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The square root of the positive definite Hermitian opera]Jd;DW in Neuberger's proposal of exactly
massless quarks on the lattice is implemented by the recursion fonu@:%(Yk+ DIVDWYk‘l) with Y,
=1, whereYﬁ converges th:;,DW quadratically. The spectrum of the lattice Dirac operator for single massless
fermion in two dimensional backgroundl) gauge fields is investigated. For smooth background gauge fields
with nonzero topological charge, the exact zero modes with definite chirality are reproduced to a very high
precision on a finite lattice and the index theorem is satisfied exactly. The fermionic determinants are also
computed and they are in good agreement with the continuum exact so(8@566-282(198)04519-6

PACS numbsg(s): 11.15.Ha, 11.30.Fs, 11.30.Rd

[. INTRODUCTION theorem[13] can be circumvented if the continuum chiral
symmetry of the fermion is replaced by the Ginsparg-Wilson
In recent publicationfl,2], Neuberger suggested that in a relation which is the chiral symmetry realized on the lattice.
vectorlike gauge theory the lattice Dirac operaibfor ex-  Recently, Narayanafl4] has shown that the fermionic de-
actly massless quarks can be represented by a finite matrix ¢érminant of Dirac fermion operatdd in the form D=1
fixed shape, without undesired doubling and with no need fort+ V and satisfying the Ginsparg-Wilson relation can be fac-
any fine tuning. The lattice Dirac fermion operator of Neu-torized into two factors which are complex conjugate of each

berger’s proposal of exactly massless fermion is other, corresponding to those of left-handed and right-
: s handed Weyl fermions. This could imply that the dynamical
Dp=1+V, V=Dy(D,D,) ™ (1) gauge theory oiingle massless Dirac fermion usifg;, is

i ) ) _amenable to hybrid Monte Carlo simulations. However, the
whereD,, dgnotes thg standard Wllson-Dlrac IaFtlce ferr);nlonmost challenging part of Neuberger’s proposal is the imple-
ope[altor with negative mass term adis unitary (V mentation of the square root of the positive definite Hermit-
=V 7). Dy was derived based on the observation that than operatoD! D,,. The approximation oby, has been stud-
overlap[3-5] for Dirac fermion in odd dimensionS] can  jeq hy Neubergef15], but it sacrifices strictly masslessness.
be written as the determinant of a finite matrix of fixed |, this paper, we attempt to implement the square root op-
shape. The most remarkable featureDgfis that it satisfies 4 ation on thepositive definite HermitiamperatorD;erW by

The Ginsparg-Wilson relatiofv] the following recursion formul@l6]:

Dys+ysD=DvysD 2 1 . .
andDy, is so far the only knowrexplicit solution of Eq.(2). V=3 Vit DuDuic, - Yol @
the Ginsparg-Wilson relation was derived in 1981 as the 5 + ,
remnant of chiral symmetry on the lattice after blocking alt can be shown tha¥; converges td,D,, quadratically.
chirally symmetric theory with a chirality breaking local The main purpose of this paper is to investigate the spectrum
renormalization group transformation. The original ©f Dn to see to what extent this implementation can repro-

space but diagonal in the Dirac space fermionic determinants are also computed and compared

with the continuum exact solutions.

