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Nature of the continuum limit in the 2D RP2 gauge model
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The RP2 gauge model which allows interpolation between the RP2 and O~3! spin models is studied in 2D.
We use Monte Carlo renormalization techniques for blocking the mean spin-spin interaction^A& and the mean
gauge field plaquettêP&. The presence of the O~3! renormalized trajectory is verified and is consistent with
the known three-loopb function. The first-order ‘‘vorticity’’ transition observed by Solomonet al. is con-
firmed, and the location of the terminating critical point is established. New scaling flows in (^A&,^P&) are
observed associated with a large exponentk in the range 4–5. The scaling flows are found to give rise to a
strong crossover effect between regions of high and low vorticity and are likely to induce an apparent signal for
scaling in the crossover region which we propose explains the scaling observed for RP2 and RP3 models by
Caraccioloet al. and also in a study of the SO~4! matrix model by Hasenbusch and Horgan. We show that the
signal for this ‘‘pseudo’’ scaling will occur for the RP2 spin model in the crossover region which is precisely
the region in which computer simulations are done. We find that the RP2 spin model is in the same universality
class as the O~3! spin model, but that it is likely to require a very large correlation length before the true scaling
of this class sets in. We conjecture that the scaling flows are due either to the influence of a nearby new
renormalized trajectory or to the ghost of the Kosterlitz-Thouless trajectory in the associatedXY model. In the
former case it is argued that the ‘‘vorticity’’ fixed point controlling the critical behavior terminating the
first-order line cannot be identified with the conjectured new renormalized trajectory.
@S0556-2821~98!02317-0#

PACS number~s!: 11.15.Ha, 05.50.1q, 11.10.Lm, 64.60.Fr
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I. INTRODUCTION

The nature of the phase diagram for two-dimensional RN

models has been the subject of much recent discussion@1,2#.
In @1#, Caraccioloet al. compare the correlation length com
puted from simulation with that predicted from the perturb
tive b function using the exact results for the mass gap
O(N) models. They found that for RP2 (RP3) the observed
correlation length on lattices up toL5512 was smaller than
the expected value by a factor of 107 (104). Their conclusion
was that either the asymptotic regime is indeed very far
moved from the regime of their study, requiring lattices
sizes of 109 (105), or that these theories were not asympto
cally free, but that there exists a phase transition at finitb
~nonzero temperature!. Caraccioloet al. indeed provide evi-
dence for the latter scenario by showing that their data s
in a manner consistent with a Kosterlitz-Thouless parame
zation. The two persuasive features are thus that the cor
tion length is much smaller than that expected assuming
asymptotically free theory and that scaling of the data
observed. This phenomenon occurs in a large class of mo
and the question is whether the signal for a phase trans
at finite b and the observed scaling of data are genuine
not.

The same effects have been observed to a less ext
0556-2821/98/58~7!/074510~13!/$15.00 58 0745
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extent by Hasenbusch and Horgan@3# who investigated the
continuum limit of the SO~4! matrix model. The measure
ratio of the mass gap toLMS, was compared with the theo
retical prediction obtained using the Bethe ansatz@4#. There
was a disagreement between theory and experiment by a
a factor of 4, the measured correlation length being abou
times smaller than expected. However, the measuremen
ing the covering group was in excellent agreement w
theory. The numerical method used, due to Lu¨scheret al. @5#,
relies in part on measuring the correlation length in a la
volume and establishing that scaling holds with only sm
and perturbative violations. Although in the SO~4! case there
were strong indications that the results scaled, the disc
ancy between simulation and theory led to the conclus
that the signal for scaling was only apparent and that a
continuum limit had not been achieved in the large volu
simulation. It was conjectured that the cause of the decep
was the presence of vortices in the SO~4! model, which are
absent in the case of the covering group, since

P1„SO~4!…5Z2 , P1„SU~2!…50. ~1.1!

One question is, therefore, whether a bogus signal for sca
can be observed in the presence of vortices in two dim
sions. In the work presented here this question is addre
in the context of an RP2 gauge theory which allows an inter
© 1998 The American Physical Society10-1
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polation between the pure RP2 and O~3! spin models. This
gauge model containsZ2 vortices coupled to a chemical po
tential. We observe the conventional O~3! renormalized tra-
jectory and show that our results are consistent with
known three-loopb function. We establish the existence of
first-order transition, first suggested by Solomonet al. @6#,
for which the order parameter is the vorticity. The critic
point terminating this first-order line will be in the domain
a new ‘‘vorticity’’ fixed point. Using Monte Carlo renormal
ization group~MCRG! techniques, we observe certain flow
on which the blocked observables scale and suggest
these scaling flows are due to the influence of a nearby re
malized trajectory which gives rise to the possibility of t
existence of a fixed point other than the O~3! one. We argue
that it is unlikely that any new fixed point can be identifie
with the inferred ‘‘vorticity’’ fixed point. Our results
strongly indicate that the apparent or ‘‘pseudo’’ scaling b
havior is due to a crossover effect associated with the p
imity of the new scaling flows to the line of RP2 spin models
in coupling constant space. The crossover is between reg
of high and low vorticity, which emphasizes the crucial ro
of vorticity in the observed properties of the model. Whe
relevant, our results confirm or complement those obtai
by Solomonet al. @6# in an earlier study of this model.

Another reason for studying the RP2 gauge models is tha
it has been conjectured@2# that in 2D the continuum limit in
the RP2 spin model is distinct from that in the O~3! spin
model. Niedermayeret al. @7# and Hasenbusch@8# have sug-
gested that this conjecture is incorrect and that there d
exist a continuum limit in the RP2 model which is controlled
by the O~3! fixed point. The essential question is whether
not the RP2 model is in the same universality class as t
O~3! model. By using MCRG methods to show the topolo
of renormalization group trajectories in the RP2 gauge
theory, we find that a consistent and simple interpretation
our results is that the RP2 and O~3! models are in the sam
universality class: an interpretation which supports
conclusions of Niedermayeret al. @7# and Hasenbusch@8#.

All results are for RP2 gauge models, but the simulatio
can be generalized to RPN21 and a cursory investigation fo
N.3 has indicated that broadly similar results hold for th
general case.

In Sec. II we define the model under study, in Sec. III w
briefly describe the simulation techniques, in Sec. IV
define the Monte Carlo renormalization group method u
and describe the measurement procedure, in Sec. V
present the results, in Sec. VI we give a discussion, an
Sec. VII we draw our conclusions.

II. MODEL

The action used is

S~$S%,$s%!52bS (
x,m

Sx•Sx1msx,m1m(
x

Px~s! D ,

~2.1!

wherex5(x1 ,x2), x1 , x2PZ, 1<x1 , x2<L, labels the sites
of an integer 2D square lattice of sideL, andm takes values
in m15(0,1), m25(1,0). The spinSx is a unit length three-
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component vector at sitex andsx,m is a gauge field on the
link (x,m) taking values in@1,21#. The plaquette of gauge
fields is denoted byPx(s) where

Px~s!5sx,m1
sx1m1 ,m2

,sx1m2 ,m1
sx,m2

. ~2.2!

