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The RP gauge model which allows interpolation between thé Rfd Q3) spin models is studied in 2D.
We use Monte Carlo renormalization techniques for blocking the mean spin-spin intekgtiand the mean
gauge field plaquettéP). The presence of the (@) renormalized trajectory is verified and is consistent with
the known three-loogB function. The first-order “vorticity” transition observed by Solome al. is con-
firmed, and the location of the terminating critical point is established. New scaling flow#jn(P)) are
observed associated with a large exponetn the range 4-5. The scaling flows are found to give rise to a
strong crossover effect between regions of high and low vorticity and are likely to induce an apparent signal for
scaling in the crossover region which we propose explains the scaling observed?fan@®RRP models by
Caraccioloet al. and also in a study of the $@ matrix model by Hasenbusch and Horgan. We show that the
signal for this “pseudo” scaling will occur for the BRpin model in the crossover region which is precisely
the region in which computer simulations are done. We find that tfesgiR model is in the same universality
class as the B) spin model, but that it is likely to require a very large correlation length before the true scaling
of this class sets in. We conjecture that the scaling flows are due either to the influence of a nearby new
renormalized trajectory or to the ghost of the Kosterlitz-Thouless trajectory in the assothtraddel. In the
former case it is argued that the “vorticity” fixed point controlling the critical behavior terminating the
first-order line cannot be identified with the conjectured new renormalized trajectory.
[S0556-282(98)02317-0

PACS numbeps): 11.15.Ha, 05.56-q, 11.10.Lm, 64.60.Fr

[. INTRODUCTION extent by Hasenbusch and Horg&@] who investigated the
continuum limit of the S@) matrix model. The measured
The nature of the phase diagram for two-dimensionadl RP ratio of the mass gap tdys, was compared with the theo-
models has been the subject of much recent discu$sigh retical prediction obtained using the Bethe an$diz There
In [1], Caraccioloet al. compare the correlation length com- Was a disagreement between theory and experiment by about
puted from simulation with that predicted from the perturba-2 factor of 4, the measured correlation length being about 4
tive B function using the exact results for the mass gap irfimes smaller f[han expected. l—_Iowever, the measurement us-
O(N) models. They found that for RRRF®) the observed N9 the covering group was in excellent agreement with
correlation length on lattices up to=512 was smaller than theory. The numerical method used, due tstheret al.[5],
the expected value by a factor of 10L0%). Their conclusion relies in part on measuring the co_rrelanon Iength in a large
was that either the asymptotic regime is indeed very far revolume and establishing that scaling holds with only small
moved from the regime of their study, requiring lattices of @nd perturbative violations. Although in the BDcase there
sizes of 18 (10°), or that these theories were not asymptoti-ere strong |nd|_cat|on_s that the results scaled, the d|scr_ep-
cally free, but that there exists a phase transition at figite anCy between simulation and theory led to the conclusion
(nonzero temperatureCaraccioloet al. indeed provide evi- that the signal for scaling was only apparent and that a true
dence for the latter scenario by showing that their data scal€@ntinuum limit had not been achieved in the large volume
in a manner consistent with a Kosterlitz-Thouless parametriSimulation. It was conjectured that the cause of the deception
zation. The two persuasive features are thus that the correl4/@S the presence of vortices in the @Dmodel, which are
tion length is much smaller than that expected assuming afPSent in the case of the covering group, since
asymptotically free theory and that scaling of the data is I1,(SQ4))=2Z,, TII,(SU(2))=0. (1.2
observed. This phenomenon occurs in a large class of models
and the question is whether the signal for a phase transitio®ne question is, therefore, whether a bogus signal for scaling
at finite 8 and the observed scaling of data are genuine ocan be observed in the presence of vortices in two dimen-
not. sions. In the work presented here this question is addressed
The same effects have been observed to a less extreniethe context of an RPgauge theory which allows an inter-
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polation between the pure RRnd Q3) spin models. This component vector at site and o, , is a gauge field on the

gauge model contairi, vortices coupled to a chemical po- link (x,u) taking values in1,—1]. The plaguette of gauge

tential. We observe the conventiona(3Drenormalized tra- fields is denoted by, (o) where

jectory and show that our results are consistent with the

known three-loogB function. We establish the existence of a

first-order transition, first suggested by Solometnal. [6],  This action is invariant under the gauge transformation

for which the order parameter is the vorticity. The critical

point terminating this first-order line will be in the domain of S 0xS0

anew “vorticity” fixed point_. Using Monte Carlo renprmal- Ty = Ox O, O+ o> (2.3

ization group(MCRG) techniques, we observe certain flows

on which the blocked observables scale and suggest thatith g,e[1,—1].

these scaling flows are due to the influence of a nearby renor- Vortices reside on plaquettes whd?g(o)=—1 and are

malized trajectory which gives rise to the possibility of the suppresse@enhancedlif the chemical potentiglk is positive

existence of a fixed point other than thé3Done. We argue (negative. The pure @3) model corresponds tp—~ and

that it is unlikely that any new fixed point can be identified the pure RP model corresponds ta=0.

with the inferred “vorticity” fixed point. Our results

strongly indicate that the apparent or “pseudo” scaling be- . SIMULATION

havior is due to a crossover effect associated with the prox- A local undate w d comprisin mbination of

imity of the new scaling flows to the line of RBpin models h ocal update was used comprising a co ation o
eat-bath, microcanonical, and demon schemes. For fixed

in coupling constant space. The crossover is between regions : : : X
of high and low vorticity, which emphasizes the crucial role 92U9¢€ fields the spins} were first updated by a heat-bath

of vorticity in the observed properties of the model. Wherealgorlthm which can be generalized toKl)( and so for this

relevant, our results confirm or complement those obtaineaeqlon we will consides, to be a.nN-com_ponent Spin of
by Solomonet al. [6] in an earlier study of this model, unit length. The heat-bath method is to project each spin onto

Another reason for studying the RBauge models is that a 3D supspace of this-dimensional space in which the spins
it has been conjecturd@] that in 2D the continuum limit in take their values. The 3D subspace is chosen at random, but

; T . : is the same for all spins during one lattice update. Let the
the RP spin model is distinct from that in the (@ spin =~ the )
model. Nigdermayeet al.[7] and Hasenbusdg] h;?/)e sFl)Jg- projection ofS, onto this space be denot&j. Then clearly

gested that this conjecture is incorrect and that there does (ROi=(S0j,, 171,23, Ej1<j;<js<=N, (3.1
exist a continuum limit in the RPmodel which is controlled
by the Q3) fixed point. The essential question is whether orwhere thej; are chosen randomly subject to the restrictions
not the RB model is in the same universality class as theabove. The single-site probability distribution fRy is then
O(3) model. By using MCRG methods to show the topology Q(R)=expM,-R,) (3.2
of renormalization group trajectories in the RBauge ) oo
theory, we find that a consistent and simple interpretation ofvhere
our results is that the RRand Q3) models are in the same
universality class: an interpretation which supports the M,=B>, (Rut uOx,pt Rx— O i) - (3.3
conclusions of Niedermayat al. [7] and Hasenbuscl8]. ®

All results are for RP gauge models, but the simulation
can be generalized to RP! and a cursory investigation for
N>3 has indicated that broadly similar results hold for this
general case.

