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Chiral corrections to the axial charges of the octet baryons from quenched QCD
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Using quenched chiral perturbation theory, we calculate one-loop corrections to the axial charges of the octet
baryons in the quenched approximation to quantum chromodynamics. The results are used to compare chiral
corrections to the axial charges in full QCD chiral perturbation theory with those in quenched QCD. We find
that the quenched chiral perturbation theory resultc0
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21••• is singular in the chiral
limit unlike the regular behavior of the full QCD chiral perturbation theory resultc01cl2mp
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I. INTRODUCTION

Lattice quantum chromodynamics~QCD! simulation al-
lows us to investigate the low-energy phenomena of str
interactions using first principles of quantum field theory.
is well suited for understanding the nonperturbative nature
strong interactions. Thus far, this method has been succ
fully employed in calculating various low-energy QCD r
lated quantities@1#.

However, many physical observables are calculated in
tice QCD using the so-called ‘‘quenched approximation’’
which vacuum polarization effects coming from quar
antiquark pair creation and annihilation are neglected. T
approximation is used because of the extensive comp
tional cost in full QCD lattice simulations in particular of th
light quark system. Such truncation, otherwise in a first pr
ciple calculation, can cause undesirable effects. First of a
is difficult to estimate quantitatively systematic errors
duced by the truncation. Second, since most cases of cu
lattice simulations are done with bare quark masses wh
produce pion masses heavier than the experimental va
heavier mass results from simulations must be extrapol
to the experimental pion mass region. Usually, a linear
quadratic fit has been used for the chiral extrapolation. S
an extrapolation may not be appropriate in quenched Q
~QQCD! because nonanalytic terms in the chiral expans
due to pion loops in quenched QCD will be different fro
those in full QCD.

In order to understand quenching effects on the ch
limit of various physical observables in light quark system
Sharpe devised a rule1 diagrammatic method@2#. Bernard
and Golterman@3# developed a systematic way based on
symmetry of QQCD extending earlier work@4#. The latter
method is in a similar spirit to chiral perturbation theory a
an application of the same idea to the baryonic system
constructed by Labrenz and Sharpe@5#. By use of these
methods, it is found that the chiral behaviors of many phy
cal quantities in QQCD are different than those in full QC
and there are indeed differences caused by the quenche
proximation. One may ask whether such differences are
merically noticeable in the physical pion mass region. If t
0556-2821/98/58~7!/074509~11!/$15.00 58 0745
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deviation is small in the physical mass region, we may saf
neglect it. For the pion mass, numerical investigations
vealed that although there is a difference between the ch
behavior of full QCD and that of QQCD, it is either small
the physical pion mass region@6,7# or may be caused by th
finite lattice volume @8#. The quenching effect on eac
baryon mass is numerically small although quenching eff
on the baryon mass splitting is significant@9#.

Of course, there are many more quantities where
quenched approximation introduces noticeable differen
~e.g., the heavy-light meson system@10,11#, pion scattering
length@12#, etc.! which await numerical investigation. Here
using the method developed in Ref.@5#, we suggest that the
chiral behavior of the axial charge of the octet baryons
QQCD should depart noticeably from that of full QCD in th
physical pion mass region, provided that the same coupli
and the same cutoff are chosen for both QQCD and
QCD. In this case, a quenched calculation may not
trusted, let alone a linear extrapolation of quenched lat
QCD simulation results.

In Sec. II, we briefly explain the quenched chiral pertu
bation theory described in Ref.@5# where the baryon fields
are introduced via the heavy baryon formulation. Section
explains our calculations of the axial current matrix eleme
for the octet baryons. In Sec. IV we discuss some impli
tions of our results. In Appendix A expressions for the co
ficients defined in the axial current renormalizations a
listed.

II. QUENCHED CHIRAL PERTURBATION THEORY
WITH BARYONS

In the following, we briefly mention the essential ingred
ents of quenched chiral perturbation theory (QxPT). Details
are available in Refs.@3,5# and we follow the notations in
Ref. @5#. The quenched approximation amounts to neglect
the quark determinant. Canceling the quark determinant
be achieved by introducing additional bosonic degrees
freedomq̃i corresponding to each flavor of the quark fie
qi . Eachq̃i has the same mass, charge, etc., as the orig
quark. Since the new bosonic degrees of freedom have
© 1998 The American Physical Society09-1
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same quantum number as fermion degrees of freed
~quarks! except the statistics, the Gaussian integral over
new degrees of freedom matches exactly the determi
from the quark degrees of freedom with the inverse of
determinant. Because of new bosonic degrees of freed
the symmetry of QQCD becomes the graded symme
U(3u3)3U(3u3) for the quenched system of light quar
Q5(u,d,s,ũ,d̃,s̃). This symmetry determines the form o
the interactions among the pseudoscalar mesons in QxPT.