This action is invariant under the gauge transformation

Sx→gxSx,

sx,m→gxsx,mgx1m , ~2.3!

with gxP@1,21#.
Vortices reside on plaquettes wherePx(s)521 and are

suppressed~enhanced! if the chemical potentialm is positive
~negative!. The pure O~3! model corresponds tom→` and
the pure RP2 model corresponds tom50.

III. SIMULATION

A local update was used comprising a combination
heat-bath, microcanonical, and demon schemes. For fi
gauge fields the spins$S% were first updated by a heat-ba
algorithm which can be generalized to O(N), and so for this
section we will considerSx to be anN-component spin of
unit length. The heat-bath method is to project each spin o
a 3D subspace of theN-dimensional space in which the spin
take their values. The 3D subspace is chosen at random
is the same for all spins during one lattice update. Let
projection ofSx onto this space be denotedRx. Then clearly

~Rx! i5~Sx! j i
, i 51,2,3, 1<j1,j2,j3<N, ~3.1!

where thej i are chosen randomly subject to the restrictio
above. The single-site probability distribution forRx is then

Q~Rx!}exp~Mx•Rx!, ~3.2!

where

Mx5b(
m

~Rx1msx,m1Rx2msx2m,m !. ~3.3!

The heat-bath update of the spin configuration$S%
→$S8% is done successively at each site by replacingRx by
Rx8 chosen from the distributionQ(Rx8) and making the as-
signment

~Sx8! j i
5~Rx8! i , i 51,2,3,

~Sx8!k5~Sx!k , ;kÞ j 1 , j 2 , j 3 .
~3.4!

The microcanonical spin update$S%→$S8% is also done
successively at each site and is given by the replacemen

Sx→Sx852Sx1
2~Sx•Mx!Mx

uMxu2
. ~3.5!

The demon update is applied to the gauge fields only.
general, it is only necessary to introduce one demon varia
for the whole gauge configuration. However, when runn
on a massively parallel computer, it is necessary to have
demon per processor and then each demon must mig
through the whole lattice. This is easily achieved by movi
0-2
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NATURE OF THE CONTINUUM LIMIT IN THE 2D RP2 . . . PHYSICAL REVIEW D 58 074510
demons sequentially between processors. We illustrate
method with one demon variabled, d>0. The action in Eq.
~2.1! is augmented by the demon to become

Sdemon~$S%,$s%,d!5S~$S%,$s%!1bd. ~3.6!

Then for each link~x,m! the trial gauge field update i
(sx,m ,d)→(2sx,m ,d8), whered8 is chosen so thatSdemonis
unchanged. That is,

d85d22sx,m$Sx•Sx1m1m~sx,nsx1n,msx1m,n

1sx2n,nsx2n,msx2n1m,n!%, ~3.7!

where n is the orthogonal vector tom. The update is ac-
cepted only ifd8>0. Note that the update is microcanonic
in the augmented configuration space of fields plus dem
and hence it is independent ofb.

One complete lattice update consisted of one heat-b
update followed by an alternating sequence ofNMD microca-
nonical and demon updates. The value ofNMD that optimizes
the decorrelation of the configurations depends on many
tors, and we did not spent much effort in tuningNMD , but
regardNMD'10 as a reasonable value. The heat-bath upd
took about 10 times the time of the combined microcanon
and demon updates, and so there was little time penalty
this choice. Depending on the coupling constant values,
found that decorrelated configurations were produced wi
2–30 iterations. Lattice sizes ranged from 642 to 5122, and
typically the numbers of configurations per run were, e
23106 for 642 and 53105 for 2562.

The simulations were carried out on the HITACH
SR2201 computers in the Cambridge High Performa
Computing Facility and in the Tokyo Computing Centre.
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IV. MONTE CARLO RENORMALIZATION SCHEME

The objective is to establish the topology of renormaliz
tion group ~RG! flows in the relevant large-scale variable
and infer the phase structure of the model. After sufficie
blocking we assume that we are dealing with renormaliz
observables, and so different phases will be distinguished
singularities in the renormalization group flows. This h
been discussed, for example, by Nienhuis and Nauenberg@9#
and by Hasenfratz and Hasenfratz@10#. We assume that ther
are at most two relevant couplings in the neighborhood
any fixed point in which we are interested. We also assu
that the chosen blocked operators have components w
span the two-dimensional space of relevant operators,
the operators conjugate to these relevant couplings. From
earlier experience@3# and from the surmise stated in the in
troduction that vorticity plays a vital role, we chose to stu
how the mean values of the spin-spin interactionA and of the
plaquetteP flow under blocking. For a given configuratio
these quantities are defined by

A5
1

2V (
x,m

Sx•Sx1msx,m ,

P5
1

V (
x

Px~s!. ~4.1!

^A& lies in @0,1# and ^P& lies in @21,1#, and the mean vor-
ticity is defined byV5(12P)/2.

For each configuration$S,s% on a lattice of sideL, we
derive a blocked configuration$SB,sB% on a lattice of side
L/2. The blocking transformation for the spins is
SxB

B 5
Sx1a~Sx1m1

sx,m1
1Sx1m2

sx,m2
1Sx2m1

sx2m1 ,m1
1Sx2m2

sx2m2 ,m2
!

unumeratoru
. ~4.2!
hat
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Based on earlier work by Gottlobet al. @11#, the parametera
was chosen to be 0.0625. Choosing other reasonable va
for a was found not to change any outcome or conclusi
This gauge-invariant blocking transformation is shown
Fig. 1.

To block the gauge field the products of gauge fields w
computed for the three Wilson lines joining the end points
the blocked link shown in Fig. 1. These field products a
denoted byW0 ,W1 ,W2 . For the blocked link joiningx to
x12m, theWi are given by

W05sx,msx1m,m ,

W15sx,nsx1n,msx1m1n,msx12m,n ,

W25sx2n,nsx2n,msx1m2n,msx12m2n,n , ~4.3!

wheren is the orthogonal vector tom. The blocked gauge
field was assigned the majority sign of theWi :
es
.

e
f
e

sxB ,mB

B 5
W11W01W2

uW11W01W2u
. ~4.4!

This blocking transformation has the important property t
it ensures that two vortices on adjacent plaquettes of
original lattice will cancel and not survive in the blocke
lattice. This is clearly true if the vortices lie in the same
32 block since they add mod 2, but the majority rule gu
antees cancellation also when two adjacent vortices lie
either side of the block link separating two neighbori
blocks. This is illustrated in Fig. 2.

This blocking scheme gives the most local blocked act
for free field theory@11# and makes noa priori assumptions
about the possible topology of the RG flows under study.
try to optimize the scheme@12,13,14# is not an option be-
cause optimization requires, by its nature, that the existe
and location of fixed points and renormalized trajectories
0-3
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CATTERALL, HASENBUSCH, HORGAN, AND RENKEN PHYSICAL REVIEW D58 074510
already known. This is not the case here. Any attempt ta
priori tune the scheme with respect to features yet to
discovered is not possible.