Il. MASSLESS FERMION ACTION

It serves aghe criterion for breaking the continuum chiral
symmetry on the lattice while preserving the exact massless- Neuberger’s lattice fermion operator for exactly massless
ness and the continuum axial anomaly. Recently, Hasenfratf¢rmion has been given in E(L). The negative mass term in
Laliena, and Niedermaydn1] and Lischer[12] explicity ~ the standard Wilson-Dirac lattice fermion operafy; can
showed that anyD satisfying the Ginsparg-Wilson relation be chosen to be any value in the rangel(0). A different
plus some reasonable assumptions such as locality and fre@lue ofm corresponds to a different renormalization for the
of species doubling must obey the index theorem on th@bservables. In the following, we shall restrict our discus-
lattice. Furthermore, Lscher{12] discovered that anpp sat-  Sions to the case ah= —1. Then the Wilson-Dirac operator
isfying Ginsparg-Wilson relation implies an exact symmetrybecomes
of the fermion action which may be regarded as a lattice 1
form of chiral symmetry, reproduces the correct anomaly and N Wi * v
the index theorem on the lattice. The Nielsen-Ninomiya Dy=—1+ 2[7“(V“+V“) ViVl ®
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whereV , and V7 are the forward and backward difference — A
operators defined as follows: Z:J 1:[ dy(z)dy(z)e” ™. (13
V() =U () (X + 1) = 9(X), In background gauge fields of zero topological char@e (
A . =0), the fermion propagator is
V00 = (x) = U (X= @) (X = ). »
Sr(X,y)=Dp " (x.y). (14
Then the lattice action of single massless fermion in back-
ground gauge field is The free fermion propagator in momentum space is
_ ~ a . 2,y.sin(p,a)
_ s.(0) :_1_|au, 15
An ; ; P(X)Dr(X,y) gh(y), (6) o (P) 2 2[N(p)+u(p)] (15
where the Dirac indices are suppressed. wherea is the lattice spacing and
On a torus k,€[0L,],u=1,2), the Ul) gauge fields
can be decomposed into global, harmonic, and local parts. In u(p)zl—E cogp,a) (16)
this paper we use the following decomposition: o w
27TQX2 2’7Th1 (0) i 27Tn2
Ar(X)=— LiL, + L +Ay"sin L, 2 (7 N(p)= \/uz(p)+2 Sirf(p,,a). (17)
y23
27h, _[2mny The constant terma(2)1 which vanishes in the continuum
- (0)
Ax(X)= L, A sm( L, Xl)’ ®  limitis expected to appear in EGL5) such thaD, * satisfies

the Ginsparg-Wilson relation
where the global part is characterized by the topological
charge ysD '+ D tys=ays (18)

1 ) which is equivalent to Eq(2). The denominator [2N(p)
Q= ﬁf d*xFy, 9 +u(p)] in Eg. (15) has only one zero gi;=p,=0 for the
entire Brillouin zone and its expansion aroupg=p,=0 is
which must be an integer. The harmonic parts are param- s 2 2 ad
etrized by two constants; andh,. The local parts are cho- 2[N(p)+u(p)]=a“(p1+p3z)+0(a’p"). (19

sen to be sinusoidal fluctuations with amplituds®’ and Therefore the free ferm oris | ¢ doub J
0) : erefore the free fermion propagator is free of doublers an
Az and frequencies 2n, /L, and 2mny /Ly whereny and o B ot continuum limit. We remark tiigis trivial

n, are integers. The discontinuity &f;(x) atx,=L, due to 1 o . i .
the global part only amounts to a gauge transformation. Th O_EOirr]lS:LLéC]EOEn satisfying Ginsparg-Wilson relatiomny

field strengthF,=d,A,—d,A, is continuous on the torus.

To transcribe the continuum gauge fields to the lattice, we a

take th_e Iattlce_snes at, =03, - ,(N#—_l)a,_wherea is D Y(x,y)= > “2 ¥,S,(X,y) (20)
the lattice spacing and, =N ,a is the lattice size. Then the u

link variables are ) . )
must satisfy Eq(18). However,the additional requirements

U, (x)=exdiAy(x)a], (10)  that the resulting lattice fermion actiotD ~*)~* is local,
free of species doubling and satisfying the index theorem

27QX, would make the task rather nontriviggo far,Dy, is the only
Uz(X)ZEXF{iAZ(X)a‘Fi |_—15sz<Nz*1>a . (1)  known explicit solution fulfilling all these requirements.

The last term in the exponent bf,(x) is included to ensure IIl. ZERO MODES AND THE INDEX THEOREM
that the field strengtliry, which is defined by the ordered |, the continuum the Dirac operator of massless fermions
product of link variables around a plaquette is continuous on, 5 smooth background gauge field with nonzero topological
the torus. _ _ chargeQ has zero eigenvalues and the corresponding eigen-
The fermion propagatoBg(x,y) is defined by functions are chiral. The index theor€i8] asserts that the
difference of the number of left-handed and right-handed

1 — — . .
y)== d d —Ap (12 zero modes is equal to the topological charge of the gauge
Se(x.y) Zf 1_2[ YDdge (yy), (12 field configuration:
where n_—n,=Q. (22)
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In two dimensions, the so called vanishing theof@halso de(D,—\1)=de( D} —\*1)=def y5(Dp—A*1) ys]
holds:
=de(D,—\*1)=0 (29)
Q>0=n,=0 and Q=n_,
implies thatthe eigenvaluea g are either real or come in
Q<0=n_=0 and Q=-n,. (220  complex conjugate pairdJsing Eqs.(28) and(2), we obtain