In Sec. Il we define the model under study, in Sec. Ill we

PX(O-):UX,[J10X+[L1,M2’UX+M2,/.Llo-)(,ﬂz' (22)

The heat-bath update of the spin configurati¢g}
—{S'} is done successively at each site by repladtydoy
R, chosen from the distributio®@(R,) and making the as-
signment

briefly describe the simulation techniques, in Sec. IV we (S5, =(RYi, =123,

define the Monte Carlo renormalization group method used o

and describe the measurement procedure, in Sec. V we (S=(Sdks  VKk#j1,j2,]3.

present the results, in Sec. VI we give a discussion, and in (3.4

Sec. VIl we draw our conclusions. The microcanonical spin upda{é&}—{S'} is also done

successively at each site and is given by the replacement

Il. MODEL 25, MM
The action used is S— =-S5+ szx (3.5
X
SiSiioh=-8 Xz;; SX'SH/#‘TX’MJF'“EX: Px(o) |, The demon update is applied to the gauge fields only. In

(2.1)  general, itis only necessary to introduce one demon variable
for the whole gauge configuration. However, when running
wherex=(X{,X5), X1, X,€Z, 1=<Xq, Xo=<L, labels the sites on a massively parallel computer, it is necessary to have one
of an integer 2D square lattice of sileand u takes values demon per processor and then each demon must migrate
in u1=(0,1), u,=(1,0). The spinS, is a unit length three- through the whole lattice. This is easily achieved by moving
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demons sequentially between processors. We illustrate the 1IV. MONTE CARLO RENORMALIZATION SCHEME
method with one demon variabte d=0. The action in Eq.

(2.1) is augmented by the demon to become The objective is to establish the topology of renormaliza-

tion group (RG) flows in the relevant large-scale variables
Stemod {S}H{0},d)=S({S} {o}) + Bd. (3.6  and infer the phase structure of the model. After sufficient
) ) i _ blocking we assume that we are dealing with renormalized
Then for each link(x,u) the trial gauge field update is opservables, and so different phases will be distinguished by
(0, d) = (—0x,.d"), whered" is chosen so thasemoniS  singularities in the renormalization group flows. This has
unchanged. That is, been discussed, for example, by Nienhuis and Nauerj§érg
r—d— . and by Hasenfratz and Hasenfratf]. We assume that there
0" =0 205 Se Scut MO n 05 v are at most two relevant couplings in the neighborhood of
+ s v Tx— vy T x— vt )} (8.7 any fixed point in which we are interested. We also assume
) ) that the chosen blocked operators have components which
where v is the orthogonal vector t. The update is ac- gpan the two-dimensional space of relevant operators, i.e.,
cepted only ifd’=0. Note that the update is microcanonical the operators conjugate to these relevant couplings. From our
in the augmented configuration space of fields plus demoggayjier experiencé3] and from the surmise stated in the in-
and hence it is independent gf _ troduction that vorticity plays a vital role, we chose to study
One complete lattice update consisted of one heat-bathq,y the mean values of the spin-spin interactoand of the

update followed by an alternating sequencéNgf, microca-  pjaquetteP flow under blocking. For a given configuration
nonical and demon updates. The valudgi, that optimizes  these quantities are defined by

the decorrelation of the configurations depends on many fac-

tors, and we did not spent much effort in tuniig,y, but 1

regardNyp~10 as a reasonable value. The heat-bath update A= V] E S St uTx s

took about 10 times the time of the combined microcanonical o

and demon updates, and so there was little time penalty for 1

this choice. Depending on the coupling constant values, we P= v Z Py (o). 4.1
X

found that decorrelated configurations were produced within
2-30 iterations. Lattice sizes ranged front @4 512, and
typically the numbers of configurations per run were, e.g.{A) lies in[0,1] and(P) lies in[—1,1], and the mean vor-
2% 10° for 64% and 5x 10° for 256°. ticity is defined byV=(1—P)/2.

The simulations were carried out on the HITACHI  For each configuratiofS,g} on a lattice of sidel, we
SR2201 computers in the Cambridge High Performancelerive a blocked configuratiofS®,o®} on a lattice of side
Computing Facility and in the Tokyo Computing Centre.  L/2. The blocking transformation for the spins is

SE _ S(+ a(S(+ﬂla-x,p1+ S(+;L20-x,p2+ S(_/‘lo-x_”'l*"l—i_ S(—p.za'x—nz ,[l,z) (4 2)
B |[numeratofr ' '

Based on earlier work by Gottlot al.[11], the parametes 5 W, +Wy+W_

was chosen to be 0.0625. Choosing other reasonable values UXB,MBZW- (4.9
for @ was found not to change any outcome or conclusion. * 0 -

This gauge-invariant blocking transformation is shown in
Fig. 1.

To block the gauge field the products of gauge fields wer
computed for the three Wilson lines joining the end points o
the blocked link shown in Fig. 1. These field products ar
denoted byW,, W, ,W_. For the blocked link joining to
X+2pu, theW, are given by

This blocking transformation has the important property that
ensures that two vortices on adjacent plaquettes of the
original lattice will cancel and not survive in the blocked
8attice. This is clearly true if the vortices lie in the same 2
X 2 block since they add mod 2, but the majority rule guar-
antees cancellation also when two adjacent vortices lie on
either side of the block link separating two neighboring
blocks. This is illustrated in Fig. 2.
This blocking scheme gives the most local blocked action
for free field theory{11] and makes na priori assumptions
W =0y 3 00x— p uOx+ v, q T x4 20— w0 (4.3  about the possible topology of the RG flows under study. To
try to optimize the schemgl2,13,14 is not an option be-
where v is the orthogonal vector tg. The blocked gauge cause optimization requires, by its nature, that the existence
field was assigned the majority sign of tié : and location of fixed points and renormalized trajectories are

