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Topological charge and the spectrum of exactly massless fermions on the lattice
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Department of Physics, National Taiwan University, Taipei, Taiwan, Republic of China

~Received 23 April 1998; published 10 September 1998!

The square root of the positive definite Hermitian operatorDw
† Dw in Neuberger’s proposal of exactly

massless quarks on the lattice is implemented by the recursion formulaYk115
1
2 (Yk1Dw

† DwYk
21) with Y0

51, whereYk
2 converges toDw

† Dw quadratically. The spectrum of the lattice Dirac operator for single massless
fermion in two dimensional background U~1! gauge fields is investigated. For smooth background gauge fields
with nonzero topological charge, the exact zero modes with definite chirality are reproduced to a very high
precision on a finite lattice and the index theorem is satisfied exactly. The fermionic determinants are also
computed and they are in good agreement with the continuum exact solution.@S0556-2821~98!04519-6#

PACS number~s!: 11.15.Ha, 11.30.Fs, 11.30.Rd
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I. INTRODUCTION

In recent publications@1,2#, Neuberger suggested that in
vectorlike gauge theory the lattice Dirac operatorD for ex-
actly massless quarks can be represented by a finite matr
fixed shape, without undesired doubling and with no need
any fine tuning. The lattice Dirac fermion operator of Ne
berger’s proposal of exactly massless fermion is

Dh511V, V5Dw~Dw
† Dw!21/2, ~1!

whereDw denotes the standard Wilson-Dirac lattice fermi
operator with negative mass term andV is unitary (V†

5V21). Dh was derived based on the observation that
overlap@3–5# for Dirac fermion in odd dimensions@6# can
be written as the determinant of a finite matrix of fixe
shape. The most remarkable feature ofDh is that it satisfies
The Ginsparg-Wilson relation@7#

Dg51g5D5Dg5D ~2!

andDh is so far the only knownexplicit solution of Eq.~2!.
the Ginsparg-Wilson relation was derived in 1981 as
remnant of chiral symmetry on the lattice after blocking
chirally symmetric theory with a chirality breaking loca
renormalization group transformation. The origin
Ginsparg-Wilson relation is in fact more general than Eq.~2!
and constitutes a matrixR which is local in the position
space but diagonal in the Dirac space

Dg51g5D5Dg5RD. ~3!

It serves asthe criterion for breaking the continuum chira
symmetry on the lattice while preserving the exact massl
ness and the continuum axial anomaly. Recently, Hasenf
Laliena, and Niedermayer@11# and Lüscher@12# explicitly
showed that anyD satisfying the Ginsparg-Wilson relatio
plus some reasonable assumptions such as locality and
of species doubling must obey the index theorem on
lattice. Furthermore, Lu¨scher@12# discovered that anyD sat-
isfying Ginsparg-Wilson relation implies an exact symme
of the fermion action which may be regarded as a latt
form of chiral symmetry, reproduces the correct anomaly a
the index theorem on the lattice. The Nielsen-Ninom
0556-2821/98/58~7!/074511~9!/$15.00 58 0745
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theorem@13# can be circumvented if the continuum chir
symmetry of the fermion is replaced by the Ginsparg-Wils
relation which is the chiral symmetry realized on the lattic
Recently, Narayanan@14# has shown that the fermionic de
terminant of Dirac fermion operatorD in the form D51
1V and satisfying the Ginsparg-Wilson relation can be fa
torized into two factors which are complex conjugate of ea
other, corresponding to those of left-handed and rig
handed Weyl fermions. This could imply that the dynamic
gauge theory ofsingle massless Dirac fermion usingDh is
amenable to hybrid Monte Carlo simulations. However,
most challenging part of Neuberger’s proposal is the imp
mentation of the square root of the positive definite Herm
ian operatorDw

† Dw . The approximation ofDh has been stud-
ied by Neuberger@15#, but it sacrifices strictly masslessnes
In this paper, we attempt to implement the square root
eration on thepositive definite HermitianoperatorDw

† Dw by
the following recursion formula@16#:

Yk115
1

2
~Yk1Dw

† DwYk
21!, Y051. ~4!

It can be shown thatYk
2 converges toDw

† Dw quadratically.
The main purpose of this paper is to investigate the spect
of Dh to see to what extent this implementation can rep
duce the exact zero modes with definite chirality as well
the realization of the index theorem on a finite lattice. T
fermionic determinants are also computed and compa
with the continuum exact solutions.

