four-point vertex and neglecting that from
the three-point vertex is a typical example.

(i) Introducingm? in the O(N)-symmetric way as Eq6)
is a key for the NG theorem to hold in each order of the loop 1 1 \
expansion in OPT. Suppose that we make a general decom- = N2 TR,272_ N~y 4
position such as * ZA(M)) ZB’M ¢ 41 C(¢T)"+Dp’, (27)

In the following, we will adopt a toy modglO(4) linear
o model to study the effect of mode couplingmteraction
yamong the soft modeén the one-loop level at finitd&. This

A. Determination of the parameters atT=0

1 . - N
£=3106)2~ u?§*1= 7(6)7+ho

p28;=mf—(mf— u?s;), (249 with ¢= (o, ). ho is an explicit chiral-symmetry-breaking

term[36]. A, B, C, andD in one-loop order are
with mizj #mzéij . This leads to aif©®(N) noninvariant effec- [36] P

tive potential, and the relatiof23) is not guaranteed in any N1 A1 1 1
finite order of the loop expansion. For example, when the pA—-q B= - C=———- D=-— —
O(N) symmetry is spontaneously broken down @(N ’ 167 ¢ 8wy 167% ¢
—1), one may be tempted to make a decompositiqu (28
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TABLE I. Vacuum parameters correspondingn§®®=550, 750, 1000 MeV.

mPeak (Mev) w? (MeV?) A h (MeV®) k (MeV) I (MeVv)
550 — 284 73.0 123 255 260
750 -37% 122 124 325 657
1000 — 469 194 125 401 995

where 1£=2/(4—n)— y+log(4m), with y being the Euler
constant.

When SSB takes placeuf<0), the replacement— o
+ £ in Eq. (27) leads to the tree-level massesmfand 7:

A A
m3, = u’+ 552, ma_=u’+ ggz. (29)

The expectation valu¢ at T=0 is determined by the sta-

other choices, 750 MeV and 1000 MeV. Insteadndfj®®¥,
one may take ther-7r scattering phase shift itself as a con-
dition to determine parametdr34]. However, for the discus-
sions in the following, such sophistication is not necessary.
We still have the freedom to choose the renormalization
point . Instead of trying to determine optima by the
renormalization group equation for the effective potential
[38], we take a simple and physical conditiony,=m_
=140 MeV which is suitable for our later purpose. This

tionary condition for the standard effective potential choice has two advantageta) The one-loop pion self-

V(@) d¢;=0.
Later we will take a special FAC condition in whigh?

deviates fromu? only atT+ 0, so that the naive loop expan-

sion atT=0 is valid. The renormalized couplings?, A,

energy 3 .(k% vanishes at the tree masg,,(k®=m2 )
=3 _(k*=m2)=0, where we have used conditidi) to-
gether withmy,=m_. (b) The spectral function in the
channel starts from a correct continuum threshold in the one-

andh can thus be determined by the following physical con-loop level.[In the loop expansiong (w,0) has a physical

ditions in the naive loop expansion at z€ro

(i) The on-shell condition for the piorD*(k?=m?2)
=0, wherem_=140 MeV, andD , is the causal propagator
for the pion in one-loop order.

(i) Partially conserved axial-vector currefRCACQ) rela-
tion in one loop:f ,m>=h\/Z .. Heref ,=93 MeV, andZ,,

threshold atw=2m_ =280 MeV only ifmg,=m,_..]

The resultant parameters are summarized in Table |. The
spectral functiong , andp , defined in Eq(25) at T=0 with
s=w?—k? are shown in Fig. 3. In ther channel, there are
one particle pole and a continuum starting from the threshold
JSth=Mg,+ Mo, . Sy is the point where the channet

is the finite wave function renormalization constant for the + o opens. In ther channel, the spectral function starts from

pion on its mass shell.

(i) The peak position of the spectral function in the
channel EmP®®9 is taken to be 550 MeV, 750 MeV, or
1000 MeV.

mPeak=550 MeV in (iii) is consistent with recent re-
analyses of ther-m scattering phase shif37]. However,

the threshold tny,.=280 MeV and shows a broad peak cen-
tered around/s=mP®®_ The half width of the peak is 260
MeV, 657 MeV, and 995 MeV fomP®3=550 MeV, 750
MeV, and 1000 MeV, respectively. The large width @fis
due to a strongr-27 coupling in the linears model. The
correspondingr pole is located far from the real axis on the

our main conclusions do not suffer a qualitative change byomplexs plane.