For a given pair of coupling constants~b,m! and given
lattice sizeL3L, each configuration was blocked by succe
sive transformations until the blocked lattice size was 838.
The operator expectations^A&L(b,m) and ^P&L(b,m) were
then measured and averaged over all configurations. F
given ~b,m! this was done forL564,128,256,512, which
gives four points on a segment of a flow in the (^A&,^P&)
plane with each point labelled by the initial lattice size. Ea
point corresponds to a rescaling of length by a factor o
compared with the previous point.

The errors in the observables were determined by ave
ing the results for successive configurations in bins of 2M,
M50,1,2, . . . , andcalculating the errors on the ensemble
bin-averaged measurements@15#. The true error is the
asymptotic value achieved for large enoughM. The decorre-
lation length can also be estimated from the behavior of
error as a function ofM. The number of independent con
figurations ranged from about 600 forL5512 to in excess of
23104 for L564. Errors were also estimated from the e
semble of independent measurements from different pro
sors.

V. RESULTS

Each flow segment consisting of four points, but mo
complete flows, can be built up by extending the flow
either direction by tuning to new couplings (b8,m8) so that

^A&L8~b8,m8!5^A&L~b,m!,

^P&L8~b8,m8!5^P&L~b,m!, ~5.1!

for someL andL8. The flow for a given (b8,m8) can then be
computed. In general, this will be an approximate proced
because a segment in the (^A&,^P&) plane is the projection
onto this plane of part of a full flow in the higher dimen
sional space of observables. By tuning as described we
ensure only that the projections of blocked points coinci
not the blocked points themselves. In principle, we need
match a full complement of observables by tuning a co
plete set of couplings, conjugate to these observables, w
define the most general action consistent with the symme
In general, the effect of couplings which are not includ
cannot be properly taken into account. However, we ass
that in the neighborhood of a fixed point there will be at m
two relevant couplings and that the projection onto the~b,m!
plane of the space they span is nonsingular. The effec
irrelevant couplings is mitigated by performing an initi
blocking by a factor which will significantly reduce the e
rors induced by the projection so that we are effectively de
ing with renormalized operators. Since the target lattice
always 838, the size of this factor depends on the init
lattice size and hence on available CPU time. For our st
this initial blocking factor had a minimum value of 8.

Because we always block a number of times, the ope
tors so generated are nonlocal from the point of view of
original lattice and so represent large-scale smoothed v
ables. These observables on the original lattice reflect
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couplings at the scale of the blocked lattice, which, afte
sufficient number of blocking steps, depend on the relev
renormalized couplings only. We assume that a ‘‘sufficie
number’’ is at least 3, a fact that is substantiated below
our results.

There are errors due to finite-size effects which can
parametrized in terms of the parameterz5jL /L, wherejL is
the correlation length on theL3L lattice. Because the targe
lattice is the same size throughout, the values ofz associated
with coinciding points, Eq.~5.1!, are similar and so the mis
match in the finite-size errors between different segme
joining up to make a longer flow will be minimized. Ther
will nevertheless be a residual finite-size effect which is g
erally not possible to estimate except in the case of the O~3!
spin model, which is discussed in the next section.

The details of the flows can depend onz and the details of
the blocking scheme. It follows that conclusions about
physical properties of the theory can be deduced only fr
universal or topological properties of the flows such as
occurrence of fixed points and singular behavior.

A. O„3… renormalized trajectory

In the limit m→` we recover the O~3! spin model, and to
test our procedures and assumptions, we should, at the
least, be able to recover the perturbativeb function for this
model. The projection of the O~3! renormalized trajectory
onto the~b,m! plane is theb axis. We expect corrections t
scaling due to finite lattice-spacing artifacts which will be
function of L. We find that our method works well for suf
ficiently largeb once the tree-level approximation for the
scaling corrections has been taken into account. Conside
block observableAB5SxB

B
•SyB

B with the blocking transforma-

tion defined in Eq.~4.2!. For largeb we write

Sx5qA12b21fx
21b21/2fx, ~5.2!

whereq5(1,0,0) andf5(0,f1 ,f2). Using Eq.~4.2! and
keeping terms up tob21, we find after one blocking step tha

SxB

B 5qA12b21FxB

2 1b21/2FxB
, ~5.3!

with

FxB
5

fx1a(mfx1m

114a
, ~5.4!

and wherem is summed over nearest neighbor links. F
largeb we expect the blocked expectation value^A&L on the
838 lattice to behave as

^A&L512C~L !/b1O~1/b2!. ~5.5!

For large enoughL we expectC(L) to attain its limiting
value. However, there is still some variation inC(L) for the
values ofL we are using. In order to accommodate the bu
of this correction to scaling, we define the effective coupli
beff by

beff~L,b!5
C~L !

12^A&L~b!
~5.6!
0-4
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and modify the matching condition of Eq.~5.1! in this case
to become

beff~L,b!5beff~L8,b8!. ~5.7!

We then expect that

log~L/L8!5E
u

u8 du

b~u!
, ~5.8!

whereu51/b, u851/b8.
C(L) is determined from a free field theory calculation

an L2 lattice of the kinetic term for the blocked fieldFx,
which is defined on the targetLB

2 lattice by iteration of Eq.
~5.4!. This calculation is done easily numerically, and t
results are given in Table I. We useLB58 in subsequen
calculations.

Using Eq.~5.8! and the three-loopb function from @5#,
we determine sequences for the bare couplingb for which
successive terms correspond to blocking by a factor of 2
Table II we compare the values ofbeff for the two sequence
b55.0, 4.8861, 4.7721 and 2.0, 1.8803, 1.7560. If our sim
lation reproduces the correctb function, then the matching
condition

beff~2~m2n!L,bn!5beff~L,bm! ~5.9!

must be satisfied, wherebn is thenth term in the sequence
From Table II we see that this condition is indeed very w
satisfied for the sequence starting withb55.0. For the other

FIG. 1. Blocking strategies for spins and gauge fields. A gau
covariant linear combination of a spin and its nearest neighb
defines the blocked spin and the gauge field on the blocked
which connects the solid-black sites, is assigned the majority
of the three Wilson linesW1 , W0 , W2 .

TABLE I. The functionC(L) defined in Eq.~5.5! for blocking
from anL2 lattice for target lattices withLB58,4. C(L) gives the
tree approximation for the dependence onL/a of corrections to
scaling in the O~3! spin model.

L C(L,LB58) C(L,LB54)

16 0.53890071 0.54363018
32 0.56795927 0.55935100
64 0.58370587 0.56866918

128 0.59303041 0.57453025
256 0.59889307 0.57829938
512 0.60266260 0.58074276
07451
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sequence the larger values ofbeff agree well, and only asbeff
decreases is there an increasing discrepancy which sign
significant deviation of the three-loop approximation to theb
function from the correct value and also the possible effec
the neglectedL-dependent O(1/b2) terms in Eq.~5.6!. Our
expectation is confirmed that the method correctly rep
duces asymptotic scaling and probes the renormaliza
group flow close to the renormalized trajectory.