Recently, Hasenfratz, Laliena, and Niedermaj&t] and D!D,=DyD{ =Dy, is normal (30
Luscher 12] explicitly showed that any lattice Dirac fermion

operatorD satisfying the Ginsparg-Wilson relation E(Q) and

must obey the index theorem exactly. Sifizgis an explicit T T

solution of Ginsparg-Wilson relation, it must obey the index Dp+Dn=DpDy. (3D
theorem exactly. However, on a finite lattice, after we imple-
ment the inverse square root operatobip by the recursion
formula Eq.(4), it is not knowna priori how the zero modes
and the index theorem can be recovered. It turns out that Di.=\* (32)
even on a very small lattice ¢66), the exact zero modes nrsT s W

with definite chirality are reproduced to a very high accuracyang the eigenvectorisp} form a complete orthonormal set.
and the index theorem is satisfied exactly. For smooth backzquation(31) implies that

ground guage fields, the convergence of the recursion for-

mula Eq.(4) is indeed quite fast. If we require the absolute A+ N= AN N 1)2=1. (33
error of each matrix element satisfying the criterion

SinceD,, is normal,D,, andDE have common eigenfunction
and their eigenvalues come in complex conjugate pairs,

5 : Thus the eigenvalues &@f}, fall on a unit circle with center at
Y5 — (DyDuw)ij| <€ (23) 1 and have the reflection symmetry with respect to the real

. . ) axis. We define the chirality of an eigenmode to be
then it usually takes less than five iterations to reach

=108 for smooth gauge configurations. For very rough

configurations, the convergence could be slow and the accu-  Xs= Plysps=> 2 D[S0 vePpE(x). (39
mulation of roundoff errors in successive iterations could e p

cause the algorithm to be unstable. For exceptional configuysing Eqs.(28) and(32), we obtain

rations, detD,,) =0, then the inverse square root operator in

Dy, is not defined. This is consistent with the fact that &. Dhysds=\E ysobs. (35
breaks down wheDJ\,DW is not positive definite. In fact, the

convergence of Eq4) has become very poor in the vicini- Multiplying gb;r on both sides and using the eigenvalue equa-

ties of exceptional configurations. tion, we get
After the matrixD,, is computed, we solve the following . .t
eigenproblem: Ns@sV5hs=Ng P ¥s5ds. (36)
Then
2 2 DY) BEY) =NspS(x) s=1,... . 2NiN,, T _
rr 24 Xs=$lysds=0 if N#AL. (37)

The chirality of any complex eigenmode is zdfa\q is real
(0 or 2, Egs.(35 and(26) imply that ¢ has definite chiral-
ity +1 or —1:

2 2 B0 g5 =1, (25 Vobs=E s I A=A (39

It is remarkable that the zero modes and th2 eigenmodes
are both chiral. This is true for any satisfying the

wherex andy are site indicese and 8 are Dirac indices,
and ¢, is normalized eigenfunction

In matrix notations, these equations are rewritten as

Dibs=Neb (26) Ginsparg-Wilson relation Eqg2) and the adjoint condition
sosTe Eq. (28). Another useful property of chirality is thaotal
¢;¢s: 1. (27) chirality of all eigenmodes must vanish

Before we solve for the elg_envalues and e_lgenfunctlo_ns _ofz XSZE ¢;y5¢322 2 2 2 [H2(X)]* yg’ﬁ¢§(x)
Dy, we discuss some of their general analytical properties in"s s s X a B

the following. SinceysD,,ys=D.., it follows that

W
y5Dnys=D} (28)

and the secular equation where the completeness relation

22 ; % veP5,5=0, (39)
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TABLE I. The eigenvalues oD,, in a smooth background gauge field of topological chargelQThe values of other parameters are
h,;=0.1, h,=0.2, Al”=0.3, A®=0.4, andn,;=n,=1. The spectrum shows that. =1, n, =0 and the index theorem and vanishing
theorem are satisfied exactly.