II. MASSLESS FERMION ACTION

Neuberger’s lattice fermion operator for exactly massl
fermion has been given in Eq.~1!. The negative mass term i
the standard Wilson-Dirac lattice fermion operatorDw can
be chosen to be any value in the range (21,0). A different
value ofm corresponds to a different renormalization for t
observables. In the following, we shall restrict our discu
sions to the case ofm521. Then the Wilson-Dirac operato
becomes

Dw5211
1

2
@gm~¹m* 1¹m!2¹m* ¹m#, ~5!
© 1998 The American Physical Society11-1
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where¹m and¹m* are the forward and backward differenc
operators defined as follows:

¹mc~x!5Um~x!c~x1m̂ !2c~x!,

¹m* c~x!5c~x!2Um
† ~x2m̂ !c~x2m̂ !.

Then the lattice action of single massless fermion in ba
ground gauge field is

Ah5(
x

(
y

c̄~x!Dh~x,y!c~y!, ~6!

where the Dirac indices are suppressed.
On a torus (xmP@0,Lm#,m51,2), the U~1! gauge fields

can be decomposed into global, harmonic, and local parts
this paper we use the following decomposition:

A1~x!52
2pQx2

L1L2
1

2ph1

L1
1A1

~0!sinS 2pn2

L2
x2D , ~7!

A2~x!5
2ph2

L2
1A2

~0!sinS 2pn1

L1
x1D , ~8!

where the global part is characterized by the topolog
charge

Q5
1

2pE d2xF12 ~9!

which must be an integer. The harmonic parts are par
etrized by two constantsh1 andh2 . The local parts are cho
sen to be sinusoidal fluctuations with amplitudesA1

(0) and
A2

(0) and frequencies 2pn2 /L2 and 2pn1 /L1 wheren1 and
n2 are integers. The discontinuity ofA1(x) at x25L2 due to
the global part only amounts to a gauge transformation.
field strengthF125]1A22]2A1 is continuous on the torus
To transcribe the continuum gauge fields to the lattice,
take the lattice sites atxm50,a, . . . ,(Nm21)a, wherea is
the lattice spacing andLm5Nma is the lattice size. Then the
link variables are

U1~x!5exp@ iA1~x!a#, ~10!

U2~x!5expF iA2~x!a1 i
2pQx1

L1
dx2 ,~N221!aG . ~11!

The last term in the exponent ofU2(x) is included to ensure
that the field strengthF12 which is defined by the ordere
product of link variables around a plaquette is continuous
the torus.

The fermion propagatorSF(x,y) is defined by

SF~x,y!5
1

ZE )
z

dc̄~z!dc~z!e2Ahc~x!c̄~y!, ~12!

where
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Z5E )
z

dc̄~z!dc~z!e2Ah. ~13!

In background gauge fields of zero topological chargeQ
50), the fermion propagator is

SF~x,y!5Dh
21~x,y!. ~14!

The free fermion propagator in momentum space is

S̃F
~0!~p!5

a

2
12 ia

(mgm sin~pma!

2@N~p!1u~p!#
, ~15!

wherea is the lattice spacing and

u~p!512(
m

cos~pma!, ~16!

N~p!5Au2~p!1(
m

sin2~pma!. ~17!

The constant term (a/2)1 which vanishes in the continuum
limit is expected to appear in Eq.~15! such thatDh

21 satisfies
the Ginsparg-Wilson relation

g5D211D21g55ag5 ~18!

which is equivalent to Eq.~2!. The denominator 2@N(p)
1u(p)# in Eq. ~15! has only one zero atp15p250 for the
entire Brillouin zone and its expansion aroundp15p250 is

2@N~p!1u~p!#5a2~p1
21p2

2!1O~a4p4!. ~19!

Therefore the free fermion propagator is free of doublers
has the correct continuum limit. We remark thatit is trivial
to construct D21 satisfying Ginsparg-Wilson relation. Any
D21 in the form

D21~x,y!5
a

2
11(

m
gmSm~x,y! ~20!

must satisfy Eq.~18!. However,the additional requirements
that the resulting lattice fermion action(D21)21 is local,
free of species doubling and satisfying the index theor
would make the task rather nontrivial. So far,Dh is the only
known explicit solution fulfilling all these requirements.