20

o A)
A
15 - -
[TO
X
1.0 EG/ b
&
(b)
05 ©
(@)
o L L 1 1 L L
3] 200 400 600 800 1000 1200 1400
B (MeV)

0 ®)
25 1 (a): ms = 550 MeV | -
(b): m; = 750 MeV

20 + (¢): ms =1000 MeV
V'Jo

150 X
n
S’
fo4

10 F

05 -

0 1 L L Il

0 200 400 600 800 1000 1200 1400

B (Mev)

FIG. 3. Spectral functions &=0 in the = channel(A) and in thes channel(B) for mP®3=550 MeV, 750 MeV, and 1000 MeV.
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FIG. 4. One-loop self-energy!! for o and 7 in the modified loop expansion at finife
B. Application of OPT <9V(<;;m) ) IG(£:m)
Now let us proceed to step 2 in OPT and rewrite &) Io; lo=e0= Y- =0. (33)
as
1 N 1 Since the derivative with respect fodoes not act om, this
L=2[(0¢)2—m2d?]— —($D)%+ = xd%+ho gives a solutior¢ as a function ofT and m. By imposing
2 4l 2 another condition om (step 3, one eventually determines
1 A both & andm for givenT.
— 58m2$2_ EC($Z)Z+ Dm%. (30 At finite T, the retarded propagator has the general form
i
Since xy(=m?—u?) is already a one-loop order, we have iDY(w,kT)=——— —, (34
neglected the terms proportional ®y, Dx? and Dy k*—mpy—24(w,kT)

which are two-loop or higher order. o o s o )
When SSB takes placer(- o+ ¢), the tree-level masses With k“=w—k*. The spectral function is then written as
to be used in the modified loop expansion read
1 Im 3§
pylw,KT)=—

7 (K- mB,—Re3F)2+(Im 37)2

A N
2 _ A2 2 2 _ 2 2
=m?+ = —m?+ = £2.
mg,=m 2§ , Mg,=m 65 (31 (35)
R .
Sincem? will eventually be a function of, the tree masses 1he retarded self-energy, is related to the 11-component

running in the loops are not necessary tachyonic at fifite Of the 2<2 self-energy in the real-time formalisf89):
contrary to the naive loop expansigsee the discussion in

Sec. IIA). ReXf(w,k;T)=Re {3 (w.k)+25(w,kT)}
The thermal effective potentiaY(gE;m) is calculated in
the standard manner except for the extra terms proportional Im Efﬁ(w k'T)=tam‘(i) Im{E}/}(w K)
to x. The Gibbs free energ@(&;m)=V(e=(£,0);m) in the 2T
one-loop level reads +E(1ﬁ1(w,k;T)}. (36)
1 A 11 . : - . .
G(Em) == u22+ —&4—h Here 2¢(w,k,T) is defined as a part with an explicit
(&m 2t ¢ 4!§ ¢ dependence through the Bose-Einstein distribution, while
5 5 E;l(w,k) is the part which has only an implicit depen-
1 m m, 11
n mé Il —27 | 1+ 3m? jn| —2" dence throughm(T) and &(T). In the one-loop Ievel2¢
2 (01 (0F/4
64 K2e32 K2e32 can be calculated only by the 11-component of the free

&K propagator:
+Tf (27)3[|n(1—e—Ea’T)+3 In(1—e E~'T)],

D)= —+2mg 3=, (37

(32) k2—mg¢+le
whereE 4= \k*+ mozd). Although this has a similar structure with ng=[e®/T—1]"1,

to the standard free energy in the naive loop expansion, the One-loop diagrams in OPT f(ﬁi(l,)l are shown in Fig. 4.
coefficient of the first term in the RHS of E432) is u®>  Their explicit forms are given in Appendix B. The NG theo-
instead ofm?. This is because we have an extra mass termiem discussed in Sec. Il E can be explicitly checked by com-
proportional toy in the one-loop level. The stationary point paring Eq.(33) and the inverse pion propagator at zero mo-
¢ is obtained by mentum,[D?(0,0;T)] 2.
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C. Cancellation of T-dependent infinities The explicit form of this FAC condition can be read from

It is instructive here to show explicitly how the UV diver- Ed- (B2) in Appendix B:
gences discussed in Sec. |l D are canceled in one-loop order.
The divergent part oEf,(w,k;T) from the diagrams of Figs. m2=,u2+£
4(h), 4(i), 4() reads 6