Wo= 0y, w0+ e

W+ = Oy, p0x+ V,[LO-X+ pmt V,MO-X+ 2p, v
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already known. This is not the case here. Any attemp to couplings at the scale of the blocked lattice, which, after a
priori tune the scheme with respect to features yet to baufficient number of blocking steps, depend on the relevant
discovered is not possible. renormalized couplings only. We assume that a “sufficient
For a given pair of coupling constan{8,) and given number” is at least 3, a fact that is substantiated below by
lattice sizel. X L, each configuration was blocked by succes-our results.
sive transformations until the blocked lattice size was83 There are errors due to finite-size effects which can be
The operator expectatioq®\) (8,u) and(P) (B8,x) were  parametrized in terms of the paramezer{, /L, wheref, is
then measured and averaged over all configurations. For the correlation length on tHeXx L lattice. Because the target
given (B,n) this was done forlL=64,128,256,512, which lattice is the same size throughout, the valueg a$sociated
gives four points on a segment of a flow in thAf,(P)) with coinciding points, Eq(5.1), are similar and so the mis-
plane with each point labelled by the initial lattice size. Eachmatch in the finite-size errors between different segments
point corresponds to a rescaling of length by a factor of Joining up to make a longer flow will be minimized. There
compared with the previous point. will nevertheless be a residual finite-size effect which is gen-
The errors in the observables were determined by averaggrally not possible to estimate except in the case of tt8& O
ing the results for successive configurations in bins ¥f 2 spin model, which is discussed in the next section.
M=0,1,2 ..., andcalculating the errors on the ensemble of The details of the flows can depend nand the details of
bin-averaged measuremenfd5|. The true error is the the blocking scheme. It follows that conclusions about the
asymptotic value achieved for large enoughThe decorre- physical properties of the theory can be deduced only from
lation length can also be estimated from the behavior of theiniversal or topological properties of the flows such as the
error as a function oM. The number of independent con- occurrence of fixed points and singular behavior.
figurations ranged from about 600 for=512 to in excess of

2% 10* for L=64. Errors were also estimated from the en- A. O(3) renormalized trajectory
zgrmsble of independent measurements from different proces- In the limit z— o we recover the () spin model, and to

test our procedures and assumptions, we should, at the very
least, be able to recover the perturbatfdéunction for this
model. The projection of the @) renormalized trajectory
Each flow segment consisting of four points, but moreonto the(B,u) plane is theg axis. We expect corrections to
complete flows, can be built up by extending the flow inscaling due to finite lattice-spacing artifacts which will be a
either direction by tuning to new coupling@{(,u’) so that  function of L. We find that our method works well for suf-
b ficiently large 8 once the tree-level approximation for these
(M (B, )= (A (B ), scaling corrections has been taken into account. Consider the
(PYL/(B' ;' )=(P) (B, 1), (5.))  block observablé\®=S - S with the blocking transforma-

tion defined in Eq(4.2). For largeB we write

V. RESULTS

for someL andL’. The flow for a given 8’,u") can then be

computed. In general, this will be an approximate procedure S.=q /1_:8_1¢>2<+:8_1/2¢x1 (5.2

because a segment in th@A},(P)) plane is the projection

onto this plane of part of a full flow in the higher dimen- whereq=(1,0,0) and¢p=(0,¢,,¢,). Using Eq.(4.2) and

sional spalce r(])f ot;]servalples_. By thmtiIng l?sddes_cribed _We_dCémaeping terms up t@ 1, we find after one blocking step that

ensure only that the projections of blocked points coincide,

not the blocked points themselves. In principle, we need to SXBB=q\/1—B_l¢>2<B+,3_1/2‘1’XB- (5.3

match a full complement of observables by tuning a com-

plete set of couplings, conjugate to these observables, whickith

define the most general action consistent with the symmetry. bt a3 b

In general, the effect of couplings which are not included = X—MX“‘,

cannot be properly taken into account. However, we assume B 1+4a

that in the neighborhood of a fixed point there will be at most . . .

two relevant couplings and that the projection onto (Big.) and whereu is summed over nearest_ neighbor links. For

plane of the space they span is nonsingular. The effect df"9€/ We expect the blocked expectation valu, on the

irrelevant couplings is mitigated by performing an initial 88 lattice to behave as

blocking by a factor which will significantly reduce the er- (A) =1—-C(L)/B+0(1/8?). (5.5

rors induced by the projection so that we are effectively deal-

ing with renormalized operators. Since the target lattice iFor large enough. we expectC(L) to attain its limiting

always 8x8, the size of this factor depends on the initial value. However, there is still some variation@{L) for the

lattice size and hence on available CPU time. For our studyalues ofL we are using. In order to accommodate the bulk

this initial blocking factor had a minimum value of 8. of this correction to scaling, we define the effective coupling
Because we always block a number of times, the operag 4 by

tors so generated are nonlocal from the point of view of the

original lattice and so represent large-scale smoothed vari- Ber(L,B)= C(L) (5.6)

ables. These observables on the original lattice reflect the efft = 1-(A).(B) '

(5.9
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FIG. 1. Blocking strategies for spins and gauge fields. A gauge- 1 \'4 __9
covariant linear combination of a spin and its nearest neighbors HVV VII
defines the blocked spin and the gauge field on the blocked link, 1 1

which connects the solid-black sites, is assigned the majority sign . .
of the three Wilson linesV, , Wy, W._ . FIG. 2. The results of example blocking of two vortex configu-

rations. Since vortices add mod 2, the blocking should yield either
and modify the matching condition of E¢6.1) in this case no blocked vortices or one blocked vortex depending on whether
to become the original region contained an even or odd number of vortices.

The majority rule of Eq(4.4) guarantees this important property.

Bei(L,B)=Berl(L",B"). (5.7

We then expect that sequence the larger values@fi; agree well, and only g8

decreases is there an increasing discrepancy which signals a

) uw  du significant deviation of the three-loop approximation to ghe
log(L/L")= Ju B’ (5.8 function from the correct value and also the possible effect of
the neglected_-dependent O(13?) terms in Eq.(5.6). Our
whereu=1/8, u’'=1/p'. expectation is confirmed that the method correctly repro-

C(L) is determined from a free field theory calculation on duces asymptotic scaling and probes the renormalization
an L2 lattice of the kinetic term for the blocked fiei,, ~ 9roup flow close to the renormalized trajectory.
which is defined on the targdalzB lattice by iteration of Eq.
(5.4). This calculation is done easily numerically, and the B. New scaling flows
results are given in Table |. We udg;=8 in subsequent
calculations.