B. New scaling flows

In Figs. 3–9 we plot the flow segments for various~b,m!
values in the (̂A&,^P&) plane, where the longer flows in
Figs. 3 and 4 are composed of superimposing segments u
Eq. ~5.1!. There is a flow on which the observables sca
This is shown in Figs. 3 and 4. Nearby flows also show
scaling, but are not included in the figures for reasons
clarity. To see that observables scale, each flow of f
points was successively overlaid using the tuning descri
in Eq. ~5.1! with L85L/2. For the scaling flows the points o

-
rs
k,
n

FIG. 2. The results of example blocking of two vortex config
rations. Since vortices add mod 2, the blocking should yield eit
no blocked vortices or one blocked vortex depending on whe
the original region contained an even or odd number of vortic
The majority rule of Eq.~4.4! guarantees this important property

TABLE II. Values ofbeff(L,b) for sequences of bare couplingb
computed using Eq.~5.8! where successive couplings in the s
quence correspond to blocking by a factor of 2. The required ma
ing condition, Eq.~5.9!, for verification of asymptotic scaling is
very well satisfied for the sequence at largerb, and the deviation in
the other sequence is largest for the smaller values ofb and is due
to deviation of the three-loop approximation to theb function from
the true value and possibly to terms neglected in Eq.~5.6!.

Initial lattice sizeL
b 64 128 256 512

5.0 4.355~1! 4.227~3! 4.107~5!
4.8861 4.343~1! 4.244~3! 4.110~3! 3.995~5!
4.7721 4.249~1! 4.124~1! 4.002~3!
2.0 1.2752~4! 1.1366~4! 0.9852~7!
1.8803 1.2733~2! 1.1289~4! 0.9729~7! 0.8194~4!
1.7560 1.1210~3! 0.9532~4! 0.8000~2!
0-5
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FIG. 3. The scaling flow built up from the RG flow segments of set 1 given in Table III. Each segment consists of four
corresponding to the (^A&,^P&) values on anL58 lattice blocked for given couplings from lattices withL564, 128, 256, 512, respectively
The segments are adjusted so that they overlay each other, and it can be seen from this figure, and from Table III, that the points o
segments coincide very well, indicating that scaling holds. There are two errant points corresponding to the two largestb values andL
5512.
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the overlaid flow segments coincide very well within erro
~the tuning is not absolutely exact!, showing that there are
only very small effects from the irrelevant operators.
Table III we give the values of (^A&,^P&) for points on the
segments making up two such scaling flows, labelled se
and set 2, together with the initial lattice sizes and coupl
constant values.

The tuning described by Eq.~5.1! was done by trial and
error. We tried to estimate the effect of small increments
the coupling constant values by using the method of
weighting, but this was found not to work. This was main
because the blocked (^A&,^P&) values were very sensitive t
the initial couplings and so to use reweighting was no
realistic possibility. Also, it was found that the effect of
change inb could be partly compensated by a change inm.
This was because the Jacobian](^A&,^P&)/](b,m) was rela-
tively small and presumably a better choice for the pair
observables and/or initial couplings would increase its va
However, in no case was this Jacobian dangerously s
and tuning by trial was effective.

For these flows we did not apply a compensation for sc
ing corrections of the kind used in the previous section
the O~3! model. It is not possible to carry out a similar tre
level calculation to determine the compensation, if any, a
function of L/a since the model and the appropriate co
pling~s! associated with the scaling flows are not know
Also, the data presented in this section were obtained be
the details of the O~3! analysis were known and the possib
07451
1
g

n
-

a

f
e.
all

l-
r

a
-
.
re

residual dependency onL analyzed. It could be suggeste
that an optimized RG scheme@12,13,14# would eliminate
these minor deviations, but there are impediments to
implementation of such a strategy. As discussed more f
later, it is unclear that there actually exists a fixed po
associated with these flows, and even if there is, we ar
that no point in the~b,m! plane can be in its domain o
attraction. Consequently, not even a singular block
scheme can move the supposed fixed point so that the c
sponding fixed point theory is in the class of models we
studying. A similar argument excludes any possibility of d
veloping an improved action associated with the scal
flows. In order to do so we need to establish the existen
nature, and position of the fixed point—information we d
not have. Overall, the deviation from scaling for the scali
flows is not large, and we must allow for the possibility th
it may be due, in some measure, to finite lattice-spacing
tifacts of the kind analyzed for O~3!. However, there are a
few points shown which do deviate substantially from sc
ing for which such an explanation is unlikely. For both se
these points are for the two largest values used forb and for
the largest initial lattice sizeL5512. We defer a discussio
of the reasons why they do not scale well until Sec. VI.

The couplings which generate the scaling flow denoted
set 1 correspond to points on the flow separated by a blo
ing factor of 2. A plot of exp(2m) versusg51/b for these
points can be approximated by a straight line with all exc
the one with smallestb well fitted by
0-6
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FIG. 4. Detail of Fig. 3. Caption
as for Fig. 3.
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exp~2m!51.74~1!22.98~4!g. ~5.10!

This form is motivated by plots shown in Solomonet al. @6#
where certainly the position of the first-order transition
zero temperature (g50) is most easily expressed in terms
g and exp(2m). Phenomenologically, we find that it is con
sistent to associate a scaling exponentk with the scaling flow
using the relation

~g12g* !

~g22g* !
5bk, b52p, ~5.11!

where the number of blockings forg1 andg2 differs byp ~a
factor of 2p in change of scale! in order for the correspond
ing points in the (̂A&,^P&) plane to coincide on the scalin
flow. This behavior is expected forg close tog* if an infra-
red fixed pointg* exists. The value ofg* is a free paramete
which is chosen to obtain the best fit assumingk in Eq.
~5.11! is constant. Even so,g* is not very well determined
by this alone and we find a range of valuesg* '0.13– 0.15
to be acceptable, for which the various pairings of couplin
for set 1 from Table III give the values fork shown in Table
IV. The values ofm* in Table IV are inferred using the
linear fit of Eq.~5.10!. Note that the possible values ofm* in
Table IV are far removed from the valuem50 which char-
acterizes the RP2 model. Takingk in the range 4–5, the
dimension of the relevant operator associated with the s
ing flows is

D5D21/k'1.75– 1.8. ~5.12!

A word of caution. The definition ofk used in Eq.~5.11! is
appropriate for conventional second-order behavior. Ho
07451
t

s

l-

-

ever, the consistency of the fit should be taken only a
phenomenological parametrization and it is likely that a d
ferent scaling form such as derived from Kosterlitz-Thoule
~KT! behavior would give an equally good fit. For examp
in @16# Seileret al. study theZ(10) model in 2D which they
presume has a KT transition. They find that both seco
order and KT scaling forms give equally good fits near t
transition and that, indeed, the KT form is hard to reconc
with conventional theory.