5np+TgL4§Agﬁwﬂ

w=m0ﬁ

A 2
SR+ () +(j)]—— — +— BF D+ FD—j _\2(FW+F®) . (42
1672¢ 6 3 ©=0
2
% Emz (T)+ Emz (T)+ AE (T)) The first(secondl line is from the first(second term on the
6 °7 6 O 9 LHS of Eq.(41). The functiond andF are given in Appen-
\ 1 dix B (T is defined as the finite part 0§.
=_ ﬁ(mz(T)Jr—)\gz(T)) At T=0, the second term on the LHS of E®#1),
1672 3 S(w,k;T=0), vanishes by definition, and E¢41) for-
mally reduces to Eq40). However, we calculate Eg40) in
SR +(m)], @y W 940 0

the naive loop expansion without introducimg® as dis-
cussed in Sec. lll A, while Eq(41) is calculated withm?

where Eq.(31) has been used. Namely, the terms propor-gyen afT=0. Therefore, they are consistent only when

tional tom?(T) in Figs. 4h), 4(i) are canceled by the coun-
terterm proportional t@®m?, while the terms proportional to m2(T=0)= u?. (43)
£2(T) in Figs. 4h), 4(i), 4(j) are canceled by the usual coun-

terterms proportional t€. In this way, theT-dependent di- |, other words, OPT with the FAC conditid#1) applied at
vergences proportional tm?(T) newly appearing in OPT T=0 is equivalent to the naive loop expansion.

are automatically canceled by tfiedependent counterterms | the symmetric phase at highwhere&(T)=0, Eq.(42)
obtained by the shift.?=m?— x. The divergence of the free oqyces to ’

energy proportional ton* is also canceled by the last coun-
terterm in Eq.(17).

Note that the divergences proportionalytetart to appear m2=p2+\
from the two-loop level. They are removed by the counter-

terms proportional to obtained by the shiffu*=m? . with E(m) = Jm?+Kk?. If T>>m?, the first term on the RHS
of Eq. (44) dominates and the following solution is obtained:

d®k ng(E(m)) m? m?
2m® Em " 16m2"ex2| 49

D. FAC condition for m?

Since we are interested in the spectral functions in the
one-loop level, a best way to determing is to use the
two-point function in therr channel. IN[14], a FAC condi-
tion (14) for the two-loop self-energy at zero momentum which implies that the Debye screening mass at Higtan
(L=n=2) was taken to obtain a gap equation st theory  pe properly taken into account. Also, both El) and(39)

A
20TV 2 2
m(T)=u“+ 12T , (45

aboveT. _ - have the same solutio@5) for T>>m? and are consistent
The corresponding condition in our model with=n=1  wjth each other. For realistic values af in Table I, the
reads conditionT2>m? is not well satisfied and one needs to solve

Eq. (41) numerically which will be shown in Sec. Il E.
For intermediate values df, Eq.(41) can effectively sum
not only the contributions from the diagrams in Fig$a)4
This is a condition that the one—lqop c_orrection to the self—#&b&éf‘(g)ﬁ,#(gér? l;]toaLsgy:)rrc])(;n trt'r(]eoichtTJsF Igps)éi))xﬁggu :r(1j)\}vhi ch
energy must be as small as possible in the resumed pertughmS only Fig. &), 4(b), 4(h), 4()
bation theory[Note that Im 3%(w=0,0;T) vanishes identi- e ! b
cally.] Unfortunately, Eq.(39) is incompatible with the
condition which we adopted dt=0 in Sec. lll A to find an

optimal renormalization poink:

SR 0=00;T)=3*0=00)+2%w=00,T)=0.
(39

Three remarks are in order here.

(i) For sufficiently highT with fixed «, Eq. (44) ceases to
have a solution. In fact, the RHS of E@4) is always larger
than the LHS above a Ilimiting temperaturel,
=500,430,420 MeV for m[’,eak(TZO):SOO,?SO,lOOO

3 (w=mg, ,0;T=0)=0. 40 Mev, respectively. This indicates that our one-loop analysis
in OPT is not sufficient fof>T,. One may try a renormal-
A hybrid condition which do_es not destrpy E_(qLO) and si-  jzation group improvement by choosing, e.g=T to cure
multaneously leads to a valid gap equation is this problem. However, sinck in Table | is rather large,
one encounters the Landau pole in the running coupling
S w=mp,,00+3(0=00,T)=0. (41)  \(T) located atT=440,450,490 MeV formP*a{T=0)
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FIG. 5. (A) Masses in the tree leveh, (T) andmy,(T), shown with left vertical scale, and the mass paramef&iT) with the right
vertical scale(B) &(T) for m,(T=0)=140 MeV and 30 MeV withmP*®{T=0)=550 MeV.