III. ZERO MODES AND THE INDEX THEOREM

In the continuum the Dirac operator of massless fermio
in a smooth background gauge field with nonzero topolog
chargeQ has zero eigenvalues and the corresponding eig
functions are chiral. The index theorem@8# asserts that the
difference of the number of left-handed and right-hand
zero modes is equal to the topological charge of the ga
field configuration:

n22n15Q. ~21!
1-2
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TOPOLOGICAL CHARGE AND THE SPECTRUM OF . . . PHYSICAL REVIEW D58 074511
In two dimensions, the so called vanishing theorem@9# also
holds:

Q.0⇒n150 and Q5n2 ,

Q,0⇒n250 and Q52n1 . ~22!

Recently, Hasenfratz, Laliena, and Niedermayer@11# and
Lüscher@12# explicitly showed that any lattice Dirac fermio
operatorD satisfying the Ginsparg-Wilson relation Eq.~2!
must obey the index theorem exactly. SinceDh is an explicit
solution of Ginsparg-Wilson relation, it must obey the ind
theorem exactly. However, on a finite lattice, after we imp
ment the inverse square root operator inDh by the recursion
formula Eq.~4!, it is not knowna priori how the zero modes
and the index theorem can be recovered. It turns out
even on a very small lattice (636), the exact zero mode
with definite chirality are reproduced to a very high accura
and the index theorem is satisfied exactly. For smooth ba
ground guage fields, the convergence of the recursion
mula Eq.~4! is indeed quite fast. If we require the absolu
error of each matrix element satisfying the criterion

uYi j
2 2~Dw

† Dw! i j u,e ~23!

then it usually takes less than five iterations to reache
51028 for smooth gauge configurations. For very rou
configurations, the convergence could be slow and the a
mulation of roundoff errors in successive iterations co
cause the algorithm to be unstable. For exceptional confi
rations, det(Dw)50, then the inverse square root operator
Dh is not defined. This is consistent with the fact that Eq.~4!
breaks down whenDw

† Dw is not positive definite. In fact, the
convergence of Eq.~4! has become very poor in the vicin
ties of exceptional configurations.

After the matrixDh is computed, we solve the following
eigenproblem:

(
y

(
b

Dh
ab~x,y!fs

b~y!5lsfs
a~x! s51, . . . ,2N1N2 ,

~24!

wherex and y are site indices,a and b are Dirac indices,
andfs is normalized eigenfunction

(
x

(
a

@fs
a~x!#* fs

a~x!51. ~25!

In matrix notations, these equations are rewritten as

Dhfs5lsfs , ~26!

fs
†fs51. ~27!

Before we solve for the eigenvalues and eigenfunctions
Dh , we discuss some of their general analytical propertie
the following. Sinceg5Dwg55Dw

† , it follows that

g5Dhg55Dh
† ~28!

and the secular equation
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det~Dh2l1!5det~Dh
†2l* 1!5det@g5~Dh2l* 1!g5#

5det~Dh2l* 1!50 ~29!

implies that the eigenvaluesls are either real or come in
complex conjugate pairs. Using Eqs.~28! and~2!, we obtain

Dh
†Dh5DhDh

†⇔Dh is normal ~30!

and

Dh
†1Dh5Dh

†Dh . ~31!

SinceDh is normal,Dh andDh
† have common eigenfunction

and their eigenvalues come in complex conjugate pairs,

Dh
†fs5ls* fs , ~32!

and the eigenvectors$fs% form a complete orthonormal se
Equation~31! implies that

ls* 1ls5ls* ls⇒uls21u251. ~33!

Thus the eigenvalues ofDh fall on a unit circle with center at
1 and have the reflection symmetry with respect to the r
axis. We define the chirality of an eigenmode to be

xs5fs
†g5fs5(

x
(
a

(
b

@fs
a~x!#* g5

abfs
b~x!. ~34!

Using Eqs.~28! and ~32!, we obtain

Dhg5fs5ls* g5fs . ~35!

Multiplying fs
† on both sides and using the eigenvalue eq

tion, we get

lsfs
†g5fs5ls* fs

†g5fs . ~36!

Then

xs5fs
†g5fs50 if lsÞls* . ~37!

The chirality of any complex eigenmode is zero. If ls is real
~0 or 2!, Eqs.~35! and~26! imply thatfs has definite chiral-
ity 11 or 21:

g5fs56fs if ls5ls* . ~38!