Using Eq. (5.8 and the three-loogs function from[5],
we determine sequences for the bare coupfinfipr which

In Figs. 3—9 we plot the flow segments for varidiu)
values in the (A),(P)) plane, where the longer flows in
Figs. 3 and 4 are composed of superimposing segments using

Eq. (5.2). There is a flow on which the observables scale.

successive terms correspond to blocking by a factor of 2. Irﬁ'his is shown in Figs. 3 and 4. Nearby flows also showed
Table Il we compare the values Bty for the two sequences : - - :
B=5.0, 4.8861, 4.7721 and 2.0, 1.8803, 1.7560. If our Simu_scalmg, but are not included in the figures for reasons of

lation reproduces the corred function. then the matchin clarity. To see that observables scale, each flow of four
conditiorf) a ' 9 points was successively overlaid using the tuning described

in Eq. (5.1) with L' =L/2. For the scaling flows the points of

Ber( 2™ "L, Br) = Berl L. Br) (5.9
TABLE Il. Values of B¢«(L,B) for sequences of bare couplify
must be satisfied, wherg, is thenth term in the sequence. computed using Eq(5.8) where successive couplings in the se-
From Table Il we see that this condition is indeed very wellquence correspond to blocking by a factor of 2. The required match-
satisfied for the sequence starting wik-5.0. For the other ing condition, Eq.(5.9), for verification of asymptotic scaling is
very well satisfied for the sequence at largieiand the deviation in
TABLE I. The functionC(L) defined in Eq«(5.5 for blocking the other sequence is largest for the smaller valug8 afd is due
from anL? lattice for target lattices witt.g=8,4. C(L) gives the  to deviation of the three-loop approximation to tBéunction from
tree approximation for the dependence lofa of corrections to  the true value and possibly to terms neglected in (Bd).
scaling in the @) spin model.

Initial lattice sizeL

L C(L,Lg=8) C(L,Lg=4) B 64 128 256 512
16 0.53890071 0.54363018 5.0 43581)  4.2273)  4.1075)
32 0.56795927 0.55935100 48861  4.3481)  4.2443)  4.1103) 3.9955)
64 0.58370587 0.56866918 47721  4.24Q1)  4.1241)  4.0023)
128 0.59303041 0.57453025 2.0 1.27524)  1.13664)  0.98527)
256 0.59889307 0.57829938 1.8803  1.273®@)  1.12844) 0.97297)  0.81944)
512 0.60266260 0.58074276 1.7560  1.121(8) 0.95324)  0.800G2)
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0.8 r .

0.7 - .

<P>

0.6 B

0.5 1

04 r .

n 1

0.3 - | - |
0.2 0.4 0.6 0.8

<A>
FIG. 3. The scaling flow built up from the RG flow segments of set 1 given in Table Ill. Each segment consists of four points
corresponding to the(A),{P)) values on arh. =8 lattice blocked for given couplings from lattices wlth= 64, 128, 256, 512, respectively.
The segments are adjusted so that they overlay each other, and it can be seen from this figure, and from Table lll, that the points on different

segments coincide very well, indicating that scaling holds. There are two errant points corresponding to the tw¢ leagiest and.
=512.

the overlaid flow segments coincide very well within errorsresidual dependency on analyzed. It could be suggested
(the tuning is not absolutely exacshowing that there are that an optimized RG schenid2,13,14 would eliminate
only very small effects from the irrelevant operators. Inthese minor deviations, but there are impediments to the
Table Il we give the values of(@A),{P)) for points on the implementation of such a strategy. As discussed more fully
segments making up two such scaling flows, labelled set fater, it is unclear that there actually exists a fixed point
and set 2, together with the initial lattice sizes and couplingassociated with these flows, and even if there is, we argue
constant values. that no point in the(8,u) plane can be in its domain of
The tuning described by E¢5.1) was done by trial and attraction. Consequently, not even a singular blocking
error. We tried to estimate the effect of small increments inscheme can move the supposed fixed point so that the corre-
the coupling constant values by using the method of responding fixed point theory is in the class of models we are
weighting, but this was found not to work. This was mainly studying. A similar argument excludes any possibility of de-
because the blockedA),(P)) values were very sensitive to veloping an improved action associated with the scaling
the initial couplings and so to use reweighting was not aflows. In order to do so we need to establish the existence,
realistic possibility. Also, it was found that the effect of a nature, and position of the fixed point—information we do
change inB could be partly compensated by a changewin  not have. Overall, the deviation from scaling for the scaling
This was because the JacobiA),(P))/3(B, 1) was rela-  flows is not large, and we must allow for the possibility that
tively small and presumably a better choice for the pair ofit may be due, in some measure, to finite lattice-spacing ar-
observables and/or initial couplings would increase its valuetifacts of the kind analyzed for @3). However, there are a
However, in no case was this Jacobian dangerously smaléw points shown which do deviate substantially from scal-
and tuning by trial was effective. ing for which such an explanation is unlikely. For both sets
For these flows we did not apply a compensation for scalthese points are for the two largest values usegBfand for
ing corrections of the kind used in the previous section forthe largest initial lattice sizé =512. We defer a discussion
the Q3) model. It is not possible to carry out a similar tree- of the reasons why they do not scale well until Sec. VI.
level calculation to determine the compensation, if any, as a The couplings which generate the scaling flow denoted by
function of L/a since the model and the appropriate cou-set 1 correspond to points on the flow separated by a block-
pling(s) associated with the scaling flows are not known.ing factor of 2. A plot of exp{-u) versusg=1/3 for these
Also, the data presented in this section were obtained beforgoints can be approximated by a straight line with all except
the details of the (8) analysis were known and the possible the one with smallesB well fitted by
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0.9 s
Q
vV FIG. 4. Detail of Fig. 3. Caption

as for Fig. 3.
0.8 .
0.7 " i | 1 | | | I
0.5 0.6 0.7 0.8 0.9
<A>
exp(—u)=1.741)—2.994)g. (5.10 ever, the consistency of the fit should be taken only as a

phenomenological parametrization and it is likely that a dif-
This form is motivated by plots shown in Solomenal.[6] ferent scaling form such as derived from Kosterlitz-Thouless
where certainly the position of the first-order transition at(KT) behavior would give an equally good fit. For example,
zero temperatureg=0) is most easily expressed in terms of in [16] Seileret al. study theZ(10) model in 2D which they
g and expelu/). Phenomenok)gica”y, we find that it is con- Presume has a KT transition. They find that both second-

sistent to associate a scaling exponentith the scaling flow order and KT scaling forms give equally good fits near the
using the relation transition and that, indeed, the KT form is hard to reconcile

with conventional theory.
(919" ., _ N
W—b , b=2P, (5.1 C. First-order transition