The dynamics of the meson sector is conveniently
scribed by a Hermitian 636 matrix fieldF,

F5Ff x†

x f̃
G , ~2.1!

wheref is the ordinary meson,f̃ is the meson composed o
bosonic quarks, andx,x† is the fermionic meson. As in the
chiral perturbation theory (xPT) for full QCD, the following
is useful in constructing the effective Lagrangian for QQC

S~x!5e2iF~x!/ f , j~x!5eiF~x!/ f , ~2.2!

Am~x!5
i

2
~j]mj†2j†]mj!, Vm~x!5

1

2
~j]mj†1j†]mj!.

~2.3!

Under U(3u 3)3 U(3u3), the meson fields transform as

S→LSR†,j→LjU†~x!5U~x!jR†. ~2.4!

A componentS i j has the same transformation properties
the operatorQiQ̄j . The axial anomaly breaks this full chira
symmetry in the classical level, down to the semidirect pr
uct @SU(3u 3)3 SU(3u 3)# ^ U(1) in the quantum level. This
reduction in the symmetry introduces the fieldF0

5str(F)/A35(h82h̃8)/A2 and allows the quenched chir
Lagrangian to include arbitrary functions ofF0 . The result-
ing Lagrangian in the mesonic sector is then

L f
Q5

f 2

4
@str~]mS]mS†!V1~F0!

12m str~j†mj†1jmj!V2~F0!#

1aFV5~F0!]mF0]mF02m0
2V0~F0!F0

2 , ~2.5!

where str denotes super trace@3,5# and m
5diag(mu ,md ,ms ,mu ,md ,ms). The potentials are normal
ized asVi(F0)511O(F0

2). In our calculations, the highe
order terms in the potentials will not be needed since we
interested in leading order behaviors. In full chiral perturb
tion theory, the vertexi (aFp22m0

2)/3 iterates infinitely in
the h8 propagator. Thush8 acquires heavy mass and can
integrated out of the effective Lagrangian. In the quench
theory, however, only one insertion of this vertex surviv
and theF0 remains light. We must therefore keep the la
two terms inLF

q and this will introduce two additional pa
rameters in the baryon sector unlike full theory and will i
duce more singular behaviors in the chiral limit of QQC
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These new couplingsaF and m0
2 break the usual powe

counting rule inxPT since higher loop diagrams involvin
these vertices are not suppressed by powers ofp/Lx or
mp /Lx where Lx is the chiral cutoff. However, since th
actual expansion parameters in loop calculations areaF/3
and m0

2/3, we assume thataF/3 and (m0 /Lx)2/3 are small
and calculate only the leading behavior in these coupl
@3,5#.

The following is a brief summary of the method describ
in Ref. @5#, on how to extend the above idea for the mes
fields to the baryon fields in QQCD. QQCD hasqqq̃, qq̃q̃,
and q̃q̃q̃ baryons, in addition to the usualqqq baryons. To
construct irreducible representations of SU(3u3)V for
QQCD, we guide ourselves by the baryon field represen
tions in QCD and begin with the ‘‘quark’’ fieldQ and its
conjugate ‘‘antiquark’’ fieldQ̄, defined the above. Thes
Q,Q̄ fields transform as a fundamental representation and
conjugate representation of SU(3u3)V . Using threeQ’s, we
define spin-1/2 baryons

Bi jk
g ;@Qi

a,aQj
b,bQk

g,c2Qi
a,aQj

g,cQk
b,b#«abc~Cg5!ab ,

~2.6!

in analogy to spin-1/2 baryon fields in full theory

B i jk
full;@qi

a,aqj
b,bqk

g,c2qi
a,aqj

g,cqk
b,b#«abc~Cg5!ab ,

~2.7!

and for spin-3/2 baryons, we define

Ta,i jk
m ;@Qi

a,aQj
b,bQk

g,c1Qi
b,bQj

g,cQk
a,a

1Qi
g,cQj

a,aQk
b,b#«abc~Cgm!bg ~2.8!

in analogy to spin-3/2 baryon fields in full theory

T i jk
full;@qi

a,aqj
b,bqk

g,c1qi
b,bqj

g,cqk
a,a

1qi
g,cqj

a,aqk
b,b#«abc~Cgm!bg , ~2.9!

whereC5 ig2g0 is the charge conjugation matrix anda, b,
andc are color indices. Both fields have the same transf
mation properties

Bg,i jk~Ta,i jk
m !→~2 ! i 8~ j 1 j 8!1~ i 81 j 8!~k1k8!