Re(\) Im(\) chirality Re(\) Im(\) chirality
2.00000000 0.00000000 1.0000000

1.99981020 0.01948230 0.00000000 1.99981020 —0.01948230 0.00000000
1.98951740 0.14441370 0.00000000 1.98951740 —0.14441370 0.00000000
1.96345153 0.26788272 0.00000000 1.96345153 —0.26788272 0.00000000
1.93881783 0.34441410 0.00000000 1.93881783 —0.34441410 0.00000000
1.93303732 0.35977961 0.00000000 1.93303732 —0.35977961 0.00000000
1.93041388 0.36651060 0.00000000 1.93041388 —0.36651060 0.00000000
1.91625509 0.40059533 0.00000000 1.91625509 —0.40059533 0.00000000
1.90283899 0.42997879 0.00000000 1.90283899 —0.42997879 0.00000000
1.89600810 0.44403770 0.00000000 1.89600810 —0.44403770 0.00000000
1.87536396 0.48346451 0.00000000 1.87536396 —0.48346451 0.00000000
1.86076634 0.50900030 0.00000000 1.86076634 —0.50900030 0.00000000
1.84065148 0.54157648 0.00000000 1.84065148 —0.54157648 0.00000000
1.83027494 0.55735405 0.00000000 1.83027494 —0.55735405 0.00000000
1.80483165 0.59350317 0.00000000 1.80483165 —0.59350317 0.00000000
1.78430700 0.62037289 0.00000000 1.78430700 —0.62037289 0.00000000
1.76077457 0.64901623 0.00000000 1.76077457 —0.64901623 0.00000000
1.73598092 0.67700228 0.00000000 1.73598092 —0.67700228 0.00000000
1.71413711 0.70000585 0.00000000 1.71413711 —0.70000585 0.00000000
1.68715242 0.72651329 0.00000000 1.68715242 —0.72651329 0.00000000
1.65416649 0.75635058 0.00000000 1.65416649 —0.75635058 0.00000000
1.61565168 0.78801841 0.00000000 1.61565168 —0.78801841 0.00000000
1.57389192 0.81893105 0.00000000 1.57389192 —0.81893105 0.00000000
1.51607964 0.85654060 0.00000000 1.51607964 —0.85654060 0.00000000
1.47365734 0.88070922 0.00000000 1.47365734 —0.88070922 0.00000000
1.40247961 0.91542895 0.00000000 1.40247961 —0.91542895 0.00000000
1.30540300 0.95222319 0.00000000 1.30540300 —0.95222319 0.00000000
1.26428480 0.96444468 0.00000000 1.26428480 —0.96444468 0.00000000
1.15140180 0.98847230 0.00000000 1.15140180 —0.98847230 0.00000000
0.98655620 0.99990963 0.00000000 0.98655620 —0.99990963 0.00000000
0.89820891 0.99480580 0.00000000 0.89820891 —0.99480580 0.00000000
0.78417724 0.97643256 0.00000000 0.78417724 —0.97643256 0.00000000
0.65832653 0.93981873 0.00000000 0.65832653 —0.93981873 0.00000000
0.53737749 0.88655537 0.00000000 0.53737749 —0.88655537 0.00000000
0.34130700 0.75241181 0.00000000 0.34130700 —0.75241181 0.00000000
0.10715386 0.45036182 0.00000000 0.10715386 —0.45036182 0.00000000
0.00000000 0.00000000 —1.0000000

Dirac lattice fermion operatdd,, satisfies the adjoint condi-
25 [pe(x)]* E(y) =65, (40 tion but not the Ginsparg-Wilson relation. The chirality of its
complex eigenmodes is zero bitd real eigenmodes do not
for the eigenfunctions ob,, has been used. From E(9), have definite chiralityMoreover, it does not have exact zero
we immediately obtain modes even in a smooth background gauge field with non-
zero topological charge. Unlike thoBesatisfying Ginsparg-
n2+ -n,=n_—n,. (41) Wilson relation has real eigenvalues only at 0 oiDZ, has
real eigenvalues at several different values and the total
The sum of chirality of all+2 eigenmodes is equal to the chirality of all (rea) eigenmodes does not vanish. Therefore,
index of the zero modesTherefore we can identify the strictly speaking, we should not identify the chirality of a
chirality of +2 eigenmodes as the index of the zero modesubset of real eigenmodes B, to be the index of zero
for any D satisfying the Ginsparg-Wilson relation and the modes. Recently, Gattringer, Hip, and Ldrid] conjectured
adjoint condition. On the other hand, the standard Wilsonthat the sum of the chirality of the real eigenmodes of the
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Wilson-Dirac hopping matrix in the vicinity of-2D (D is | | Q-1
the dimensionalityis equal to the minus of the topological h2 - 0.2
charge Q) of the background gauge field. However, the 4 hyoos
Wilson-Dirac fermion operator does not have exact zero ' T T R 12T
modes without tuning the mass parameter for each gauge | . s