=500,750,1000 MeV, respectively. This again sets an uppgpehavior of the chiral order parameter at finlteaway from
bound of T beyond which the one-loop analysis in OPT is the chiral limit. As we approach the chiral limih{0 or
not reliable. equivalentlym_—0), &£(T) develops multiple solutions for a
(i) To study the possible variations of the FAC condition, given T, which could be an indication of a first order transi-
Eqg. (41), we have examined the following three casgs. tion. This will be discussed in more detail in the next sub-
Taking the highT formula, Eq.(45), in place of Eq(41). (b)  section. The critical value of the quark maﬁng“t below
Repll?cing the second term on the LHS of E4l) by C;  which the multiple solutions arise is
=3 (w=my,,0;T). (c) Replacing the second term on the . .
LHS of Eq.(41) by C,=Re 3 (w=my,,0;T). In case(a), g/ me= (m mi92=0.08, (46)
because of the lack of self-consistency at I&w mg,(T)
deviates substantially fromm(T). This leads to an incorrect \where we have used Gell-Mann—Oakes—Renner relfdioh
threshold for the spectral function in thechannel. In case to relate the pion mass with the quark mamg_hys is the
(b), a real solution fom? is not guaranteed, becaug is @  physical light-quark mass corresponding tonP"s
cpmple.x fgnctlonzdue to thg Landau damping. In ce8ea  —140 MeV. The critical temperature fcmarit/mghys: 0.08
discontinuity ofm< at certa_lnT appears, becguix}z has a g T,=170 MeV. The behavior of&(T) for m_(T=0)
Cusp structure as a funcpon of as shown in Fig. &), =30 MeV (just below the critical valumf,’”) is also shown
bgloyv. (We will d|scu§§ this cusp in Sec. Il GTherefore, by the dashed line in Fig.(B) for comparison.
within the FAC condition for the one-loop self-energy, Eq. Figure 8A) shows m2,(T) for mPe{T=0)
(41 is almost a unique choice in the sense that it gives a_ g . 09 L@ .
smooth and physically acceptable solution fief. =750,1000 MeV. The qualitative behaviors are similar to

" Fig. 5A). The chiral condensat&g(T) for m, (T=0)

(ii ) In place of the FAC condition, one may take the PMS " . A g
condition. However, to get a sensible gap equation from the 750’.1.000 Mer\]/ IS ﬁlso Sh?]",rvl[,‘egnk F'g(?)' &(T) |s_Fa_tr(1)er
PMS condition for the thermal effective potenti one NSensitive to the change ah,™" as far asm,(T=0)
needs to calculat¥ at least up to two loopkL3]. Unlike the ~ — 140 MeV is imposed.

optimized expansion considered in the first referendd &,

we have both Hartree and Fock diagrams in the two-loop F. Chiral limit (h=0)
order. This complicates the PMS analyses which will be re- o .
ported elsewhere. In the chiral limit, the FAC condition and the resultant

gap equation are drastically simplified and some analytical
study becomes possible. Let us carry out this analysis to
E. Behavior of m(T), mg,(T), and £(T) reveal the nature of the chiral transition near the chiral limit.

In Fig. 5(A) the tree-level masses in E@1) and m2(T) For h=0, the NG theorem is satisfied for a giverf as
are shown fomgealﬁzo)z%o MeV. méd,(T) is not ta- shown in Sec. Il E. Therefore, as far&s 0 (the I_\IG phasg
chyonic and approaches?(T) in the symmetric phase. This € total self-energy of the pion must vanish ab,g)
confirms that our resummation procedure cures the tachyoﬁ(o'o):
problem in Sec. Il A.

The solid line in Fig. ) shows the chiral condensate
&(T) obtained by minimizing the free energy for the case
m,(T=0)=140 MeV, with mP®¥{T=0)=550 MeV. A simultaneous solution of Eq47) and the FAC condition
&(T) decreases uniformly &B increases, which is a typical (41) is m3_=3R(0,0;T)=0, which leads to

m3_+3R(0,0,T)=0. (47)
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FIG. 6. (A) Masses in the tree leveln,,(T) and my,(T). (B) &(T) for mP*3{(T=0)=750 MeV and 1000 MeV withm,
=140 MeV.

Y order phase transition. For comparison, the case slightly
»=0, and még=§§2- (48 away from the chiral limit is shown by the dashed lines in

Fig. 7.