C. First-order transition

Solomonet al. @6# use simple arguments to suggest tha
line of first-order transitions occurs in the rangem1,m(b)
,m2 , m1520.293,m2'20.26. This line of transitions will
terminate in a critical point associated with a continuo
transition, implying that a critical surface intersects the~b,m!
coupling constant plane. Confirmation of the first-order tra
sition is shown in Figs. 5 and 6 where, respectively, t
values of ^A& and ^P& for a lattice of L5128 are shown
plotted againstm for fixed b56.0,7.0,7.5,8.0. It is clear tha
there is no transition forb56.0,7.0, but that there is likely to
be a first-order transition forb57.5,8.0. This places the
critical point in the range 7.0,b* ,7.5, which is consisten
with the investigation of Solomonet al. @6#. The value ofm*
varies a little, but is close to20.26. There is no detectabl
dependence onL, and studies on lattices withL5256 and
L5512 have shown identical results within statistical erro
From Fig. 5 we infer that a good order parameter distingui
ing the two phases is the vorticity. There is also a disco
nuity in ^A& shown in Fig. 6 which is, however, not indepe
dent of the discontinuity in̂P&. The value of̂ A& will vary
rapidly since it is sensitive to, and thus reflects, the disc
tinuous change in the vorticity. The effective potential w
0-7
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TABLE III. Values of the blocked observables (^A&,^P&) for the flow segments constituting two neigh
boring scaling flows labelled by set 1 and set 2. The values of the couplings~b,m! labelling each segment ar
given and the different points on a given segment are labelled by the initial lattice sizeL. The blocked
observables were measured after blocking to a fixed target lattice size of 838. Scaling of the blocked
observables can be seen to hold extremely well for each set by noting that the (^A&,^P&) values lying on any
given diagonal sloping from bottom left to top right agree very closely indeed, except for the larges
values ofb for L5512. Set 1 is shown in Figs. 3 and 4.

Initial lattice size,L
~b,m! 64 128 256 512

4.26,20.045
0.81894~3! 0.80587~9! 0.7913~2! 0.7761~3!
0.98330~4! 0.9809~2! 0.9753~3! 0.9684~8!

4.0, 0.0
0.80793~3! 0.7913~2! 0.7690~2! 0.739~1!
0.98021~6! 0.9740~3! 0.9561~4! 0.927~3!

3.72, 0.06
0.79261~5! 0.7678~1! 0.7273~4! 0.6424~8!

Set 1 0.97402~9! 0.9547~2! 0.9053~8! 0.770~3!

3.45, 0.125
0.76947~6! 0.7251~2! 0.6363~4! 0.4995~6!
0.9576~1! 0.9025~4! 0.7601~10! 0.558~1!

3.18, 0.187
0.7233~2! 0.6298~2! 0.4872~2! 0.2878~5!
0.9025~4! 0.7528~4! 0.5430~4! 0.3348~5!

4.00, 0.02
0.81574~3! 0.80228~6! 0.7871~2! 0.7694~9!
0.98787~5! 0.9849~1! 0.9782~4! 0.967~2!

3.73, 0.0833
0.80236~4! 0.7846~1! 0.7611~2! 0.720~1!
0.98518~6! 0.9768~2! 0.9571~5! 0.905~3!

3.495, 0.14
0.78475~7! 0.7577~1! 0.7085~3! 0.611~2!

Set 2 0.9769~1! 0.9538~3! 0.8865~7! 0.727~3!

3.3, 0.18
0.7596~1! 0.7070~1! 0.6062~4! 0.4564~7!
0.9544~2! 0.8826~3! 0.7178~8! 0.506~1!

3.06, 0.23
0.7050~3! 0.6002~3! 0.448~5! 0.2383~2!
0.8821~7! 0.7105~7! 0.4990~9! 0.2973~4!
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show no discontinuity, and it is crude but reasonable to s
pose that one particular linear combination ofA andP plays
this role. In Fig. 7 we plot̂ P& against̂ A&, and indeed it can
be seen that there is no sign of a sharp discontinuity and
the locus of points is reasonably linear. The outcome is
the combined operator

UC~x!5(
m

Sx•Sx1msx,m1gPx~s!, ~5.13!

with g'20.29, has a continuous expectation value acr
the transition. The orthogonal combinationUD(x) has a dis-
07451
p-

at
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continuous expectation value which is sensitive to the v
ticity and is a good order parameter. The simple and pers
sive argument of Solomonet al. @6# is based on minimizing
the energy atb5` to show that a first-order transition oc
curs in ^P& at m(`)51/&21. The argument also depend
on continuity of the energy, which, atb5`, means that
UC(x) is identified with the local energy operator. This w
be only approximate forb,`.

That the transition is first order should be confirmed
investigating theL dependence of the order parameter^UD&,
which we have not yet done due to pressure of compu
s
e

4
8

TABLE IV. The scaling exponentk calculated using Eq.~5.11! and various pairings of coupling
g51/b from set 1 given in Table III. Two different choices for (g* ,m* ) are used which correspond to th
range giving consistent results fork.

(g* ,m* ) Scaling exponentk

0.13,20.305 5.10 4.92 4.919 4.90 4.76 4.83 4.84 4.91 4.88 4.8
0.15,20.261 4.19 4.10 4.15 4.18 4.02 4.13 4.18 4.25 4.26 4.2
0-8
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NATURE OF THE CONTINUUM LIMIT IN THE 2D RP2 . . . PHYSICAL REVIEW D 58 074510
time. However, the results in Figs. 5 and 6 convincing
demonstrate the expected discontinuity on the largest
tices.

The critical point terminating the first-order line will be i
the domain of a fixed point, the ‘‘vorticity’’ fixed point, with
a renormalized trajectory on which the vortex density sca
thus defining a new continuum theory with nonzero vor
density.

D. Crossover of flows

In Figs. 8 and 9 there are two further sets of flow se
ments, sets 3 and 4, which each show a clear crossover
function of initial couplings. Set 3 lies to the left of set
These two sets are examples of the crossover effect w
we infer occurs in a narrow region formed by the neighb
hood of a continuous line of theories in the~b,m! plane.

The couplings associated with sets 3 and 4 are liste
Table V where, for each set, the couplings reading from

FIG. 5. ^P& defined by Eq.~4.1! as a function ofm for b56.0
~s!, 7.0 ~h!, 7.5 ~L!, and 8.0~n!.

FIG. 6. ^A& defined by Eq.~4.1! as a function ofm for b56.0
~s!, 7.0 ~h!, 7.5 ~L!, and 8.0~n!.
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to right label the segments in order from the lowest in t
figure ~lowest ^P&) to the highest~highest^P&).