configuration.Only in the infinite volume limiare the+ 2D
modes of Wilson-Dirac hopping matrix equivalent to the
zero modes of the Wilson-Dirac fermion operator with zero
bare mass. This implies that the infinite volume limithe = _1 i_
approximate zero modes of the Wilson-Dirac operator will € o — -
become exactly massless with definite chiralities and the in- |

dex theorem can be satisfied exactly. . 7
In the following we derive some basic properties of the s |

unitary matrixV=D,—1 which has eigenvalues;—1. The | . .,/ |

unitarity of V implies that its eigenvalues are unimodular .. o’

(i.e., e'%) and the eigenvalues d, are in the form 1 S — _r -

+€'%. The zero modes db, correspond to those of eigen-
values—1 of V. Since the eigenvalues &f are either real |
(+1 or —1) or come in complex conjugate pairs, it follows !
that 0

detV) = (—1)(N-+M)= (= 1)("-"Ne)= (= 1) o),

(42) FIG. 1. The eigenvalues @, in Table I.

where Eq.(41) has been used in the second equality. EquatudesAi” andA{”) as well as the frequencies7, /L, and

tion (42) can serve as a check for the consistency of the27n2/L, of the background gauge field. We found that the

eigenvalues. exact zero modes are very robust under variations of the
In Table I, the eigenvalues @, are listed for 6<6 lat-  background. For example, f@=1 andn;=n,=1, the ex-

tice in the background gauge fie[eqgs. (7) and (8)] with acct) zero moodes :?md the index theorem are reproduced for

topological chargeQ=1; and harmonic parts with,=0.1  A{® andA” ranging from 0.0 to 0.9.

andh,=0.2, and the local parts witA{”’=0.3, AY=0.4, The stability of zero modes under random fluctuations are

andn,=n,=1. It is evident that the eigenvalues are eithera/So investigated. The rough gauge configurations are ob-

real (O or 2, or come in complex conjugate pairs in a very tained _from the smooth ones by multiplying each link vari-

precise manner. This property is vital to obtain real and posi@Ple with a random phagd7]

tive fermionic determinant. There is one zero mode with ex- _ire. (%)

actly zero eigenvalue and chirality 1. Therefore we have U u(x)r=emoU (%), (43)

n-=1 andn,=0 and the index theore@=n_—n. iS  where 9,(x) is a uniformly distributed random variable in
satisfied exactly. Moreover, the vanishing theore@ (7 7y andr controls the size of roughness. We found that
>0<n..=0 which only holds in two dimensions is also for gauge configurations with topological chafg <6 and
;a_usﬁed. We als_o note that. Eq89) and.(41) are both sat- A(1°>:0.3, A(ZO):OA, andn,;=n,=1, the exact zero modes
|§f|ed. All analytical properties of the eigensystem we haVe'satisfying the index theorem can be reproduced provided that
discussed above are satisfied exactly. The eigenvalues ”J| <03.
Table | are plotted in Fig. 1.

In Table Il, the topological charg®=—2 while other
parameters are the same as in Table |. There are two exact
zero modes of chiralityt- 1. Therefore we hava_=0 and The fermionic determinant de®) is proportional to the
n, =2 and the index theore@=n_—n, and the vanishing exponentiation of the one-loop effective action which is the
theoremQ<0<n_=0 are satisfied. Again all analytical summation of any number of external sources interacting
properties are satisfied exactly. The eigenvalues in Table With one internal fermion loop. It is one of the most crucial
are plotted in Fig. 2. quantities to be examined in any lattice fermion formula-

We have tested many different smooth gauge configurations. The determinant dd,, is the product of all its eigen-
tions by changing the topological charge as well as othegalues
parameters in Eqg.7) and (8). The exact zero modes are
always reproduced such that the index theorem and the van- i im -
ishing theorem are satisfied. All analytical properties we de(Dh)=]_S[ (1+e'%)=(1+e'm) """ 'dey(Dy),
have discussed above are satisfied exactly. We summarize (44)
some of our results in Table III.