Solomonet al.[6] use simple arguments to suggest that a

where the number of blockings for, andg,, differs byp (a  line of first-order transitions occurs in the range<u(8)
factor of 2° in change of scaein order for the correspond- <pu,, u;=—0.293,u,~—0.26. This line of transitions will
ing points in the (A),(P)) plane to coincide on the scaling terminate in a critical point associated with a continuous
flow. This behavior is expected fgrclose tog* if an infra-  transition, implying that a critical surface intersects ¢Bgu)
red fixed pointg* exists. The value af* is a free parameter coupling constant plane. Confirmation of the first-order tran-
which is chosen to obtain the best fit assumiagn Eq.  sition is shown in Figs. 5 and 6 where, respectively, the
(5.11) is constant. Even s@* is not very well determined Vvalues of(A) and(P) for a lattice ofL=128 are shown
by this alone and we find a range of valugs~0.13—0.15 Plotted againsj for fixed 8=6.0,7.0,7.5,8.0. It is clear that
to be acceptable, for which the various pairings of Coup"ngghere is no transition fo8=6.0,7.0, but that there is likely to

for set 1 from Table |1l give the values farshown in Table ~ D€ @ first-order transition fo3=7.58.0. This places the
IV. The values of* in Table IV are inferred using the cr_ltlcal point in thej range 70 B* <7.5, which is consstgnt
linear fit of Eq.(5.10. Note that the possible values gt in  With the investigation of Solomoet al. [6]- The value ofu

o . varies a little, but is close te-0.26. There is no detectable
lggﬁzle\;iLeef%;mog\é?d;;imézeiﬂrf rgngglzh_ghi[]e dependence oh, and studies on lattices with=256 and

dimension of the relevant operator associated with the Sca_=512 have shown identical results within statistical errors.
ing flows is P rom Fig. 5 we infer that a good order parameter distinguish-

ing the two phases is the vorticity. There is also a disconti-
A=D-1/k~1.75-1.8. (5.12 nuity in {(A) shown in Fig. 6 which is, however, not indepen-
dent of the discontinuity ifP). The value of A) will vary
A word of caution. The definition ok used in Eq(5.11) is  rapidly since it is sensitive to, and thus reflects, the discon-
appropriate for conventional second-order behavior. Howtinuous change in the vorticity. The effective potential will
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TABLE Ill. Values of the blocked observable$A),(P)) for the flow segments constituting two neigh-
boring scaling flows labelled by set 1 and set 2. The values of the couggslabelling each segment are
given and the different points on a given segment are labelled by the initial latticd_sitke blocked
observables were measured after blocking to a fixed target lattice size<8f 8caling of the blocked
observables can be seen to hold extremely well for each set by noting théfihéeR)) values lying on any
given diagonal sloping from bottom left to top right agree very closely indeed, except for the largest two
values ofB for L=512. Set 1 is shown in Figs. 3 and 4.

Initial lattice size,L

(B.) 64 128 256 512
0.818943) 0.805879) 0.79132) 0.77613)

4.26,-0.045 0.983304) 0.98092) 0.97533) 0.96848)
40,00 0.807933) 0.79132) 0.76902) 0.7391)
-0, 0. 0.980216) 0.974G3) 0.95614) 0.9273)
572 0.06 0.792615) 0.76781) 0.72734) 0.64248)
Set 1 12, 0. 0.9740®) 0.95472) 0.90538) 0.7703)
0.769476) 0.72512) 0.63634) 0.49956)

3.45,0.125 0.95761) 0.90254) 0.760110) 0.5581)
0.72332) 0.62982) 0.48722) 0.28785)

3.18, 0.187 0.90234) 0.75284) 0.54304) 0.33485)
4,00, 0.0 0.815743) 0.802286) 0.78712) 0.76949)
00, 0. 0.987875) 0.98491) 0.97824) 0.9672)
0.802364) 0.78461) 0.76112) 0.7241)

3.73,0.0833 0.985186) 0.97682) 0.95715) 0.9053)
0.7847%7) 0.75771) 0.70853) 0.6112)

Set 2 3.495, 0.14 0.976d) 0.95383) 0.88657) 0.7213)
23 018 0.75961) 0.707G1) 0.60624) 0.45647)
3, 0. 0.95442) 0.88263) 0.71789) 0.5061)
506 0.23 0.705G3) 0.60023) 0.4485) 0.23832)
.06, 0. 0.88217) 0.71087) 0.499G9) 0.29734)

show no discontinuity, and it is crude but reasonable to supeontinuous expectation value which is sensitive to the vor-
pose that one particular linear combinationfoédndP plays  ticity and is a good order parameter. The simple and persua-
this role. In Fig. 7 we plo{P) agains{A), and indeed it can sive argument of Solomoet al.[6] is based on minimizing
be seen that there is no sign of a sharp discontinuity and thahe energy ap3= to show that a first-order transition oc-
the locus of points is reasonably linear. The outcome is thagyrs in(P) at w()=1~2—1. The argument also depends
the combined operator on continuity of the energy, which, g8=%, means that
Uc(x) is identified with the local energy operator. This will
be only approximate fog<<oe.

That the transition is first order should be confirmed by
with y~—0.29, has a continuous expectation value acrosivestigating the. dependence of the order parametép,),
the transition. The orthogonal combinatibi}(x) has a dis- which we have not yet done due to pressure of computer

uc<x>=§ Se- Ses uOxut YPx(0), (5.13

TABLE 1IV. The scaling exponent calculated using Eq(5.11) and various pairings of couplings
g=1/B from set 1 given in Table IIl. Two different choices fogX{,u*) are used which correspond to the
range giving consistent results far

(g*,u*) Scaling exponenk
0.13,-0.305 5.10 4.92 4,919 4.90 4.76 4.83 4.84 491 4.88 4.84
0.15,-0.261 4.19 4.10 4.15 4.18 4.02 4.13 4.18 4.25 4.26 4.28
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FIG. 5. (P) defined by Eq(4.1) as a function ofu for 3=6.0 FIG. 7. (A) versus(P), defined by Eq(4.1), for B=6.0 (O),

time. However, the results in Figs. 5 and 6 convincingly

demonstrate the expected discontinuity on the largest laf® M9ht label the segments in order from the lowest in the
tices. P Y g %igure (lowest{P)) to the highesthighest(P)).

The critical point terminating the first-order line will be in We_ concentrate in partichI%ar on the fiow s_egments of set
the domain of a fixed point, the “vorticity” fixed point, with 4, which correspond to the_ pr'n model . =0). These
sSegments are shown for variogsn the range 3.9—4.5 where

a renormalized trajectory on which the vortex density scales, ; ) ;
the crossover in the flows is very strongly marked, occurring

':jheunsSictj;ﬂmng a new continuum theory with nonzero Vortexbetweenﬁ=4.17 and 8= 4.19. The valut.as.of <§°\>,<P>)
blocked fromL=64—L =8 show little variation in values,
but when blocked from largdr, the variation is very strong

D. Crossover of flows indeed. Moreover, it is clear that f@¢=3.9—4.1 the flow is
In Figs. 8 and 9 there are two further sets of flow seg-dominated by the proximity of the scaling flows, represented

ments, sets 3 and 4, which each show a clear crossover as a

function of initial couplings. Set 3 lies to the left of set 4.