We concentrate in particular on the flow segments of
4, which correspond to the RP2 spin model (m50). These
segments are shown for variousb in the range 3.9–4.5 wher
the crossover in the flows is very strongly marked, occurr
betweenb54.17 andb54.19. The values of (^A&,^P&)
blocked fromL564→L58 show little variation in values,
but when blocked from largerL, the variation is very strong
indeed. Moreover, it is clear that forb53.9– 4.1 the flow is
dominated by the proximity of the scaling flows, represen

FIG. 7. ^A& versus^P&, defined by Eq.~4.1!, for b56.0 ~s!,
7.0 ~h!, 7.5 ~L!, and 8.0~n!.

FIG. 8. Two examples sets of flows, sets 3 and 4, showing
crossover of flows. Set 3 lies to the left of set 4, and the~b,m!
values corresponding to these sets are given in Table V. Set 4 i
variousb in the RP2 model (m50) in the rangeb53.9– 4.5. There
is rapid variation in the renormalized (^A&,^P&) values for small
changes inb, indicating a narrow crossover from a region of high
low renormalized vorticity. Forb;4 the RP2 flows closely follow
the scaling flow of Fig. 3, shown here as the dashed curve, imply
scaling will apparently hold until, for largerb, the crossover occurs
0-9
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CATTERALL, HASENBUSCH, HORGAN, AND RENKEN PHYSICAL REVIEW D58 074510
as the dashed line in Figs. 8 and 9, which will induce a sig
for scaling in pure RP2 when b;4. However, asb is in-
creased, there is a strong crossover effect, and forb.4.25,
the flow is consistent with dominance by the renormaliz
trajectory associated with the asymptotically free O~3! fixed
point at (b* ,m* )5(`,`). Consequently, the apparent sca
ing signal will only be transitory. For finiteb there will
always be some free vortices, but forb.bcrossover, we ex-
pect that the density of free vortices will vanish faster th
1/j2 and the vortex density will not scale. This behavior
consistent with the absence of a phase transition at finiteb as
well as with the O~3! type continuum limit in RP2.

VI. DISCUSSION

The observation of the scaling flows reported in Sec. V
poses the question of whether we can attribute them to
influence of a nearby renormalized trajectory and so infer
existence of a new fixed point. One interpretation of the e
dence for scaling is that a new renormalized trajectory ex
with exponentk'4 – 5 and that a new fixed point lies som
where in the complete space of coupling constants with p
jection onto the~b,m! plane of (b* '7, m* '20.28). Evi-
dence presented in Sec. V C shows that there is als
‘‘vorticity’’ fixed point associated with the ‘‘vorticity’’ criti-
cal point located at about (bc'7, mc'20.26) which termi-
nates the first-order line. Because of the proximity of the

FIG. 9. Detail of Fig. 8. Caption as for Fig. 8.

TABLE V. The couplings associated with sets 3 and 4. For e
set, the couplings reading from left to right label the segments
order from the lowest in the figure~lowest ^P&) to the highest
~highest^P&).

~b,m!

Set 3
3.3
0.34

3.3
0.36

3.3
0.40

3.3
0.45

3.3
0.50

3.3
0.60

Set 4
3.9 4.05 4.17 4.19 4.29 4.5
0.0 0.0 0.0 0.0 0.0 0.0
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two points to each other, it is tempting to identify the ne
fixed point with the ‘‘vorticity’’ fixed point. However, there
is no direct evidence that this is so and there are argum
against such an identification. The first is that we would e
pect the continuum limit defined at the ‘‘vorticity’’ fixed
point to be Ising-like since the order parameter is based o
locally discrete variable: the plaquette operatorPx(s). The
exponentk for Ising-like critical points isk58/15, whereas
for the new renormalized trajectory we findk'4 – 5. This is
clearly inconsistent with the proposal. The second argum
is that the identification of the two fixed points means th
the ‘‘vorticity’’ critical point is in the domain of attraction of
the new fixed point. The consequence is that there must b
fixed point of the flows in the (̂A&,^P&) plane in the limit
that the initial lattice size is large enough:L→`. This is true
because flows that have bare couplings held at the crit
point values must be in the critical surface and so flow
wards the new fixed point. In turn, this implies that the co
relation lengthjA(b,m) for a state interpolated byA must
diverge at the ‘‘vorticity’’ critical point (bc ,mc). This is
unlikely since we expectjA(b,m) to be bounded from above
by the correlation length in the O~3! model at the sameb,
namely,jA(b,`). This is because form,` the presence of
vortices introduces disorder in the system which acts to
duce the correlation length at fixedb. However,jA(b,`)
diverges only in the limitb→0, the O~3! fixed point, and
hencejA(b,m) cannot diverge at (bc ,mc), contradicting the
proposed identification of the two fixed points. Although w
did not carry out an exhaustive investigation, we found
evidence for a fixed point of the (^A&,^P&) flows from the
simulations described in Sec. V B.

FIG. 10. An artist’s impression of the RG flows consistent wi
the simulation results. The O~3! fixed point controls the continuum
limit of RP2 (m50) and neighboring theories. A line of critica
points terminates the first-order surface and defines new contin
limits characterized by nonzero continuum vorticity. The observ
renormalized trajectory is shown associated with a new infra
fixed point in the critical surface~solid circle!. There are cogent
arguments that this fixed point does not control the second-o
transition terminating the observed first-order line in the~b,m!
plane. The scenario presented here is consistent with this view,
an ultraviolet fixed point~open circle! separates the two domains o
attraction shown. The crossover region is the neighborhood of
surface shown with dotted outline.
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NATURE OF THE CONTINUUM LIMIT IN THE 2D RP2 . . . PHYSICAL REVIEW D 58 074510
In Fig. 10 we shown an artist’s impression of a possi
topology of the RG flows in coupling constant space con
tent with this interpretation and with the results presented
Sec. V. The two axes associated with the couplings~b,m! are
augmented by a third which represents all other couplin
There are three fixed points shown. One is the usual asy
totically free O~3! infrared fixed point, and another is th
new infrared fixed point we have identified in this work, bo
shown as solid circles. The ‘‘vorticity’’ fixed point is no
shown, but its domain of attraction is separated from tha
the new fixed point by an ultraviolet fixed point~open
circle!. The critical surface bounds the surface of first-ord
transitions, and the two phases associated with this trans
are distinguished by the vortex density being large in o
phase and small in the other. The line of intersection of
first-order surface with the~b,m! plane is the line of first-
order transitions reported above. There are a number of
sible continuum limits in this model, each identified with
different fixed point. A nonzero vortex density will be ass
ciated with the continuum limit taken at the critical poi
controlled by the ‘‘vorticity’’ fixed point. At the new fixed
point there are two relevant directions, but we cannot be s
what the relevant observables are since in this scenario
action must be augmented by other couplings so that it
be tuned to lie in the critical surface and in the domain
attraction of this fixed point. However, the presence of t
renormalized trajectory dominates all flows in its neighb
hood, and its influence will only be diminished if points
the critical surface are approached which are not in its
main of attraction. The example scenario of Fig. 10 is co
plicated, but we have found no simpler topology consist
with the results if we demand that the scaling flows are d
to a nearby renormalized trajectory in an extended mode

A different interpretation is that the scaling flows are d
to the ghost of the Kosterlitz-Thouless renormalized traj
tory in the equivalent O~2!, or XY, model. A cogent argumen
against a Kosterlitz-Thouless fixed point occurring in no
Abelian models has been given by Hasenbusch in@8#, but it
was conjectured in@3# that some remnant of Kosterlitz
Thouless behavior might nevertheless survive in models
this kind and give rise to the pseudoscaling behavior repo
in @3#. As remarked in Sec. V B, the fit to the exponentk
using Eq.~5.11! should not be taken to rule out KT behavi
in favour of conventional second-order behavior. Indeed,
large value fork mitigates in favor of a KT interpretation
@17#. This explanation has the virtue of simplicity over th
alternative picture above, but it is unclear how to descr
the mechanism more fully.