It is remarkable that the zero modes and the12 eigenmodes
are both chiral. This is true for anyD satisfying the
Ginsparg-Wilson relation Eq.~2! and the adjoint condition
Eq. ~28!. Another useful property of chirality is thattotal
chirality of all eigenmodes must vanish,

(
s

xs5(
s

fs
†g5fs5(

s
(

x
(
a

(
b

@fs
a~x!#* g5

abfs
b~x!

5(
x

(
a

(
b

g5
abdab50, ~39!

where the completeness relation
1-3
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TABLE I. The eigenvalues ofDh in a smooth background gauge field of topological charge Q51. The values of other parameters a
h150.1, h250.2, A1

(0)50.3, A2
(0)50.4, andn15n251. The spectrum shows thatn251, n150 and the index theorem and vanishin

theorem are satisfied exactly.

Re(l) Im(l) chirality Re(l) Im(l) chirality

2.00000000 0.00000000 1.0000000
1.99981020 0.01948230 0.00000000 1.99981020 20.01948230 0.00000000
1.98951740 0.14441370 0.00000000 1.98951740 20.14441370 0.00000000
1.96345153 0.26788272 0.00000000 1.96345153 20.26788272 0.00000000
1.93881783 0.34441410 0.00000000 1.93881783 20.34441410 0.00000000
1.93303732 0.35977961 0.00000000 1.93303732 20.35977961 0.00000000
1.93041388 0.36651060 0.00000000 1.93041388 20.36651060 0.00000000
1.91625509 0.40059533 0.00000000 1.91625509 20.40059533 0.00000000
1.90283899 0.42997879 0.00000000 1.90283899 20.42997879 0.00000000
1.89600810 0.44403770 0.00000000 1.89600810 20.44403770 0.00000000
1.87536396 0.48346451 0.00000000 1.87536396 20.48346451 0.00000000
1.86076634 0.50900030 0.00000000 1.86076634 20.50900030 0.00000000
1.84065148 0.54157648 0.00000000 1.84065148 20.54157648 0.00000000
1.83027494 0.55735405 0.00000000 1.83027494 20.55735405 0.00000000
1.80483165 0.59350317 0.00000000 1.80483165 20.59350317 0.00000000
1.78430700 0.62037289 0.00000000 1.78430700 20.62037289 0.00000000
1.76077457 0.64901623 0.00000000 1.76077457 20.64901623 0.00000000
1.73598092 0.67700228 0.00000000 1.73598092 20.67700228 0.00000000
1.71413711 0.70000585 0.00000000 1.71413711 20.70000585 0.00000000
1.68715242 0.72651329 0.00000000 1.68715242 20.72651329 0.00000000
1.65416649 0.75635058 0.00000000 1.65416649 20.75635058 0.00000000
1.61565168 0.78801841 0.00000000 1.61565168 20.78801841 0.00000000
1.57389192 0.81893105 0.00000000 1.57389192 20.81893105 0.00000000
1.51607964 0.85654060 0.00000000 1.51607964 20.85654060 0.00000000
1.47365734 0.88070922 0.00000000 1.47365734 20.88070922 0.00000000
1.40247961 0.91542895 0.00000000 1.40247961 20.91542895 0.00000000
1.30540300 0.95222319 0.00000000 1.30540300 20.95222319 0.00000000
1.26428480 0.96444468 0.00000000 1.26428480 20.96444468 0.00000000
1.15140180 0.98847230 0.00000000 1.15140180 20.98847230 0.00000000
0.98655620 0.99990963 0.00000000 0.98655620 20.99990963 0.00000000
0.89820891 0.99480580 0.00000000 0.89820891 20.99480580 0.00000000
0.78417724 0.97643256 0.00000000 0.78417724 20.97643256 0.00000000
0.65832653 0.93981873 0.00000000 0.65832653 20.93981873 0.00000000
0.53737749 0.88655537 0.00000000 0.53737749 20.88655537 0.00000000
0.34130700 0.75241181 0.00000000 0.34130700 20.75241181 0.00000000
0.10715386 0.45036182 0.00000000 0.10715386 20.45036182 0.00000000
0.00000000 0.00000000 21.0000000
e
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@fs
a~x!#* fs

b~y!5dabdxy ~40!

for the eigenfunctions ofDh has been used. From Eq.~39!,
we immediately obtain

n2
12n2

25n22n1 . ~41!