3Uii 8U j j 8Ukk8Bg,i 8 j 8k8~Ta,i 8 j 8k8
m

!,

~2.10!

where UPSU(3u3)V , and these transformation propertie
makeB andT representations of SU(3u3)V . Due to the fact
that the off-diagonal 333 blocks ofU are Grassmann vari
ables, there are sign factors~grading factors!. The notations
for the indices in the sign factors are as follows: one for
anticommuting variables (i 51,2,3) and zero for the com
muting variables (i 54,5,6). The spin-3/2 baryon fields ar
completely symmetric under flavor index exchanges and
makes it easy to see that they are irreducible representa
SU(3u3)V . Constructing the spin-1/2 baryon fields are mo
involved. It is true even in the full QCD case since spin-1
9-2
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FIG. 1. Vanishing graphs. The solid dots re
resent the vertices stemming from the axial cu
rent.
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baryon fields are mixed representations of SU~3! flavor sym-
metry of full QCD: in Eq.~2.8!, among three flavor indice
of qqq, the first two are antisymmetric under the exchan
and the third one is symmetric under the exchange with
of the first two indices. Thus, the second term in the c
struction of spin-1/2 baryons in quenched theory is neede
make the representation irreducible under SU(3u3)V @5#.

These QQCD baryon fields satisfy the symmetry prop
ties

Bi jk5~2 ! jk11Bik j ,

Bi jk1~2 ! i j 11Bjik1~2 ! i j 1 jk1ki11Bk ji50,

Ti jk
m 5~2 ! i j 11Tjik5~2 ! jk11Tik j ~2.11!

because of the grading factors. The above two lines m
spin-1/2 baryon fields irreducible representations
SU(3u3)V with dimension 70. The first condition gives
3 1

2 3536 independent states and the6!/(3!3!) constraints
from the second condition reduces the total number of st
to 70. The representation including spin-3/2 baryons is
dimensional. We call the baryons of the 70~38! simply ‘‘oc-
tet’’ ~‘‘decuplet’’! baryons since they contain an SU~3! octet
~decuplet! when restricted to the index range 1–3.

The Lagrangian in the baryon sector in the lowest or
can be written in terms of the invariants of bilinear bary
fields. They include the covariant derivative or the fieldAm

in Eq. ~2.3!. The covariant derivative of the fieldBi jk is
given by

DmBi jk5]mBi jk1~Vm! i i 8Bi 8 jk1~2 ! i ~ j 1 j 8!~Vm! j j 8Bi j 8k

1~2 !~ i 1 j !~k1k8!~Vm!kk8Bi jk 8 , ~2.12!

whereVm is a vector current defined by Eq.~2.3!. The cova-
riant derivative of the fieldTi jk

m takes the same form. W
follow the notation of Ref.@5# for the contraction of the
flavor indices. They are
07450
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C̄LC8[C̄k j iLCi jk8 , ~2.13!

C̄LEC8[C̄k j iLEii 8Ci 8 jk
8 , ~2.14!

C̄LC8E[C̄k j iLEkk8Ci jk 8
8 ~2 !~ i 1 j !~k1k8!,

~2.15!

whereC andC8 are the baryon fields,E is a matrix field, and
L is an arbitrary Dirac matrix. An example ofE is Am.

The lowest order Lagrangian is, then,

LQ5LF
Q1L BTF

Q ~2.16!

whereLF
Q is given in Eq.~2.5! and

L BTF
Q 5 iB̄v•DB2 i T̄nv•DTn1DMT̄nTn12aB̄SmBAm

12bB̄SmAmB12gB̄SmBstr~Am!12HT̄nSmAmTn

2A3

2
C@ T̄nAnB1B̄AnTn#12g8T̄nSmTnstr~Am!.

~2.17!

The symbolsv andSm denote the fixed velocity and the sp
operator in the heavy baryon formalism@13#. Various other
possible terms such asB̄i jkSmAm, j j 8Bi j 8k(2) i ( j 1 j 8), etc., are
not independent due to the symmetry properties given in
~2.11!. In calculating contributions from the decuplet bar
ons, we assume thatDM!mp and treat the octet and th
decuplet baryons as degenerate. Extending our calculatio
the caseDMÞ0 is easy. Its effect will be discussed in Se
IV.

When the flavor indices are restricted to the range 123,
the baryon fields in the quenched theory are explicitly rela
to ones in full theory as

Bi jk uR5
1

A6
~« i jk 8Bk8k

full
1« ikk8Bk8 j

full
!, ~2.18!
9-3
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Ti jk uR5Ti jk
full . ~2.19!

Using these relations, one can formally show that
quenched Lagrangian is equal to the full Lagrangian un
the restrictions of the flavor indices and the identifications
the parameters

a52S 1

3
D1F D ,b5S 2

5

3
D1F D ,g52~D2F !,

~2.20!

although there is no reason why the parameters of two th
ries should be related to each other. For better compar
with xPT result, we will re-express our results using the
relations exceptg.