The deviation from scaling for the largeb points for
L5512 in sets 1 and 2~Table III! can be explained by noting
that there is no fixed point for the (^A&,^P&) flows, and so
the attempt to follow the scaling flow to largerb and into a
fixed point will fail as the critical surface is approached. T
conjectured renormalized trajectory dominates by virtue
its large exponent, but scaling will eventually be violated
b increases towardsb;7.

It is not feasible to use either an optimized blocki
scheme or an improved action to elucidate the details of
scaling flows or to improve the matching. It is not esta
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lished that a fixed point actually exists, and so any attemp
either approach would be premature. In any case, it is
possible for any conjectured fixed point to be ‘‘moved’’ o
of its domain of attraction into the~b,m! plane, and so the
choice of operators of an optimized scheme is unclear
the choice of a simple fixed point action is unclear. Pert
bation theory cannot be used to improve the action, and
like in many successful applications of the perfect act
idea, this suggested new fixed point theory is very unlikely
be asymptotically free.

The strong influence of the scaling flows gives rise to
crossover effect in the flows which signals the crosso
from the vortex to the spin-wave regions of the phase d
gram. For example, in pure RP2 this occurs at aboutb
54.18, m50. We would naturally associate this crossov
with the observed first-order line, but it is clear that t
strength of the effect is due to the nearby scaling flows. T
would suggest that the first-order line and the scaling flo
were related, but as argued above, a simple relationshi
ruled out and it is unclear whether the proximity of the tw
features is a coincidence or not. The region in which
crossover occurs is quite narrow and has been shown
surface with dotted outline in Fig. 10. Asb is increased at
fixed m through this ‘‘crossover region,’’ the vorticity rap
idly decreases from a high to low value especially in t
neighborhood of the critical surface. This effect means t
the disorder also decreases rapidly, and we would expe
corresponding rapid increase in the vector and tensor co
lation lengthsjV and jT , which are deduced, respectivel
from the correlatorsGV(x,y) and GT(x,y) defined for
RPN21 by

GV~x,y!5^Sx•Sy&c ,

GT~x,y!5^@S~x!•S~y!#2&21/N. ~6.1!

BecauseGV is not gauge invariant, it will vanish unless it i
evaluated in a fixed gauge. This is analogous to the situa
in QED where the electron propagator is not gauge invaria
but the pole mass is. Technically, the gauge-fixed elect
propagator has a cut whose discontinuity is a gau
dependent function ofa, but whose branch point defines th
gauge-invariant mass. This is due to the continuous natur
the gauge group, which does not apply in our case. A r
sonable gauge choice would be to maximizeSx,msx,m . Here
GT takes the same form as the tensor correlator defined
Caraccioloet al. @1# and Sokalet al. @2#. BecauseGT is
gauge invariant, it does not require gauge fixing befo
evaluation. When the vorticity is vanishingly small, th
gauge field is equivalent to a pure gauge and can be ga
transformed to the trivial configurationsx,m51, ; x, m. The
physical observables in the theory are then insensitive to
chemical potentialm, and the theory is in the universalit
class of the O~3! fixed point.

In the O~3! continuum limit bothjV andjT will diverge,
but in the continuum limit defined by the vorticity fixed poin
we expect bothjV andjT to remain finite because, as alread
discussed above, the presence of disorder means that
will be bounded from above, respectively, byjV(b,`) and
jT(b,`), the correlation lengths at the same value ofb in
0-11
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CATTERALL, HASENBUSCH, HORGAN, AND RENKEN PHYSICAL REVIEW D58 074510
the O~3! spin model. In other words, at fixedb we expect
both jV and jT to increase asm increases, achieving the
maximum values atm5` in the O~3! model. This increase
could be very rapid in the vicinity of the crossover regio
The operators interpolating the states inGV and GT are,
respectively, Vi5Si and Ti j 5SiSj21/Nd i j . Since
^Vi&5^Ti j &50, they show no discontinuity across the firs
order line and hencejV andjT will not diverge at the critical
point terminating the first-order line~gauge fixing is under-
stood where necessary!. If either of jV or jT did diverge, it
would contradict the expectation that they are bounded fr
above by their corresponding values in O(N) as mentioned
above. In principle, we could also studyGS(x,y)
5^UC(x)UC(y)&c since^UC& is continuous across the firs
order line and it couples to theS-wave two-particle O(N)
singlet state. The associated correlation lengthjS should co-
incide with jT in the continuum limit if the conventiona
scenario is assumed. We suggest that the divergent cor
tion length at the critical point is associated with the c
relator of UD(x) or, equivalently, with the vorticity cor-
relator

GP„~x,y!…5^PxPy&. ~6.2!

In this study,GP was not computed.
The pure RP2 model (m50) does not intersect any criti

cal surface except the one in the basin of attraction of
O~3! fixed point atb5`. This confirms the conjectures o
Niedermayeret al. @7# and Hasenbusch@8# that RP2 and O~3!
have the same continuum limit. In a simulation of pure R2,
Kunz and Zumbach@18# observe the rapid decrease in vo
ticity that we have associated with the crossover region,
Niedermayeret al. @7# comment that in this region a shar
transition to a huge value forjV is to be expected. Our resu
is that the crossover is very strongly marked in the renorm
ized quantities obtained after substantial blocking has b
performed. The crossover region separates two phase
one of which the vorticity density is high with a backgroun
of vortices pairs overlaid by a gas of free vortices, and in
other the vorticity density is low and does not scale asb
→`. These two phases are also separated by a first-o
line, and we conjecture that a nonzero scaling limit for t
vortex density could exist at the terminating critical poin
Huang and Polonyi@19# have discussed the existence of
continuum limit with a nonzero scaling vorticity in a gene
alized 2D sine-Gordon model and the nonconservation of
kink current. A similar analysis could be fruitful in non
Abelian models of the kind discussed in this paper, althou
it is unclear if the same techniques are directly applicabl