The sum of chirality of all12 eigenmodes is equal to th
index of the zero modes. Therefore we can identify the
chirality of 12 eigenmodes as the index of the zero mod
for any D satisfying the Ginsparg-Wilson relation and th
adjoint condition. On the other hand, the standard Wils
07451
s
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Dirac lattice fermion operatorDw satisfies the adjoint condi
tion but not the Ginsparg-Wilson relation. The chirality of i
complex eigenmodes is zero butits real eigenmodes do no
have definite chirality. Moreover, it does not have exact ze
modes even in a smooth background gauge field with n
zero topological charge. Unlike thoseD satisfying Ginsparg-
Wilson relation has real eigenvalues only at 0 or 2,Dw has
real eigenvalues at several different values and the t
chirality of all ~real! eigenmodes does not vanish. Therefo
strictly speaking, we should not identify the chirality of
subset of real eigenmodes ofDw to be the index of zero
modes. Recently, Gattringer, Hip, and Lang@18# conjectured
that the sum of the chirality of the real eigenmodes of
1-4
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TOPOLOGICAL CHARGE AND THE SPECTRUM OF . . . PHYSICAL REVIEW D58 074511
Wilson-Dirac hopping matrix in the vicinity of12D (D is
the dimensionality! is equal to the minus of the topologica
charge (2Q) of the background gauge field. However, t
Wilson-Dirac fermion operator does not have exact z
modes without tuning the mass parameter for each ga
configuration.Only in the infinite volume limitare the12D
modes of Wilson-Dirac hopping matrix equivalent to t
zero modes of the Wilson-Dirac fermion operator with ze
bare mass. This implies thatin the infinite volume limitthe
approximate zero modes of the Wilson-Dirac operator w
become exactly massless with definite chiralities and the
dex theorem can be satisfied exactly.

In the following we derive some basic properties of t
unitary matrixV5Dh21 which has eigenvaluesls21. The
unitarity of V implies that its eigenvalues are unimodul
~i.e., eius) and the eigenvalues ofDh are in the form 1
1eius. The zero modes ofDh correspond to those of eigen
values21 of V. Since the eigenvalues ofV are either real
(11 or 21) or come in complex conjugate pairs, it follow
that

det~V!5~21!~n21n1!5~21!~n22n1!5~21!~n2
1

2n2
2

!,
~42!

where Eq.~41! has been used in the second equality. Eq
tion ~42! can serve as a check for the consistency of
eigenvalues.

In Table I, the eigenvalues ofDh are listed for 636 lat-
tice in the background gauge field@Eqs. ~7! and ~8!# with
topological chargeQ51; and harmonic parts withh150.1
and h250.2, and the local parts withA1

(0)50.3, A2
(0)50.4,

and n15n251. It is evident that the eigenvalues are eith
real ~0 or 2!, or come in complex conjugate pairs in a ve
precise manner. This property is vital to obtain real and po
tive fermionic determinant. There is one zero mode with
actly zero eigenvalue and chirality21. Therefore we have
n251 and n150 and the index theoremQ5n22n1 is
satisfied exactly. Moreover, the vanishing theoremQ
.0⇔n150 which only holds in two dimensions is als
satisfied. We also note that Eqs.~39! and ~41! are both sat-
isfied. All analytical properties of the eigensystem we ha
discussed above are satisfied exactly. The eigenvalue
Table I are plotted in Fig. 1.

In Table II, the topological chargeQ522 while other
parameters are the same as in Table I. There are two e
zero modes of chirality11. Therefore we haven250 and
n152 and the index theoremQ5n22n1 and the vanishing
theorem Q,0⇔n250 are satisfied. Again all analytica
properties are satisfied exactly. The eigenvalues in Tab
are plotted in Fig. 2.

We have tested many different smooth gauge configu
tions by changing the topological charge as well as ot
parameters in Eqs.~7! and ~8!. The exact zero modes ar
always reproduced such that the index theorem and the
ishing theorem are satisfied. All analytical properties
have discussed above are satisfied exactly. We summ
some of our results in Table III.