These two sets are examples of the crossover effect which

we infer occurs in a narrow region formed by the neighbor-

hood of a continuous line of theories in thg,u) plane.
The couplings associated with sets 3 and 4 are listed in

Table V where, for each set, the couplings reading from left  ggo |-

1.00 A
Q.
v
0.80
0.90
A
< 080 0.70 , ‘ . .
0.55 0.65 0.75 0.85
<A>
0.70 FIG. 8. Two examples sets of flows, sets 3 and 4, showing the
crossover of flows. Set 3 lies to the left of set 4, and tBgw)
values corresponding to these sets are given in Table V. Set 4 is for
0.60 . variousg in the RF model (u=0) in the range8=3.9—4.5. There
o031 -0.26 is rapid variation in the renormalized A),(P)) values for small

1 changes irB, indicating a narrow crossover from a region of high to
low renormalized vorticity. Fo~4 the RP flows closely follow
FIG. 6. (A) defined by Eq(4.1) as a function ofu for 3=6.0 the scaling flow of Fig. 3, shown here as the dashed curve, implying
(©), 7.0(0), 7.5(¢), and 8.0(A). scaling will apparently hold until, for larges, the crossover occurs.
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1.00 ‘ to ‘vorticity’

<P>

0.95
0.70

080 0.85 FIG. 10. An artist’s impression of the RG flows consistent with

the simulation results. The(®) fixed point controls the continuum
FIG. 9. Detail of Fig. 8. Caption as for Fig. 8. limit of RP? (u=0) and neighboring theories. A line of critical
points terminates the first-order surface and defines new continuum
as the dashed line in Figs. 8 and 9, which will induce a signalimits characterized by nonzero continuum vorticity. The observed
for scaling in pure RPwhen g~4. However, asB is in- renormalized trajectory is shown associated with a new infrared
creased, there is a strong crossover effect, ang3fen.25, fixed point in the critical surfacésolid circlg. There are cogent
the flow is consistent with dominance by the renormalizeg®’guments that this fixed point does not control the second-order

trajectory associated with the asymptotically fre)Cfixed transition terminating the observed first-order line in tt@w)
point at (8%, u*)=(,). Consequently, the apparent scal- plane. The scenario presented here is consistent with this view, and

ing signal will only be transitory. For finited there will an ultraviolet fixed poinfopen circle separates the two domains of

always be some free vortices, but 85 Bergecorey WE €X- attraction shown. The crossover region is the neighborhood of the

. . b ) f h ith line.
pect that the density of free vortices will vanish faster than> " 1ace SHOWN with dotted outline

1/¢ and the vortex density will not scale. This behavior istwo points to each other, it is tempting to identify the new
consistent with the absence of a phase transition at ffhéte  fixed point with the “vorticity” fixed point. However, there

<A>

well as with the @3) type continuum limit in RP. is no direct evidence that this is so and there are arguments
against such an identification. The first is that we would ex-
VI. DISCUSSION pect the continuum limit defined at the ‘“vorticity” fixed

point to be Ising-like since the order parameter is based on a

The observatipn of the scaling flows repqrted in Sec. V BIocally discrete variable: the plaquette opera®gfo). The
POSEs the question of whethe_r We can attribute them to thgxponentx for Ising-like critical points isk=8/15, whereas
influence of a nearby renormalized trajectory and so infer theft

ist f fixed point. One int tati fth or the new renormalized trajectory we find=4—5. This is
existence ot a new fixed point. une Interpretation of the e.V"cIearIy inconsistent with the proposal. The second argument
dence for scaling is that a new renormalized trajectory exist

: ) e % that the identification of the two fixed points means that
with exponentk~4 -5 and that a new fixed point lies some-

. . : the “vorticity” critical point is in the domain of attraction of
where in the complete space of coupling constants with POhe new fixed point. The consequence is that there must be a
jection onto the(B,u) plane of 3* ~7, u*~—0.28). Evi-

. . fixed point of the flows in the(A),(P)) plane in the limit
,‘?‘e”".e. pEe§ented n Sec. .V C Sh.OWS ﬂlat thgre” IS filso fhat the initial lattice size is large enoudh:~ . This is true
vorticity” fixed point associated with the “vorticity” criti- because flows that have bare couplings held at the critical
cal point located at aboupB(~7, w.~—0.26) which termi-

tes the first-order i B f th imitv of th oint values must be in the critical surface and so flow to-
nates the first-order fine. because of the proximity Of theS&,44s the new fixed point. In turn, this implies that the cor-

relation lengthé,(B,u) for a state interpolated bj must

TABLE V. The couplings associated with sets 3 and 4. For eactfliverge at the “vorticity” critical point (Bc,uc). This is
set, the couplings reading from left to right label the segments irinlikely since we eXpeCﬁA(_,B,,U«) to be bounded from above

order from the lowest in the figurdowest (P)) to the highest by the correlation length in the (@ model at the samg,

(highest(P)). namely,&éa(8,). This is because for <o the presence of
vortices introduces disorder in the system which acts to re-
(B,m) duce the correlation length at fixg® However, &A(B,)
diverges only in the limit3—0, the 3) fixed point, and
Set 3 3'24 3'26 g'io 8'25 g'go g'go hencegA(,Q,M) ge_mn_ot diverge at[fc.,,uc), cqntradicting the
i : i i i ' proposed identification of the two fixed points. Although we
3.9 4.05 4.17 4.19 4.29 45 did not carry out an exhaustive investigation, we found no

Set4 0.0 0.0 0.0 0.0 0.0 0.0 evidence for a fixed point of the(f),(P)) flows from the

simulations described in Sec. V B.