III. THE AXIAL CURRENT MATRIX ELEMENTS
FOR THE OCTET BARYONS

The axial current from the quenched chiral Lagrangian
given by

Jm
a 5 i

f 2

2
str@Ta~]mS†S2]mSS†!#1vm@B̄V2

A B12B̄BV2
A

13T̄nV2
A Tn#12aB̄SmBV1

A 12bB̄SmV1
A B

12gB̄SmBstr~V1
A !12HT̄nSmV1

A Tn

12g8T̄nSmTnstr~V1
A !2A3

2
C~ T̄mV1

A B1B̄V1
A Tm!,

~3.1!

V6
A 5

1

2
~jTAj†6j†TAj!, ~3.2!

TA5
1

2FlA 0

0 lAG , ~3.3!

wherelA are Gell-Mann matrices. The numerical factors
and 3 are due to the symmetry properties given in Eq.~2.11!.

The renormalization of the axial current can be calcula
by computing the diagrams given in Figs. 1, 2, and 3 us
Feynman rules derived fromLF

Q , L BTF
Q , and the vertices

from Eq. ~3.1!. All the contributions from the diagrams i
Fig. 1 vanish:~a! vanishes since only closed quark loops a
present~which cannot exist in the quenched approximatio!
and the others are zero due to the propertyv•S50. Then, the
matrix element ofJA for the octet baryonsBi andBj can be
written in the form

^Bi uJAuBj&5ūBi
gmg5uBj

t i j
AF11 (

a<b
~a i j ,ab

A 2l i j ,ab!Xab

1 (
a<b

~b i j ,ab
A 2r i j ,ab!YabG , ~3.4!
07450
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Xab5
Mab

2

16p2f 2
ln

Mab
2

m2
, ~3.5!

Yab5
~aFMaa

2 2m0
2!Xaa2~aFMbb

2 2m0
2!Xbb

3~Maa
2 2Mbb

2 !
, ~3.6!

Yaa5
1

48p2f 2F ~2aFMaa
2 2m0

2!ln
Maa

2

m2
1~aFMaa

2 2m0
2!G ,

~3.7!

wheret i j
A is the tree level result,l i j ,ab andr i j ,ab are the wave

function renormalization factors without and with the hairp

vertex @ i 2
3 (aFk22m0

2)#, and a i j ,ab
A and b i j ,ab

A are the one-
loop corrections without and with the hairpin vertex. We l
the coefficients in the Appendix. Here we work in the lim
mu5md . The m is the scale introduced in the dimension
regularization. The scale dependence is canceled by
counterterms obtained by theO(mq) Lagrangian such as

~m2!22d/2

Lx
B̄~j†mj†1jmj!SmAmB, ~3.8!

where m is the quark mass matrix. Including the counte
terms, the functionXab changes to

Xab→
Mab

2

16p f 2F ln
Mab

2

m2
1c~m!G , ~3.9!

wherec(m) is the counterterm. In the real world the log
rithmic correction is not significantly large@14#.

It is interesting to compare full chiral corrections wit
quenched chiral corrections for one of the above matrix e
ments~since we are interested in qualitative feature of t
chiral limit, we takem.Lx;1 GeV and neglect the finite
part in the following!. We choose the isovector axial charg
of the proton,gA for the comparison since a quenched latti
simulation data for this quantity is available@15#. Also, for
full xPT case, Jenkins and Manohar already computed o
loop chiral logarithmic contributions to the baryon axial ve
tor currents with the intermediate states of the octet and

FIG. 2. Wave function renormalization graphs. The cross rep
sents the vertexi (aFp22m0

2)/3.
9-4
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FIG. 3. Graphs contributing to the coefficien
a i j ,ab

A and b i j ,ab
A . The solid dots represent th

vertices stemming from the axial current. Th
cross represents the vertexi (aFp22m0

2)/3.
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cuplet states@16,17#. Since Jenkins and Manohar worked
the limit mu5md50, we only need to consider addition
contribution from nonzeromu(5md) for the comparison
@14#. With this additional contribution, the full chiral pertur
bation theory result forgA becomes

gA5~D1F !F12H 112~D1F !2

1
2C2~9D19F125H !

81~D1F ! J Mp
2

16p2f 2
ln

Mp
2

m2

2H 1

2
1

15D32D2F13DF2133F3

6~D1F !

1
C2~227D145F120H !

162~D1F ! J MK
2

16p2f 2
ln

MK
2

m2

2
~2D13F !2

3

Mh
2

16p2f 2
ln

Mh
2

m2 G . ~3.10!