We also investigated the robustness of zero modes and
index theorem under local fluctuations by varying the am
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(0) andA2

(0) as well as the frequencies 2pn1 /L1 and
2pn2 /L2 of the background gauge field. We found that t
exact zero modes are very robust under variations of
background. For example, forQ51 andn15n251, the ex-
act zero modes and the index theorem are reproduced
A1

(0) andA2
(0) ranging from 0.0 to 0.9.

The stability of zero modes under random fluctuations
also investigated. The rough gauge configurations are
tained from the smooth ones by multiplying each link va
able with a random phase@17#

Um~x!r5eir um~x!Um~x!, ~43!

whereum(x) is a uniformly distributed random variable i
(2p,p) andr controls the size of roughness. We found th
for gauge configurations with topological chargeuQu<6 and
A1

(0)50.3, A2
(0)50.4, andn15n251, the exact zero mode

satisfying the index theorem can be reproduced provided
ur u<0.3.

IV. FERMIONIC DETERMINANTS

The fermionic determinant det(D) is proportional to the
exponentiation of the one-loop effective action which is t
summation of any number of external sources interact
with one internal fermion loop. It is one of the most cruci
quantities to be examined in any lattice fermion formu
tions. The determinant ofDh is the product of all its eigen-
values

det~Dh!5)
s

~11eius!5~11eip!~n11n2!det1~Dh!,

~44!

where det1(Dh) is equal to the product of all nonzero eige
values. Since the eigenvalues are either real or come in c

FIG. 1. The eigenvalues ofDh in Table I.
1-5
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TABLE II. The eigenvalues ofDh in a background gauge field of topological chargeQ522. The values of other parameters of th
gauge field are the same as in Table I. The spectrum shows thatn250, n152 and the index theorem and vanishing theorem are satis
exactly.

Re(l) Im(l) chirality Re(l) Im(l) chirality

2.00000000 0.00000000 21.0000000
2.00000000 0.00000000 21.0000000
1.99989124 0.01474800 0.00000000 1.99989124 20.01474800 0.00000000
1.99940122 0.03460068 0.00000000 1.99940122 20.03460068 0.00000000
1.98160401 0.19092820 0.00000000 1.98160401 20.19092820 0.00000000
1.94402467 0.32987486 0.00000000 1.94402467 20.32987486 0.00000000
1.93390001 0.35753429 0.00000000 1.93390001 20.35753429 0.00000000
1.91210916 0.40994742 0.00000000 1.91210916 20.40994742 0.00000000
1.90373008 0.42810273 0.00000000 1.90373008 20.42810273 0.00000000
1.90165787 0.43245009 0.00000000 1.90165787 20.43245009 0.00000000
1.89104063 0.45392355 0.00000000 1.89104063 20.45392355 0.00000000
1.87807847 0.47851667 0.00000000 1.87807847 20.47851667 0.00000000
1.85325494 0.52149401 0.00000000 1.85325494 20.52149401 0.00000000
1.83821525 0.54533952 0.00000000 1.83821525 20.54533952 0.00000000
1.81009961 0.58629226 0.00000000 1.81009961 20.58629226 0.00000000
1.79786888 0.60283103 0.00000000 1.79786888 20.60283103 0.00000000
1.76948744 0.63866194 0.00000000 1.76948744 20.63866194 0.00000000
1.74331258 0.66894425 0.00000000 1.74331258 20.66894425 0.00000000
1.71748554 0.69657340 0.00000000 1.71748554 20.69657340 0.00000000
1.69419796 0.71978413 0.00000000 1.69419796 20.71978413 0.00000000
1.66871002 0.74352331 0.00000000 1.66871002 20.74352331 0.00000000
1.63944000 0.76884100 0.00000000 1.63944000 20.76884100 0.00000000
1.59262521 0.80547834 0.00000000 1.59262521 20.80547834 0.00000000
1.54820232 0.83634575 0.00000000 1.54820232 20.83634575 0.00000000
1.48363430 0.87527017 0.00000000 1.48363430 20.87527017 0.00000000
1.43095251 0.90237461 0.00000000 1.43095251 20.90237461 0.00000000
1.39959189 0.91669315 0.00000000 1.39959189 20.91669315 0.00000000
1.26607166 0.96395325 0.00000000 1.26607166 20.96395325 0.00000000
1.18891548 0.98199335 0.00000000 1.18891548 20.98199335 0.00000000
1.06804551 0.99768222 0.00000000 1.06804551 20.99768222 0.00000000
0.90949855 0.99589632 0.00000000 0.90949855 20.99589632 0.00000000
0.87904797 0.99265835 0.00000000 0.87904797 20.99265835 0.00000000
0.72327655 0.96094960 0.00000000 0.72327655 20.96094960 0.00000000
0.56601895 0.90092200 0.00000000 0.56601895 20.90092200 0.00000000
0.48688458 0.85831962 0.00000000 0.48688458 20.85831962 0.00000000
0.18512327 0.57963429 0.00000000 0.18512327 20.57963429 0.00000000
0.00000000 0.00000000 1.0000000
0.00000000 0.00000000 1.0000000
n
en
ed