T, and the behavior o&(T) for T~T,; can be solved

The stationary conditioi33) always has a solutiof=0 for  analytically by expanding Eq(49) in terms of £ near ¢
h=0 (the Wigner phase The gap equation to determine the =0: Only the first termu.? and the last two terms propor-
other solutions in the NG phase is obtained by substitutingional to the Bose-Einstein distribution are relevant, and one
Eq. (48) into Eqg. (33): obtains

A
2
m?= — 552, m;

gZ
967° 3k%e
)\ d3k /nB(EO') nB(Eﬂ')>
2) @3\ "E, "TE, )

0=pu’+ = 52 §2In

= \flul ET>Ty)= J_(T T). (50

(49 The existence of multiple solutions of the gap equation for
the O(4) o model in the mean-field approach has been
known for a long timg41]. Our analyses above confirm this

whereE = VkZ+ X £%/3 andE . =|K|. feature within the framework of OPT. However, as is dis-

The numerical solution of Eq49) is given by the solid cussed in the second reference 4f], this first order nature
line in Fig. 7. As can be seen from the figure, there are twdS likely to be an artifact of the mean-field approach, since
nonvanishing solutions fog in the rangeT,=126 Mev the higherloops of masslessand almost masslessare not
<T<T,=153 MeV, which is a typical behavior of the first Negligible neaiT,, and they could easily change the order of
the transitior[42]. In fact, renormalization group analyses as
100 well as direct numerical simulation on the lattice indicate
that theO(4) o model has a second order phase transition

[43].

In the following, we will go back to the the real world
with m_(T=0)=140 MeV, where the gap equation has
only one solution for a givef.

G. Spectral function at T#0

ET) (MeV)
3

n
(=]

In Figs. 8A), 8(B), we show the spectral functions
pro(®,0,T) for T=50,120,145 MeV withmPea{(T=0)
=550 MeV.

In the 7 channel, a continuum develops for@ <mg,,
—mg,. This originates from the induced “decay” by the
20 : : : : : scattering with thermal pions in the heat bath 7emal

0 50 100 150 200 250 300 . . . .
T (MeV) —o. Because of this process, the pion acquires a width
~50 MeV atT=145 MeV, while the peak position does

FIG. 7. &T) for mP®3(T=0)=550 MeV withm,=0 MeV  not show appreciable modification. They are in accordance
andm_=10 MeV. with the Nambu-Goldstone nature of the pion, and are con-
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FIG. 8. Spectral function in the channelA) and in theo channekB) for T=50,120,145 MeV witmP®®T=0)=550 MeV. The real
part of[fo(w,O;T)]‘1 as a function ofw is shown in(C).

sistent with other calculations based on the [Bwexpansion Am2
[44]. Im 3%(0,6;,T) = 0(0—2mg,) \/ 1— —~F(w,T).
In the o channel for 6<T<145 MeV, there are two no- ]
ticeable modification of the spectral function. One is the shift (53

of the o peak toward the low mass region. The other is the N : '
sharpening of the spectral function just above the continuurpuPstituting Eas(52) and (53) into Eq. (35), one finds
threshold starting ab=2mg(T). -

These features are simply controlled by zeros or approxi- pol©=2Mo,,0;T)=6(w—2mo,)
mate zeros of

1
- - X ) 54
RED(w,0)] '=w’~mj,~Re3(w,0;T), (51) am? 4
mO7T
. . . . 1__f(2m0'n'!T)
which appears in the denominator of the spectral function w2

(35). Note that the imaginary part qufj(w,ﬁ)]*l is a
smooth function ofw and does not develop zeros above theThis explains the enhancement just above the threshold due
threshold. Equation(51) is plotted in Fig. 8C). For T to the phase space factor.

<145 MeV, RQDE(w,ﬁ)]*l has only one zero for a given There is another explanation of the threshold enhance-
T. This zero corresponds to an “effective” mass of the Ment. Let us start with a sum rule for the spectral function
meson at finiteT and roughly corresponds to the position of Which can be proved by the spectral decompositiop of

the broad peak in Fig.(8).

On the other hand, aE increases, the cusp in the low
region starts to create an approximate zero of
Ra[D('f(w,G)]*l. [At T=145 MeV, the cusp creates an ex- . ) o
act zero as shown in Fig.(8).] This is why the peak just whereZ=A+1 is the wave functlpn renormghzaﬂon con-
above the threshold developsRincreases as shown in Fig. Stant and does not depend dn Since A=0 in one-loop
8(B). The cusp originates from the-7-7 coupling (the order, the §pectral mftegyal is u_nlty _for arbitrary T_hls fact
fourth diagram for the sigma self-energy in Fig. dnd is  together with the positivity op ; implies that there is a spec-
related to the the continuum threshold by analyticity. Thetral concentration near the thresholdra§**(T) decreases.
position of the cusp is exactly the point where the continuum Beyond one loopA is divergent in perturbation theory.
starts:w=2mq,(T). However, one can always define a finite andhdependent