On the other hand, our result for the quenchedgA is

gA
Q5~D1F !F11H 4~D23F !~D212DF13Dg13Fg!

3~D1F !

1
C2~215D19F210H !

27~D1F ! J Mp
2

16p2f 2
ln

Mp
2

m2

12~2D13F !2
1

48p2f 2H ~2aFMp
2 2m0

2!ln
Mp

2

m2

1~aFMp
2 2m0

2!J G , ~3.11!

which we can get easily from Eq.~3.4! using the fact thatgA
is equal to the^puJ11 i2un& due to the isospin symmetry
07450
Note that in the quenched chiral calculations the meson lo
with the s flavor do not contribute to this matrix element.

For a graphical comparison, we need to consider the
ues of various parameters in the above result. In full the
with octet states only, there are two free parametersD andF
in Eq. ~3.10!. A x2 fit to the hyperon semileptonic decay
gives D;0.56 andF;0.33. Additional contribution from
the intermediate decuplet states introduces two additional
rametersC2 and H. Jenkins and Manohar determined th
parameterC2 by fitting the D→Np decay rateuCu;1.6.
Three parameter fit yieldedD;0.61, F;0.40, and H
;21.9. They usedm;1 GeV. The quenched chiral ex
pressions for the axial currents given by Eq.~3.4! need seven
parametersD, F, C2, H, g, aF , and m0 . One way to
determine the values of these parameters is to fit to
quenched lattice data for the axial currents obtained on
physical quark masses. However, since such simulation
is not yet available at present and we are only intereste
the qualitative comparison between the full chiral and
quenched chiral behaviors of the physical quantities rat
than actual values of the parameters, let us use the value
the parametersD, F, C2, andH obtained by Jenkins and
Manohar for the sake of comparison. Also, let us choose
physicalh8 mass for the value of the parameterm0 . We set
the value of the parameterg by the relationg52(D2F)
and chooseaF50.

In Fig. 4, we show the full and the quenched chiral b
haviors of the nucleon isovector axial charge with the oc
states only and with both the octet and the decuplet st
using the parameter values mentioned in the above~in the
full chiral calculations, theK-p and theh-K mass differ-
ences are fixed at the physical values!. The full xPT result
with the octet states only gives noticeable pion mass dep
dence while the result with the octet and the decuplet st
shows flatter behavior. On the other hand, both plots of
gA

Q shows an almost flat behavior in the region 4mp
physicaland

6mp
physical. Interestingly, for the quenched case, the res

with the octet states only is flatter. For the same values of
parameters, in Fig. 5 we compare the quenched theory re
with the full theory result for degenerate quark mass c
9-5
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FIG. 4. Chiral behaviors of the nucleon is
ovector axial charge from QxPT andxPT with
the intermediate states of the octet states and w
the intermediate states of both the octet and
decuplet states. The solid, dotted, dashed, a
dot-dashed lines show the chiral behaviors fo
QxPT with the octets, QxPT with the octets and
the decuplets,xPT with the octets, andxPT with
the octets and the decuplets, respectively. H
the horizontal axis representsmp /mp

physical and
ranges from 0.01 to 7.
e
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se
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ia-
(mp
2 5mK

2 5mh8
2), in order to see isolated effects from th

quenched chiral singularity. There is not much differen
between the full theory with nondegenerate quark mas
~Fig. 4! and the full theory with degenerate quark mas
~Fig. 5!.

Although gA
Q diverges asmp→0 as expected,gA

Q stays
within ;20% of the experimental value forgA aroundmp

;mp
physical. This may be just due to a fortuitous choice of t

parameters: our result varies less than 10% for the valueg
50;1 and depends much more weakly onaF ~the variation
is less than 3% foraF521;11) andD ~stable for 0.49
,D,0.73). On the other hand, the behavior of our res
changes a lot asm0

2 or F is changed~see Figs. 6 and 7!
because the singular contribution is proportional toD
23F)2m0

2 .
Of course these results are reliable only for sufficien

small pion mass because the higher order corrections bec
important as the pion mass increases and the leading o
result will be no longer valid. In the largemp case, we
should take our figures as suggestions for the possiblemp

dependence. Quenched lattice simulation data of the a
07450
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charge exist@15# but the simulation was performed in th
heavy pion mass region so we could not compare our o
loop result with the lattice data.

IV. DISCUSSIONS

To understand quenching effects on the axial charge
the octet baryons in QCD, we performed a one-loop corr
tion to the axial charges using quenched chiral perturba
theory for baryons. In quenched QCD, the contribution fro
the disconnected quark diagrams vanishes and singlet m
h8 remains light. This induces more singular chiral corre
tions (m0

2/48p2f 2)ln(Maa
2 /m2)@[d ln(Maa

2 /m2)# to the matrix
elements ^Bi uJAuBj& than (M2/16p2f 2)ln(M2/m2) (M
5mp ,mK ,mh) in full QCD. Therefore, similar to the observ
ables considered by others, a quenching artifact to the a
charge also occurs as a leading singularity.