e
o

e

plex conjugate pairs, det(Dh) must be real and positive. For
Q50, then n11n250 and det(Dh)5det1(Dh). For Q
Þ0, then n11n2Þ0 and det(Dh)50, but det1(Dh) still
provides important information about the spectrum. In co
tinuum, exact solutions of fermionic determinants in the g
eral background U~1! gauge fields on a torus were obtain
by Sachs and Wipf@10#. In the following we compute
det1(Dh) for several different gauge configurations and th
compare them with the exact solutions in continuum. F
simplicity, we turn off the harmonic part (h15h250.0) and
the local sinusoidal fluctuations (A1

(0)5A2
(0)50) in Eqs.~7!
07451
-
-

n
r

and~8! and examine the change of det1(Dh) with respect to
the topological chargeQ. For such gauge configurations, th
exact solution@10# is

det1@D~Q!#5NAS L1L2

2uQu D
uQu

, ~45!

where the normalization constantN is fixed by

N5AS 2

L1L2
D

1-6
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such that det1@D(1)#51.
In Table IV, the fermionic determinants det1(Dh) are

listed for 838 and 16316 lattices, respectively. They agre
with the continuum exact solutions very well for smallQ but
the error goes up to 10% for largeQ;10. For a fixedQ, the
error decreases with respect to the increasing of the siz
the lattice.

We have also computed the fermionic determin
det1@Dh# for more general gauge configurations with no
zero topological charge, harmonic parts and local parts
well as in the topologically trivial sector with only harmon
parts or local parts. They are all in very good agreement w
the continuum exact solutions@10#.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have implemented the square root
erator in Neuberger’s proposal@1# of exactly massless quark

FIG. 2. The eigenvalues ofDh in Table II.
07451
of

t
-
as

h

p-

on the lattice by the recursion formula Eq.~4!. Our numeri-
cal tests in two-dimensional background gauge fields as
that Dh indeed reproduces the exactly massless fermions
a torus. In particular, for smooth background gauge fie
with nonzero topological charge, the exact zero modes w
definite chirality are reproduced and the index theorem
satisfied exactly.

Due to the recent work of Neuberger@1,2#, Hasenfratz,
Laliena, and Niedermayer@11#, and Lüscher@12#, we now
have a better understanding of the chiral symmetry on
lattice. The Nielson-Ninomiya theorem@13# can be circum-
vented by replacing the continuum chiral symmetry$D,g5%
50 by the Ginsparg-Wilson relation$D,g5%5Dg5D on the
lattice. The Ginsparg-Wilson relation gaurantees that the c
rect continuum anomaly can be recovered on the lattice. C
rently, there are two classes of solutions satisfying
Ginsparg-Wilson relation. One of them is the explicit sol
tion Dh obtained by Neuberger@1#, which grew out of the
overlap formalism @3–6#. If one attempts to solve the
Ginsparg-Wilson relation by writingD511T, one must end
up with the solution (g5T)251. Naively one can choose an

TABLE III. The zero modes versus the topological charge. T
index theorem and the vanishing theorem are satisfied exa
Equation~41! is also satisfied.

Q n1 n2 n2
1 n2

2

25 5 0 0 5
24 4 0 0 4
23 3 0 0 3
22 2 0 0 2
21 1 0 0 1

0 0 0 0 0
1 0 1 1 0
2 0 2 2 0
3 0 3 3 0
4 0 4 4 0
5 0 5 5 0
rd
ng to
TABLE IV. The fermionic determinant versus the topological chargeQ. The normalization constant is
chosen such that det1@Dh(1)#51. The results for the 838 lattice are listed in the second and the thi
columns, while for the 16316 lattice in the last two columns. The exact solutions are computed accordi
Eq. ~45!.