In the simulation of the 2D SO~4! matrix model @3#, a
bogus signal for scaling was observed which led to an inc
rect measurement of them/LMS ratio. In the context of RP2

we would expect a similar effect forb;3.9 because in this
case the model renormalizes close to the scaling flows,
so in the neighborhood of this coupling we should expec
see a good scaling signal. The effect is enhanced by the l
exponent k;4 associated with these flows. Simulatio
which are designed to computem/LMS must havejV!L for
some largest practical lattice sizeL. BecausejV is rising
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rapidly in this region as a function ofb, this means that only
a small range ofb is usable and that this range correspon
to theories where the vorticity is not too low sincejV would
otherwise already be too large. The conclusion is that s
simulations will see an apparent scaling due to the str
influence of the scaling flows. However, this scaling is no
signal for a continuum limit in pure RP2, but is due to the
proximity of the crossover region to the scaling flows. O
much larger lattices asb is increased, a crossover to tru
scaling would eventually be observed: the scaling associ
with the O~3! fixed point. However, this would be for pro
hibitively large values ofjV , perhaps as large asjV;109

@7#. We believe that this effect explains the results presen
in @1#, who observe scaling in RP2 @RP3#, but who find that
the observed correlation length is smaller by a factor of 17

@104# than that deduced assuming that the theory is asy
totically free. We suggest that this study is actually in t
crossover regime where the correlation length is diminish
by the disordering effect of vortices and the scaling, which
perhaps due to a new renormalized trajectory, is only app
ent. The true scaling regime associated with the O~3! @O~4!#
fixed point will correspond to much larger correlatio
lengths than those studied. We believe that a similar ef
caused the bogus signal for scaling in the analysis of
SO~4! matrix model@3# and the mismatch between the o
served mass-gap and the Bethe-ansatz predictions.

We conclude that the RP2 and O~3! spin models are in the
same universality class and that there is no evidence to
contrary. This confirms the conclusions of Hasenbusch@8#
and Niedermayeret al. @7#, but is at variance with the propo
sition of Caraccioloet al. @2# that the continuum limits of
these two models are distinct. These latter authors prop
that there is a continuous set of universality classes in a
model with mixed isovector and isotensor O~3! spin interac-
tions. The O~3! and RP2 theories correspond to the pure i
ovector and pure isotensor interactions, respectively, and
proposition of Caraccioloet al. requires that these two mod
els be in different universality classes. The work presente
this paper shows that the opposite is true and hence tha
existence of a continuous set of universality classes in
mixed model is unlikely.

VII. CONCLUSIONS

In this paper we have studied the 2D RP2 gauge model
that is characterized by two couplings~b,m!, wherem is the
chemical potential controlling the vorticity computed fro
the gauge field plaquette expectation value. We have fo
that the role played by the vorticity in the nature of the pha
diagram is crucial. Using standard methods, we confirm
existence of a first-order transition~Figs. 5–7!, first sug-
gested by Solomonet al. @6#, in the ~b,m! plane separating
phases of high and low vorticity. The critical point termina
ing this first-order line is established to lie in the range 7
,bc,7.5, mc;20.26, which implies the existence of
‘‘vorticity’’ fixed point controlling the continuous transition
at (bc ,mc). We use the Monte Carlo renormalization grou
for blocking the spin-spin interaction and plaquette expec
tion values^A& and ^P& to investigate the topology of the
0-12
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renormalization group flows. We verify the presence of
O~3!-renormalized trajectory~at m5`) and find results con-
sistent with the known three-loopb function for sufficiently
largeb once the finite lattice-spacing artifact has been ta
into account. We establish the existence of new scaling flo
in the (̂ A&,^P&) plane ~Figs. 3 and 4! and conjecture tha
they are due either to the ghost of the Kosterlitz Thoul
renormalized trajectory in theXY model or to a new renor
malized trajectory and its associated fixed point, wh
should lie out of the~b,m! plane in the complete space o
couplings. The scaling flows are consistent with a criti
exponentk'4 – 5, and the projection of the conjecture
fixed point onto the~b,m! plane is deduced to be in the rang
b* '6.5– 7.5,m*'20.31 to20.26. Although the values o
(bc ,mc) and (b* ,m* ) are very similar, there are strong a
guments against identifying the conjectured fixed point w
the ‘‘vorticity’’ fixed point. One is that the exponentk is
much larger than that expected at the ‘‘vorticity’’ fixed poin
and another is that such an identification would imply a fix
point in the (̂ A&,^P&) flows for bare couplings (bc ,mc),
with a consequent divergence in certain correlation leng
This is contradicted by the fact that, because of the prese
of nonzero vorticity, these correlation lengths are bound
from above by the corresponding quantities in the O~3!
model (m5`) at the sameb, which are known not to di-
verge forb,`. A consequence is that the critical point
(bc ,mc) cannot be in the domain of attraction of the conje
tured fixed point. The scaling flows dominate the flows
their vicinity and in particular give rise to a crossover~Figs.
6 and 7! between regions of high vorticity~lower b! and low
vorticity ~higher b! accompanied by a rapid increase in t
correlation length as the disorder is reduced. We concl
that simulations in the neighborhood of the crossover reg
for m.20.26 will show ‘‘pseudo’’ scaling@3# because of
the proximity of these scaling flows. The true continuu
limit for such models will not be observed until true scalin
controlled by the O~3! fixed point, has been established
largerb and very much larger correlation length. This is t
case for the RP2 spin model (m50) whose continuum limit
is controlled by the O~3! fixed point and which is thus in the
same universality class as O~3!, contradicting Caracciolo
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et al. @2#, but confirming the work of Hasenbusch@8# and
Niedermayeret al. @7#. It also gives an explanation for th
results discussed by Caraccioloet al. @1#. In Fig. 10 an art-
ist’s impression of the renormalization group flows is giv
for one scenario consistent with our results. The natures
any new fixed points are not established because of
known difficulty @16# in distinguishing between fits of differ
ent scaling forms and the compatibility of the observed sc
ing with a second-order scaling form, given by Eq.~5.11!, is
of phenomenological significance only. It is quite possib
that any fixed point whose existence we infer from the dat
of Kosterlitz-Thouless type.

Our investigation has shown that the nature of gaug
spin models is complicated and it is difficult to pin dow
more about the nature and location of the topological f
tures of the renormalization group flows without more info
mation concerning the relevant operators in each case. H
ever, it is clear that a fixed point in a larger coupling const
space can be close enough to the subspace of simple m
that it very strongly influences observables and the outco
of tests for scaling in exactly that region accessible by sim
lation, namely, for those couplings for which the correlati
lengths have increased to the practical limit measurable
modern computers. This influence is strengthened if the
ponent of the associated renormalized trajectory is large.
model studied in this paper is a good example of this effe

It would be interesting to more accurately locate the cr
cal point at (bc ,mc) terminating the first-order line and in
vestigate the continuum limit it defines, and it may be th
such a study could usefully employ an optimized blocki
scheme and/or an improved action.
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