The approximate shape of the spectral function or spectral integral as
=2mg(T) with T=145 MeV can be estimated as follows.
The first term in the denominator of E(@®5) approaches zero
smoothly asw—2my,,:

focp¢(w,k;T)dw2=(A+ -t (55
0

fw[p¢(w,k;T)—p¢(w,k;T=0)]dw2=0. (56)
0

[wz—m3¢— ReEE(w,ﬁ)]wHZmo —0. (520  Therefore, the same argument with the one-loop case holds
i and a spectral concentration near threshold will occur even
On the other hand, the imaginary part of the self-energy is deyond one loop. The threshold enhancement in HiB),8
phase space factor multiplied by a smooth and nonzero fun@lthough it occurs at relatively low, is caused by a com-
tion f: bined effect of the partial restoration of chiral symmefg-
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FIG. 9. (A) Spectral functions in ther and o channels al =180 MeV. (B) The real part o[Di(w,O;T)]’1 and[DE(w,O;T)]’1 as
a function ofw at T=180 MeV withmP®3{T=0)=550 MeV.

creasing the “effective” magsand the strongr—2# cou-  This is not taken into account in the present lineamodel.
pling. In the chiral limit, the continuum threshold starts from A calculation based on the Nambu-Jona-Lasinio model
=0, and the enhancement occurs exactly at the criticashows, however, that there is still a chance for collective
temperature of chiral transition. modes to survive as far 84T, is not so far from unity31].

A similar threshold enhancement in the channel be-
comes prominent just beloww=my,—mgy, for T
=165 MeV. The basic mechanism of this enhancement is

the same for ther case except that IRi(w,ﬁ)]‘l is a

H. Diphoton emission rate through o—2y

As one of the experimental candidates to see the threshold

deceasing function of.

The spectral functions ofr (o) at higher temperature
exhibits the standard behavior as expected from previou

analyseg§31,33. Shown in Fig. 9 are simple and = poles

and a continuum af=180 MeV. AsT increases, these

poles gradually merge into a degeneréthiral symmetri¢

enhancement in the- channel, we evaluated the diphoton
emission rate from the decay— 2y in hot hadronic matter
%45]. The diphoton yieldwith back-to-back kinemati¢ger

nit space-time volume of a hot hadronic plasma can be writ-
ten ag[46]

states. Because of this approximate degeneracy, the normal  dR, 1 20E (k)2 WP, k=0T)
decay ofo through o— 27 and the induced decay af dixd*k 2m) e oK) e/T_1
through 7+ 7— o are kinematically forbidden at high. (57)

This is why the width ofe- and 7 vanishes.

For sufficiently highT, the system is supposed to be in

the deconfined phase and the decayﬁ)aqamust occur.

7
0 T=145 MeV
c—=2y

10781 1

dR/ d'x d'k

1079

n’—2y

100 200 300 400 500
o (MeV)

10-10
0

1
600 700 800

FIG. 10. Diphoton yield per unit space-time volume in the back-

to-back kinematics af =145 MeV formP®3{T=0)=550 MeV.

where k#=(w,k) denotes the total four-momentum of the
diphoton. g, is the oyy vertex at zero momentum and
Fgw(kz) is a corresponding form factog,,F,,, has a short
distant contribution from the constituent-quark loop and a
long distant contribution from the pion loop. We took the
estimates given if47] for these contributions. The formula
for m°— 2y is obtained by the replacement—2y in Eq.
(57). In this caseg, is fixed by the axial anomaly, arfél,,,,
is taken from an estimate using the chiral quark m¢d8].
The main background for the above processes is the ther-
mal annihilation of pionsz* 7~ —2y. The diphoton yield
from 0— 2y and 7°— 2y together with this background at
T=145 MeV is shown in Fig. 10. The threshold enhance-
ment in theo— 2y process is significant only in a narrow
region of the diphoton invariant mass and in a narrow region
of T. A similar conclusion is drawn in another analygi®].