We also investigated the robustness of zero modes and thvéhere def(Dy,) is equal to the product of all nonzero eigen-
index theorem under local fluctuations by varying the ampli-values. Since the eigenvalues are either real or come in com-

IV. FERMIONIC DETERMINANTS
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TABLE Il. The eigenvalues oD, in a background gauge field of topological cha@e —2. The values of other parameters of the
gauge field are the same as in Table I. The spectrum shows tha@, n,. =2 and the index theorem and vanishing theorem are satisfied
exactly.

Re(\) Im(\) chirality Re(\) Im(\) chirality

2.00000000 0.00000000 —1.0000000

2.00000000 0.00000000 —1.0000000

1.99989124 0.01474800 0.00000000 1.99989124 —0.01474800 0.00000000
1.99940122 0.03460068 0.00000000 1.99940122 —0.03460068 0.00000000
1.98160401 0.19092820 0.00000000 1.98160401 —0.19092820 0.00000000
1.94402467 0.32987486 0.00000000 1.94402467 —0.32987486 0.00000000
1.93390001 0.35753429 0.00000000 1.93390001 —0.35753429 0.00000000
1.91210916 0.40994742 0.00000000 1.91210916 —0.40994742 0.00000000
1.90373008 0.42810273 0.00000000 1.90373008 —0.42810273 0.00000000
1.90165787 0.43245009 0.00000000 1.90165787 —0.43245009 0.00000000
1.89104063 0.45392355 0.00000000 1.89104063 —0.45392355 0.00000000
1.87807847 0.47851667 0.00000000 1.87807847 —0.47851667 0.00000000
1.85325494 0.52149401 0.00000000 1.85325494 —0.52149401 0.00000000
1.83821525 0.54533952 0.00000000 1.83821525 —0.54533952 0.00000000
1.81009961 0.58629226 0.00000000 1.81009961 —0.58629226 0.00000000
1.79786888 0.60283103 0.00000000 1.79786888 —0.60283103 0.00000000
1.76948744 0.63866194 0.00000000 1.76948744 —0.63866194 0.00000000
1.74331258 0.66894425 0.00000000 1.74331258 —0.66894425 0.00000000
1.71748554 0.69657340 0.00000000 1.71748554 —0.69657340 0.00000000
1.69419796 0.71978413 0.00000000 1.69419796 —0.71978413 0.00000000
1.66871002 0.74352331 0.00000000 1.66871002 —0.74352331 0.00000000
1.63944000 0.76884100 0.00000000 1.63944000 —0.76884100 0.00000000
1.59262521 0.80547834 0.00000000 1.59262521 —0.80547834 0.00000000
1.54820232 0.83634575 0.00000000 1.54820232 —0.83634575 0.00000000
1.48363430 0.87527017 0.00000000 1.48363430 —0.87527017 0.00000000
1.43095251 0.90237461 0.00000000 1.43095251 —0.90237461 0.00000000
1.39959189 0.91669315 0.00000000 1.39959189 —0.91669315 0.00000000
1.26607166 0.96395325 0.00000000 1.26607166 —0.96395325 0.00000000
1.18891548 0.98199335 0.00000000 1.18891548 —0.98199335 0.00000000
1.06804551 0.99768222 0.00000000 1.06804551 —0.99768222 0.00000000
0.90949855 0.99589632 0.00000000 0.90949855 —0.99589632 0.00000000
0.87904797 0.99265835 0.00000000 0.87904797 —0.99265835 0.00000000
0.72327655 0.96094960 0.00000000 0.72327655 —0.96094960 0.00000000
0.56601895 0.90092200 0.00000000 0.56601895 —0.90092200 0.00000000
0.48688458 0.85831962 0.00000000 0.48688458 —0.85831962 0.00000000
0.18512327 0.57963429 0.00000000 0.18512327 —0.57963429 0.00000000
0.00000000 0.00000000 1.0000000