In particular, we compared QxPT result forgA
Q with xPT

result forgA in detail. Beside the obvious fact thatK andh
loops do not contribute to the renormalization ofgA

Q in
quenched theory~because they form disconnected quark d
-

me
to
FIG. 5. Chiral behaviors of the nucleon is
ovector axial charge from QxPT andxPT for the
degenerate quark masses (mp

2 5mK
2 5mh8

2). The
meaning of the line types and the axes is the sa
as Fig. 4. The horizontal axis ranges from 0.01
7.
9-6



-

for

.

CHIRAL CORRECTIONS TO THE AXIAL CHARGES OF . . . PHYSICAL REVIEW D 58 074509
FIG. 6. Chiral behaviors of the nucleon is
ovector axial charge from QxPT with the octet
and the decuplet states. The dot-dashed line is
m05500 MeV, the dotted line is form0

5mh8 (960) MeV ~the parameter chosen for Fig
4!, and the solid line is form051500 MeV. The
horizontal axis ranges from 0.01 to 7.
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grams!, we found that in the limitmp→0,

gA
Q→cQlnmp , ~4.1!

in contrast to full QCD chiral perturbation theory behavio

gA→~D1F !. ~4.2!

Since the chiral limit of the axial charges of the oc
baryonsgA

Q in the quenched chiral perturbation theory
found to be singular, extrapolating the quenched lattice Q
calculation result of octet baryon axial charge to ligh
quark mass would require careful consideration. Intere
ingly, our result does not depend ong8 even though there ar
two possible sources for theg8 dependence: one from th
axial current@Eq. ~3.1!# and the other from the Lagrangia
@Eq. ~2.17!#. This is because there is nog8 contribution from
the axial current insertion because theg8 vertex in the cur-
rent contains str (TA) and vanishes. Thus, the tree level d
grams do not haveg8 dependence. In one-loop level, wav
function renormalization type Feynman diagrams@Figs. 2~b!
and 2~d!# do not give theg8 dependence because only t
interaction vertices involving the octet-meson decuplet (C)
07450
t

D
r
t-

can appear. Similarly, Figs. 3~b!, 3~c!, 3~g!, and 3~h! do not
depend ong8 because the interaction vertices in these d
grams do not have decuplet-meson-decuplet vertices. Fig
3~d! and 3~i! do not contribute tog8 dependence because th
interaction vertices from the Lagrangian do not ha
decuplet-meson-decuplet vertices and the axial current in
tion cannot haveg8 dependence due to vanishing str (TA).

In Sec. III, we calculated the chiral corrections to the ax
charge assuming that the octet baryons and the decu
baryons are degenerate (DM50). In reality, this assumption
does not hold and in the lattice QCD simulation the oct
decuplet mass splitting depends on the simulation par
eters. Thus, we need to consider theDMÞ0 case. The effect
of finite DM can be taken into consideration by modifyin
the decuplet baryon propagator fromiPmn /v•k to iPmn /
(v•k6DM ) ~where Pmn is the projection operator for the
spin-3/2 fieldvmvn2gmn24/3SmSn) for those Feynman dia
grams which involve decuplet baryon propagators. For th
Feynman diagrams, flavor factors and vertices stay the s
as in theDM50 case. We can expand this modified decup
baryon propagator for small DM . Then, up to
O(DM ), Xab ,Yab ,Yaa for those terms which involveC2 in
Eq. ~3.4! are replaced by
-

for
FIG. 7. Chiral behaviors of the nucleon is
ovector axial charge from QxPT with the octet
and the decuplet states. The dot-dashed line is
F50.32, and the dotted line is forF50.40 ~the
parameter chosen for Fig. 4!, and the solid line is
for F50.48. The horizontal axis ranges from
0.01 to 7.
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Xab8 5Xab6n
MabDM

16p f 2
, ~4.3!

Yab8 5Yab6naF

~Ma1Mb!DM

48p f 2
,

~4.4!

Yaa8 5Yaa62naF

MaaDM

48p f 2
, ~4.5!

wheren is equal to 1 for the contributions from Figs. 3~b!,
3~c!, 3~g!, and 3~h! or 2 for those from Figs. 2~b!, 2~d!, 3~d!,
and 3~i!. This correction is small in present lattice QC
simulations.
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APPENDIX A: EXPRESSIONS FOR THE AXIAL
CURRENT RENORMALIZATIONS

Here we give the expressions for the coefficients app
ing in Eq. ~3.4!. The expressions fort i j

A are

tpp
8 5

2D13F

2A3
, tpn

11 i25D1F,tLS2
11 i2

5A2

3
D,

tJ0J2
11 i2

5D2F, tpL
41 i552

D13F

A6
,

tLJ2
41 i5

5
2D13F

A6
, tnS2

41 i5
5D2F,

tS0J2
41 i5

5
D1F

A2
5

1

A2
tS1J0
41 i5 . ~A1!