838 16316
Q det1@D(Q)#exact det1@Dh(Q)# det1@D(Q)#exact det1@Dh(Q)#

1 1.00000 1.00000 1.00000 1.00000
2 2.82843 2.77348 5.65685 5.66186
3 6.15840 5.96891 24.6336 24.0615
4 11.3137 10.7157 90.5097 90.4894
5 18.3179 16.9340 293.086 286.003
6 26.8177 24.2001 858.166 822.664
7 36.1083 32.0006 2310.93 2170.94
8 45.2548 40.2920 5792.62 5354.28
9 53.2732 45.7353 13637.9 12309.5

10 59.3164 50.2816 30370.0 27336.6
1-7
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lattice operatorT which satisfies this condition and gives th
correct continuum action in the continuum limit. The choi
of T5Dw(Dw

† Dw)21/2 where Dw is the standard Wilson
Dirac action with negative mass term is identical to Neube
er’s overlap solution. We note in passing that for any no
trivial T, the inverse square root operation in T seems to
inevitable. Another class of solutions of the Ginsparg-Wilso
relation is the fixed point lattice Dirac operatorhFP @19#
which is the implicit solution of the nonlinear classic
saddle-point equations, and is obtained by recursive it
tions. The technical difficulty of that approach is how
parametrizehFP such that it is sufficiently precise but th
computational costs are still affordable. It is instructive
compare our numerical results on zero modes with those
tained by Farchioni and Laliena@20# using fixed point lattice
Dirac operator. It is evident that their zero modes are
exactly zero. The discrepancies are essentially due to
truncation errors in the parametrization ofhFP and the round-
off errors in the computations performed at each step of
iterations. These errors are intrinsically mixed together a
therefore are very difficult to control. Furthermore, we su
pect that the fermionic determinants det1(hFP) of their hFP

would have relatively large errors. On the other hand, we
not have any serious technical difficulties to computeDh to a
very high precision using the recursion formula Eq.~4!.
Therefore we can obtain exact zero modes and fairly ac
rate fermionic determinants even on a finite lattice.

It is interesting to note that tracing the index theorem
the lattice has a long history. In 1987, Smit and Vink@17#
investigated the spectrum of Wilson and Staggered ferm
in topologically nontrivial background gauge fields in tw
dimensions. Some remnants of the index theorem were fo
but exact zero modes with definite chirality were not o
tained. The index theorem on the lattice was also recogn
by Neuberger and Narayanan@3,21# in the context of the
overlap formalism. The index was computed by studying
level crossings in the spectral flow ofH(m)5g5Dw(m) as a
function of m and was verified numerically to equal to th
topological charge of the background gauge field. When
lattice Dirac fermion operatorDh was proposed by Neu
berger @1#, it became clear that the index computed fro
07451
-
-
e

a-

b-

t
he

e
d
-

o

u-

n

s

nd
-
ed

e

e

level crossings ofH(m) is equal to the index ofDh .
Although the recursion formula Eq.~4! is quite effective

in computingDh for exactly massless fermions in two d
mensions, however, we expect that it would still be exp
sive for four-dimensional lattice QCD simulations. An alg
rithm which invloves at most matrix multiplications bu
without matrix inversions at every step of iterations would
the most desirable. We are now contemplating such po
bilities @22#. There are three emerging investigations that
would like to carry out in the near future. The first is th
spectrum ofDh in the four-dimensional topologically non
trivial background gauge fields, which is essentially an e
tension of the present investigation to four dimensions@23#.
The second is the quenched QCD calculations of so
chirally sensitive observables such as the kaon weak ma
elements which were also calculated by Blum and Soni@24#
using the domain wall quarks@25,26#. Since the domain wall
quarks in the limit of an infinite fifth dimension become
exactly massless and is equivalent toDh , it would be inter-
esting to compare future results of usingDh with those given
by domain wall quarks with finite fifth dimension@24# and
examine whether any improvements can be made by u
Dh with exactly massless quarks. The third is to perfo
dynamical fermion simulations ofDh in two dimensions, for
example, the Schwinger model. If the results continue
agree with the continuum exact solutions, we would attem
to confront one of the most challenging problems in QC
such as the chiral symmetry breaking by measuring the s
tral density of the eigenmodes ofDh near zero but not ex-
actly zero.
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