0.00000000 0.00000000 1.0000000

plex conjugate pairs, dd(,) must be real and positivé-or  and(8) and examine the change of ddd,) with respect to
Q=0, thenn,+n_=0 and detD,)=det(D,). For Q the topological charg®. For such gauge configurations, the
#0, thenn,+n_+0 and detD;)=0, but det(D,) still  exact solutior[10] is

provides important information about the spectrum. In con- -

tinuum, exact solutions of fermionic determinants in the gen- det[D(Q)]=N /(ﬁ) 45)
eral background (1) gauge fields on a torus were obtained 21Q|)

by Sachs and Wipf{10]. In the following we compute

det(Dy,) for several different gauge configurations and thenwhere the normalization constantis fixed by

compare them with the exact solutions in continuum. For

simplicity, we turn off the harmonic parh¢=h,=0.0) and N= A /( 2 )
the local sinusoidal fluctuationsA(”)= A{”=0) in Egs.(7) Lil,
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Q =-2 TABLE lll. The zero modes versus the topological charge. The
| | | Mmoo index theorem and the vanishing theorem are satisfied exactly.
4 | ﬁ =03 Equation(41) is also satisfied.
A2 =04
11— — i — T =1
| . | ...\ n2 =1 Q n, n_ n; n,
. * -5 5 0 0 5
| | \ —4 4 0 0 4
| -3 3 0 0 3
52, 04— _1 ______ }; _ -2 2 0 0 2
= | | -1 1 0 0 1
. 0 0 0 0 0
| | z 1 0 1 1 0
* /’ 2 0 2 2 0
| .. | Lo | 3 0 3 3 0
1 +— o e —_— —_— 4 0 4 4 0
—[ | A‘_ 5 0 5 5 0
| | |
0 1 2 on the lattice by the recursion formula Ed). Our numeri-

Re() cal tests in two-dimensional background gauge fields assert
that D,, indeed reproduces the exactly massless fermions on
a torus. In particular, for smooth background gauge fields
such that def D(1)]=1. with nonzero topological charge, the exact zero modes with

In Table IV, the fermionic determinants ¢€D,) are definite chirality are reproduced and the index theorem is

listed for 8x8 and 16< 16 lattices, respectively. They agree Satisfied exactly.
with the continuum exact solutions very well for sm@llbut Due to the recent work of Neuberggt,2], Hasenfratz,
the error goes up to 10% for large~ 10. For a fixedQ, the  Laliena, and Niedermaydi1], and Lischer[12], we now
error decreases with respect to the increasing of the size érave a better understanding of the chiral symmetry on the
the lattice. lattice. The Nielson-Ninomiya theorefl3] can be circum-
We have also computed the fermionic determinantvented by replacing the continuum chiral symmey, ys}
det[D,,] for more general gauge configurations with non-=0 by the Ginsparg-Wilson relatiofD, ys} = D ysD on the
zero topological charge, harmonic parts and local parts; akttice. The Ginsparg-Wilson relation gaurantees that the cor-
well as in the topologically trivial sector with only harmonic rect continuum anomaly can be recovered on the lattice. Cur-
parts or local parts. They are all in very good agreement withently, there are two classes of solutions satisfying the
the continuum exact solutioj40]. Ginsparg-Wilson relation. One of them is the explicit solu-
tion Dy, obtained by Neubergd], which grew out of the
V. CONCLUSIONS AND DISCUSSIONS overlap formalism[3-6]. If one attempts to solve the
In this paper, we have implemented the square root opGinsparg-Wilson relation by writin@ =1+T, one must end
erator in Neuberger’s propoddl] of exactly massless quarks up with the solution #sT)?>=1. Naively one can choose any

FIG. 2. The eigenvalues @, in Table II.