The coefficientsl i j ,ab andr i j ,ab are defined by

l i j ,ab5~l i ,ab1l j ,ab!/2,

r i j ,ab5~r i ,ab1r j ,ab!/2. ~A2!
07450
-
nd
l

r-

The diagrams~a! and ~b! in Fig. 2 yield

lL,uu52
1

3
D214DF23F22~4D26F !g1

1

2
C2,

lL,us525D212DF13F21
1

2
C2,

lL,ss5~D13F !g, ~A3!

lS,uu52D213F216Fg1
1

6
C2,

lS,us52D216DF23F21
5

6
C2,

lS,ss53~2D1F !g, ~A4!

lN,uu5lS,uu1lS,us1lS,ss, lN,us5lN,ss50, ~A5!

lJ,uu5lS,ss, lJ,us5lS,us , lJ,ss5lS,uu .
~A6!

The diagrams~c! and ~d! in Fig. 2 yield

rL,uu52
3

2S 4

3
D22F D 2

,

rL,us53S 4

3
D22F D S 1

3
D1F D , rL,ss52

3

2S 1

3
D1F D 2

g,

~A7!

rS,uu526F22
1

3
C2,

rS,us56F~D2F !1
2

3
C2,

rS,ss52
3

2
~D2F !22

1

3
C2, ~A8!

rN,uu5rS,uu1rS,us1rS,ss, rN,us5rN,ss50, ~A9!

rJ,uu5rS,ss, rJ,us5rS,us , rJ,ss5rS,uu .
~A10!

The a i j ,ab
A corresponds to the diagrams without the ha

pin in Fig. 3. Our result fora i j ,ab
A is
apn,uu
11 i2 5

2D~D23F !~2D1F !

3~D1F !
1~D23F !g1

2C2~6D118F25H !

27~D1F !
,

apn,us
11 i25apn,ss

11 i250, ~A11!

aLS2,uu
11 i2

5
4D~2D13F !

9
1

2~D23F !g

3
1

C2~26D118F218g25H !

54D
,

9-8
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aLS2,us
11 i2

5
D~D23F !

9
1

C2~48D172F25H !

108D
,

aLS2,ss
11 i2

5
~D23F !g

3
1

C2g

3D
, ~A12!

aJ0J2,uu
11 i2

5~D2F !g1
24C2g

9~D2F !
,

aJ0J2,us
11 i2

5
2D313D2F227DF219F3

9~2D1F !
1

C2~18D118F15H !

81~D2F !
,

aJ0J2,ss
11 i2

5
D313D2F19DF229F3

9~2D1F !
22Fg1

C2~72F172g15H !

162~D2F !
, ~A13!

apL,uu
41 i5 5

D3145D2F281DF2127F3

18~D13F !
1

~7D215F !g

6
1

C2~9D19F25H !

9~D13F !
,

apL,us
41 i5 5

225D3163D2F227DF2227F3

18~D13F !
1

2@C2~6D218F15H !#

18~D13F !
,

apL,ss
41 i5 5

2@~D13F !g#

6
, ~A14!

aLJ2,uu
41 i5

5
~2D1F !~5D226DF19F2!

6~2D13F !
1

~7D29F !g

6
1

C2~29D19F218g25H !

27~2D13F !
,

aLJ2,us
41 i5

5
4D~D216DF29F2!

9~2D13F !
1

2C2~3D29F25H !

27~2D13F !
,

aLJ2,ss
41 i5

5
~D13F !~25D216DF29F2!

18~2D13F !
2

~D19F !g

6
1

C2~D13F16g!

9~2D13F !
, ~A15!

anS2,uu
41 i5

5
D319D2F29DF229F3

18~2D1F !
1

~D25F !g

2
1

C2~9D145F118g15H !

81~D2F !
,

anS2,us
41 i5

5
2D313D2F227DF219F3

18~2D1F !
1

C2~18D118F15H !

162~D2F !
,

anS2,ss
41 i5

5
~D2F !g

2
122

C2g

9~D2F !
, ~A16!

aS0J2,uu
41 i5

5
~D2F !~2D216DF13F2!

6~D1F !
1

~D23F !g

2
1

C2~29D19F25H !

81~D1F !
,

aS0J2,us
41 i5

5
~2D1F !~D213F2!