074510-10



NATURE OF THE CONTINUUM LIMIT IN THE 2D RP. .. PHYSICAL REVIEW D 58 074510

In Fig. 10 we shown an artist’s impression of a possiblelished that a fixed point actually exists, and so any attempt at
topology of the RG flows in coupling constant space consiseither approach would be premature. In any case, it is not
tent with this interpretation and with the results presented irpossible for any conjectured fixed point to be “moved” out
Sec. V. The two axes associated with the couplif@yg) are  Of its domain of attraction into thé3,u) plane, and so the
augmented by a third which represents all other couplings¢hoice of operators of an optimized scheme is unclear and
There are three fixed points shown. One is the usual asympbe choice of a simple fixed point action is unclear. Pertur-
totically free Q3) infrared fixed point, and another is the Pation theory cannot be used to improve the action, and un-
new infrared fixed point we have identified in this work, both ke in many successful applications of the perfect action
shown as solid circles. The “vorticity” fixed point is not idea, this suggested new fixed point theory is very unlikely to
shown, but its domain of attraction is separated from that oP€ @symptotically free. _ _ _
the new fixed point by an ultraviolet fixed poirfopen The strong mflgence of the scz_illng _flows gives rise to a
circle). The critical surface bounds the surface of first-ordercrossover effect in the flows which signals the crossover
transitions, and the two phases associated with this transitidhom the vortex to the spin-wave regions of the phase dia-
are distinguished by the vortex density being large in ongram. For example, in pure RRhis occurs at abou
phase and small in the other. The line of intersection of the=4-18, ©=0. We would naturally associate this crossover
first-order surface with thég,u) plane is the line of first- with the observed flrst—order line, but it is glear that thg
order transitions reported above. There are a number of posirength of the effect is due to the nearby scaling flows. This
sible continuum limits in this model, each identified with a Would suggest that the first-order line and the scaling flows
different fixed point. A nonzero vortex density will be asso- Were related, but as argued above, a simple relationship is
ciated with the continuum limit taken at the critical point fuled out and it is unclear whether the proximity of the two
controlled by the “vorticity” fixed point. At the new fixed features is a coincidence or not. The region in which the
point there are two relevant directions, but we cannot be surf0SSover occurs is quite narrow and has been shown as a
what the relevant observables are since in this scenario tri@irface with dotted outline in Fig. 10. A8 is increased at
action must be augmented by other couplings so that it caffx€d « through this “crossover region,” the vorticity rap-
be tuned to lie in the critical surface and in the domain ofidly decreases from a high to low value especially in the
attraction of this fixed point. However, the presence of this’€ighborhood of the critical surface. This effect means that
renormalized trajectory dominates all flows in its neighbor-the disorder also decreases rapidly, and we would expect a
hood, and its influence will only be diminished if points in correspondlng rapid increase in the vector and tensor corre-
the critical surface are approached which are not in its dolation lengthsé, and &7, which are deduced, respectively,
main of attraction. The example scenario of Fig. 10 is com-fr0”11the correlatorsGy(x,y) and G+(x,y) defined for
plicated, but we have found no simpler topology consistenf by

with the results if we demand that the scaling flows are due Gy(xY)=(SS)
to a nearby renormalized trajectory in an extended model. ’ ¢
A different interpretation is that the scaling flows are due Gr(x,y)={[S(x)- S(y)]?)— 1IN. (6.1

to the ghost of the Kosterlitz-Thouless renormalized trajec-
tory in the equivalent (@), or XY, model. A cogent argument BecauseG,, is not gauge invariant, it will vanish unless it is
against a Kosterlitz-Thouless fixed point occurring in non-evaluated in a fixed gauge. This is analogous to the situation
Abelian models has been given by Hasenbusd8]nbut it  in QED where the electron propagator is not gauge invariant,
was conjectured ir{3] that some remnant of Kosterlitz- but the pole mass is. Technically, the gauge-fixed electron
Thouless behavior might nevertheless survive in models gpropagator has a cut whose discontinuity is a gauge-
this kind and give rise to the pseudoscaling behavior reportedependent function of, but whose branch point defines the
in [3]. As remarked in Sec. V B, the fit to the exponant gauge-invariant mass. This is due to the continuous nature of
using Eq.(5.11) should not be taken to rule out KT behavior the gauge group, which does not apply in our case. A rea-
in favour of conventional second-order behavior. Indeed, theonable gauge choice would be to maximzg,oy ,. Here
large value forkx mitigates in favor of a KT interpretation Gy takes the same form as the tensor correlator defined by
[17]. This explanation has the virtue of simplicity over the Caraccioloet al. [1] and Sokalet al. [2]. BecauseGr is
alternative picture above, but it is unclear how to describegauge invariant, it does not require gauge fixing before
the mechanism more fully. evaluation. When the vorticity is vanishingly small, the
The deviation from scaling for the larg8 points for  gauge field is equivalent to a pure gauge and can be gauge
L=512 in sets 1 and @rable ) can be explained by noting transformed to the trivial configuratiam, ,=1,V X, u. The
that there is no fixed point for thg4A),(P)) flows, and so physical observables in the theory are then insensitive to the
the attempt to follow the scaling flow to larggrand into a  chemical potentiale, and the theory is in the universality
fixed point will fail as the critical surface is approached. Theclass of the @) fixed point.
conjectured renormalized trajectory dominates by virtue of In the Q(3) continuum limit bothé, and &; will diverge,
its large exponent, but scaling will eventually be violated asbut in the continuum limit defined by the vorticity fixed point
B increases towardg~7. we expect botlt,, andét to remain finite because, as already
It is not feasible to use either an optimized blocking discussed above, the presence of disorder means that they
scheme or an improved action to elucidate the details of theill be bounded from above, respectively, §y(B,*) and
scaling flows or to improve the matching. It is not estab-£¢(B,), the correlation lengths at the same valueBoin
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the Q3) spin model. In other words, at fixed we expect rapidly in this region as a function @, this means that only
both &, and & to increase ag increases, achieving their a small range of3 is usable and that this range corresponds
maximum values ap = in the Q3) model. This increase to theories where the vorticity is not too low sinég would
could be very rapid in the vicinity of the crossover region. otherwise already be too large. The conclusion is that such
The operators interpolating the states @), and G; are, simulations will see an apparent scaling due to the strong
respectively, V;=S and T;=SS—-1/N§;. Since influence of the scaling flows. However, this scaling is not a
(Vi)=(Tj;)=0, they show no discontinuity across the first- signal for a continuum limit in pure RPbut is due to the
order line and hencé, and&; will not diverge at the critical ~ proximity of the crossover region to the scaling flows. On
point terminating the first-order linégauge fixing is under- much larger lattices a@ is increased, a crossover to true
stood where necessanyif either of &, or & did diverge, it scaling would eventually be observed: the scaling associated
would contradict the expectation that they are bounded fronwith the Q(3) fixed point. However, this would be for pro-
above by their corresponding values inN)(as mentioned hibitively large values of¢,, perhaps as large ag~10°
above. In principle, we could also studyg(x,y) [7]. We believe that this effect explains the results presented
=(Uc(X)Uc(y))e since(U¢) is continuous across the first- in [1], who observe scaling in RPRP®], but who find that
order line and it couples to th&wave two-particle Of)  the observed correlation length is smaller by a factor df 10
singlet state. The associated correlation leriglshould co-  [10%] than that deduced assuming that the theory is asymp-
incide with &; in the continuum limit if the conventional totically free. We suggest that this study is actually in the
scenario is assumed. We suggest that the divergent correlarossover regime where the correlation length is diminished
tion length at the critical point is associated with the cor-by the disordering effect of vortices and the scaling, which is
relator of Up(x) or, equivalently, with the vorticity cor- perhaps due to a new renormalized trajectory, is only appar-

relator ent. The true scaling regime associated with tHg) QO(4)]
fixed point will correspond to much larger correlation
Gp((x,¥))=(P,Py). (6.2 lengths than those studied. We believe that a similar effect
caused the bogus signal for scaling in the analysis of the
In this study,Gp was not computed. SO4) matrix model[3] and the mismatch between the ob-