TABLE IV. The fermionic determinant versus the topological cha@eThe normalization constant is
chosen such that d¢Dy(1)]=1. The results for the 88 lattice are listed in the second and the third
columns, while for the 18 16 lattice in the last two columns. The exact solutions are computed according to

Eq. (45).
8x8 16X 16

Q detl[D(Q)]exact detl[Dh(Q)] detl[D(Q)]exact detl[Dh(Q)]
1 1.00000 1.00000 1.00000 1.00000
2 2.82843 2.77348 5.65685 5.66186
3 6.15840 5.96891 24.6336 24.0615
4 11.3137 10.7157 90.5097 90.4894
5 18.3179 16.9340 293.086 286.003
6 26.8177 24.2001 858.166 822.664
7 36.1083 32.0006 2310.93 2170.94
8 45.2548 40.2920 5792.62 5354.28
9 53.2732 45.7353 13637.9 12309.5

10 59.3164 50.2816 30370.0 27336.6
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lattice operatoil which satisfies this condition and gives the level crossings of(m) is equal to the index ob,,.
correct continuum action in the continuum limit. The choice  Although the recursion formula E@4) is quite effective
of T=D,(D!D,,) Y2 where D,, is the standard Wilson- in computingD,, for exactly massless fermions in two di-
Dirac action with negative mass term is identical to Neubergmensions, however, we expect that it would still be expen-
er's overlap solution. We note in passing that for any non-sive for four-dimensional lattice QCD simulations. An algo-
trivial T, the inverse square root operation in T seems to bgithm which invloves at most matrix multiplications but
inevitable Another class of solutions of the Ginsparg-Wilson without matrix inversions at every step of iterations would be
relation is the fixed point lattice Dirac operatbf” [19]  the most desirable. We are now contemplating such possi-
which is the implicit solution of the nonlinear classical bilities [22]. There are three emerging investigations that we
saddle-point equations, and is obtained by recursive iterawould like to carry out in the near future. The first is the
tions. The technical difficulty of that approach is how to spectrum ofDy, in the four-dimensional topologically non-
parametrizen™ such that it is sufficiently precise but the trivial background gauge fields, which is essentially an ex-
computational costs are still affordable. It is instructive totension of the present investigation to four dimensif2&.
compare our numerical results on zero modes with those obFhe second is the quenched QCD calculations of some
tained by Farchioni and Lalierf20] using fixed point lattice ~ chirally sensitive observables such as the kaon weak matrix
Dirac operator. It is evident that their zero modes are noglements which were also calculated by Blum and $24j
exactly zero. The discrepancies are essentially due to thegsing the domain wall quark€5,26. Since the domain wall
truncation errors in the parametrizationhéf” and the round- quarks in the limit of an infinite fifth dimension becomes
off errors in the computations performed at each step of thexactly massless and is equivalentg, it would be inter-
iterations. These errors are intrinsically mixed together andgsting to compare future results of usibg with those given
therefore are very difficult to control. Furthermore, we sus-by domain wall quarks with finite fifth dimensidr24] and
pect that the fermionic determinants détf™) of their hF°  examine whether any improvements can be made by using
would have relatively large errors. On the other hand, we dd,, with exactly massless quarks. The third is to perform
not have any serious technical difficulties to comdDigto a  dynamical fermion simulations d,, in two dimensions, for
very high precision using the recursion formula E¢). example, the Schwinger model. If the results continue to
Therefore we can obtain exact zero modes and fairly accuagree with the continuum exact solutions, we would attempt
rate fermionic determinants even on a finite lattice. to confront one of the most challenging problems in QCD
It is interesting to note that tracing the index theorem onsuch as the chiral symmetry breaking by measuring the spec-
the lattice has a long history. In 1987, Smit and Viik/] tral density of the eigenmodes &f, near zero but not ex-
investigated the spectrum of Wilson and Staggered fermionactly zero.
in topologically nontrivial background gauge fields in two
dimensions. Some remnants of the index theorem were found
but exact zero modes with definite chirality were not ob-
tained. The index theorem on the lattice was also recognized This work was supported by the National Science Coun-
by Neuberger and Narayan4B,21] in the context of the cil, R.O.C. under Grant Nos. NSC86-2112-M002-017 and
overlap formalism. The index was computed by studying theNSC87-2112-M002-013. | wish to thank Herbert Neuberger
level crossings in the spectral flow Bfim)= ysD,,(m) asa and Sergei V. Zenkin for comments, remarks, and discus-
function of m and was verified numerically to equal to the sions since the first version of this paper was posted on the
topological charge of the background gauge field. When th&Veb. | also wish to thank Ulli Wolff for drawing my atten-
lattice Dirac fermion operatobD, was proposed by Neu- tion to Ref.[22] and Philippe de Forcrand for suggesting a
berger[1], it became clear that the index computed fromsimple test on dislocations.
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