IV. SUMMARY

In this paper, we have examined optimized perturbation
theory (OPT) in detail at finiteT. For theories with sponta-
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neous symmetry breaking, the loop-wise expansion in OPTWe do not write the external momenta explicithApplying
is shown to be a suitable scheme to resum higher ordehe counterterms in Eq18), I'(")) is written by the unrenor-

terms. ~ malized proper verteX'{"” and the renormalization con-
We have shown that OPT naturally cures the two majorsiants €, Z42, AjandA,) as[29]

problems of the naive loop expansion, namely, the break-

down of perturbation series at high>T_ and the existence F(R”J)()\,mz)=Z”’22721F§)”'”()\0,m§)
of tachyon poles fof <T.. ¢
We have also shown that OPT has several advantages + (245655 A16}1) dno, (A1)

over other resummation methods proposed so far. First of all,

the renormalization of the UV divergences, which is not awhere the bare quantities with a suffix “0” are related to the
trivial issue in other methods, can be carried out systematirenormalized quantities akg=Z,\, m§=ZMm2 and ¢
cally in the loop expansion in OPT. This is because one car- \Z .

separate the the self-consistent procedsiep 3 in Sec. Il B To show Eq. (20), consider the proper self-energy
from the renormalization procedufstep 2 in Sec. I1Bin  I'®%)\,m?) and its derivative with respect tm?. After a
OPT. straightforward algebra using E¢A1), one finds

Whether the Nambu-Goldstor{blG) theorem is satisfied

in resummation methods has been discussed in the literature. d 2.0 5 2. )

We found that the loop expansion in OPT can give a clear WFR’ (A,m%)=—ZZ,I'¢""(Ao,mp)

view of this problem. The NG theorem is a direct conse-

quence of the invariance of the effective action. Since the = —ZMZ¢2F§'1)(A,m2). (A2)

OPT presented in this paper does not break the global sym- _
metry of the effective potential in each order of the pertur-Since ' §") is finite, Eq.(A2) implies thatZ,Z 4> must be
bation, one can prove, without much difficulty, that the NGfinite in four dimensions. Now, in the loop expansion with
f[heorem is satisfied in any give order of the loop expansionhe MS schemeZ,, andZ 4 have expansions of the form 1
in OPT. ) , +37_,a 6" with a containing only the powers of 4/ This
In the latter part of this paper, we have applied OPT to the . . — . .
O(4) o model to study the spectral functions at finfe  12ct together with the finiteness @, ;2 for e —0 immedi-
The OPT in one-loop order together with a FAC condition2t€!Y leads to Eq(20), Z,Z,2=1. .
for the pion self-energy, we have successfully summed not To show E((()qb()Zl), c20n5|dgr the proper vertex without ex-
only the cactus diagrams but also other loop diagrams. wiernal legs:T'g™(A,m%). This quantity is a sum of all the
have demonstrated that the spectral functionogfwhich one-partzcle irreducible diagrams the c-number counter-
does not show a clear resonanceTat0, develops a sharp termDm®. Therefore, taking a derivative with respectrd
enhancement near them2threshold asT approachesT,.  and using Eq(A1), one finds
This is due to a combined effect of the partial restoration of P 1 H2(%)
chiral symmetry and the strong-27 coupling. Although it reo\,m?)=-2zz,-— d4x<—> +2Dm?
is rather difficult to observe this enhancement in the diphoton dm “V4lv, 2 [ ip
spectrum, further studies will be necessary to reveal the phe- 0.0 5 5
nomenological implications of this phenomena. =—[Tr""(\,m)—A;]+2Dm=.  (A3)
The basic idea of OPT examined in detail in this paper o ) o
will also have relevance to develop an improved perturbatiofi€re(-)1pi denotes the one-particle irreducible contribution.
theory for gauge theories in which the weak-coupling expanY4 denotes the Euclidean four-volume: AT#0, V4
sion is known to break down in high ordei0]. A gener- =Va/T with V5 being the three-volume. Sinde{") is fi-
alization of OPT, such as that discussed at step 2 in Sec. Il Blite, Eq.(A3) implies that Dm?+ A, must be finite in four

will be necessary for this purpose. dimensions.D and A; have expansions of the form
=1 ,a,8', with a, containing only the powers of 4/ Thus
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of Promotion of Scienc€JSP$ for financial support. 1 2(x) 2
€JSP$ pp =2222—f d4xf d4y<¢( ) ¢ (Y)> oD
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APPENDIX A: COUNTERTERMS IN OPT 0.2 9
—[TO2(\,m?)—2A,]+2D. (A4)

Consider the Lagrangian L(p;m?) and define
Ff{"”()\,mz) as the the renormalizexl-point proper vertex By a similar argument as abov@,— A,=0 follows from Eq.
with insertion of the composite operatgf(x)/2 by j times.  (A4).
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APPENDIX B: ONE-LOOP FORMULA FOR THE SELF-ENERGY AT T#0