The pure RPmodel (w=0) does not intersect any criti- served mass-gap and the Bethe-ansatz predictions.
cal surface except the one in the basin of attraction of the We conclude that the RRind Q3) spin models are in the
O(3) fixed point at@=o. This confirms the conjectures of same universality class and that there is no evidence to the
Niedermayeet al.[7] and Hasenbusd8] that RP and Q3)  contrary. This confirms the conclusions of Hasenbush
have the same continuum limit. In a simulation of puréRP and Niedermayeet al.[7], but is at variance with the propo-
Kunz and Zumbach18] observe the rapid decrease in vor- sition of Caraccioloet al. [2] that the continuum limits of
ticity that we have associated with the crossover region, anthese two models are distinct. These latter authors propose
Niedermayeret al. [7] comment that in this region a sharp that there is a continuous set of universality classes in a 2D
transition to a huge value faf, is to be expected. Our result model with mixed isovector and isotenso(3Dspin interac-
is that the crossover is very strongly marked in the renormaltions. The @3) and RP theories correspond to the pure is-
ized quantities obtained after substantial blocking has bee@vector and pure isotensor interactions, respectively, and the
performed. The crossover region separates two phases, fioposition of Caracciolet al. requires that these two mod-
one of which the vorticity density is high with a background els be in different universality classes. The work presented in
of vortices pairs overlaid by a gas of free vortices, and in théhis paper shows that the opposite is true and hence that the
other the vorticity density is low and does not scalefas existence of a continuous set of universality classes in the
—m. These two phases are also separated by a first-ordétixed model is unlikely.
line, and we conjecture that a nonzero scaling limit for the
vortex density could exist at the terminating critical point.
Huang and Polonyj19] have discussed the existence of a VIl CONCLUSIONS
continuum limit with a nonzero scaling vorticity in a gener-  In this paper we have studied the 2D R@auge model
alized 2D sine-Gordon model and the nonconservation of théhat is characterized by two coupling8,»), wherew is the
kink current. A similar analysis could be fruitful in non- chemical potential controlling the vorticity computed from
Abelian models of the kind discussed in this paper, althoughhe gauge field plaquette expectation value. We have found
it is unclear if the same techniques are directly applicable. that the role played by the vorticity in the nature of the phase

In the simulation of the 2D S@) matrix model[3], a diagram is crucial. Using standard methods, we confirm the
bogus signal for scaling was observed which led to an incorexistence of a first-order transitiofiFigs. 5-7, first sug-
rect measurement of thre/ A5 ratio. In the context of RP  gested by Solomoet al. [6], in the (8,u) plane separating
we would expect a similar effect fgg~ 3.9 because in this phases of high and low vorticity. The critical point terminat-
case the model renormalizes close to the scaling flows, andg this first-order line is established to lie in the range 7.0
so in the neighborhood of this coupling we should expect to<8.<7.5, u.~—0.26, which implies the existence of a
see a good scaling signal. The effect is enhanced by the larg®orticity” fixed point controlling the continuous transition
exponent k~4 associated with these flows. Simulationsat (8;,u.). We use the Monte Carlo renormalization group
which are designed to compute A s must havety<L for  for blocking the spin-spin interaction and plaquette expecta-
some largest practical lattice size Becauseé, is rising  tion values(A) and{P) to investigate the topology of the
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renormalization group flows. We verify the presence of theet al. [2], but confirming the work of Hasenbus¢B] and

O(3)-renormalized trajectoryat u =) and find results con-
sistent with the known three-log function for sufficiently

Niedermayeret al. [7]. It also gives an explanation for the
results discussed by Caracciatal. [1]. In Fig. 10 an art-

large B8 once the finite lattice-spacing artifact has been takenst's impression of the renormalization group flows is given
into account. We establish the existence of new scaling flowfor one scenario consistent with our results. The natures of
in the (A),(P)) plane(Figs. 3 and % and conjecture that any new fixed points are not established because of the
they are due either to the ghost of the Kosterlitz Thoulesknown difficulty [16] in distinguishing between fits of differ-
renormalized trajectory in th¥Y model or to a new renor- ent scaling forms and the compatibility of the observed scal-
malized trajectory and its associated fixed point, whiching with a second-order scaling form, given by E§.11), is
should lie out of the(8,u) plane in the complete space of of phenomenological significance only. It is quite possible
couplings. The scaling flows are consistent with a criticalthat any fixed point whose existence we infer from the data is
exponentk~4-5, and the projection of the conjectured of Kosterlitz-Thouless type.

fixed point onto thég,u) plane is deduced to be in the range  Our investigation has shown that the nature of gauged
B*~6.5-7.5u*~—-0.31 to—0.26. Although the values of spin models is complicated and it is difficult to pin down
(Be. 1) and (B*,u*) are very similar, there are strong ar- more about the nature and location of the topological fea-
guments against identifying the conjectured fixed point withtures of the renormalization group flows without more infor-
the “vorticity” fixed point. One is that the exponent is  mation concerning the relevant operators in each case. How-
much larger than that expected at the “vorticity” fixed point, ever, it is clear that a fixed point in a larger coupling constant
and another is that such an identification would imply a fixedspace can be close enough to the subspace of simple models
point in the (A),(P)) flows for bare couplingsf.,x.), thatit very strongly influences observables and the outcome
with a consequent divergence in certain correlation length<f tests for scaling in exactly that region accessible by simu-
This is contradicted by the fact that, because of the presendation, namely, for those couplings for which the correlation
of nonzero vorticity, these correlation lengths are boundedengths have increased to the practical limit measurable on
from above by the corresponding quantities in thé3)0 modern computers. This influence is strengthened if the ex-
model (uw=o) at the same3, which are known not to di- ponent of the associated renormalized trajectory is large. The
verge for3<o. A consequence is that the critical point at model studied in this paper is a good example of this effect.
(Be.mc) cannot be in the domain of attraction of the conjec- It would be interesting to more accurately locate the criti-
tured fixed point. The scaling flows dominate the flows incal point at (3.,u) terminating the first-order line and in-
their vicinity and in particular give rise to a crosso\€igs.  Vvestigate the continuum limit it defines, and it may be that
6 and 7 between regions of high vorticitffower 8) and low  such a study could usefully employ an optimized blocking
vorticity (higher 8) accompanied by a rapid increase in the sScheme and/or an improved action.

correlation length as the disorder is reduced. We conclude
that simulations in the neighborhood of the crossover region
for u>—0.26 will show “pseudo” scaling 3] because of
the proximity of these scaling flows. The true continuum This work was supported by NATO collaborative re-
limit for such models will not be observed until true scaling, search Grant No. CRG950234 and DOE Grant Number DE-
controlled by the @) fixed point, has been established at FG02-85ER40237. The authors wish to thank lan Drum-
larger 8 and very much larger correlation length. This is themond for useful conversations. The computing resources
case for the RPspin model f+=0) whose continuum limit were provided by the High Performance Computing Facility,
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