3~D1F !
1

2C2~27D145F210H !

81~D1F !
,

aS0J2,ss
41 i5

5aS0J2,uu
41 i5 , ~A17!

aS1J0,ab
41 i5

5aS0J2,ab
41 i5 , ~A18!

app,uu
8 5

2D~D23F !

3
1~D23F !g15

C2H

9~D23F !
, app,us

8 5app,ss
8 50. ~A19!
074509-9
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The diagrams with the hairpin in Fig. 3 yield the following results forb i j ,ab
A :

bpn,uu
11 i2 5

~2D13F !2

2
, bpn,us

11 i25bpn,ss
11 i250, ~A20!

bLS2,uu
11 i2

5
2F~22D13F !

3
12

C2~22D13F !

9D
,

bLS2,us
11 i2

5
2~D222DF13F2!

3
1

C2~5D23F !

9D
,

bLS2,ss
11 i2

5
2D2

6
2

DF

3
1

F2

2
1

2@C2~D13F !#

9D
, ~A21!

bJ0J2,uu
11 i2

5
~D2F !2

2
1

C2~236D136F25H !

81~D2F !
,

bJ0J2,us
11 i2

522~D2F !F1
2C2~18D118F15H !

81~D2F !
,

bJ0J2,ss
11 i2

52F21
2@C2~72F15H !#

81~D2F !
, ~A22!

bpL,uu
41 i5 5

1

4
1

2D2

3
23DF13F2,

bpL,us
41 i5 52

1

2
1

2D2

6
1

3F2

2
,

bpL,ss
41 i5 5

1

4
, ~A23!

bLJ2,uu
41 i5

5
1

4
1

2D225DF13F2

3
1

4C2~22D13F !

9~2D13F !
,

bLJ2,us
41 i5

52
1

2
1

2D2210DF115F2

6
1

2C2~5D23F !

9~2D13F !
,

bLJ2,ss
41 i5

5
1

4
1

F~D13F !

3
1

2C2~D13F !

9~D23F !
, ~A24!

bnS2,uu
41 i5

5
1

4
1F~2D13F !1

2C2~D23F !

9~D2F !
,

bnS2,us
41 i5

52
1

2
1

D224DF13F2

2
1

2C2~D23F !

9~2D1F !
,

bnS2,ss
41 i5

5
1

4
, ~A25!

bS0J2,uu
41 i5

5
1

4
1F~2D1F !1

2C2~29D29F15H !

81~D1F !
,

074509-10
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bS0J2,us
41 i5

52
1

2
1

D222D15F2

2
1

4C2~9D19F25H !

81~D1F !
,

bS0J2,ss
41 i5

5
1

4
1F~2D1F !1

2C2~29D29F15H !

81~D1F !
, ~A26!

bS1J0,ab
41 i5

5bS0J2,ab
41 i5 , ~A27!

bpp,uu
8 5

~2D13F !2

2
, bpp,us

8 5bpp,ss
8 50. ~A28!
@1# See for example, Nucl. Phys. B~Proc. Suppl.! 47, ~1996!; 53
~1997!.

@2# S. Sharpe, Phys. Rev. D41, 3233~1990!; 46, 3146~1992!.
@3# C. Bernard and M.F.L. Golterman, Phys. Rev. D46, 853

~1992!; 49, 486 ~1994!.
@4# A. Morel, J. Phys.~Paris! 48, 1111~1987!.
@5# J.N. Labrenz and S. Sharpe, Phys. Rev. D54, 4595~1996!.
@6# S. Kim and D. K. Sinclair, Phys. Rev. D52, R2614~1995!.
@7# R. Gupta, Nucl. Phys. B~Proc. Suppl.! 42, 85 ~1995!.
@8# R. Mawhinney, Nucl. Phys. B~Proc. Suppl.! 47, 557 ~1996!.
@9# S. Sharpe, Nucl. Phys. B~Proc. Suppl.! 53, 181 ~1997!.
07450
@10# M. J. Booth, Phys. Rev. D51, 2338~1995!.
@11# S. R. Sharpe and Y. Zhang, Phys. Rev. D53, 5125~1996!.
@12# C. Bernard and M.F.L. Golterman, Phys. Rev. D53, 476

~1996!.
@13# H. Georgi, Phys. Lett. B240, 447 ~1990!.
@14# M.A. Luty and M. White, Phys. Lett. B319, 261 ~1993!.
@15# K.F. Liu, S.J. Dong, T. Draper, and J.M. Wu, Phys. Rev. D49,

4755 ~1994!.
@16# E. Jenkins and A.V. Manohar, Phys. Lett. B255, 558 ~1991!.
@17# E. Jenkins and A.V. Manohar, Phys. Lett. B259, 353 ~1991!.
9-11