Formulas corresponding to Fig. 4 read

A NE\%3
—i370, ) —i3 0k T) =i (17 +FD+1 )+ FY]+ —ié) S+ 2R +FO]
1
+(—i)\§)2§[|f)+2F§f)+Fff)]+i(m2—,u2)+counterterms, (B1)
N Y NE\2
—iEﬂ(m,k)—iE}}(w,k;TF—i?[I(,})+F(,Tl)]—i€[lf,1)+Ff})]+ —ié) [1®+F®+FO)]
+i(m?— u?) + counterterms, (B2)
with
d*p i
|(1): 28] ’ B3
» K (2m)* p2—m3¢+ie (B3
d*p i i
(D= 2 , B4
¢ ) 2n)? 2—mi,tie (p+k)Z—mi,+ie (B
d*p i i
|<3>=K2€f , B5
(2m)* p2—m2, +ie (p+k)2—m2_+ie (85
1)_ d’p 22
Fo 22mNg(|Pol) 8(p?—mgy), (B6)
(2m)
Fo_, f d*p 2mng(|pol) 8(p*—mg,) -
¢ 2m*  (p+k)P—md,+ie
(3)— d4p 2 2_ 2 k)2—m?
Fo' = 2 )4(277) Na(|Pol)Na(|po+ w|) 8(p*—mg,) 8((p+K)“—mg,), (B8)
an
d*p 2mn s(p?—md,
o= [ P 2TEPAP o) ), ®9)
(27) (p+tk)yc—mg,+ie
d*p
F(5)=f(2 )4(2w)2n3(|po|)n3(|p0+w|)5(p2—még)a((p+k)2—méw). (B10)
aw
Heres=(4—n)/2, p?=p3—p?, k’=w?—k? andng(w)=[e”T—1]"1.
The explicit forms of Eqs(B3), (B4), (B5) for k>0 are
ma, (1 m3
W=— 2| 2 41 jog—22], B11
¢ 1672\ & K? (B1Y)
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e 00" 1 2+
Tor?|5 00,2 F27

1_q2 . 2 2
Iogl+—qz+|ﬂ- for k“>4mg,,
N ) (B12
L2 1067 4 2 2g,arctans
=—lo —20,arctan—
167 & k2 A a2

for 0<k?<4mg,,

o L1 omg,  KEmg,—mg mg,
1®=—j——| =—log— +2+ log
16 Ls K2 2k2 mgo

for (Mg, +mg,)2<k?,

( ( (2k?qg+k2—m3_+m3_)(2k%qs+k2>+mi, —m3 ) )
s —2iT

0
Y (2K2e— K2+ M2, —m2 ) (2K2qs— K~ m2, +m2 )

2 2 2
for (mOU'_ quT) <k <(m00'+m077) ’

— 4

arctan +arctan
2k%q, 2k%q3

(2k2qz+k2—m3,+m3, ) (2k?qs+k>+m3,—m5 )

(2k2q3—k?+mj,—mj, ) (2k?ga—k?—m3,+mj )

2 2 2 2 2 2
ke—mg,+mg.. k“+mg,—mg..
243

for 0<k?<(mg,—mg,)?,

gslog

\
(B13)

with

4mg, VI(K2+m3,—m3_)2—4k?m3 |
Q2= ?_1 v U3= K2 :

Equations(B6), (B7), (B8), (B9), and(B10) for k=0 read

- 2
,:<1>_f EM, (B14)

Jo 272 E(mgy)

+0(w?—4mj ) (B15)

F2)_| Jmﬂ P°Na(E(Moy)) ©
¢ 167w

0 2772 E(m0¢) w2—4E2(m0¢)

ol

FP=0(w?—4amj,) (B16)

87w Bl 2

w?—4m3 w
E= ]

@ f dp pZng(E(my,))| 1 1
F'* =i +
0(2m)? E(Mo) |[w+E(Mg,)]2—E(Mo,)?  [©—E(Moy) ]~ E(M,)?

| w?+mg,—mg,|
2w

21 2 232 2 2
1677w2\/(w +mg,—mg,. ) —4mg v ng

[for 0<w?<(Mg,—Mp,)2 (My,+Mp,) < w?]
0 [for (mO(T_mOﬂ')2<w2<(m00'+mO‘IT)Z]

+(m00'<_) mO7T)’ (817)

2 2 2 2 2 2
\/(w2+m2 _m2 )2_4m2 a)2n |(1) +m00'_m011'| n |(1) _m00+m077|
877(02 0o 0 Oc B 20 B 2w

E(5) = (B19)
for 0<w2<(m00'_mOw)Zy(mOU+mOw)2<w21

0 for (My,—Mog,)?<w?<(Mg,+Mo,)?

whereE(m) = Jp?+mZ.
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